WorldWideScience

Sample records for water entry zones

  1. Dynamics of Water Entry

    CERN Document Server

    Truscott, Tadd T; Techet, Alexandra H

    2008-01-01

    The hydrodynamics associated with water-entry of spheres can be highly variable with respect to the material and kinematic properties of the sphere. This series of five fluid dynamics videos illustrates several subtle but interesting variations that can be seen. The first series of videos contrasts the nature of impact ($Fr = U_o/\\sqrt{gd} = 5.15$) between a hydrophilic (wetting angle of $\\alpha$ = 60$^\\circ$) and hydrophobic sphere ($\\alpha$ = 120$^\\circ$), and illustrates how surface coating can affect whether or not an air cavity is formed; the views from the side and from above are synchronized in time. The second video series illustrates how spin and surface treatments can alter the splash and cavity formation following water entry. The spinning sphere ($S = \\omega r / U_o = 1.7$; $Fr = 5.15$) causes a wedge of fluid to be drawn into the cavity due to the no-slip condition and follows a curved trajectory. The non-spinning sphere ($Fr = 5.15$) has two distinct surface treatments on the left and right hemi...

  2. Water Entry of Projectiles

    Science.gov (United States)

    Truscott, Tadd T.; Epps, Brenden P.; Belden, Jesse

    2014-01-01

    The free-surface impact of solid objects has been investigated for well over a century. This canonical problem is influenced by many physical parameters, including projectile geometry, material properties, fluid properties, and impact parameters. Through advances in high-speed imaging and visualization techniques, discoveries about the underlying physics have improved our understanding of these phenomena. Improvements to analytical and numerical models have led to critical insights into cavity formation, the depth and time of pinch-off, forces, and trajectories for myriad different impact parameters. This topic spans a wide range of regimes, from low-speed entry phenomena dominated by surface tension to high-speed ballistics, for which cavitation is important. This review surveys experimental, theoretical, and numerical studies over this broad range, utilizing canonical images where possible to enhance intuition and insight into the rich phenomena.

  3. Lattice Boltzmann modeling of water entry problems

    Science.gov (United States)

    Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S.

    2014-12-01

    This paper deals with the simulation of water entry problems using the lattice Boltzmann method (LBM). The dynamics of the free surface is treated through the mass and momentum fluxes across the interface cells. A bounce-back boundary condition is utilized to model the contact between the fluid and the moving object. The method is implemented for the analysis of a two-dimensional flow physics produced by a symmetric wedge entering vertically a weakly-compressible fluid at a constant velocity. The method is used to predict the wetted length, the height of water pile-up, the pressure distribution and the overall force on the wedge. The accuracy of the numerical results is demonstrated through comparisons with data reported in the literature.

  4. Trigeminal root entry zone involvement in neuromyelitis optica and multiple sclerosis.

    Science.gov (United States)

    Sugiyama, Atsuhiko; Mori, Masahiro; Masuda, Hiroki; Uchida, Tomohiko; Muto, Mayumi; Uzawa, Akiyuki; Ito, Shoichi; Kuwabara, Satoshi

    2015-08-15

    Trigeminal root entry zone abnormality on brain magnetic resonance imaging has been frequently reported in multiple sclerosis patients, but it has not been investigated in neuromyelitis optica patients. Brain magnetic resonance imaging of 128 consecutive multiple sclerosis patients and 46 neuromyelitis optica patients was evaluated. Trigeminal root entry zone abnormality was present in 11 (8.6%) of the multiple sclerosis patients and two (4.3%) of the neuromyelitis optica patients. The pontine trigeminal root entry zone may be involved in both multiple sclerosis and neuromyelitis optica.

  5. Re-Entries: New strategies in development zones at the Orinoco Oil Belt

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Briceno, M.; Figueroa, J.; Bolanos, C. [Lagoven, S.A., Morichal, Edo. Monagas (Venezuela)

    1996-08-01

    Drilling of horizontal wells in Venezuela began in the Orinoco Oil Belt with the wells CI-87 and CI-97 in the J-20 block, drilled in 1989 and 1990, respectively. Well CI-87 produces up to 1000 BPD without steam injection. Due to the success of this well, the exploitation strategy was oriented toward re-entry and sidetracking wells with mechanical problems, high water cut and low potential. The purpose of this programme was to enhance drainage patterns, access new reservoirs through existing bores, and increase oil production while reducing per-barrel costs. Eighteen (18) wells were re-drilled in different pay zones such as O-12, O-13, O-14 and O-15 with horizontal sections between a thousand feet and one thousand six hundred feet. Those wells were completed with progressive cavity pumps, sucker rod beam pumps and electrical submersible pumps. Presented in this paper are the results of the re-entries at the Orinoco Oil Belt and the future re-entry strategy.

  6. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  7. Predictor-corrector entry guidance with waypoint and no-fly zone constraints

    Science.gov (United States)

    Wang, Tao; Zhang, Hongbo; Tang, Guojian

    2017-09-01

    With the requirement of the future entry mission, the guidance method not only needs to be robust, reliable and autonomous, but also needs to have the ability to meet the constraints of no-fly zone and waypoint. The paper proposes a predictor-corrector entry guidance method that satisfies the constraints of no-fly zone and waypoint. The trajectory prediction is realized by numerical integration and the corrector is based on fuzzy logic. No-fly zones and waypoints are transformed to a series of reference points. For each reference point, one bank angle reversal is designed. The attack angle, the magnitude and reversal times of bank angle are cooperatively corrected to meet all constraints. The proposed method can guide longitudinal motion and lateral motion synergistically, so it is more robust and flexible. Only one bank angle reversal is needed for a no-fly zone or waypoint, so the reversal times are few. Moreover, without iteration, only a single trajectory prediction is required in a correction cycle, which is favorable for on-board calculation.

  8. HYDRODYNAMIC BEHAVIOR OF AN UNDERWATER MOVING BODY AFTER WATER ENTRY

    Institute of Scientific and Technical Information of China (English)

    施红辉; 高见卓也

    2001-01-01

    An experimental study was conducted to investigate the vater entry phenomenon. A facility was designed to carry out the tests with the entry velocities of around 352 m/s. Visualization, pressure measurement, velocity measurement and underwater impact test were performed to investigate the hydroballistic behavior of the underwater moving body, the underwater flow field, the supercavitation,etc.. This study shows that the motion of a high-speed underwater body is strongly three-dimensional and chaotic. Furthermore, it is found that the distribution of the trajectory deflection of the underwater projectile depends on the depth of water. It is also found by measuring the deformation on a witness plate submerged in water,that the impact energy of an underwater projectile is reduced as it penetrates deeper into vater.

  9. UNDERWATER ACOUSTICS AND CAVITATING FLOW OF WATER ENTRY

    Institute of Scientific and Technical Information of China (English)

    SHI Honghui; KUME Makoto

    2004-01-01

    The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation. Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone. From the measurements we obtain (1) the primary shock wave caused by the impact of the blunt body on free surface; (2) the vapor pressure inside the cavity; (3) the secondary shock wave caused by pulling away of the cavity from free surface; and so on. The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography. The periodic and 3 dimensional motion of the supercavitation is revealed. The experiment is carried out at room temperature.

  10. Experimental measurements of the cavitating flow after horizontal water entry

    Science.gov (United States)

    Tat Nguyen, Thang; Hai, Duong Ngoc; Quang Thai, Nguyen; Phuong, Truong Thi

    2017-10-01

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles.

  11. Pure and aerated water entry of a flat plate

    Science.gov (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  12. Investigation of water entry impact forces on airborne-launched AUVs

    Directory of Open Access Journals (Sweden)

    Duo Qi

    2016-01-01

    Full Text Available Airborne-launched AUVs withstand great fluid impact force at the early stage when entering the water, which may cause damage to their structure and inner components in severe cases. Due to their large volume and mass, the major challenge involved in conducting experiments to measure the water entry impacts on real-life AUVs is the high demand for the experimental devices, finding a suitable site, and the cost of the experiments. Using a gas gun as launching device, water entry experiments using a full-size AUV model are conducted under various conditions. The axial and radial force changes that occur during the water entry process are obtained, and some accompanied phenomena such as cavitation and turnover under different water entry conditions are observed. Computational fluid dynamics (CFD is used to simulate the water entry process of airborne-launched AUVs. The simulation results fit well with the experimental data, the latter of which show that both the water entry velocity and entry angle have a great influence on the impact load during the water entry process. These data can provide valuable reference information for AUV structure design and launch condition selection.

  13. The Benefit-Cost Relationship in Entry Job Training in Water Distribution.

    Science.gov (United States)

    Reames, J. P. (Jim)

    The benefit-cost relationship analysis concerns the cost effectiveness of employment and training in the Water Distribution Division of the Dallas Water Utilities Department and deals specifically with 104 entry workers hired to become pipe fitters. Half of the entry workers were enrolled in the Public Service Careers (PSC) training program and…

  14. Computational analysis of asymmetric water entry of wedge and ship section at constant velocity

    Science.gov (United States)

    Rahaman, Md. Mashiur; Ullah, Al Habib; Afroz, Laboni; Shabnam, Sharmin; Sarkar, M. A. Rashid

    2016-07-01

    Water impact problems receive much attention due to their short duration and large unsteady component of hydrodynamic loads. The effect of water entry has several important applications in various aspects of the naval field. Significant attention has been given to various water entry phenomena such as ship slamming, planning hulls, high-speed hydrodynamics of seaplanes, surface-piercing propellers and the interaction of high-speed liquid drops with structural elements. Asymmetric water entry may be caused by various natural phenomena such as weather conditions or strong winds. Since the determination of hydrodynamic impact load plays a vital role in designing safe and effcient vessels, an accurate and reliable prediction method is necessary to investigate asymmetric water entry problems. In this paper, water entry of a two-dimensional wedge and ship section at constant velocity in asymmetric condition will be analysed numerically and the effects of asymmetric impact on the velocity and pressure distribution will be discussed. The finite volume method is employed to solve the dynamic motion of the wedge in two-phase flow. During the water entry, the air and water interface is described implicitly by the volume of fluid (VOF) scheme. The numerical code and method was first validated for symmetric condition by one of the present author is applied for asymmetric wedge and ship section. The free surface, velocity and pressure distribution for asymmetric water entry are investigated and visualized with contour plots at different time steps.

  15. Research on the water-entry attitude of a submersible aircraft.

    Science.gov (United States)

    Xu, BaoWei; Li, YongLi; Feng, JinFu; Hu, JunHua; Qi, Duo; Yang, Jian

    2016-01-01

    The water entry of a submersible aircraft, which is transient, highly coupled, and nonlinear, is complicated. After analyzing the mechanics of this process, the change rate of every variable is considered. A dynamic model is build and employed to study vehicle attitude and overturn phenomenon during water entry. Experiments are carried out and a method to organize experiment data is proposed. The accuracy of the method is confirmed by comparing the results of simulation of dynamic model and experiment under the same condition. Based on the analysis of the experiment and simulation, the initial attack angle and angular velocity largely influence the water entry of vehicle. Simulations of water entry with different initial and angular velocities are completed, followed by an analysis, and the motion law of vehicle is obtained. To solve the problem of vehicle stability and control during water entry, an approach is proposed by which the vehicle sails with a zero attack angle after entering water by controlling the initial angular velocity. With the dynamic model and optimization research algorithm, calculation is performed, and the optimal initial angular velocity of water-entry is obtained. The outcome of simulations confirms that the effectiveness of the propose approach by which the initial water-entry angular velocity is controlled.

  16. Water pumping in mantle shear zones

    Science.gov (United States)

    Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony

    2017-06-01

    Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle.

  17. Dorsal root entry zone coagulation for treatment of deafferentation Pain syndromes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-hua; LI Yong-jie; HU Yong-sheng; TAO Wei; ZHENG Zhe

    2008-01-01

    Background Deafferentation pain is a kind of chronic pain syndrome and hard to manipulate.To evaluate the effectiveness and safety of junctional dorsal root entry zone (DREZ) coagulation,23 consecutive patients with intractable deafferentation pain syndrome were studied.Methods Twenty-three patients underwent junctional DREZ coagulation (C5-T1 for upper extremities and L2-S1 for lower extremities) under general anesthesia.The pain severity was evaluated by the short McGill pain questionnaire (MPQ) and the visual analog scale (VAS),and the depression and anxiety of patients were assessed by Hamilton rating scale for depression (HRSD),Hamilton anxiety scale (HAMA),self-rating anxiety scale(SAS)and self-rating depression scale (SDS).Results All the patients experienced significant pain reduction immediately after surgery.The scales of short MPQ and VAS at pre-operation,6-month and 12-month follow-up were 31.5±3.4 and 8.8±1.5,6.5±1.9 and 2.5±2.2,7.1±2.1 and 2.9±1.9,respectively.The postoperative scores comparing to pre-operative scores showed a statistically significant difference (P<0.01).The depression and anxiety state was also significantly relieved.At 12-month follow-up 6 patients had complete pain relief,11 had excellent results with more than 75% pain relief,17 had good results with more than 50% pain relief (73.9%).The main postoperative complications were transient slight hemiplegia(8),hypesthesia and paresthesia (15),a bearing down feeling of affected extremity (6),and deep sensory disability in the lower Iimbs(4)on the operated side.Because of the long time and prone position of the operation.13 cases had a transient hyperalgesia in the upper chest.Conclusion DREZ coagulation is a safe and effective procedure in the treatment of deafferentation pain syndromes.

  18. Impact of intraformational water zones on SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Fairbridge, J.K.; Gates, I.D. [Dept. of Chemical and Petroleum Engineering, University of Calgary (Canada); Cey, E. [Dept. of Geoscience, University of Calgary (Canada)

    2011-07-01

    In the Alberta oil sands steam assisted gravity drainage (SAGD) is used to reduce oil viscosity. It has been found that intraformational water zones exist in oil sand reservoirs and they can act either act as thief zones or be sealed off by mobilized bitumen. The aim of this paper is to determine the effect of intraformational water zones on SAGD performance. A rectangular reservoir was modeled and thermal reservoir simulations were carried out using the commercial CMG simulator on a base case and other scenarios. Results showed that water zones have an important impact on SAGD performance, the inclusion of water channels induced production drops while an increase of connectedness of water zones improved production performance. This study highlighted that water zones have an important impact on SAGD performance whether it is a positive or a negative one.

  19. Follow-up 26 years after dorsal root entry zone thermocoagulation for brachial plexus avulsion and phantom limb pain.

    Science.gov (United States)

    Tomycz, Nestor D; Moossy, John J

    2011-01-01

    Brachial plexus avulsion and limb amputation are often associated with intractable chronic pain. Dorsal root entry zone (DREZ) thermocoagulation is an effective surgical treatment for upper-extremity deafferentation pain. The authors describe the clinical follow-up and imaging in a patient who underwent DREZ thermocoagulation 26 years ago for postamputation phantom limb syndrome with associated brachial plexus avulsion. This patient continues to have successful pain control without phantom limb sensation and has never experienced a recurrence of his left upper-extremity pain syndrome. This report lends credibility to the notion that, among ablative neurosurgical pain operations, DREZ thermocoagulation may provide the greatest durability of pain control.

  20. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    Science.gov (United States)

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  1. Intracerebroventricular Administration of Nerve Growth Factor Induces Gliogenesis in Sensory Ganglia, Dorsal Root, and within the Dorsal Root Entry Zone

    Directory of Open Access Journals (Sweden)

    Johannes C. M. Schlachetzki

    2014-01-01

    Full Text Available Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  2. Crown sealing and buckling instability during water entry of spheres

    KAUST Repository

    Marston, J. O.

    2016-04-05

    We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.

  3. A study of energy transfer during water entry of solids using incompressible SPH simulations

    Indian Academy of Sciences (India)

    PRAPANCH NAIR; GAURAV TOMAR

    2017-04-01

    Cavity formation during water entry of a solid corresponds to the deceleration experienced by the solid. Several experimental studies in the past have facilitated qualitative understanding of the relation between flow and impact properties and the type of cavity formed. The types of cavities formed are classified primarilybased on the nature of the seal, such as (a) surface seal, (b) deep seal, (c) shallow seal and (d) quasi-static seal. The flow mechanism behind these features and their effects on the speed of the impacting solid require further quantitative understanding. A study of such phenomenon is difficult using the existing CFD techniques owing to the fact that the high density ratios between the two phases, namely water and air, bring in issues with respect to the convergence of the linear system used to solve for the pressure field for a divergence-free velocity field.Based on a free surface modeling method, we present Incompressible Smoothed Particle Hydrodynamics (ISPH) simulations of water entry of two-dimensional solids of different shapes, densities and initial angular momenta.From the velocity field of the fluid and shape of the cavity, we relate the transfer of kinetic energy from the solid to the fluid through different phases of the cavity formation. Finally, we present a three-dimensional simulation of water entry to assert the utility of the method for analysis of real life water entry scenarios.

  4. Water Entry and the Cavity-Running Behavior of Missiles

    Science.gov (United States)

    1975-01-01

    OFFICE NAME AND ADDRESS 12. REPORT DATE 1975 13. NUMBER OF PAGES 14. MONITORING AGENCY NAME & ADDRESS(II different from Control’njl Office) 1S. SECURITY... Monitored by Naval See Systems Command, Washington, D. C. 20360. 19. KEY WORDS (Continue on reverse side Ii necee*ary aid Identify by block number) Water...A-2 P Y 13 6 4 2-2 -4 -6 -8 -0.21 FIG, 1-51 APPROXIMATE PRESSURE CHANGE IN WATER DUE TO APPROACH OF WArER -ENTRANT SPHERE SEAHAZC/TR 75-2 Chapter 2 THE

  5. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  6. Buffer zone water repellency: effects of the management practice

    OpenAIRE

    Rasa, Kimmo; Räty, Mari; Nikolenko, Olga; Horn, Rainer; Yli-Halla, Markku; Uusi-Kämppä, Jaana; Pietola, Liisa

    2006-01-01

    Water repellency index R was measured in a heavy clay and a sandy loam, used as arable land or buffer zone (BZ). Further, effect of management practise and ageing of BZs were studied. Water repellency was proved to be a common phenomenon on these soils. Harvesting and grazing increased water repellency as does ageing.Low water repellency is supposed to prevent preferential flows and provide evenly distributed water infiltration pattern through large soil volume, which favours nutrient retention.

  7. Water entry without surface seal: Extended cavity formation

    KAUST Repository

    Mansoor, Mohammad M.

    2014-03-01

    We report results from an experimental study of cavity formation during the impact of superhydrophobic spheres onto water. Using a simple splash-guard mechanism, we block the spray emerging during initial contact from closing thus eliminating the phenomenon known as \\'surface seal\\', which typically occurs at Froude numbers Fr= V0 2/(gR0) = O(100). As such, we are able to observe the evolution of a smooth cavity in a more extended parameter space than has been achieved in previous studies. Furthermore, by systematically varying the tank size and sphere diameter, we examine the influence of increasing wall effects on these guarded impact cavities and note the formation of surface undulations with wavelength λ =O(10)cm and acoustic waves λa=O(D0) along the cavity interface, which produce multiple pinch-off points. Acoustic waves are initiated by pressure perturbations, which themselves are generated by the primary cavity pinch-off. Using high-speed particle image velocimetry (PIV) techniques we study the bulk fluid flow for the most constrained geometry and show the larger undulations ( λ =O (10cm)) have a fixed nature with respect to the lab frame. We show that previously deduced scalings for the normalized (primary) pinch-off location (ratio of pinch-off depth to sphere depth at pinch-off time), Hp/H = 1/2, and pinch-off time, τ α (R0/g) 1/2, do not hold for these extended cavities in the presence of strong wall effects (sphere-to-tank diameter ratio), ε = D 0/Dtank 1/16. Instead, we find multiple distinct regimes for values of Hp/H as the observed undulations are induced above the first pinch-off point as the impact speed increases. We also report observations of \\'kinked\\' pinch-off points and the suppression of downward facing jets in the presence of wall effects. Surprisingly, upward facing jets emanating from first cavity pinch-off points evolve into a \\'flat\\' structure at high impact speeds, both in the presence and absence of wall effects.

  8. Microsurgical procedures in the peripheral nerves and the dorsal root entry zone for the treatment of spasticity.

    Science.gov (United States)

    Sindou, M; Keravel, Y

    1988-01-01

    When spasticity becomes severe and harmful, in spite of physical and medical therapy, neurosurgery can give functional improvement. This paper deals with the long term results of Selective Peripheral Neurotomies of the Tibial Nerve and Selective Posterior Rhizotomies in the Dorsal Root Entry Zone, in 123 patients with spastic disorders localized to the limbs. The micro-techniques and intra-operative electro-stimulation for identification of the nervous structures responsible for the spastic components, can give a substantial reduction of the harmful spasticity, without suppressing the useful muscle tone and impairing the residual motor and sensory functions. The results were effective, with a 1 to 13 year follow-up (5 on average), in 89% of 47 Selective Peripheral Neurotomies of the tibial nerve for spastic foot, in 92% of 53 Selective Posterior Rhizotomies for paraplegia and in 87% of 23 Selective Posterior Rhizotomies for hemiplegia. In the most severe situations ("comfort" indications), correction of the abnormal postures and relief of pain facilitated nursing and physiotherapy. Sometimes there was reappearance of some useful voluntary movements. In the less affected patients ("functional" indications), the suppression of the harmful spastic components made the persistant capacities more effective.

  9. 40 CFR 142.57 - Bottled water, point-of-use, and point-of-entry devices.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Bottled water, point-of-use, and point... Issued by the Administrator § 142.57 Bottled water, point-of-use, and point-of-entry devices. (a) A State may require a public water system to use bottled water, point-of-use devices, or...

  10. A Numerical Study on the Asymmetric Water Entry of A Wedge Section

    Institute of Scientific and Technical Information of China (English)

    M. S. Seif; S. M. Mousaviraad; S. H. Saddathosseini

    2004-01-01

    The effect of the asymmetric water entry over a submerged part of a ship on the hydrodynamic impact is investigated numerically. A wedge body is considered and the problem is assumed to be two-dimensional. The results of symmetric and asymmetric impacts are compared. The effect is found significant in the numerical simulation. The maximum hydrodynamic pressure at a heel angle of 10 degrees becomes about 95% more than that of the symmetric entry. The result of the present work proves the importance of asymmetrical hydrodynamic impact loading for structural design of a ship. Besides, the numerical procedure is not limited to a wedge type cross section and it is possible to apply it for any real geometry of ships and high-speed craft.

  11. [Zoning of water environment protection in Three Gorges Reservoir watershed].

    Science.gov (United States)

    Wang, Li-jing; Xi, Chun-yan; Zheng, Bing-hui

    2011-04-01

    Regional differences in socio-economic development, land use, vegetation cover, and relative location of water body within a watershed bring about significant effects on the water environment quality of the watershed. Concerning about the core demands of water body protection, it is important and necessary to carry out zoning water environment protection for whole watershed. With a view to the spatial differences in regional characteristics of eco-environment and water body pressure-respond features, this paper studied the zoning of water environment protection in the Three Gorges Reservoir watershed, based on the methods of ecological factors overlay and ecological sensitivity analysis. The factors considered included hydrothermal conditions, terrain topography, administrative unit, and ecological sensitivity. Three regions in the watershed were zoned, i. e., 1) red region, namely strictly protected region, with an area of 2924 km2 and occupying 5.1% of the total; 2) yellow region, namely first class protection region, with an area of 10477 km2 and occupying 18.4%; and 3) blue region, namely second class protection region, with an area of 43599 km2 and occupying 76.5%. The key environmental problems of the regions were identified, and the strategies for the regions' development and water environment protection were proposed.

  12. The influence of initial conditions of water-entry on ricochet phenomenon

    Science.gov (United States)

    Guoming, Chen; Jinfu, Feng; Junhua, Hu; Yongli, Li; An, Liu

    2017-08-01

    The ricochet phenomenon of the water-entry of the water-air crossing vehicle is investigated by both experiments and numerical simulations. Experiments and numerical simulations of the water-entry process with different inclination angles, velocities, and attack angles are performed. The whole ricochet progress and the changing rules of angular acceleration, angular velocity, and displacement are obtained and analyzed by numerical simulation for a deeper understanding of ricochet phenomenon. The experiment is carried out to study the underwater trajectory by changing the initial condition only. The experimental results are in good agreement with the simulations. The results show that: (1) A small inclination angle causes the trajectory to bend upward, favoring the ricochet phenomenon. (2) A large velocity value also favors the ricochet phenomenon, making it occur more easily and quickly, but lower velocities are insufficient to provide the necessary kinetic energy. (3) The ricochet phenomenon is more likely to occur under a negative attack angle that causes the trajectory to bend upward, but a positive angle balances the underwater trajectory. These results can provide guidance to design a new water-air cross vehicle.

  13. Linking integrated water resources management and integrated coastal zone management.

    Science.gov (United States)

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents.

  14. Phosphoinositide-3-kinases p110alpha and p110beta mediate S phase entry in astroglial cells in the marginal zone of rat neocortex

    Directory of Open Access Journals (Sweden)

    Rabea eMüller

    2013-03-01

    Full Text Available In cells cultured from neocortex of newborn rats, phosphoinositide-3-kinases of class I regulate the DNA synthesis in a subgroup of astroglial cells. We have studied the location of these cells as well as the kinase isoforms which facilitate the S phase entry. Using dominant negative isoforms as well as selective pharmacological inhibitors we quantified S phase entry by nuclear labeling with bromodeoxyuridine. Only in astroglial cells harvested from the marginal zone of the neocortex inhibition of phosphoinositide-3-kinases reduced the nuclear labeling with bromodeoxyuridine, indicating that neocortical astroglial cells differ in the regulation of proliferation. The two kinase isoforms p110 and p110were essential for S phase entry. p110 diminished the level of the p27Kip1 which inactivates the complex of cyclin E and CDK2 necessary for entry into the S phase. p110phosphorylated and inhibited glycogen synthase kinase-3which can prevent S-phase entry. Taken together, both isoforms mediated S phase in a subgroup of neocortical astroglial cells and acted via distinct pathways.

  15. Recent advances associated with soil water in the unsaturated zone

    Science.gov (United States)

    Sposito, Garrison

    1995-07-01

    Perhaps the most compelling theme to emerge in the discipline of vadose-zone hydrology during the past decade is the scale invariance of soil water behavior. The numerous practical hydrologic consequences of this type of symmetry were summarized recently in a volume edited by Hillel and Elrick [1990]. The vadose zone, i.e., the porous earth material below the land surface whose water saturation fluctuates, is spatially heterogeneous to a degree difficult to capture in routine measurements, and there is a need to reduce this complexity for purposes of prediction and management. Scale invariance offers a way to do that. One imagines a heterogeneous field soil to be the union of approximately homogeneous spatial domains, each of which can be associated with a small number of characteristic length scales that are related to the equilibrium properties and movement of water. Heterogeneity then simplifies into the spatial variability of these local length scales, while the generic functional relationships that describe soil water properties remain uniform. These generic functional relationships include not only the dependence of water content and hydraulic conductivity on matric potential (the analog of pressure head for water in the unsaturated zone), but also the partial differential equations of transport and the empirical flux laws they contain. Russo [1991] has summarized and illustrated this important simplifying approach in the context of stochastic models of nonsteady infiltration. Roth et al. [1990] have compiled both research practice and the practitioners' consensus on how scale-invariance assists in the quantification and modeling of vadose-zone hydrologic processes. Some of the same scaling issues, of course, arise in groundwater hydrology; their conceptual underpinnings were discussed in detail in a compilation of research position papers edited by Cushman [1990].

  16. Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol

    Directory of Open Access Journals (Sweden)

    Liyanage T.D.P.

    2016-06-01

    Full Text Available Lowered stability of soil aggregates governed by insufficient organic matter levels has become a major concern in Sri Lanka. Although the use of organic manure with water repellent properties lowers the wetting rates and improves the stability of soil aggregates, its effects on soil hydrophysical properties are still not characterized. Therefore, the objective of this study was to examine the relation of water repellency induced by organic manure amendments to the water entry value and water retention of a Sri Lankan Ultisol. The soil was mixed with ground powders of cattle manure (CM, goat manure (GM, Gliricidia maculata (GL and hydrophobic Casuarina equisetifolia (CE leaves to obtain samples ranging from non-repellent to extremely water repellent, in two series. Series I was prepared by mixing GL and CE with soil (5, 10, 25, 50%. Series II consisted of 5% CM, GM, and GL, with (set A and without (set B intermixed 2% CE. Water repellency, water entry value, and water retention of samples were determined in the laboratory. Soil-water contact angle increased with increasing organic matter content in all the samples showing positive linear correlations. Although the samples amended with CE showed high soil-water contact angles in series I, set A (without 2% CE and set B (with 2% CE in series II did not show a noticeable difference, where >80% of the samples had soil-water contact angles <90°. Water entry value (R2 = 0.83–0.92 and the water retention at 150 cm suction (R2 = 0.69–0.8 of all the samples increased with increasing soil-water contact angles showing moderate to strong positive linear correlations. However, set A (without 2% CE and set B (with 2% CE in series II did not differ noticeably. Water entry value of about 60% the samples was <2.5 cm. Mixing of a small amount (2% of hydrophobic organic matter with commonly used organic manures slightly increased the water repellency of sample soils, however not up to detrimental levels. It

  17. Analysis of black fungal biofilms occurring at domestic water taps. II: potential routes of entry.

    Science.gov (United States)

    Heinrichs, Guido; Hübner, Iris; Schmidt, Carsten K; de Hoog, G Sybren; Haase, Gerhard

    2013-06-01

    Formation of tenacious and massive black biofilms was occasionally observed at the water-air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested to understand by which route fungi building these black biofilms enter their habitat at affected sites in domestic sanitary. A wide variety of fungi is known to be common in wet indoor environments, as well as in the drinking water resources. Two possible routes of entry are therefore considered as follows: (a) distribution by the drinking water system or (b) a retrograde route of colonisation. Previous compositional analysis revealed that the black constituents of biofilms primarily belong to the herpotrichiellaceous black yeast and relatives. Therefore, a systematic search for black fungi in the drinking water system was performed using Sabouraud's glucose agar medium with chloramphenicol and erythritol-chloramphenicol agar as isolation media. Cadophora malorum was the dominant fungus in the investigated drinking water systems, and samples taken from the house connections (n = 50; 74 %, route of contamination in case of E. lecanii-corni can be assumed.

  18. A vadose zone water fluxmeter with divergence control

    Science.gov (United States)

    Gee, G. W.; Ward, A. L.; Caldwell, T. G.; Ritter, J. C.

    2002-08-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self-calibrating tipping bucket, with a sensitivity of ~4 mL tip-1. For our meter this is equivalent to detection limit of ~0.1 mm. Passive-wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two-dimensional (2-D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr-1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr-1 to more than 1000 mm yr-1.

  19. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been demonstra

  20. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  1. Saline Ground Water and Irrigation Water on Root Zone Salinity

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Salinisation of land and rivers is a problem of national importance in India. Appropriate land management options to alleviate salinisation should be chosen with knowledge of the effects of land management on stream flow, stream salinity, stream salt load and land productivity. The Management of Catchment Salinisation (MCS modelling approach has been described in earlier work. It links a one-dimensional soil water model with a groundwater model to investigate the effects of management options in study areas of approximately 50 km2. The one dimensional model is used to characterize the annual soil water balance as a function of underlying aquifer Vpotential for all required combinations of soil, vegetation and groundwater salinity. It includes the effect of salt accumulation on plant water use. A groundwater model is then used to estimate the depth to water table across the study area that reflects the topography, hydrogeology and the distribution of vegetation. The MCS model is used to investigate the potential effects of future land use scenarios on catchment salt and water balance. Land use scenarios that have been considered include: forest plantations, revegetation with native trees and shrubs, and development of small areas of crops (10 to 20 ha irrigated with groundwater. This project focuses on the development of small crop areas irrigated with groundwater and investigates the sustainability of these schemes. It also compares the reduction of catchment salt load export under irrigation development with the reduction under afforestation

  2. Calculation of available water supply in crop root zone and the water balance of crops

    Science.gov (United States)

    Haberle, Jan; Svoboda, Pavel

    2015-12-01

    Determination of the water supply available in soils for crops is important for both the calculation of water balance and the prediction of water stress. An approach to calculations of available water content in layers of the root zone, depletion of water during growth, and water balance, with limited access to data on farms, is presented. Soil water retention was calculated with simple pedotransfer functions from the texture of soil layers, root depth, and depletion function were derived from observed data; and the potential evapotranspiration was calculated from the temperature. A comparison of the calculated and experimental soil water contents showed a reasonable fit.

  3. Large scale water entry simulation with smoothed particle hydrodynamics on single- and multi-GPU systems

    Science.gov (United States)

    Ji, Zhe; Xu, Fei; Takahashi, Akiyuki; Sun, Yu

    2016-12-01

    In this paper, a Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) framework is presented utilizing the parallel architecture of single- and multi-GPU (Graphic Processing Unit) platforms. The program is developed for water entry simulations where an efficient potential based contact force is introduced to tackle the interaction between fluid and solid particles. The single-GPU SPH scheme is implemented with a series of optimization to achieve high performance. To go beyond the memory limitation of single GPU, the scheme is further extended to multi-GPU platform basing on an improved 3D domain decomposition and inter-node data communication strategy. A typical benchmark test of wedge entry is investigated in varied dimensions and scales to validate the accuracy and efficiency of the program. The results of 2D and 3D benchmark tests manifest great consistency with the experiment and better accuracy than other numerical models. The performance of the single-GPU code is assessed by comparing with serial and parallel CPU codes. The improvement of the domain decomposition strategy is verified, and a study on the scalability and efficiency of the multi-GPU code is carried out as well by simulating tests with varied scales in different amount of GPUs. Lastly, the single- and multi-GPU codes are further compared with existing state-of-the-art SPH parallel frameworks for a comprehensive assessment.

  4. Remote sensing in the mixing zone. [water pollution in Wisconsin

    Science.gov (United States)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.

    1973-01-01

    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  5. Geoelectrical monitoring of water movement in the unsaturated zone

    Science.gov (United States)

    Berthold, Susann; Geib, Tobias

    2013-04-01

    To continually track the water movement in the unsaturated zone and monitor groundwater recharge, two geoelectrical profiles were permanently installed in the catchment area of a waterworks. The geoelectrical profiles were set up in areas with different groundwater recharge. One profile was installed on a forest clearing, where the unsaturated zone is eight meters thick and dominated by sand. The second profile was installed in heathland, where the unsaturated zone is eleven meters thick and dominated by fine sand. The profile length for the geoelectrical measurements and the number of electrodes per profile were chosen depending on the depth of the groundwater table. The geoelectrical measurements were carried out autonomously twice a day. Remote data transmission made the data instantaneously available for analysis and evaluation. During the entire period of investigation, that is August 2011 to December 2012, the geoelectrical profiles worked independently with low maintenance. During this period, approximately 800 data sets were recorded at each location. Each individual data set contained several thousand measuring points in the geoelectrical cross section. To handle the large amounts of data and efficiently interpret them, a largely automatic algorithm, the so-called ELMON algorithm, was developed. The algorithm reads in the raw measurement values and allows fast acquisition of incorrect measurements and, where appropriate, initiation of maintenance (for example, to troubleshoot browsing by game). The detected erroneous measurements are automatically removed. Then, the change in soil electrical conductivity is determined via a physically founded calculation method developed in the framework of the project. The change in soil electrical conductivity is represented compared to a reference state, e.g. the day prior to a rain event. Using the ELMON algorithm, the water movement through the unsaturated zone could be monitored over a period of more than a year

  6. Water quality criteria for the South African coastal zone

    CSIR Research Space (South Africa)

    Lusher, JA

    1984-12-01

    Full Text Available by the Foundation for Research Development Council for Scientific and Industrial Research P 0 Box 395 PRETORIA 0001 from whom copies of reports in this series are available on request ISBN 0 7988 3254 1 Text, typeset by the National Research Institute... APPENDIX II: ORGANIC COMPOUNDS AND CUMULATIVE MATERIALSA5 APPENDIX III: EFFLUENT CHARACTERISTICS AND THEIR RELATIONSHIP TO WATER QUALITY CRITERIA A8 APPENDIX IV: ZONES OF MIXING All AD HOC WORKING COMMITTEE TITLES IN THIS SERIES In South Africa, man...

  7. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.

    Science.gov (United States)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana

    2017-04-01

    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop

  8. Turbulent fluid-structure interaction of water-entry/exit of a rotating circular cylinder using SPH method

    Science.gov (United States)

    Ghazanfarian, Jafar; Saghatchi, Roozbeh; Gorji-Bandpy, Mofid

    2015-12-01

    This paper studies the two-dimensional (2D) water-entry and exit of a rotating circular cylinder using the Sub-Particle Scale (SPS) turbulence model of a Lagrangian particle-based Smoothed-Particle Hydrodynamics (SPH) method. The full Navier-Stokes (NS) equations along with the continuity have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of water-entry and exit of a nonrotating circular cylinder. The numerical simulations of water-entry and exit of the rotating circular cylinder are performed at Froude numbers of 2, 5, 8, and specific gravities of 0.25, 0.5, 0.75, 1, 1.75, rotating at the dimensionless rates of 0, 0.25, 0.5, 0.75. The effect of governing parameters and vortex shedding behind the cylinder on the trajectory curves, velocity components in the flow field, and the deformation of free surface for both cases have been investigated in detail. It is seen that the rotation has a great effect on the curvature of the trajectory path and velocity components in water-entry and exit cases due to the interaction of imposed lift and drag forces with the inertia force.

  9. 77 FR 47282 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Science.gov (United States)

    2012-08-08

    ... safety zone during this year's air show. This safety zone is intended to restrict vessels from a portion... spectators and vessels from the hazards associated with an air show over water. DATES: This rule will be... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Milwaukee Air and Water Show, Lake Michigan...

  10. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Science.gov (United States)

    2010-07-01

    ..., Mass.; danger zones for naval operations. 334.70 Section 334.70 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a)...

  11. Water Detected in the Terrestrial Zone of Extreme Solar Systems

    Science.gov (United States)

    Farihi, Jay

    2015-12-01

    Life as we know it requires water in contact with a rocky planetary surface. In the Solar System, water and other volatiles must have been delivered to a dry Earth from planetesimals, where asteroids in the outer main belt and Jupiter-Saturn region are excellent candidates. The first extrasolar analog of these rocky and water-rich planetesimals was reported between ESS II and III (Farihi et al. 2013, Science, 342, 218), and there is now evidence for additional examples. These results imply an underlying population of large, extrasolar planetesimals formed near a snow line, and suggesting a common mechanism for water delivery to habitable exoplanets.I will present Hubble, Spitzer, and ground-based data that demonstrate the confirmed and likely water-rich nature of exo-asteroids identified in a growing number of white dwarf planetary systems. These extreme solar systems formed and evolved around A-type (and similar) stars -- now firmly retired -- and the asteroid debris now orbits and pollutes the white dwarf with heavy elements, including oxygen in excess of that expected for oxide minerals. The abundance patterns are also carbon-poor, indicating the parent bodies were not icy planetesimals analogous to comets, but instead similar in overall composition to asteroids in the outer main belt.Importantly, these remnant exoplanetary systems imply architectures similar to the Solar System, where a giant planet exterior to a snow line perturbs rocky asteroids on the interior. Thus, they appear to share basic characteristics with HR 8799, Vega, Fomalhaut, and epsilon Eridani where two disks of debris are separated by giant planet(s), with one belt near the snow line. If such archictectures are as common as implied by polluted white dwarfs, then at least 30% of 1.2-3.0 Msun stars have both the tools and ingredentients for water delivery in their terrestrial planet zones.

  12. Water entry for the black locust (Robinia pseudoacacia L.) seeds observed by dedicated micro-magnetic resonance imaging.

    Science.gov (United States)

    Koizumi, Mika; Kano, Hiromi

    2016-07-01

    Water entry at germination for black locust (Robinia pseudoacacia L.) seeds which are known as hard seeds with impermeable seed coat to water, was examined using micro-magnetic resonance imaging (MRI). The MRI apparatus equipped with a low-field (1 T; Tesla) permanent magnet was used, which is open access, easy maintenance, operable and transportable. The excellent point of the apparatus is that T 1-enhancement of water signals absorbed in dry seeds against steeping free water is stronger than the apparatuses with high-field superconducting magnets, which enabled clear detection of water entry. Water hardly penetrated into the seeds for more than 8 h but approximately 60 % of seeds germinated by incubating on wet filter papers for several days. Hot water treatments above 75 °C for 3 min effectively induced water gap; scarification was 70 % at 100 °C and 75 °C, declined to 15 % at 50 °C and decreased further at room temperature. Water entered into the scarified seeds exclusively through the lens, spread along the dorsal side of the seeds and reached the hypocotyl, whereas water migrated slowly through hilum side to radicle within 3 h.

  13. Simulation of water entry of an elastic wedge using the FDS scheme and HCIB method

    Institute of Scientific and Technical Information of China (English)

    SHIN Sangmook; BAE Sung Yong

    2013-01-01

    The hydroelasticity of water entry of an elastic wedge is simulated using a code developed using the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method.The free surface is regarded as a moving contact discontinuity and is captured without any additional treatment along the interface.Immersed boundary nodes are distributed inside a fluid domain based on the edges that cross an instantaneous body boundary.Dependent variables are reconstructed at each immersed boundary node with the help of an interpolation along a local normal line for providing a boundary condition for a discretized flow problem.A dynamic beam equation is used for modeling the elastic deformation of a wedge.The developed code is validated through comparisons with other experimental and computational results for a free-falling wedge.The effects of the elastic deformation of the wedge on the pressure fields and time histories of the impact force are investigated in relation to the stiffness and density of the structure.Grid independence test is carried out for the computed time history of the force acting on an elastic wedge.

  14. Processing and accuracy of topobathymetric LiDAR data in land-water transition zones

    OpenAIRE

    M. S. Andersen; A. GERGELY; Al-Hamdani, Z.; Steinbacher, F.; Larsen, L. R.; V. B. Ernstsen

    2016-01-01

    The transition zone between land and water is difficult to map with conventional geophysical systems due to shallow water depth and often harsh environmental conditions. The emerging technology of airborne topobathymetric Light Detection And Ranging (LiDAR) is capable of providing both topographic and bathymetric elevation information, resulting in a seamless coverage of the land-water transition zone. However, there is ...

  15. Shipping Fairways, Lanes, and Zones for US waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various shipping zones delineate activities and regulations for marine vessel traffic. Traffic lanes define specific traffic flow, while traffic separation zones...

  16. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Science.gov (United States)

    2012-08-16

    ... this year's air show. This safety zone is intended to restrict vessels from a portion of Lake Michigan during the Chicago Air and Water Show. This safety zone is necessary to protect spectators and vessels... necessary to ensure the safety of spectators and vessels during the air show. This zone will be enforced...

  17. Electrical impedance imaging of water distribution in the root zone

    Science.gov (United States)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  18. Water in the critical zone: soil, water and life from profile to planet

    Science.gov (United States)

    Kirkby, M. J.

    2016-12-01

    Earth is unique in the combination of abundant liquid water, plate tectonics and life, providing the broad context within which the critical zone exists, as the surface skin of the land. Global differences in the availability of water provide a major control on the balance of processes operating in the soil, allowing the development of environments as diverse as those dominated by organic soils, by salty deserts or by deeply weathered lateritic profiles. Within the critical zone, despite the importance of water, the complexity of its relationships with the soil material continue to provide many fundamental barriers to our improved understanding, at the scales of pore, hillslope and landscape. Water is also a vital resource for the survival of increasing human populations. Intensive agriculture first developed in semi-arid areas where the availability of solar energy could be combined with irrigation water from more humid areas, minimising the problems of weed control with primitive tillage techniques. Today the challenge to feed the world requires improved, and perhaps novel, ways to optimise the combination of solar energy and water at a sustainable economic and environmental cost.

  19. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands.

    Science.gov (United States)

    Hefting, Mariet; Beltman, Boudewijn; Karssenberg, Derek; Rebel, Karin; van Riessen, Mirjam; Spijker, Maarten

    2006-01-01

    Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In the Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO(3)(-)-N m(-2) y(-1) and significantly lower in the grassland zone with 15 g NO(3)(-)-N m(-2) y(-1). Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed.

  20. Hot spots and hot moments in riparian zones: potential for improved water quality management

    Science.gov (United States)

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  1. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones

    Science.gov (United States)

    Delin, Geoffrey N.; Herkelrath, William N.

    2017-05-01

    A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites.

  2. The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf

    Science.gov (United States)

    2008-01-01

    E. Richardson, 2008, Field verification of a CFD model for wave transformation and breaking in the surf zone, J. Waterw. Port Coastal Engrg., 134(2...The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf Dr. Thomas C. Lippmann Center for Coastal...wave- and tidally-driven shallow water flows in the shallow depths of the inner shelf and surf zone. OBJECTIVES 1. Theoretical investigations of

  3. 77 FR 75017 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2012-12-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI... to read as follows: Sec. 165.T14-215 Security Zone; On the Waters in Kailua Bay, Oahu, HI....

  4. 76 FR 12 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2011-01-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI... to read as follows: Sec. 165.T14-215 Security Zone; On the Waters in Kailua Bay, Oahu, HI....

  5. 78 FR 79312 - Security Zone; On the Waters in Kailua Bay, Oahu, HI

    Science.gov (United States)

    2013-12-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; On the Waters in Kailua Bay, Oahu, HI... Security Zone; On the Waters in Kailua Bay, Oahu, HI. (a) Location. The following area, within the...

  6. Water Partitioning at the Base of the Transition Zone: No Need for a Lower Mantle Water Filter?

    Science.gov (United States)

    Panero, W. R.; Pigott, J. S.

    2014-12-01

    Recent measurements of water in ringwoodite inclusions found in a deep diamond suggests that the diamond formed in a part of the transition zone containing ~1 wt% water. Experimental and computational results consistently show a significantly lower water storage capacity in MgSiO3 perovskite, the dominant mineral of the Earth's lower mantle. This disparity in water solubility predicts widespread melting at the base of the transition zone in mantle downwellings or some other process to create a transition zone "water filter." We present the results of ab-initio calculations on the hydrogen incorporation in ringwoodite, majorite, ilmenite, calcium silicate perovskite, and magnesium silicate perovskite. We demonstrate a multiplicity of OH defect mechanisms at the base of the transition zone, including vacancies on the Mg and Si sites, as well as coupled substitutions with aluminum. We calculate the partitioning of water between each phase. While the partitioning of water between ringwoodite and MgSiO3 is >100, we find that partitioning of water between CaSiO3-perovskite and ringwoodite exceeds unity under the conditions of cold downwellings at the base of the transition zone, suggesting that a significant fraction of the water can be stored in minor phases of the lower mantle instead of requiring a filter at the base of the transition zone. This finding significantly relaxes the constraints on the Earth's total water budget and suggests a mechanism for sequestering deep water through subduction.

  7. S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone.

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    Full Text Available The postnatal subventricular zone (SVZ contains proliferating neural progenitor cells in close proximity to blood vessels. Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries throughout the SVZ that constrict upon applications of the thromboxane A(2 receptor agonist U-46119 in acute brain slice preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum, which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may provide energy and nutrient for cell cycle progression.

  8. 76 FR 23708 - Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East...

    Science.gov (United States)

    2011-04-28

    ... Management Regional Water Exercise, East Passage, Tacoma, WA AGENCY: Coast Guard, DHS. ACTION: Temporary... of Emergency Management is sponsoring a Regional Water Rescue Exercise in the waters of East Passage..., Washington for a Regional Water Rescue Exercise near Browns Point. A safety zone is necessary to ensure...

  9. Zoning of rural water conservation in China: A case study at Ashihe River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoying Liu

    2015-06-01

    Full Text Available With the effective control of point source (PS pollution accomplished, water pollution problems caused by non-point source (NPS pollution have increased in recent years. The worsening agricultural NPS pollution has drawn the attention of the Chinese Government and researcher scientists and has resulted in the often mentioned “three red lines” on water resources management. One of the red lines is to control water pollution within a rational range. The Agricultural NPS pollution, which includes pollution from housing, and from livestock and crop production, is the main source. Based on the NPS pollution statutes, an index system for integrated evaluation of water quality, and a zoning scheme for rural water conservation were established. Using the method of one-dimensional Euclidean distance, this country is divided into 9 sub-zones at the provincial level, which are the first level zones. The zoning themes include natural resources, socio-economic development, water use efficiency, and pollutants emission intensity. According to pollution types of livestock, agriculture, or both, the first level zones are divided into 25 second level zones. The third class zoning is divided also based on pollution intensity of total nitrogen (TN, total phosphorus (TP, ammonia nitrogen (NH3-N, chemical oxygen demand (COD, and biochemical oxygen demand (BOD. On the basis of the second level zoning, there were formed 70 rural water conservation third level zones. This case study in the Ashihe river watershed indicated that the main pollution sources are consistent with the zoning research result, and this zoning has shown a good way to guide the agricultural NPS pollution control in not only the wide rural area of China but also other parts of the world.

  10. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grant, M.A. (DSIR, Wellington, New Zealand); Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone has formed.

  11. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Science.gov (United States)

    Grant, M.A.; Truesdell, A.H.; Manon, M.A.

    1984-01-01

    Chemical and physical data suggest that the relatively shallow, western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapour. Local boiling occurs near most wells in response to pressure decreases, but no general vapour zone has formed. ?? 1984.

  12. Bottom water throughflows at the Rio de Janeiro and Rio Grande Fracture Zones

    Science.gov (United States)

    Mercier, Herlé; Weatherly, Georges L.; Arhan, Michel

    2000-05-01

    Bottom water throughflows at the Rio de Janeiro Fracture Zone (22°S) and Rio Grande Fracture Zone (26°S) of the Mid-Atlantic Ridge are identified from hydrographic anomalies observed along 9°W in the Angola Basin. The throughflow water is supplied by a meridional band of cold and fresh water lying against the western flank of the Ridge.

  13. Agricultural adaptation to water scarcity in the Sri Lankan dry zone: A comparison of two water managment regimes

    Science.gov (United States)

    Burchfield, E. K.

    2014-12-01

    The island nation of Sri Lanka is divided into two agro-climatic zones: the southwestern wet zone and the northeastern dry zone. The dry zone is exposed to drought-like conditions for several months each year. Due to the sporadic nature of rainfall, dry zone livelihoods depend on the successful storage, capture, and distribution of water. Traditionally, water has been captured in rain-fed tanks and distributed through a system of dug canals. Recently, the Sri Lankan government has diverted the waters of the nation's largest river through a system of centrally managed reservoirs and canals and resettled farmers to cultivate this newly irrigated land. This study uses remotely sensed MODIS and LANDSAT imagery to compare vegetation health and cropping patterns in these distinct water management regimes under different conditions of water scarcity. Of particular interest are the socioeconomic, infrastructural, and institutional factors that affect cropping patterns, including field position, water storage capacity, and control of water resources. Results suggest that under known conditions of water scarcity, farmers cultivate other field crops in lieu of paddy. Cultivation changes depend to a large extent on the institutional distance between water users and water managers as well as the fragmentation of water resources within the system.

  14. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D

    Science.gov (United States)

    Lautz, Laura K.; Siegel, Donald I.

    2006-11-01

    We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface-groundwater exchange than standard particle-tracking simulations.

  15. Stresses and Shear Fracture Zone of Jinshazhou Tunnel Surrounding Rock in Rich Water Region

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-jie; LOU Xiao-ming

    2008-01-01

    Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided into three zones, including elastic zone, plastic damage zone and shear fracture zone fof assessing the stability of the tunnel surrounding rock. By local hydrogeology, the stresses of surrounding rock of Jinshazhou circular tunnel was analyzed and the stress solutions on the elastic and plastic damage zones were obtained by applying the theories of fluid-solid coupling and elasto-plastic damage mechanics. The shear fracture zone generated by joints was studied and its range was determined by using Mohr-Coulomb strength criterion. Finally, the correctness of the theoretical results was validated by comparing the scopes of shear fracture zones calculated in this paper with those from literature.

  16. 75 FR 65278 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Science.gov (United States)

    2010-10-22

    ... of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger... its regulations to establish one new danger zone in Pamlico Sound near Marine Corps Air Station Cherry Point, North Carolina. Establishment of this danger zone will enable the Marine Corps to control...

  17. 76 FR 30023 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Science.gov (United States)

    2011-05-24

    ... of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger.... SUMMARY: The U.S. Army Corps of Engineers is amending its regulations to establish a new danger zone. This danger zone will enable the Marine Corps to control access and movement of persons, vessels and...

  18. Thermal ground water flow systems in the thrust zone in southeastern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, D.R.

    1983-05-01

    The results of a regional study of thermal and non-thermal ground water flow systems in the thrust zone of southern Idaho and western Wyoming are presented. The study involved hydrogeologic and hydrochemical data collection and interpretation. Particular emphasis was placed on analyzing the role that thrust zones play in controlling the movement of thermal and non-thermal fluids.

  19. Root-zone plant available water estimation using the SMOS-derived soil water index

    Science.gov (United States)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Wagner, Wolfgang

    2016-10-01

    Currently, there are several space missions capable of measuring surface soil moisture, owing to the relevance of this variable in meteorology, hydrology and agriculture. However, the Plant Available Water (PAW), which in some fields of application could be more important than the soil moisture itself, cannot be directly measured by remote sensing. Considering the root zone as the first 50 cm of the soil, in this study, the PAW at 25 cm and 50 cm and integrated between 0 and 50 cm of soil depth was estimated using the surface soil moisture provided by the Soil Moisture Ocean Salinity (SMOS) mission. For this purpose, the Soil Water Index (SWI) has been used as a proxy of the root-zone soil moisture, involving the selection of an optimal T (Topt), which can be interpreted as a characteristic soil water travel time. In this research, several tests using the correlation coefficient (R), the Nash-Sutcliffe score (NS), several error estimators and bias as predictor metrics were applied to obtain the Topt, making a comprehensive study of the T parameter. After analyzing the results, some differences were found between the Topt obtained using R and NS as decision metrics, and that obtained using the errors and bias, but the SWI showed good results as an estimator of the root-zone soil moisture. This index showed good agreement, with an R between 0.60 and 0.88. The method was tested from January 2010 to December 2014, using the database of the Soil Moisture Measurements Stations Network of the University of Salamanca (REMEDHUS) in Spain. The PAW estimation showed good agreement with the in situ measurements, following closely the dry-downs and wetting-up events, with R ranging between 0.60 and 0.92, and error values lower than 0.05 m3m-3. A slight underestimation was observed for both the PAW and root-zone soil moisture at the different depths; this could be explained by the underestimation pattern observed with the SMOS L2 soil moisture product, in line with previous

  20. 76 FR 33639 - Safety Zone; New York Water Taxi 10th Anniversary Fireworks

    Science.gov (United States)

    2011-06-09

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; New York Water Taxi 10th Anniversary... to celebrate the 10th Anniversary of New York Water Taxi. The fireworks will commence at 9 p.m. on... Water Taxi 10th Anniversary Fireworks, Upper New York Bay, Red Hook, NY. (a) Location. The following...

  1. Theory of Metallic Work Functions Between Metals and Layers of Exclusion Zone Ordered Water

    CERN Document Server

    Widom, A; Srivastava, Y N

    2016-01-01

    The magnitude of the work function to bring an electron from a metal into the exclusion zone water layer making hydrophilic contact with the metallic interface is theoretically computed. The agreement with recent experimental measurements is satisfactory.

  2. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China.

    Science.gov (United States)

    Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping

    2011-02-01

    The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment

  3. 75 FR 25766 - Safety Zones; Marine Events Within the Captain of the Port Sector Northern New England Area of...

    Science.gov (United States)

    2010-05-10

    ... waters during the events. Entry into, transit through, mooring or anchoring within these zones is... impact on vessel traffic due to the temporary nature and limited size of the safety zones and the fact that vessels are allowed to transit the navigable waters outside of the safety zones. Advanced...

  4. Analysis of black fungal biofilms occurring at domestic water taps (II): Potential routes of entry

    NARCIS (Netherlands)

    Heinrichs, G.; Hübner, I.; Schmidt, C.K.; de Hoog, G.S.; Haase, G.

    2013-01-01

    Formation of tenacious and massive black biofilms was occasionally observed at the water-air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested

  5. Analysis of black fungal biofilms occurring at domestic water taps (II): Potential routes of entry

    NARCIS (Netherlands)

    G. Heinrichs; I. Hübner; C.K. Schmidt; G.S. de Hoog; G. Haase

    2013-01-01

    Formation of tenacious and massive black biofilms was occasionally observed at the water-air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested

  6. Water quality dynamics and hydrology in nitrate loaded riparian zones in Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Hefting, Mariet [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands)]. E-mail: m.m.hefting@bio.uu.nl; Beltman, Boudewijn [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands); Karssenberg, Derek [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands); Rebel, Karin [Department of Geobiology, Faculty of Biology, Utrecht University, PO Box 80084, 3508 TB Utrecht (Netherlands); Riessen, Mirjam van [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands); Spijker, Maarten [Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, PO Box 80115, 3508 TC Utrecht (Netherlands)

    2006-01-15

    Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO{sub 3} {sup -}-N m{sup -2} y{sup -1} and significantly lower in the grassland zone with 15 g NO{sub 3} {sup -}-N m{sup -2} y{sup -1}. Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed. - Riparian zones reduced nitrate from agricultural lands.

  7. Water quality changes in the world's first special economic zone, Shenzhen, China

    Science.gov (United States)

    Chen, Yi; Zhang, Zhao; Du, Shiqiang; Shi, Peijun; Tao, Fulu; Doyle, Martin

    2011-11-01

    Shenzhen, as the first special economic zone in the world, has been in the process of rapid urbanization for 30 years. Many special economic zones have been established in China and other nations following Shenzhen's experience. However, Shenzhen has attained significant economic development with an attendant cost of environmental degradation, and similar results may be seen in other zones in the future. Here we use a pollution index method to evaluate the effect of such rapid urban development on the surface water quality in Shenzhen from 1991 to 2008. Rapid urbanization has affected surface water quality, but environmental policies can mitigate some of these effects, although such policy-induced improvements required some time before showing efficacy. As their use of special economic zones proliferates worldwide, greater consideration of the potential effects on water quality, and their overall sustainability, must receive greater attention.

  8. 19 CFR 146.63 - Entry for consumption.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Entry for consumption. 146.63 Section 146.63... TREASURY (CONTINUED) FOREIGN TRADE ZONES Transfer of Merchandise From a Zone § 146.63 Entry for consumption... status may be entered for consumption from a zone. (b) Zone-restricted merchandise. Merchandise in a zone...

  9. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Science.gov (United States)

    2010-07-01

    ..., N.C.; danger zones for Marine Corps operations. 334.420 Section 334.420 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.420 Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations....

  10. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Science.gov (United States)

    2010-07-01

    ..., and adjacent waters, NC; danger zones for naval aircraft operations. 334.410 Section 334.410 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE...; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck...

  11. 33 CFR 165.1411 - Security zone; waters surrounding U.S. Forces vessel SBX-1, HI.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zone; waters surrounding U.S. Forces vessel SBX-1, HI. 165.1411 Section 165.1411 Navigation and Navigable Waters COAST GUARD... § 165.1411 Security zone; waters surrounding U.S. Forces vessel SBX-1, HI. (a) Location. The...

  12. Water and the Oxidation State of Subduction Zone Magmas

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, K.; Cottrell, E

    2009-01-01

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe{sup 3+}/{Sigma}Fe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H{sub 2}O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe{sup 3+}/{Sigma}Fe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H{sub 2}O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  13. Daphne Genkwa Sieb. et Zucc. Water-Soluble Extracts Act on Enterovirus 71 by Inhibiting Viral Entry

    Directory of Open Access Journals (Sweden)

    Chia-Wen Chang

    2012-04-01

    Full Text Available Dried flowers of Daphne genkwa Sieb. et Zucc. (Thymelaeaceae are a Chinese herbal medicine used as an abortifacient with purgative, diuretic and anti-inflammatory activities. However, the activity of this medicine against enteroviral infections has not been investigated. The water-extract of dried buds of D. genkwa Sieb. et Zucc. (DGFW was examined against various strains of enterovirus 71 (EV71 by neutralization assay, and its initial mode of action was characterized by time-of-addition assay followed by attachment and penetration assays. Pretreatment of DGFW with virus abolished viral replication, indicating that DGFW inhibits EV71 by targeting the virus. GFW exerts its anti-EV71 effects by inhibiting viral entry without producing cytotoxic side effects and thus provides a potential agent for antiviral chemotherapeutics.

  14. 75 FR 19307 - Safety Zone; Milwaukee Air and Water Show, Milwaukee, Lake Michigan, Milwaukee, WI

    Science.gov (United States)

    2010-04-14

    ... surrounding public and their vessels from the hazards associated with a large-scale air show and fireworks... ensure the safety of the public and vessels from the hazards associated with the Milwaukee Air and Water... vessels and people during the Milwaukee Air and Water show. The safety zone is a 4,000 yard by 1,000 yard...

  15. Influence of Variable Streamside Management Zone Configurations on Water Quality after Forest Harvest

    Science.gov (United States)

    Emma L. Witt; Christopher D. Barton; Jeffrey W. Stringer; Randy Kolka; Mac A. Cherry

    2016-01-01

    Streamside management zones (SMZs) are a common best management practice (BMP) used to reduce water quality impacts from logging. The objective of this research was to evaluate the impact of varying SMZ configurations on water quality. Treatments (T1, T2, and T3) that varied in SMZ width, canopy retention within the SMZ, and BMP utilization were applied at the...

  16. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Science.gov (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  17. Hot spots and hot moments in riparian zones: Potential for improved water quality management

    Science.gov (United States)

    Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen

    2010-01-01

    Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...

  18. Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm.

    Directory of Open Access Journals (Sweden)

    David R Pawlowski

    Full Text Available Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism.

  19. Optimization of contour ridge water harvesting systems for arid zones.

    Science.gov (United States)

    Berliner, Pedro; Arazi, Adit

    2017-04-01

    Runoff is generated along slopes in semi-arid regions during rainfall events and flows into the lower lying areas, usually ephemeral streams. Depending on the slope and volume of water involved, the flow can become turbulent and cause the detachments of soil particles (erosion). The purpose of the system under investigation is to capture the water after a relatively short flow distance and allow it to be absorbed by the soil. This action accomplishes two objectives: erosion is averted and the stored water can be used for plant production. Depending on the ratio of contributing to receiving areas and storm characteristics the stored water can be significantly higher than the precipitation. The objective of the present project was to develop a simple model that describes the above biomass production in such a system and allows to determine the optimum distribution of structures along a given slope in order to meet one criteria (e.g. minimize variance, maximize production, maximize lowest production, etc.) or a suite of them. The basic assumption is that tree above ground biomass production is linearly related to transpired water, the latter driven by an external force (potential evaporation) and modulated by water availability in the soil. PET is computed using the standard Penman-Monteith formulation for evaporation from open water bodies, if the latter is not available. Four water fluxes are computed: Evaporation, Transpiration, Runoff and Drainage, the first two not interacting directly. All of the above mentioned fluxes and rates are daily lumped values and water content in the profile is updated daily, assuming that rainfall events happen after the computation of fluxes. Daily water inputs are estimated from rainfall data and computed runoff. A dynamic runoff coefficient (=cumulative generated runoff generated/cumulative precipitation) was derived from measurements carried out in the area and used in order to estimate runoff volumes from total recorded

  20. 78 FR 57485 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Science.gov (United States)

    2013-09-19

    ... Puget Sound AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast... cargo in the navigable waters of Puget Sound and adjacent waters. Entry into this zone is prohibited... or email LTJG Johnny Zeng, Sector Puget Sound Waterways Management Division, Coast Guard; telephone...

  1. 76 FR 34855 - Safety Zones; Marine Events in Captain of the Port Long Island Sound Zone

    Science.gov (United States)

    2011-06-15

    ... navigable waters during the events. Entry into, transit through, mooring or anchoring within these zones is... impact on vessel traffic due to their temporary nature and limited size and the fact that vessels are allowed to transit the navigable waters outside of the regulated areas. Additionally, The Coast Guard...

  2. Global seismic data reveal little water in the mantle transition zone

    Science.gov (United States)

    Houser, C.

    2016-08-01

    Knowledge of the Earth's present water content is necessary to constrain the amount of water and other volatiles the Earth acquired during its formation and the amount that is cycled back into the interior from the surface. This study compares 410 and 660 km discontinuity depth with shear wave tomography within the mantle transition zone to identify regions with seismic signals consistent with water. The depth of the 410 and 660 km discontinuities is determined from a large updated dataset of SS-S410S and SS-S660S differential travel times, known as SS precursors. The discontinuity depths measured from binning and stacking the SS precursor data are then compared to the shear velocity model HMSL-S06 in the transition zone. Mapping all the possible combinations, very few locations match the predictions from mineral physics for the effects of water on discontinuity depth and shear velocity. The predictions, although not yet measured at actual transition zone temperatures and pressures, are a shallow 410 km discontinuity, a deep 660 km discontinuity, and a slow shear velocity. Only 8% of the bins with high-quality data are consistent with these predictions, and the calculated average water content within these bins is around 0.6 wt.%. A few isolated locations have patterns of velocity/topography that are consistent with water, while there are large regional-scale patterns consistent with cold/hot temperature anomalies. Combining this global analysis of long period seismic data and the current mineral physics predictions for water in transition zone minerals, I find that the mantle transition zone is generally dry, containing less than one Earth ocean of water. Although subduction zones could be locally hydrated, the combined discontinuity and velocity data show no evidence that wadsleyite or ringwoodite have been globally hydrated by subduction or initial Earth conditions.

  3. The influence of water and LPO on the initiation and evolution of mantle shear zones

    Science.gov (United States)

    Skemer, Philip; Warren, Jessica M.; Hansen, Lars N.; Hirth, Greg; Kelemen, Peter B.

    2013-08-01

    We present data from the Josephine Peridotite (SW Oregon, USA) that constrain the underlying physical processes responsible for the initiation of shear localization and the evolution of ductile shear zones in Earth's mantle. Field measurements of narrow (2-60 m wide) ductile shear zones in harzburgite were used to construct strain profiles, which have maximum shear strains ranging from γ=5.25 to γ>20. Measurements of pyroxene water concentrations from harzburgite samples within and immediately adjacent to the shear zones indicate that gradients in water concentration exist on a 10-100 m scale, even after exhumation. Water concentration measurements are correlated with olivine lattice-preferred orientation (LPO), corroborating experimental results on the influence of water on slip system activity. Using empirical olivine flow laws and the diffusivity of water in olivine, we model initiation of a ductile shear zone through localized water weakening. We demonstrate that this mechanism can readily generate spatial perturbations in both effective viscosity and strain. However this model is not able to reproduce both the observed shear strain gradients and water concentration data from the Josephine shear zones. We evaluate other plausible localization mechanisms, which may amplify this initial strain perturbation. The most relevant at these conditions is the development of viscous anisotropy associated with the evolution of olivine LPO. Using recent experimental results, we demonstrate that progressive rotation of olivine LPO into the shear plane enhances deformation within a shear zone. We conclude that feedback between at least two microphysical processes is needed to account for observed outcrop-scale shear localization.

  4. Metals complexation with humic acids in surface water of different natural–climatic zones

    Directory of Open Access Journals (Sweden)

    Dinu M. I.

    2013-04-01

    Full Text Available Humic acids extracted from different soils. The stability constants of metal humates and acid dissociation constant humic acids were calculated. Forms of metals in natural waters was determined with use account their chemical composition and content and properties of organic matter. We assessed metals speciation in water objects with account for competitive reactions resulting in formation of hydroxide, hydrocarbonate, sulfate, and chloride metal complexes and obtained a competitive series of metal activity in natural waters of the zones considered.

  5. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  6. Does the Nazca Slab Beneath Central Argentina Influence the Water Content of the Adjacent Transition Zone?

    Science.gov (United States)

    Booker, J. R.; Pomposiello, M. C.; Favetto, A.; Burd, A.

    2008-12-01

    When the Nazca flat-slab rolls over and plunges into the transition zone under Argentina, it appears to separate an electrically resistive transition zone to the west from an electrically conductive transition zone to the east. The simplest explanation for this is that the water content of the transition zone is much lower to the west than the east. The low conductivity to the west can be explained if anhydrous upper mantle mantle is being carried down into the transition zone by slab motion. The much higher conductivity to the east is beneath the Rio de la Plata Craton whose root almost certainly inhibits vertical motion east of the slab. Thus water injected by the descending slab is likely to accumulate in the transition zone. This idea was first presented in a Nature paper in 2004. Since then, we have collected more magnetotelluric data to the south where the slab dip is normal, but voluminous back-arc basaltic volcanism occurs and in the region where the slab is said to be flexing continuously between the two geometries. A goal of this work is to test whether the slab has a similar relation to transition zone conductivity along strike. The new data, originally collected along linear profiles perpendicular to the expected strike of the slab in the mantle clearly indicated that 2-D interpretation would be problematic. Indeed, analysis of new data in the flexure region using 2-D methods reveals a narrow, roughly east-west, near vertical resistive structure extending down to the top of a conductive transition zone. A possible, but controversial interpretation of this structure is that it is the signature of a slab tear rather than the widely-accepted continuous flexure geometry. If a tear is indeed correct, then there is an opportunity to test how the slab is influencing the transition zone conductivity and by inference the water content by looking at the southern edge of the plunging 'flat- slab' as it enters the transition zone. Since the original data were

  7. 78 FR 39608 - Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI

    Science.gov (United States)

    2013-07-02

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Summer in the City Water Ski Show; Fox... restrict vessels from a portion of the Fox River due to a water ski show. This temporary safety zone is necessary to protect the surrounding public and vessels from the hazards associated with the water ski...

  8. Wave Synchronizing Crane Control during Water Entry in Offshore Moonpool Operations - Experimental Results

    OpenAIRE

    2004-01-01

    A new strategy for active control in heavy-lift offshore crane operations is suggested, by introducing a new concept referred to as wave synchronization. Wave synchronization reduces the hydrodynamic forces by minimization of variations in the relative vertical velocity between payload and water using a wave amplitude measurement. Wave synchronization is combined with conventional active heave compensation to obtain accurate control. Experimental results using a scale model of a semi-submerge...

  9. Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    Energy Technology Data Exchange (ETDEWEB)

    Pfletschinger, H. [Federal Waterways Engineering and Research Inst. (BAW), Karlsruhe (Germany); Technical Univ. of Darmstadt (Germany). Inst. of Applied Geosciences; Prömmel, K. [Freie Univ., Berlin (Germany); Schüth, C. [Technical Univ. of Darmstadt (Germany). Inst. of Applied Geosciences; Herbst, M. [Agrosphere (IBG-3), Julich (Germany); Engelhardt, I. [Technical Univ. of Darmstadt (Germany). Inst. of Applied Geosciences; Agrosphere (IBG-3), Julich (Germany)

    2014-01-01

    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region. In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.

  10. Assessment of underground water potential zones using modern geomatics technologies in Jhansi district, Uttar Pradesh, India.

    Science.gov (United States)

    Pandey, N. K.; Shukla, A. K.; Shukla, S.; Pandey, M.

    2014-11-01

    Ground water is a distinguished component of the hydrologic cycle. Surface water storage and ground water withdrawal are traditional engineering approaches which will continue to be followed in the future. The uncertainty about the occurrence, distribution and quality aspect of the ground water and the energy requirement for its withdrawal impose restriction on exploitation of ground water. The main objective of the study is assessment of underground water potential zones of Jhansi city and surrounding area, by preparing underground water potential zone map using Geographical Information System (GIS), remote sensing, and validation by underground water inventory mapping using GPS field survey done along the parts of National Highway 25 and 26 and some state highway passing through the study area. Study area covers an area of 1401 km2 and its perimeter is approximate 425 km. For this study Landsat TM (0.76-0.90 um) band data were acquired from GLCF website. Sensor spatial resolution is 30 m. Satellite image has become a standard tool aiding in the study of underground water. Extraction of different thematic layers like Land Use Land Cover (LULC), settlement, etc. can be done through unsupervised classification. The modern geometics technologies viz. remote sensing and GIS are used to produce the map that classifies the groundwater potential zone to a number of qualitative zone such as very high, high, moderate, low or very low. Thematic maps are prepared by visual interpretation of Survey of India topo-sheets and linearly enhanced Landsat TM satellite image on 1 : 50,000 scale using AutoCAD, ArcGIS 10.1 and ERDAS 11 software packages.

  11. Space shuttle orbiter flow visualization study. [water tunnel study of vortex flow during atmospheric entry

    Science.gov (United States)

    Lorincz, D. J.

    1980-01-01

    The vortex flows generated at subsonic speed during the final portion of atmospheric reentry were defined using a 0.01 scale model of the orbiter in a diagnostic water tunnel. Flow visualization photographs were obtained over an angle-of-attack range to 40 deg and sideslip angles up to 10 deg. The vortex flow field development, vortex path, and vortex breakdown characteristics were determined as a function of angle-of-attack at zero sideslip. Vortex flows were found to develop on the highly swept glove, on the wing, and on the upper surface of the fuselage. No significant asymmetries were observed at zero sideslip in the water tunnel tests. The sensitivity of the upper surface vortex flow fields to variations in sideslip angle was also studied. The vortex formed on the glove remained very stable in position above the wing up through the 10 deg of sideslip tested. There was a change in the vortex lifts under sideslip due to effective change in leading-edge sweep angles. Asymmetric flow separation occurred on the upper surface of the fuselage at small sideslip angles. The influence of vortex flow fields in sideslip on the lateral/ directional characteristics of the orbiter is discussed.

  12. Vadose zone-attenuated artificial recharge for input to a ground water model.

    Science.gov (United States)

    Nichols, William E; Wurstner, Signe K; Eslinger, Paul W

    2007-01-01

    Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.

  13. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    Science.gov (United States)

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De

    2011-01-01

    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site.

  14. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  15. Wave Synchronizing Crane Control during Water Entry in Offshore Moonpool Operations - Experimental Results

    Directory of Open Access Journals (Sweden)

    Tor A. Johansen

    2004-01-01

    Full Text Available A new strategy for active control in heavy-lift offshore crane operations is suggested, by introducing a new concept referred to as wave synchronization. Wave synchronization reduces the hydrodynamic forces by minimization of variations in the relative vertical velocity between payload and water using a wave amplitude measurement. Wave synchronization is combined with conventional active heave compensation to obtain accurate control. Experimental results using a scale model of a semi-submerged vessel with a moonpool shows that wave synchronization leads to significant improvements in performance. Depending on the sea state and payload, the results indicate that the reduction in the standard deviation of the wire tension may be up to 50

  16. Ecosystem health evaluation system of the water-fluctuating zone in the Three Gorges Area

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ao; YUAN Hui; ZHANG Yan-hui; HU Gang

    2004-01-01

    This paper discribes the definition of ecosystem health for the water-level flutuation zone of the Three Gorges Region and puts forward an evaluation system involving indicators in three groups: 1) structural indicators comprise slope, biodiversity,environmental capacity, stability, restoration ability and damage situation; 2) functional indicators including probability of geological hazard, erosion rate, habitat rate, land use intension and days of tourist season; 3) environmental indicatiors made up of population quality, potential intension of human, ground water quality, ambient air quality, wastewater treatment rate, pesticide use rate, fertilizer use rate, environmental management and public participation. In the design of the system, the subject zone is regarded as the type similar to wetland and the impacts of human activities on the zone are attached great importance to.

  17. Isotopic data of pore water extracted from unsaturated-zone cores at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yang, I.C.

    1997-12-01

    Isotopic compositions of unsaturated-zone (UZ) ground water ({delta}{sup 18}O, {delta}D, {delta}{sup 13}C and {sup 14}C) at Yucca Mountain, Nevada, the site of a potential permanent national nuclear waste repository, can be used to infer the origins of water, residence times of the water, water flux, climatic and evaporative history of water, flow paths and velocities. These data can also be used as indicators of transport properties or water-rock interaction. The lack of long-term direct measurements of infiltration requires proxy indicators of water movement through the unsaturated zone to extend the record into the past. This report will discuss {delta}D and {delta}{sup 18}O data obtained from pore water, along with the {delta}{sup 13}C and {sup 14}C data of gas and water obtained from four boreholes dry-drilled through all UZ lithologic units to infer the existence of nonvertical flowpaths through the mountain and residence times of pore water.

  18. Partial root zone drying (PRD) sustains yield of potatoes (Solanum tuberosum L.) at reduced water supply

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Andersen, Mathias Neumann; Liu, Fulai

    2008-01-01

    Partial root zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Until now it has not been investigated in potatoes (Solanum tuberosum L.). A field experiment on sandy soil in Denmark was conducted under a mobile rainout shelter to study effects of two...... subsurface drip irrigation treatments ((1) Full Irrigation (FI) receiving 100% of evaporative demand; and (2) PRD receiving 70% water of FI) on potato yield, tuber size, leaf water relations and irrigation water use efficiency (IWUE). The PRD treatment was started just after the end of tuber initiation...

  19. Water Conservation Service Assessment and Its Spatiotemporal Features in National Key Ecological Function Zones

    Directory of Open Access Journals (Sweden)

    Jun Zhai

    2016-01-01

    Full Text Available In order to improve ecosystem service and protect nation ecology security, the government had designated lots of important ecosystem service protection areas, named national key ecological function zones (NKEFZ in China. Water conservation service had been assessed with the help of multisource remote sensing data, and spatiotemporal features were analyzed from 2000 to 2014 in these ecological services zones. By assuming precipitation scenario as the constant, contribution for water conservation from human activities and climate change was analyzed, and result shows that, because of vegetation restoration by human activities, evapotranspiration increased obviously with the increase of the vegetation coverage. This could reduce the water conservation. However, actual annual increase of water conservation mainly comes from the increase of precipitation. Our analysis revealed that the choice of evaluation model played a decisive role in the reason analysis, which would affect the development of ecological policy.

  20. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations

    Science.gov (United States)

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  1. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  2. Deep and bottom water characteristics in the Owen Fracture Zone, Western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Kureishy, T.W.

    Hydro chemical studies at a station (10 degrees 34.l'N,56 degrees 31,7'E) in the Owen Fracture zone reveal an active movement of bottom water as approx 75 m thick, cold, low-salinity layer. Silicate profile exhibits a broad maximum coinciding with a...

  3. Sampling vadose-zone water for a volatile organic compound at Picatinny Arsenal, New Jersey

    Science.gov (United States)

    Smith, James A.; Cho, H. Jean; Jaffe, Peter R.; MacLeod, Cecilia L.; Koehnlein, Susan A.

    1992-01-01

    A new method of collecting samples of unsaturated-zone water for quantitative analysis for a volatile organic compound, trichloroethene (TCE), was compared to three other, previously described sampling methodologies in the laboratory and in the field. In the laboratory, prepared water samples containing TCE in a known concentration (20 µg/L) were sampled repeatedly by using each of the four methods to quantify method precision and accuracy. To compare the four methods in the field, unsaturated-zone water above a TCE-contaminated water-table aquifer was transferred from a depth of 2 m to land surface with 0.15-m-long suction lysimeters attached to 1.85-m lengths of stainless-steel tubing. Statistical analyses of the laboratory and field data indicate that the new method, which involves collecting the water samples in gas-tight glass syringes, is superior to the other three methods for the quantitative sampling and analysis of TCE on the basis of its high precision and accuracy and ease of use. This method was used to collect additional samples from the field site to quantify the spatial variability of TCE concentrations in the unsaturated-zone water. Results of analysis of variance of the data indicate that the spatial concentration variability is important, and that differences in TCE concentration are statistically significant for horizontal distances less than 3.6 m.

  4. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M. [Pacific Northwest National Laboratory, Richland Washington USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA; Murray, Chris [Pacific Northwest National Laboratory, Richland Washington USA; Hammond, Glenn [Sandia National Laboratories, Albuquerque New Mexico USA

    2016-03-01

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trends for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.

  5. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    Science.gov (United States)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  6. Ground-Water Capture Zone Delineation of Hypothetical Systems: Methodology Comparison and Real-World Applications

    Science.gov (United States)

    Ahern, J. A.; Lilly, M. R.; Hinzman, L. D.

    2003-12-01

    A capture zone is the aquifer volume through which ground-water flows to a pumping well over a given time of travel. Determining a well's capture zone aids in water-supply management by creating an awareness of the water source. This helps ensure sustainable pumping operations and outlines areas where protection from contamination is critical. We are delineating the capture zones of hypothetical conceptual models that resemble the Fairbanks, Alaska floodplain both in aquifer parameters and boundary conditions. We begin with a very simple hydrogeologic system and gradually add complexity such as heterogeneity, anisotropy, multiple wells, and zones of permafrost. Commonly-used delineation methods are applied to each case. These include calculated fixed-radius, analytical and numerical models. The calculated fixed-radius method uses a mathematical equation with several simplifying assumptions. Analytical techniques employ a series of equations that likewise assume simple conditions, although to a lesser degree than the fixed-radius method. Our chosen numerical model is MODFLOW-2000, which offers a particle-tracking package (MODPATH) for delineating recharge areas. The delineations are overlayed for each conceptual model in order to compare the capture zones produced by the different methods. Contrasts between capture zones increase with the complexity of the hydrogeology. Simpler methods are restricted by their underlying assumptions. When methods can no longer account for complexities in the conceptual model, the resulting delineations remain similar to those of simpler models. Meanwhile, the zones generated by more sophisticated methods are able to change with changes to the conceptual model. Hence, the simpler methods now lack accuracy and credibility. We have found that these simpler techniques tend to overestimate the capture zone. Water-supply managers must consider such inaccuracies when evaluating the costs of each method. In addition to comparing delineation

  7. Human-water interactions in Myanmar's Dry Zone under climate change

    Science.gov (United States)

    Taft, Linda; Evers, Mariele

    2016-04-01

    Understanding human-water interactions is particularly essential in countries where the economy and the people's well-being and income strongly depend on the availability and quality of sufficient water resources. Such a strong dependency on water is existent in Myanmar's Dry Zone located in the central Ayeyarwady River basin. In this area, rainfall is associated with high heterogeneity across space and time. Precipitation amounts in the Dry Zone (500-1000 mm annually) are generally less compared to other regions in Myanmar (up to 4000-6000 mm). Following the Global Climate Risk Index, Myanmar is one of the countries which were most affected by extreme weather events between 1994 and 2013. Severe drought periods e.g in the years 1997-1998, 2010 and 2014 led to crop failures and water shortage in the Dry Zone, where more than 14 mio people predominantly practice agriculture. Due to the high variability of rainfalls, farming is only possible with irrigation, mainly conducted by canal systems from the rivers and groundwater withdrawal. Myanmar is recently facing big challenges which result from comprehensive political and economic reforms since 2011. These may also include increasing water use by new industrial zones and urbanization. However, not only policy and economy modify the need for water. Variability of river runoff and changes in seasonality are expected as a result of climate change. The overarching goal of the study is to understand and increase the knowledge on human-water-climate interactions and to elaborate possible future scenarios for Myanmar's Dry Zone. It is not well studied yet how current and future climate change and increasing human impact will influence the country's abundant water resources including groundwater. Therefore, the first step of this study is to identify the major drivers within the central Ayeyarwady River basin. We are in the process of collecting and analyzing data sets and information including hydrologic and eco

  8. From soil water to surface water - how the riparian zone controls element transport from a boreal forest to a stream

    Science.gov (United States)

    Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.

    2017-06-01

    Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many

  9. 鱼雷缓冲头帽入水冲击性能研究%Water-Entry Impact Performance of Torpedo's Cushion Nose Cap

    Institute of Scientific and Technical Information of China (English)

    徐新栋; 李建辰; 曹小娟

    2012-01-01

    To solve the problems that theoretical analysis of water-entry impact process of torpedo's cushion nose cap is difficult and strength design boundary of the nose cap is not easy to be determined, we build a finite element model of the nose cap water-entry with the software ABAQUS, and analyze the stress distribution of the nose cap assembly during water-entry impact process. The conclusion is drawn that vertical water-entry with minimum velocity is the most safe condition for the nose cap. Taking this condition as the upper limit of the nose cap strength design, key factors that may induce nose cap crack are analyzed. Accordingly, two methods to make the nose cap easy to crack after water-entry are offered, i.e. weakening the strength of the fairing and reducing the friction between the nose cap assembly and torpedo. Simulation results show that combination of two methods can achieve perfect nose cap water-entry.%针对鱼雷缓冲头帽入水冲击过程理论分析困难、头帽强度设计边界难以确定的问题,采用ABAQUS软件建立了头帽入水有限元模型.研究了其入水冲击时组件应力分布规律,得出了尖拱形头帽以最小速度垂直入水时最难破裂,将此工况作为头帽强度设计的上边界,研究了影响头帽破裂的关键因素,相应给出了2种使头帽入水后更易破裂的改进方法,即降低头帽组件与雷体之间摩擦力和削弱整流罩强度,并通过仿真进行了验证.仿真结果表明,这2种改进方法都可以使头帽更容易破裂,如果同时采用这2种方法,则能够达到更理想的入水效果.

  10. Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey.

    Science.gov (United States)

    Baba, Alper; Gunduz, Orhan

    2010-04-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Can volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in Kirazli area (Kirazli and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in Kirazli waters (mean value 13813.25 microg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and Kirazli springs are >55 years old according to their tritium levels; Kirazli spring is older than Balaban spring. Kirazli spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, Kirazli spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.

  11. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  12. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  13. Water movement within the unsaturated zone in four agricultural areas of the United States

    Science.gov (United States)

    Fisher, L.H.; Healy, R.W.

    2008-01-01

    Millions of tons of agricultural fertilizer and pesticides are applied annually in the USA. Due to the potential for these chemicals to migrate to groundwater, a study was conducted in 2004 using field data to calculate water budgets, rates of groundwater recharge and times of water travel through the unsaturated zone and to identify factors that influence these phenomena. Precipitation was the only water input at sites in Indiana and Maryland; irrigation accounted for about 80% of total water input at sites in California and Washington. Recharge at the Indiana site (47.5 cm) and at the Maryland site (31.5 cm) were equivalent to 51 and 32%, respectively, of annual precipitation and occurred between growing seasons. Recharge at the California site (42.3 cm) and Washington site (11.9 cm) occurred in response to irrigation events and was about 29 and 13% of total water input, respectively. Average residence time of water in the unsaturated zone, calculated using a piston-flow approach, ranged from less than 1 yr at the Indiana site to more than 8 yr at the Washington site. Results of bromide tracer tests indicate that at three of the four sites, a fraction of the water applied at land surface may have traveled to the water table in less than 1 yr. The timing and intensity of precipitation and irrigation were the dominant factors controlling recharge, suggesting that the time of the year at which chemicals are applied may be important for chemical transport through the unsaturated zone. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  15. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  16. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  17. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    Science.gov (United States)

    Dahan, O.

    2009-04-01

    Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and

  18. Soil water storage, mixing dynamics and resulting travel times through the critical zone in northern latitudes

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Weiler, Markus; Soulsby, Chris

    2017-04-01

    Water partitioning in the unsaturated zone into groundwater recharge, plant transpiration, and evaporation is fundamental for estimating storages and travel times. How water is mixed and routed through the soil is of broad interest to understand plant available water, contamination transport and weathering rates in the critical zone. Earlier work has shown how seasonal changes in hydroclimate influence the time variant character of travel times. A strong seasonality characterizes the northern latitudes which are particularly sensitive to climate and land use changes. It is crucial to understand how variation and change in hydroclimate and vegetation phenology impact time variant storage dynamics and flow path partitioning in the unsaturated zone. To better understand the influence of these ecohydrological processes on travel times of evaporative, transpiration and recharge fluxes in northern latitudes, we characterized soil physical properties, hydrometric conditions and soil water isotopic composition in the upper soil profile in two different land scape units in the long term experimental catchment, Bruntland Burn in the Scottish Highlands. Our two sampling locations are characterized by podzol soils with high organic matter content but they differ with regard to their vegetation cover with either Scots Pine (Pinus sylvestris) or heather (Calluna sp. and Erica Sp). To assess storage and mixing dynamics in the vadose zone, we parameterized a numerical 1-D flow model using the soil textural information along with soil moisture and soil water stable isotopes (δ2H and δ18O). The water flow and transport were simulated based on the Richards and the advection dispersion equation. Differences between water flows of mobile and tightly bound soil waters and the mixing between the two pore spaces were considered. Isotopic fractionation due to evaporation from soil and interception storage was taken into account, while plant water uptake did not alter the isotopic

  19. Water Level Effects on Growth of Melaleuca Seedlings from Lake Okeechobee (Florida, USA) Littoral Zone.

    Science.gov (United States)

    LOCKHART; AUSTIN; AUMEN

    1999-05-01

    / The invasive exotic wetland tree, Melaleuca quinquenervia, is expanding rapidly throughout seasonally wet areas of southern Florida (USA), including the littoral zone of Lake Okeechobee. Natural resource managers are concerned that a lower lake level regulation schedule under consideration for Lake Okeechobee, while potentially beneficial to overall ecosystem health, might increase the rate of Melaleuca expansion. To investigate this possibility, Melaleuca saplings (harvested from the littoral zone) and 7-week-old seedlings (grown from harvested seeds) were subjected to various hydroperiod treatments in replicated mesocosms. Hydroperiod treatments were selected based on a simulation of historical water level variations. Saplings grew taller under longer hydroperiods with fluctuating water levels, including periods of submersion. Time since germination affected the response of seedlings to inundation. Submersed 7-week-old seedlings grew slower and had less biomass than submersed 12-week-old seedlings, yet mortality was low at both ages. Melaleuca's plasticity allows it to adapt to hypoxic, aquatic conditions by means of aquatic heterophylly and adventitious roots. Algae and drought also increased mortality. Based on faster growth of Melaleuca under longer hydroperiods and its adaptability to seasonal flooding, a lower lake regulation schedule may not stimulate its expansion. Therefore, water levels should not be manipulated only to control Melaleuca. Control of Melaleuca should continue using current practices such as manual removal or chemical treatment. KEY WORDS: Melaleuca; Lake Okeechobee; Littoral zone; Water level; Regulation schedule

  20. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    Science.gov (United States)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human

  1. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    P. Tucci

    2001-12-20

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

  2. Waste storage in the vadose zone affected by water vapor condensation and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab.

  3. Bearing splitting and near-surface source ranging in the direct zone of deep water

    Science.gov (United States)

    Wu, Jun-Nan; Zhou, Shi-Hong; Peng, Zhao-Hui; Zhang, Yan; Zhang, Ren-He

    2016-12-01

    Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a bearing-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz-360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The bearing-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations. Project supported by the Program of One Hundred Talented People of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  4. CO2 phase mutation by fluctuating water table in the vadose zone over a CCS site

    Science.gov (United States)

    Joun, W.; Ha, S. W.; Kim, H. H.; Kim, T. W.; Lee, S. S.; Lee, K. K.

    2015-12-01

    Geological sequestration of carbon dioxide (CO2) is one of the feasible plans to control greenhouse gas emissions. In order to be more perfect, the plan has to prove that the injected CO2 gas will not be leaking. Even if CO2 leaking happens, we should possess a technique which provides information on specific aquifer system before critical effect to ground and subsurface environments. Many parameters have been utilized for early detection before risk to environments by sensing CO2 gas concentration, electric conductivity, pH, and ion analysis. However, these are not enough to all CCS sites for leakage detection. For example, the importance of gas leaking path is emphasized because finding the dominant gas flow path can reduce risk and provide a quick estimation. Herein, we investigate dissolved solute degassing and vertical flow from saturated zone to unsaturated zone in shallow depth aquifer. Especially we focused on the water table fluctuation effect. Based on field data and basic parameters, we perform a pilot scale gas injection test and calculate gas flow saturation with STOMP simulator. The CO2 gas concentrations at different depth levels according to amount of injected CO2 infused water, CO2 gas saturation in vadose zone have different concentration values. If we estimate this phenomenon in vadose zone by using CO2 gas detection method, we could presume that the CO2 dissolved in shallow groundwater is degassing and flow upward into vadose zone. However, the concentration level and change patterns are not same and will be changed according to the pattern of water table fluctuation. This study could be usefully applied to strategic CCS environmental monitoring of CO2 leakage.Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  5. Critical Zone Soil Properties effects on Soil Water Storage and Flux

    Science.gov (United States)

    Kormos, P. R.; McNamara, J. P.; Seyfried, M. S.; Marks, D. G.; Flores, A. N.; Marshall, H.; Williams, C. J.

    2012-12-01

    Soil properties control a wide range of hydrologic processes including recharge to regional aquifers. Soil water must pass through the critical zone to contribute to ground water recharge. Deep percolation (DP) from catchments is considered to be an estimate of mountain block recharge to regional aquifers. DP is also an important term in water mass balance studies, which attempt to estimate hydrologic states and fluxes in watersheds with fractured or transmissive bedrock. Few studies estimate the magnitude of this water balance term and it is often considered negligible. The objective of this study is to estimate the timing and magnitude of DP in the 0.015 km2 Tree Line experimental catchment (TL) from the 2011 water year. The catchment, which is located within the Dry Creek Experimental Watershed, Boise, ID, contains thin sandy soil over fractured granitic bedrock. We introduce modeling methods that focus on achieving a high degree of agreement between measured and modeled catchment storage. A distributed physically-based snow energy balance model is loosely coupled to a capacitance-based soil moisture model to estimate soil storage. Measured and calculated soil model parameters, including field capacity, saturated soil moisture content, and plant extraction limits, control the flux of water through the critical zone. Variability in soil storage and soil water fluxes through the critical zone is driven by soil properties. Parameters describing a leaf area index time series are calibrated to minimize the difference between measured and modeled soil dry down in the spring. DP is estimated to be 126 mm from Dec. 13, 2010 to June 30, 2011, which is 18% of the precipitation measured during that time. Rain-on-snow events are estimated to contribute 79 mm, which is 11% of precipitation or 63% of the calculated DP.

  6. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    Science.gov (United States)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  7. 物体入水的光滑粒子法模拟%Simulation of Water Entry with Smoothed Particle Hydrodynamics Method

    Institute of Scientific and Technical Information of China (English)

    杨秀峰; 彭世镠; 刘谋斌

    2011-01-01

    利用LANS-α (Lagrangian-averaged Navier-Stokes-alpha)模型对传统的光滑粒子法进行改进.通过模拟半浮力和零浮力水平圆柱的入水过程,验证改进的光滑粒子法.模拟结果与实验以及其它数值模拟结果符合的很好,表明改进的光滑粒子法适用于研究物体入水问题.%A modified Smoothed Particle Hydrodynamics (SPH) in Lagrangian-averaged Navier-Stokes-alpha (LANS-α) model was developed to simulate water entry flow. Water entry of a half buoyant cylinder and a neutrally buoyant cylinder were simulated. SPH results are in good agreement with reported experiments and numerical results of others. It shows that the modified SPH method is practicable in simulation of water entry flow.

  8. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    Science.gov (United States)

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport.

  9. Geochemical Principles and Methods of Assessment of Surface Water Environmental Impact on Sensitive Zones

    Institute of Scientific and Technical Information of China (English)

    程鸿德; 程林; 等

    1998-01-01

    This paper describes how to carry out environmental impact assessment in an environmentally sensitive zone.The principles,the train of thought and methods are proposed in this paper,We have made the water environmental impact assessment on the engineering project of technical reforms in Guiyang Battery Mill.The hasis for engineering construction and environmental protection in this mill has been laid dawn.

  10. Using water and sanitation as an entry point to fight poverty and respond to HIV/AIDS: The case of Isulabasha Small Medium Enterprise

    Science.gov (United States)

    Manase, G.; Nkuna, Z.; Ngorima, E.

    South Africa is faced by a number of challenges that include low water and sanitation coverage in rural and peri-urban areas, high unemployment and increasing inequality between the rich and the poor as indicated by a Gini coefficient of 0.77; the second highest inequality in the world after Brazil. The situation is compounded by high HIV prevalence with South Africa having the largest HIV infection in the world. This case study demonstrates how water and sanitation is used as an entry point to address these major challenges and to empower communities. The project has two main components: the Small Medium Enterprise (SME) that trades in water and sanitation facilities and a community garden that ensures food security and nutrition for people living with HIV/AIDS. Income generated through these activities is ploughed back into the community through construction of sanitation facilities, maintenance of water pipes and paying school fees for orphans. In addition to creating employment, the project has also empowered the community to mobilise and address other challenges such as gender, child abuse and crime. The case study identifies weaknesses with projects designed solely to provide domestic drinking water and sanitation and calls for an integrated approach that uses water and sanitation as an entry point to unlock opportunities and empower the targeted communities.

  11. Internal waves and surf zone water quality at Huntington Beach, California

    Science.gov (United States)

    Wong, H.; Santoro, A.; Nidzieko, N. J.; Hench, J. L.; Boehm, A. B.

    2011-12-01

    This study characterized diurnal, semi-diurnal, and high-frequency internal wave field at Huntington Beach, California, USA and the connection between internal waves and surf zone water quality. An array of oceanographic moorings was deployed in the summer of 2005 and 2006 at 10-20 meter depths offshore of the beach to observe internal waves and cross-shore exchange. Concurrently, surf zone water quality was assessed twice daily at an adjacent station (Huntington State Beach) with measurements of phosphate, dissolved inorganic nitrogen, silicate, chlorophyll a, fecal indicator bacteria, and the human-specific fecal DNA marker in Bacteroidales. Spectral analysis of water temperature shows well-defined spectral peaks at diurnal and semi-diurnal frequencies. Complex Empirical Orthogonal Function analysis of observed currents reveals that the baroclinic component (summation of second to fifth principal components) accounted for 30% of the total variance in the currents in both years, indicating the importance of density-driven flow during the summer when the water column was stratified. The major axis of the first principal component was oriented alongshore, whereas that of the second and third principal components made an angle of 25 to 55 degree with the cross-shore direction. Arrival of cold subthermocline water in the very near shore (within 1 km of the surf zone) was characterized by strong onshore flow near the bottom of the water column. The near bottom, baroclinic, cross-shore current was significantly lag-correlated with the near bottom temperature data along a cross-shore transect towards shore, indicative of shoreward transport of cold subthermocline water. Wavelet analysis of temperature data showed that non-stationary temperature fluctuations were correlated with buoyancy frequency and the near bottom cross-shore baroclinic current. During periods of large temperature fluctuations, the majority of the variance was within the semi-diurnal band; however, the

  12. Water quality and eutrophication in the Guangzhou Sea Zone of the Pearl River estuary

    Institute of Scientific and Technical Information of China (English)

    魏鹏; 黄良民

    2010-01-01

    To gain a better understanding of water quality and eutrophication,we investigated the seasonal and spatial distribution of water quality at 17 stations in the Guangzhou Sea Zone (GZSZ).Nutrients,chlorophyll-a (Chl-a),salinity,chemical oxygen demand,and other physical and chemical parameters were determined in February,May,August and October from 2005 to 2007.The concentrations showed ranges of 93.2-530.4 μmol/L for dissolved inorganic nitrogen (DIN),0.62-3.16 μmol/L for phosphate (PO4-P) and 50-127 μmol/L ...

  13. Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone

    Science.gov (United States)

    Weaver, W.; Kibbey, T. C. G.; Papelis, C.

    2016-12-01

    Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.

  14. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  15. River Water Quality Zoning: A Case Study of Karoon and Dez River System

    Directory of Open Access Journals (Sweden)

    M Karamouz, N Mahjouri, R Kerachian

    2004-10-01

    Full Text Available Karoon-Dez River basin, with an area of 67000 square kilometers, is located in southern part of Iran. This river system supplies the water demands of 16 cities, several villages, thousands hectares of agricultural lands, and several hydropower plants. The increasing water demands at the project development stage including agricultural networks, fish hatchery projects, and inter-basin water transfers, have caused a gloomy future for water quality of the Karoon and Dez Rivers. A good part of used agricultural water, which is about 8040 million cubic meters, is returned to the rivers through agricultural drainage systems or as non-point, return flows. River water quality zoning could provide essential information for developing river water quality management policies. In this paper, a methodology is presented for this purpose using methods of -mean crisp classification and a fuzzy clustering scheme. The efficiency of these clustering methods was evaluated using water quality data gathered from the monitoring sampling points along Karoon and Dez Rivers. The results show that the proposed methodology can provide valuable information to support decision-making and to help river water quality management in the region.

  16. Growth inhibition of phytoplankton populations cultured in disphotic zone water by insufficient amounts of dissolved organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, T. [Japan Marine Science and Technology Center, Kanagawa (Japan)

    1994-10-01

    Phytoplankton cultures in disphotic zone water were performed, to examine dissolved organic carbon (DOC) as a controlling agent of the initial lag period and growth rate. Culture media with various concentrations of DOC were prepared by mixing low DOC disphotic zone water with high DOC surface water. Natural phytoplankton populations exhibited strong correlations to the lag period with DOC concentrations and to the population growth rate. Similar tendencies were also confirmed as to a marine diatom dominating in the disphotic zone by culture experiments. By reducing DOC concentrations in seawater samples through pretreatments with ultraviolet radiation, charcoal adsorption and Amberlite resin adsorption, lag periods of diatom increased. Consequently, it was found that the lag period is prolonged in low DOC water. It was suggested that the essential substance to shorten lag periods of phytoplankton cultured in disphotic zone water is a portion of dissolved organic matter. 35 refs., 6 figs., 5 tabs.

  17. 19 CFR 146.64 - Entry for warehouse.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Entry for warehouse. 146.64 Section 146.64 Customs... (CONTINUED) FOREIGN TRADE ZONES Transfer of Merchandise From a Zone § 146.64 Entry for warehouse. (a) Foreign... status may not be entered for warehouse from a zone. Merchandise in nonprivileged foreign...

  18. Pore-water isotopic compositions and unsaturated-zone flow, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yang, In C.

    2001-04-29

    Isotopic compositions of core-water samples from boreholes USW SD-6 and USW WT-24 indicate that recent water has been introduced at depth. Tritium, carbon, oxygen, and deuterium isotopic compositions all support younger water at depth in the two boreholes. Peaks in tritium concentrations in pore-water samples, indicating younger water than the other samples, observed near the basal vitrophyre of the Topopah Spring Tuff and at the bottom of the CHF and the top of the PP in both boreholes SD-6 and WT-24. Larger {sup 14}C activities in two pore-water samples from WT-24 at the bottom of the CHF and the top of the PP indicate younger water than in other samples from WT-24. More positive {delta}{sup 18}O and {delta}D values indicate younger water in samples of pore water at the bottom of the CHF in boreholes SD-6 and WT-24. The isotopic compositions indicating younger water at depth in boreholes SD-6 and WT-24 occur at the basal vitrophyre zone of the Topopah Spring Tuff and the bottom of the CHF/upper part of the PP, probably from lateral preferential flow through connected fractures (fast-flow paths). The source of the young water at borehole WT-24 probably was recharge from The Prow to the north, which then flowed laterally southward through the highly fractured TSw. The source of the young water at borehole SD-6 probably was water flow from the Solitario Canyon fault to the west, which then flowed laterally through the TSw and CHF.

  19. 回转体垂直入水过程数值模拟%Numerical Simulation of Vertical Water-entry for an Axisymmetric Body

    Institute of Scientific and Technical Information of China (English)

    王占莹; 王冠军; 尤天庆; 程少华; 林崧

    2014-01-01

    The numerical simulation of water entry of an axisymmetric body is based on solving the time dependent Reynolds-Averaged Navier-Stokes equations and the VOF multiphase method and the dynamic mesh technique. Numerical results compared favorably with the experimental data show that the numerical method in this paper is able to capture the pressure evolution in the vertical water entry cavity properly, and the hydrodynamic distributions in cavity with various entry speeds are discussed. The study may provide reference and contribute to the engineering design.%针对回转体垂直入水流体动力问题,基于RANS方程、VOF多相流模型和动网格技术进行数值模拟分析,通过试验结果对数值计算模型进行验证,获得垂直入水过程中自由液面及物体表面附着空气泡的发展演化过程,研究回转体不同入水速度对流体动力分布特性的影响,为工程设计提供借鉴与参考。

  20. A simulation-optimization model for effective water resources management in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  1. 飞船返回舱水上回收的冲击响应和入水姿态分析%Impact response and water entry posture of a Space Capsule’s water recovery

    Institute of Scientific and Technical Information of China (English)

    张岳青; 徐绯; 金思雅; 陈旭

    2014-01-01

    飞船返回舱在入水的初始阶段遭受较大的冲击载荷,严重影响返回舱的结构安全和内部人员安全。基于NASA的试验模型,运用LS-DYNA软件中流固耦合算法对返回舱的入水过程进行了数值模拟。分别讨论了垂直入水和带有水平速度入水情况下返回舱的动力学响应,计算得到的加速度最大值与NASA的试验数据吻合。在此基础上,分析了返回舱以不同入水倾角,不同质量和不同入水姿态情况下的结构响应,发现入水倾角和质量越大,返回舱的加速度值越小。在考察不同姿态入水的情况中,正向倾斜入水时加速度最大值比负向倾斜小;质心在下的加速度最大值比质心在上的大。负向倾斜质心在下的情况,返回舱入水后姿态稳定性更好。%At the beginning of its water entry,a space capsule suffers a big impact load,it has an important effect on the safety of the capsule structure and people inside.Base on NASA’s experimental model,The process of the capsule water entry was simulated with the fluid-structure interaction algorithm in the software LS-DYNA.The dynamic responses of the capsule were discussed in the vertical and horizontal directions,respectively.The simulated maximum accelerations agreed well with NASA's experimental data.Then,the responses of the capsule were analyzed with different water entry angles,masses and water entry postures.It was shown that the bigger the water entry angle and the mass,the smaller the acceleration of the capsule;for different water entry postures,the maximum acceleration of the capsule with positive incline water entry is smaller than that with negative incline water entry;the maximum acceleration of the capsule in the situation of mass center below is bigger than that in the situation of mass center above;after water entry,the capsule posture is more stable in the situation of negative incline water entry and mass center below.

  2. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishaldeep [ORNL; Shen, Bo [ORNL; Keinath, Chris [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City; Geoghegan, Patrick J [ORNL

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in colder climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.

  3. 应用脊神经后根入髓区毁损术治疗截瘫后顽固性疼痛%Destructive operation on dorsal root entry zone (DREZ) for obstinate pain after paraplegia

    Institute of Scientific and Technical Information of China (English)

    刘建杰; 孙明礼; 苏兰海; 孟庆恒; 路平; 高伟; 刘赢; 魏巍

    2009-01-01

    Objective To explore the methods and curative effect of destructive operation on dorsal root entry zone (DREZ) in treatment of obstinate phantom limb and stamp pain after paraplagia. Method 8 patients who suffered from obstinate phantom pain and stamp pain after paraplegia were performed destructive operation on dorsal root entry zone (DREZ) and followed-up for 3,6 and 12 months after operation, average 6.6 months. Results The pain of 8 patients was alleviated at different levels and 6 patients got absolute alleviation. Conclusions The destructive operation on DREZ is tremendously effective for patients with obstinate phantom limb pain and stamp pain after paraplagia because of spinal cord injure and/or avulsion of roots of spinal cord. It is very crucial to choose the appropriate patients for surgery.%目的 探讨脊神经后根入髓区(DREZ)毁损术治疗截瘫后顽固性疼痛的手术方法和疗效.方法 对截瘫后伴有残肢痛和幻肢痛的8例患者实施相应节段DREZ毁损术,并进行术后3个月、6个月、12个月的随访,平均6.6个月.结果 8例患者疼痛都有不同程度的缓解,其中完全缓解6例.结论 脊神经后根DREZ毁损术治疗伴有脊髓损伤和脊神经根撕脱伤的截瘫患者疼痛疗效确切,掌握好手术适应证十分重要.

  4. Water and Slabs in the Transition Zone - Hydrous Ringwoodite in Diamond

    Science.gov (United States)

    Pearson, D. G.; Brenker, F. E.; Nestola, F.; McNeill, J.; Nasdala, L.; Hutchison, M.; Matveev, S.; Mather, K.; Vincze, L.; Schmitz, S.; Vekemens, B.

    2014-12-01

    Theory and experiments have shown that the Earth's Transition Zone (TZ) could be a major repository for water, due to the ability of the higher-pressure polymorphs of olivine - wadsleyite and ringwoodite - to host up to ~2.5wt. % H2O. Despite experimental demonstration of the water-bearing capacity of these phases, geophysical probes such as electrical conductivity have provided conflicting results, and the issue of whether the TZ contains abundant water remains highly controversial. We report X-ray diffraction, Raman and infra-red spectroscopic evidence for the first terrestrial occurrence of any higher pressure polymorph of olivine: ringwoodite, included in a diamond from Juína, Brazil. The ringwoodite occurs with a Ca-walstromite phase that we interpret to be retrogressed Ca-silicate perovskite. The most likely interpretation of this two-phase assemblage is that it represents a partially retrogressed portion of a somewhat Fe-rich peridotitic mantle, in which hydrous ringwoodite, and former CaSiO3- perovskite co-existed above 15GPa. The ringwoodite has a Mg# of ~ 75, suggesting that it may be mantle hybrised with a more fertile component such as subducted oceanic crust. The water-rich nature of this inclusion (~1.5 wt%), along with the preservation of ringwoodite, is the first direct evidence that, at least locally, the TZ is hydrous, to about 1 wt%. As well as being in agreement with recent magnetotelluric estimates of the TZ water content, this amount of water helps to reconcile measured TZ seismic velocities with those predicted from lab experiments. The finding also indicates that some kimberlites must have their primary sources in this deep mantle region. The high water content of the ringwoodite suggests that it was not close to the mantle geotherm when trapped in the diamond. This may be an indication that the the assemblage was part of a water-rich subducted slab out of thermal equilibrium, within the transition zone. The water-rich nature of the

  5. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  6. Water Districts, Zone 2a, Published in 2005, 1:24000 (1in=2000ft) scale, Iron County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Districts dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2005. It is described as 'Zone 2a'....

  7. Water Districts, zone 3a, Published in 2005, 1:24000 (1in=2000ft) scale, Iron County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Districts dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2005. It is described as 'zone 3a'....

  8. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  9. Monitoring water storage variations in the vadose zone with gravimeters - quantifying the influence of observatory buildings

    Science.gov (United States)

    Reich, Marvin; Güntner, Andreas; Mikolaj, Michal; Blume, Theresa

    2016-04-01

    Time-lapse ground-based measurements of gravity have been shown to be sensitive to water storage variations in the surroundings of the gravimeter. They thus have the potential to serve as an integrative observation of storage changes in the vadose zone. However, in almost all cases of continuous gravity measurements, the gravimeter is located within a building which seals the soil beneath it from natural hydrological processes like infiltration and evapotranspiration. As water storage changes in close vicinity of the gravimeter have the strongest influence on the measured signal, it is important to understand the hydrology in the unsaturated soil zone just beneath the impervious building. For this reason, TDR soil moisture sensors were installed in several vertical profiles up to a depth of 2 m underneath the planned new gravimeter building at the Geodetic Observatory Wettzell (southeast Germany). In this study, we assess the influence of the observatory building on infiltration and subsurface flow patterns and thus the damping effect on gravimeter data in a two-way approach. Firstly, soil moisture time series of sensors outside of the building area are correlated with corresponding sensors of the same depth beneath the building. The resulting correlation coefficients, time lags and signal to noise relationships are used to find out how and where infiltrating water moves laterally beneath the building and towards its centre. Secondly, a physically based hydrological model (HYDRUS) with high discretization in space and time is set up for the 20 by 20 m area around and beneath the gravimeter building. The simulated spatial distribution of soil moisture in combination with the observed point data help to identify where and to what extent water storage changes and thus mass transport occurs beneath the building and how much this differs to the dynamics of the surroundings. This allows to define the umbrella space, i.e., the volume of the vadose zone where no mass

  10. The Barents Sea frontal zones and water masses variability (1980-2011)

    Science.gov (United States)

    Oziel, L.; Sirven, J.; Gascard, J.-C.

    2016-01-01

    The polar front separates the warm and saline Atlantic Water entering the southern Barents Sea from the cold and fresh Arctic Water located in the north. These water masses can mix together (mainly in the center of the Barents Sea), be cooled by the atmosphere and receive salt because of brine release; these processes generate dense water in winter, which then cascades into the Arctic Ocean to form the Arctic Intermediate Water. To study the interannual variability and evolution of the frontal zones and the corresponding variations of the water masses, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database, which covers the 1980-2011 period. The summer data were interpolated on a regular grid. A probability density function is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be identified: the Northern Front is associated with strong salinity gradients and the Southern Front with temperature gradients. Both fronts enclose the denser Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. The frontal zones variability is found by using data from a general circulation model. The link with the atmospheric variability, represented here by the Arctic Oscillation, is not clear. However, model results suggest that such a link could be validated if winter data were taken into account. A strong trend appears: the Atlantic Water (Arctic Water) occupies a larger (smaller) volume of the Barents Sea. This trend amplifies during the last decade and the model study suggests that this could be accompanied by a northwards displacement of the Southern Front in the eastern part of the Barents Sea. The results are less clear for the Northern Front. The observations show that the volume of the Barents Sea Water

  11. Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

    2006-01-01

    Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of

  12. Fusion-activated Ca(2+ entry: an "active zone" of elevated Ca(2+ during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes.

    Directory of Open Access Journals (Sweden)

    Pika Miklavc

    Full Text Available Ca(2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca(2+ concentration ([Ca(2+](c in the prefusion phase, the occurrence and significance of Ca(2+ signals in the postfusion phase have not been described before.We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies in an exceptionally slow, Ca(2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca(2+](c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t(1/2 of decay = 3.2 s rise of localized [Ca(2+](c originating at the site of lamellar body fusion. [Ca(2+](c increase followed with a delay of approximately 0.2-0.5 s (method-dependent and in the majority of cases this signal propagated throughout the cell (at approximately 10 microm/s. Removal of Ca(2+ from, or addition of Ni(2+ to the extracellular solution, strongly inhibited these [Ca(2+](c transients, whereas Ca(2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca(2+](c. Both effects were reduced by the non-specific Ca(2+ channel blocker SKF96365.Fusion-activated Ca(2+entry (FACE is a new mechanism that leads to [Ca(2+](c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca(2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.

  13. Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Collier, Jenny S.; Verdon, James P.; Blundy, Jon; Baptie, Brian; Latchman, Joan L.; Massin, Frederic; Bouin, Marie-Paule

    2016-03-01

    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power law describes the earthquake-magnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its along-strike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value `bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the

  14. Is tile drainage water representative of root zone leaching of pesticides?

    Science.gov (United States)

    Jacobsen, Ole H; Kjaer, Jeanne

    2007-05-01

    Given the methods presently available, determination of flux-averaged concentrations of pesticides in structured soils is always a compromise. Most of the available methods entail major uncertainties and limitations. Tile drainage monitoring has several advantages, but the extent to which it is representative of overall leaching has been questioned because it comprises a mixture of water of different origins. This literature review evaluates whether drainage water pesticide concentrations are representative of root zone leaching of pesticides. As there are no reports quantifying the extent to which the flux-averaged concentration of pesticides in drainage water differs from that found between the drains, evidence-based conclusions cannot be drawn. Nevertheless, the existing literature does suggest that the concentration in drainage water does not always correspond to the concentration at drain depth between the drains; depending on the conditions pertaining, the concentrations may be higher or lower. As to whether the flux-averaged concentration of pesticides in drainage water is representative of the interdrain concentration at drain depth it is concluded that (1) the representativeness of drainage water concentrations can be questioned on very well-drained soils and on poorly drained soils with little capacity for lateral transport beneath the plough layer, (2) the conditions provided by relatively porous soils and moderate climatic conditions are conducive to the drainage water concentration being representative and (3) drainage water will be more representative in the case of weakly sorbed pesticides than for strongly sorbed pesticides. Used critically, it is thus believed that drainage water concentrations can serve to characterize the flux-averaged concentration of pesticides at drain depth. However, the use of drainage water for determining average concentrations necessitates thorough investigation and interpretation of precipitation, percolation, drain

  15. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  16. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rehfeldt

    2004-10-08

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In

  17. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    Energy Technology Data Exchange (ETDEWEB)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  18. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens [WSP Sweden, Stockholm (Sweden) ; Starsec, Peter [SGI, Linkoeping (Sweden)

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is

  19. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast.

    Science.gov (United States)

    Canfield, Don E; Stewart, Frank J; Thamdrup, Bo; De Brabandere, Loreto; Dalsgaard, Tage; Delong, Edward F; Revsbech, Niels Peter; Ulloa, Osvaldo

    2010-12-03

    Nitrogen cycling is normally thought to dominate the biogeochemistry and microbial ecology of oxygen-minimum zones in marine environments. Through a combination of molecular techniques and process rate measurements, we showed that both sulfate reduction and sulfide oxidation contribute to energy flux and elemental cycling in oxygen-free waters off the coast of northern Chile. These processes may have been overlooked because in nature, the sulfide produced by sulfate reduction immediately oxidizes back to sulfate. This cryptic sulfur cycle is linked to anammox and other nitrogen cycling processes, suggesting that it may influence biogeochemical cycling in the global ocean.

  20. Gulf Coast Deep Water Port Facilities Study. Appendix C. Eastern Gulf Hydrobiological Zones.

    Science.gov (United States)

    1973-04-01

    namely, activities regarding deep water ports including those for oil tankers). However, there are local populations, particularly in coastal zones...to eutrophication , pesticides. and petrochemical loads present in sediments. The Pensacola-Escamnbia-East BaY stsem has been gnrel ’re damaged. About...River 671 646.4 Palm River 62 45.2 Alatia River 384 418.2 Additional Area -92.6 Lower Tampa Bay 2.0- 2.3 Little Manatee River 186 205.2 Manatee River

  1. Partial root zone drying (PRD) sustains yield of potatoes (Solanum tuberosum L.) at reduced water supply

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Andersen, Mathias Neumann; Liu, Fulai

    2008-01-01

    Partial root zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Until now it has not been investigated in potatoes (Solanum tuberosum L.). A field experiment on sandy soil in Denmark was conducted under a mobile rainout shelter to study effects of two...... irrigation. The reasons for a better tuber size distribution caused by PRD, however, remain elusive. For optimizing PRD irrigation, the crop physiological reactions to shifting intervals and level of irrigation reduction should be further studied at different growth stages....

  2. Stochastic Modeling Of Field-Scale Water And Solute Transport Through The Unsaturated Zone Of Soils

    DEFF Research Database (Denmark)

    Loll, Per

    were previously thought not to pose a leaching threat. Thus, a reevaluation of our understanding of the mechanisms governing chemical fate in the unsaturated zone of soils has been necessary, in order for us to make better decisions regarding widely different issues such as agricultural management...... of pesticides and nutrients, and risk identification and assessment at polluted (industrial) sites. One of the key factors requiring our attention when we are trying to predict field-scale chemical leaching is spatial variability of the soil and the influence it exerts on both water and chemical transport...

  3. The Inner Boundary of the Habitable Zone: Loss Processes of Liquid Water from Terrestrial Planet Surfaces

    Science.gov (United States)

    Stracke, B.; Godolt, M.; Grenfell, J. L.; von Paris, P.; Patzer, B.; Rauer, H.

    2012-04-01

    The question of habitability is very important in the context of terrestrial extrasolar planets. Generally, the Habitable Zone (HZ) is defined as the orbital region around a star, in which life-supporting (habitable) planets can exist. Taking into account that liquid water is a commonly accepted, fundamental requirement for the development of life - as we know it - the habitable region around a star is mainly determined by the stellar insolation of radiation, which is sufficient to maintain liquid water at the planetary surface. This study focuses on different processes that can lead to the complete loss of a liquid water reservoir from the surface of a terrestrial planet to determine the inner boundary of the HZ. The investigated criteria are, for example, reaching the temperature of the critical point of water at the planetary surface, the runaway greenhouse effect and the diffusion-limited escape of water from the atmosphere, which could lead to the loss of the complete water reservoir within the lifetime of a planet. We investigate these criteria, which determine the inner boundary of the HZ, with a one-dimensional radiative-convective model of a planetary atmosphere, which extends from the surface to the mid-mesosphere. Our modelling approach involves the step-by-step increase of the incoming stellar flux and the subsequent iterative calculation of resulting changes in the temperature profiles, the atmospheric water vapour content and the radiative properties. Therefore, this climate model had to be adapted to account for high temperatures and water mixing ratios. For example, the infrared radiative transfer scheme was improved to be suitable for such high temperature and pressure conditions. Modelling results are presented determining the inner boundary of the HZ affected by these processes, which can result in no liquid water on the planetary surface. In this context, especially the role of the runaway greenhouse effect is discussed in detail.

  4. Developing hydrological model for water quality in Iraq marshes zone using Landsat-TM

    Science.gov (United States)

    Marghany, Maged; Hasab, Hashim Ali; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed

    2016-06-01

    The Mesopotamia marshlands constitute the largest wetland ecosystem in the Middle East and Western Eurasia. These wetlands are located at the confluence of the Tigris and Euphrates Rivers in southern Iraq. However, there are series reductions in the wetland zones because of neighbor countries, i.e. Turkey, Syria built dams upstream of Tigris and Euphrates Rivers. In addition, the first Gulf war of the 1980s had damaged majority of the marches resources. In fact,the marshes had been reduced in size to less than 7% since 1973 and had deteriorated in water quality parameters. The study integrates Hydrological Model of RMA-2 with Geographic Information System, and remote sensing techniques to map the water quality in the marshlands south of Iraq. This study shows that RMA-2 shows the two dimensional water flow pattern and water quality quantities in the marshlands. It can be said that the integration between Hydrological Model of RMA-2, Geographic Information System, and remote sensing techniques can be used to monitor water quality in the marshlands south of Iraq.

  5. Conjecture with water and rheological control for subducting slab in the mantle transition zone

    Institute of Scientific and Technical Information of China (English)

    Fumiko Tajima; Masaki Yoshida; Eiji Ohtani

    2015-01-01

    Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ) where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs), flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the“660 km”discontinuity depths and low viscosity layers (LVLs) beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a sepa-ration of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20e30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, w660 km. The variation of the disconti-nuity depths and highly localized low seismic speed anomaly (LSSA) zones observed from seismic P waveforms in a relatively high frequency band (w1 Hz) support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (Hþ) diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not be necessarily captured

  6. Conjecture with water and rheological control for subducting slab in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Fumiko Tajima

    2015-01-01

    Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not

  7. Mapping the Fresh-Salt Water Interaction in the Coastal Zone Using High Resolution Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Pedersen, J. B. B.; Christiansen, A. V.; Foged, N.; Schaars, F.; Rolf, H.

    2016-12-01

    During the last decade airborne electromagnetics (AEM) and the accompanying data processing and inversion algorithms have undergone huge developments in terms of technology, costs, and reliability. This has expanded the scope of AEM from mainly mineral exploration to geotechnical applications and groundwater resource mapping. In this abstract we present a case with generally applicable results where AEM is used to map saltwater intrusion as well as outflow of fresh water to the sea. The survey took place on the Dutch coast in 2011 and is composed of a detailed inland coastal mapping as well as lines extending kilometres into the North Sea. It adds further complications that the area has a dense infrastructure and rapid varying dune topography causing the need for cautious data processing. We use the high resolution AEM system SkyTEM and data processing and inversion in the Aarhus Workbench. On the inland side, the results show a high resolution image of the fresh water interface and the interaction with clay layers acting as barriers. On the sea side they show a picture of freshwater plumes being pushed several hundred meters under the sea. The last mentioned information was actually the main purpose of the survey as this information could hardly be obtained by other methods and it is decisive for the total water balance of the system. The case shows an example of an AEM survey resulting in a high resolution image of the entire coastal zone. The technology is applicable in all coastal zones in the world and if applied it would lead to much improved management of the water resources in these landscapes.

  8. Land and water use practices intended to increase water productivity in arid and semi-arid zones. Application to Uzbekistan.

    Science.gov (United States)

    Mirshadiev, Mirzokhid; Fleskens, Luuk; van Dam, Jos; Pulatov, Alim

    2017-04-01

    Water demand increases as more food is required to meet population growth and higher living standards. In addition, climate change is expected to further exacerbate water scarcity in already dry areas where irrigation is most needed. In the water scarce areas, the key strategy to meet demand of growing food production and water use is increase of water productivity (WP) based on best land and water use practices. A literature review will be conducted to study promising land and water use practices that increase water productivity in arid and semi-arid zones, with a special focus on Uzbekistan. In addition to literature review we will conduct interviews with local farmers and land and water management experts. However, due to time constraints and difficult to access grey literature, the review paper cannot cover all promising land and water use practices that have been used in Uzbekistan. We selected the following promising practices: a) conventional furrow irrigation; b) deficit irrigation; c) drip/sprinkle irrigation, and d) rain-fed with supplemental irrigation. The preliminary findings of the literature review show that in Uzbekistan in case of conventional furrow irrigation the WP range of cotton was 0.32-0.89, and of wheat 0.44-1.77 (kg m3). By applying deficit irrigation practices, WP values of cotton can be 0-25% higher (0.32-1.11 kg m3), and of wheat 114-400% higher (2.20-3.78 kg m3). However, deficit irrigation practices for potato's need to be managed carefully to reach higher WP, and might even negatively effect WP, showing a range of 0.85-7.04 compared to conventional furrow irrigation 4.02-4.81 (kg m3). Important to mention that drip irrigation practice can highly contribute to increase WP of cotton by 156-91 % (0.82-1.70 kg m3) compared to furrow irrigation. Also, rain-fed cultivation with supplemental irrigation result is anticipated and will be included in the presentation and full version of paper. In summary, the review of current land and water

  9. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    Science.gov (United States)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  10. 75 FR 24799 - Safety Zone; Tri-City Water Follies Hydroplane Races Practice Sessions, Columbia River, Kennewick...

    Science.gov (United States)

    2010-05-06

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Tri-City Water Follies Hydroplane Races..., Washington for hydroplane race practice sessions being held in preparation for the Tri-City Water Follies... associated with the hydroplane practice sessions could lead to severe injury, fatalities, and/or...

  11. How Subsurface Water Technologies (SWT) can Provide Robust, Effective, and Cost-Efficient Solutions for Freshwater Management in Coastal Zones

    NARCIS (Netherlands)

    Zuurbier, K.G.; Raat, K.J.; Paalman, M.; Oosterhof, A.T.; Stuyfzand, P.J.

    2016-01-01

    Freshwater resources in coastal zones are limited while demands are high, resulting in problems like seasonal water shortage, overexploitation of freshwater aquifers, and seawater intrusion. Three subsurface water technologies (SWT) that can provide robust, effective, and cost-efficient solutions to

  12. How Subsurface Water Technologies (SWT) can Provide Robust, Effective, and Cost-Efficient Solutions for Freshwater Management in Coastal Zones

    NARCIS (Netherlands)

    Zuurbier, K.G.; Raat, K.J.; Paalman, M.; Oosterhof, A.T.; Stuyfzand, P.J.

    2016-01-01

    Freshwater resources in coastal zones are limited while demands are high, resulting in problems like seasonal water shortage, overexploitation of freshwater aquifers, and seawater intrusion. Three subsurface water technologies (SWT) that can provide robust, effective, and cost-efficient solutions to

  13. Water Planets in the Habitable Zone: Atmospheric Chemistry, Observable Features, and the case of Kepler-62e and -62f

    CERN Document Server

    Kaltenegger, L; Rugheimer, S

    2013-01-01

    Water planets in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water planet. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitable water planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.

  14. Computation of the pseudoskin factor for a restricted-entry well

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W. (Joshi Technologies International Inc., Tulsa, OK (United States)); Reynolds, A.C. Jr. (Univ. of Tulsa, OK (United States))

    1994-03-01

    Wells frequently are completed over a fraction of the oil zone to delay water and gas coning. This type of completion is called a restricted-entry or partially penetrating well. When analyzing well-test data from a restricted-entry well, semilog analysis of pseudoradial flow data yields an estimate of the total skin factor, which is a linear combination of the mechanical skin factor and the pseudoskin factor caused by restricted entry. This work presented two new equations for computing the pseudoskin factor from a restricted-entry well completed in a multilayer reservoir. These equations represent generalization of formulas presented by Papatzacos and Vrbik for single-layer homogeneous reservoirs. For ranges of reservoir and well parameters ordinarily encountered, the new equations provide results approximately equal to those obtained from the Yeh-Reynolds calculation procedure, but are easier to use than this equation.

  15. High Resolution Surveys of the Water and Methanol Star Formation Masers in the Central Molecular Zone

    Science.gov (United States)

    Rickert, Matthew; Yusef-Zadeh, Farhad; Ott, Juergen; Meier, David S.; Krieger, Nico; SWAG

    2017-01-01

    We present some of the first high resolution fully interferometric surveys of 6.7 GHz methanol and 22 GHz water masers towards the Central Molecular Zone (CMZ). These masers are good signposts for early (methanol masers with resolutions of 0.9” (0.04 pc) and 0.4 km/s (8 kHz) and an average channel sensitivity of ~0.01 Jy/beam. With this high resolution and sensitivity, we have detected ~100 methanol masers, which is over a factor of two more than has previously been detected. We have also conducted two surveys of water masers in this region. As part of the Survey of Water and Ammonia in the Galactic Center (SWAG), the Australia Telescope Compact Array (ATCA) was used to survey a variety of molecular lines, including the 22 GHz water line. With the ATCA, we have detected over 200 water masers using resolutions of 26” (1 pc) and 2 km/s (60 kHz) and an average channel sensitivity of ~0.01 Jy/beam. Afterward, we conducted the first on-the-fly (OTF) VLA survey of water masers with improved resolutions of 0.7” (0.03 pc) and 0.4 km/s (26 kHz) and an average channel sensitivity of ~0.05 Jy/beam. Although the analysis of this OTF survey is not yet complete, we have already identified water masers that were not visible in the SWAG data.The improvement in the number of detected masers allows us to better analyze the distribution of these masers. We show that the SWAG water masers appear uniformly distributed along the Galactic plane, despite the asymmetry of the molecular gas distribution, where ~2/3 of the gas mass is located at positive Galactic longitudes. The methanol masers follow the molecular gas distribution, with a majority of the masers being found at positive longitudes. This could indicate a difference in the star forming history of these two parts of the CMZ and/or that the 22 GHz water masers are contaminated by water masers produced from evolved stars as well as star forming regions, indicating that a larger percentage of 22 GHz water masers are produced

  16. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    Directory of Open Access Journals (Sweden)

    M. Sprenger

    2014-10-01

    Full Text Available Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last two decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a pore water isotope concentrations, (b a combination of pore water isotope concentrations and soil moisture time series, and (c a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by numerically solving the Richards equation with the finite-element code of Hydrus-1D. The transport of deuterium was simulated with the advection-dispersion equation, and the Hydrus code was modified to allow for deuterium loss during evaporation. The Mualem–van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a using only the pore water isotope content cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics, but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b and (c using both, the isotope profiles and the soil moisture time series resulted in satisfying model performances and good parameter identifiability. However, approach

  17. Examining Adaptations to Water Stress Among Farming Households in Sri Lanka's Dry Zone

    Science.gov (United States)

    Williams, N. E.; Carrico, A.

    2016-12-01

    Climate change is increasing water scarcity in Sri Lanka's primary rice-farming zone. Whether these changes will undermine the national-level food security that Sri Lanka has worked to develop since their independence depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Using household survey data collected in 13 rice farming communities throughout Sri Lanka, this research explores how water stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Our analyses reveal that farmers' abilities to access irrigation infrastructure is the most important factor shaping the rice yields of water stressed Sri Lanka farmers. Notably, however, our research also identified farmers' use of hybrid, 'short duration' seed varietals to be the only climate adaptation strategy being promoted by agricultural extension services to have a significant positive impact on farmers' yields. These findings provide encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change.

  18. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-11-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with pre-development and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photography is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  19. Groundwater surface water interactions through streambeds and the role of phreatophytes in identifying important recharge zones

    Directory of Open Access Journals (Sweden)

    T. S. Ahring

    2012-06-01

    Full Text Available Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with predevelopment and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50% in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photophaphy is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  20. Surf Zone Hydrodynamics and its Utilization in Biotechnical Stabilization of Water Reservoir Banks

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2014-01-01

    Full Text Available The water reservoir banks are eroded mainly by two factors. The first one is wave action (i.e. wave abrasion affecting the bank in direction from the reservoir. The second one is the influence of water flowing downward over the bank surface in direction from land into the reservoir (e.g. rainfall. The determination of regular altitudinal emplacement of proper designed particular biotechnical stabilization elements is the most important factor on which the right functionality of whole construction depends. Surf zone hydrodynamics solves the wave and water level changes inside the region extending from the wave breaking point to the limit of wave up-rush. The paper is focused on the utilization of piece of knowledge from a part of sea coast hydrodynamics and new approach in its application in the conditions of inland water bodies when designing the biotechnical stabilization elements along the shorelines. The “reinforced grass carpets” as a type of biotechnical method of bank stabilization are presented in the paper; whether the growth of grass root system is dependent on presence or absence of geomats in the soil structure and proceeding of their establishment on the shorelines.

  1. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings

    Science.gov (United States)

    Misund, Ole Arve; Heggland, Kristin; Skogseth, Ragnheid; Falck, Eva; Gjøsæter, Harald; Sundet, Jan; Watne, Jens; Lønne, Ole Jørgen

    2016-09-01

    The Svalbard archipelago in the High Arctic is influenced by cold Arctic water masses from the north-east and the warm West Spitsbergen Current flowing northwards along its western coast. The eastern waters and the fjords are normally frozen during the winter months, while the coastal waters west of the archipelago remain open. Norwegian fishers have been harvesting from Svalbard waters for decades and detailed records of catches exists from 1980 onwards. We analyze the catch records from the Svalbard zone (approximately ICES area IIb). The large fishery for capelin in summer yielding annual catches up to 737 000 tons was closed by a Norwegian fishery regulation in the mid nineteen nineties. Demersal fisheries have been continuous, and the results clearly indicate a northward trend in landings of Northeast Arctic cod, haddock, ling and Atlantic halibut. Fisheries of Northern shrimp have been more variable and shown no clear geographic trends. A "gold rush" fishery for scallops north of Svalbard lasted for about 10 years (1986-1995) only, and ended due to low profitably. These results are discussed in relation to the possibility of further northward extension of fisheries subjected to climate change.

  2. Estimation of percolating water dynamics through the vadose zone of the Postojna cave on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janja Kogovšek

    2007-12-01

    Full Text Available Within the scope of monitoring water percolation through the 100-m thick vadose zone in the area of Postojnska jama continuous measurements of precipitation were carried out on the surface, and continuous measurements of water flowandphysicalandchemicalparametersof selected water trickles were performed under the surface. Occasional samples of percolating waters were taken for the analysis of water oxygen isotope composition. An exponential model of groundwater flowwaselaborated,bymeansofwhichtheretentiontime of water in individual trickles was estimated. Modelled retention times of groundwater range from 2.5 months to over one year.

  3. Assessment of water quality in areas of ecological economic zoning of the Guapiaçu-Macacu basin, RJ, Brazil

    Directory of Open Access Journals (Sweden)

    Darcilio Fernandes Baptista

    2012-04-01

    Full Text Available Aquatic ecosystems have often been significantly altered by multiple impacts. The Guapiaçu-Macacu Hydrographic Complex is an important basin in Rio de Janeiro characterized by distinct ecological zones that make up an Ecological Economic Zoning. This research evaluated ecological upright in segments of this Complex located in Wildlife Conservation Zone (WCZ and the Agricultural Use Zone (AUZ using the Protocol Visual Assessment (PVA and physical, chemicals and microbiology methods. The results showed a significant difference between the points of lowest contamination degree in WCZ and stretches with a greater impact degree in AUZ. The PVA was more sensible than the conventional parameters in the resolution between segments impacted environmentally and impacted middle located in AUZ. This type of evaluation proved to be more effective in environmental monitoring the water quality for watersheds that have their Ecological Economic Zoning Plan. Therefore, the use of physical, chemical and microbiological methods must be complemented by the PVA.

  4. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, L. S.; Kudela, R. M.; Hooker, S. B.; Morrow, J. H.; Russell, P. B.; Palacios, S. L.; Livingston, J. M.; Negrey, K.; Torres-Perez, J. L.; Broughton, J.

    2014-12-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  5. High-resolution prediction of soil available water content within the crop root zone

    Science.gov (United States)

    Haghverdi, Amir; Leib, Brian G.; Washington-Allen, Robert A.; Ayers, Paul D.; Buschermohle, Michael J.

    2015-11-01

    A detailed understanding of soil hydraulic properties, particularly soil available water content (AWC) within the effective root zone, is needed to optimally schedule irrigation in fields with substantial spatial heterogeneity. However, it is difficult and time consuming to directly measure soil hydraulic properties. Therefore, easily collected and measured soil properties, such as soil texture and/or bulk density, that are well correlated with hydraulic properties are used as proxies to develop pedotransfer functions (PTF). In this study, multiple modeling scenarios were developed and evaluated to indirectly predict high resolution AWC maps within the effective root zone. The modeling techniques included kriging, co-kriging, regression kriging, artificial neural networks (NN) and geographically weighted regression (GWR). The efficiency of soil apparent electrical conductivity (ECa) as proximal data in the modeling process was assessed. There was a good agreement (root mean square error (RMSE) = 0.052 cm3 cm-3 and r = 0.88) between observed and point prediction of water contents using pseudo continuous PTFs. We found that both GWR (mean RMSE = 0.062 cm3 cm-3) and regression kriging (mean RMSE = 0.063 cm3 cm-3) produced the best water content maps with these accuracies improved up to 19% when ECa was used as an ancillary soil attribute in the interpolation process. The maps indicated fourfold differences in AWC between coarse- and fine-textured soils across the study site. This provided a template for future investigations for evaluating the efficiency of variable rate irrigation management scenarios in accounting for the spatial heterogeneity of soil hydraulic attributes.

  6. Ionic interactions in the water zone at oil well-sites

    Energy Technology Data Exchange (ETDEWEB)

    Kleven, R.

    1996-11-01

    The aim of this doctoral thesis has been to obtain a better understanding of ionic behaviour in a water zone of sedimentary rock exposed to sea-water based drilling fluid and completion fluid. Interaction processes addressed have been ion exchange on the surface of the reservoir rocks and precipitation of divalent cations with sulphate ions from the sea water. Clay minerals are focused on because of their ability to conduct electricity through ion-exchange reactions. The most important parameters that the distribution of ions around a borehole depends upon are suggested to be (1) the ability of the sedimentary rocks to sorb/desorb ions, (2) the effect of added solutions on the sorption/desorption processes, (3) the mobility of ions. The first of four enclosed papers studies ionic interaction, mainly on homo-ionic clay mineral - salt solution, in batch experiments under pH, ionic strength and temperature conditions likely to occur in the field. Paper II investigates the use of tritiated water as a reference tracer in miscible displacement processes in porous sandstone cores. Ionic interaction processes during drilling of oil wells with conventional KCl bentonite mud tagged with HTO were studied by means of measured ionic and HTO concentration of water sampled in the near well-bore region. A tracer method was developed and ``tracer diagrams`` illustrate sorption/desorption processes. The water analyses, sampling procedure, and tracer techniques are presented in the third paper. Paper IV compares the interpretation of laboratory data and field data. 173 refs., 47 figs., 22 tabs.

  7. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    Science.gov (United States)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  8. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens [WSP Sweden, Stockholm (Sweden) ; Starsec, Peter [SGI, Linkoeping (Sweden)

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is

  9. Relative water level change in the intracoastal zone of Belgium and northern France over the last 2500 years

    OpenAIRE

    S. Louwye; Declercq, E.

    1998-01-01

    Water level positions during the Subatlantic in the coastal plain of Belgium and Northern France are assessed by means of indicators such as tidal levees, upper tidal flat deposits and mature salt marshes. The indicators are evaluated for the reconstruction of local mean high water and local mean spring high water levels in the intracoastal zone. No significant altitude difference is observed between the indicators genetically related to the Dunkerque II inundation phase, i.e. before the land...

  10. Probing Microbial Activity in a Perched Water Body Located in a Deep Vadose Zone

    Science.gov (United States)

    Fujita, Y.; Taylor, J. L.; Henriksen, J. R.; Delwiche, M.; Gebrehiwet, T.; Hubbard, S. S.; Spycher, N.; Weathers, T. S.; Ginn, T. R.; Pfiffner, S. M.; Smith, R. W.

    2011-12-01

    Waste releases to the vadose zone are a legacy of past activities at a number of Department of Energy (DOE) facilities. At the Idaho National Laboratory (INL), 90Sr has been detected in perched water bodies underlying the Idaho Nuclear Technology and Engineering Center (INTEC) facility. Microbially induced calcite precipitation (MICP) using urea-hydrolyzing microbes is one proposed approach for immobilization of 90Sr in the subsurface. The sequestration mechanism is co-precipitation in calcite, promoted by the production of carbonate alkalinity from ureolysis. In order to assess the potential efficacy of MICP at INTEC a field study was conducted at the INL Vadose Zone Research Park (VZRP). The VZRP is located approximately 3 km from INTEC and shares many of the same hydrologic and lithologic features but in a non-contaminated setting. We conducted experiments over two field seasons in a perched water body located approximately 15 meters below land surface, using a 5-spot wellfield design. During the first season amendments (molasses and urea) were injected into the central well and water was extracted from two wells on either side, located along a diagonal. Water samples were characterized for microbial abundance, ureolytic activity and ureC gene numbers, along with solution composition. Before, during and after the injections cross-borehole geophysical imaging was performed, using various combinations of the available wells. During the second field season in situ static experiments were conducted to specifically characterize attached and unattached microbial communities, using surrogate substrates colonized during a 12 week incubation. Based on the field data a first order in situ urea hydrolysis rate constant of 0.034 d-1 was estimated. This was more than an order of magnitude higher than rate constants estimated above-ground using water samples, suggesting that attached microorganisms were responsible for >90% of the observed urea hydrolysis activity. The

  11. Fresnel zone plate telescope for condenser alignment in water-window microscope

    Science.gov (United States)

    Wachulak, Przemyslaw W.; Torrisi, Alfio; Bartnik, Andrzej; Węgrzyński, Łukasz; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Fiedorowicz, Henryk

    2015-05-01

    Microscopes operating at short wavelengths, in the extreme ultraviolet and soft x-ray spectral region, require careful condenser positioning to avoid possible artifacts related to enhancing or diminishing certain spatial frequencies in the image plane. Various methods are often used to visualize the condenser illumination pattern, including direct visualization on a CCD camera; however, these are not always straightforward to use. We present and discuss a novel and convenient method to image a condenser illumination pattern upstream the sample plane, using two zone plates with matched numerical apertures. This imaging system, operating herein in the water-window spectral range in telescope configuration, allows us to change the distance between the conjugated planes, thus overcoming limitations related to the geometry of the vacuum system. This geometry, which is optimized for the highest possible spatial resolution allowed by the zone-plate objective, is not necessarily particularly good for visualization of the condenser illumination pattern. The presented method was demonstrated with a compact, gas puff target source based soft x-ray microscope, which is capable of resolving 60 nm features (half-pitch resolution), requires a few seconds exposure time, and is debris-free due to the gaseous nature of the target for soft x-ray generation. The method, presented herein, may solve mentioned vacuum system geometry limitations. Also, it can easily be extended to other systems and other wavelengths, provided a proper optic is used. Modes of operation and the results are presented and discussed.

  12. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    Science.gov (United States)

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process.

  13. [Performance of phosphorus removal by simulated riparian zone enhanced with red mud treating reclaimed water].

    Science.gov (United States)

    Liu, Ping; Qin, Jing; Wang, Chao

    2011-04-01

    The effect of red mud and the role of plants on the phosphorus removal of the reclaimed water were studied by lab-scale simulated riparian zone, which made well use of sintered red mud with well adsorption capacity for phosphorous due to its high contents of Ca, Al and Fe oxides. The results show that the suitable ratio range of adding red mud is 2.5%-5.0%, and correspondingly, the removal of phosphorus is as high as 82%-76%, resulting in 0.22-0. 29 mg/L of effluent TP concentration and 74%-75% of SRP/TP. When the percentage of adding red mud is 2.5%, comparing with the system without plants, the performance of the system with plants improves by 4%, reaching to 86% and 0. 17 mg/L of effluent TP concentration. Obviously, red mud can be directly used in the riparian zone to enhance the phosphorus removal as a new and cheap material.

  14. How Soil Water Storage Moderates Climate Change's Effects on Transpiration Across the Critical Zone Observatories

    Science.gov (United States)

    Heckman, C.; Tague, N.

    2016-12-01

    While the atmospheric water demand is predicted to increase under a warmer climate, actual evapotranspiration (AET) will be moderated by the supply of water available to vegetation. A key question is how will plant accessible water storage capacity (PAWSC) effect the partitioning of precipitation between AET and runoff. Our results indicate that whether and by how much AET increases or decreases with moderate warming is significantly based upon interactions between PAWSC and characteristics of precipitation such as the amount, frequency, and skew as well the partitioning between rain and snow. In snow dominated climates, if PAWSC cannot make up for the loss of storage as snowpack then AET may decrease despite warming temperatures. Even in rain dominated climates, PAWSC could significantly limit the increase in AET associated with higher atmospheric demand. Changes in AET will have significant impacts for forests vulnerability to drought, insect out breaks, and fire as well as for the amount of runoff that flows downstream for our use and management. Due to the highly heterogeneous nature of PAWSC and the difficulty of measuring it across large scales, we use a well-tested hydrologic model to estimate the impacts from a range of PAWSC on the partitioning of precipitation between runoff and AET. We completed this analysis for the range of precipitation and vegetation characteristics found across the 9 Critical Zone Observatories of the United States.

  15. Extension of the QUASAR river water quality model to incorporate dead-zone mixing

    Directory of Open Access Journals (Sweden)

    M. J. Lees

    1998-01-01

    Full Text Available A modification to the well-known water quality model 'Quality Simulation Along River Systems' (QUASAR is presented, extending its utility to real-time forecasting applications such as the management and control of pollution incidents. Two aggregated dead-zone (ADZ parameters, namely time delay and dispersive fraction, are incorporated into the existing model formulation, extending the current continuously stirred tank reactor based model processes to account for advective and active mixing volume dispersive processes. The resulting river water quality model combines the strengths of the QUASAR model, which has proven non-conservative pollutant modelling capabilities, with the accurate advection and dispersion characterisation of the ADZ model. A discrete-time mathematical representation of the governing equations is developed that enables efficient system identification methods of parameter estimation to be utilised. The enhanced water quality model and associated methods of parameter estimation are validated using data from tracer experiments conducted on the River Mimram. The revised model produces accurate predictions of observed concentration-time curves for conservative substances.

  16. Extension of the QUASAR river water quality model to incorporate dead-zone mixing

    Science.gov (United States)

    Lees, M. J.; Camacho, L.; Whitehead, P.

    A modification to the well-known water quality model "Quality Simulation Along River Systems" (QUASAR) is presented, extending its utility to real-time forecasting applications such as the management and control of pollution incidents. Two aggregated dead-zone (ADZ) parameters, namely time delay and dispersive fraction, are incorporated into the existing model formulation, extending the current continuously stirred tank reactor based model processes to account for advective and active mixing volume dispersive processes. The resulting river water quality model combines the strengths of the QUASAR model, which has proven non-conservative pollutant modelling capabilities, with the accurate advection and dispersion characterisation of the ADZ model. A discrete-time mathematical representation of the governing equations is developed that enables efficient system identification methods of parameter estimation to be utilised. The enhanced water quality model and associated methods of parameter estimation are validated using data from tracer experiments conducted on the River Mimram. The revised model produces accurate predictions of observed concentration-time curves for conservative substances.

  17. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones

    Science.gov (United States)

    Janssen, David J.; Conway, Tim M.; John, Seth G.; Christian, James R.; Kramer, Dennis I.; Pedersen, Tom F.; Cullen, Jay T.

    2014-01-01

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals. PMID:24778239

  18. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones.

    Science.gov (United States)

    Janssen, David J; Conway, Tim M; John, Seth G; Christian, James R; Kramer, Dennis I; Pedersen, Tom F; Cullen, Jay T

    2014-05-13

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals.

  19. Quantifying Deep Vadose Zone Soil Water Potential Changes at a Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Joel M. Hubbell; Deborah L. McElroy

    2007-08-01

    Recent advances in moisture monitoring using tensiometers has resulted in long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor soil water potential conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in soil water potential in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to above normal precipitation. These tensiometer data have the potential to effectively and rapidly validate that a remedial action such as placement of an ET cover would be successful in reducing the water moisture movement inside the disposal area to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

  20. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  1. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    Science.gov (United States)

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through

  2. Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications

    Science.gov (United States)

    Han, Zhen; Cui, Baoshan; Zhang, Yongtao

    2015-09-01

    Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.

  3. Hydrothermal Alteration Zoning and Kinetic Process of Mineral-Water Interactions

    Institute of Scientific and Technical Information of China (English)

    张荣华; 胡书敏; 苏艳丰

    2002-01-01

    This study reports the kinetic experimental results of albite in water and in KCl solution at 22 MPa in the temperature range of 25 to 400(C. Kinetic experiments have been carried out in an open flow-through reaction system (packed bed reactor). Albite dissolution is always incongruent in water at most temperatures, but becomes congruent at 300(C (close to the critical point 374(C). At temperatures from 25 to 300(C, the incongruent dissolution of albite is reflected by the fact that sodium and aluminum are easily dissolved into water; from 300 to 400(C it is reflected by silicon being more easily dissolved in water than Al and Na. Maximum albite dissolution rates in the flow hydrothermal systems have been repeatedly observed at 300(C, independent of flow rates.The kinetic experiments of albite dissolution in a KCl aqueous solution (0.1 mol KCl) indicate that the dissolution rate of albite increases with increasing temperature. Maximum silicon release rates of albite have been observed at 400(C, while maximum aluminum release rates of albite at 374(C. The reaction rates of albite also depend on the potassium concentration in the aqueous solution.These results can be used to interpret the mechanism for forming hydrothermal alteration. The kinetic experiments of mineral-aqueous solutions interactions in the hydrothermal system from 25 to 400(C and at 22 MPa indicate that the formation of the feldspar-mica-kaolinite zoning occurring in some ore deposits may depend not only on the mineral stability but also on the kinetics of feldspar hydration, which is affected by the water property variation when crossing the critical point.

  4. Root zone water quality model (RZWQM2): Model use, calibration and validation

    Science.gov (United States)

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  5. The effect of bubbles on air-water oxygen transfer in the breaker zone

    Science.gov (United States)

    Kakuno, Shohachi; Moog, Douglas B.; Tatekawa, Tetsuya; Takemura, Kenji; Yamagishi, Tatsuya

    The effect of bubbles entrained in the breaker zone on air-water oxygen transfer is examined. First, the area of bubbles entrained by breakers generated on a sloping bottom in a wave tank is analyzed using a color image sensor which can count the pixel number of a specific color in a frame. It was found that the time-averaged pixel number over a wave period has a strong relationship to the energy dissipation rate per unit mass of the breaker. The time-averaged pixel number is then incorporated with some modification into an equation proposed by Eckenfelder for the calculation of the mass transfer coefficient from bubble surfaces in an aeration tank. The coefficient resulting from the modified equation shows a strong relationship between the mass transfer coefficient and the dissipation rate.

  6. MAIN PROBLEMS AND PROSPECTS OF REPUBLIC OF BELARUS IN RESPECT OF ITS ENTRY TO INTERNATIONAL BOTTLED WATER MARKET

    Directory of Open Access Journals (Sweden)

    P. G. Nikitenko

    2009-01-01

    Full Text Available The Republic of Belarus has significant reserves of ground fresh and mineral water. Consumption of bottled water in the world has a tendency of steady growth. In this regard, Belarus can increase production and sale of bottled water on the external  and domestic markets as well. The paper  describes main tendencies prevailing on the world market;  it contains an analysis of the normative and legal foundation on regulation of production and sale of bottled water in the Republic and abroad; the paper also estimates the possibilities to increase volume of export water

  7. Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

    2003-08-28

    Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

  8. US Ports of Entry

    Data.gov (United States)

    Department of Homeland Security — HSIP Non-Crossing Ports-of-Entry A Port of Entry is any designated place at which a CBP officer is authorized to accept entries of merchandise to collect duties, and...

  9. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  10. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    Science.gov (United States)

    Sprenger, M.; Volkmann, T. H. M.; Blume, T.; Weiler, M.

    2015-06-01

    Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem-van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling-Gupta efficiency and good parameter

  11. Formation of Microelement Composition and Hydrogeochemical Anomalous Zones of Ground-water of the Kama PreUrals Region

    Directory of Open Access Journals (Sweden)

    I. S. Kopylov

    2014-09-01

    Full Text Available The results of hydrogeochemical studies and groundwater mapping in the Kama PreUrals are given in the article. Analytical data (more than 2000 spectral analyses of water samples, mainly from the springs are analyzed. Regularities of distribution of the background values of basic geochemical parameters (macro – and microelements in groundwater has been studied. Hydrogeochemical particularities are revealed. Hydro-geochemical zoning was conducted and the geochemical anomalous zones were deter-mined. Studies provided for the first time an integrated assessment of microelements hydrogeochemistry of the Western Urals and the PreUrals at the regional level. A large number of hydrogeochemical anomalies are located on the territory of the Perm region. It was established that concentration for 18 elements exceeds a legislation admissible limit. The large anomalous zones are characteristic for high concentrations of Br, B, Ba, Mn, and Ti, but anomalies of Sb, Be, Cd, V, Cr, Ni, Pb, Sr, F, Zn, Co, Mo, and P are observed locally. Anomalies in the zone of active water exchange form 14 complex geochemical anomalous zones of areas from 2 000 up to 9 000 km2. The natural environments of formation of hydrogeochemical fields are the main factors of generation of the geochemical anomalies with predominant role of structural, tectonic conditions, and geodynamic (neotectonic activity. The major hydrogeochemical anomalies spatially coincide with litho-geochemical, geophysical anomalies, and geodynamic active zones.

  12. Shipping Fairways, Lanes, and Zones for US waters as of June 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various shipping zones delineate activities and regulations for marine vessel traffic. Traffic lanes define specific traffic flow, while traffic separation zones...

  13. Water Eco-Function Zoning in China Based on Water Footprints%基于水足迹的中国水生态功能分区

    Institute of Scientific and Technical Information of China (English)

    盖力强; 谢高地; 陈龙; 裴厦; 范娜

    2012-01-01

    Water resources are the basic elements of ecological environments, the indispensable basis for our survival, and the key to sustainable socioeconomic development. In the wake of population growth and development, the demand-supply imbalance of global water resources has become serious, and water shortages have become an important limiting factor for the sustainable development of many nations. Water shortages, water pollution, floods and water-logging disasters have threatened and restricted sustainable development and so it is necessary to evaluate the water resources management concept. Water footprint is an indicator of freshwater use that looks at direct water use and indirect water use, and can be regarded as a comprehensive indicator of freshwater resources appropriation, next to the traditional and restricted measure of water withdrawal. This study analyzed the spatial and temporal characteristics of water stress, and the water footprint of production in China. Water eco-function zoning in China was conducted according to three-order basins and combined with water ecosystem service assessment theory. The water coo-function zoning scheme in China revealed six first level eco-function zones: the Northeast Songliao Mountain and Plain Less Water Zone, North China Huang Sea and Huai Sea Plain Less Water Zone, Northeast Inland Dry Scarce Water Zone, South Mountain Hill Wet Zone, Qinghai-Tibet Plateau Water Tower Zone, Southwest Plateau Valley Wet Zone. There were 100 second level zones according to functional: water and water products supply function zone (life and production water, water products, shipping, hydropower, etc); water resources habitat sustain function zone (biodiversity sustain, aquatic habitat, spawning ground, wintering ground, etc); water resources environment regulation function zone (climate regulate, water self purification, reservation flood, etc); and water recreation service function zone (tourism, culture and education

  14. Water Supply Source Evaluation in Unmanaged Aquifer Recharge Zones: The Mezquital Valley (Mexico Case Study

    Directory of Open Access Journals (Sweden)

    Antonio Hernández-Espriú

    2016-12-01

    Full Text Available The Mezquital Valley (MV hosts the largest unmanaged aquifer recharge scheme in the world. The metropolitan area of Mexico City discharges ~60 m3/s of raw wastewater into the valley, a substantial share of which infiltrates into the regional aquifer. In this work, we aim to develop a comprehensive approach, adapted from oil and gas reservoir modeling frameworks, to assess water supply sources located downgradient from unmanaged aquifer recharge zones. The methodology is demonstrated through its application to the Mezquital Valley region. Geological, geoelectrical, petrophysical and hydraulic information is combined into a 3D subsurface model and used to evaluate downgradient supply sources. Although hydrogeochemical variables are yet to be assessed, outcomes suggest that the newly-found groundwater sources may provide a long-term solution for water supply. Piezometric analyses based on 25-year records suggest that the MV is close to steady-state conditions. Thus, unmanaged recharge seems to have been regulating the groundwater balance for the last decades. The transition from unmanaged to managed recharge is expected to provide benefits to the MV inhabitants. It will also be likely to generate new uncertainties in relation to aquifer dynamics and downgradient systems.

  15. Hydrogeologic analysis of the saturated-zone ground-water system, under Yucca Mountain, Nevada

    Science.gov (United States)

    Fridrich, C. J.; Dudley, W. W.; Stuckless, J. S.

    1994-02-01

    The configuration of the southward-sloping water table under Yucca Mountain is dominated by an abrupt decline of 300 m over a distance of less than 2 km. This northeast-striking zone of large hydraulic gradient (of 0.15 or more) separates an area of moderate gradient (of about 0.015) to the north from an area of very small gradient (0.0001) to the south. The position of the large gradient does not correlate well with any evident geologic feature in the upper 0.5 km of the mountain, but we suggest that buried geologic features are present that can explain all the geohydrologic observations. The three areas of differing hydraulic gradient under Yucca Mountain are parts of hydrogeologic domains that extend more than 70 km to the northeast. On a regional basis, the moderate and very small gradients generally correspond to areas underlain by exceptionally thick Tertiary volcanic sections and a highly transmissive Paleozoic carbonate aquifer, respectively. The regional large gradient and water-table decline are spatially associated with a contact in the Paleozoic rocks between clastic rocks and carbonates. This contact marks a large abrupt drop in the effective base of the hydrologic system because it is the upgradient boundary of the deep carbonate aquifer, which has a thickness of 5 km. An aeromagnetic high follows the regional-scale domain of large gradient under northern Yucca Mountain from outcrops of a magnetite-bearing clastic confining unit to the east, indicating that the regional correlation of the steep water-table decline with the upgradient boundary of the deep carbonate aquifer may extend to Yucca Mountain. Five additional features may be related to an explanation for the large hydraulic gradient: (1) anomalously low heat flow has been measured deep in the volcanic section south of the water-table decline, suggesting underflow of cool water in the deep carbonate aquifer; (2) the lower tuff sequence, of 0.5-1 km in thickness, which underlies most of Yucca

  16. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  17. Characterization of liquid-water percolation in tuffs in the unsaturated zone, Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kume, J.; Rousseau, J.P.

    1989-12-31

    A surface-based borehole investigation currently (1989) is being done to characterize liquid-water percolation in tuffs of Miocene age in the unsaturated zone beneath Yucca Mountain, Nye County, Nevada Active in-situ testing and passive in-situ monitoring will be used in this investigation to estimate the present-day liquid-water percolation (flux). The unsaturated zone consists of a gently dipping sequence of fine-grained, densely fractured, and mostly welded ash-flow tuffs that are interbedded with fine-grained, slightly fractured, non-welded ash-flow and ash-fall tuffs that are partly vitric and zeolitized near the water table. Primary study objectives are to define the water potential field within the unsaturated zone and to determine the in-situ bulk permeability and bulk hydrologic properties of the unsaturated tuffs. Borehole testing will be done to determine the magnitude and spatial distribution of physical and hydrologic properties of the geohydrologic units, and of their water potential fields. The study area of this investigation is restricted to that part of Yucca Mountain that immediately overlies and is within the boundaries of the perimeter drift of a US Department of Energy proposed mined, geologic, high-level radioactive-waste repository. Vertically, the study area extends from near the surface of Yucca Mountain to the underlying water table, about 500 to 750 meters below the ground surface. The average distance between the proposed repository and the underlying water table is about 205 meters.

  18. The Development of Geo-Information System for Finding Potential Zones of Water using Environmental Parameters and Engineering

    Directory of Open Access Journals (Sweden)

    N. Sundara Rajulu

    2012-01-01

    Full Text Available Problem statement: Water is a major natural resource for all the living beings in the world. People’s lives and livelihood depends on water. Most of the human beings in this world use ground water for drinking purpose. The reason behind that is the ground water is pollution less or less polluted when compared with the surface water. The need for clean water increases continually with the world population growth. People in different areas in this world are lack of fresh drinkable water which is important for their survival. Maintaining secure water supplies for drinking, industry and agriculture is not possible without ground water. So it is necessary to explore the potential ground water area to dig a well for the utilization of ground water. Approach: In this study, we have used some parameters to identify the level of water in a particular area. Then, the ground water identification system is designed with the help of Histogram Equalization, Neural Network and PCA. The collected data is given as input to data normalization and the feature is computed for every data using PCA. The presence of ground water in particular location is identified using the trained neural network. Results: Finally, the experimentation is carried out using the synthetic data to show the performance of the ground water identification system. Conclusion: The potential zones of ground water can be identified if the specified parameters of the particular location can be given as input to the neural network.

  19. Autonomous gliding entry guidance with

    Directory of Open Access Journals (Sweden)

    Guo Jie

    2015-10-01

    Full Text Available This paper presents a novel three-dimensional autonomous entry guidance for relatively high lift-to-drag ratio vehicles satisfying geographic constraints and other path constraints. The guidance is composed of onboard trajectory planning and robust trajectory tracking. For trajectory planning, a longitudinal sub-planner is introduced to generate a feasible drag-versus-energy profile by using the interpolation between upper boundary and lower boundary of entry corridor to get the desired trajectory length. The associated magnitude of the bank angle can be specified by drag profile, while the sign of bank angle is determined by lateral sub-planner. Two-reverse mode is utilized to satisfy waypoint constraints and dynamic heading error corridor is utilized to satisfy no-fly zone constraints. The longitudinal and lateral sub-planners are iteratively employed until all of the path constraints are satisfied. For trajectory tracking, a novel tracking law based on the active disturbance rejection control is introduced. Finally, adaptability tests and Monte Carlo simulations of the entry guidance approach are performed. Results show that the proposed entry guidance approach can adapt to different entry missions and is able to make the vehicle reach the prescribed target point precisely in spite of geographic constraints.

  20. Zoning of Water Quality of Hamadan Darreh-Morad Beyg River Based on NSFWQI Index Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    A.R. Rahmani

    2009-10-01

    Full Text Available Introduction & Objective: Rivers are one of the main water supply resources for various uses such as agricultural, industrial and drinking purposes. As population and consumption increase, monitoring of rivers water quality becomes an important function of environmental management field. Because Darreh-Morad Beyg river of Hamadan is a water supply for different purposes and many pollutants are discharged in it, its water quality assessment seems necessary. Zoning of pollution and depicting a detailed image of surface water resources quality using geographic information system (GIS are the key factors for the better management of these resources.Materials & Methods: This research is a cross sectional- descriptive study and river water samples were taken for 7 months from 6 sampling stations on the length of the river. Biochemical oxygen demand (BOD, electrical conductivity, dissolved oxygen (D.O., pH, fecal coli form, nitrate, temperature, phosphate and total solids were determined in the samples. Obtained data were analyzed by national sanitation foundation water quality index (NSFWQI and the river was zoned using GIS software.Results: Results of the analyses by NSFWQI showed the best water quality for station 1 and the worst water quality for station 6 with scores of 62.78 and 27.49, respectively.Conclusion: The NSFWQI is a suitable index for zoning of Darreh-Morad Beyg river. Monitoring of physical, chemical, bacteriological quality parameters and using water quality index in various sampling stations are used in the assessment of water pollution. It also helps the officials to correctly decide about the water uses for different purposes.

  1. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  2. The mechanism and criterion of tectonic zone around karstic collapse column reactivation-induced water-conducting

    Institute of Scientific and Technical Information of China (English)

    XU Jin-peng; FU Zhi-liang; SONG Yang; CHENG Jiu-long

    2005-01-01

    In order to study the mechanism of tectonic zone around karstic collapse column reacts to leak water and prevent water invasion in mine. According to the character of the surrounding cracks- penetrated water KCC, The fracture mechanics theory can be used to study the propagation and perforation process of cracks and hitches around the KCC. The criterion of crack start rupture and the length of secondary crack and criterion of crack propagation have been attained. The influencing factors of KCC reacts to water conduction were analyzed.

  3. Facets of diazotrophy in the oxygen minimum zone waters off Peru.

    Science.gov (United States)

    Loescher, Carolin R; Großkopf, Tobias; Desai, Falguni D; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel M M; LaRoche, Julie; Schmitz, Ruth A

    2014-11-01

    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4(+)), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2(-) and PO4(3-) are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.

  4. Role of air on local water retention behavior in the shallow heterogeneous vadose zone

    Science.gov (United States)

    Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-12-01

    In the presence of a subsurface source, air flowing through the unsaturated soil can transport toxic vapor into subsurface structures due to pressure gradients created by, e.g., a pressure drop within the building. Development of dynamic air pathways in the subsurface are largely controlled by the geological heterogeneity and the spatial and temporal distribution of soil moisture. To better understand how these air pathways are developed, it is crucial to know how water is retained in heterogeneous medium at spatial resolutions that are finer than those adopted in typical hydrologic and soil physics applications. Although methods for soil water pressure measurement can be readily found in literature, a technique for measuring “air pressure” in wet soil is not well-established or documented. Hydrophobic porous ceramic cups have been used to measure non-wetting NAPL phase pressure in two-phase systems. However, our preliminary tests using the hydrophobic ceramic cups installed in highly wet soil showed that under conditions of fast drainage of the wetting fluid that is replaced by air, it typically took some time before the cups responded to register the air pressure. Therefore, an attempt was made to develop a more robust method where the time lag is minimized. The tested materials were; 1) ceramic porous cups, 2) sintered stainless steel cups, 3) porous glass discs, and 4) non-woven PTFE fabric. The ceramic cups, sintered stainless steel cups and sintered porous glass discs required hydrophobic treatment, whereas the non-woven PTFE fabric is hydrophobic by itself. To treat the ceramic porous cups, the method proposed by Parker and Lenhard [1988] was adopted. The sintered porous stainless steel cups and porous glass discs were treated by a commercially available water repellant compound. For those four materials, contact angle, water entry pressure, and time lag to respond to an imposed pressure were measured. The best performing material was then tested in a

  5. Simulated potential and water-limited yields of cocoa under different agro-ecological zones in Peninsular Malaysia

    NARCIS (Netherlands)

    Zabawi, A.G.M.; Gerritsma, W.

    2009-01-01

    The yield of cocoa under potential and water-limited production levels in different agro-ecological zones was simulated using cocoa model CASE2. For both production levels, the yield was simulated using five years of elirnatic data (1991-1995) and plant data of three-year-old plant. The results

  6. Simulated potential and water-limited yields of cocoa under different agro-ecological zones in Peninsular Malaysia

    NARCIS (Netherlands)

    Zabawi, A.G.M.; Gerritsma, W.

    2009-01-01

    The yield of cocoa under potential and water-limited production levels in different agro-ecological zones was simulated using cocoa model CASE2. For both production levels, the yield was simulated using five years of elirnatic data (1991-1995) and plant data of three-year-old plant. The results show

  7. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    Science.gov (United States)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  8. Water storages and fluxes within the small watershed in continuous permafrost zone

    Science.gov (United States)

    Lebedeva, Liudmila; Makarieva, Olga; Nesterova, Nataliya; Meyer, Hanno; Efremov, Vladimir; Ogonerov, Vasiliy

    2017-04-01

    It is widely accepted that the main source of river runoff in continuous permafrost zone is surface flow and the flow in the seasonally thawing layer. Although the existence of taliks (a layer of year-round unfrozen ground that can be found in permafrost areas) is acknowledged they are usually not considered in the analysis of streamwater sources and in hydrological modelling approaches. The study aims at assessing the possible river sources in small permafrost basin and their contribution to streamflow with special attention to hydrological role of taliks. The study is based on field surveys in 2015 and 2016, the analysis for stable isotopes (δD and δ18O) and the application of a simple mixing model. The Shestakovka River (basin area 170 km2) is a left tributary of the Lena River in the vicinity of Yakutsk city, Eastern Siberia. The climate is dry and continental. Mean air temperature is -9.5°C, precipitation is 240 mm/year, annual runoff depth - 24 mm. Dominant landscapes are pine forest (47% of the watershed area), larch-birch forest (38%) and bogs (14%). Suprapermafrost talik with an area of 58 000 m2 was found on the slope covered by the pine forest in 1980s. Field studies showed that the summer flow depth in talik is 60 mm. In 2015 and 2016 264 water samples from river streams, lakes, snow, rain, suprapermafrost groundwater and ground ice were taken in the Shestakovka River watershed and analyzed for stable isotopes composition. Snow has the lightest isotopic composition that varies between -230 and -275‰ in δD and between -30 and - 37‰ in δ18O. Rain water is on average most enriched in δD (-70…-150‰) and in δ18O (-6…-19‰). River water and surface flow in bogs are depleted during snowmelt (April - May) and enriched at the end of the summer. δ18O and δD concentrations in lake water vary from -20‰ and -185‰ in snowmelt period to -10‰ and -110‰ in July and August respectively. Suprapermafrost groundwater in two taliks has δ18O

  9. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  10. Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

    Energy Technology Data Exchange (ETDEWEB)

    Soares David, T.; Assunção Pinto, C.; Nadezhdina, N.; Soares David, J.

    2016-07-01

    Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning. Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels. Material and Methods: For literature review we used Sc opus, Web of Science and Go ogle Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes. Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture. Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silviculture practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed. (Author)

  11. Fluid flow and water-rock interaction across the active Nankai Trough subduction zone forearc revealed by boron isotope geochemistry

    Science.gov (United States)

    Hüpers, Andre; Kasemann, Simone A.; Kopf, Achim J.; Meixner, Anette; Toki, Tomohiro; Shinjo, Ryuichi; Wheat, C. Geoffrey; You, Chen-Feng

    2016-11-01

    Compositional changes, dehydration reactions and fluid flow in subducted sediments influence seismogenesis and arc magmatism in subduction zones. To identify fluid flow and water-rock interaction processes in the western Nankai Trough subduction zone (SW Japan) we analyzed boron concentration and boron isotope composition (δ11B) of pore fluids sampled across the subduction zone forearc from depths of up to ∼922 m below seafloor during four Integrated Ocean Drilling Program (IODP) Expeditions. The major structural regimes that were sampled by coring include: (1) sedimentary inputs, (2) the frontal thrust zone, (3) the megasplay fault zone, and (4) the forearc basin. From mass balance consideration we find that consumption of boron (B) by ash alteration and desorption of B from the solid phase, mediated by organic matter degradation, produces a net decrease in B concentrations with depth down to ∼120 μM and variable δ11B values in the range of ∼+20‰ and +49‰. Interstitial water in sediments on the incoming oceanic plate are influenced by more efficient mobilization of exchangeable B from the solid phase due to higher temperatures and alteration of the oceanic crust that acts as a sink for 10B. At the tip of the megasplay fault zone, elevated B concentration and B isotopic composition suggest that underthrust coarse-grained slope sediments provide a pathway for fluids out of the upper (balance considerations suggest a shallower fluid source depth compared to pore fluids sampled previously near the décollement zone along the central portion of the Nankai margin.

  12. Migration of humus substances from soil to water and the main chemical reaction (in different natural zone of Russian Federation)

    Science.gov (United States)

    Dinu, Marina; Moiseenko, Tatiana; Gashkina, Natalia; Kremleva, Tatiana

    2014-05-01

    Migration of humus substances (HS) from soil to natural water has zonal specificity. Soil HS of different natural areas characterized by specific functional features, different molecular weight (MW) distribution and other physicochemical parameters. Due to the specifics of formation, waters in Russia widely distributed colored water with high concentrations of humus substances. HS involved in many chemical reactions in natural waters/soil. The most important: 1.Dissociation, association and same destruction - reactions are particularly important for assessing the acidification of natural waters 2.Complexation with metals - reactions reduce the toxicity of most metals We researched the differences in the qualitative and quantitative composition of soil HS catchment and HS in natural waters of some climatic zones. Samples were taking: the mixing zone forests (sod-podzolic soils) and the steppe zone (black earth) European Territory of Russia (ETR). In order to examine process of migration humus substances from soil to water have been performed HPLC, IR spectrometry and mass spectrometry analyses. We funded change of HS structure and MW in soil/water. The water HS of the mixed forest characterized as same ratio of functional groups as soil catchments. The molecular weight distribution in water - predominate medium (500-1000 kDa), and low molecular weight fractions (soils. In HS catchment soils predominate nitrogen- and sulfur- functional group and in HS water - nitrogen-, oxygen- functional group. The molecular weight of HS in natural waters is macromolecular fractions ( > 1000 kDa). For evaluating of the acidification effect on structures of humic substances in natural waters/soil we used date of survey more than 300 lakes on the European Russia (ETP) and Western Siberia (WS) for assessing chemical parameters. Chemical analyzes of water samples were performed by a single method in accordance with the recommendations ICP-Water report 105/2010, 2010. We researched HS

  13. Meiofauna distributions at the oxygen minimum zone in Changjiang (Yangtze) River Estuary waters

    Institute of Scientific and Technical Information of China (English)

    HUA Er; ZHANG Zhinan; ZHANG Yan

    2006-01-01

    A quantitative study on meiofauna was carried out along a transect throughout the Changjiang Estuary's oxygen minimum zone (OMZ) in the East China Sea. There exist two distinct station groups in the OMZ: the fine-grained hypoxic area and the more fine-grained anoxic area. Meiofauna abundance ranged from (101.5±31.0) ind./cm2 (hypoxic area) to (369.9±123.9) ind./cm2 (anoxic area) along the transect. Free-living marine nematodes were the numerically dominant meiofauna at every station. The anoxic area differed significantly in meiofauna abundance and vertical distribution pattern from the hypoxic area. Within the anoxic area, nematodes abundance increased and amounted to over 90% of the total meiofauna; about 50% of nematodes were found in the 2~5 and 5~8 cm layers. At hypoxic stations, about over 85% were restricted to the top 2 cm. Benthic copepod abundance and dominance decreased consistently with the oxygen gradient. The pattern of meiofauna biomass was similar to that of abundance. The correlation analysis of the meiofauna numbers and environmental parameters indicated that abundance and biomass of total meiofauna and nematodes had significant or highly significant (P<0.05 or P<0.01) correlations with Chl a and Pha a, but no significant (P>0.05) correlations with bottom-water oxygen (BWO2). On the other hand, there was a highly significant positive correlation between benthic copepod abundance and bottom-water oxygen (P<0.05). The investigation on the nematode community structure indicated that two different nematode communities existed in hypoxic and anoxic areas. In certain way, the shift in nematode species composition distinguishes the anoxia to hypoxia. Nematode diversity was generally lower within the anoxic stations than the hypoxic ones, but the difference was not significant. Indices of the nematode community structure varied in relation to the bottom-water oxygen together with bottom-water temperature, Chl a concentration and median grain

  14. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    Science.gov (United States)

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, R.C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  15. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    Science.gov (United States)

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  16. Unsaturated zone waters from the Nopal I natural analog, Chihuahua, Mexico -- Implications for radionuclide mobility at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, D.A.; Murphy, W.M.

    1999-07-01

    Chemical and U-Th isotopic data on unsaturated zone waters from the Nopal I natural analog reveal effects of water-rock interaction and help constrain models of radionuclide release and transport at the site and, by analogy, at the proposed nuclear waste repository at Yucca Mountain. Geochemical reaction-path modeling indicates that, under oxidizing conditions, dissolution of uraninite (spent fuel analog) by these waters will lead to eventual schoepite precipitation regardless of initial silica concentration provided that groundwater is not continuously replenished. Thus, less soluble uranyl silicates may not dominate the initial alteration assemblage and keep dissolved U concentrations low. Uranium-series activity ratios are consistent with models of U transport at the site and display varying degrees of leaching versus recoil mobilization. Thorium concentrations may reflect the importance of colloidal transport of low-solubility radionuclides in the unsaturated zone.

  17. Effect of alteration zones on water quality: A case study from Biga Peninsula, Turkey

    OpenAIRE

    Baba, Alper; Gündüz, Orhan

    2010-01-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Çan volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in KirazlI area (KirazlI and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity...

  18. Consequences of CO2-rich water intrusion into the Critical Zone

    Science.gov (United States)

    Gal, Frédérick; Lions, Julie

    2017-04-01

    From a geochemical point of view, the sensitivity of the Critical Zone to hazards is not only linked to its proximity to the surface. It may also be linked to - albeit less common - intrusion of upward migrating fluids. One of the hazard scenarios to observe these pathways in surface environments is the occurrence of CO2-rich fluid leakage from deeper horizons and especially leakage from reservoir in the case of underground storage such as Carbon Storage applications. Much effort is done to prevent this risk but it necessary to consider the mitigation of this leak to insure safe storage. Numerous active or planned CO2 storage sites belong to large sedimentary basins. In that perspective, a CO2 injection has been performed in a multi-layered - carbonated aquifer (Beauce aquifer) from the Paris basin as this basin has been considered for such applications. The aquifer mineralogy of the targeted site is dominated by calcite (95 to 98%) with traces of quartz and clay minerals. Around 10,000 liters of CO2 were injected at 50 m depth during a series of gaseous pulsed injections for 5 days. After 3 days of incubation in the aquifer, the groundwater was pumped during 5 days allowing the recovery of 140 m3 of backward water. Physico-chemical parameters, major and trace elements concentrations and dissolved CO2 concentrations were monitored to evaluate water-rock interactions occurring within the aquifer and impacts onto water quality. Main changes that were observed during the CO2 release are in good agreement with results from previous experiments performed worldwide. A strong decrease of the pH value (2 units), a rise of the electrical conductivity (2 fold) and changes in the redox conditions (from oxidising to less oxidising) are monitored few hours after the initiation of the pumping. The dissolution of CO2 induces a drop of pH that favours water-rock interaction processes. The kinetic of reactions appears to be dominated by the dissolution of carbonate, mainly calcite

  19. Conceptual Model of the Geometry and Physics of Water Flow in a Fractured Basalt Vadose Zone: Box Canyon Site, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Steiger, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Long, Jane C.S. [Univ. of Nevada, Reno, NV (US). Mackay School of Mines; Wood, Tom [Parsons Engineering, Inc., Idaho Falls, ID (United States); Jacobsen, Janet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lore, Jason [Stanford Univ., CA (United States); Zawislanski, Peter T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1999-03-01

    A conceptual model of the geometry and physics of water flow in a fractured basalt vadose zone was developed based on the results of lithological studies and a series of ponded infiltration tests conducted at the Box Canyon site near the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. The infiltration tests included one two-week test in 1996, three two-day tests in 1997, and one four-day test in 1997. For the various tests, initial infiltration rates ranged from 4.1 cm/day to 17.7 cm/day and then decreased with time, presumably due to mechanical or microbiological clogging of fractures and vesicularbasalt in the near-surface zone, as well as the effect of entrapped air. The subsurface moisture redistribution was monitored with tensiometers, neutron logging, time domain reflectrometry and ground penetrating radar. A conservative tracer, potassium bromide, was added to the pond water at a concentration of 3 g/L to monitor water flow with electrical resistivity probes and water sampling. Analysis of the data showed evidence of preferential flow rather than the propagation of a uniform wetting front. We propose a conceptual model describing the saturation-desaturation behavior of the basalt, in which rapid preferential flow through vertical column-bounding fractures occurs from the surface to the base of the basalt flow. After the rapid wetting of column-bounding fractures, a gradual wetting of other fractures and the basalt matrix occurs. Fractures that are saturated early in the tests may become desaturated thereafter, which we attribute to the redistribution of water between fractures and matrix. Lateral movement of water was also observed within a horizontal central fracture zone and rubble zone, which could have important implications for contaminant accumulation at contaminated sites.

  20. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  1. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    Science.gov (United States)

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  2. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  3. 78 FR 23135 - Safety Zone; Blue Water Resort & Casino West Coast Nationals; Parker, AZ

    Science.gov (United States)

    2013-04-18

    ... hindered by the safety zone. Recreational vessels may transit through the established safety zone during... vessels intending to transit or anchor in the impacted portion of the Colorado River from 6 a.m. to 6 p.m... will announce that fact via Broadcast Notice to Mariners. (c) Definitions. The following...

  4. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture

  5. Shore zone in protection of water quality in agricultural landscape-the Mściwojów Reservoir, southwestern Poland.

    Science.gov (United States)

    Dąbrowska, Jolanta; Kaczmarek, Halina; Markowska, Joanna; Tyszkowski, Sebastian; Kempa, Olgierd; Gałęza, Marta; Kucharczak-Moryl, Ewa; Moryl, Andrzej

    2016-08-01

    Shore zones are transition areas (ecotones) between aquatic and terrestrial ecosystems. Their function in the environment is crucial because they serve as buffer zones that capture pollutants and slow down erosion of reservoir and watercourse banks provided that they are managed properly. Research on a shore zone was conducted at the Mściwojów retention reservoir with an innovative water self-purification system. After several years of its operation, an increased phosphate concentration in the main part of the reservoir was reported. The mapping of the terrain's surface and modeling of hydrological processes in the direct catchment area of the said reservoir were done using the digital elevation model (DEM). The DEM was created from LiDAR data obtained in 2012 by airborne laser scanning. Analyses of the surface runoff led to identification of surface runoff transport pathways, along which the eroded material from cultivated fields is discharged directly to the reservoir. Surface runoff transport pathways gather the eroded material from a maximum area of 45,000 m(2) in the western part of the direct catchment and 40,000 m(2) in the eastern part of it. Due to the reservoir management negligence, the riparian zone designed for the Mściwojów Reservoir no longer exists. The percentage of the natural shore that undergoes erosion processes is over 54. The said processes and fluctuations of the water level in the reservoir, as well as degradation of the shore zone caused by human activity, bring about limited plant development in the littoral zone, which in turn lowers the reservoir's resistance to degradation.

  6. Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using Fourier transform infrared spectroscopy (FTIR), we measured water contents of quartz and feldspar for four thin sections of felsic mylonite and two thin sections of banded granitic gneiss col- lected from a ductile shear zone of middle crust along the Red Rivers-Ailaoshan active fault. The ab- sorbance spectra and peak position suggest that water in quartz and feldspar of granitic gneiss and felsic mylonite occurs mainly as hydroxyl in crystal defect, but also contains inclusion water and grain boundary water. The water contents of minerals were calculated based on the absorbance spectra. Water content of feldspar in granitic gneiss is 0.05 wt%-0.15 wt%, and that of quartz 0.03 wt%-0.09 wt%. Water content of feldspar ribbon and quartz ribbon in felsic mylonite is 0.095 wt%-0.32 wt%, and those of fine-grained feldspar and quartz are 0.004 wt%-0.052 wt%. These data show that the water content of weakly deformed feldspar and quartz ribbons is much higher than that of strongly deformed fine-grained feldspar and quartz. This suggests that strong shear deformation leads to breakage of the structures of constitutional water, inclusion and grain boundary water in feldspar and quartz, and most of water in minerals of mylonite is released to the upper layer in the crust.

  7. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    Directory of Open Access Journals (Sweden)

    José E. O. Reges

    2016-07-01

    Full Text Available This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1; 10.47% and 9.88% (for injection zone 2. Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  8. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    Science.gov (United States)

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-07-13

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  9. 1D and 3D inversion of VES data to outline a fresh water zone floating over saline water body at the northwestern coast of Egypt

    Directory of Open Access Journals (Sweden)

    Usama Massoud

    2015-12-01

    Full Text Available Seawater intrusion is a widespread environmental problem in the Egyptian coastal aquifers. It affects the groundwater used in domestic and agricultural activities along these coasts. In this study, resistivity survey in the form of Vertical Electrical Sounding (VES was conducted at ZAWYET EL HAWALA cultivated site, northwest coast of Egypt to outline a freshwater zone overlies the main saltwater body, and to determine the most suitable location for drilling water well for irrigation purposes. The VES data were measured at 11 stations in the studied site. After processing, the data were inverted in 1-D and 3-D schemes and the final model was presented as resistivity slices with depth. The results indicate that the effect of saltwater intrusion was observed, as low resistivity values, at 7.5 m below ground surface (bgs at the northern part of the study area (toward the Mediterranean Sea, and extends southward with increasing depth covering the whole area at about 30 m bgs. The fresh water zone shows a minimum thickness of less than 7.5 m at the northern side and a maximum thickness of about 20 m at the southern side of the area. The proper site for drilling water well tap and the freshwater zone is the location of VES6 or VES9 with a maximum well depth of about 20 m bgs. The water withdrawal from the proposed well should be controlled not to raise the main saline water table in the well site. The main sources of the freshwater zone are the rainfall and surface runoff descending from the southern tableland. Excess rainfall and surface runoff can be avoided from direct discharge to the sea by collecting them in man-made outlined trenches and re-using the stored water in irrigation during the dry seasons.

  10. 1D and 3D inversion of VES data to outline a fresh water zone floating over saline water body at the northwestern coast of Egypt

    Science.gov (United States)

    Massoud, Usama; Soliman, Mamdouh; Taha, Ayman; Khozym, Ashraf; Salah, Hany

    2015-12-01

    Seawater intrusion is a widespread environmental problem in the Egyptian coastal aquifers. It affects the groundwater used in domestic and agricultural activities along these coasts. In this study, resistivity survey in the form of Vertical Electrical Sounding (VES) was conducted at ZAWYET EL HAWALA cultivated site, northwest coast of Egypt to outline a freshwater zone overlies the main saltwater body, and to determine the most suitable location for drilling water well for irrigation purposes. The VES data were measured at 11 stations in the studied site. After processing, the data were inverted in 1-D and 3-D schemes and the final model was presented as resistivity slices with depth. The results indicate that the effect of saltwater intrusion was observed, as low resistivity values, at 7.5 m below ground surface (bgs) at the northern part of the study area (toward the Mediterranean Sea), and extends southward with increasing depth covering the whole area at about 30 m bgs. The fresh water zone shows a minimum thickness of less than 7.5 m at the northern side and a maximum thickness of about 20 m at the southern side of the area. The proper site for drilling water well tap and the freshwater zone is the location of VES6 or VES9 with a maximum well depth of about 20 m bgs. The water withdrawal from the proposed well should be controlled not to raise the main saline water table in the well site. The main sources of the freshwater zone are the rainfall and surface runoff descending from the southern tableland. Excess rainfall and surface runoff can be avoided from direct discharge to the sea by collecting them in man-made outlined trenches and re-using the stored water in irrigation during the dry seasons.

  11. [Distribution of Mercury in Plants at Water-Level-Fluctuating Zone in the Three Gorges Reservoir].

    Science.gov (United States)

    Liang, Li; Wang, Yong-min; Li, Xian-yuan; Tang, Zhen-ya; Zhang, Xiang; Zhang, Cheng; WANG, Ding-yong

    2015-11-01

    The mercury (Hg) distribution and storage in plants at water-level-fluctuating zone (WLFZ) in the Three Gorges Reservoir were investigated by analyzing the total mercury(THg) and methylmercury ( MeHg) levels in different parts of plants collected from three typical sites including Shibaozhai, Zhenxi and Hanfeng Lake in WLFZ. The results indicated that THg and MeHg concentrations in plants ranged from (1.62 ± 0.57) to (49.42 ± 3.93) μg x kg(-1) and from (15.27 ± 7.09) to (1 974.67 ± 946.10) ng x kg(-1), respectively. In addition, THg levels in different plant parts followed the trend: root > leaf > stem, and similar trend for MeHg was observed with the highest level in root. An obvious spatial distribution was also found with the THg and MeHg levels in plants in Hanfeng higher than those in the same plants in the other two sampling sites (Shibaozhai and Zhenxi), and there was a difference of THg and MeHg storage in plants in various attitudes. The corresponding THg and MeHg storages were 145.3, 166.4, 124.3 and 88.2 mg x hm(-2), and 1.9, 2.7, 3.6 and 3.2 mg x hm(-2) in 145-150, 150-160, 160-170 and 170-175 m attitudes. The accumulation ability of dominant plants in WLFZ for THg (bioaccumulation factor, BAF 1).

  12. 77 FR 1025 - Security Zones; Cruise Ships, San Pedro Bay, CA

    Science.gov (United States)

    2012-01-09

    ... zones to encompass only navigable waters within a 100-yard radius around any cruise ship that is located... necessary to provide for the safety of the cruise ship, vessels, and users of the waterway. Entry into these..., within a 100 yard radius around any cruise ship that is within the San Pedro Bay port area inside the...

  13. Automated lab-scale visualization of the influence of water table transients on LNAPL source zone dynamics

    Science.gov (United States)

    SUN, S.; Herbert, A. W.; Rivett, M. O.

    2015-12-01

    For buoyant LNAPLs (Light Non-Aqueous Phase Liquids), fluctuating water table conditions significantly influence capillary-held mass above and below the water table and the quantity of mobile free product floating on the water table. Risks posed by such a dynamic LNAPL source zone vary over time as water tables oscillate from say tidal influences, seasonality or other anthropogenic influences. Whist LNAPL dynamics are evident at field scale, measurements of say LNAPL thickness variation in a well are not very revealing of the actual source zone dynamic nature and point to the importance of lab visualization and modelling studies. We report on the recently completed lab phase of our study in which 2-D sand tanks have been used to visualize hydrocarbon LNAPL redistribution under transient water table conditions, particularly cyclic oscillations. We have developed a fully automated system to: i) Program cyclic water table fluctuations via Raspberry PiTM based electronics; ii) Dynamically monitor the saturation distributions of all fluids (red-dyed-LNAPL, blue-dyed-water and air phase by difference) using high temporal frequency and spatial resolution multi-spectral photography; and iii) Efficiently interpret the imaged data produced via multi-spectral image analysis. Such automated data acquisition and processing has permitted the LNAPL release and its redistribution under oscillating water table conditions to be shown in vivid short video formats of original images and contoured fluid saturations. We present a series of these videos secured under a variety of sand-tank scenarios that aim to understand the controlling influences of fluctuation amplitude and frequency, the influence of lower permeability heterogeneities, and the significance of LNAPL release timing relative to water table position. Our preliminary interpretations of these data will be presented alongside our discussion of the implications for characterization and remediation of LNAPL contaminated sites

  14. Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

    Directory of Open Access Journals (Sweden)

    Teresa Soares David

    2016-07-01

    Full Text Available Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning. Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels. Material and Methods: For literature review we used Scopus, Web of Science and Google Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes. Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture. Research highlights: Given the scarce and variable (in space and in time water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silvicultural practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed. Keywords: tree hydraulics; tree mortality; climate change; forest management; water resources.

  15. Comparison of the community structure of planktonic bacteria in ballast water from entry ships and local sea water in Xiamen Port

    Institute of Scientific and Technical Information of China (English)

    Ying Ma; Hejian Xiong; Senming Tang; Qingshuang Yang; Minjuan Li

    2009-01-01

    In this study, the bacterial community structures in samples of ballast water collected from a ship from Singapore and of local sea water collected from Xiamen Port were compared using restriction fragment length polymorphism (RFLP) and 16S rDNA sequence analysis. Except for dominant α-Proteobacteria that are common to both systems, the bacterial community structures of the two systems were quite different. Most of the clones derived from the different systems were grouped into different phylogenetic clusters, and the sys-tems share only one common RFLP pattern. The ballast water, which is likely from clean offshore waters, contains sequences specific to α- and γ-Proteobacteria. Phylogenetic analysis revealed that the ballast water contained sequences belonging to attached bacteria and bacteria commonly found in the open sea, as well as many novel sequences. In addition, no known pathogenic bacteria were detected in the ballast water samples. Conversely, water samples from Xiamen Port were apparently affected by the near shore environments.Specifically, in addition to α- and γ-Proteobacteria, water from Xiamen Port contained β- and δ-Proteobacteria, Synechococcus, Bacter-oidetes and Actinobacteria, which are common in coastal environments. Additionally, four pathogenic bacterial sequences and one plas-mid sequence of a potential red tide forming alga were detected in the water from Xiamen Port, which suggests that the local sea water is polluted. The results of this study can be used as background information to assess the risk associated with the introduction of non-indig-enous species to local systems and to establish ballast water management systems.

  16. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush.

    Science.gov (United States)

    Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai; Burke, Robert E; Detloff, Megan R; Côté, Marie-Pascale; Tom, Veronica J

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  17. Mapping and quantifying geodiversity in land-water transition zones using MBES and topobathymetric LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Andersen, Mikkel Skovgaard; Gergely, Aron;

    coastal areas and the river floodplain areas, potentially enables full-coverage and high-resolution mapping in these challenging environments. We have carried out MBES and topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part......Land-water transition zones, like e.g. coastal and fluvial environments, are valuable ecosystems which are often characterised by high biodiversity and geodiversity. However, often these land-water transition zones are difficult or even impossible to map and investigate in high spatial resolution...... of the Wadden Sea National Park and UNESCO World Heritage, and in the Ribe Vesterå, a fluvial environment in the Ribe Å river catchment discharging into the Knudedyb tidal basin. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the MBES and the LiDAR point...

  18. [Performance characteristics of root zone moisture and water potential sensors for greenhouses in the conditions of extended space flight].

    Science.gov (United States)

    Podolskiy, I G; Strugov, O M; Bingham, G E

    2014-01-01

    The investigation was performed using greenhouse Lada in the Russian segment of the International space station (ISS RS) as part of space experiment Plants-2 during ISS missions 5 through to 22. A set of 6 point moisture sensors embedded in the root zone (turface particles of 1-2 mm in diam.) and 4 tensiometers inside root modules (RM) were used to monitor moisture content and water potential in the root zone. The purpose was to verify functionality and to test performance of the sensors in the spacefight environment. It was shown that with the average RZ moisture content of 80% the measurement error of the sensors do not exceed ± 1.5%. Dynamic analysis of the tensiometers measurements attests that error in water potential measurements does not exceed ± 111 Pa.

  19. Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China

    Institute of Scientific and Technical Information of China (English)

    ZHOU YongSheng; HE ChangRong; YANG XiaoSong

    2008-01-01

    Using Fourier transform infrared spectroscopy (FTIR), we measured water contents of quartz and feldspar for four thin sections of felsic mylonite and two thin sections of banded granitic gneiss collected from a ductile shear zone of middle crust along the Red Rivers-Ailaoshan active fault. The absorbance spectra and peak position suggest that water in quartz and feldspar of granitic gneiss and felsic mylonite occurs mainly as hydroxyl in crystal defect, but also contains inclusion water and grain boundary water. The water contents of minerals were calculated based on the absorbance spectra.Water content of feldspar in granitic gneiss is 0,05 wt%-0.15 wt%, and that of quartz 0.03 wt%-0.09wt%. Water content of feldspar ribbon and quartz ribbon in felsic mylonite is 0.095 wt%-0.32 wt%, and those of fine-grained feldspar and quartz are 0.004 wt% -0.052 wt%. These data show that the watercontent of weakly deformed feldspar and quartz ribbons is much higher than that of strongly deformed fine-grained feldspar and quartz. This suggests that strong shear deformation leads to breakage of the structures of constitutional water, inclusion and grain boundary water in feldspar and quartz, and most of water in minerals of mylonite is released to the upper layer in the crust.

  20. Modeling of the bottom water flow through the Romanche Fracture Zone with a primitive equation model - Part I: Dynamics

    OpenAIRE

    Ferron, Bruno; Mercier, Herle; Treguier, Anne-marie

    2000-01-01

    This paper investigates the dynamics of the Antarctic Bottom Water (AABW) flow through the Romanche Fracture Zone (RFZ) in a primitive equation model with a high horizontal and vertical resolution. Two examples of Rows over simple bathymetries show that a reduced gravity model captures the essential dynamics of the primitive equation model. The reduced gravity model is then used as a tool to identify what are the bathymetric structures (sills, narrows) that mostly constrain the AABW flow thro...

  1. Carbon storage, soil carbon dioxide efflux and water quality in three widths of piedmont streamside management zones

    Science.gov (United States)

    Erica F. Wadl; William Lakel; Michael Aust; John Seiler

    2010-01-01

    Streamside management zones (SMZs) are used to protect water quality. Monitoring carbon pools and fluxes in SMZs may a good indicator of the SMZ’s overall function and health. In this project we evaluated some of these pools and fluxes from three different SMZ widths (30.5, 15.3, and 7.6 m) in the Piedmont of Virginia. We quantified carbon storage in the soil (upper 10...

  2. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  3. Pattern Water Use Efficiency perspective on degradation and recovery of shrublands across Mediterranean to Arid transition zones

    Science.gov (United States)

    Shoshany, Maxim

    2017-04-01

    Shrublands cover a total of 12.7 million km2 , a considerable part of them along semi-arid to arid transition zones. Varying patterns of shrubs, grasses and barren land along such climatic gradients express the spatial dimension of climate change and human disturbance which attracted limited attention in the eco-geomorphic literature. Questions concerning relationships between rainfall, shrublands biomass and their patterns are fundamental for the understanding of these ecosystems response to the expected changes in water availability due to global warming and the increase in human disturbance to natural ecosystems following World population growth. While processes leading to the formation of patterns had attracted considerable attention, the spatial dimension of Water Use Efficiency (WUE) which is a parameter measuring ecosystems productivity in relation to water availability is severely missing. Relative shrub cover is a primary estimator of the fraction of water utilized for shrubs growth. Edge effects must be considered as well in fragmented ecosystems in general and in hot regions in particular since soil temperature in hot regions which frequently exceed 50oC during summer months decreases photosynthesis and productivity in plants bordering bare soil. This edge effect is decreasing with the increase in shrubs' height. Pattern Water Use Efficiency describes the combined effect of shrub cover, shrub height and shrub patches edge zone proportion on water use efficiency. In my presentation I will first present mapping od PWUEs across Mediterranean to arid transition zones in the Eastern Mediterranean. Then I will present several mathematical models describing PWUE for simulated patterns, searching for the spatial parameterization providing the highest sensitivity to patterns responses to changes in habitat conditions. Such simulations would allow us to discuss several PWUE strategies for shrublands recovery under the current scenarios of climate change and human

  4. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.

    Science.gov (United States)

    Luger, R; Barnes, R

    2015-02-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars.

  5. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  6. The affect and importance of the Lichens in the Arid zone conservation and protection of water resource

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-liang; ZHANG Yuan-ming; Adil Abdulla; Anwar Tumur; Abdulla Abbas

    2004-01-01

    Desertification has already become the global social problem. On the Arid zone it has closer relation with the frail ecotope. The system of the arid zone mountain belongs to crisscross between the farming ,forestry and husbandry . The frailty of the ecosystem manifests on the internal frailty, depends on the plant ,intensity of the contradictory between the landscape transitional and natural reservation area,physical weathering strong,the development of the soil surface is slowly but the erode of the rain ,soil erosion very grave. Lichens not only rein force the intensity and depth of the weathering of rocks and formation ,accelerate of the mineral weathering making and accumulating the organic compound, at the same time lichens have strongly water protection abilities and inestimable role in the prevent soil erosion. In this paper we were according to on-the-spot investigation and analysis of the laboratory from 1985 to now on the middle and west of the Mt . Tianshan and Mt. Altay kanas where mainly probe into the significance of the protection water and conservation water resources of the Arid zone. This research works will be provide scientific basis and reference of the government for put into effect ,improving environment of the mountain region ,major construction oasis ecotope and make great efforts for protection desert ecotope.

  7. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  8. Identification Of Ground Water Potential Zones In Tamil Nadu By Remote Sensing And GIS Technique

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-12-01

    Full Text Available A case study was conducted to find out the groundwater potential zones in Salem, Erode and Namakkal districts, Tamil Nadu, India with an aerial extent of 360.60 km2 . The thematic maps such as geology, geomorphology, soil hydrological group, land use / land cover and drainage map were prepared for the study area. The Digital Elevation Model (DEM has been generated from the 10 m interval contour lines (which is derived from SOI, Toposheet 1:25000 scale and obtained the slope (% of the study area. The groundwater potential zones were obtained by overlaying all the thematic maps in terms of weighted overlay methods using the spatial analysis tool in Arc GIS 9.3. During weighted overlay analysis, the ranking has been given for each individual parameter of each thematic map and weights were assigned according to the influence such as soil −25%, geomorphology − 25%, land use/land cover −25%, slope − 15%, lineament − 5% and drainage / streams − 5% and find out the potential zones in terms of good, moderate and poor zones with the area of 49.70 km2 , 261.61 km2 and 46.04 km2 respectively. The potential zone wise study area was overlaid with village boundary map and the village wise groundwater potential zones with three categories such as good, moderate and poor zones were obtained. This GIS based output result was validated by conducting field survey by randomly selecting wells in different villages using GPS instruments. The coordinates of each well location were obtained by GPS and plotted in the GIS platform and it was clearly shown that the well coordinates were exactly seated with the classified zones.

  9. The maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle

    Science.gov (United States)

    Inoue, T.; Yurimoto, H.

    2012-12-01

    Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the

  10. Primary weathering rates, water transit times and concentration-discharge relations: A theoretical analysis for the critical zone

    Science.gov (United States)

    Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin

    2017-04-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)

  11. The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

    Science.gov (United States)

    Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe

    2016-05-01

    Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

  12. The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

    Science.gov (United States)

    Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe

    2016-11-01

    Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

  13. A comparison of the spatial distribution of vadose zone water in forested and agricultural floodplains a century after harvest.

    Science.gov (United States)

    Kellner, Elliott; Hubbart, Jason A

    2016-01-15

    To improve quantitative understanding of the long-term impact of historic forest removal on floodplain vadose zone water regime, a study was implemented in fall 2010, in the Hinkson Creek Watershed, Missouri, USA. Automated, continuously logging capacitance-frequency probes were installed in a grid-like formation (n=6) and at depths of 15, 30, 50, 75, and 100 cm within a historic agricultural field (Ag) and a remnant bottomland hardwood forest (BHF). Data were logged at thirty minute intervals for the duration of the 2011, 2012, and 2013 hydrologic years. Results showed volumetric water content (VWC) to be significantly different between sites (pagricultural systems, and point to the value of reestablishing floodplain forests for fresh water routing, water quality, and flood mitigation in mixed-land-use watersheds.

  14. Evaluating the Effects of Mulch and Irrigation Amount on Soil Water Distribution and Root Zone Water Balance Using HYDRUS-2D

    Directory of Open Access Journals (Sweden)

    Ming Han

    2015-05-01

    Full Text Available Water scarcity is the most critical constraint for sustainable cotton production in Xinjiang Province, northwest China. Drip irrigation under mulch is a major water-saving irrigation method that has been widely practiced for cotton production in Xinjiang. The performance of such an irrigation system should be evaluated for proper design and management. Therefore, a field experiment and a simulation study were conducted to (1 determine a modeling approach that can be applied to manage drip irrigation under mulch for cotton production in this region; and (2 examine the effects of irrigation amount and mulch on soil water distribution and root zone water balance components. In the experiment, four irrigation treatments were used: T1, 166.5 m3; T2, 140.4 m3; T3, 115.4 m3; and T4: 102.3 m3. The HYDRUS-2D model was calibrated, validated, and applied with the data obtained in this experiment. Soil water balance in the 0–70 cm soil profile was simulated. Results indicate that the observed soil water content and the simulated results obtained with HYDRUS-2D are in good agreement. The radius of the wetting pattern, root water uptake, and evaporation decreased as the amount of irrigation was reduced from T1 to T4, while a lot of stored soil water in the root zone was utilized and a huge amount of water was recharged from the layer below 70 cm to compensate for the decrease in irrigation amount. Mulch significantly reduced evaporation by 11.7 mm and increased root water uptake by 11.2 mm. Our simulation study suggests that this model can be applied to provide assistance in designing drip irrigation systems and developing irrigation strategies.

  15. 75 FR 32855 - Safety Zone; Pierce County, WA, Department of Emergency Management, Regional Water Exercise

    Science.gov (United States)

    2010-06-10

    ... Management, Regional Water Exercise AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Pierce County, Washington, Department of Emergency Management is sponsoring a Regional Water Rescue... County, Washington, Department of Emergency Management is sponsoring a Regional Water Rescue Exercise...

  16. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    Science.gov (United States)

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  17. Geophysics in the Critical Zone: Constraints on Deep Weathering and Water Storage Potential in the Southern Sierra CZO

    Science.gov (United States)

    Holbrook, W.; Riebe, C. S.; Hayes, J. L.; Reeder, K.; Harry, D. L.; Malazian, A. I.; Dosseto, A.; Hartsough, P. C.; Hopmans, J. W.

    2012-12-01

    Quantifying the depth and degree of subsurface weathering in landscapes is crucial for quantitative understanding of the biogeochemistry of weathering, the mechanics of hillslope sediment transport, and biogeochemical cycling of nutrients and carbon over both short and long timescales. Although the degree of weathering can be readily measured from geochemical and physical properties of regolith and rock, many distributed samples are needed to measure it over broad spatial scales. Moreover, quantifying the thickness of subsurface weathering has remained challenging, in part because the interface between altered and unaltered rock is often buried at difficult to access depths. To overcome these challenges, we combined seismic refraction and resistivity surveys to estimate regolith thickness and generate representative hillslope-scale images of subsurface weathering and water storage at the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities of the subsurface provide evidence for a weathering zone with thickness ranging from 10 to 35 m (average = 23 m) along one intensively studied transect. This weathering zone consists of roughly equal thicknesses of saprolite (P-velocity < 2 km/s) and moderately weathered bedrock (P-velocity < 4 km/s). We use a rock physics model of seismic velocities, based on Hertz-Mindlin contact theory, to estimate lateral and vertical variations in porosity as a metric of water storage potential along the transect. Inferred porosities are as high as 55% near the surface and decrease to zero at the base of weathered rock. Model-predicted porosities are broadly consistent with values measured from physical properties of saprolite, suggesting that our analysis of the geophysical data provides realistic estimates of subsurface water storage potential. A major advantage of our geophysical approach is that it quickly and non-invasively quantifies porosity over broad vertical and lateral scales

  18. Purification effect of two typical water source vegetation buffer zones on land-sourced pollutants

    Science.gov (United States)

    Li, Gang

    2017-03-01

    Two vegetation buffer zones (tree-shrub-grass pattern and tree-grass pattern) were selected as test objects around Siming reservoir in Yuyao City of China. The effect of the storm runoff intensity (low and high intensity) and the buffer zone width (1 m, 3 m, 5 m, 7 m, 9 m, 12 m, 16 m) on pollutants (suspended solids, ammonium nitrogen and total phosphorus) was studied by the artificial simulation runoff. The results showed that with the increase of the width of buffer zone, the pollutant concentration was decreased. The purification effect of the two buffer zones on suspended solids and total phosphorus was basically stable at 52-55% and 34-37%, respectively. But the purification effect on ammonium nitrogen was the tree-shrub-grass pattern (69.7%) significantly better than that of tree-grass pattern (52.1%). The purification rate at the low runoff intensity was 1.8-2.0 times that at the high runoff intensity. The relationship between the purification rate and buffer zone width can be expressed by the natural logarithm equation, and the model adjustment coefficient was greater than 0.92.

  19. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  20. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    Science.gov (United States)

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake.

  1. Glyphosate in Runoff Waters and in the Root-Zone: A Review

    Directory of Open Access Journals (Sweden)

    Lyndsay E. Saunders

    2015-11-01

    Full Text Available Glyphosate is the most commonly-used herbicide in the world. The present review summarizes the discovery, prevalence, chemical and physical properties, mode of action and effects in plants, glyphosate resistance and the environmental fate of glyphosate. Numerous studies are reviewed that demonstrate that glyphosate may run off of fields where it is applied, while other studies provide evidence that plant roots can take up glyphosate. Non-target vegetation may be exposed to glyphosate in the root-zone, where it has the potential to remove aqueous glyphosate from the system. Further study on the effects of root-zone glyphosate on non-target vegetation is required to develop best management practices for land managers seeking to ameliorate the effects of root-zone glyphosate exposure.

  2. Vertical electrical sounding to delineate the potential aquifer zones for drinking water in Niamey city, Niger, Africa

    Indian Academy of Sciences (India)

    Joy Choudhury; K Lohith Kumar; E Nagaiah; S Sonkamble; Shakeel Ahmed; Venay Kumar

    2017-08-01

    Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80–85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.

  3. Vertical electrical sounding to delineate the potential aquifer zones for drinking water in Niamey city, Niger, Africa

    Science.gov (United States)

    Choudhury, Joy; Kumar, K. Lohith; Nagaiah, E.; Sonkamble, S.; Ahmed, Shakeel; Kumar, Venay

    2017-08-01

    Niger is a landlocked African country and the only source of surface water is the Niger River which flows in the western part of Niger and only few villages near to the river gets benefited from it, leaving most of the areas dependent on groundwater solely. The groundwater resources in Niger are mainly used for drinking, livestock and domestic needs. It can be observed that the water exploitation is minimal there due to several factors like undeveloped areas, less population, limited wells, rain-fed irrigation, etc. The delineation of potential aquifer zones is an important aspect for groundwater prospecting. Hence, the direct current (DC) resistivity soundings method also known as vertical electrical sounding (VES) is one of the most applied geophysical techniques for groundwater prospecting that was used in the capital city, Niamey of Niger. Twelve VES surveys, each of AB spacing 400 m were carried out in lateritic and granitic rock formations with a view to study the layer response and to delineate the potential zones. Potential aquifer zones were at shallow depth ranging from 10 to 25 m for the drilled borehole depth of 80-85 m in every village. Analysis of the result showed a good correlation between the acquired data and the lithologs.

  4. Framework Design and Influencing Factor Analysis of a Water Environmental Functional Zone-Based Effluent Trading System

    Science.gov (United States)

    Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao

    2016-10-01

    The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.

  5. Comparative studies on plasma mineral status of cattle in fluoride toxic brackish water zone of Punjab, India

    Directory of Open Access Journals (Sweden)

    Sushma Chhabra

    2012-05-01

    Full Text Available Objective: Chronic fluoride intoxication or fluorosis is a worldwide health problem in humans and animals. The present research work was aimed to assess the status of copper, zinc, cobalt, manganese, magnesium, calcium and phosphorus in blood of fluorotic cattle in brackish water zone of Punjab. Methods: The present study was conducted in villages of district Muktsar, a brackish water zone, of Punjab state. Cattle (n=103 showing signs of dental lesions or lameness, from the villages with water fluoride concentration more than 1 ppm, were selected for the study whereas cattle (n=98 from villages with water fluoride concentration less than 1 ppm and with no clinical signs served as control. Blood samples were collected from both the groups and were analysed for minerals.Results: Significantly (P<0.05 higher plasma F concentrations were observed in animals of fluorotic region in comparison to healthy control animals. Concentrations of plasma Ca, Mg, Cu and Zn were significantly lower in cattle of hydrofluorotic region. Plasma phosphorus, iron and iodine concentrations were higher in animals of hydrofluorotic region whereas Mo and Mn did not differ between the two groups. Conclusions: Present study indicated decrease in certain essential minerals in animals of fluorotic region and such changes may contribute to the toxic effects associated with exposure to excess fluoride and salinity

  6. Framework Design and Influencing Factor Analysis of a Water Environmental Functional Zone-Based Effluent Trading System.

    Science.gov (United States)

    Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao

    2016-10-01

    The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.

  7. Extreme Water Loss and Abiotic O$_2$ Buildup On Planets Throughout the Habitable Zones of M Dwarfs

    CERN Document Server

    Luger, Rodrigo

    2014-01-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than $\\sim$ 1 Gyr could have been in runaway greenhouses for several hundred Myr following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bars of abiotically produced O$_2$, resulting in potential false positives fo...

  8. Mapping and quantifying geodiversity in land-water transition zones using MBES and topobathymetric LiDAR

    Science.gov (United States)

    Brandbyge Ernstsen, Verner; Skovgaard Andersen, Mikkel; Gergely, Aron; Schulze Tenberge, Yvonne; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Winter, Christian; Bartholomä, Alexander

    2016-04-01

    Land-water transition zones, like e.g. coastal and fluvial environments, are valuable ecosystems which are often characterised by high biodiversity and geodiversity. However, often these land-water transition zones are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. Combining vessel borne shallow water multibeam echosounder (MBES) surveys ,to cover the subtidal coastal areas and the river channel areas, with airborne topobathymetric light detection and ranging (LiDAR) surveys, to cover the intertidal and supratidal coastal areas and the river floodplain areas, potentially enables full-coverage and high-resolution mapping in these challenging environments. We have carried out MBES and topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage, and in the Ribe Vesterå, a fluvial environment in the Ribe Å river catchment discharging into the Knudedyb tidal basin. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the MBES and the LiDAR point clouds, which both have point densities in the order of 20 points/m2. Morphometric analyses of the DEMs enabled the identification and mapping of the different landforms within the coastal and fluvial environments. Hereby, we demonstrate that vessel borne MBES and airborne topobathymetric LiDAR, here in combination, are promising tools for seamless mapping across land-water transition zones as well as for the quantification of a range of landforms at landscape scale in different land-water transition zone environments. Hence, we demonstrate the potential for mapping and quantifying geomorphological diversity, which is one of the main components of geodiversity and a prerequisite for assessing geoheritage. Acknowledgements This work was funded by the Danish Council for

  9. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  10. Engineered Hyporheic Zones as Novel Water Quality Best Management Practice: Flow and Contaminant Attenuation in Constructed Stream Experiments

    Science.gov (United States)

    Herzog, S.; McCray, J. E.; Higgins, C. P.

    2015-12-01

    The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. In order to increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low- and high-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This work presents the first physical performance data of BEST modules at the pilot scale. BEST modules were installed in a constructed stream facility at the Colorado School of Mines in Golden, CO. This facility features two 15m artificial streams, which included an all sand control condition alongside the BEST test condition. Streams were continuously operated at a discharge of 1 L/s using recycled water. Time-lapse electrical resistivity surveys demonstrated that BEST modules provided substantially greater hyporheic exchange than the control condition. Water quality samples at the hyporheic and reach scales also revealed greater attenuation of nitrogen, coliforms, and select metals and trace organics by BEST modules relative to the control condition. These experimental results were also compared to previous numerical model simulations to evaluate model accuracy. Together, these results show that BEST may be an effective best management practice for improving streamwater quality in urban and agricultural settings.

  11. Make water entry great again!

    Science.gov (United States)

    Hurd, Randy; Belden, Jesse; Jandron, Michael; Fanning, Tate; Truscott, Tadd

    2016-11-01

    Upon free surface impact, silicone rubber spheres deform significantly and begin to vibrate producing unique nested cavities. We show that sphere deformation and cavity formation can be characterized by material shear modulus, density and impact velocity. Additionally, material vibration scales with sphere diameter and material wave speed. Applying a modified diameter, which reflects deformation, effectively collapses experimental pinch-off data with Froude number. A scaling argument shows that a deformable sphere loses energy proportional to the vibrational period of the sphere in the first stages of impact. The effective force coefficient of a deformable sphere through impact is nearly identical to a rigid sphere with the same solid-liquid density ratio. The scaling predicts how the cavity and projectile dynamics of a deformable sphere differs from a rigid counterpart. Office of Naval Research, Navy Undersea Research Program (Grant N0001414WX00811).

  12. Submergence Tolerance and Germination Dynamics of Roegneria nutans Seeds in Water-Level Fluctuation Zones with Different Water Rhythms in the Three Gorges Reservoir.

    Science.gov (United States)

    Lin, Feng; Liu, Jianhui; Zeng, Bo; Pan, Xiaojiao; Su, Xiaolei

    2016-01-01

    The Three Gorges Dam features two water-level fluctuation zones (WLFZs): the preupland drawdown zone (PU-DZ) and the preriparian drawdown zone (PR-DZ). To investigate the vegetation potential of Roegneria nutans in WLFZs, we compared the submergence tolerance and germination dynamics in the natural riparian zone (NRZ), PU-DZ and PR-DZ. We found that the NRZ seeds maintained an 81.3% intactness rate and >91% germination rate. The final seed germination rate and germination dynamics were consistent with those of the controls. Meanwhile, the PU-DZ seeds submerged at 5 m, 10 m, 15 m, and 20 m exhibited intactness rates of 70.5%, 79.95%, 40.75%, and 39.87%, respectively, and >75% germination. Furthermore, the PR-DZ seeds exhibited intactness rates of 22.44%, 61.13%, 81.87%, and 15.36% at 5 m, 10 m, 15 m, and 17 m, respectively, and 80% germination. The germination rates of the intact seeds submerged >10 m were >80%. Finally, the intact seeds germinated quickly in all WLFZs. The high proportion of intact seeds, rapid germination capacity, and high germination rate permit R. nutans seeds to adapt to the complicated water rhythms of the PU-DZ and PR-DZ and indicate the potential for their use in vegetation restoration and recovery. Thus, perennial seeds can be used for vegetation restoration in the WLFZs of large reservoirs and in other regions with water rhythms similar to the Three Gorges Reservoir.

  13. Regularities in changes of chemical composition of waters from the tenth zone of Bibieibat field during the development period

    Energy Technology Data Exchange (ETDEWEB)

    Markarova, O.A.

    1967-01-01

    While the tenth zone of Bibieibat oilfield was being flooded with seawater, advance of the flood front was determined by mineral analysis of produced water from several wells. Connate water had considerably greater mineral content than the injected seawater. Chloride content of produced water was determined before and during injection of seawater, and from these data the distribution of floodwater in the field is shown in 3 maps. The data show that floodwater did not advance uniformly everywhere. In most areas floodwater advanced at rates of 2 to 25 m per month; in some places advances of 40 m per month were found. Such nonuniformity in rates is caused by unequal pressure drops from place to place and by rock heterogeneity.

  14. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  15. 75 FR 32664 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Science.gov (United States)

    2010-06-09

    ..., Milwaukee, Wisconsin in the Federal Register (75 FR 19307). The Coast Guard received 0 comments on this..., Milwaukee, WI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is..., Milwaukee, WI between 12:01 p.m. on June 10, 2010 and 11:59 p.m. on June 13, 2010. This safety zone will...

  16. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA

    Science.gov (United States)

    2010-06-21

    ... construction schedule that includes installation of underwater structures does not allow time to conduct a... zones is to protect vessels and mariners from the potential safety hazards associated with construction... Federal Register. Further, a delay or cancellation of this portion of the construction to facilitate...

  17. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  18. Depth profiles of the inorganic chemical composition of soil water in the unsaturated zone; Tiefenprofile der anorganisch-chemischen Zusammensetzung von Bodenwasser in der ungesaettigten Zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoess, J.

    1992-04-01

    Soil water up to a depth of 4 m below ground surface was analysed for its inorganic-chemical composition. It was obtained as `soil solution` by centrifuging original moist soil samples. The analysis provides depth profiles of the concentration of the major inorganic ions in soil water of well evidence. The studies were made on the environmental research test site called `Horkheimer Insel`, 70 km north of Stuttgart, which is a joint research site within the project `Wasser-Abfall-Boden` of the country of Baden-Wuerttemberg. Samples were collected mainly on two parts of the test site, one being operated by `conventional` farming techniques, the other by `sustainable` techniques, i.e. lower quantities of agrochemical and reduced tillage. The nitrat content of soil water in 4 m depth under the field of sustainable argriculture during the three tested years of cultivation was on an average only 30% of the concentration under the field of conventional agriculture. This means, the amount of nitrat, which is carried in groundwater, could be reduced to the same extend by the chosen way of sustainable agriculture. In respect to the overall salt content of soil water the analysis showed, that it is already very high in the upper soil layer (0 - 25 cm) and does not increase with increasing depth. It can be concluded, that it is determined by processes within this zone of the plant roots and of main microbiological activity. Percolation through the layers beneath this zone only provides a change in the proportion of cation or anion concentrations. (orig.). [Deutsch] Bodenwasser bis zu einer Tiefe von 4 m Flurabstand wurde auf seine anorganisch-chemische Zusammensetzung hin untersucht. Es wurde durch Zentrifugieren original feuchter Bodenproben als `Bodenloesung` gewonnen. Die Untersuchung liefert aussagekraeftige Konzentrationsprofile der anorganischen Ionen im Bodenwasser. Die Probenahme erfolgte auf dem Naturmessfeld `Horkheimer Insel`, 70 km noerdlich von Stuttgart, einem

  19. Marine-entry timing and growth rates of juvenile Chum Salmon in Alaskan waters of the Chukchi and northern Bering seas

    Science.gov (United States)

    Vega, Stacy L.; Sutton, Trent M.; Murphy, James M.

    2017-01-01

    Climate change in the Arctic has implications for influences on juvenile Chum Salmon Oncorhynchus keta early life-history patterns, such as altered timing of marine entry and/or early marine growth. Sagittal otoliths were used to estimate marine entry dates and daily growth rates of juvenile Chum Salmon collected during surface trawl surveys in summers 2007, 2012, and 2013 in the Chukchi and northern Bering seas. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to discriminate between freshwater and marine sagittal growth on the otoliths, and daily growth increments were counted to determine marine-entry dates and growth rates to make temporal and regional comparisons of juvenile Chum Salmon characteristics. Marine-entry dates ranged from mid-June to mid-July, with all region and year combinations exhibiting similar characteristics in entry timing (i.e. larger individuals at the time of capture entered the marine environment earlier in the growing season than smaller individuals in the same region/year), as well as similar mean marine-entry dates. Juvenile Chum Salmon growth rates were on average 4.9% body weight per day in both regions in summers 2007 and 2012, and significantly higher (6.8% body weight per day) in the Chukchi Sea in 2013. These results suggest that juvenile Chum Salmon in the northern Bering and Chukchi seas currently exhibit consistent marine-entry timing and early marine growth rates, despite some differences in environmental conditions between regions and among years. This study also provides a baseline of early marine life-history characteristics of Chum Salmon for comparisons with future climate change studies in these regions.

  20. Hydrochemistry and 222Rn Concentrations in Spring Waters in the Arid Zone El Granero, Chihuahua, Mexico

    National Research Council Canada - National Science Library

    Marusia Rentería-Villalobos; Alejandro Covarrubias-Muños; Alfredo Pinedo-alvarez; Guillermo Manjon-Collado

    2017-01-01

    Water in arid and semi-arid environments is characterized by the presentation of complex interactions, where dissolved chemical species in high concentrations have negative effects on the water quality...

  1. Three dimensional numerical modeling for investigation of fracture zone filled with water by borehole radar; Borehole radar ni yoru gansui hasaitai kenshutsu no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y.; Watanabe, T.; Ashida, Y. [Kyoto University, Kyoto (Japan); Hasegawa, K.; Yabuuchi, S. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1997-05-27

    Water bearing fracture zones existing in rock mass largely influence the underground water flow and dynamic property of rock mass. The detailed survey of the location and size of water bearing fracture zones is an important task in the fields such as civil engineering, environment and disaster prevention. Electromagnetic waves of high frequency zones can be grasped as a wave phenomenon, and the record obtained in the actual measurement is wave forms of time series. In the exploration using borehole radar, this water bearing fracture zone becomes the reflection surface, and also becomes a factor of damping in the transmitted wave. By examining changes which these give to the observed wave forms, therefore, water bearing fracture zones can be detected. This study made three dimensional numerical modeling using the time domain finite difference method, and obtained the same output as the observed wave form obtained using borehole radar. By using this program and changing each of the parameters such as frequency and resistivity in the homogeneous medium, changes of the wave forms were observed. Further, examples were shown of modeling of detection of water bearing fracture zones. 5 refs., 16 figs., 1 tab.

  2. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings

    OpenAIRE

    Misund, Ole Arve; Heggland, Kristin; Skogseth, Ragnheid; Falck, Eva; Gjøsæter, Harald; Sundet, Jan Henry; Watne, Jens; Lønne, Ole Jørgen

    2016-01-01

    The Svalbard archipelago in the High Arctic is influenced by cold Arctic water masses from the north-east and the warm West Spitsbergen Current flowing northwards along its western coast. The eastern waters and the fjords are normally frozen during the winter months, while the coastal waters west of the archipelago remain open. Norwegian fishers have been harvesting from Svalbard waters for decades and detailed records of catches exists from 1980 onwards. We analyze the catch records from the...

  3. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  4. DLMS Voice Data Entry.

    Science.gov (United States)

    1980-06-01

    between operator and computer displayed on ADM-3A 20c A-I Possible Hardware Configuration for a Multistation Cartographic VDES ...this program a Voice Recognition System (VRS) which can be used to explore the use of voice data entry ( VDE ) in the DIMS or other cartographic data...Multi-Station Cartographic Voice Data Entry System An engineering development model voice data entry system ( VDES ) could be most efficiently

  5. Impact of the temporal variation of oxygen contents in the water column on the biogeochemistry of the benthic zone

    Science.gov (United States)

    Rigaud, Sylvain; Deflandre, Bruno; Grenz, Christian; Pozzato, Lara; Cesbron, Florian; Meulé, Samuel; Bonin, Patricia; Michotey, Valérie; Mirleau, Pascal; Mirleau, Fatma; Knoery, Joel; Zuberer, Frédéric; Guillemain, Dorian; Marguerite, Sébatien; Mayot, Nicolas; Faure, Vincent; Grisel, Raphael; Radakovitch, Olivier

    2017-04-01

    The desoxygenation of the water column in coastal areas, refered as coastal hypoxia, is currently a growing phenomenon still particularly complex to predict. This is mainly due to the fact that the biogeochemical response of the benthic ecosystem to the variation of the oxygen contents in the water column remains poorly understood. Dissolved oxygen concentration is a key parameter controling the benthic micro- and macro-community as well as the biogeochemical reactions occuring in the surface sediment. More particularly, the variation over variable time scales (from hour to years) of the oxygen deficit may induce different pathways for biogeochemical processes such as the oxydation of freshly deposited organic matter and nutrients and metals recycling. This results in variable chemical fluxes at the sediment-water interface, that may in turn, support the eutrophication and desoxygenation of the aquatic system. Our study focus on the Berre lagoon, an eutrophicated mediterranean lagoon impacted by hypoxia events in the water column. Three stations, closely located but impacted by contrasted temporal variation of oxygen deficit in the water column were selected: one station with rare oxygen deficit and with functionnal macrofauna community, one station with almost permanent oxygen deficit and no macrofauna community and one intermediate station with seasonnal oxygen deficit and degraded macrofauna community. Each station was surveyed once during a same field survey while the intermediate station was surveyed seasonnaly. For each campaign, we report vertical profiles of the main chemical components (oxygen, nutrients, metals) along the water-column/sediment continuum, with an increased vertical resolution in the benthic zone using a multi-tool approach (high vertical resolution suprabenthic water sampler and microsensors profiler). In addition, total chemical fluxes at the sediment-water interface was obtained using benthic chambers. This dataset was used to evaluate

  6. 无锡市水功能区划调整方案研究%Preliminary study on adjustment scheme of water function zone in Wuxi

    Institute of Scientific and Technical Information of China (English)

    罗慧萍; 逄勇; 徐凌云

    2015-01-01

    为了满足无锡市水资源开发利用、保护和水行政管理需要,在无锡市现有水功能区划的基础上,从水源地布局、社会经济发展布局以及排污控制区和过渡区设置规范等角度进行合理性分析,利用建立的无锡市水环境数学模型,分别计算排污控制区和过渡区的长度,最终提出无锡市水功能区划初步调整方案. 调整方案为:根据水源地布局增加4个饮用水水源保护区,调整1个水功能区范围;根据社会经济发展布局增加4个工业、农业、景观娱乐用水区,其中2个由其他功能区调整而来;根据过渡区要求增加10个过渡区;根据排污控制区要求增加13个排污控制区. 研究成果为无锡市水功能区管理提供新思路.%In order to meet the needs of development , utilization, protection, and water administration of water resources in Wuxi , the paper reasonably analyzed the water function zone from the layout water source area, social and economic development ,the install of sewage discharge control zone and transition zone norms based on the existing water function zoning of Wuxi .It used the mathematical model of water environment in Wuxi which was established before to calculate the lengths of sewage discharge control zone and transition zone .Finally ,it proposed an adjustment scheme of water function zones of Wuxi .The scheme includes that to increase four drinking water source protection zones and adjust scope of one water functional zone according to the water source area layout;to increase four industrial , agricultural , recrea-tional water zones according to the social and economic development layout , wherein the two zones comes from other functional zones;to increase ten transition zones according to the requiremenr of transition zone;to increase thirteen sewage discharge control zones according to transition zone setting norms .The results can provide new idea for management of water function zone in Wuxi .

  7. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.

    Science.gov (United States)

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress.

  8. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning

    1986-01-01

    Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were...... of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters....

  9. Entry at Venus

    Science.gov (United States)

    Venkatapathy, Ethiraj; Smith, Brandon

    2016-01-01

    This is lecture to be given at the IPPW 2016, as part of the 2 day course on Short Course on Destination Venus: Science, Technology and Mission Architectures. The attached presentation material is intended to be introduction to entry aspects of Venus in-situ robotic missions. The presentation introduces the audience to the aerodynamic and aerothermodynamic aspects as well as the loads, both aero and thermal, generated during entry. The course touches upon the system design aspects such as TPS design and both high and low ballistic coefficient entry system concepts that allow the science payload to be protected from the extreme entry environment and yet meet the mission objectives.

  10. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  11. An idealized rural coastal zone management integrating land and water use

    OpenAIRE

    Dagoon, N. J.

    1998-01-01

    Various countries have formulated special integrated coastal zone management (ICZM) strategies which seek to both manage development and conserve natural resources and integrate and coordinate the relevant people sectors and their functions and roles within the bounds of this rich realm. Concerns that may be addressed by ICZM include: 1) Natural resources degradation; 2) Pollution; 3) Land use conflicts; and, 4) Destruction of life and property by natural hazards. Some prevalent sources of en...

  12. Adaptation to heat and water shortage in large, arid-zone mammals.

    Science.gov (United States)

    Fuller, Andrea; Hetem, Robyn S; Maloney, Shane K; Mitchell, Duncan

    2014-05-01

    Although laboratory studies of large mammals have revealed valuable information on thermoregulation, such studies cannot predict accurately how animals respond in their natural habitats. Through insights obtained on thermoregulatory behavior, body temperature variability, and selective brain cooling in free-living mammals, we show here how we can better understand the physiological capacity of large mammals to cope with hotter and drier arid-zone habitats likely with climate change.

  13. Caldecott 4th bore tunnel project: influence of ground water flows and inflows triggered by tectonic fault zones?

    Science.gov (United States)

    Neuhuber, G.; G. Neuhuber1, W. Klary1, A. Nitschke1, B. Thapa2, Chris Risden3, T. Crampton4, D. Zerga5

    2011-12-01

    nearly perpendicular, separating different geological units were expected along the 4th Bore alignment. This paper will describe encountered ground conditions adjacent to the fault contact where rock conditions are influenced to an extent of 5ft to 85ft from the contact. This paper will also compare the anticipated inflow of 55gpm within 100ft of the top heading excavation and fault zones inflow rates up to 110gpm to the actual measured maximum inflow into the tunnel of150gpm away from fault zones to a maximum inflow between 60gpm and 100gpm near fault zones. In presence of fault zones the water inflow is significant lower than expected and in absence of fault zones higher inflow rates as expected were measured. This paper will discuss the influence of fault zones on the water inflow - or are rock properties and lithology more significant?

  14. Development and application of water and energy saving irrigation systems in arid zones

    Energy Technology Data Exchange (ETDEWEB)

    Sourell, H.; Schoen, H.; Shani, U.

    1983-01-01

    This paper describes an irrigation system, which combines the flexibility and low labor intensity of the mobile irrigation equipment with the more accurate water distribution of the microirrigation equipment. The high volume sprinklers have been removed from the boom for this purpose and been replaced with nozzles or drip hoses, which apply the water more accurately and directly with low pressure in the vicinity of the plant. Experiments in the Negev desert performed in cooperation with the Institute of Agricultural Engineering, Volcani Center, Tel Aviv, revealed the following advantages: High efficiency of water application; water distribution independent of wind effects; low water distribution pressure and low energy requirements; high operational reliability; low investment costs; low leaf interception with possibility for use of saline water.

  15. Zoning of rural water conservation in China: A case study at Ashihe River Basin

    OpenAIRE

    2015-01-01

    With the effective control of point source (PS) pollution accomplished, water pollution problems caused by non-point source (NPS) pollution have increased in recent years. The worsening agricultural NPS pollution has drawn the attention of the Chinese Government and researcher scientists and has resulted in the often mentioned “three red lines” on water resources management. One of the red lines is to control water pollution within a rational range. The Agricultural NPS pollution, which inclu...

  16. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  17. Relationship between cyanobacteria community and water quality parameters on intertidal zone of fish ponds, Blanakan, West Java

    Science.gov (United States)

    Takarina, N. D.; Wardhana, W.

    2017-07-01

    The presence of cyanobacteria in the intertidal zone is strongly influenced by changes in physical and chemical parameters. In milkfish ponds, cyanobacteria community had been indirectly affected by the mixing of sea water and fresh water during low tides. To determine the relationship between the cyanobacteria community and water quality parameters, phytoplankton samples were taken both vertically and horizontally in three fish ponds at Blanakan Village on July and August 2016. The water quality parameters measured were temperature, DO, salinity, and pH. Based on the enumeration results of 36 samples of phytoplankton, 5 genus Cyanobacteria (Merismopedia, Microcystis, Lyngbya, Oscillatoria and Trichodesmium) were obtained. Cyanobacteria is a subdominant group after diatomae with dominance index between 2-21 %. Average of density ranged between 128-3563 plankters /10 dm3. High dominance level (97-99 %) between cyanobacteria and diatoms cause phytoplankton diversity indices in all three fish ponds were very small (0.0851 to 0.8734). Based on the analysis of the three main components (Principle Component Analysis) it was known that the presence of five cyanobacteria genus was determined by the differences of water quality parameters observed. Merismopedia was more affected by salinity and DO fluctuations. Oscillatoria, Trichodesmium and Lyngbya were determined by changes in temperature, whereas Microcystis was more affected by pH.

  18. Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters

    Science.gov (United States)

    Shan, Xiujuan; Jin, Xianshi; Yuan, Wei

    2010-05-01

    Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and October 2006. Four fish assemblages were identified in each survey using two-way indicator species analysis (TWIA). High fish biomass was found in the northern part, central part and coastal waters of the survey area; in contrast, high fish diversity was found in the southern part of the survey area and the Changjiang estuary outer waters. Therefore, it is difficult to maintain high fishery production when high fish diversity is evenly distributed in the fish community. Fish became smaller and fish size spectra tended to be narrower because of fish species variations and differences in growth characteristics. Fish diversity increased, the age to maturity was reduced and some migrant species were not collected in the surveys. Fish with low economic value, small size, simple age structure and low tropic level were predominant in fish assemblages in the Changjiang estuary and its adjacent waters. The lowest hypoxic value decreased in the Changjiang estuary and its adjacent waters.

  19. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  20. Mapping Weak, Altered Zones and Perched Water With Aerogeophysical Measurements at Mount Adams, Washington: Implications for Volcanic Instability

    Science.gov (United States)

    Finn, C. A.; Deszcz-Pan, M.; Anderson, E. D.; Horton, R.

    2006-12-01

    Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes. This increases the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult, because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration and location of perched water tables are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of an altered edifice. Intense hydrothermal alteration can significantly reduce the resistivity (from hundreds to tens ohm-m) and magnetization of volcanic rocks. These changes can be identified with helicopter electromagnetic and magnetic measurements and visualized in 3D. 100 m is the greatest depth that the lowest frequency electromagnetic data could penetrate into the low resistivity, altered zones; outside the altered zones, the depth of penetration was up to 300 m. Total-field magnetic data can detect magnetization variations to several thousand meters depth. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. Water, and perhaps melted ice, is needed as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of both is important for hazard assessments. Over the low resistivity summit, the electromagnetic data detected ice with a thickness of 0 to about 80 m and an estimated volume of up to 0.1 km3. Over resistive ridges ice thicknesses could not be determined. The electromagnetic data also identified perched water tables in the brecciated core of the upper 300 m of the volcano

  1. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Andersen, Mathias Neumann

    2010-01-01

    Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on stomatal conductance (gs), nitrogen accumulation and distribution in tomato (Lycopersicon esculentum L.) plants were investigated in a split-root pot experiment. Results showed that both PRI and DI saved 25......% water and led to 10.0% and 17.5% decreases in dry biomass, respectively, compared with the fully irrigated (FI) controls. Consequently, water use efficiency (WUE) was increased by 18.6% and 10.8% in the PRI and DI plants, respectively. The highest WUE in the PRI plants was associated with the highest...... carbon isotope composition (δ13C), indicating that the improvement of WUE might have been a result of long-term optimisation of stomatal control over gas exchange. The constantly higher xylem sap ABA concentration in PRI compared with DI plants was seemingly responsible for the greater control over...

  2. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian

    2016-03-30

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  3. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil).

    Science.gov (United States)

    Roth, F; Lessa, G C; Wild, C; Kikuchi, R K P; Naumann, M S

    2016-05-15

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ(13)Corg and δ(15)N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  4. Trace element speciation and origin of colloids in surface waters of subarctic zone (NW of Russia and Central Siberia)

    Science.gov (United States)

    Pokrovsky, O. S.; Viers, J.; Prokushkin, A. S.; Vasukova, E. V.; Shirokova, L. S.; Dupre, B.

    2008-12-01

    Geochemistry of trace elements (TE) in boreal regions attracts large attention of researchers in view of on- going environmental changes that can affect both the fluxes of these elements to the ocean, their speciation and thus their bioavailability. Most of trace elements in waters of boreal zone are transported via organic and organo-mineral colloids. In order to better understand the processes of colloids formation in surface waters draining watersheds of various lithology and permafrost abundance, comparative study of TE speciation in various geographic zones is necessary. In this work we attempted to generalize the typical features of trace element speciation in boreal arctic and subarctic zones assessed via in-situ dialysis and ultrafiltration. Surface waters of three circumpolar regions in Arkhangelsk region, NW Russia and Central Siberia were studied using unique and rigorous procedure via combination of in-situ dialysis and ultrafiltration (1 kDa, 3.5 kDa, 10 kDa, 100 kDa, 0.22 µm, 0.45 µm, 1 μm, 5 µm). In both filtrates and dialysates, all major and trace elements and dissolved organic carbon were analyzed. In all studied regions, three typical features of colloid speciation have been revealed: i) high proportion of large-size colloids (10 kDa - 0.22 μm and 0.22 μm - 5 µm), mostly composed of Fe oxy(hydr)oxides stabilized by organic matter; ii) presence of organic-rich, small size colloids and conventionally "dissolved" substances (complexation/adsorption on the surface, control the TE interaction with colloids. It is anticipated that knowledge of speciation of metal pollutants and organic carbon both in surficial fluids and in the permafrost ice and soils will allow the prediction of metals bioavailability change induced by permafrost thawing and human pollution - for example, around the smelters located in the arctic-zone. Elaborated models can be extended to other permafrost- bearing territories of the world which are likely to be highly

  5. Double entry bookkeeping vs single entry bookkeeping

    Directory of Open Access Journals (Sweden)

    Ileana Andreica

    2016-11-01

    Full Text Available Abstract: A financial management eficiently begin, primarily, with an accounting record kept in the best possible conditions, this being conditioned on the adoption of a uniform forms, rational, clear and simple accounting. Throughout history, there have been known two forms of accounting: the simple and double entry. Romanian society after 1990 underwent a substantial change in social structure, the sector on which put a great emphasis being private, that of small manufacturers, peddler, freelance, who work independently and authorized or as associative form (family enterprises, various associations (owners, tenants, etc., liberal professions, etc.. They are obliged to keep a simple bookkeeping, because they have no juridical personality. Companies with legal personality are required to keep double entry bookkeeping; therefore, knowledge and border demarcation between the two forms of organisation of accounting is an essential. The material used for this work is mainly represented by the financial and accounting documents, by the analysis of the economic, by legislative updated sources, and as the method was used the comparison method, using hypothetical data, in case of an authorized individual and a legal entity. Based on the chosen material, an authorized individual (who perform single entry accounting system and a juridical entity (who perform double entry accounting system were selected comparative case studies, using hypothetical data, were analysed advantages and disadvantages in term of fiscal, if using two accounting systems, then were highlighted some conclusion that result.

  6. Mantle transition zone beneath a normal seafloor in the northwestern Pacific: Electrical conductivity, seismic thickness, and water content

    Science.gov (United States)

    Matsuno, Tetsuo; Suetsugu, Daisuke; Baba, Kiyoshi; Tada, Noriko; Shimizu, Hisayoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Obayashi, Masayuki; Utada, Hisashi

    2017-03-01

    We conducted a joint electromagnetic (EM) and seismic experiment to reveal the mantle structure beneath a normal seafloor at 130-145 Ma in the northwestern Pacific, where the seafloor is relatively flat and the underlying mantle is expected to be normal (free from tectonic perturbations). In the experiment, we deployed state-of-the-art instruments in two arrays from 2010-2015. Here, we report the result of analyses of the EM and seismic data for investigating the mantle transition zone (MTZ) structure. The EM data analysis revealed that an electrical conductivity structure below both arrays was approximated by an average 1-D model of the north Pacific, and showed a possible downward increase in conductivity at the top of the MTZ. From the P-wave receiver function analysis, perturbations in the MTZ thickness from a global average were estimated to be +20 km and +2 km below the northern and southern arrays, respectively, from which temperature profiles in the MTZ below these two arrays were then estimated. We jointly interpreted the profiles of electrical conductivity and thus estimated temperature, with reference to the experimental values of the effects of water on the electrical conductivities of MTZ minerals (wadsleyite and ringwoodite) from mineral physics. The upper bound of the water content below the northern array was determined to be 0.4 wt.% or 0.04 wt.%, depending on different results of mineral physics, and that below the southern array was determined to be slightly smaller. The lower bound of the water content was not constrained by our data. Our results indicate that the MTZ beneath the normal seafloor in the northwestern Pacific is drier than subduction zones, and may be a water-poor region in a plum-pudding mantle model.

  7. Dynamics of soil water content under different tillage systems in agro-pastural eco-zone

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamics of soil water content under different tillage systems was studied throughout the growing period of oat (Arena sativa L.).The treatments included tillage system (zero tillage,minimum tillage,and conventional tillage),residue cover (with and without cover),and crop rotation (continuous cropping and crop rotation).The results indicated that soil water content and crop water use efficiency were improved under zero tillage with cover.When crop stubble was removed,soil water content under zero tillage was reduced,especially in the surface soil layer.Compared to conventional tillage,minimum tillage increased soil water content and its storage,either with cover or without cover.For all the three tillage treatments,soil water content with cover was significantly higher than that of without cover.Furthermore,soil water content and crop water use efficiency under crop rotation was consistently higher than continuous cropping.Therefore,it is concluded that minimum tillage with cover is the optimum management system in this area.At present,however,a combination of crop rotation and minimum tillage is a viable option,since there are not enough crop residues available for cover of land.

  8. The use of Landsat for monitoring water parameters in the coastal zone

    Science.gov (United States)

    Bowker, D. E.; Witte, W. G.

    1977-01-01

    Landsats 1 and 2 have been successful in detecting and quantifying suspended sediment and several other important parameters in the coastal zone, including chlorophyll, particles, alpha (light transmission), tidal conditions, acid and sewage dumps, and in some instances oil spills. When chlorophyll a is present in detectable quantities, however, it is shown to interfere with the measurement of sediment. The Landsat banding problem impairs the instrument resolution and places a requirement on the sampling program to collect surface data from a sufficiently large area. A sampling method which satisfies this condition is demonstrated.

  9. [Mercury dynamics of several plants collected from the water-level fluctuation zone of the Three Gorges Reservoir area during flooding and its impact on water body].

    Science.gov (United States)

    Zhang, Xiang; Zhang, Cheng; Sun, Rong-guo; Wang, Ding-yong

    2014-12-01

    Submerged plants are a major source for the abnormal elevation of methylmercury in reservoir. Several specific plants (Echinochloa crusgalli, Cynodondactylon and Corn stover) were collected and inundated in a simulated aquatic environment in the laboratory for investigating the mercury (Hg) dynamics in plants and the release process into water, aiming to find out the properties of Hg dynamics of plants under inundation conditions and its impact on water body in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Area. The results showed that the contents of total mercury in several plants were in the range of 9. 21-12.07 ng x g(-1), and the percentage content of methylmercury (MeHg) was about 1%-2%. The content of total mercury (THg) in plants gradually decreased, by 35.81%-55.96%, whereas that of the dissolved mercury (DHg) increased sharply, by 103.23% -232.15%, which indicated an emission of Hg from plants to water in the process of decomposition. Furthermore, the state of inundation provided sufficient conditions for the methylation process in plants and therefore caused an increase of the content of methylmercury in the plant residues, which was 3.04-6.63 times as much as the initial content. The concentration of dissolved methylmercury (DMeHg) in the overlying water also increased significantly by 14.84- 16.05 times compared with the initial concentration. Meanwhile, the concentration of dissolved oxygen (DO) in the overlying water was significantly and negatively correlated with DMeHg. On the other hand, the concentration of dissolved organic carbon (DOC) in the overlying water was significantly and positively correlated with DMeHg. During the whole inundation period, the increase of DHg in the overlying water accounted for 41.74% -47.01% of the total amount of THg emission, and there was a negative correlation between the content of THg in plant residues and that of DHg in the overlying water.

  10. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    Science.gov (United States)

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  11. Borehole geophysical, fluid, and hydraulic properties within and surrounding the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, 2010-11

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Lambert, Rebecca B.

    2012-01-01

    The freshwater zone of the San Antonio segment of the Edwards aquifer is used by residents of San Antonio and numerous other rapidly growing communities in south-central Texas as their primary water supply source. This freshwater zone is bounded to the south and southeast by a saline-water zone with an intermediate zone transitioning from freshwater to saline water, the transition zone. As demands on this water supply increase, there is concern that the transition zone could potentially move, resulting in more saline water in current supply wells. Since 1985, the U.S. Geological Survey (USGS), San Antonio Water System (SAWS), and other Federal and State agencies have conducted studies to better understand the transition zone.

  12. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    Science.gov (United States)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  13. Baboons, water, and the ecology of oxygen stable isotopes in an arid hybrid zone.

    Science.gov (United States)

    Moritz, Gillian L; Fourie, Nicolaas; Yeakel, Justin D; Phillips-Conroy, Jane E; Jolly, Clifford J; Koch, Paul L; Dominy, Nathaniel J

    2012-01-01

    Baboons regularly drink surface waters derived from atmospheric precipitation, or meteoric water. As a result, the oxygen isotope (δ(18)O) composition of their tissues is expected to reflect that of local meteoric waters. Animal proxies of the oxygen isotope composition of meteoric water have practical applications as paleoenvironmental recorders because they can be used to infer aridity and temperature in historic and fossil systems. To explore this premise, we measured the δ(18)O values of hair from two baboon species, Papio anubis and Papio hamadryas, inhabiting Awash National Park, Ethiopia. The hybridizing taxa differ in their ranging behavior and physiological response to heat. Papio hamadryas ranges more widely in the arid thornbush and is inferred to ingest a greater proportion of leaf water that is enriched in (18)O as a result of evaporative fractionation. It is also better able to conserve body water, which reduces its dependence on meteoric waters depleted in (18)O. Taken together, these factors would predict relatively higher δ(18)O values in the hair (δ(18)O(hair)) of P. hamadryas. We found that the δ(18)O(hair) values of P. hamadryas were higher than those of P. anubis, yet the magnitude of the difference was marginal. We attribute this result to a common source of drinking water, the Awash River, and the longer drinking bouts of P. hamadryas. Our findings suggest that differences in δ(18)O values among populations of Papio (modern or ancient) reflect different sources of drinking water (which might have ecological significance) and, further, that Papio has practical value as a paleoenvironmental recorder.

  14. The Snow Line in Viscous Disks around Low-mass Stars: Implications for Water Delivery to Terrestrial Planets in the Habitable Zone

    NARCIS (Netherlands)

    Mulders, G.D.; Ciesla, F.J.; Min, M.; Pascucci, I.

    2015-01-01

    The water-ice or snow line is one of the key properties of protoplanetary disks that determines the water content of terrestrial planets in the habitable zone. Its location is determined by the properties of the star, the mass accretion rate through the disk, and the size distribution of dust suspen

  15. Metals complexation with humic acids in surface water of different natural–climatic zones

    OpenAIRE

    Dinu M. I.

    2013-01-01

    Humic acids extracted from different soils. The stability constants of metal humates and acid dissociation constant humic acids were calculated. Forms of metals in natural waters was determined with use account their chemical composition and content and properties of organic matter. We assessed metals speciation in water objects with account for competitive reactions resulting in formation of hydroxide, hydrocarbonate, sulfate, and chloride metal complexes and obtained a competitive series of...

  16. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance.

    Science.gov (United States)

    Leucci, Maria Rosaria; Lenucci, Marcello Salvatore; Piro, Gabriella; Dalessandro, Giuseppe

    2008-07-31

    Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90 mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39 mol%), and arabinoxylans (38-48 mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-D-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.

  17. Determination of amitrole and urazole in water samples by capillary zone electrophoresis using simultaneous UV and amperometrical detection.

    Science.gov (United States)

    Chicharro, M; Moreno, M; Bermejo, E; Ongay, S; Zapardiel, A

    2005-12-16

    In this paper, capillary zone electrophoresis with amperometric detection (CZE-AD) was first applied to the simultaneous separation and determination of amitrole and urazole in water samples. A simple end-column electrochemical detector was used in combination with a commercially available capillary electrophoresis instrument with UV detection. The effects of several important factors were investigated to find optimum conditions. A carbon disk electrode was used as working electrode. Separation and determination of these compounds in water samples were performed in 0.030 mol l(-1) acetate buffers at pH 4.5, 25 kV as separation voltage and the samples were introduced by hydrodynamic mode for 1.5 s. Most of the studies realized showed that the direct electrochemical detection is more sensitive and selective than UV detection. Under the optimum conditions, excellent linearity was observed between peak amperometric signal and analyte concentrations in the range of 0.19-1.35 mg l(-1) for amitrole and 0.20-1.62 mg l(-1) for urazole. The detection limits were 63 and 68 microg l(-1) for amitrole and urazole, respectively. The utility of this method was demonstrated by monitoring water samples, and the assay results were satisfactory. The detection limits using a previous preconcentration step for amitrole and urazole in spiked mineral water samples were 0.6 and 1.0 microg l(-1) for amitrole and urazole, respectively.

  18. Impact of climate change on surface water resource and tendency in the future in the arid zone of northwestern China

    Institute of Scientific and Technical Information of China (English)

    施雅风; 张祥松

    1995-01-01

    The surface water resource in the arid zone of northwestern China is pregnant in the 6great mountain systems induding snow covers,glaciers,rivers and lakes.Though the climate fluctuates,becoming warmer and drier,and the water resource trends to wither during the 20th century,it is evident thatin the Holocene Megathermal there would be a more plentiful water resource.During the Little Ice Age,theglacier area and the amount of runoff and lake water were also higher than those at present.It is estimated thatthe temperature in mountains of western China would be 1℃ warmer by 2030 A.D.,when the precipitationand evaporation would be some higher,the snow cover would be lower in plains and higher in mountains,gla-ciers would retreat further,many small glacier would disappear,river runoff would increase with a highervariability,most of the lakes would be in a negative balance state and would wither further.

  19. PERMANENCE OF WATER EFFECTIVENESS IN THE ROOT ZONE OF THE CAATINGA BIOME

    Directory of Open Access Journals (Sweden)

    CARLOS ALEXANDRE GOMES COSTA

    2016-01-01

    Full Text Available Soil is an important water compartment into a watershed scale, mainly due to its role in providing water to plants and to the influence of antecedent moisture on the runoff initiation. The aim of this research is to assess the permanence of water effectiveness in the soil under preserved-vegetation constraints in the Caatinga biome, in the semiarid northeastern Brazil. For this purpose, hourly soil moisture measurements were collected with TDR and analyzed between 2003 and 2010 for three soil-vegetation associations in the Aiuaba Experimental Basin. The results showed that in nine months per year soil moisture was below wilting point for two associations, whose soils are Chromic Luvisol and Haplic Lixisol (Abruptic. In the third association, where the shallow soil Lithic Leptosol prevails, water was found non-effective four months per year. A possible reason for the high water permanence in the shallowest soil is the percolation process, generating sub-surface flow, which barely occurs in the deeper soils. In situ observations indicates that the long period of soil moisture below the wilting point was not enough to avoid the blooming season of the Caatinga vegetation during the rainy periods. Indeed, after the beginning of each rainy season, there is a growth of dense green vegetation, regardless of the long period under water shortage.

  20. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.

    Science.gov (United States)

    Bristow, Laura A; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B; Bertagnolli, Anthony D; Wright, Jody J; Hallam, Steven J; Ulloa, Osvaldo; Canfield, Donald E; Revsbech, Niels Peter; Thamdrup, Bo

    2016-09-20

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (Michaelis-Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.

  1. Changes in composition and pore space of sand rocks in the oil water contact zone (section YU1 3-4, Klyuchevskaya area, Tomsk region)

    Science.gov (United States)

    Nedolivko, N.; Perevertailo, T.; Pavlovec, T.

    2016-09-01

    The article provides an analysis of specific features in changes of rocks in the oil water contact zone. The object of study is the formation YU1 3-4 (J3o1) of Klyuchevskaya oil deposit (West Siberian oil-gas province, Tomsk region). The research data allow the authors to determine vertical zoning of the surface structure and identify the following zones: oil saturation (weak alteration), bitumen-content dissolution, non-bitumen-content dissolution, cementation, including rocks not affected by hydrocarbon deposit. The rocks under investigation are characterized by different changes in composition, pore space, as well as reservoir filtration and volumetric parameters. Detection of irregularity in distribution of void- pore space in oil-water contact zones is of great practical importance. It helps to avoid the errors in differential pressure drawdown and explain the origin of low-resistivity collectors.

  2. 77 FR 24838 - Safety Zone; Magothy River, Sillery Bay, MD

    Science.gov (United States)

    2012-04-26

    ... and Interference with Constitutionally Protected Property Rights. Civil Justice Reform This rule meets.... (3) Persons or vessels requiring entry into or passage within the safety zone must request...

  3. 76 FR 29645 - Safety Zone, Newport River; Morehead City, NC

    Science.gov (United States)

    2011-05-23

    ... Order 12630, Governmental Actions and Interference with Constitutionally Protected Property Rights... vessels requiring entry into or passage through any portion of the safety zone must first request...

  4. Impact of Soil Water Flux on Vadose Zone Solute Transport Parameters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transport processes of solutes in two soil columns filled with undisturbed soil material collected from an unsaturated sandy aquifer formation in Belgium subjected to a variable upper boundary condition were identified from breakthrough curves measured by means of time domain refiectometry (TDR). Solute breakthrough was measured with 3 TDR probes inserted into each soil column at three different depths at a 10 minutes time interval. In addition, soil water content and pressure head were measured at 3 different depths. Analytical solute transport models were used to estimate the solute dispersion coefficient and average pore-water velocity from the observed breakthrough curves. The results showed that the analytical solutions were suitable in fitting the observed solute transport. The dispersion coefficient was found to be a function of the soil depth and average pore-water velocity, imposed by the soil water flux. The mobile moisture content on the other hand was not correlated with the average pore-water velocity and the dispersion coefficient.

  5. Examining adaptations to water stress among farming households in Sri Lanka's dry zone.

    Science.gov (United States)

    Williams, Nicholas E; Carrico, Amanda

    2017-02-16

    Climate change is increasing water scarcity in Sri Lanka. Whether these changes will undermine national-level food security depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Analyzing household survey data, this research identifies household, institutional, and agroecological factors that influence how water-stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Paralleling studies conducted elsewhere, we identified institutional factors as particularly relevant in farmer adaptation decisions. Notably, our research identified farmers' use of hybrid seed varietals as the only local climate adaptation strategy to positively correlate with farmers' rice yields. These findings provide insight into additional factors pertinent to successful agricultural adaptation and offer encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change-exacerbated drought.

  6. Quantifying Organic Matter in Surface Waters of the United States and Delivery to the Coastal Zone

    Science.gov (United States)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.

    2012-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters. It is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context, and considering upstream-downstream linkages along flow paths. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation from headwaters to the coasts; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments; and 4) considered seasonal factors affecting the temporal variation in OC responses. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. The modeling approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We calibrated and evaluated the model with statistical estimates of OC loads that were observed at a network of monitoring stations across the nation, and further explored factors controlling seasonal dynamics of OC based on these long term monitoring data. Our results illustrate spatial patterns and magnitudes OC loadings in rivers, highlighting hot spots and suggesting origins of the OC to each location

  7. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning;

    1986-01-01

    collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 65°N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent...... of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4–6 months in Scottish waters....

  8. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; Torres-Perez, Juan

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  9. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    Science.gov (United States)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  10. Social construction of sustainability in water companies in the Dutch coastal zone

    NARCIS (Netherlands)

    Klostermann, J.E.M.; Cramer, J.

    2007-01-01

    This article addresses the question, ¿How is the concept of sustainable development translated into the business practices of the Dutch drinking water sector?¿ Two companies along the Dutch coast developed their own versions of sustainability, based upon their particular context and influential

  11. The Contribution of Marsh Zones to Water Quality in Dutch Shallow Lakes: A Modeling Study

    NARCIS (Netherlands)

    Sollie, S.; Janse, Jan H.; Mooij, Wolf M.; Coops, Hugo; Verhoeven, J.T.A.

    2008-01-01

    Many lakes have experienced a transition from a clear into a turbid state without macrophyte growth due to eutrophication. There are several measures by which nitrogen (N) and phosphorus (P) concentrations in the surface water can be reduced. We used the shallow lake model PCLake to evaluate

  12. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Science.gov (United States)

    2012-02-27

    ... sewage discharges include solids, nutrients, pathogens, petroleum products, heavy metals, pesticides..., pollute drinking water supplies, harm fish and other aquatic wildlife, and cause damage to coral reefs... protection that should be provided through an NDZ. California's highly varied marine environments support...

  13. Using helicopter TEM to delineate fresh water and salt water zones in the aquifer beneath the Okavango Delta, Botswana

    Science.gov (United States)

    Podgorski, Joel E.; Kinzelbach, Wolfgang K. H.; Kgotlhang, Lesego

    2017-09-01

    The Okavango Delta is a vast wetland wilderness in the middle of the Kalahari Desert of Botswana. It is a largely closed hydrological system with most water leaving the delta by evapotranspiration. In spite of this, the channels and swamps of the delta remain surprisingly low in salinity. To help understand the hydrological processes at work, we reanalyzed a previous inversion of data collected from a helicopter transient electromagnetic (HTEM) survey of the entire delta and performed an inversion of a high resolution dataset recorded during the same survey. Our results show widespread infiltration of fresh water to as much as ∼200 m depth into the regional saline aquifer. Beneath the western delta, freshwater infiltration extends to only about 80 m depth. Hydrological modeling with SEAWAT confirms that this may be due to rebound of the regional saltwater-freshwater interface following the cessation of surface flooding over this part of the delta in the 1880s. Our resistivity models also provide evidence for active and inactive saltwater fingers to as much as ∼100 m beneath islands. These results demonstrate the great extent of freshwater infiltration across the delta and also show that all vegetated areas along the delta's channels and swamps are potential locations for transferring solutes from surface water to an aquifer at depth.

  14. Riparian zone processes and soil water total organic carbon (TOC: implications for spatial variability, upscaling and carbon exports

    Directory of Open Access Journals (Sweden)

    T. Grabs

    2012-03-01

    Full Text Available Groundwater flowing from hillslopes through riparian (near stream soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC concentrations profiles and groundwater levels measured in the riparian zone (RZ of a 67 km2 catchment in Sweden. TOC exported from 13 riparian soil profiles was then estimated based on the riparian flow-concentration integration model (RIM. Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI. Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. Exports were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. From more mineral riparian gley soils, on the other hand, only small amounts with relatively time-invariant concentrations were exported. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that controls much of the spatial variability of stream water TOC. We developed an empirical regression-model based on the TWI to move beyond the plot scale to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.

  15. Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone

    Science.gov (United States)

    Zapata-Rios, Xavier; Brooks, Paul D.; Troch, Peter A.; McIntosh, Jennifer; Rasmussen, Craig

    2016-03-01

    The critical zone (CZ) is the heterogeneous, near-surface layer of the planet that regulates life-sustaining resources. Previous research has demonstrated that a quantification of the influxes of effective energy and mass transfer (EEMT) to the CZ can predict its structure and function. In this study, we quantify how climate variability in the last 3 decades (1984-2012) has affected water availability and the temporal trends in EEMT. This study takes place in the 1200 km2 upper Jemez River basin in northern New Mexico. The analysis of climate, water availability, and EEMT was based on records from two high-elevation SNOTEL stations, PRISM data, catchment-scale discharge, and satellite-derived net primary productivity (MODIS). Results from this study indicated a decreasing trend in water availability, a reduction in forest productivity (4 g C m-2 per 10 mm of reduction in precipitation), and decreasing EEMT (1.2-1.3 MJ m2 decade-1). Although we do not know the timescales of CZ change, these results suggest an upward migration of CZ/ecosystem structure on the order of 100 m decade-1, and that decadal-scale differences in EEMT are similar to the differences between convergent/hydrologically subsidized and planar/divergent landscapes, which have been shown to be very different in vegetation and CZ structure.

  16. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  17. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  18. Soil-atmosphere and vadose zone water fluxes at the Wagna - lysimeter: Workflow, models, and results

    Science.gov (United States)

    Fank, Johann

    2014-05-01

    A precise knowledge of the water fluxes between the soil-plant system and the atmosphere is of great importance for understanding and modeling water, solute and energy transfer in the soil-plant-atmosphere system. Weighing lysimeters are precise tools to allow the determination of the hydrological cycle components in very short time intervals. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise and deep water percolation on short time scales. Evapotranspiration, rainfall, and irrigation can be computed from weight changes. In the last decades resolution and precision of the weighing systems have been substantially improved, so that modern lysimeters, resting on weighing cells can reach resolutions of up to 0.01 mm. Nevertheless, a lot of external effects (e.g. from maintenance, surface treatment) and small mechanical disturbances (e.g. caused by wind) became visible in the data. Seepage mass data are affected by water sampling and the emptying process of the seepage water container. Increasing parts of corrected seepage mass data show deep water percolation, decreasing parts in dry weather periods can be interpreted as capillary rise. In the evaluation process of corrected lysimeter mass data every increase in system weight (lysimeter mass + cumulative seepage mass) might be interpreted as rainfall or irrigation, whereas every decrease in system weight is interpreted as evapotranspiration. To apply this concept correctly, the noise in both data sets has to be separated from signals using a filtering routine (e.g. Peters et al., 2013) which is appropriate for any event, including events with low disturbances as well as strong wind and heavy precipitation in small time intervals. Based on the data set from the "Wagna" lysimeter in Austria with a high resolution of the scale (~ 0,015 mm) and very low noise due to low wind velocities for the year 2010 a lysimeter data preparation workflow will be executed: (a) correction of the

  19. The artificial water catchment "Chicken Creek" as an observatory for critical zone processes and structures

    Directory of Open Access Journals (Sweden)

    W. Gerwin

    2009-03-01

    Full Text Available In order to better understand the processes of the "Critical Zone" investigations are mainly carried out in watersheds as they represent parts of the landscape having more or less defined outlines. However, natural watersheds must, in some cases, be characterized as "black boxes" with respect to e.g. structures in the underground or catchment boundaries which are generally unknown and need great efforts to be explored. Artificially created watersheds might, thus, be an appropriate alternative as boundaries and inner structures can be planned and defined in advance. This paper presents a recently launched project dealing with the initial phase of ecosystem development with a man-made catchment as central research site. The research site has an area of 6 ha and can be regarded as one of the largest artificial watersheds developed for scientific purposes worldwide. It was completed in 2005 and left for an unrestricted ecosystem succession. This paper introduces the creation and main properties of this site as well as first results of an ongoing monitoring program.

  20. Quantifying Deep Vadose Zone Soil Water Potential Changes At A Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Joel M. Hubbell; Deborah L. McElroy

    2007-10-01

    Recent advances in moisture monitoring using tensiometers has allowed long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor moisture conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in moisture content presumably in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to normal to above normal precipitation. This tensiometer data can be used to evaluate the appropriateness of the current conceptual model of flow at this site. It also shows that a moisture monitoring system should be effective to rapidly validate that a proposed remedial action (such as placement of an ET cover) would be effective in reducing the moisture movement to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

  1. Water composition in the unsaturated zone at Sete Cidades central volcano (S. Miguel, Azores, Portugal)

    Science.gov (United States)

    Cruz, J.; Silva, M.; Mendonça, J.; Dias, I.; Prudêncio, I.

    2009-04-01

    A field study was developed at Sete Cidades, the westernmost of the three active composite volcanoes that dominate the geology of São Miguel, the largest of the nine islands from the Azores archipelago. Research methodology comprehends the characterization of soil-water composition at several depths, sampled by means of ceramic suction cups. Previously to their installation, cups were all submitted to several stages of washing, first in the laboratory with supra pure water, until aliquot conductivity stabilizes, and after in the field. This study was planned in order to study the water pollution due to agriculture, one of the main economic activities in the Azores, as shown by the gross value added to regional product. The negative effects of groundwater pollution due to agriculture have been reported in the majority of the nine islands, reflected by high contents of nitrogen species, derived from the inadequate use of synthetic and organic fertilizers, as well as from animal wastes leaching, or also by microbiology parameters. The relation between water pollution and agriculture results in some cases in the failure to comply regarding EU and national water quality regulations, through quality deterioration and compromising groundwater as strategic natural resource in the Azores. The studied area corresponds to Sete Cidades volcano caldera, a 5 km-diameter circular shaped depression, contoured by steep walls from 30 m high up to 400 m. In order to characterize unsaturated water composition in the caldera floor, five pasture locations were selected and monitored, as well as one site with the same physical conditions, but without agricultural activity. From the 5 pasture lands we discuss further results obtained in the so-called Pavão I (Pa I), which corresponds to the most extensive data set. On this site, 6 suction cups were installed, at depths 0.35 m, 0.7 m, 1 m, 1.3 m, 1.6 m and 1.9 m. In the site without agricultural activity, in the vicinity of Sete Cidades

  2. Autonomous gliding entry guidance with geographic constraints

    Institute of Scientific and Technical Information of China (English)

    Guo Jie; Wu Xuzhong; Tang Shengjing

    2015-01-01

    This paper presents a novel three-dimensional autonomous entry guidance for relatively high lift-to-drag ratio vehicles satisfying geographic constraints and other path constraints. The guidance is composed of onboard trajectory planning and robust trajectory tracking. For trajectory planning, a longitudinal sub-planner is introduced to generate a feasible drag-versus-energy profile by using the interpolation between upper boundary and lower boundary of entry corridor to get the desired trajectory length. The associated magnitude of the bank angle can be specified by drag profile, while the sign of bank angle is determined by lateral sub-planner. Two-reverse mode is utilized to satisfy waypoint constraints and dynamic heading error corridor is utilized to satisfy no-fly zone constraints. The longitudinal and lateral sub-planners are iteratively employed until all of the path constraints are satisfied. For trajectory tracking, a novel tracking law based on the active disturbance rejection control is introduced. Finally, adaptability tests and Monte Carlo simulations of the entry guidance approach are performed. Results show that the proposed entry guidance approach can adapt to different entry missions and is able to make the vehicle reach the prescribed target point precisely in spite of geographic constraints.

  3. [Effect of Soil and Dominant Plants on Mercury Speciation in Soil and Water System of Water-Level-Fluctuation Zone in the Three Gorges Area].

    Science.gov (United States)

    Liang, Li; Wang, Yong-min; Zhang, Cheng; Yu, Ya-wei; An, Si-wei; Wang, Ding-yong

    2016-03-15

    Plentiful plants in the water-level-fluctuation-zone (WLFZ) of Three Gorges Reservoir ( TGR) grow vigorously during the non-flooded period, especially the herbaceous ones. Then, the WLFZ is submerged gradually from the end of September. Soil-plant system that under a long time flooded condition may change the form of mercury, thus resulting in a secondary pollution of the water environment in TGR. To understand the characteristics of mercury species in soils and water after submerged, four kinds of typical plants from TGR were tested in the lab under submerged condition. The results indicated that the plants could promote the formation of soil methylmercury ( MeHg) , and had a significant effect on the different forms of mercury concentrations of the overlying water during inundation. Cynodon dactylon as the dominant species in WLFZ, because of its higher content of total mercury ( THg ) and methylmercury, the effect on MeHg and the other forms of mercury in the soil and the overlying water system was obvious. After 90 days, the soil MeHg level was the highest in Cynodon dactylon & soil & water treatment (B1) [(1,135.86 ± 113.84) ng · kg⁻¹]. It was approximately 2 times less than that of the soil MeHg in soil & water treatment (CK2) . The variation characteristics of total mercury (THg), reactive mercury (RHg) , dissolved mercury (DHg), total methylmercury (TMeHg) and dissolved methylmercury (DMeHg) of overlying water all showed a parabolic shape with a peak skewed to the left, and the peak was reached on the 30th day. Meanwhile, TMeHg, THg and DHg in B1 treatment were the highest, which were (2.88 ± 0.06), (40.29 · 2.42) and (35.51 · 3.77) ng · L⁻¹ respectively, and TMeHg and THg in the overlying water were mainly in the form of dissolved state. Therefore, it could be inferred that the water consumption of the Three Gorges reservoir would increase the mercury pollution load of the reservoir.

  4. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-07-01

    to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.

  5. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Atlanta, GA (United States); Francisco, A. [Southface Energy Inst., Atlanta, GA (United States); Roberts, S. G. [Southface Energy Inst., Atlanta, GA (United States)

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas.

  6. Gulf Coast Water Port Facilities Study. Appendix A. Western Gulf Hydrobiological Zones.

    Science.gov (United States)

    1973-04-01

    Madre (northern), are separated by the extensive, dry, and nearly barren Saltillo Flats, almost midway along the north-south line of the complex...including Saltillo Flats, is about 460,000 acres. The latter, which divides the Laguna into two major parts, is composed of layered sand and mud. It is... Saltillo Lower Laguna Madre Bay Flats Madre Total area (sq mi) 124.0 85.0 134.0 400.0 Area of water (sq mi) 120.0 - 0.0 270.0 Length (mi) 50.0 15.0 21.0

  7. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  8. IDENTIFICATION OF DANGER ZONES FOR SURFACE WATER USING GIS (SIP – MAPINFO SYSTEM ON AN EXAMPLE OF UPPER NAREW RIVER CATCHMENT

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-07-01

    Full Text Available Creating the buffer zones is a function intended to designate an area in particular, of a constant distance around the spatial objects. The aim of the study was to create maps as thematic layers, which served to identify areas of existing and potential contamination of surface water and other environmental elements. Among others, it made possible to localize the areas potentially affected by the surface water pollution due to transport; localize the areas potentially affected by the surface water pollution due to the discharge of sewage from human settlements; localize the zones with mitigated impact of communication emissions due to the natural protection of forests taking the form of so-called geochemical barriers. The spatial analyzes allowed to generate model-zones of the existing and potential threat of water pollution in the Narew river catchment. Designated danger zones can be verified by studies as well as they can be very helpful in determining the monitoring network and for water quality modeling process.

  9. Limitations of empirical sediment transport formulas for shallow water and their consequences for swash zone modelling

    CERN Document Server

    Li, Wei; Pähtz, Thomas; He, Zhiguo; Cao, Zhixian

    2016-01-01

    Volumetric sediment concentrations computed by phase-resolving swash morphodynamic models are shown to exceed unity minus porosity (i.e. the maximal physically possible concentration value) by up to factor of $10^5$ when using standard expressions to compute the sediment transport rate. An ad hoc limit of sediment concentration is introduced as a means to evaluate consequences of exceeding physically realistic concentration by standard expressions. We find that implementation of this ad hoc limit strongly changes the quantitative and qualitative predictions of phase-resolving swash morphodynamic models, suggesting that existing swash predictions are unreliable. This is because standard expressions inappropriately consider or ignore the fact that the shallow swash water depth limits the storage capacity of transported sediment.

  10. Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka.

    Science.gov (United States)

    Edirisinghe, E A N V; Manthrithilake, H; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L

    2017-09-26

    Chronic kidney disease of unknown etiology (CKDu) is the main health issue in the dry zone of Sri Lanka. Despite many studies carried out, causative factors have not been identified yet clearly. According to the multidisciplinary researches carried out so far, potable water is considered as the main causative factor for CKDu. Hence, the present study was carried out with combined isotopic and chemical methods to understand possible relationships between groundwater; the main drinking water source, and CKDu in four endemic areas in the dry zone. Different water sources were evaluated isotopically ((2)H, (3)H and (18)O) and chemically from 2013 to 2015. Results revealed that prevalence of CKDu is significantly low with the groundwater replenished by surface water inputs. It is significantly high with the groundwater stagnated as well as groundwater recharged from regional flow paths. Thus, the origin, recharge mechanism and flow pattern of groundwater, as well as geological conditions which would be responsible for natural contamination of groundwater appear as the main causative factors for CKDu. Therefore, detailed investigations should be made in order to identify the element(s) in groundwater contributing to CKDu. The study recommends providing drinking water to the affected zones using water sources associated with surface waters.

  11. Coastal Zone of Cameroon

    African Journals Online (AJOL)

    Water, Salt and Nutrients Budgets of Two Estuaries in the. Coastal Zone of ... in destabilization of plankton communities, resulting in high ...... The water exchange time (1) was. 315 and 48 days in ..... account. Know your Milieu Series. Limbe,.

  12. Shuttle entry guidance

    Science.gov (United States)

    Harpold, J. C.; Graves, C. A., Jr.

    1978-01-01

    This paper describes the design of the entry guidance for the Space Shuttle Orbiter. This guidance provides the steering commands for trajectory control from initial penetration of the earth's atmosphere until the terminal area guidance is activated at an earth-relative speed of 2500 fps. At this point, the Orbiter is at a distance of about 50 nmi from the runway threshold, and at an altitude of about 80,000 ft. The entry guidance design is based on an analytic solution of the equations of motion defining the drag acceleration profile that meets the terminal criteria of the entry flight while maintaining the flight within systems and operational constraints. Guidance commands, which are based on a control law that ensures damping of oscillatory type trajectory motion, are computed to steer the Orbiter to this drag acceleration profile.

  13. Mantle transition zone beneath a normal seafloor in the northwestern Pacific: Electrical conductivity, seismic discontinuity, and water content

    Science.gov (United States)

    Matsuno, Tetsuo; Suetsugu, Daisuke; Utada, Hisashi; Baba, Kiyoshi; Tada, Noriko; Shimizu, Hisayoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki

    2016-04-01

    We conducted a joint electromagnetic and seismic field experiment to probe water content reserved in the mantle transition zone (MTZ) beneath a normal seafloor around the Shatsky Rise in the northwestern Pacific. Specifically for the investigation of the MTZ structure, we developed new ocean bottom instruments for providing higher S/N ratio data and having higher mobility in field experiment than ever. We installed our state-of-the-art instruments in two arrays to the north and south of the Shatsky Rise for 5 years from 2010 to 2015. We first analyzed data obtained in our and previous studies to elucidate an electrical conductivity structure through the magnetotelluric and geomagnetic depth sounding methods and seismic discontinuity depths or thickness of the MTZ through the P-wave receiver function method. An electrical conductivity structure beneath two observational arrays is represented well by an average 1-D model beneath the northern Pacific. A MTZ thickness beneath the north array is thicker than a global average of MTZ thickness by 22 km, and that beneath the south array is similar to the average. For estimating water content in the MTZ, we implemented a series of forward modeling of the electromagnetic responses based on the average 1-D electrical conductivity model, temperature profiles of the MTZ involving temperature anomalies estimated from the MTZ thickness perturbations, and electrical conductivities of dry and hydrous MTZ materials (wadsleyite and ringwoodite). A result of the forward modeling indicates that the maximum water content in the MTZ beneath the north array is 0.5 wt.%.

  14. Water requirement and irrigation schedule for tomato in northern guinea savanna zone, Nigeria

    Directory of Open Access Journals (Sweden)

    Ibraheem Alhassan

    2015-06-01

    Full Text Available Assessment of water requirement and irrigation schedule for tomato with the support of FAO-CROPWAT simulation model was carried out for Yola, Nigeria with the aim of planning irrigation schedules for tomato and develop recommendations for improve irrigation practices. The climatic data for 2012/2013 and soil properties of the study area were input into the program. Tomato crop properties were updated by the FAO data and three irrigation intervals were tested (7 and 10 days irrigation intervals and irrigation schedule of 10 days interval during initial and development stage and 6 days interval at mid and late season stages of tomato crop. The simulated results analysis for tomato according to the irrigation schedule showed that highest yield reduction of 16.2% was recorded with 10 days irrigation interval treatment and the least of 0.4% with irrigation interval of 10 days at first two growth stages and 6 days at last two stages. FAO-CROPWAT 8.0 can be used in planning proper irrigation schedule for tomato in Yola, Nigeria.

  15. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Upper Marlboro, MD (United States); Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  16. Modelling carbon and water flows in terrestrial ecosystems in the boreal zone - examples from Oskarshamn

    Energy Technology Data Exchange (ETDEWEB)

    Karlberg, Louise [Stockholm Environment Institute (SEI), Stockholm (Sweden); Gu stafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Dept. of Land and Water Resources Engineering, Stockholm (Sweden)

    2007-12-15

    Carbon budgets and mean residence times were estimated in four hypothetical ecosystems. The greatest uncertainties in the estimations lie in the calculation of fluxes to and from the field layer. A parametrisation method based on multiple criteria, synthesising a wide range of empirical knowledge on ecosystem behaviour, proved to be useful both in the estimation of unknown parameters, to demonstrate model sensitivity, and to identify processes where our current knowledge is limited. The parameterizations derived from the study of the hypothetical systems were used to estimate site-specific carbon and water budgets for four ecosystems located within the Oskarshamn study-area. Measured soil respiration was used to calibrate the simulations. An analysis of the simulated carbon fluxes indicated that two of the ecosystems, namely the grassland and the spruce forest, were net sources of carbon dioxide, while the alder and the pine forest were net sinks of CO{sub 2}. In the former case, this was interpreted as a result of recent drainage of the organogenic soils and the concurrent increase in decomposition. The results from the study conformed rather well with results from a previous study on carbon budgets from the Oskarshamn study area.

  17. Numerical simulation of water-entry in a horizontal circular cylinder using the volume of fluid (VOF) method%应用VOF方法的水平圆柱入水数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈宇翔; 郜冶; 刘乾坤

    2011-01-01

    In order to study the slamming problem of a horizontal circular cylinder, a numerical water tank was set up. While water was entering a neutrally buoyant circular cylinder, the volume of fluid ( VOF) method coupled with the dynamic mesh method was used to simulate the liquid-gas multiphase flow and the cylinder motion. Free surface deformation such as jet formation, movement, and the air cushion effect was captured; vertical motion of the cylinder was predicted and the turbulent effect of the water-entry into the cylinder was discussed. Favorable agreement was obtained between computational results and the datas of the experiments. The cylinder motion was also predicted accurately by the computation and the turbulent effect was not significant during the water-entry into the cylinder.%为了研究水平圆柱砰击入水问题,建立了数值水池,应用VOF结合动网格技术的方法对零浮力水平圆柱入水过程的气液两相流动和刚体运动耦合的问题进行了数值模拟.捕捉了圆柱入水过程中射流的形成、运动和空气垫效应等自由表面的变化现象,模拟了圆柱竖直运动过程;讨论了湍流粘性对圆柱入水的影响.结果表明:圆柱入水的数值模拟结果和实验数据符合很好;圆柱运动轨迹同样和实验吻合;湍流粘性对圆柱入水过程影响很小.

  18. Spatial and temporal trends in order richness of marine phytoplankton as a tracer for the exchange zone between coastal and open waters

    NARCIS (Netherlands)

    Jung, A.S.; Bijkerk, R.; van der Veer, H.W.; Philippart, C.J.M.

    2016-01-01

    Quantifying exchange of particulate matter between coastal and open waters is an important and often unresolved issue. Here, we apply phytoplankton order richness as an innovative marine tracer to identify the geographic position of a coastal exchange zone in the SE North Sea, including its variabil

  19. Entire Catchment and Buffer Zone Approaches to Modeling Linkage Between River Water Quality and Land Cover——A Case Study of Yamaguchi Prefecture, Japan

    Institute of Scientific and Technical Information of China (English)

    Bahman Jabbarian AMIRI; Kaneyuki NAKANE

    2008-01-01

    This study investigated the linkages between fiver water quality and land use in river catchments in Yama-guchi Prefecture, the western Japan, in order to examine the effect of land use changes of both entire catchment andbuffer zone on river water quality. Dissolved Oxygen (DO), pH, Biological Oxygen Demand (BOD), Suspended Solids(SS), Escherichia coli, Total Nitrogen (TN) and Total Phosphorus (TP) were eousidered as river water quality indica-tors. Satellite images were applied to generating the land use map. Multiple regression model was applied to linkingthe changes in the fiver water quality with the land uses in both entire catchment area and buffer zone. The results in-dicate that the integrative application of land use data from the entire catchment and the buffer zone could give rise tomore robust model to predict the concentrations of Suspended Solids (r2=0.88) and Total Nitrogen (r2=0.90), ratherthan models which separately considered land use data in catchment and buffer zone.

  20. 航行器垂直入水空泡特性与流体动力研究%Research on Cavitation and Hydrodynamic of Vertical Water- Entry for Supercavitating Vehicles

    Institute of Scientific and Technical Information of China (English)

    胡平超; 张宇文; 袁绪龙

    2011-01-01

    Study on caviting shape and hydrodynamic on vertical water - entry of supercavitating vehicles.Based on standard k - ε model, the unsteady cavity character in a longitudinal gravity force field was numerically simulated by using 3D dynamic mesh technique during the supercavitating vehicle vertical enter water.Result shows that the angle of attack is larger, the asymmetry of the cavity is more obvious, the cavity of the confronted stream surface is shorter and thinner, the cavity of the opposing stream surface is longer and thicker, and the time difference of the closed cavity of the confronted and the opposing stream surface is longer.The angle of attack is larger, the hydrodynamic coefficient is larger; at the same water - entry depth, the slop of the drag coefficient curve is approximate equivalent at different angle of attack, and the slop of the lift coefficient curve and the pitching moment coefficient curve is larger with a larger angle of attack.The result can be used for research on water - entry trajectory.%研究超空泡航行器垂直入水空泡形态与流体动力特性,针对空泡出现流体动力特性改变,为了确定入水参数,根据标准k-E模型,采用三维动网格技术,对超空泡航行器入水过程重力场下非定常空泡特性以及流体动力参数进行了数值仿真.得出结果,攻角越大,空泡形态不对称性越明显,迎流面空泡越短越薄,背流面空泡越长越厚,迎流面与背流面的空泡闭合时差越大,且流体动力系数越大.证明对同-入水深度时,从曲线上分析,阻力系数的斜率基本一致,升力系数与俯仰力矩系数的斜率随攻角的增大而增大.研究结果可为入水弹道的研究提供了流体动力参数.

  1. 76 FR 28895 - Safety Zone; Ohio River, Sewickley, PA

    Science.gov (United States)

    2011-05-19

    ... requiring entry into or passage through a safety zone must request permission from the Captain of the Port..., Governmental Actions and Interference with Constitutionally Protected Property Rights. Civil Justice Reform... requiring entry into or passage through a safety zone must request permission from the Captain of the Port...

  2. 18 CFR 33.5 - Proposed accounting entries.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Proposed accounting... § 33.5 Proposed accounting entries. If the applicant is required to maintain its books of account in... present proposed accounting entries showing the effect of the transaction with sufficient detail...

  3. Spatial and seasonal CH4 flux in the littoral zone of Miyun Reservoir near Beijing: the effects of water level and its fluctuation.

    Directory of Open Access Journals (Sweden)

    Meng Yang

    Full Text Available Wetlands, and especially their littoral zones, are considered to be CH4 emissions hotspots. The recent creation of reservoirs has caused a rapid increase in the area of the world's littoral zones. To investigate the effects of water depth and water level fluctuation on CH4 fluxes, and how these are coupled with vegetation and nutrients, we used static closed chamber and gas chromatography techniques to measure CH4 fluxes in the littoral zone of a large reservoir near Beijing, China, from November 2011 to October 2012. We found that CH4 flux decreased significantly along a transect from open water to dry land, from 3.1 mg m(-2 h(-1 at the deep water site to approximately 1.3 mg m(-2 h(-1 at the shallow water site, and less than 0.01 mg m(-2 h(-1 in the non-flooded area. Water level influenced CH4 flux by affecting soil properties including soil redox potential, soil carbon and nitrogen, and bulk density. The largest emission of all was from the seasonally flooded site after a flooding event (up to 21.1 mg m(-2 h(-1, which may have been caused by vegetation decomposition. Submerged sites had greater emissions, while the driest site had lower emissions. Immediately after the monthly measurements had been made, we removed the aboveground vegetation to enable an assessment of the gas transportation per unit of biomass. Removal of biomass decreased emissions by up to 53%. These results indicated the dominant effect of water depth on CH4 flux through effects of soil conditions, plant species composition and distribution. This study suggests that temporally flooded wetlands, including littoral zones, contribute significantly to the global CH4 burden. However, the current challenge is to capture their spatial extent and temporal variation in the fluxes.

  4. Spatial and seasonal CH4 flux in the littoral zone of Miyun Reservoir near Beijing: the effects of water level and its fluctuation.

    Science.gov (United States)

    Yang, Meng; Geng, Xuemeng; Grace, John; Lu, Cai; Zhu, Yi; Zhou, Yan; Lei, Guangchun

    2014-01-01

    Wetlands, and especially their littoral zones, are considered to be CH4 emissions hotspots. The recent creation of reservoirs has caused a rapid increase in the area of the world's littoral zones. To investigate the effects of water depth and water level fluctuation on CH4 fluxes, and how these are coupled with vegetation and nutrients, we used static closed chamber and gas chromatography techniques to measure CH4 fluxes in the littoral zone of a large reservoir near Beijing, China, from November 2011 to October 2012. We found that CH4 flux decreased significantly along a transect from open water to dry land, from 3.1 mg m(-2) h(-1) at the deep water site to approximately 1.3 mg m(-2) h(-1) at the shallow water site, and less than 0.01 mg m(-2) h(-1) in the non-flooded area. Water level influenced CH4 flux by affecting soil properties including soil redox potential, soil carbon and nitrogen, and bulk density. The largest emission of all was from the seasonally flooded site after a flooding event (up to 21.1 mg m(-2) h(-1)), which may have been caused by vegetation decomposition. Submerged sites had greater emissions, while the driest site had lower emissions. Immediately after the monthly measurements had been made, we removed the aboveground vegetation to enable an assessment of the gas transportation per unit of biomass. Removal of biomass decreased emissions by up to 53%. These results indicated the dominant effect of water depth on CH4 flux through effects of soil conditions, plant species composition and distribution. This study suggests that temporally flooded wetlands, including littoral zones, contribute significantly to the global CH4 burden. However, the current challenge is to capture their spatial extent and temporal variation in the fluxes.

  5. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical

  6. Improving Estimates of Root-zone Soil Water Content Using Soil Hydrologic Properties and Remotely Sensed Soil Moisture

    Science.gov (United States)

    Baldwin, D. C.; Miller, D. A.; Singha, K.; Davis, K. J.; Smithwick, E. A.

    2013-12-01

    Newly defined relationships between remotely sensed soil moisture and soil hydraulic parameters were used to develop fine-scale (100 m) maps of root-zone soil moisture (RZSM) content at the regional scale on a daily time-step. There are several key outcomes from our research: (1) the first multi-layer regional dataset of soil hydraulic parameters developed from gSSURGO data for hydrologic modeling efforts in the Chequemegon Ecosystem Atmospheric Study (ChEAS) region, (2) the operation and calibration of a new model for estimating soil moisture flow through the root-zone at eddy covariance towers across the U.S. using remotely sensed active and passive soil moisture products, and (3) region-wide maps of estimated root-zone soil moisture content. The project links soil geophysical analytical approaches (pedotransfer functions) to new applications in remote sensing of soil moisture that detect surface moisture (~5 cm depth). We answer two key questions in soil moisture observation and prediction: (1) How do soil hydrologic properties of U.S. soil types quantitatively relate to surface-to-subsurface water loss? And (2) Does incorporation of fine-scale soil hydrologic parameters with remotely sensed soil moisture data provide improved hindcasts of in situ RZSM content? The project meets several critical research needs in estimation of soil moisture from remote sensing. First, soil moisture is known to vary spatially with soil texture and soil hydraulic properties that do not align well with the spatial resolution of current remote sensing products of soil moisture (~ 50 km2). To address this, we leveraged new advances in gridded soil parameter information (gSSURGO) together with existing remotely sensed estimates of surface soil moisture into a newly emerging semi-empirical modeling approach called SMAR (Soil Moisture Analytical Relationship). The SMAR model was calibrated and cross-validated using existing soil moisture data from a portion of AMERIFLUX tower sites and

  7. 分区供水模式在南大地区供水规划中的应用%Application of Zoning Water Supply Pattern for Water Supply Planning in Nanda Area

    Institute of Scientific and Technical Information of China (English)

    彭丽娜

    2012-01-01

    分区水量计量(DMA)是控制供水管网漏损的一种经济有效的技术,该文通过分析上海南大地区的自然地理、交通及供水区位等特征,对其分区供水方案进行了研究,并与传统环网供水模式进行了比较,最后指出在规划阶段进行DMA划分可以有效地保证分区管网的独立性,建设成本较低,可提高分区供水系统的技术合理性.%The district metering area (DMA) of zoning water supply pattern is a cost-effective technology to control water loss. Based on the feature of geography, traffic and water supply location, the zoning water supply system in Nanda Area was established, which was compared with the traditional looped water supply pattern. It is pointed out that DMA division in planning period can guarantee the independence of the zoning network, lower the construction cost and improve the technical rationality of the zoning water supply system.

  8. Determination of bromate in drinking water by zone electrophoresis-isotachophoresis on a column-coupling chip with conductivity detection.

    Science.gov (United States)

    Bodor, Róbert; Kaniansky, Dusan; Masár, Marián; Silleová, Katarína; Stanislawski, Bernd

    2002-10-01

    The use of capillary zone electrophoresis (CZE) on-line coupled with isotachophoresis (ITP) sample pretreatment (ITP-CZE) on a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to the determination of bromate in drinking water was investigated. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the ITP-CZE separations. A high sample load capacity, linked with the use of ITP in this combination, made possible loading of the samples by a 9.2 microL sample injection channel of the chip. In addition, bromate was concentrated by a factor of 10(3) or more in the ITP stage of the separation and, therefore, its transfer to the CZE stage characterized negligible injection dispersion. This, along with a favorable electric conductivity of the carrier electrolyte solution, contributed to a 20 nmol/L (2.5 ppb) limit of detection for bromate in the CZE stage. Sample cleanup, integrated into the ITP stage, effectively complemented such a detection sensitivity and bromate could be quantified in drinking water matrices when its concentration was 80 nmol/L (10 ppb) or slightly less while the concentrations of anionic macroconstituent (chloride, sulfate, nitrate) in the loaded sample corresponding to a 2 mmol/L (70 ppm) concentration of chloride were still tolerable. The samples containing macroconstituents at higher concentrations required appropriate dilutions and, consequently, bromate in these samples could be directly determined only at proportionally higher concentrations.

  9. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China.

    Science.gov (United States)

    Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa

    2011-07-15

    The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period.

  10. Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone

    Science.gov (United States)

    Landon, M. K.; Delin, G. N.; Komor, S. C.; Regan, C. P.

    1999-10-01

    Soil water collected from suction lysimeters and wick samplers buried in the unsaturated zone of a sand and gravel aquifer and extracted from soil cores were analyzed for stable oxygen and hydrogen isotope values. Soil water isotopic values differed among the three sampling methods in most cases. However, because each sampling method collected different fractions of the total soil-water reservoir, the isotopic differences indicated that the soil water at a given depth and time was isotopically heterogeneous. This heterogeneity reflects the presence of relatively more and less mobile components of soil water. Isotopic results from three field tests indicated that 95-100% of the water collected from wick samplers was mobile soil water while samples from suction lysimeters and cores were mixtures of more and less mobile soil water. Suction lysimeter samples contained a higher proportion of more mobile water (15-95%) than samples from cores (5-80%) at the same depth. The results of this study indicate that, during infiltration events, soil water collected with wick samplers is more representative of the mobile soil water that is likely to recharge ground water during or soon after the event than soil water from suction lysimeters or cores.

  11. Deployable Entry-system Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Deployable Entry-system ProjecT (ADEPT) will develop requirements for the ADEPT flight test.  Prior entry systems used high mass thermal protection...

  12. REMOVAL OF CHEMICAL AND MICROBIAL CONTAMINANTS IN DRINKING WATER - WATTS PREMIER M-2400 POINT-OF-ENTRY REVERSE OSMOSIS DRINKINGWATER TREATMENT SYSTEM

    Science.gov (United States)

    The Watts Premier M-2400 POE RO Drinking Water Treatment System was tested at the NSF Drinking Water Treatment Systems Laboratory for removal of the viruses fr and MS2, the bacteria Brevundimonas diminuta, and chemicals aldicarb, benzene, cadmium, carbofuran, cesium, chl...

  13. REMOVAL OF CHEMICAL AND MICROBIAL CONTAMINANTS IN DRINKING WATER - WATTS PREMIER M-2400 POINT-OF-ENTRY REVERSE OSMOSIS DRINKINGWATER TREATMENT SYSTEM

    Science.gov (United States)

    The Watts Premier M-2400 POE RO Drinking Water Treatment System was tested at the NSF Drinking Water Treatment Systems Laboratory for removal of the viruses fr and MS2, the bacteria Brevundimonas diminuta, and chemicals aldicarb, benzene, cadmium, carbofuran, cesium, chl...

  14. Re-entry and simulation

    Science.gov (United States)

    Jian, H.; Guangming, X.

    1983-11-01

    The physics of re-entry are discussed with emphasis on the re-entry trajectory of a ballistic missile. Factors discussed include re-entry speed, ablation, aerodynamic heating, and the plasma sheath shield. Experimental techniques used to simulate the aerodynamics and performance of missile systems include the computer, the wind tunnel, and free flight. Each of these is briefly discussed.

  15. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    Science.gov (United States)

    Peters, C.A.; Striegl, R.G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  16. BUILDING CONCEPTUAL AND MATHEMATICAL MODEL FOR WATER FLOW AND SOLUTE TRANSPORT IN THE UNSATURATED ZONE AT KOSNICA SITE

    Directory of Open Access Journals (Sweden)

    Stanko Ružičić

    2012-12-01

    Full Text Available Conceptual model of flow and solute transport in unsaturated zone at Kosnica site, which is the basis for modeling pollution migration through the unsaturated zone to groundwater, is set up. The main characteristics of the unsaturated zone of the Kosnica site are described. Detailed description of investigated profile of unsaturated zone, with all necessary analytical results performed and used in building of conceptual models, is presented. Experiments that are in progress and processes which are modeled are stated. Monitoring of parameters necessary for calibration of models is presented. The ultimate goal of research is risk assessment of groundwater contamination at Kosnica site that has its source in or on unsaturated zone.

  17. 33 CFR 151.08 - Denial of entry.

    Science.gov (United States)

    2010-07-01

    ... BALLAST WATER Implementation of MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships General § 151.08 Denial of entry. (a) Unless a ship...

  18. Fishery biology of the jumbo flying squid Dosidicus gigas off the Exclusive Economic Zone of Chilean waters

    Directory of Open Access Journals (Sweden)

    Bilin Liu

    2010-11-01

    Full Text Available The jumbo flying squid Dosidicus gigas is widely distributed in the eastern Pacific Ocean and supports an important fishery. Although many studies have been carried out on the biology of this species, limited biological information is available in the waters outside the Exclusive Economic Zone of Chile (EEZ (20°S-41°S and 74°30’W-84°W. Three surveys were conducted in this area by the Chinese squid jigging vessels during the period from April 2006 to May 2008. The majority of the catch in the survey was from the two areas defined by 37°30’-41°S and 78°30’-80°W and by 25°-30°S and 76°-77°30’W. The sex ratio (M: F of the catch was 1: 2.48. The mean mantle length (ML was 376 mm for males with a range of 257-721 mm and 388.7 mm for females with a range of 236-837 mm. Two distinguished size classes, medium- and large-sized groups, were identified in this study with the medium-sized group (350-450 mm ML consisting of 89% of the total catch. The sizes at first sexual maturity were 638 mm ML for females and 565 mm ML for males. This study suggests that all the individuals examined were hatched from March 2007 to February 2008, indicating that D. gigas might spawn all year around with a peak spawning time from November 2007 to January 2008. Most of the stomachs analyzed had food remains. The preys included three major groups: fish (mainly lanternfish, cephalopods and crustaceans, but D. gigas was the dominant species in the stomach contents, showing strong evidence of cannibalism. The information obtained from this study improves our understanding of the fishery biology of D. gigas off Chile.

  19. 19 CFR 146.70 - Transfer of zone-restricted merchandise into Customs territory.

    Science.gov (United States)

    2010-04-01

    ... Customs territory. 146.70 Section 146.70 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... a Zone § 146.70 Transfer of zone-restricted merchandise into Customs territory. (a) General. Zone-restricted merchandise may be transferred to Customs territory only for entry for exportation, for entry...

  20. 脊髓后根入髓区切开术治疗创伤后幻肢痛的长期疗效分析%LONG-TERM EFFECTS OF DORSAL ROOT ENTRY ZONE LESIONS ON POST-TRAUMATIC PHANTOM LIMB PAIN

    Institute of Scientific and Technical Information of China (English)

    郑喆; 胡永生; 胡志伟; 陶蔚; 张晓华; 李勇杰

    2011-01-01

    Objective: To evaluate the long-term therapeutic effects of dorsal root entry zone (DREZ) lesions on post-traumatic phantom limb pain. Methods: 16 patients who underwent DREZ lesions for posttraumatic phantom limb pain were studied. Root avulsion was found in 14 patients. Oral pain relief (0% ~ 100% ) and surgical complications were followed up. Satisfactory result was defined as 50% to 100% oral pain relief. Results: The average follow-up period was 24.0 ± 15.0 months (ranged 6 months to 4 years) , and 11 patients got satisfactory pain relief. There was only one patient with severe surgical complication (severe sensory disturbance in the ipsilateral lower limb). Conclusion: Good long-term results could be obtained in patients with post-traumatic phantom limb pain after DREZ lesions.%目的:评价脊髓后根入髓区(dorsal root entry zone,DREZ)切开术治疗创伤后幻肢痛的长期疗效.方法:16例于2005年至2008年于我院功能神经外科行DREZ切开术的创伤后幻肢痛患者,其中14例有神经根撕脱,2例神经根萎缩.记录患者手术后的口述疼痛缓解率(0%~100%)和并发症,疼痛缓解≥50%认为手术疗效良好.结果:随访6个月至4年,平均24.0±15.0个月,11例(68.8%)患者手术疗效良好.术后出现同侧下肢严重深感觉障碍1例,无其它严重并发症.结论:DREZ切开术治疗创伤后幻肢痛的长期疗效良好.

  1. Cornell Mixing Zone Expert System

    Science.gov (United States)

    This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources

  2. Magnetic susceptibility as a proxy for the hydrobiogeochemical cycling of iron within the water table fluctuation zone at hydrocarbon contaminated sites

    Science.gov (United States)

    Atekwana, E. A.; Enright, A.; Atekwana, E. A.; Beaver, C. L.; Rossbach, S.; Slater, L. D.; Ntarlagiannis, D.

    2016-12-01

    Sharp redox gradients are indicative of enhanced biogeochemical activity and occur at or near the water table. Hydrologic forcing drives changes in redox state and oxygen levels, enhancing the elemental cycling of metals, and coupling different biogeochemical cycles. These coupled hydrobiogeochemical cycles are often difficult to study in the field using geochemical and microbial proxies because of direct sampling limitations, the costs associated with these techniques, and because the dynamic nature of these processes complicates the interpretation of single time point measurements, which may not give accurate representations of prevailing conditions. Geophysical techniques can provide both the spatial and temporal resolution needed to elucidate these processes. Here we investigated the use of magnetic susceptibility (c) as a viable proxy for understanding the biogeochemical cycling of iron at several hydrocarbon contaminated sites where active intrinsic bioremediation is occurring. We performed borehole c logging using a Bartington c probe in the field as well as made c measurements on core samples retrieved from the field sites. Our results show the following: (1) in both sulfate-rich and sulfate-poor aquifers, excursions in c are coincident with zones of free product contamination and are limited to the water table fluctuation (smear) zone; (2) c values within the free product plume and contamination source zones are higher compared to values within the dissolved product plume; (3) high c coincides with zones of elevated Fe (II) and Fe (III) concentrations extracted from aquifer solids; and (4) the mixed valence magnetite and greigite were the dominant magnetic minerals. The c excursions are limited to the water table fluctuation zones because fluctuating water level conditions are hot beds for microbial activity due to the steep hydrocarbon and nutrients and consequently redox gradients. High water levels during periods of recharge favor anaerobic conditions

  3. Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka?

    Science.gov (United States)

    Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana

    2016-06-01

    The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.

  4. Material Weakening of Slip Zone Soils Induced by Water Level Fluctuation in the Ancient Landslides of Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Yu-Yong Jiao

    2014-01-01

    Full Text Available This experimental study investigated the effect of repeated wetting and drying on the reduction of slip zone soils taken from the Huangtupo landslide in the Three Gorges Reservoir, China. The variation process of the physical property and substance composition of the slip zone soils under the wetting-drying cycles was studied through liquid and plastic limit test and X-ray diffraction test. The results indicate that (1 the shearing strength of the slip zone soil dramatically decreased after one wetting-drying cycle and then gradually decreased until reaching a relatively stable state at the fourth cycle; (2 the plasticity index of the slip zone soil varied with increasing number of cycles and a variation process opposite to that of the strength value was observed; and (3 the clay mineral content in the slip zone soil increased and the calcite and quartz contents relatively decreased with increasing number of cycles. The variations in the plasticity index of the slip zone soil, as well as the increase in its clay mineral content, play important roles in the strength reduction. The results of this study provide a foundation for revealing the deformation and damage mechanism of landslides in reservoir banks.

  5. Human injury probability during water entry of free-fall lifeboats: Operational criteria based on long-term simulations using hindcast data

    NARCIS (Netherlands)

    Fouques, S.; Sauder, T.; Reinholdtsen, S.A.; Dam, E. van; Uittenbogaard, J.

    2014-01-01

    The paper addresses the safety of occupants in free-fall lifeboats launched from turret-moored floating production, storage and offloading (FPSO) vessels. It presents a methodology for assessing operational limits with respect to acceleration-induced loads experienced by the passengers during water

  6. Estimation of actual evapotranspiration by numerical modeling of water flow in the unsaturated zone: a case study in Buenos Aires, Argentina

    Science.gov (United States)

    Cesanelli, Andrés; Guarracino, Luis

    2009-03-01

    A method is presented to estimate actual evapotranspiration (ETA) from potential evapotranspiration (ETP) by numerical modeling of water flow in the unsaturated zone. Water flow is described by the Richards equation with a sink term representing the root water uptake. Evaporation is included in the model as a Neumann boundary condition at the soil surface. The Richards equation is solved in a one-dimensional domain using a mixed finite element method. The values of ETA are obtained by applying a water stress factor to ETP to account for soil moisture changes during the simulation period. The proposed numerical model is used to estimate ETA in an experimental plot located in a flatland area in Buenos Aires (Argentina). Numerical results show that the proposed model is a useful tool for evaluating evapotranspiration under different scenarios.

  7. Study on gob-side entry retaining in fully-mechanized longwall with top-coal caving and its application

    Institute of Scientific and Technical Information of China (English)

    Su Hai; Bai Jianbiao; Yan Shuai; Chen Yong; Zhang Zizheng

    2015-01-01

    Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving (GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoret-ical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and road-side backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘roofing control and wall strengthening’ is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly pre-stressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying back-filling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support, and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.

  8. The Effect of Stagnant Water Zones on Retarding Radionuclide Transport in Fractured Rocks: An Extension to the Channel Network Model

    Science.gov (United States)

    Shahkarami, P. Mr; Neretnieks, I. E.

    2016-12-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this contribution is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. A series of deterministic and probabilistic calculations are performed in this study. The deterministic calculations aimed to investigate the overall impact of STWZs in retarding radionuclide transport and their far-field releases at Forsmark, Sweden. While, the probabilistic calculations aimed to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The deterministic calculation results suggest that over the time-scale of the repository safety assessments, the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The probabilistic calculation results suggest that over the short time-scale of the tracer experiment, the effect of diffusion into STWZs is not as pronounced as that of matrix diffusion directly from the flow channel, and the latter remains the main retarding mechanism. Predictions for longer time-scale, tens of years and more, show that the effect of STWZs becomes strong and tends to increase with transport time. It is shown that over the long times of interest for

  9. The effect of stagnant water zones on retarding radionuclide stransport in fractured rocks: An extension to the Channel Network Model

    Science.gov (United States)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-09-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this paper is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. In the first part of the paper, the overall impact of STWZs in retarding radionuclide transport is investigated through a deterministic calculation of far-field releases at Forsmark, Sweden. Over the time-scale of the repository safety assessments, radionuclide breakthrough curves are calculated for increasing STWZ width. It is shown that the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The rest of the paper is devoted to the probabilistic calculation of radionuclide transport in fractured rocks. The model that is developed for transport through a single channel is embedded into the Channel Network Model and new computer codes are provided for the CHAN3D. The program is used to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The required data for the model are obtained from detailed hydraulic tests in boreholes intersecting the rock mass where the tracer tests were made. The simulation results fairly well predict the release of the sorbing tracer 137Cs. It is found that

  10. [Release of mercury from soil and plant in water-level-fluctuating zone of the Three Gorges Reservoir area and its accumulation in zebrafish].

    Science.gov (United States)

    Li, Chu-Xian; Sun, Rong-Guo; Wang, Ding-Yong; Zhao, Zheng; Zhang, Jin-Yang; Ma, Ming; Zhang, Cheng

    2014-07-01

    To investigate the production, distribution and bioavailability of methylmercury (MMHg) in soil and plants of the water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted in laboratory. Results indicated that the level of total mercury (THg) in soil decreased with the lengthening of submerging time while that in water increased obviously. The level of MMHg in inundated soil and water increased, especially in the water treated by Echinochloa crusgalli and soils. And the MMHg level in that treatment was 2.52 times higher than that treated only by soils for 21 days. This indicated that soil and plants of WLFZ were important sources of mercury in the water of the reservoir. Echinochloa crusgalli as the tested plant was decomposed after being submerged, leading to lower pH and DO and higher DOC, which had little effect on MMHg in soil but significant effect on MMHg in water. The level of THg in the head, viscera and muscle of zebrafish increased obviously, which had a significant correlation with that in water (P mercury to water so as to cause elevated levels of MMHg in fish.

  11. Subduction of fracture zones

    Science.gov (United States)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina; Zhu, Guizhi; Leeman, William

    2013-04-01

    Since Wilson proposed in 1965 the existence of a new class of faults on the ocean floor, namely transform faults, the geodynamic effects and importance of fracture zone subduction is still little studied. It is known that oceanic plates are characterized by numerous fracture zones, and some of them have the potential to transport into subduction zones large volumes of water-rich serpentinite, providing a fertile water source for magma generated in subduction-related arc volcanoes. In most previous geodynamic studies, subducting plates are considered to be homogeneous, and there is no clear indication how the subduction of a fracture zone influences the melting pattern in the mantle wedge and the slab-derived fluids distribution in the subarc mantle. Here we show that subduction of serpentinized fracture zones plays a significant role in distribution of melt and fluids in the mantle wedge above the slab. Using high-resolution tree-dimensional coupled petrological-termomechanical simulations of subduction, we show that fluids, including melts and water, vary dramatically in the region where a serpentinized fracture zone enters into subduction. Our models show that substantial hydration and partial melting tend to concentrate where fracture zones are being subducted, creating favorable conditions for partially molten hydrous plumes to develop. These results are consistent with the along-arc variability in magma source compositions and processes in several regions, as the Aleutian Arc, the Cascades, the Southern Mexican Volcanic Arc, and the Andean Southern Volcanic Zone.

  12. WTAQ version 2-A computer program for analysis of aquifer tests in confined and water-table aquifers with alternative representations of drainage from the unsaturated zone

    Science.gov (United States)

    Barlow, Paul M.; Moench, Allen F.

    2011-01-01

    The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.

  13. Hydrous melting and partitioning in and above the mantle transition zone: Insights from water-rich MgO-SiO2-H2O experiments

    Science.gov (United States)

    Myhill, R.; Frost, D. J.; Novella, D.

    2017-03-01

    Hydrous melting at high pressures affects the physical properties, dynamics and chemical differentiation of the Earth. However, probing the compositions of hydrous melts at the conditions of the deeper mantle such as the transition zone has traditionally been challenging. In this study, we conducted high pressure multianvil experiments at 13 GPa between 1200 and 1900 °C to investigate the liquidus in the system MgO-SiO2-H2O. Water-rich starting compositions were created using platinic acid (H2Pt(OH)6) as a novel water source. As MgO:SiO2 ratios decrease, the T -XH2O liquidus curve develops an increasingly pronounced concave-up topology. The melting point reduction of enstatite and stishovite at low water contents exceeds that predicted by simple ideal models of hydrogen speciation. We discuss the implications of these results with respect to the behaviour of melts in the deep upper mantle and transition zone, and present new models describing the partitioning of water between the olivine polymorphs and associated hydrous melts.

  14. MAPPING OF ECOLOGICALLY VULNERABLE ZONES AND REGIONS OF WATER AREAS AND SHORELINES WITH PRIORITY PROTECTION AGAINST SPILLS OF OIL AND OIL PRODUCTS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Aleksey Knizhnikov

    2011-01-01

    Full Text Available Map development for ecologically vulnerable zones and regions of water areas and shorelines with priority protection against spills of oil and oil products is important because of (1 the population’s concern about the growing technological load on nature, and (2 the need to comply with the existing state legislation. At present there is no general methodology for development of vulnerability maps in Russian Federation. The integral maps to be used in prevention and control of oil spills should represent data about ecological vulnerability to oil of both coastal and water ecosystems and information about legally protected objects, zones and regions. A set of maps showing absolute and relative integral vulnerability of particular water areas allows analyzing spatial-temporal dynamics of this indicator. The most vulnerable areas (regions of the water area could be selected, as well as the most dangerous seasons. Recommendations are elaborated in order to organize the most effective protection of the environment against any possible emergency spills of oil and oil products.

  15. Using water and sanitation as an entry point to fight poverty and respond to HIV/AIDS: the case of Isulabasha small medium enterprise

    CSIR Research Space (South Africa)

    Manase, G

    2009-09-01

    Full Text Available components; a 2 litre Coca Cola plastic bottle which acts as the water container and a plastic valve fitted at the top of the 2 litre bottle. The Handwashing dispenser can be fitted easily on a strategic position on the wall of the VIP making it easy..., South Africa was remarkably number 55 in the world (i.e. out of 171 countries) based on the Gross Domestic Product (GDP) index which is a measure of economic growth. However, in the same year South Africa ranked number 121 on the Human Development...

  16. 19 CFR 142.17 - One entry summary for multiple entries.

    Science.gov (United States)

    2010-04-01

    ...; DEPARTMENT OF THE TREASURY (CONTINUED) ENTRY PROCESS Entry Summary Documentation § 142.17 One entry summary... for which entries or immediate transportation entries have been filed. However, this provision is not.... (ii) Immediate transportation entries. Immediate transportation entries may be consolidated if the...

  17. Membrane fusion during poxvirus entry.

    Science.gov (United States)

    Moss, Bernard

    2016-12-01

    Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.

  18. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  19. Influence of frontal zones on the distribution of particulate matter and organic compounds in surface waters of the Atlantic and Southern Oceans

    Science.gov (United States)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Kravchishina, M. D.; Redzhepova, Z. Yu.

    2015-10-01

    Particulate matter and organic compounds (chlorophyll, lipids, and hydrocarbons) were analyzed in surface waters along the routes of R/Vs Akademik Fedorov (cruise 32) and Akademik Treshnikov (cruise 2) in February-May of 2012 and 2014, respectively, in the course of the 57th and 59th Russian Antarctic expeditions. It was found that the frontal zones exert the primary influence on the concentrations of the mentioned components in the Southern Ocean and in the western part of the Atlantic Ocean. The supply of pollutants into the Eastern Atlantic Ocean on the shelf of the Iberian peninsula results in a pronounced increase in the concentrations of lipids and hydrocarbons causing local anthropogenic pollution zones.

  20. Shuttle entry guidance revisited

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-08-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  1. Shuttle entry guidance revisited

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-01-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  2. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Assessment of surface water pollutant models of estuaries and coastal zone of Quang Ninh – Hai Phong using Spot-5 images

    Directory of Open Access Journals (Sweden)

    Ke Luong Chinh

    2015-06-01

    Full Text Available The coastal zone and estuaries of Quang Ninh and Hai Phong have great potential not only for economic development but also for protection and conservation of biodiversity and ecosystem. Nowadays, due to industrial, agricultural and anthropogenic activities signs of water pollution in the region have been found. The level of surface water pollution can be determined by traditional methods through observatory stations. However, a traditional approach to determine water contamination is discontinuous, and thereby makes pollution assessment of the entire estuary very difficult. Nowadays, remote sensing technology has been developed and widely applied in many fields, for instance, in monitoring water environments. Remote sensing data combined with information from in-situ observations allow for extraction of polluted components in water and accurate measurements of pollution level in the large regions ensuring objectivity. According to results obtained from Spot-5 imagery of Quang Ninh and Hai Phong, the extracted pollution components, like BOD, COD and TSS can be determined with the root mean square error, the absolute mean error and the absolute mean percentage error (%: ±4.37 (mg/l 3.86 (mg/l, 27%; ±55.32 (mg/l, 48.30 (mg/l, 14%; and ±32.90 (mg/l, 23.38 (mg/l, 28%; respectively. Obtained outcomes guarantee objectivity in assessing water contaminant levels in the investigated regions and show the advantages of remote sensing applications in Resource and Environmental Monitoring in relation to Water – Air – Land.

  4. Water quality, biodiversity, and codes of practice in relation to harvesting forest plantations in streamside management zones

    Science.gov (United States)

    Daniel G. Neary; Philip J. Smethurst; Brenda Baillie; Kevin C. Petrone

    2011-01-01

    Streamside management zones (SMZs) are special landscape units that include riparian areas and adjacent lands that mitigate the movement of sediment, nutrients and other chemicals from upland forest and agricultural management areas into streams. The size, shape, and management of SMZs are governed by various combinations of economic, ecological, and regulatory factors...

  5. Assessing vulnerability mapping and protection zones of karst spring waters and validating by the joint use of natural and artificial tracers. The case of Auta Spring (Southern Spain)

    Science.gov (United States)

    Marín, Ana Isabel; Mudarra, Matías; Andreo, Bartolomé

    2016-04-01

    Delineation of protection zones for water supply and implementation of proper land-use practices in surrounding areas are crucial aspects for a sustainable use of valuable drinking water resources. This is even more important in karst aquifers, which are particularly sensitive to contamination, having a very low self-cleaning capacity due to their structure and hydrological behavior. Consequently, specific methodologies adapted to the particular characteristics of karst media are necessary. In this work, an approach for protection zoning of the pilot site of Auta karst spring (southern Spain) is proposed, based on the application of COP+K method for contamination vulnerability and validation of results by natural (organic) tracers of infiltration (NO3-, TOC, intrinsic fluorescence) and by a dye tracer test conducted on June, 2011 (injecting 500 mg uranine). The aquifer drained by Auta spring (8.5 km2) presents a complex geological structure, formed by Jurassic dolostones and limestones highly folded and fractured. Recharge takes place by the infiltration of rainfall through karst landforms and also by losses in an adjacent river when it flows over the carbonate outcrops (dye injection point). Drainage is mainly through several springs located at the southwest, including Auta spring and 5 overflow springs. The source vulnerability map obtained by applying COP+K method can be adopted as the baseline to delineate the protection zones, through the conversion from vulnerability classes to degrees of protection. Dye tracer test and natural tracers of infiltration corroborate that aquifer sectors influenced by the river can be extremely vulnerable to pollution, but also well-developed exokarst features. In fact, slight evidences of pollution have been detected during the study period, with relatively-high NO3- contents and high fluorescence linked to bacteriological activity in Auta spring water. The jointly use of natural and artificial tracers constitute a reliable and

  6. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. S. Rood

    2010-10-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  7. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    A. S. Rood

    2009-04-01

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each

  8. Geophysical delineation of the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards Aquifer, Travis and Hays Counties, Texas, September 2006

    Science.gov (United States)

    Payne, J.D.; Kress, W.H.; Shah, S.D.; Stefanov, J.E.; Smith, B.A.; Hunt, B.B.

    2007-01-01

    During September 2006, the U.S. Geological Survey, in cooperation with the Barton Springs/Edwards Aquifer Conservation District, conducted a geophysical pilot study to determine whether time-domain electromagnetic (TDEM) sounding could be used to delineate the freshwater/saline-water transition zone in the Barton Springs segment of the Edwards aquifer in Travis and Hays Counties, Texas. There was uncertainty regarding the application of TDEM sounding for this purpose because of the depth of the aquifer (200-500 feet to the top of the aquifer) and the relatively low-resistivity clayey units in the upper confining unit. Twenty-five TDEM soundings were made along four 2-3-mile-long profiles in a study area overlying the transition zone near the Travis-Hays County boundary. The soundings yield measurements of subsurface electrical resistivity, the variations in which were correlated with hydrogeologic and stratigraphic units, and then with dissolved solids concentrations in the aquifer. Geonics Protem 47 and 57 systems with 492-foot and 328-foot transmitter-loop sizes were used to collect the TDEM soundings. A smooth model (vertical delineation of calculated apparent resistivity that represents an estimate [non-unique] of the true resistivity) for each sounding site was created using an iterative software program for inverse modeling. The effectiveness of using TDEM soundings to delineate the transition zone was indicated by comparing the distribution of resistivity in the aquifer with the distribution of dissolved solids concentrations in the aquifer along the profiles. TDEM sounding data show that, in general, the Edwards aquifer in the study area is characterized by a sharp change in resistivity from west to east. The western part of the Edwards aquifer in the study area shows higher resistivity than the eastern part. The higher resistivity regions correspond to lower dissolved solids concentrations (freshwater), and the lower resistivity regions correspond to

  9. Entry and Exit Stress Variation of Cold Rolling Strip

    Institute of Scientific and Technical Information of China (English)

    WANGDong—cheng

    2012-01-01

    The shortcomings of an exit stress variation formula which has been well accepted are analyzed~ it is found that the exit stress variation formula violates the premise of the law of volume constancy. The shortcomings of an en- try stress variation formula are analyzed too, and the basic assumption of the formula is uniform exit velocity. How- ever, for a rigid-plastic material uniform exit velocity implies that the lateral distributioi1 of elongation is uniform, so the exit stress must be uniform and any type of flatness defect is impossible, which is contrary to the practice. In fact, entry and exit velocity variation influence entry and exit stress variation, and entry and exit stress variation in- fluence entry and exit velocity variation too, so a precise explicit stress variation formula cannot be got easily. Con- sidering the relationship between stress variation and velocity variation, an iteration method is presented to calculate entry and exit stress variation of cold rolling strip. To avoid divergent phenomenon of the iteration course, a relaxa- tion factor method is adopted. The calculation results are compared with the entry and exit stress variation formula commonly used by many researchers. The difference is remarkable, while the result calculated agree more well with measured result if the exit elastic recovery zone is considered. Specially, the incoming flatnessI propagate efficiency calculated ~ives a more realistic result.

  10. [Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China].

    Science.gov (United States)

    Liu, Rui-Xue; Zhan, Juan; Shi, Zhi-Hua; Chen, Long-qing

    2013-03-01

    Taking the water level fluctuating zone of the Danjiangkou Reservoir as a case, and by the method of hierarchical cluster analysis, the soil seed banks at 37 sampling plots within the areas of 140-145 m elevation were divided into 6 groups, and the species composition, density, and diversity of the soil seed banks among the groups were compared. The differences between the soil seed banks and the aboveground vegetations were analyzed by S0rensen similarity coefficient, and the correlations among the soil seed banks, aboveground vegetations, and environmental factors were explored by principal component analysis (PCA) and multivariable regression analysis. At the same altitudes of the water level fluctuating zone, the species composition of the soil seed banks had obvious heterogeneity, and the density and diversity indices of the soil seed banks among different groups were great. The similarity coefficient between the soil seed banks and aboveground vegetations was low, and the species number in the soil seed banks was obviously lesser than that in the aboveground vegetations. The density of the soil seed banks was highly positively correlated with the aboveground vegetations coverage and species number and the soil texture, but highly negatively correlated with the soil water-holding capacity and soil porosity.

  11. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  12. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  13. Analysis the songhua river water quality index entry section of the content change in heilongjiang province%浅析黑龙江省松花江入境水质指标的变化规律

    Institute of Scientific and Technical Information of China (English)

    胡静; 白金生; 王丽娜

    2012-01-01

    The songhua fiver in heilongjiang province entry section (zhaoyuan section) choose within monito- ring stations. We dynamic monitoring water in chemical oxygen demand (cod) , the total phosphorus, ammonia nitrogen and fecal coliform bacteria number in different months. Results show that different period of river chemical oxygen demand (cod) , the total, phosphorus, ammonia nitrogen and fecal coliform bacteria quantity change trend is different. In the summer chemical oxygen demand (cod) and total p high concentration. The concentrations of ammonia nitrogen in January is the highest. Fecal coliform bacteria number in August is the largest.%在黑龙江省松花江入境断面(肇源断面)内选择监测.量,对不同月份的水体中化学需氧量、总磷、氨氮和粪大肠菌群数量的动态监测。结果表明,不同时期河流中的化学需氧量、总磷、氨氮和粪大肠菌群数量变化趋势不同,在夏季时化学需氧量和总磷的浓度较高,而氨氮的浓度在1月份较高,粪大肠菌群数量在8月份最大。

  14. 深水管汇下垂式下放安装入水过程分析研究%A study on the entry water process of deepwater manifold with pendulous installation method

    Institute of Scientific and Technical Information of China (English)

    曹松荣; 蒋慧略; 刘波

    2012-01-01

    Pendulous installation method is applied to the installation of subsea facilities, which has low requirement for a ship and is conveninent to operate. We employ nonlinear coupling time domain analysis of hull, sling and manifold to construct a hydrodynamic calculation model for ship installation and a Morison model for the installation of sling and submarine facilities. Checking convergence precision, selecting calculation parameters and performing numerical analysis for the entry water process of deepwater manifold have some reference value for domestic deepwater engineering.%下垂式安装较适用于深水水下设施下放,且对安装船舶的要求小,操作方便。本文采用船体、索和水下设施三者间的非线性耦舍时域分析技术,建立了安装船舶水动力计算模型、安装吊索和水下设施Morison模型,检查收敛精度,选择计算参数。针对管汇下垂安装入水过程进行数值模拟分析,对我国深海工程施工有一定的参考价值。

  15. 电镀工业园区污水处理部分工艺的选型%Process Selection of Waste Water Treatment for Electroplating Industrial Zone

    Institute of Scientific and Technical Information of China (English)

    文睿; 陆华

    2012-01-01

    According to the character of waste water effluent for electroplating industrial zones,the waste water is collected by category of chemicals.A process of chemical treatment + MBR(membrane bioreactor) + RO desalt is applied to treat the waste water such that reaches the standard of discharge and water reuse requirements.Comparing with the properties of regular processes including water reuse system,stress the importance of categorized collections of waste water.%依据电镀集中园区废水的特点采取有针对性的分类收集,采用化学法+膜生物(MBR)+RO膜脱盐处理工艺达标排放和回用,对比了部分常见工艺的特点,包括中水回用系统的设计注意事项,强调电镀污水源头分流的意义。

  16. Water movement through the unsaturated zone of the High Plains Aquifer in the Central Platte Natural Resources District, Nebraska, 2008-12

    Science.gov (United States)

    Steele, Gregory V.; Gurdak, Jason J.; Hobza, Christopher M.

    2014-01-01

    Uncertainty about the effects of land use and climate on water movement in the unsaturated zone and on groundwater recharge rates can lead to uncertainty in water budgets used for groundwater-flow models. To better understand these effects, a cooperative study between the U.S. Geological Survey and the Central Platte Natural Resources District was initiated in 2007 to determine field-based estimates of recharge rates in selected land-use areas of the Central Platte Natural Resources District in Nebraska. Measured total water potential and unsaturated-zone profiles of tritium, chloride, nitrate as nitrogen, and bromide, along with groundwater-age dates, were used to evaluate water movement in the unsaturated zone and groundwater recharge rates in the central Platte River study area. Eight study sites represented an east-west precipitation contrast across the study area—four beneath groundwater-irrigated cropland (sites 2, 5, and 6 were irrigated corn and site 7 was irrigated alfalfa/corn rotation), three beneath rangeland (sites 1, 4, and 8), and one beneath nonirrigated cropland, or dryland (site 3). Measurements of transient vertical gradients in total water potential indicated that periodic wetting fronts reached greater mean maximum depths beneath the irrigated sites than beneath the rangeland sites, in part, because of the presence of greater and constant antecedent moisture. Beneath the rangeland sites, greater temporal variation in antecedent moisture and total water potential existed and was, in part, likely a result of local precipitation and evapotranspiration. Moreover, greater variability was noticed in the total water potential profiles beneath the western sites than the corresponding eastern sites, which was attributed to less mean annual precipitation in the west. The depth of the peak post-bomb tritium concentration or the interface between the pre-bomb/post-bomb tritium, along with a tritium mass balance, within sampled soil profiles were used to

  17. Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink

    Science.gov (United States)

    Batukaev, Abdul-Malik A.; Endovitsky, Anatoly P.; Andreev, Andrey G.; Kalinichenko, Valery P.; Minkina, Tatiana M.; Dikaev, Zaurbek S.; Mandzhieva, Saglara S.; Sushkova, Svetlana N.

    2016-03-01

    The assessment of soil and vadose zone as the drains for carbon sink and proper modeling of the effects and extremes of biogeochemical cycles in the terrestrial biosphere are the key components to understanding the carbon cycle, global climate system, and aquatic and terrestrial system uncertainties. Calcium carbonate equilibrium causes saturation of solution with CaCO3, and it determines its material composition, migration and accumulation of salts. In a solution electrically neutral ion pairs are formed: CaCO30, CaSO40, MgCO30, and MgSO40, as well as charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, and MgOH+. The calcium carbonate equilibrium algorithm, mathematical model and original software to calculate the real equilibrium forms of ions and to determine the nature of calcium carbonate balance in a solution were developed. This approach conducts the quantitative assessment of real ion forms of solution in solonetz soil and vadose zone of dry steppe taking into account the ion association at high ionic strength of saline soil solution. The concentrations of free and associated ion form were calculated according to analytical ion concentration in real solution. In the iteration procedure, the equations were used to find the following: ion material balance, a linear interpolation of equilibrium constants, a method of ionic pairs, the laws of initial concentration preservation, operating masses of equilibrium system, and the concentration constants of ion pair dissociation. The coefficient of ion association γe was determined as the ratio of ions free form to analytical content of ion γe = Cass/Can. Depending on soil and vadose zone layer, concentration and composition of solution in the ionic pair's form are 11-52 % Ca2+; 22.2-54.6 % Mg2+; 1.1-10.5 % Na+; 3.7-23.8 HCO3-, 23.3-61.6 % SO42-, and up to 85.7 % CO32-. The carbonate system of soil and vadose zone water solution helps to explain the evolution of salted soils, vadose and saturation zones, and

  18. Effectiveness of Geoelectrical Resistivity Surveys for the Detection of a Debris Flow Causative Water Conducting Zone at KM 9, Gap-Fraser’s Hill Road (FT 148, Fraser’s Hill, Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohamad Anuri Ghazali

    2013-01-01

    Full Text Available This study reports the findings of resistivity surveys which were conducted at the initiation area of debris flow at KM 9, Fraser’s Hill Gap road (FT148. The study involves three slope parallel survey lines and two lines perpendicular to the slope face. The parallel lines are FH01, FH02, and FH03, while the lines FH04 and FH05 are perpendicular. A granite body was detected at the central part of the east line and is nearest to the ground surface along FH02. The existence of low resistivity zones within the granite body is interpreted as highly fractured, water conducting zones. These zones are continuous as they have been detected in both the east-west as well as the north-south lines. The residual soil layer is relatively thin at zones where weathered granite dominates the slope face of the failure mass. The weak layer is relatively thick with an estimated thickness of 80 m and water flow occurs at the base of it. The high water flow recorded from the horizontal drains further supports the possible existence of these highly fractured, water conducting zones located within the granite. The shallow fractured granite is virtually “floating” above the water saturated zone and therefore is considered unstable.

  19. Rhizosphere dynamics of two riparian plant species from the water fluctuation zone of Three Gorges Reservoir, P.R. China - pH, oxygen and LMWOA monitoring during short flooding events

    Science.gov (United States)

    Schreiber, Christina M.; Schurr, Ulrich; Zeng, Bo; Höltkemeier, Agnes; Kuhn, Arnd J.

    2010-05-01

    Since the construction of the Three Gorges Dam at the Yangtze River in China, the reservoir management created a new 30m water fluctuation zone 45-75m above the original water level. Only species well adapted to long-time flooding (up to several months) will be able to vegetate the river banks and replace the original vegetation. To investigate how common species of the riverbanks cope with submergence, Alternanthera philoxeroides Mart. and Arundinella anomala Steud., two flooding resistant riparian species, have been examined in a rhizotron environment. Short-time (2 days waterlogging, 2 days flooding, 2 days recovery) flooding cycles in the original substrate and long time (14 days waterlogging, flooding, recovery) flooding cycles, in original substrate and sterile glass bead substrate, have been simulated in floodable two-way access rhizotrons. Oxygen- and pH-sensitive foils (planar optodes, PreSens) automatically monitored root reaction in a confined space (2cm2 each) on the backside of the rhizotron, while soil solution samples were taken 2 times a day from the other side of the rhizotron at the corresponding area through filter and steel capillaries. The samples were analyzed by capillary electrophoresis for low molecular weight organic acids (LMWOA, i.e. oxalic, formic, succinic, malic, acetic, glyoxylic, lactic and citric acid). Results show diurnal rhythms of rhizospheric acidification for both species in high resolution, combined with oxygen entry into the root surrounding during waterlogged state. Flooding caused stronger acidification in the rhizosphere, that were however not accompanied by increased occurrence of LMWOA except for acetic and glyoxylic acid. First results from longer flooding periods show stable diurnal rhythms during waterlogging, but no strongly increased activity during the flooding event. Performance of the two species is not hampered by being waterlogged, and they follow a silencing strategy during a longer phase of anoxia without

  20. 76 FR 18669 - Safety Zone, Newport River; Morehead City, NC

    Science.gov (United States)

    2011-04-05

    ... Interference with Constitutionally Protected Property Rights. Civil Justice Reform This proposed rule meets...) Persons or vessels requiring entry into or passage through any portion of the safety zone must first...

  1. Identification of Suitable Water Harvesting Zones Based on Geomorphic Resources for Drought Areas: A Case Study of Una District, Himachal Pradesh, India.

    Science.gov (United States)

    Prakasam, D. C., Jr.; Zaman, B.

    2014-12-01

    Water is one of the most vital natural resource and its availability and quality determine ecosystem productivity, both for agricultural and natural systems. Una district is one of the major potential agricultural districts in Himachal Pradesh, India. More than 70% of the population of this district is engaged in agriculture and allied sectors and major crops grown are maize, wheat, rice, sugarcane, pulses and vegetables. The region faces drought every year and about 90 per cent of the area is water stressed. This has resulted in crop loss and shortage of food and fodder. The sources of drinking water, small ponds and bowlies dry-up during summer season resulting in scarcity of drinking water. Una district receives rainfall during monsoons from June to September and also during non-monsoon period (winter). The annual average rainfall in the area is about 1040 mm with 55 average rainy days. But due to heavy surface run-off the farmers not able to cultivate the crops more than once in a year. Past research indicate that the geomorphology of the Una district might be responsible for such droughts as it controls the surface as well as ground water resources. The research proposes to develop a water stress model for Una district using the geomorphic parameters, water resource and land use land cover data of the study area. Using Survey of India topographical maps (1:50000), the geomorphic parameters are extracted. The spatial layers of these parameters i.e. drainage density, slope, relative relief, ruggedness index, surface water body's frequency are created in GIS. A time series of normalized remotely sensed data of the study area is used for land use land cover classification and analyses. Based on the results from the water stress model, the drought/water stress areas and water harvesting zones are identified and documented. The results of this research will help the general population in resolving the drinking water problem to a certain extent and also the

  2. Water loss from Earth-sized planets in the habitable zones of ultracool dwarfs: Implications for the planets of TRAPPIST-1

    CERN Document Server

    Bolmont, Emeline; Owen, James E; Ribas, Ignasi; Raymond, Sean N; Leconte, Jérémy; Gillon, Michael

    2016-01-01

    Ultracool dwarfs (UCD) encompass the population of extremely low mass stars (later than M6-type) and brown dwarfs. Because UCDs cool monotonically, their habitable zone (HZ) sweeps inward in time. Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ. It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry, inhospitable worlds. Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations. We address the whole range of UCDs but also focus on the planets b, c and d recently found around the $0.08~M_\\odot$ dwarf TRAPPIST-1. Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the $0.04$-$0.06~M_\\odot$ range. With ...

  3. X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.

    Science.gov (United States)

    Gorniak, T; Heine, R; Mancuso, A P; Staier, F; Christophis, C; Pettitt, M E; Sakdinawat, A; Treusch, R; Guerassimova, N; Feldhaus, J; Gutt, C; Grübel, G; Eisebitt, S; Beyer, A; Gölzhäuser, A; Weckert, E; Grunze, M; Vartanyants, I A; Rosenhahn, A

    2011-06-06

    The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.

  4. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    Science.gov (United States)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2016-11-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  5. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    Science.gov (United States)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2017-03-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  6. Determination of the Height of the Water-Conducting Fractured Zone in Difficult Geological Structures: A Case Study in Zhao Gu No. 1 Coal Seam

    Directory of Open Access Journals (Sweden)

    Shuai Zhang

    2017-06-01

    Full Text Available The method for determining the upper limit for safe mining with regard to water and sand collapse prevention under thick alluvium and thin bedrock layers is a critical parameter for ensuring the sustainable development of a mine. The height of the water-conducting fractured zone (HWCFZ is an important index parameter in the prediction and prevention of water and sand collapse. This research was conducted based on the concrete geological condition of the Zhao Gu No. 1 coal mine. First, a field measurement method was used to observe the HWCFZ of a mined panel. The discrete element method was applied to establish a corresponding model, which was calibrated using the measurement data. Then, calculation models for different bedrock thicknesses were developed to analyze the evolution law of the water-conducting fractured zone at different bedrock thicknesses and mining heights. The safe mining upper limits for different bedrock thicknesses were obtained. The relationships between the developing HWCFZ and bedrock thickness/mining height were determined. Using the research results as the main indices, an industrial experiment was performed on the 11,191 panel. The partition limit mining height was implemented in the panel, and safe production was realized. On the basis of the research results, 40,199,336.3 t of coal resources were successfully released, increasing the resource recovery rate by 31.72% and extending the mine service life by 12.5 years. This study not only provided technical support for the sustainable development of the Zhao Gu No. 1 coal seam, but could also be used for safe and highly efficient mining in other coal mines under similar geological conditions.

  7. Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment.

    Science.gov (United States)

    Styles, David; Börjesson, Pål; D'Hertefeldt, Tina; Birkhofer, Klaus; Dauber, Jens; Adams, Paul; Patil, Sopan; Pagella, Tim; Pettersson, Lars B; Peck, Philip; Vaneeckhaute, Céline; Rosenqvist, Håkan

    2016-12-01

    Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO2e and 47 kg PO4e ha(-1) year(-1), respectively, compared with a GWP saving of 14.8 Mg CO2e ha(-1) year(-1) and an EP increase of 7 kg PO4e ha(-1) year(-1) for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year(-1) PO4e nutrient loading to waters.

  8. Assessing heavy metal pollution in the water level fluctuation zone of China's Three Gorges Reservoir using geochemical and soil microbial approaches.

    Science.gov (United States)

    Ye, Chen; Li, Siyue; Zhang, Yulong; Tong, Xunzhang; Zhang, Quanfa

    2013-01-01

    The water level fluctuation zone (WLFZ) in the Three Gorges Reservoir is located in the intersection of terrestrial and aquatic ecosystems, and assessing heavy metal pollution in the drown zone is critical for ecological remediation and water conservation. In this study, soils were collected in June and September 2009 in natural recovery area and revegetation area of the WLFZ, and geochemical approaches including geoaccumulation index (I (geo)) and factor analysis and soil microbial community structure were applied to assess the spatial variability and evaluate the influence of revegetation on metals in the WLFZ. Geochemical approaches demonstrated the moderate pollutant of Cd, the slight pollutant of Hg, and four types of pollutant sources including industrial and domestic wastewater, natural rock weathering, traffic exhaust, and crustal materials in the WLFZ. Our results also demonstrated significantly lower concentrations for elements of As, Cd, Pb, Zn, and Mn in the revegetation area. Moreover, soil microbial community structure failed to monitor the heavy metal pollution in such a relatively clean area. Our results suggest that revegetation plays an important role in controlling heavy metal pollution in the WLFZ of the Three Gorges Reservoir, China.

  9. Bedrock infiltration estimates from a catchment water storage-based modeling approach in the rain snow transition zone

    Science.gov (United States)

    Estimates of bedrock infiltration from mountain catchments in the western U.S. are essential to water resource managers because they provide an estimate of mountain block recharge to regional aquifers. On smaller scales, bedrock infiltration is an important term in water mass balance studies, which...

  10. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  11. The δ(18) O and δ(2) H of water in the leaf growth-and-differentiation zone of grasses is close to source water in both humid and dry atmospheres.

    Science.gov (United States)

    Liu, Hai Tao; Schäufele, Rudi; Gong, Xiao Ying; Schnyder, Hans

    2017-04-03

    The oxygen and hydrogen isotope composition of water in the leaf growth-and-differentiation zone, LGDZ, (δ(18) OLGDZ , δ(2) HLGDZ ) of grasses influences the isotopic composition of leaf cellulose (oxygen) and wax (hydrogen) - important for understanding (paleo)environmental and physiological information contained in these biological archives - but is presently unknown. This work determined δ(18) OLGDZ and δ(2) HLGDZ , (18) O- and (2) H-enrichment of LGDZ (∆(18) OLGDZ and ∆(2) HLGDZ ), and the (18) O- and (2) H-enrichment of leaf blade water (∆(18) OLW, ∆(2) HLW ) in two C3 and three C4 grasses grown at high and low vapor pressure deficit (VPD). The proportion of unenriched water (px ) in the LGDZ ranged from 0.9 to 1.0 for (18) O and 1.0 to 1.2 for (2) H. VPD had no effect on the proportion of (18) O- and (2) H-enriched water in the LGDZ, and species effects were small or nonsignificant. Deuterium discrimination caused depletion of (2) H in LGDZ water, increasing (apparent) px -values > 1.0 in some cases. The isotopic composition of water in the LGDZ was close to that of source water, independent of VPD and much less enriched than previously supposed, but similar to reported xylem water in trees. The well-constrained px will be useful in future investigations of oxygen and hydrogen isotopic fractionation during cellulose and wax synthesis, respectively.

  12. BeppoSAX equatorial uncontrolled re-entry

    Science.gov (United States)

    Portelli, C.

    The X-ray astronomy satellite BeppoSAX (Satellite per Astronomia X, "Beppo" in honor of Giuseppe Occhialini), is a project of the Italian Space Agency (ASI) with participation of the Netherlands Agency for Aerospace Programs (NIVR). BeppoSAX was launched by an Atlas G Centaur directly into a circular 600 km- orbit at 3.9 degrees inclination on April 30th, 1996. The satellite is a three axis stabilized spacecraft with a total mass of about 1400 kg. The current (May 1, 2002) flight altitude is about 470 km and its uncontrolled re-entry is predicted late in 2002, or in 2003, with a 26 kg of hydrazine on board that could not be vented or used for controlled re-entry due to gyro's package total failure. Due to the relatively high mass of BeppoSAX, it has to be expected that parts of the satellite will survive the re-entry into the earth atmosphere. The Italian Space Agency has committed a study to HTG for the analysis of the destructive phase of the uncontrolled atmospheric re-entry by means of a dedicated European software tool (SCARAB). The expected outputs will be used in order to determine how much of the spacecraft and how many fragments parts of it will reach the ground on the equatorial earth zone. This paper will address the peculiarities of the spacecraft initial status, its risks at end of life and the SCARAB modelling as well as its 6D flight dynamics re-entry analysis results also in terms of the destruction history tree. Consideration will be made on the ground dispersion and casualt y area due to the very restricted equatorial zone impacted. References B. Fritsche, H. Klinkrad, A. Kashkovsky, E.Grinberg; Spacecraft Disintegration during uncontrolled atmospheric entry ; IAA-99-IAA.6.7.02; 50t h IAC 4-8 Oct. 1999

  13. Integrated synoptic surveys of the hydrodynamics and water-quality distributions in two Lake Michigan rivermouth mixing zones using an autonomous underwater vehicle and a manned boat

    Science.gov (United States)

    Jackson, P. Ryan; Reneau, Paul C.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the National Monitoring Network for U.S. Coastal Waters and Tributaries, launched a pilot project in 2010 to determine the value of integrated synoptic surveys of rivermouths using autonomous underwater vehicle technology in response to a call for rivermouth research, which includes study domains that envelop both the fluvial and lacustrine boundaries of the rivermouth mixing zone. The pilot project was implemented at two Lake Michigan rivermouths with largely different scales, hydrodynamics, and settings, but employing primarily the same survey techniques and methods. The Milwaukee River Estuary Area of Concern (AOC) survey included measurements in the lower 2 to 3 miles of the Milwaukee, Menomonee, and Kinnickinnic Rivers and inner and outer Milwaukee Harbor. This estuary is situated in downtown Milwaukee, Wisconsin, and is the most populated basin that flows directly into Lake Michigan. In contrast, the Manitowoc rivermouth has a relatively small harbor separating the rivermouth from Lake Michigan, and the Manitowoc River Watershed is primarily agricultural. Both the Milwaukee and Manitowoc rivermouths are unregulated and allow free exchange of water with Lake Michigan. This pilot study of the Milwaukee River Estuary and Manitowoc rivermouth using an autonomous underwater vehicle (AUV) paired with a manned survey boat resulted in high spatial and temporal resolution datasets of basic water-quality parameter distributions and hydrodynamics. The AUV performed well in these environments and was found primarily well-suited for harbor and nearshore surveys of three-dimensional water-quality distributions. Both case studies revealed that the use of a manned boat equipped with an acoustic Doppler current profiler (ADCP) and multiparameter sonde (and an optional flow-through water-quality sampling system) was the best option for riverine surveys. To ensure that the most accurate and highest resolution velocity data

  14. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  15. Depletion of Stem Water of Sclerocarya birrea Agroforestry Tree Precedes Start of Rainy Season in West African Sudanian Zone

    Science.gov (United States)

    Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.

    2013-04-01

    Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that

  16. An assessment of The Effects of Elevation and Aspect on Deposition of Airborne Pollution and Water Quality in an Alpine Critical