WorldWideScience

Sample records for water distribution systems

  1. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  2. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  3. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  4. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  5. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  6. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  7. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  8. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  9. Distilled Water Distribution Systems. Laboratory Design Notes.

    Science.gov (United States)

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  10. STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...

  11. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  12. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  13. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  14. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J [Energovyzkum Ltd, Brno (Switzerland); Grazl, K [Vitkovice s.c., Ostrava (Switzerland); Tischler, J; Mihalik, M [SEP Atomove Elektrarne Bohunice (Slovakia)

    1996-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  15. Advanced feed water distributing system for WWER 440 steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Grazl, K.; Tischler, J.; Mihalik, M.

    1995-01-01

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.)

  16. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Deterioration and optimal rehabilitation modelling for urban water distribution systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage

  18. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  19. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  20. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  1. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  2. Underground Water Distribution System, Fort Belvoir, Virginia. Leak Detection Survey

    National Research Council Canada - National Science Library

    1995-01-01

    .... The survey was conducted by myself, Donald Muir, Operations Coordinator, and required 12.25 working days. This was not a survey of the entire water distribution system but instead a survey of water mains 8 inch and larger...

  3. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O. [Energovyzkum, Brno (Switzerland); Schmidt, S.; Mihalik, M. [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1997-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  4. Particulate fingerprinting of water quality in the distribution system ...

    African Journals Online (AJOL)

    Particles in the distribution system play an important role in the perception? Not clear what is meant) of drinking water quality, particularly in association with discolouration. In The Netherlands the water quality in the distribution system is traditionally monitored by turbidity measurements. However, turbidity is hard to quantify ...

  5. GROWTH OF HETROTROPHIC BIOFILMS IN A WATER DISTRIBUTION SYSTEM SIMULATOR

    Science.gov (United States)

    The U.S. EPA has designed and constructed a distribution system simulator (DSS) to evaluate factors which influence water quality within water distribution systems. Six individual 25 meter lengths of 15 cm diameter ductile iron pipe are arranged into loop configurations. Each lo...

  6. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O [Energovyzkum, Brno (Switzerland); Schmidt, S; Mihalik, M [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1998-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  7. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  8. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  9. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  10. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  11. Effect of the Distribution System on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    A. Grünwald

    2001-01-01

    Full Text Available The overall objective of this paper is to characterise the main aspects of water quality deterioration in a distribution system. The effect of residence time on chlorine uptake and the formation and evolution of disinfection by-products in distributed drinking water are discussed.

  12. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    ... or well supplies to consumers’ taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management...

  13. Significance of losses in water distribution systems in India

    OpenAIRE

    Raman, V.

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the sys...

  14. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  15. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  16. Using WNTR to Model Water Distribution System Resilience

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of di...

  17. Smart optimisation and sensitivity analysis in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2015-12-01

    Full Text Available optimisation of a water distribution system by keeping the average pressure unchanged as water demands change, by changing the speed of the pumps. Another application area considered, using the same mathematical notions, is the study of the sensitivity...

  18. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  19. Optimal dimensioning model of water distribution systems | Gomes ...

    African Journals Online (AJOL)

    This study is aimed at developing a pipe-sizing model for a water distribution system. The optimal solution minimises the system's total cost, which comprises the hydraulic network capital cost, plus the capitalised cost of pumping energy. The developed model, called Lenhsnet, may also be used for economical design when ...

  20. Risk classification and uncertainty propagation for virtual water distribution systems

    International Nuclear Information System (INIS)

    Torres, Jacob M.; Brumbelow, Kelly; Guikema, Seth D.

    2009-01-01

    While the secrecy of real water distribution system data is crucial, it poses difficulty for research as results cannot be publicized. This data includes topological layouts of pipe networks, pump operation schedules, and water demands. Therefore, a library of virtual water distribution systems can be an important research tool for comparative development of analytical methods. A virtual city, 'Micropolis', has been developed, including a comprehensive water distribution system, as a first entry into such a library. This virtual city of 5000 residents is fully described in both geographic information systems (GIS) and EPANet hydraulic model frameworks. A risk classification scheme and Monte Carlo analysis are employed for an attempted water supply contamination attack. Model inputs to be considered include uncertainties in: daily water demand, seasonal demand, initial storage tank levels, the time of day a contamination event is initiated, duration of contamination event, and contaminant quantity. Findings show that reasonable uncertainties in model inputs produce high variability in exposure levels. It is also shown that exposure level distributions experience noticeable sensitivities to population clusters within the contaminant spread area. High uncertainties in exposure patterns lead to greater resources needed for more effective mitigation strategies.

  1. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... other crustaceans and nematodes protect bacteria from treatment processes. The influence of A. aquaticus has never previously been investigated. Investigations in this PhD project revealed that presence of A. aquaticus did not influence microbial water quality measurably in full scale distribution...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  2. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  3. The accumulation of radioactive contaminants in drinking water distribution systems.

    Science.gov (United States)

    Lytle, Darren A; Sorg, Thomas; Wang, Lili; Chen, Abe

    2014-03-01

    The accumulation of trace contaminants in drinking water distribution system sediment and scales has been documented, raising concerns that the subsequent release of the contaminants back to the water is a potential human exposure pathway. Radioactive contaminants are of concern because of their known health effects and because of their persistence within associated distribution system materials. The objective of this work was to measure the amount of a number of radioactive contaminants (radium, thorium, and uranium isotopes, and gross alpha and beta activity) in distribution solids collected from water systems in four states (Wisconsin, Illinois, Minnesota, and Texas). The water utilities chosen had measurable levels of radium in their source waters. In addition, 19 other elements in the solids were quantified. Water systems provided solids primarily collected during routine fire hydrant flushing. Iron was the dominant element in nearly all of the solids and was followed by calcium, phosphorus, magnesium, manganese, silicon, aluminum and barium in descending order. Gross alpha and beta radiation averaged 255 and 181 pCi/g, and were as high as 1602 and 1169 pCi/g, respectively. Total radium, thorium and uranium averaged 143, 40 and 6.4 pCi/g, respectively. Radium-226 and -228 averaged 74 and 69 pCi/g, and were as high as 250 and 351 pCi/g, respectively. Published by Elsevier Ltd.

  4. Performance of water distribution systems in a pilot cooling tower

    International Nuclear Information System (INIS)

    Tognotti, L.; Giacomelli, A.; Zanelli, S.; Bellagamba, B.; Lotti, G.; Mattachini, F.

    1990-01-01

    An experimental study has been carried out on the water distribution system of a Pilot cooling tower of 160 m 3 /hr The performances of different industrial water distributors have been evaluated by changing the operative conditions of the pilot tower. In particular, the efficiency and the uniformity of the water distribution have been investigated and compared with the results obtained in a small-scale loop, in which the single nozzles were tested. Measurements in both systems, pilot tower and small scale loop, included the geometric characteristics of the jet umbrella by ensemble photography, the wetted zone by measuring the specific flowrate, the drop-size distribution and liquid concentration by high-speed photography. The results show that correlations exist between the nozzle behaviour in single and pilot tower configuration. The uniformity of water distribution in the pilot tower is strongly related to the nozzle installation pattern and to the operative conditions. Coalescence plays an important role on the drop size distribution in the pilot-tower. Comments upon the influence of these parameters on tower behaviour are also included

  5. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  6. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  8. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  9. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  10. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  11. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  12. Reliability analysis of water distribution systems under uncertainty

    International Nuclear Information System (INIS)

    Kansal, M.L.; Kumar, Arun; Sharma, P.B.

    1995-01-01

    In most of the developing countries, the Water Distribution Networks (WDN) are of intermittent type because of the shortage of safe drinking water. Failure of a pipeline(s) in such cases will cause not only the fall in one or more nodal heads but also the poor connectivity of source with various demand nodes of the system. Most of the previous works have used the two-step algorithm based on pathset or cutset approach for connectivity analysis. The computations become more cumbersome when connectivity of all demand nodes taken together with that of supply is carried out. In the present paper, network connectivity based on the concept of Appended Spanning Tree (AST) is suggested to compute global network connectivity which is defined as the probability of the source node being connected with all the demand nodes simultaneously. The concept of AST has distinct advantages as it attacks the problem directly rather than in an indirect way as most of the studies so far have done. Since the water distribution system is a repairable one, a general expression for pipeline avialability using the failure/repair rate is considered. Furthermore, the sensitivity of global reliability estimates due to the likely error in the estimation of failure/repair rates of various pipelines is also studied

  13. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. Automatic generation of water distribution systems based on GIS data.

    Science.gov (United States)

    Sitzenfrei, Robert; Möderl, Michael; Rauch, Wolfgang

    2013-09-01

    In the field of water distribution system (WDS) analysis, case study research is needed for testing or benchmarking optimisation strategies and newly developed software. However, data availability for the investigation of real cases is limited due to time and cost needed for data collection and model setup. We present a new algorithm that addresses this problem by generating WDSs from GIS using population density, housing density and elevation as input data. We show that the resulting WDSs are comparable to actual systems in terms of network properties and hydraulic performance. For example, comparing the pressure heads for an actual and a generated WDS results in pressure head differences of ±4 m or less for 75% of the supply area. Although elements like valves and pumps are not included, the new methodology can provide water distribution systems of varying levels of complexity (e.g., network layouts, connectivity, etc.) to allow testing design/optimisation algorithms on a large number of networks. The new approach can be used to estimate the construction costs of planned WDSs aimed at addressing population growth or at comparisons of different expansion strategies in growth corridors.

  15. Online modelling of water distribution systems: a UK case study

    Directory of Open Access Journals (Sweden)

    J. Machell

    2010-03-01

    Full Text Available Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "on-line" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.

  16. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  17. Using WNTR to Model Water Distribution System Resilience ...

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of disruptive events, including earthquakes, contamination incidents, floods, climate change, and fires. The software includes the EPANET solver as well as a WNTR solver with the ability to model pressure-driven demand hydraulics, pipe breaks, component degradation and failure, changes to supply and demand, and cascading failure. Damage to individual components in the network (i.e. pipes, tanks) can be selected probabilistically using fragility curves. WNTR can also simulate different types of resilience-enhancing actions, including scheduled pipe repair or replacement, water conservation efforts, addition of back-up power, and use of contamination warning systems. The software can be used to estimate potential damage in a network, evaluate preparedness, prioritize repair strategies, and identify worse case scenarios. As a Python package, WNTR takes advantage of many existing python capabilities, including parallel processing of scenarios and graphics capabilities. This presentation will outline the modeling components in WNTR, demonstrate their use, give the audience information on how to get started using the code, and invite others to participate in this open source project. This pres

  18. Detection of contamination of municipal water distribution systems

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  19. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.

    Science.gov (United States)

    Delaunois, F; Tosar, F; Vitry, V

    2014-06-01

    Galvanized steel tubes are a popular mean for water distribution systems but suffer from corrosion despite their zinc or zinc alloy coatings. First, the quality of hot-dip galvanized (HDG) coatings was studied. Their microstructure, defects, and common types of corrosion were observed. It was shown that many manufactured tubes do not reach European standard (NBN EN 10240), which is the cause of several corrosion problems. The average thickness of zinc layer was found at 41μm against 55μm prescribed by the European standard. However, lack of quality, together with the usual corrosion types known for HDG steel tubes was not sufficient to explain the high corrosion rate (reaching 20μm per year versus 10μm/y for common corrosion types). Electrochemical tests were also performed to understand the corrosion behaviours occurring in galvanized steel tubes. Results have shown that the limiting step was oxygen diffusion, favouring the growth of anaerobic bacteria in steel tubes. EDS analysis was carried out on corroded coatings and has shown the presence of sulphur inside deposits, suggesting the likely bacterial activity. Therefore biocorrosion effects have been investigated. Actually sulphate reducing bacteria (SRB) can reduce sulphate contained in water to hydrogen sulphide (H2S), causing the formation of metal sulphides. Although microbial corrosion is well-known in sea water, it is less investigated in supply water. Thus, an experimental water main was kept in operation for 6months. SRB were detected by BART tests in the test water main. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Demonstrating demand response from water distribution system through pump scheduling

    International Nuclear Information System (INIS)

    Menke, Ruben; Abraham, Edo; Parpas, Panos; Stoianov, Ivan

    2016-01-01

    Highlights: • Water distribution systems can profitably provide demand response energy. • STOR and FFR are financially viable under a wide range of operating conditions. • Viability depends on the pump utilisation and peak price of the electricity tariff. • Total GHG emissions caused by the provision of reserve energy are <300 gCO_2/kW h. • These are lower than those from the major reserve energy provision technologies. - Abstract: Significant changes in the power generation mix are posing new challenges for the balancing systems of the grid. Many of these challenges are in the secondary electricity grid regulation services and could be met through demand response (DR) services. We explore the opportunities for a water distribution system (WDS) to provide balancing services with demand response through pump scheduling and evaluate the associated benefits. Using a benchmark network and demand response mechanisms available in the UK, these benefits are assessed in terms of reduced green house gas (GHG) emissions from the grid due to the displacement of more polluting power sources and additional revenues for water utilities. The optimal pump scheduling problem is formulated as a mixed-integer optimisation problem and solved using a branch and bound algorithm. This new formulation finds the optimal level of power capacity to commit to the provision of demand response for a range of reserve energy provision and frequency response schemes offered in the UK. For the first time we show that DR from WDS can offer financial benefits to WDS operators while providing response energy to the grid with less greenhouse gas emissions than competing reserve energy technologies. Using a Monte Carlo simulation based on data from 2014, we demonstrate that the cost of providing the storage energy is less than the financial compensation available for the equivalent energy supply. The GHG emissions from the demand response provision from a WDS are also shown to be smaller than

  1. Fundamentals and control of nitrification in chloraminated drinking water distribution systems

    National Research Council Canada - National Science Library

    American Water Works Association

    2006-01-01

    ... Introduction, 25 Nitrification in Drinking Water Distribution System, 25 Nitrification in Pipelines and Effects of Biofilms, 31 Nitrification in Water Storage Facilities, 34 Conclusions, 39 Refere...

  2. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  3. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  4. IMPACT ON WATER DISTRIBUTION SYSTEM BIOFILM DENSITIES FROM REVERSE OSMOSIS MEMBRANE TREATMENT OF SUPPLY WATER

    Science.gov (United States)

    The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...

  5. Detection of mutagens in water-distribution systems after disinfection.

    Science.gov (United States)

    Guzzella, Licia; Di Caterino, Filomena; Monarca, Silvano; Zani, Claudia; Feretti, Donatella; Zerbini, Ilaria; Nardi, Giuseppe; Buschini, Annamaria; Poli, Paola; Rossi, Carlo

    2006-09-19

    This research examined the quality of water-before and after distribution-of four drinking-water production plants located in Northern Italy, two of which collected water from local aquifers and two from the River Po. A battery of genotoxicity assays for monitoring drinking-water was performed to assess the quality of the water produced by the treatment plants under study. Three different sampling stations were selected at each plant, one right at the outlet of the treatment plant and two along with the distribution pipelines. Raw river water was also sampled and analysed as a control. The water samples (500 l) were concentrated on silica C18 cartridges and the extracts were tested in in vitro mutagenicity assays (Salmonella/microsome assay with strains TA 98 and TA 100; SOS Chromotest with Escherichia coli strain PQ37); gene conversion, point mutation and mitochondrial DNA mutability assays with the diploid Saccharomyces cerevisiae strain D7 and a toxicity test using the bioluminescent bacterium Vibrio fischeri (Microtox). The Microtox test and the mitochondrial DNA mutability assay showed the greatest sensitivity towards toxic or mutagenic substances in the water extracts considered. The results show that this battery of short-term tests is applicable in the routine monitoring of drinking-water quality before and after distribution.

  6. Water distribution systems design optimisation using metaheuristics and hyperheuristics

    Directory of Open Access Journals (Sweden)

    DN Raad

    2011-06-01

    Full Text Available The topic of multi-objective water distribution systems (WDS design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including sev- eral multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary framework for the simultaneous incorporation of multiple metaheuristics, in order to determine which approach is most capa- ble with respect to WDS design optimisation. Novel metaheuristics and variants of existing algorithms are developed, for a total of twenty-three algorithms examined. Testing with re- spect to eight small-to-large-sized WDS benchmarks from the literature reveal that the four top-performing algorithms are mutually non-dominated with respect to the various perfor- mance metrics used. These algorithms are NSGA-II, TAMALGAMJndu , TAMALGAMndu and AMALGAMSndp (the last three being novel variants of AMALGAM. However, when these four algorithms are applied to the design of a very large real-world benchmark, the AMALGAM paradigm outperforms NSGA-II convincingly, with AMALGAMSndp exhibiting the best performance overall.

  7. CLIPS based decision support system for water distribution networks

    Directory of Open Access Journals (Sweden)

    K. Sandeep

    2011-10-01

    Full Text Available The difficulty in knowledge representation of a water distribution network (WDN problem has contributed to the limited use of artificial intelligence (AI based expert systems (ES in the management of these networks. This paper presents a design of a Decision Support System (DSS that facilitates "on-demand'' knowledge generation by utilizing results of simulation runs of a suitably calibrated and validated hydraulic model of an existing aged WDN corresponding to emergent or even hypothetical but likely scenarios. The DSS augments the capability of a conventional expert system by integrating together the hydraulic modelling features with heuristics based knowledge of experts under a common, rules based, expert shell named CLIPS (C Language Integrated Production System. In contrast to previous ES, the knowledge base of the DSS has been designed to be dynamic by superimposing CLIPS on Structured Query Language (SQL. The proposed ES has an inbuilt calibration module that enables calibration of an existing (aged WDN for the unknown, and unobservable, Hazen-Williams C-values. In addition, the daily run and simulation modules of the proposed ES further enable the CLIPS inference engine to evaluate the network performance for any emergent or suggested test scenarios. An additional feature of the proposed design is that the DSS integrates computational platforms such as MATLAB, open source Geographical Information System (GIS, and a relational database management system (RDBMS working under the umbrella of the Microsoft Visual Studio based common user interface. The paper also discusses implementation of the proposed framework on a case study and clearly demonstrates the utility of the application as an able aide for effective management of the study network.

  8. Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination. 1. Literature Survey

    Science.gov (United States)

    2006-06-01

    best examples of this is glucose isomerase, which has been used in the commercial production of high fructose corn syrup (HFCS) since 1967.230 Most...EDGEWOOD CHEMICAL BIOLOGICAL CENTER U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND ECBC-TR-489 CATALYTIC ENZYME-BASED METHODS FOR WATER ...TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION 1. LITERATURE SURVEY Joseph J. DeFrank RESEARCH AND TECHNOLOGY DIRECTORATE June 2006 Approved for

  9. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  10. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    Science.gov (United States)

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  11. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  12. Risk of viral acute gastrointestinal illness from non-disinfected drinking water distribution systems

    Science.gov (United States)

    Acute gastrointestinal illness (AGI) resulting from pathogens directly entering the piping of drinking water distribution systems is insufficiently understood. Here, we estimate AGI incidence attributable to virus intrusions into non-disinfecting municipal distribution systems. Viruses were enumerat...

  13. Channel Extension in Deep-Water Distributive Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  14. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design

    Directory of Open Access Journals (Sweden)

    Helena Mala-Jetmarova

    2018-03-01

    Full Text Available Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details.

  15. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    Science.gov (United States)

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Lehtola, Markku J; Miettinen, Ilkka T; Zacheus, Outi; Paulin, Lars; Katila, Marja-Leena; Martikainen, Pertti J

    2004-04-01

    Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.

  17. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    Science.gov (United States)

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  18. Demonstration of a Model-Based Technology for Monitoring Water Quality and Corrosion in Water-Distribution systems

    Science.gov (United States)

    2016-12-01

    that Fort Drum uses water from two sources: (1) treated groundwater from its on-post wells and (2) treated surface water supplied by the Development...Complete replacement of distribution system piping $21 million Year 10 and Year 30 Leak repair $40,000 Annual Bottled water for drinking $20,000 per...about effects of the instal- lation’s dual water supplies on operation of the water -distribution system. 5.2 Recommendations 5.2.1 Applicability Model

  19. Water Distribution System Operation and Maintenance. A Field Study Training Program. Second Edition.

    Science.gov (United States)

    Kerri, Kenneth D.; And Others

    Proper installation, inspection, operation, maintenance, repair and management of water distribution systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide water distribution system operators with the knowledge and skills required to operate and maintain…

  20. LEAK DETECTION AND WIRELESS TELEMETRY FOR WATER DISTRIBUTION AND SEWERAGE SYSTEMS - PHASE I

    Science.gov (United States)

    According to the study EPA 2000 Community Water System Survey Data on Pipe Assets, the infrastructure for water distribution and sewerage systems is aging and requires replacement.  In addition, in EPA’s September 2002 report Clean Water and Drinking Water Infr...

  1. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A METROPOLITAN DRINKING WATER DISTRIBUTION SYSTEM

    Science.gov (United States)

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The b...

  3. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  4. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  5. Virus contamination from operation and maintenance practices in small drinking water distribution systems

    Science.gov (United States)

    We tested the association of common events in drinking water distribution systems with contamination of household tap water with human enteric viruses. Viruses were enumerated by qPCR in the tap water of 14 municipal systems that use non-disinfected groundwater. Ultra-violet disinfection was install...

  6. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  7. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  8. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach

    Science.gov (United States)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta

    2017-12-01

    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  9. Pressure control for minimizing leakage in water distribution systems

    OpenAIRE

    Nourhan Samir; Rawya Kansoh; Walid Elbarki; Amr Fleifle

    2017-01-01

    In the last decades water resources availability has been a major issue on the international agenda. In a situation of worsening scarcity of water resources and the rapidly increasing of water demands, the state of water losses management is part of manâs survival on earth. Leakage in water supply networks makes up a significant amount, sometimes more than 70% of the total water losses. The best practices suggest that pressure management is one of the most effective way to reduce the amount o...

  10. Water Technology Lecture 3: Water Distribution

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is the third lecture in the course Water Technology dealing with water distribution. This is a PowerPoint lecture which is free to use and modify. It was designed to be used in conjunction with the course text Gray, N.F. (2017) Water Science and Technology: An Introduction, published by CRC Press, Oxford. The basis of water distribution is explored including water pipe materials, distribution systems, leakage, water quality problems, pressure issue, water hydrants, effect of floods,...

  11. Robustness of parameter-less remote real-time pressure control in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-06-01

    Full Text Available One way of reducing water leakage, pipe bursts and water consumption in a water distribution system (WDS) is to manage the pressure to be as low as possible. This can be done by adjusting a pressure control valve (PCV) in real-time in order to keep...

  12. Condensate induced water hammer in a steam distribution system results in fatality

    International Nuclear Information System (INIS)

    Debban, H.L.; Eyre, L.E.

    1996-02-01

    Water hammer event s in steam distribution piping interrupt service and have the potential to cause serious injury and property damage. Conditions of condensation induced water hammer are discussed and recommendations aimed to improve safety of steam systems are presented. Condensate induced water hammer events at Hanford, a DOE facility, are examined

  13. Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems

    OpenAIRE

    Herrera, Manuel; Meniconi, Silvia; Alvisi, Stefano; Izquierdo, Joaquin

    2018-01-01

    This document is intended to be a presentation of the Special Issue “Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems”. The final aim of this Special Issue is to propose a suitable framework supporting insightful hydraulic mechanisms to aid the decision-making processes of water utility managers and practitioners. Its 18 peer-reviewed articles present as varied topics as: water distribution system design, optimization of network perf...

  14. 24 CFR 3280.609 - Water distribution systems.

    Science.gov (United States)

    2010-04-01

    ... copper tubing, approved or listed plastic or other approved or listed material. (i) Plastic piping. All plastic water piping and fittings in manufactured homes must be listed for use with hot water. (ii... brass piping. They shall be installed where required for change in direction, reduction of size, or...

  15. GISMOWA: Geospatial Risk-Based Analysis Identifying Water Quality Monitoring Sites in Distribution Systems

    DEFF Research Database (Denmark)

    Larsen, Sille Lyster; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen

    2017-01-01

    distribution systems as a transparent and simple-to-use tool facilitating a complete overview of the distribution system, including sensitive consumers and consumers in general, thus fulfilling a precondition for a HACCP-based monitoring strategy of drinking water. (C) 2017 American Society of Civil Engineers....

  16. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system.

    Science.gov (United States)

    Miller, Haylea C; Morgan, Matthew J; Wylie, Jason T; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2017-03-01

    Global incidence of primary amoebic meningoencephalitis cases associated with domestic drinking water is increasing. The need for understanding disinfectant regimes capable of eliminating the causative microorganism, Naegleria fowleri, from bulk water and pipe wall biofilms is critical. This field study demonstrated the successful elimination of N. fowleri from the bulk water and pipe wall biofilm of a persistently colonised operational drinking water distribution system (DWDS), and the prevention of further re-colonisation. A new chlorination unit was installed along the pipe line to boost the free chlorine residual to combat the persistence of N. fowleri. Biofilm and bulk water were monitored prior to and after re-chlorination (RCl), pre-rechlorination (pre-RCl) and post-rechlorination (post-RCl), respectively, for one year. A constant free chlorine concentration of > 1 mg/L resulted in the elimination of N. fowleri from both the bulk water and biofilm at the post-RCl site. Other amoeba species were detected during the first two months of chlorination, but all amoebae were eliminated from both the bulk water and biofilm at post-RCl after 60 days of chlorination with free chlorine concentrations > 1 mg/L. In addition, a dynamic change in the biofilm community composition and a four log reduction in biofilm cell density occurred post-RCl. The pre-RCl site continued to be seasonally colonised by N. fowleri, but the constant free chlorine residual of > 1 mg/L prevented N. fowleri from recolonising the bulk and pipe wall biofilm at the post-RCl site. To our knowledge, this is the first study to demonstrate successful removal of N. fowleri from both the bulk and pipe wall biofilm and prevention of re-colonisation of N. fowleri in an operational DWDS. The findings of this study are of importance to water utilities in addressing the presence of N. fowleri and other amoeba in susceptible DWDSs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Overview of Causes and Control of Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    This chapter provides an integrated overview of nitrification causes and control in chloraminated drinking water distribution systems, leading to an in-depth discussion of nitrification microbiology, monitoring, prevention, response, and engineering improvements in subsequent man...

  18. Water Quality in Small Community Distribution Systems. A Reference Guide for Operators

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has developed this reference guide to assist the operators and managers of small- and medium-sized public water systems. This compilation provides a comprehensive picture of the impact of the water distribution system network on dist...

  19. Distribution of Complex Chemicals in Oil-Water Systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad

    condensates, MEG and water has been measured in the temperature range of 275-326 K at atmospheric pressure. The detailed composition of condensates is measured by GC analysis and 85 components are identified up to n-nonane and hundreds of ill-defined components in decane plus fraction. In order to develop...... and tested for such measurements. The mutual solubility of two North Sea condensates, MEG and water has been measured in the temperature range of 275-326 K at atmospheric pressure. The detailed composition of condensates is measured by GC analysis and 85 components are identified up to n-nonane and hundreds...... the mutual solubility of condensate/oil, MEG and water is predicted satisfactorily using the same average kij for MEG-HC pairs and water-HC kij from a generalized correlation as a function of carbon number. The experimental trends in mutual solubility as a function of temperature and MEG content in polar...

  20. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    Science.gov (United States)

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  1. MOLECULAR COMPARISON OF MYCOBACTERIUM AVIUM ISOLATED FROM A FRINKING WATER DISTRIBUTION SYSTEM AND FROM THE POPULATION SERVED BY THE SYSTEM

    Science.gov (United States)

    There is evidence that drinking water, soil, and produce may be sources of Mycobacterium avium infections, a pathogen not known to be transmitted person-to-person. We sampled water from a large municipal drinking water distribution system in which surface source water is used. M...

  2. The occurrence of legionalla in hot water distribution systems of some Finnish apartment and office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zacheus, O M; Kuittinen, M H; Martikainen, P J [National Public Health Institute, Dept. Environ. Hyg. and Toxicol., Kuopio (FI)

    1991-01-01

    A project concerning the effect of water temperature and water quality on the microbiology of hot water distribution systems in Finnish apartment and office buildings was started in 1989. Here we report preliminary results on the occurrence of legionella. Samples were taken from showerpipes and from hot water mains before and after calorifiers of 17 buildings. Water temperature in the showerpipes ranged from 39 to 55 deg. C. Water temperature before calorifiers ranged from 40 to 52 deg. C and after them from 39 to 59 deg. C. Water temperature did not explain well the occurrence of legionalla. Legionalla pneumophila was isolated from six systems. The isolates were serogroups 1, 5 and 6. Legionella concentrations in positive samples ranged from 100 to 350 000 CFU/l. Highest concentrations of legionalla were obtained from showerpipes and hot water mains before calorifiers. Four legionella positive distribution systems were decontaminated by raising the water temperature to 60-70 deg. C and cleaning taps and showerheads, and flushing them twice a day. The numbers of legionellas in the hot water mains fell below detection limit (50 CFU/l) and their numbers also decreased in showerpipes. Decontamination failed in some parts of the distribution systems where water temperature remained below 60 deg. C. (author) 26 refs.

  3. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  4. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    OpenAIRE

    Doo Yong Choi; Seong-Won Kim; Min-Ah Choi; Zong Woo Geem

    2016-01-01

    Rapid detection of bursts and leaks in water distribution systems (WDSs) can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA) systems and the establishment of district meter areas (DMAs). Nonetheless, no consideration has been given to how frequen...

  5. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems

    Science.gov (United States)

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and

  6. A STUDY OF LEAKAGE OF TRACE METALS FROM CORROSION OF THE MUNICIPAL DRINKING WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2003-09-01

    Full Text Available Introduction: A high portion of lead and copper concentration in municipal drinking water is related to the metallic structure of the distribution system and facets. The corrosive water in pipes and facets cause dissolution of the metals such as Pb, Cu, Cd, Zn, Fe and Mn into the water. Due to the lack of research work in this area, a study of the trace metals were performed in the drinking water distribution system in Zarin Shahr and Mobareke of Isfahan province. Methods: Based on the united states Environmental protection Agency (USEPA for the cities over than 50,000 population such as Zarin Shahr and Mobareke, 30 water samples from home facets with the minimum 6 hours retention time of water in pipes, were collected. Lead and cadmium concentration were determined using flameless Atomic Absorption. Cupper, Zinc, Iron and Manganese were determined using Atomic Absorption. Results: The average concentration of Pb, Cd, Zn, Fe and Mn in water distribution system fo Zarin Shahr were 5.7, 0.1, 80, 3042, 23065 and in Mobareke were 7.83, 0.8,210,3100, 253, 17µg respectively. The cocentration of Pb, Cd and Zn were zero at the beginning of the water samples from the municipal drinking water distribution system for both cities. Conclusion: The study showed that the corrosion by products (such as Pb, Cd and Zn was the results of dissolution of the galvanized pipes and brass facets. Lead concentration in over that 10 percent of the water samples in zarin shahr exceeded the drinking water standard level, which emphasize the evaluation and control of corrosion in drinking water distribution systems.

  7. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  8. Condition Assessment of Ferrous Water Transmission and Distribution Systems State of Technology Review Report

    Science.gov (United States)

    This White Paper was developed to serve as the basis for discussion at a Technology Forum on Condition Assessment of Water Transmission and Distribution Systems that was held on September 9 and 10, 2008, at Edison, NJ. It was distributed to the Forum participants for review in a...

  9. Flow cytometry total cell counts : A field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A

  10. DRINKING WATER QUALITY IN DISTRIBUTION SYSTEMS OF SURFACE AND GROUND WATERWORKS IN FINLAND

    Directory of Open Access Journals (Sweden)

    Jenni Meirami Ikonen

    2017-06-01

    Full Text Available Physico-chemical and microbiological water quality in the drinking water distribution systems (DWDSs of five waterworks in Finland with different raw water sources and treatment processes was explored. Water quality was monitored during four seasons with on-line equipment and bulk water samples were analysed in laboratory. Seasonal changes in the water quality were more evident in DWDSs of surface waterworks compared to the ground waterworks and artificially recharging ground waterworks (AGR. Between seasons, temperature changed significantly in every system but pH and EC changed only in one AGR system. Seasonal change was seen also in the absorbance values of all systems. The concentration of microbially available phosphorus (MAP, μg PO₄-P/l was the highest in drinking water originating from the waterworks supplying groundwater. Total assimilable organic carbon (AOC, μg AOC-C/l concentrations were significantly different between the DWDSs other than between the two AGR systems. This study reports differences in the water quality between surface and ground waterworks using a wide set of parameters commonly used for monitoring. The results confirm that every distribution system is unique, and the water quality is affected by environmental factors, raw water source, treatment methods and disinfection.

  11. Dual Water Systems: Characterization and Performance for Distribution of Reclaimed Water (WaterRF Report 4333)

    Science.gov (United States)

    The research tasks included: an inventory of cases where dual systems have been implemented; formulation of a protocol to identify claimed benefits, costs, and risks; collection of data (quantitative and anecdotal) to assess performance; display of data in the form of performance...

  12. Design for Corrosion Control of Potable Water Distribution Systems

    Science.gov (United States)

    1975-02-01

    systems in buildings are due to poor design and installation procedures. Also, due to inexperience, the cost of instal- lation of plas; tic piping is often...potential, favorable anode-to-cathode area relacion - ships, large distances between anodes and cathodes, and high resistivity in the metallic current...resulting from a galvanic cell caused by a thermal gradient. 67 - mind Thermoplastic -- Capable of being repeatedly softened 1, y heating and hardened

  13. Management of complex multi-reservoir water distribution systems using advanced control theoretic tools and techniques

    CERN Document Server

    Chmielowski, Wojciech Z

    2013-01-01

    This study discusses issues of optimal water management in a complex distribution system. The main elements of the water-management system under consideration are retention reservoirs, among which water transfers are possible, and a network of connections between these reservoirs and water treatment plants (WTPs). System operation optimisation involves determining the proper water transport routes and their flow volumes from the retention reservoirs to the WTPs, and the volumes of possible transfers among the reservoirs, taking into account transport-related delays for inflows, outflows and water transfers in the system. Total system operation costs defined by an assumed quality coefficient should be minimal. An analytical solution of the optimisation task so formulated has been obtained as a result of using Pontriagin’s maximum principle with reference to the quality coefficient assumed. Stable start and end conditions in reservoir state trajectories have been assumed. The researchers have taken into accou...

  14. Distribution and Bioaccumulation of I-131 Within The Water-Fish System

    International Nuclear Information System (INIS)

    Darussalam, M; Wijaya, DGO; Sutrisno

    1996-01-01

    Distribution and Bioaccumulation of I-131 Within The Water-Fish System. As one of fission products, radioiodine I-131 potentially become a pollutant either resulted froma fallout or radioactive waste. Therefore, special interest has been given to handle I-131 starting from its production implementation and its waste management. The observations in this research have been focussed on distribution and bio accumulation of I-131 within the water-fish systems. Some number of Tilapia fish were put in aquaria containing I-131 contamined water with certain radioactivity concentration. Within time interval of 0, 6, 24, 48 and 72 hours after treatment the radioactivities of water media. fish and their organs have been measured. The results show that the radioactivity percentage different water media containing different I-131 concentration tend to have similar patterns. Meanwhile, the I-131 concentrations of fish and their organs were varied with similar patterns for different I-131 content in water media

  15. Impact of particles on sediment accumulation in a drinking water distribution system.

    Science.gov (United States)

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough.

  16. Simulation of Deposition the Corrosion Waste in a Water Distribution System

    Directory of Open Access Journals (Sweden)

    Peráčková Jana

    2013-04-01

    Full Text Available In water distribution systems can be found particles of rust and other mechanical contaminants. The particles are deposited in locations where the low velocity of water flow. Where a can cause the pitting corrosion. Is a concern in the systems made of galvanized steel pipes. The contribution deals with CFD (Computational Fluid Dynamics simulations of water flow and particles deposition in water distribution system. CFD Simulations were compared with the corrosive deposits in real pipeline. Corrosion is a spontaneous process of destruction of metal material due to electrochemical reactions of metal with the aggressive surrounding. Electrochemical corrosion is caused by the thermodynamic instability of metal and therefore can not be completely suppress, it can only influence the speed of corrosion. The requirement is to keep metal properties during the whole its lifetime. Requested service lifetime the water pipe according to EN 806-2 is 50 years.

  17. Establishment of a Practical Approach for Characterizing the Source of Particulates in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Seon-Ha Chae

    2016-02-01

    Full Text Available Water quality complaints related to particulate matter and discolored water can be troublesome for water utilities in terms of follow-up investigations and implementation of appropriate actions because particulate matter can enter from a variety of sources; moreover, physicochemical processes can affect the water quality during the purification and transportation processes. The origin of particulates can be attributed to sources such as background organic/inorganic materials from water sources, water treatment plants, water distribution pipelines that have deteriorated, and rehabilitation activities in the water distribution systems. In this study, a practical method is proposed for tracing particulate sources. The method entails collecting information related to hydraulic, water quality, and structural conditions, employing a network flow-path model, and establishing a database of physicochemical properties for tubercles and slimes. The proposed method was implemented within two city water distribution systems that were located in Korea. These applications were conducted to demonstrate the practical applicability of the method for providing solutions to customer complaints. The results of the field studies indicated that the proposed method would be feasible for investigating the sources of particulates and for preparing appropriate action plans for complaints related to particulate matter.

  18. Statistical models for the analysis of water distribution system pipe break data

    International Nuclear Information System (INIS)

    Yamijala, Shridhar; Guikema, Seth D.; Brumbelow, Kelly

    2009-01-01

    The deterioration of pipes leading to pipe breaks and leaks in urban water distribution systems is of concern to water utilities throughout the world. Pipe breaks and leaks may result in reduction in the water-carrying capacity of the pipes and contamination of water in the distribution systems. Water utilities incur large expenses in the replacement and rehabilitation of water mains, making it critical to evaluate the current and future condition of the system for maintenance decision-making. This paper compares different statistical regression models proposed in the literature for estimating the reliability of pipes in a water distribution system on the basis of short time histories. The goals of these models are to estimate the likelihood of pipe breaks in the future and determine the parameters that most affect the likelihood of pipe breaks. The data set used for the analysis comes from a major US city, and these data include approximately 85,000 pipe segments with nearly 2500 breaks from 2000 through 2005. The results show that the set of statistical models previously proposed for this problem do not provide good estimates with the test data set. However, logistic generalized linear models do provide good estimates of pipe reliability and can be useful for water utilities in planning pipe inspection and maintenance

  19. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    NARCIS (Netherlands)

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed

  20. Linking Health Concepts in the Assessment and Evaluation of Water Distribution Systems

    Science.gov (United States)

    Karney, Bryan W.; Filion, Yves R.

    2005-01-01

    The concept of health is not only a specific criterion for evaluation of water quality delivered by a distribution system but also a suitable paradigm for overall functioning of the hydraulic and structural components of the system. This article views health, despite its complexities, as the only criterion with suitable depth and breadth to allow…

  1. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods.

    Science.gov (United States)

    Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja

    2008-05-01

    The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.

  2. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems.

    Science.gov (United States)

    Koskinen, R; Ali-Vehmas, T; Kämpfer, P; Laurikkala, M; Tsitko, I; Kostyal, E; Atroshi, F; Salkinoja-Salonen, M

    2000-10-01

    Sphingomonas species were commonly isolated from biofilms in drinking water distribution systems in Finland (three water meters) and Sweden (five water taps in different buildings). The Sphingomonas isolates (n = 38) were characterized by chemotaxonomic, physiological and phylogenetic methods. Fifteen isolates were designated to species Sphingomonas aromaticivorans, seven isolates to S. subterranea, two isolates to S. xenophaga and one isolate to S. stygia. Thirteen isolates represented one or more new species of Sphingomonas. Thirty-three isolates out of 38 grew at 5 degrees C on trypticase soy broth agar (TSBA) and may therefore proliferate in the Nordic drinking water pipeline where the temperature typically ranges from 2 to 12 degrees C. Thirty-three isolates out of 38 grew at 37 degrees C on TSBA and 15 isolates also grew on blood agar at 37 degrees C. Considering the potentially pathogenic features of sphingomonas, their presence in drinking water distribution systems may not be desirable.

  3. Frequency of legionella contamination in conditional & water distribution systems of Tehran hospitals

    Directory of Open Access Journals (Sweden)

    Davod Esmaieli

    2008-09-01

    Full Text Available Background: Legionella species are ubiquitous in natural aquatic environments, capable of existing in waters with varied temperatures, PH levels, and nutrient and oxygen contents. Of 49 known legionella species, 20 species have been linked to pneumonia in humans. Contamination by legionella has occurred in the distribution systems of many hospitals. Aerosol-generating systems such as faucets, showerheads, cooling towers, and nebulizers are responsible for their transmission from water to air. Methods: A total of 113 water samples were gathered from different wards of 32 hospitals in different geographical regions of Tehran city. These samples were concentrated by filtration, treated with the acid and temperature buffers, and isolated on a BCYE agar culture medium. Results: A total of 22 hospitals out of 33 (26.5% were contaminated by legionella species, and 30 samples (26.5% out of 113 were positive. Chlorine concentration and pH level of the water samples were 0.18-2.2 mg/l and 6.6-7.6, respectively. Conclusion: The high rate of waste water contamination in Tehran hospitals with Legionella indicates the resistance of this microorganism to chlorine and other disinfectants, or inadequate disinfection process, representing the insufficiency of the current decontamination of hospital water distribution system. Thus identifying legionella species and their controlling in water distribution system of hospitals is of great importance.

  4. Removal of soft deposits from the distribution system improves the drinking water quality.

    Science.gov (United States)

    Lehtola, Markku J; Nissinen, Tarja K; Miettinen, Ilkka T; Martikainen, Pertti J; Vartiainen, Terttu

    2004-02-01

    Deterioration in drinking water quality in distribution networks represents a problem in drinking water distribution. These can be an increase in microbial numbers, an elevated concentration of iron or increased turbidity, all of which affect taste, odor and color in the drinking water. We studied if pipe cleaning would improve the drinking water quality in pipelines. Cleaning was arranged by flushing the pipes with compressed air and water. The numbers of bacteria and the concentrations of iron and turbidity in drinking water were highest at 9 p.m., when the water consumption was highest. Soft deposits inside the pipeline were occasionally released to bulk water, increasing the concentrations of iron, bacteria, microbially available organic carbon and phosphorus in drinking water. The cleaning of the pipeline decreased the diurnal variation in drinking water quality. With respect to iron, only short-term positive effects were obtained. However, removing of the nutrient-rich soft deposits did decrease the microbial growth in the distribution system during summer when there were favorable warm temperatures for microbial growth. No Norwalk-like viruses or coliform bacteria were detected in the soft deposits, in contrast to the high numbers of heterotrophic bacteria.

  5. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    OpenAIRE

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed harvests and famines in the past. A large scale irrigation system was constructed to solve these problems. The system is operational since 1953 and was completed in 1968. The area to be irrigated ...

  6. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  7. Operation of remote mobile sensors for security of drinking water distribution systems.

    Science.gov (United States)

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Evaluation of water distribution under pivot irrigation systems using remote sensing imagery in eastern Nile delta

    Directory of Open Access Journals (Sweden)

    E. Farg

    2017-04-01

    Full Text Available Traditional methods for center pivot evaluation depend on the water depth distribution along the pivot arm. Estimation and mapping the water depth under pivot irrigation systems using remote sensing data is essential for calculating the coefficient of uniformity (CU of water distribution. This study focuses on estimating and mapping water depth using Landsat OLI 8 satellite data integrated with Heerman and Hein (1968 modified equation for center pivot evaluation. Landsat OLI 8 image was geometrically and radiometrically corrected to calculate the vegetation and water indices (NDVI and NDWI in addition to land surface temperature. Results of the statistical analysis showed that the collected water depth in catchment cans is also highly correlated negatively with NDVI. On the other hand water, depth was positively correlated with NDWI and LST. Multi-linear regression analysis using stepwise selection method was applied to estimate and map the water depth distribution. The results showed R2 and adjusted R2 0.93 and 0.88 respectively. Study area or field level verification was applied for estimation equation with correlation 0.93 between the collected water depth and estimated values.

  9. Calcium Carbonate Formation in Water Distribution Systems and Autogenous Repair of Leaks by Inert Particle Clogging

    OpenAIRE

    Richards, Colin Scott

    2016-01-01

    The formation of calcium carbonate (CaCO3) (i.e. scale) in potable water systems has long been a concern in water treatment and distribution. A literature review reveals that CaCO3 scaling issues are re-emerging due to climate change, temperature increases in hot water systems and lower use of scaling and corrosion inhibitors. Moreover, we have gathered insights that suggest CaCO3 coatings can be beneficial and stop pipeline leaks via self-repair or clogging. Ironically, the actions we are ta...

  10. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Rossella Briancesco

    2010-01-01

    Full Text Available Data on the occurrence of non-tuberculous mycobacteria (NTM, in parallel with those obtained for bacterial indicators and amoebae, are presented with the aim to collect information on the spread of NTM in drinking water distribution systems in Italy. Samples were collected from taps of hospitals and households in Central and Southern Italy. The concentration values obtained for the more traditional microbial parameters complied with the mandatory requirements for drinking water. Conversely, moderate-to-high microbial loads (till 300 CFU/L were observed for the NTM. Positive samples were obtained from 62% of the investigated water samples. Analogous results were observed for amoebae showing a higher percentage of positive samples (76%. In terms of public health, the presence of mycobacteria in water distribution systems may represent a potential risk especially for vulnerable people such as children, the elderly or immunocompromised individuals.

  11. Leakage localisation method in a water distribution system based on sensitivity matrix: methodology and real test

    OpenAIRE

    Pascual Pañach, Josep

    2010-01-01

    Leaks are present in all water distribution systems. In this paper a method for leakage detection and localisation is presented. It uses pressure measurements and simulation models. Leakage localisation methodology is based on pressure sensitivity matrix. Sensitivity is normalised and binarised using a common threshold for all nodes, so a signatures matrix is obtained. A pressure sensor optimal distribution methodology is developed too, but it is not used in the real test. To validate this...

  12. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingqing [College of Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Chen, Huanyu [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300000 (China); Yao, Lingdan; Wei, Zongyuan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Lou, Liping, E-mail: loulp@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda [Environmental Protection Agency, Office of Research and Development, NRMRL, Cincinnati, OH 45220 (United States); Hu, Baolan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhou, Xiaoyan [Shaoxing Water Environmental Science Institute Co. Ltd, Zhejiang 312000 (China)

    2016-11-05

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  13. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    International Nuclear Information System (INIS)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-01-01

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  14. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks

    International Nuclear Information System (INIS)

    Francis, Royce A.; Guikema, Seth D.; Henneman, Lucas

    2014-01-01

    In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a water zone. To the authors’ knowledge, this is the first attempt to model drinking water distribution system pipe breaks using BBNs. Development of expert systems such as BBNs for analyzing drinking water distribution system data is not only important for pipe break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate data-based distribution system monitoring and asset management. Due to the difficulties in collecting, preparing, and managing drinking water distribution system data, most pipe break models can be classified as “statistical–physical” or “hypothesis-generating.” We develop the BBN with the hope of contributing to the “hypothesis-generating” class of models, while demonstrating the possibility that BBNs might also be used as “statistical–physical” models. Our model is learned from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network. BBN models are learned using a constraint-based method, a score-based method, and a hybrid method. Model evaluation is based on log-likelihood scoring. Sensitivity analysis using mutual information criterion is also reported. While our results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may be difficult to select among model alternatives. This model uncertainty may mean that more research is needed for understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter might be important for asset management planning. - Highlights: • We show Bayesian Networks for predictive and diagnostic management of water distribution systems. • Our model may enable system operators and managers to prioritize system

  15. Methodological approaches for studying the microbial ecology of drinking water distribution systems

    OpenAIRE

    Douterelo, Isabel; Boxall, Joby B.; Deines, Peter; Sekar, Raju; Fish, Katherine E.; Biggs, Catherine A.

    2014-01-01

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for chara...

  16. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    Science.gov (United States)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems.

    Science.gov (United States)

    Jjemba, Patrick K; Weinrich, Lauren A; Cheng, Wei; Giraldo, Eugenio; Lechevallier, Mark W

    2010-07-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use.

  18. Regrowth of Potential Opportunistic Pathogens and Algae in Reclaimed-Water Distribution Systems

    Science.gov (United States)

    Jjemba, Patrick K.; Weinrich, Lauren A.; Cheng, Wei; Giraldo, Eugenio; LeChevallier, Mark W.

    2010-01-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use. PMID:20453149

  19. Power distribution monitoring system in the boiling water cooled reactor core

    International Nuclear Information System (INIS)

    Leshchenko, Yu.I.; Sadulin, V.P.; Semidotskij, I.I.

    1987-01-01

    Consideration is being given to the system of physical power distribution monitoring, used during several years in the VK-50 tank type boiling water cooled reactor. Experiments were conducted to measure the ratios of detector prompt and activation currents, coefficients of detector relative sensitivity with respect to neutrons and effective cross sections of 103 Rh interaction with thermal and epithermal neutrons. Mobile self-powered detectors (SPD) with rhodium emitters are used as the power distribution detectors in the considered system. All detectors move simultaneously with constant rate in channels, located in fuel assembly central tubes, when conducting the measurements. It is concluded on the basis of analyzing the obtained data, that investigated system with calibrated SPD enables to monitor the absolute power distribution in fuel assemblies under conditions of boiling water cooled reactor and is independent of thermal engineering measurements conducted by in core instruments

  20. MODELING OF WATER DISTRIBUTION SYSTEM PARAMETERS AND THEIR PARTICULAR IMPORTANCE IN ENVIRONMENT ENGINEERING PROCESSES

    Directory of Open Access Journals (Sweden)

    Agnieszka Trębicka

    2016-05-01

    Full Text Available The object of this study is to present a mathematical model of water-supply network and the analysis of basic parameters of water distribution system with a digital model. The reference area is Kleosin village, municipality Juchnowiec Kościelny in podlaskie province, located at the border with Białystok. The study focused on the significance of every change related to the quality and quantity of water delivered to WDS through modeling the basic parameters of water distribution system in different variants of work in order to specify new, more rational ways of exploitation (decrease in pressure value and to define conditions for development and modernization of the water-supply network, with special analysis of the scheme, in frames of specification of the most dangerous places in the network. The analyzed processes are based on copying and developing the existing state of water distribution sub-system (the WDS with the use of mathematical modeling that includes the newest accessible computer techniques.

  1. Detection of Leaks in Water Distribution System using Non-Destructive Techniques

    Science.gov (United States)

    Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.

    2018-05-01

    Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.

  2. Deterioration of drinking water quality in the distribution system and gastrointestinal morbidity in a Russian city.

    Science.gov (United States)

    Egorov, Andrey; Ford, Timothy; Tereschenko, Andrey; Drizhd, Nina; Segedevich, Irena; Fourman, Vladislav

    2002-09-01

    Few studies have been conducted in Russia to assess the relationship between drinking water quality and gastrointestinal (GI) infections. In the city of Cherepovets, effluent water at the treatment plant usually meets the country's hygienic standards. To provide protection against secondary water contamination in the distribution system, concentrations of total residual chlorine in effluent water are maintained#10; at levels from 1 to 2 mg x l(-1). However, residual chlorine concentrations rapidly decline in the distribution system and rechlorination is not practiced. Some areas of the city routinely have very low residual chlorine at taps and little protection against secondary microbiological contamination of water in pipelines. A cross-sectional epidemiological study was conducted in Cherepovets to assess an association between decline in residual chlorine concentrations and risk of GI illness. This study included water quality monitoring and an extensive questionnaire survey of city residents. The results demonstrated a consistent spatial pattern of free chlorine decline in the distribution system. An interquartile range variability in free residual chlorine decline (0.22 mg x l(-1)) was associated with 1.42 (95% confidence interval (CI) = 1.05, 1.91) relative risk of self-reported gastrointestinal illness after control for socioeconomic, hygienic and demographic parameters.

  3. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    Science.gov (United States)

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  4. DECISION SUPPORT FOR RENEWAL OF WASTEWATER COLLECTIONS AND WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    The decision of how to accomplish the renewal of existing wastewater collection and water distribution systems involves the evaluation of many criteria and parameters. These criteria must be evaluated thoroughly to determine the best way of rehabilitating or replacing these syste...

  5. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...

  6. Bacterial Composition of Biofilms Collected From Two Service Areas in a Metropolitan Drinking Water Distribution System

    Science.gov (United States)

    The development and succession of bacteria were examined by 16S rRNA gene clone libraries generated from various biofilms within a metropolitan water distribution system. Biofilms were obtained from off-line devices using polycarbonate coupons from annular reactors incubated for ...

  7. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  8. Principles for scaling of distributed direct potable water reuse systems: a modeling study.

    Science.gov (United States)

    Guo, Tianjiao; Englehardt, James D

    2015-05-15

    Scaling of direct potable water reuse (DPR) systems involves tradeoffs of treatment facility economy-of-scale, versus cost and energy of conveyance including energy for upgradient distribution of treated water, and retention of wastewater thermal energy. In this study, a generalized model of the cost of DPR as a function of treatment plant scale, assuming futuristic, optimized conveyance networks, was constructed for purposes of developing design principles. Fractal landscapes representing flat, hilly, and mountainous topographies were simulated, with urban, suburban, and rural housing distributions placed by modified preferential growth algorithm. Treatment plants were allocated by agglomerative hierarchical clustering, networked to buildings by minimum spanning tree. Simulations assume advanced oxidation-based DPR system design, with 20-year design life and capability to mineralize chemical oxygen demand below normal detection limits, allowing implementation in regions where disposal of concentrate containing hormones and antiscalants is not practical. Results indicate that total DPR capital and O&M costs in rural areas, where systems that return nutrients to the land may be more appropriate, are high. However, costs in urban/suburban areas are competitive with current water/wastewater service costs at scales of ca. one plant per 10,000 residences. This size is relatively small, and costs do not increase significantly until plant service areas fall below 100 to 1000 homes. Based on these results, distributed DPR systems are recommended for consideration for urban/suburban water and wastewater system capacity expansion projects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Science.gov (United States)

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Verification of IMRT dose distributions using a water beam imaging system

    International Nuclear Information System (INIS)

    Li, J.S.; Boyer, Arthur L.; Ma, C.-M.

    2001-01-01

    A water beam imaging system (WBIS) has been developed and used to verify dose distributions for intensity modulated radiotherapy using dynamic multileaf collimator. This system consisted of a water container, a scintillator screen, a charge-coupled device camera, and a portable personal computer. The scintillation image was captured by the camera. The pixel value in this image indicated the dose value in the scintillation screen. Images of radiation fields of known spatial distributions were used to calibrate the device. The verification was performed by comparing the image acquired from the measurement with a dose distribution from the IMRT plan. Because of light scattering in the scintillator screen, the image was blurred. A correction for this was developed by recognizing that the blur function could be fitted to a multiple Gaussian. The blur function was computed using the measured image of a 10 cmx10 cm x-ray beam and the result of the dose distribution calculated using the Monte Carlo method. Based on the blur function derived using this method, an iterative reconstruction algorithm was applied to recover the dose distribution for an IMRT plan from the measured WBIS image. The reconstructed dose distribution was compared with Monte Carlo simulation result. Reasonable agreement was obtained from the comparison. The proposed approach makes it possible to carry out a real-time comparison of the dose distribution in a transverse plane between the measurement and the reference when we do an IMRT dose verification

  11. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    E I Prest

    Full Text Available Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP effluent and at one fixed location in the drinking water distribution network (NET. The samples were analysed for heterotrophic plate counts (HPC, Aeromonas plate counts, adenosine-tri-phosphate (ATP concentrations, and flow cytometric (FCM total and intact cell counts (TCC, ICC, water temperature, pH, conductivity, total organic carbon (TOC and assimilable organic carbon (AOC. Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time and in bacterial ATP concentrations (<1-3.6 ng L-1, which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35, and positively correlated with water temperature (r = 0.49. Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  12. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; Van Loosdrecht, M. C M; Vrouwenvelder, Johannes S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  13. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  14. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  15. An integrated logit model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications

    Directory of Open Access Journals (Sweden)

    Nicole L Fahrenfeld

    2013-05-01

    Full Text Available Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2, macrolides (ermF, tetracycline (tet(A, tet(O, glycopeptides (vanA, and methicillin (mecA, in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip, Escherichia coli (gadAB, and Pseudomonas aeruginosa (ecfx, gyrB. In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use. Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated, elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the point of use, and that attention should be directed towards the fate of ARGs in irrigation water and the implications for human health.

  17. Importance of exposure model in estimating impacts when a water distribution system is contaminated

    International Nuclear Information System (INIS)

    Davis, M. J.; Janke, R.; Environmental Science Division; USEPA

    2008-01-01

    The quantity of a contaminant ingested by individuals using tap water drawn from a water distribution system during a contamination event depends on the concentration of the contaminant in the water and the volume of water ingested. If the concentration varies with time, the actual time of exposure affects the quantity ingested. The influence of the timing of exposure and of individual variability in the volume of water ingested on estimated impacts for a contamination event has received limited attention. We examine the significance of ingestion timing and variability in the volume of water ingested by using a number of models for ingestion timing and volume. Contaminant concentrations were obtained from simulations of an actual distribution system for cases involving contaminant injections lasting from 1 to 24 h. We find that assumptions about exposure can significantly influence estimated impacts, especially when injection durations are short and impact thresholds are high. The influence of ingestion timing and volume should be considered when assessing impacts for contamination events

  18. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-03-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a 'core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.

  19. Pump as Turbine (PAT Design in Water Distribution Network by System Effectiveness

    Directory of Open Access Journals (Sweden)

    Oreste Fecarotta

    2013-08-01

    Full Text Available Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was developed based on the efficiency and the mechanical reliability of the hydropower device and the flexibility of the plant. System effectiveness is proposed as the objective function in the optimization procedure and applied to a real system, enabling one to emphasize that the hydraulic regulation mode of the plant is better than the electric regulation mode for American Petroleum Industry (API manufacturing standards of pumps.

  20. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    Science.gov (United States)

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    Science.gov (United States)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  2. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    Nishizawa, Y.; Kiguchi, T.; Kobayashi, S.; Takumi, K.; Tanaka, H.; Tsutsumi, R.; Yokomi, M.

    1982-01-01

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  3. Conventional and Alternative Disinfection Methods of Legionella in Water Distribution Systems – Review

    Directory of Open Access Journals (Sweden)

    Pūle Daina

    2016-12-01

    Full Text Available Prevalence of Legionella in drinking water distribution systems is a widespread problem. Outbreaks of Legionella caused diseases occur despite various disinfectants are used in order to control Legionella. Conventional methods like thermal disinfection, silver/copper ionization, ultraviolet irradiation or chlorine-based disinfection have not been effective in the long term for control of biofilm bacteria. Therefore, research to develop more effective disinfection methods is still necessary.

  4. A hydrostatic leak test for water pipeline by using distributed optical fiber vibration sensing system

    Science.gov (United States)

    Wu, Huijuan; Sun, Zhenshi; Qian, Ya; Zhang, Tao; Rao, Yunjiang

    2015-07-01

    A hydrostatic leak test for water pipeline with a distributed optical fiber vibration sensing (DOVS) system based on the phase-sensitive OTDR technology is studied in this paper. By monitoring one end of a common communication optical fiber cable, which is laid in the inner wall of the pipe, we can detect and locate the water leakages easily. Different apertures under different pressures are tested and it shows that the DOVS has good responses when the aperture is equal or larger than 4 mm and the inner pressure reaches 0.2 Mpa for a steel pipe with DN 91cm×EN 2cm.

  5. Integrated hydraulic and organophosphate pesticide injection simulations for enhancing event detection in water distribution systems.

    Science.gov (United States)

    Schwartz, Rafi; Lahav, Ori; Ostfeld, Avi

    2014-10-15

    As a complementary step towards solving the general event detection problem of water distribution systems, injection of the organophosphate pesticides, chlorpyrifos (CP) and parathion (PA), were simulated at various locations within example networks and hydraulic parameters were calculated over 24-h duration. The uniqueness of this study is that the chemical reactions and byproducts of the contaminants' oxidation were also simulated, as well as other indicative water quality parameters such as alkalinity, acidity, pH and the total concentration of free chlorine species. The information on the change in water quality parameters induced by the contaminant injection may facilitate on-line detection of an actual event involving this specific substance and pave the way to development of a generic methodology for detecting events involving introduction of pesticides into water distribution systems. Simulation of the contaminant injection was performed at several nodes within two different networks. For each injection, concentrations of the relevant contaminants' mother and daughter species, free chlorine species and water quality parameters, were simulated at nodes downstream of the injection location. The results indicate that injection of these substances can be detected at certain conditions by a very rapid drop in Cl2, functioning as the indicative parameter, as well as a drop in alkalinity concentration and a small decrease in pH, both functioning as supporting parameters, whose usage may reduce false positive alarms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Estimation of Leakage Ratio Using Principal Component Analysis and Artificial Neural Network in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Dongwoo Jang

    2018-03-01

    Full Text Available Leaks in a water distribution network (WDS constitute losses of water supply caused by pipeline failure, operational loss, and physical factors. This has raised the need for studies on the factors affecting the leakage ratio and estimation of leakage volume in a water supply system. In this study, principal component analysis (PCA and artificial neural network (ANN were used to estimate the volume of water leakage in a WDS. For the study, six main effective parameters were selected and standardized data obtained through the Z-score method. The PCA-ANN model was devised and the leakage ratio was estimated. An accuracy assessment was performed to compare the measured leakage ratio to that of the simulated model. The results showed that the PCA-ANN method was more accurate for estimating the leakage ratio than a single ANN simulation. In addition, the estimation results differed according to the number of neurons in the ANN model’s hidden layers. In this study, an ANN with multiple hidden layers was found to be the best method for estimating the leakage ratio with 12–12 neurons. This suggested approaches to improve the accuracy of leakage ratio estimation, as well as a scientific approach toward the sustainable management of water distribution systems.

  7. Bacteriology of drinking water distribution systems: an integral and multidimensional review.

    Science.gov (United States)

    Liu, G; Verberk, J Q J C; Van Dijk, J C

    2013-11-01

    A drinking water distribution system (DWDS) is the final and essential step to supply safe and high-quality drinking water to customers. Biological processes, such as biofilm formation and detachment, microbial growth in bulk water, and the formation of loose deposits, may occur. These processes will lead to deterioration of the water quality during distribution. In extreme conditions, pathogens and opportunistic pathogens may proliferate and pose a health risk to consumers. It is, therefore, necessary to understand the bacteriology of DWDSs to develop effective strategies that can ensure the water quality at consumers' taps. The bacteriology of DWDSs, both the quantitative growth and the qualitative bacterial community, has attracted considerable research attention. However, the researchers have focused mainly on the pipe wall biofilm. In this review, DWDS bacteriology has been reviewed multidimensionally, including both the bacterial quantification and identification. For the first time, the available literature was reviewed with an emphasis on the subdivision of DWDS into four phases: bulk water, suspended solids, loose deposits, and pipe wall biofilm. Special concentration has been given to potential contribution of particulate matter: suspended particles and loose deposits. Two highlighted questions were reviewed and discussed: (1) where does most of the growth occur? And (2) what is the contribution of particle-associated bacteria to DWDS bacteriology and ecology? At the end of this review, recommendations were given based on the conclusion of this review to better understand the integral DWDS bacteriology.

  8. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  9. Low-cost failure sensor design and development for water pipeline distribution systems.

    Science.gov (United States)

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  10. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    Science.gov (United States)

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Distributed systems

    CERN Document Server

    Van Steen, Maarten

    2017-01-01

    For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.

  12. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  13. Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system.

    Science.gov (United States)

    Rodríguez-Martínez, Sarah; Sharaby, Yehonatan; Pecellín, Marina; Brettar, Ingrid; Höfle, Manfred; Halpern, Malka

    2015-06-15

    Bacteria of the genus Legionella cause water-based infections, resulting in severe pneumonia. To improve our knowledge about Legionella spp. ecology, its prevalence and its relationships with environmental factors were studied. Seasonal samples were taken from both water and biofilm at seven sampling points of a small drinking water distribution system in Israel. Representative isolates were obtained from each sample and identified to the species level. Legionella pneumophila was further determined to the serotype and genotype level. High resolution genotyping of L. pneumophila isolates was achieved by Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Within the studied water system, Legionella plate counts were higher in summer and highly variable even between adjacent sampling points. Legionella was present in six out of the seven selected sampling points, with counts ranging from 1.0 × 10(1) to 5.8 × 10(3) cfu/l. Water counts were significantly higher in points where Legionella was present in biofilms. The main fraction of the isolated Legionella was L. pneumophila serogroup 1. Serogroup 3 and Legionella sainthelensis were also isolated. Legionella counts were positively correlated with heterotrophic plate counts at 37 °C and negatively correlated with chlorine. Five MLVA-genotypes of L. pneumophila were identified at different buildings of the sampled area. The presence of a specific genotype, "MLVA-genotype 4", consistently co-occurred with high Legionella counts and seemed to "trigger" high Legionella counts in cold water. Our hypothesis is that both the presence of L. pneumophila in biofilm and the presence of specific genotypes, may indicate and/or even lead to high Legionella concentration in water. This observation deserves further studies in a broad range of drinking water systems to assess its potential for general use in drinking water monitoring and management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Stimulation of 2-methylisoborneol (MIB) production by actinomycetes after cyclic chlorination in drinking water distribution systems.

    Science.gov (United States)

    Abbaszadegan, Morteza; Yi, Min; Alum, Absar

    2015-01-01

    The impact of fluctuation in chlorine residual on actinomycetes and the production of 2-methylisoborneol (MIB) were studied in cast-iron and PVC model distribution systems. Actinomycetes were spiked in each system and continued operation for a 12-day non-chlorine experiment, resulting in no changes in actinomycetes and MIB concentrations. Three cyclic chlorination events were performed and chlorine residuals were maintained as follows: 1.0 mg L(-1) for 24 h, 0 mg L(-1) for 48 h, 0.5 mg L(-1) for 48 h, 0 mg L(-1) for 48 h and 2 mg L(-1) for 24 h. After each chlorination event, 2 -3 log decrease in actinomycetes was noted in both systems. However, within 48 h at 0 mg L(-1) chlorine, the actinomycetes recovered to the pre-chlorination levels. On the contrary, MIB concentration in both systems remained un-impacted after the first cycle and increased by fourfold ( 20 mg L(-1)) after the second cycle, which lasted through the third cycle despite the fact that actinomycetes numbers fluctuated 2-3 logs during this time period. For obtaining biofilm samples from field, water meters were collected from municipality drinking water distribution systems located in central Arizona. The actinomycetes concentration in asbestos cement pipe and cast iron pipe averaged 3.1 × 10(3) and 1.9 × 10(4) CFU cm(-2), respectively. The study shows that production of MIB is associated with changes in chlorine residual in the systems. This is the first report of cyclic chlorine shock as a stimulus for MIB production by actinomycetes in drinking water distribution system's ecology.

  15. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

    Science.gov (United States)

    Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was u...

  16. Study (Prediction of Main Pipes Break Rates in Water Distribution Systems Using Intelligent and Regression Methods

    Directory of Open Access Journals (Sweden)

    Massoud Tabesh

    2011-07-01

    Full Text Available Optimum operation of water distribution networks is one of the priorities of sustainable development of water resources, considering the issues of increasing efficiency and decreasing the water losses. One of the key subjects in optimum operational management of water distribution systems is preparing rehabilitation and replacement schemes, prediction of pipes break rate and evaluation of their reliability. Several approaches have been presented in recent years regarding prediction of pipe failure rates which each one requires especial data sets. Deterministic models based on age and deterministic multi variables and stochastic group modeling are examples of the solutions which relate pipe break rates to parameters like age, material and diameters. In this paper besides the mentioned parameters, more factors such as pipe depth and hydraulic pressures are considered as well. Then using multi variable regression method, intelligent approaches (Artificial neural network and neuro fuzzy models and Evolutionary polynomial Regression method (EPR pipe burst rate are predicted. To evaluate the results of different approaches, a case study is carried out in a part ofMashhadwater distribution network. The results show the capability and advantages of ANN and EPR methods to predict pipe break rates, in comparison with neuro fuzzy and multi-variable regression methods.

  17. Prevalence of Legionella pneumophila in water distribution systems in hospitals and public buildings of the Lublin region of eastern Poland

    Directory of Open Access Journals (Sweden)

    Agnieszka Sikora

    2015-05-01

    The water samples collected form the hot water supply system of hospitals and public buildings showed exceeded counts of L. pneumophila, indicating the risk of infection. The constant monitoring of water distribution systems is an important element of the control of infections caused by these organisms.

  18. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  19. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    Science.gov (United States)

    2014-02-04

    disinfected drinking water and the other with the same water with secondary chloramine disinfection . Flow...systems (DWDS). One system was maintained with chlorine- disinfected drinking water and the other with the same water with secondary chloramine... disinfectant concen- tration in drinking water can decrease during periods of stagnation, i.e., minimal to no water flow (Al-Jasser 2007). These

  20. Model-based approach for cyber-physical attack detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ohar, Ziv

    2018-08-01

    Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition (http://www.batadal.net). Copyright © 2018. Published by Elsevier Ltd.

  1. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  2. A coupled classification - evolutionary optimization model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Oliker, Nurit; Ostfeld, Avi

    2014-03-15

    This study describes a decision support system, alerts for contamination events in water distribution systems. The developed model comprises a weighted support vector machine (SVM) for the detection of outliers, and a following sequence analysis for the classification of contamination events. The contribution of this study is an improvement of contamination events detection ability and a multi-dimensional analysis of the data, differing from the parallel one-dimensional analysis conducted so far. The multivariate analysis examines the relationships between water quality parameters and detects changes in their mutual patterns. The weights of the SVM model accomplish two goals: blurring the difference between sizes of the two classes' data sets (as there are much more normal/regular than event time measurements), and adhering the time factor attribute by a time decay coefficient, ascribing higher importance to recent observations when classifying a time step measurement. All model parameters were determined by data driven optimization so the calibration of the model was completely autonomic. The model was trained and tested on a real water distribution system (WDS) data set with randomly simulated events superimposed on the original measurements. The model is prominent in its ability to detect events that were only partly expressed in the data (i.e., affecting only some of the measured parameters). The model showed high accuracy and better detection ability as compared to previous modeling attempts of contamination event detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. In situ examination of microbial populations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, Adam Camillo; Nielsen, Alex Toftgaard; Arvin, Erik

    2002-01-01

    A flow cell set-up was used as a model drinking water distribution system to analyze the in situ microbial population. Biofilm growth was followed by transmission light microscopy for 81 days and showed a biofilm consisting of microcolonies separated by a monolayer of cells. Protozoans (ciliates...... of a mixed population of α- and β-Proteobacteria. 65 strains from the inlet water and 20 from the biofilm were isolated on R2A agar plates and sorted into groups with amplified rDNA restriction analysis. The 16S rDNA gene was sequenced for representatives of the abundant groups. A phylogenetic analysis...... revealed that the majority of the isolated strains from the bulk water and biofilm were affiliated to the family of Comamonadaceae in the β-lineage of Proteobacteria. The majority of the strains from the α-lineage were affiliated to the family of Sphingomonadaceae. We were unable to detect any strains from...

  4. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi

    2016-04-01

    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  5. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    Science.gov (United States)

    Liu, G.; Van der Mark, E. J.; Verberk, J. Q. J. C.; Van Dijk, J. C.

    2013-01-01

    The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R 2 = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP. PMID:23819117

  6. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    G. Liu

    2013-01-01

    Full Text Available The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R2=0.63. Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP.

  7. Estimation of water demand in water distribution systems using particle swarm optimization

    CSIR Research Space (South Africa)

    Letting, LK

    2017-08-01

    Full Text Available and an evolutionary algorithm is a potential solution to the demand estimation problem. This paper presents a detailed process simulation model for water demand estimation using the particle swarm optimization (PSO) algorithm. Nodal water demands and pipe flows...

  8. Preliminary assessment of the interaction of introduced biological agents with biofilms in water distribution systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Caldwell, Sara; Jones, Howland D. T.; Altman, Susan Jeanne; Souza, Caroline Ann; McGrath, Lucas K.

    2005-12-01

    Basic research is needed to better understand the potential risk of dangerous biological agents that are unintentionally or intentionally introduced into a water distribution system. We report on our capabilities to conduct such studies and our preliminary investigations. In 2004, the Biofilms Laboratory was initiated for the purpose of conducting applied research related to biofilms with a focus on application, application testing and system-scale research. Capabilities within the laboratory are the ability to grow biofilms formed from known bacteria or biofilms from drinking water. Biofilms can be grown quickly in drip-flow reactors or under conditions more analogous to drinking-water distribution systems in annular reactors. Biofilms can be assessed through standard microbiological techniques (i .e, aerobic plate counts) or with various visualization techniques including epifluorescent and confocal laser scanning microscopy and confocal fluorescence hyperspectral imaging with multivariate analysis. We have demonstrated the ability to grow reproducible Pseudomonas fluorescens biofilms in the annular reactor with plate counts on the order of 10{sup 5} and 10{sup 6} CFU/cm{sup 2}. Stationary phase growth is typically reached 5 to 10 days after inoculation. We have also conducted a series of pathogen-introduction experiments, where we have observed that both polystyrene microspheres and Bacillus cereus (as a surrogate for B. anthracis) stay incorporated in the biofilms for the duration of our experiments, which lasted as long as 36 days. These results indicated that biofilms may act as a safe harbor for bio-pathogens in drinking water systems, making it difficult to decontaminate the systems.

  9. Carrier Mediated Distribution System (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients.

    Science.gov (United States)

    Wagner, Bjoern; Fischer, Holger; Kansy, Manfred; Seelig, Anna; Assmus, Frauke

    2015-02-20

    Here we present a miniaturized assay, referred to as Carrier-Mediated Distribution System (CAMDIS) for fast and reliable measurement of octanol/water distribution coefficients, log D(oct). By introducing a filter support for octanol, phase separation from water is facilitated and the tendency of emulsion formation (emulsification) at the interface is reduced. A guideline for the best practice of CAMDIS is given, describing a strategy to manage drug adsorption at the filter-supported octanol/buffer interface. We validated the assay on a set of 52 structurally diverse drugs with known shake flask log D(oct) values. Excellent agreement with literature data (r(2) = 0.996, standard error of estimate, SEE = 0.111), high reproducibility (standard deviation, SD < 0.1 log D(oct) units), minimal sample consumption (10 μL of 100 μM DMSO stock solution) and a broad analytical range (log D(oct) range = -0.5 to 4.2) make CAMDIS a valuable tool for the high-throughput assessment of log D(oc)t. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    KAUST Repository

    Ling, Fangqiong

    2015-08-07

    © 2015 International Society for Microbial Ecology Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite’ model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.The ISME Journal advance online publication, 7 August 2015; doi:10.1038/ismej.2015.136.

  11. Biofilm formation in surface and drinking water distribution systems in Mafikeng, South Africa

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-11-01

    Full Text Available Poor quality source water and poorly treated reused wastewater may result in poor quality drinking water that has a higher potential to form biofilms. A biofilm is a group of microorganisms which adhere to a surface. We investigated biofilm growth in the drinking water distribution systems in the Mafikeng area, in the North- West Province of South Africa. Analysis was conducted to determine the presence of faecal coliforms, total coliforms, Pseudomonas spp. and Aeromonas spp. in the biofilms. Biofilms were grown on a device that contained copper and galvanised steel coupons. A mini tap filter – a point-of-use treatment device which can be used at a single faucet – was also used to collect samples. Scanning electron microscopy demonstrated that multi-species biofilms developed on all the coupons as well as on the point-of-use filters. Galvanised steel and carbon filters had the highest density of biofilm. Total coliforms, faecal coliforms and Pseudomonas spp. were isolated from raw water biofilm coupons only. Aeromonas spp. and Pseudomonas spp. were isolated from filters. The susceptibility of selected isolates was tested against 11 antibiotics of clinical interest. The most prevalent antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. The presence of virulence genes was determined using the polymerase chain reaction. These results indicate that bacteria present in the water have the ability to colonise as biofilms and drinking water biofilms may be a reservoir for opportunistic bacteria including Pseudomonas and Aeromonas species.

  12. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe; Smith, L.; Rasekh, A.; Stoleru, R.; Banks, M.K.; Shihada, Basem

    2014-01-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  13. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe

    2014-05-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  14. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Ginige, Maneesha P; Wylie, Jason; Plumb, Jason

    2011-02-01

    Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (∼1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall

  15. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model.

    Science.gov (United States)

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-11-01

    Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent experimental studies revealed that the chlorination of the microbial carbon associated with the biofilm contributes to the total disinfection by-products (DBPs) formation with distinct mechanisms from those formed from precursors derived from natural organic matter (NOM). A multiple species reactive-transport model was developed to explain the role of biofilms in DBPs formation by accounting for the simultaneous transport and interactions of disinfectants, organic compounds, and biomass. Using parameter values from experimental studies in the literature, the model equations were solved to predict chlorine decay and microbial regrowth dynamics in an actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system simulator. The model's capability of reproducing the measured concentrations of free chlorine, suspended biomass, and THMs under different hydrodynamic and temperature conditions was demonstrated. The contribution of bacteria-derived precursors to the total THMs production was found to have a significant dependence on the system's hydraulics, seasonal variables, and the quality of the treated drinking water. Under system conditions that promoted fast bacterial re-growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms showed a noticeable effect on the kinetics of THMs formation, especially when a high initial chlorine dose was applied. These conditions included elevated water temperature and high concentrations of nutrients in the influent water. The fraction of THMs formed from microbial sources was found to reach a peak of 12% of the total produced THMs under the investigated scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in predictive DBPs formation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  17. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    OpenAIRE

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammon...

  18. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].

    Science.gov (United States)

    Liu, Shu-Ming; Wu, Xue; Ouyang, Le-Yan

    2013-08-01

    The notion of identification fitness was proposed for optimizing sensor placement in water distribution systems. Nondominated Sorting Genetic Algorithm II was used to find the Pareto front between minimum overlap of possible detection times of two events and the best probability of detection, taking nodal demand uncertainties into account. This methodology was applied to an example network. The solutions show that the probability of detection and the number of possible locations are not remarkably affected by nodal demand uncertainties, but the sources identification accuracy declines with nodal demand uncertainties.

  19. Health risk assessment of arsenic from blended water in distribution systems.

    Science.gov (United States)

    Zhang, Hui; Zhou, Xue; Wang, Kai; Wang, Wen D

    2017-12-06

    In a water distribution system with different sources, water blending occurs, causing specific variations of the arsenic level. This study was undertaken to investigate the concentration and cancer risk of arsenic in blended water in Xi'an city. A total of 672 tap water samples were collected from eight sampling points in the blending zones for arsenic determination. The risk was evaluated through oral ingestion and dermal absorption, separately for males and females, as well as with respect to seasons and blending zones. Although the arsenic concentrations always fulfilled the requirements of the World Health Organization (WHO) (≤10 μg L -1 ), the total cancer risk value was higher than the general guidance risk value of 1.00 × 10 -6 . In the blending zone of the Qujiang and No.3 WTPs (Z2), the total cancer risk value was over 1.00 × 10 -5 , indicating that public health would be affected to some extent. More than 99% of the total cancer risk was from oral ingestion, and dermal absorption had a little contribution. With higher exposure duration and lower body weight, women had a higher cancer risk. In addition, due to several influential factors, the total cancer risk in the four blending zones reached the maximum in different seasons. The sensitivity analysis by the tornado chart proved that body weight, arsenic concentration and ingestion rate significantly contributed to cancer risk. This study suggests the regular monitoring of water blending zones for improving risk management.

  20. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  1. Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems.

    Science.gov (United States)

    Lin, Huirong; Zhu, Xuan; Wang, Yuxin; Yu, Xin

    2017-04-01

    Human health and biological safety problems resulting from urban drinking water pipe network biofilms pollution have attracted wide concern. Despite the inclusion of residual chlorine in drinking water distribution systems supplies, the bacterium is a recalcitrant human pathogen capable of forming biofilms on pipe walls and causing health risks. Typical drinking water bacterial biofilms and their response to different concentrations of chlorination was monitored. The results showed that the four bacteria all formed single biofilms susceptible to sodium hypochlorite. After 30 min disinfection, biomass and cultivability decreased with increasing concentration of disinfectant but then increased in high disinfectant doses. PMA-qPCR results indicated that it resulted in little cellular damage. Flow cytometry analysis showed that with increasing doses of disinfectant, the numbers of clusters increased and the sizes of clusters decreased. Under high disinfectant treatment, EPS was depleted by disinfectant and about 0.5-1 mg/L of residual chlorine seemed to be appropriate for drinking water treatment. This research provides an insight into the EPS protection to biofilms. Resistance of biofilms against high levels of chlorine has implications for the delivery of drinking water.

  2. A perspective on cost-effectiveness of greenhouse gas reduction solutions in water distribution systems

    International Nuclear Information System (INIS)

    Hendrickson, Thomas P; Horvath, Arpad

    2014-01-01

    Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from −$130 to $35 t −1  CO 2(eq) . Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO 2(eq) ) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure. (paper)

  3. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    Science.gov (United States)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  4. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    Science.gov (United States)

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-05

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Zhaozhao Tang

    2017-12-01

    Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.

  6. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The DIAS/CEOS Water Portal, distributed system using brokering architecture

    Science.gov (United States)

    Miura, Satoko; Sekioka, Shinichi; Kuroiwa, Kaori; Kudo, Yoshiyuki

    2015-04-01

    The DIAS/CEOS Water Portal is a one of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) systems for data distribution for users including, but not limited to, scientists, decision makers and officers like river administrators. This portal has two main functions; one is to search and access data and the other is to register and share use cases which use datasets provided via this portal. This presentation focuses on the first function, to search and access data. The Portal system is distributed in the sense that, while the portal system is located in Tokyo, the data is located in archive centers which are globally distributed. For example, some in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory in Boulder, Colorado, USA. The NWP station time series and global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Center for Climate in Hamburg, Germany. Part of satellite data is archived at DIAS storage at the University of Tokyo, Japan. This portal itself does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Although some data centers have unique meta data format and/or data search protocols, our portal's brokering function enables users to search across various data centers at one time, like one-stop shopping. And this portal is also connected to other data brokering systems, including GEOSS DAB (Discovery and Access Broker). As a result, users can search over thousands of datasets, millions of files at one time. Our system mainly relies on the open source software GI-cat (http://essi-lab.eu/do/view/GIcat), Opensearch protocol and OPeNDAP protocol to enable the above functions. Details on how it works will be introduced during the

  8. Draft Genome Sequences of Six Mycobacterium immunogenum, Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...

  9. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system

    NARCIS (Netherlands)

    Liu, Gang; Tao, Yu; Zhang, Ya Ping; Lut, Maarten; Knibbe, Willem Jan; Wielen, van der Paul; Liu, Wentso; Medema, Gertjan; Meer, van der Walter

    2017-01-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm) and

  10. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system

    NARCIS (Netherlands)

    Liu, G.; Tao, Yu; Zhang, Ya; Lut, M.C.; Knibbe, Willem Jan; van der Wielen, Paul; Liu, Wentso; Medema, G.; van der Meer, W.G.J.

    2017-01-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm)

  11. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  12. Methodological approaches for studying the microbial ecology of drinking water distribution systems.

    Science.gov (United States)

    Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A

    2014-11-15

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  14. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    Science.gov (United States)

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  15. Distribution of silica species in cooling water system in nuclear power station

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Onozuka, Teruo; Shindo, Manabu.

    1995-01-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica (∼600 ppb) and ionic silica was found to be predominant (∼90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author)

  16. Distribution of silica species in cooling water system in nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Kenichi [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Onozuka, Teruo; Shindo, Manabu

    1995-12-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica ({approx}600 ppb) and ionic silica was found to be predominant ({approx}90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author).

  17. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Husband, S; Boxall, J B

    2014-05-01

    This study investigates the influence of pipe characteristics on the bacteriological composition of material mobilised from a drinking water distribution system (DWDS) and the impact of biofilm removal on water quality. Hydrants in a single UK Distribution Management Area (DMA) with both polyethylene and cast iron pipe sections were subjected to incremental increases in flow to mobilise material from the pipe walls. Turbidity was monitored during these operations and water samples were collected for physico-chemical and bacteriological analysis. DNA was extracted from the material mobilised into the bulk water before and during flushing. Bacterial tag-encoded 454 pyrosequencing was then used to characterize the bacterial communities present in this material. Turbidity values were high in the samples from cast iron pipes. Iron, aluminium, manganese and phosphate concentrations were found to correlate to observed turbidity. The bacterial community composition of the material mobilised from the pipes was significantly different between plastic and cast iron pipe sections (p < 0.5). High relative abundances of Alphaproteobacteria (23.3%), Clostridia (10.3%) and Actinobacteria (10.3%) were detected in the material removed from plastic pipes. Sequences related to Alphaproteobacteria (22.8%), Bacilli (16.6%), and Gammaproteobacteria (1.4%) were predominant in the samples obtained from cast iron pipes. The highest species richness and diversity were found in the samples from material mobilised from plastic pipes. Spirochaeta spp., Methylobacterium spp. Clostridium spp. and Desulfobacterium spp., were the most represented genera in the material obtained prior to and during the flushing of the plastic pipes. In cast iron pipes a high relative abundance of bacteria able to utilise different iron and manganese compounds were found such as Lysinibacillus spp., Geobacillus spp. and Magnetobacterium spp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  19. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  20. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  1. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system.

    Science.gov (United States)

    Wang, Hong; Proctor, Caitlin R; Edwards, Marc A; Pryor, Marsha; Santo Domingo, Jorge W; Ryu, Hodon; Camper, Anne K; Olson, Andrew; Pruden, Amy

    2014-09-16

    Temporary conversion to chlorine (i.e., "chlorine burn") is a common approach to controlling nitrification in chloraminated drinking water distribution systems, yet its effectiveness and mode(s) of action are not fully understood. This study characterized occurrence of nitrifying populations before, during and after a chlorine burn at 46 sites in a chloraminated distribution system with varying pipe materials and levels of observed nitrification. Quantitative polymerase chain reaction analysis of gene markers present in nitrifying populations indicated higher frequency of detection of ammonia oxidizing bacteria (AOB) (72% of samples) relative to ammonia oxidizing archaea (AOA) (28% of samples). Nitrospira nitrite oxidizing bacteria (NOB) were detected at 45% of samples, while presence of Nitrobacter NOB could not be confirmed at any of the samples. During the chlorine burn, the numbers of AOA, AOB, and Nitrospira greatly reduced (i.e., 0.8-2.4 log). However, rapid and continued regrowth of AOB and Nitrospira were observed along with nitrite production in the bulk water within four months after the chlorine burn, and nitrification outbreaks appeared to worsen 6-12 months later, even after adopting a twice annual burn program. Although high throughput sequencing of 16S rRNA genes revealed a distinct community shift and higher diversity index during the chlorine burn, it steadily returned towards a condition more similar to pre-burn than burn stage. Significant factors associated with nitrifier and microbial community composition included water age and sampling location type, but not pipe material. Overall, these results indicate that there is limited long-term effect of chlorine burns on nitrifying populations and the broader microbial community.

  2. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  3. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Imayoshi, Shou

    2003-01-01

    Japan Atomic Energy Research Institute has developed a Passive Safe Small Reactor for Distributed Energy Supply System (PSRD) concept. The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down device. For improvement of economy, simplification of the reactor system and long operation of the core over five years without refueling with low enriched UO 2 fuel rods are achieved. To avoid releasing the radioactive materials to the circumstance even if a hypothetical accident, the containment is submerged in a pit filled with seawater at a seaside. Refueling or maintenance of the reactor can be conducted using an exclusive barge instead of the reactor building. (author)

  4. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    Science.gov (United States)

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Controlled erosion in asbestos-cement pipe used in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Mariana Ramos, P.

    1990-06-01

    Full Text Available Samples of asbestos-cement pipe used for drinking water conveyance, were submerged in distilled water, and subjected to two controlled erosive treatments, namely agitation (300 rpm for 60 min and ultrasound (47 kHz for 30 min. SEM was used to observe and compare the morphology of the new pipe with and without erosive treatment, and of samples taken from asbestos-cement pipes used in the distribution system of drinking water in Santiago city for 10 and 40-years of service. TEM was used to determine the concentration of asbestos fibers in the test water: 365 MFL and 1690 MFL (millions of fibers per litre as an agitation and result ultrasound, respectively. The erosive treatments by means of agitation or ultrasound applied to new asbestos-cement pipes used in the drinking water distribution system were evaluated as being equivalent to 4 and 10 years of service, respectively.

    Se sometió a dos tratamientos erosivos controlados uno por agitación (300 rpm, 60 min. y otro por ultrasonido (47 kHz, 30 min. a muestras de tubos de asbesto cemento, sumergidas en agua destilada, usados para el trasporte de agua potable. Con SEM se observó la morfología de muestras de tubos sin uso, con y sin tratamiento erosivo y la de muestras extraídas de tubos de asbesto cemento de la red de distribución de agua potable de ía ciudad de Santiago con 10 y 14 años de servicio. Con TEM se determinó la concentración de fibras de asbesto en el agua de ensayo: 365 MFL y 1690 MFL (millones de fibras por litro en agitación y ultrasonido, respectivamente. Se estimó en 4 y 10 años de servicio equivalente los tratamientos erosivos de agitación y ultrasonido, respectivamente en tubos de asbesto cemento empleados en la red de agua potable.

  6. Metal leaching in drinking water domestic distribution system: an Italian case study.

    Science.gov (United States)

    Sorlini, Sabrina; Gialdini, Francesca; Collivignarelli, Carlo

    2014-01-01

    The objective of this study was to evaluate metal contamination of tap water in seven public buildings in Brescia (Italy). Two monitoring periods were performed using three different sampling methods (overnight stagnation, 30-min stagnation, and random daytime). The results show that the water parameters exceeding the international standards (Directive 98/83/EC) at the tap were lead (max = 363 μg/L), nickel (max = 184 μg/L), zinc (max = 4900 μg/L), and iron (max = 393 μg/L). Compared to the total number of tap water samples analyzed (122), the values higher than limits of Directive 98/83/EC were 17% for lead, 11% for nickel, 14% for zinc, and 7% for iron. Three buildings exceeded iron standard while five buildings exceeded the standard for nickel, lead, and zinc. Moreover, there is no evident correlation between the leaching of contaminants in the domestic distribution system and the age of the pipes while a significant influence is shown by the sampling methods.

  7. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (pwater in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Impact of sensor detection limits on protecting water distribution systems from contamination events

    International Nuclear Information System (INIS)

    McKenna, Sean Andrew; Hart, David Blaine; Yarrington, Lane

    2006-01-01

    Real-time water quality sensors are becoming commonplace in water distribution systems. However, field deployable, contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected had performance measures of relatively low consequence.

  9. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Weissbrodt, D.G.; Hammes, F; van Loosdrecht, Mark C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year

  10. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    KAUST Repository

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2015-01-01

    -/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.The ISME Journal advance online publication, 7 August 2015; doi:10.1038

  12. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species.

    Science.gov (United States)

    Mouchtouri, Varvara; Velonakis, Emmanuel; Hadjichristodoulou, Christos

    2007-11-01

    Legionella spp. (> or = 500 cfu liter(-1)) were detected in 92 of 497 water distribution systems (WDS) examined. Thermal disinfection was applied at 33 WDS. After the first and second application of the disinfection procedure, 15 (45.4%) and 3 (9%) positive for remedial actions WDS were found, respectively. Legionella pneumophila was more resistant to thermal disinfection than Legionella non-pneumophila spp. (relative risk [RR]=5.4, 95% confidence intervals [CI]=1-35). WDS of hotels with oil heater were more easily disinfected than those with electrical or solar heater (RR=0.4 95% CI=0.2-0.8). Thermal disinfection seems not to be efficient enough to eliminate legionellae, unless repeatedly applied and in combination with extended heat flushing, and faucets chlorine disinfection.

  13. An evaluation of invertebrate dynamics in a drinking water distribution system: a South African perspective

    OpenAIRE

    2008-01-01

    M.Sc. The occurrence of invertebrates in drinking water supplies is a common consumer complaint with studies showing that very few drinking water distribution networks are totally free of organisms. A detailed investigation of different types of metazoan animals in the drinking water supply networks of South Africa has not been undertaken. In limited worldwide studies, invertebrates (mainly Amphipoda, Chironomidae, Cladocera, Copepoda and Ostracoda) have been detected in produced drinking ...

  14. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER DISTRIBUTION SYSTEM AFTER THE ADDITION OF FILTRATION TREATMENT

    Science.gov (United States)

    There is evidence that drinking water may be a source of pathogenic nontuberculous mycobacteria (NTM) infections in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular location within protozoa. Our goal was to determ...

  15. Assessment of heavy metals in loose deposits in drinking water distribution system.

    Science.gov (United States)

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  16. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    Science.gov (United States)

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  17. Preferential feeding in Naegleria fowleri; intracellular bacteria isolated from amoebae in operational drinking water distribution systems.

    Science.gov (United States)

    Miller, Haylea C; Morgan, Matthew J; Walsh, Tom; Wylie, Jason T; Kaksonen, Anna H; Puzon, Geoffrey J

    2018-05-06

    The amoeba Naegleria fowleri is the causative agent of the highly fatal disease, primary amoebic meningoencephalitis, and estimated to cause 16 deaths per year in the United States alone. Colonisation of drinking water distribution systems (DWDSs) by the N. fowleri is a significant public health issue. Understanding the factors which enable this pathogen to colonise and thrive in DWDSs is critical for proper management. The microbial ecology within DWDSs may influence the ability of N. fowleri to colonise DWDSs by facilitating the availability of an appropriate food source. Using biofilm samples obtained from operational DWDSs, 16S rRNA amplicon metabarcoding was combined with genus-specific PCR and Sanger sequencing of intracellular associated bacteria from isolated amoeba and their parental biofilms to identify Meiothermus chliarophilus as a potential food source for N. fowleri. Meiothermus was confirmed as a food source for N. fowleri following successful serial culturing of axenic N. fowleri with M. chliarophilus or M. ruber as the sole food source. The ability to identify environmental and ecological conditions favourable to N. fowleri colonisation, including the detection of appropriate food sources such as Meiothermus, could provide water utilities with a predictive tool for managing N. fowleri colonisation within the DWDS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Comparison of biofilm ecology supporting growth of individual Naegleria species in a drinking water distribution system.

    Science.gov (United States)

    Puzon, Geoffrey J; Wylie, Jason T; Walsh, Tom; Braun, Kalan; Morgan, Matthew J

    2017-04-01

    Free-living amoebae (FLA) are common components of microbial communities in drinking water distribution systems (DWDS). FLA are of clinical importance both as pathogens and as reservoirs for bacterial pathogens, so identifying the conditions promoting amoebae colonisation of DWDSs is an important public health concern for water utilities. We used high-throughput amplicon sequencing to compare eukaryotic and bacterial communities associated with DWDS biofilms supporting distinct FLA species (Naegleria fowleri, N. lovaniensis or Vermamoeba sp.) at sites with similar physical/chemical conditions. Eukaryote and bacterial communities were characteristics of different FLA species presence, and biofilms supporting Naegleria growth had higher bacterial richness and higher abundance of Proteobacteria, Bacteroidetes (bacteria), Nematoda and Rotifera (eukaryota). The eukaryotic community in the biofilms had the greatest difference in relation to the presence of N. fowleri, while the bacterial community identified individual bacterial families associated with the presence of different Naegleria species. Our results demonstrate that ecogenomics data provide a powerful tool for studying the microbial and meiobiotal content of biofilms, and, in these samples can effectively discriminate biofilm communities supporting pathogenic N. fowleri. The identification of microbial species associated with N. fowleri could further be used in the management and control of N. fowleri in DWDS. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. pH prediction by artificial neural networks for the drinking water of the distribution system of Hyderabad city

    International Nuclear Information System (INIS)

    Memon, N.A.; Unar, M.A.; Ansari, A.K.

    2012-01-01

    In this research, feed forward ANN (Artificial Neural Network) model is developed and validated for predicting the pH at 10 different locations of the distribution system of drinking water of Hyderabad city. The developed model is MLP (Multilayer Perceptron) with back propagation algorithm. The data for the training and testing of the model are collected through an experimental analysis on weekly basis in a routine examination for maintaining the quality of drinking water in the city. 17 parameters are taken into consideration including pH. These all parameters are taken as input variables for the model and then pH is predicted for 03 phases;raw water of river Indus,treated water in the treatment plants and then treated water in the distribution system of drinking water. The training and testing results of this model reveal that MLP neural networks are exceedingly extrapolative for predicting the pH of river water, untreated and treated water at all locations of the distribution system of drinking water of Hyderabad city. The optimum input and output weights are generated with minimum MSE (Mean Square Error) < 5%. Experimental, predicted and tested values of pH are plotted and the effectiveness of the model is determined by calculating the coefficient of correlation (R2=0.999) of trained and tested results. (author)

  20. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution.

    Science.gov (United States)

    Gulati, Parul; Ghosh, Moushumi

    2017-10-01

    Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm 2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.

  1. [Monitoring microbiological safety of small systems of water distribution. Comparison of two sampling programs in a town in central Italy].

    Science.gov (United States)

    Papini, Paolo; Faustini, Annunziata; Manganello, Rosa; Borzacchi, Giancarlo; Spera, Domenico; Perucci, Carlo A

    2005-01-01

    To determine the frequency of sampling in small water distribution systems (distribution. We carried out two sampling programs to monitor the water distribution system in a town in Central Italy between July and September 1992; the Poisson distribution assumption implied 4 water samples, the assumption of negative binomial distribution implied 21 samples. Coliform organisms were used as indicators of water safety. The network consisted of two pipe rings and two wells fed by the same water source. The number of summer customers varied considerably from 3,000 to 20,000. The mean density was 2.33 coliforms/100 ml (sd= 5.29) for 21 samples and 3 coliforms/100 ml (sd= 6) for four samples. However the hypothesis of homogeneity was rejected (p-value samples (beta= 0.24) than with 21 (beta= 0.05). For this small network, determining the samples' size according to heterogeneity hypothesis strengthens the statement that water is drinkable compared with homogeneity assumption.

  2. Geostatistics – a tool applied to the distribution of Legionella pneumophila in a hospital water system

    Directory of Open Access Journals (Sweden)

    Pasqualina Laganà

    2015-12-01

    Full Text Available [b]Introduction.[/b] Legionnaires’ disease is normally acquired by inhalation of legionellae from a contaminated environmental source. Water systems of large buildings, such as hospitals, are often contaminated with legionellae and therefore represent a potential risk for the hospital population. The aim of this study was to evaluate the potential contamination of [i]Legionella pneumophila[/i] (LP in a large hospital in Italy through georeferential statistical analysis to assess the possible sources of dispersion and, consequently, the risk of exposure for both health care staff and patients. [b]Materials and Method. [/b]LP serogroups 1 and 2–14 distribution was considered in the wards housed on two consecutive floors of the hospital building. On the basis of information provided by 53 bacteriological analysis, a ‘random’ grid of points was chosen and spatial geostatistics or [i]FAIk Kriging[/i] was applied and compared with the results of classical statistical analysis. [b]Results[/b]. Over 50% of the examined samples were positive for [i]Legionella pneumophila[/i]. LP 1 was isolated in 69% of samples from the ground floor and in 60% of sample from the first floor; LP 2–14 in 36% of sample from the ground floor and 24% from the first. The iso-estimation maps show clearly the most contaminated pipe and the difference in the diffusion of the different [i]L. pneumophila[/i] serogroups. [b]Conclusion.[/b] Experimental work has demonstrated that geostatistical methods applied to the microbiological analysis of water matrices allows a better modeling of the phenomenon under study, a greater potential for risk management and a greater choice of methods of prevention and environmental recovery to be put in place with respect to the classical statistical analysis.

  3. On the Waterfront. Water Distribution, Technology and Agrarian Change in a South Indian Canal Irrigation System

    NARCIS (Netherlands)

    Mollinga, P.P.

    2003-01-01

    This book analyses the struggle over water in a large-scale irrigation system in Raichur District, Karnataka, South India. It looks at water control as a simultaneously technical, managerial and socio-political process. The triangle of accommodation of different categories of farmers (head-enders

  4. Zoning of Isfahan Drinking Water Distribution Network Corrosion Potential in Summer and Autumn of 2011 Using Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Fatemeh Setayesh

    2014-07-01

    Full Text Available This cross-sectional study has been conducted to determine the corrosion potential of water in Isfahan drinking water distribution system in 2011. Eighty samples during summer and fall 2011(40 samples for each season were collected from different parts of the Isfahan drinking water distribution system. The temperature, calcium hardness, alkalinity, total dissolved solids, and pH were measured. Values of Langelier, Ryznar, Corrosiveness, and Puckorius indexes were calculated. Zoning maps were prepared using ArcGIS 9.3 software. The calculated mean values of Langelier, Ryznar, Corrosiveness, and Puckorius indexes in the summer and fall were (-0.52, 8.83, 10.37, 10.84 and (-0.71, 9.27, 10.94, 10.88, respectively. These results indicated that the Isfahan drinking water based on Langelier, Ryznar, and Puckorius indexes had a corrosive tendency and based on aggressiveness index had a moderate corrosivity potential. The corrosiveness of water may be as a basis for gradual deterioration of water distribution and transmission pipeline systems or as a route for contaminant entrance and finally can cause unhealthy impacts. Therefore, remedial measures are necessary to corrosion control of Isfahan drinking water

  5. Enhanced chlorine dioxide decay in the presence of metal oxides: Relevance to drinking water distribution systems

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2013-01-01

    Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10 6 M-2 s-1 in the presence of 0.1 g L -1 CuO at 21 ± 1 C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO 2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO 2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH- is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes. © 2013 American Chemical Society.

  6. Enhanced chlorine dioxide decay in the presence of metal oxides: Relevance to drinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-07-19

    Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10 6 M-2 s-1 in the presence of 0.1 g L -1 CuO at 21 ± 1 C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO 2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO 2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH- is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes. © 2013 American Chemical Society.

  7. Study on Microbiological Quality of Rural and Urban Drinking Water in Distribution Systems of Ijroud, Zanjan in 2013-2015

    Directory of Open Access Journals (Sweden)

    Zahra Tohidloo

    2017-12-01

    Full Text Available Background: Providing safe drinking water has critical importance to human societies. The aim of this study was to investigate microbiological quality of drinking water in distribution system of urban and rural regions of Ijroud, in Zanjan province. Methods: In present descriptive study, the microbiological examination of drinking water was conducted in 15 facilities with 401 samples. Transportation and test procedures were according to standard methods for the examination of water and wastewater. Results: Total number of microbial samples were 401 and 66.66% of them were positive for total and fecal coliforms. Also, water of 10 villages were not suitable for drinking with respecting to national standards. In addition, samples of only 5 villages were suitable for human consumption. The range of fecal coliforms in distribution networks' samples were from 4 to 75 MPN/100 ml. Conclusion: This study showed that as microbiological aspect, drinking water is not potable in some rural communities. The consumption of drinking water in this distribution networks can threaten the health of consumers, thus, the water supply organizations have to improve operation and maintenance measurements due to prevent the spread of water-borne diseases.

  8. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    Science.gov (United States)

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Asellus aquaticus as a potential carrier of Escherichia coli and other coliform bacteria into drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine Boesgaard; Arvin, Erik; Nissen, E.

    2013-01-01

    Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. Populations of A. aquaticus in surface water from 2 ponds were analysed for associated faecal indicator bacteria and the risk of A....... coli and 6 total coliforms A. aquaticus-1. During exposure to high concn. of coliforms, concn. reached 350 coliforms A. aquaticus-1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water...... for evaluating incidents with the presence of coliform indicators in drinking water by showing that intruding A. aquaticus are not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters....

  10. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    Science.gov (United States)

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  11. Asellus aquaticus as a Potential Carrier of Escherichia coli and Other Coliform Bacteria into Drinking Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Hans-Jørgen Albrechtsen

    2013-03-01

    Full Text Available Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL−1 were measured in the water and 200 E. coli and >240 total coliforms·mL−1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus−1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus−1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters.

  12. THE MINERALOGY OF PB SCALES IN DRINKING WATER DISTRIBUTION SYSTEMS AS REVEALED BY COMBINED XRD AND MICRO-RAMAN SPECTROSCOPY

    Science.gov (United States)

    Dissolving Pb from lead service lines and Pb-containing brasses and solders has become a major health issue for many water distribution systems. Knowledge of the mineralogy of scales in these pipes is key to modeling this dissolution. The traditional method of determining their ...

  13. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  14. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    Science.gov (United States)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens

  16. Distribution of Radioisotopes between Phytoplankton, Sediment and Sea Water in a Dialysis Compartment System

    International Nuclear Information System (INIS)

    Dawson, R.; Duursma, E.K.

    1976-01-01

    The distribution of the radioisotopes 36 Cl, 54 Mn, 59 Fe, 60 Co, 65 Zn, 90 Sr, 106 Ru, 109 Cd, 110 mAg, 137 Cs, 144 Ce, 147 Pm and 204 Tl between sea water, Mediterranean sediment in suspension, and the phytoplankton species Phaeodactylum tricornutum was studied by using a competitive technique in which the various phases were separated by dialysis membranes. The radioisotopes were introduced into the sea water compartment and the radionuclide uptake by sediment and phytoplankton occurred in the adjoining compartments after the isotopes had diffused through the membranes. The diffusion through membranes is time dependent and related to the hydrated ion radii of the elements in solution. Chelation of the elements by organic matter from sewage may hamper this diffusion, although the complexing molecules themselves can pass through the membrane. The laboratory experiments showed that the uptake of radionuclides by sediments and phytoplankton in suspension did not occur independently of each other but in competition relative to the different affinities to the sediment and phytoplankton and relative to the concentrations of the particulate materials themselves. On examination of the distribution coefficients, the isotopes 90Sr, 110m Ag, 204 Ti and in particular 109 Cd, had higher affinities towards Phaeodactylum tricornutum than towards the Mediterranean sediment. The isotopes 54 Mn, 60 Co and 137 Cs had lower distribution coefficients with the phytoplankton than with sediment and in the case of 59 Fe, 65 Zn, l06 Ru, l 4 Ce and 147 Pm, the distribution coefficients were similar for both phytoplankton and sediment. Taking into account that many more factors play a role in the natural aquatic environment, the distribution pattern between water, plankton and sediment in suspension can be approximated by calculating the percentage distribution in the 3 phases. Those percentages are dependent on 2 parameters, being the distribution coefficients and the concentrations of the

  17. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    Science.gov (United States)

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  18. Passive containment cooling water distribution device

    Science.gov (United States)

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  19. Management and Nonlinear Analysis of Disinfection System of Water Distribution Networks Using Data Driven Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Zounemat-Kermani

    2018-03-01

    Full Text Available Chlorination unit is widely used to supply safe drinking water and removal of pathogens from water distribution networks. Data-driven approach is one appropriate method for analyzing performance of chlorine in water supply network. In this study, multi-layer perceptron neural network (MLP with three training algorithms (gradient descent, conjugate gradient and BFGS and support vector machine (SVM with RBF kernel function were used to predict the concentration of residual chlorine in water supply networks of Ahmadabad Dafeh and Ahruiyeh villages in Kerman Province. Daily data including discharge (flow, chlorine consumption and residual chlorine were employed from the beginning of 1391 Hijri until the end of 1393 Hijri (for 3 years. To assess the performance of studied models, the criteria such as Nash-Sutcliffe efficiency (NS, root mean square error (RMSE, mean absolute percentage error (MAPE and correlation coefficient (CORR were used that in best modeling situation were 0.9484, 0.0255, 1.081, and 0.974 respectively which resulted from BFGS algorithm. The criteria indicated that MLP model with BFGS and conjugate gradient algorithms were better than all other models in 90 and 10 percent of cases respectively; while the MLP model based on gradient descent algorithm and the SVM model were better in none of the cases. According to the results of this study, proper management of chlorine concentration can be implemented by predicted values of residual chlorine in water supply network. Thus, decreased performance of perceptron network and support vector machine in water supply network of Ahruiyeh in comparison to Ahmadabad Dafeh can be inferred from improper management of chlorination.

  20. Distribution coefficients for chemical components of a coal-oil/water system

    Energy Technology Data Exchange (ETDEWEB)

    Picel, K C; Stamoudis, V C; Simmons, M S

    1988-09-01

    Distribution coefficients (K/sub D/) were measured by equilibrating a coal oil comparative reference material (CRM-1) with water and then separating the oil and water phases. Aqueous phase concentrations were determined by direct analysis of this phase, while organic phase concentrations were determined from the original oil composition by difference. The log K/sub D/ values obtained for acidic and basic components were generally <3, while those for the neutral components ranged from 3 to 6. For aromatic hydrocarbons, strong correlations were observed between log K/sub D/ and log S/sub w/ (water solubility), and between log K/sub D/ and log K/sub o//sub w/ (octanol/water partition coefficient). Alkylated benzenes had significantly higher K/sub D/s than did unsubstituted aromatics of similar molecular weight. Examination of homologs revealed an increase of 0.307 log K/sub D/ units per additional carbon atom for polynuclear aromatic hydrocarbons having from 10 to 16 carbons. Alkyl substituent effects determined for various sets of homologs ranged from 0.391 to 0.466 log K/sub d/ units per -CH/sub 2/- group added. 38 refs., 5 figs., 7 tabs.

  1. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    Science.gov (United States)

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  2. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China

    International Nuclear Information System (INIS)

    Guo Wei; He Mengchang; Yang Zhifeng; Lin Chunye; Quan Xiangchun; Men Bing

    2009-01-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) were analyzed in 29 surface water, 29 suspended particulate matter (SPM), 28 sediment, and 10 pore water samples from Daliao River water system in dry season. The total PAH concentration ranged from 570.2 to 2318.6 ng L -1 in surface water, from 151.0 to 28483.8 ng L -1 in SPM, from 102.9 to 3419.2 ng g -1 in sediment and from 6.3 to 46.4 μg l -1 in pore water. The concentration of dissolved PAHs was higher than that of particulate PAHs at many sites, but the opposite results were generally observed at the sites of wastewater discharge. The soluble level of PAHs was much higher in the pore water than in the water column. Generally, the water column of the polluted branch streams contained higher content of PAHs than their mainstream. The environmental behaviors and fates of PAHs were examined according to some physicochemical parameters such as pH, organic carbon, SPM content, water content and grain size in sediments. Results showed that organic carbon was the primary factor controlling the distribution of the PAHs in the Daliao River water system. Partitioning of PAHs between sediment solid phase and pore water phase was studied, and the relationship between log K oc and log K ow of PAHs on some sediments and the predicted values was compared. PAHs other than naphthalene and acenaphthylene would be accumulated largely in the sediment of the Dalaio River water system. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and different wastewater discharge sources, indicating that combustion was the main source of PAHs input.

  3. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.; Hammes, F.; Kotzsch, S.; van Loosdrecht, M. C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach

  4. INTEGRATED MANAGEMENT SYSTEMS IN LOCAL PUBLIC ENTERPRIZE FOR PRODUCTION, DISTRIBUTION AND CLEANING OF WASTED WATER

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-06-01

    Full Text Available Appearance of large number of management systems, with different and sometimes divergent demands, needs reconsideration of their implementation strategies and their integration in one integrated management system (IMS. So defined IMS would be designed and implemented in different areas. In this paper is presented basic concept of integration of partical management systems in areas of quality (ISO 9001, environmental protection (ISO 14001, occupational health (ISO 18001, food safety (ISO 22000 and accreditation of laboratories (ISO17025/ISO17020. As a pilot organization is choosed local public enterprise for production, supply and drain of water.

  5. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  6. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  7. Water Distribution and Removal Model

    International Nuclear Information System (INIS)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-01-01

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD and R) Model; (2) EBS Physical and Chemical Environment (P and CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD and R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment

  8. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  9. Sensor-enabled chem/bio contamination detection system dedicated to situational awareness of water distribution security status

    Science.gov (United States)

    Ginsberg, Mark D.; Smith, Eddy D.; VanBlaricum, Vicki; Hock, Vincent F.; Kroll, Dan; Russell, Kevin J.

    2010-04-01

    Both real events and models have proven that drinking water systems are vulnerable to deliberate and/or accidental contamination. Additionally, homeland security initiatives and modeling efforts have determined that it is relatively easy to orchestrate the contamination of potable water supplies. Such contamination can be accomplished with classic and non-traditional chemical agents, toxic industrial chemicals (TICs), and/or toxic industrial materials (TIMs). Subsequent research and testing has developed a proven network for detection and response to these threats. The method uses offthe- shelf, broad-spectrum analytical instruments coupled with advanced interpretive algorithms. The system detects and characterizes any backflow events involving toxic contaminants by employing unique chemical signature (fingerprint) response data. This instrumentation has been certified by the Office of Homeland Security for detecting deliberate and/or accidental contamination of critical water infrastructure. The system involves integration of several mature technologies (sensors, SCADA, dynamic models, and the HACH HST Guardian Blue instrumentation) into a complete, real-time, management system that also can be used to address other water distribution concerns, such as corrosion. This paper summarizes the reasons and results for installing such a distribution-based detection and protection system.

  10. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    Science.gov (United States)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  11. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.

    Science.gov (United States)

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-11-01

    Water utilities in parts of the U.S. control microbial regrowth in drinking water distribution systems (DWDS) by alternating postdisinfection methods between chlorination and chloramination. To examine how this strategy influences drinking water microbial communities, an urban DWDS (population ≅ 40,000) with groundwater as the source water was studied for approximately 2 years. Water samples were collected at five locations in the network at different seasons and analyzed for their chemical and physical characteristics and for their microbial community composition and structure by examining the 16S rRNA gene via terminal restriction fragment length polymorphism and DNA pyrosequencing technology. Nonmetric multidimension scaling and canonical correspondence analysis of microbial community profiles could explain >57% of the variation. Clustering of samples based on disinfection types (free chlorine versus combined chlorine) and sampling time was observed to correlate to the shifts in microbial communities. Sampling location and water age (chlorinated water, and Methylophilaceae, Methylococcaceae, and Pseudomonadaceae were more abundant in chloraminated water. No correlation was observed with minor populations that were detected frequently (water and survived through the treatment process. Transient microbial populations including Flavobacteriaceae and Clostridiaceae were also observed. Overall, reversible shifts in microbial communities were especially pronounced with chloramination, suggesting stronger selection of microbial populations from chloramines than chlorine.

  13. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Science.gov (United States)

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  14. Development of systems for detection, early warning, and control of pipeline leakage in drinking water distribution: a case study.

    Science.gov (United States)

    Li, Weifeng; Ling, Wencui; Liu, Suoxiang; Zhao, Jing; Liu, Ruiping; Chen, Qiuwen; Qiang, Zhimin; Qu, Jiuhui

    2011-01-01

    Water leakage in drinking water distribution systems is a serious problem for many cities and a huge challenge for water utilities. An integrated system for the detection, early warning, and control of pipeline leakage has been developed and successfully used to manage the pipeline networks in selected areas of Beijing. A method based on the geographic information system has been proposed to quickly and automatically optimize the layout of the instruments which detect leaks. Methods are also proposed to estimate the probability of each pipe segment leaking (on the basis of historic leakage data), and to assist in locating the leakage points (based on leakage signals). The district metering area (DMA) strategy is used. Guidelines and a flowchart for establishing a DMA to manage the large-scale looped networks in Beijing are proposed. These different functions have been implemented into a central software system to simplify the day-to-day use of the system. In 2007 the system detected 102 non-obvious leakages (i.e., 14.2% of the total detected in Beijing) in the selected areas, which was estimated to save a total volume of 2,385,000 m3 of water. These results indicate the feasibility, efficiency and wider applicability of this system.

  15. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.

    Science.gov (United States)

    Regan, John M; Harrington, Gregory W; Noguera, Daniel R

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.

  16. Biofilm human consumption water distribution systems; El biofilm en sistemas de distribuciond e aguas de consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Pedreira, S.

    2003-07-01

    A study was carried out of the presence of biofilm in the water distribution conduits in urban supply systems, as it raises health, water quality and corrosion issues. In order to take appropriate measures to control the presence of biofilm, it is first necessary to know what it, is how it is formed and the factors that influence its development. its structure includes both microbial cells and biopolymers that make up a protective structure. The most common micro-organisms are usually heterotrophic bacteria, that is bacteria requiring organic carbon in ore to grow. They may also occasionally include fungus, protozoa and algae, though to a lesser degree. Definitions are provided of the factors influencing the growth of biofilm, preventive measures and detection in water supply systems and solutions are put forward for dealing with it once it has appeared. (Author)

  17. Diversity and distribution of polyphagan water beetles (Coleoptera) in the Lake St Lucia system, South Africa.

    Science.gov (United States)

    Bird, Matthew S; Bilton, David T; Perissinotto, Renzo

    2017-01-01

    Water beetles belonging to the suborder Polyphaga vary greatly in larval and adult ecologies, and fulfil important functional roles in shallow-water ecosystems by processing plant material, scavenging and through predation. This study investigates the species richness and composition of aquatic polyphagan assemblages in and around the St Lucia estuarine lake (South Africa), within the iSimangaliso Wetland Park, a UNESCO World Heritage Site. A total of 32 sites were sampled over three consecutive collection trips between 2013 and 2015. The sites encompassed a broad range of aquatic habitats, being representative of the variety of freshwater and estuarine environments present on the St Lucia coastal plain. Thirty-seven polyphagan taxa were recorded during the dedicated surveys of this study, in addition to seven species-level records from historical collections. Most beetles recorded are relatively widespread Afrotropical species and only three are endemic to South Africa. Samples were dominated by members of the Hydrophilidae (27 taxa), one of which was new to science ( Hydrobiomorpha perissinottoi Bilton, 2016). Despite the fauna being dominated by relatively widespread taxa, five represent new records for South Africa, highlighting the poor state of knowledge on water beetle distribution patterns in the region. Wetlands within the dense woodland characterising the False Bay region of St Lucia supported a distinct assemblage of polyphagan beetles, whilst sites occurring on the Eastern and Western Shores of Lake St Lucia were very similar in their beetle composition. In line with the Afrotropical region as a whole, the aquatic Polyphaga of St Lucia appear to be less diverse than the Hydradephaga, for which 68 species were recorded during the same period. However, the results of the present study, in conjunction with those for Hydradephaga, show that the iSimangaliso Wetland Park contains a high beetle diversity. The ongoing and future ecological protection of not

  18. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems - Interference Corrections and Feasibility Assessment

    Science.gov (United States)

    Do, T. D.; Pifer, A.; Chowdhury, Z.; Wahman, D.; Zhang, W.; Fairey, J.

    2017-12-01

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events that necessitate extensive flushing, resulting in the loss of billions of gallons of finished water. Biological techniques used to quantify the activity of nitrifying bacteria are impractical for real-time monitoring because they require significant laboratory efforts and/or lengthy incubation times. At present, DWU and CoH regularly rely on physicochemical parameters including total chlorine and monochloramine residual, and free ammonia, nitrite, and nitrate as indicators of nitrification, but these metrics lack specificity to nitrifying bacteria. To improve detection of nitrification in chloraminated drinking water distribution systems, we seek to develop a real-time fluorescence-based sensor system to detect the early onset of nitrification events by measuring the fluorescence of soluble microbial products (SMPs) specific to nitrifying bacteria. Preliminary data indicates that fluorescence-based metrics have the sensitivity to detect these SMPs in the early stages of nitrification, but several remaining challenges will be explored in this presentation. We will focus on benchtop and sensor results from ongoing batch and annular reactor experiments designed to (1) identify fluorescence wavelength pairs and data processing techniques suitable for measurement of SMPs from nitrification and (2) assess and correct potential interferences, such as those from monochloramine, pH, iron, nitrite, nitrate and humic substances. This work will serve as the basis for developing fluorescence sensor packages for full-scale testing and validation in the DWU and CoH systems. Findings from this research could be leveraged to identify nitrification events in their early stages, facilitating proactive

  19. The accumulation and distribution of 60Co in carp (Cyprinus carpio) in water-fish compartment system

    International Nuclear Information System (INIS)

    Poppy Intan Tjahaja; Putu Sukmabuana; Eko Susanto

    2012-01-01

    In relation with nuclear safety assessment, the parameter of radionuclide transfer in the environment is significantly needed for internal doses estimation received by public trough environment - food product - human pathways. International Atomic Energy Agency (IAEA) has published the transfer parameter data for temperate zone in Technical Report Series 472. In order to complete the IAEA data, especially for tropical region, the accumulation and distribution of 60 Co in carp (Cyprinus carpio) was experimentally studied based on the water-fish compartment system. The carp were cultured in 500L water containing 60 Co of about 30 Bq.mL -1 in a water tank. The 60 Co concentration in fish and water were measured using gamma spectrometer. The 60 Co was accumulated and distributed in the fish tissues with the concentration ratio (CR) of 3.08 mL.g -1 1.55 mL.g -1 and 1.14 mL.g -1 for internal organs, bones, and muscle, respectively. The CR of 60 Co in the fish will be useful in internal radiation dose estimation to human trough water-fish-human pathway, and will also complete the IAEA transfer parameter data for tropical region. (author)

  20. Algorithmic Optimal Management of a Potable Water Distribution System: Application to the Primary Network of Bonaberi (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Zineb Simeu-Abazi

    2009-11-01

    Full Text Available The optimal management of a potable water distribution system requires the control of the reference (standard data, the control points, control of the drainage parameters (pressure, flow, etc. and maintenance parameters. The control of the mentioned data defines the network learning process [1]. Besides classic IT functions of acquisition, storage and data processing, a geographical information system (GIS can be used as the basis for an alarm system, allowing one to identify and to localize the presence of water leaks in the network [2]. In this article we propose an algorithm coupling the various drainage parameters for the management of the network. The algorithm leads to an optimal management of leaks. An application is in progress on the primary network in the region of Bonaberi in Douala, the largest city of Cameroon.

  1. The use of Jatropha curcas to achieve a self sufficient water distribution system: A case study in rural Senegal

    Science.gov (United States)

    Archer, Alexandra

    The use of Jatropha curcas as a source of oil for fueling water pumps holds promise for rural communities struggling to achieve water security in arid climates. The potential for use in developing communities as an affordable, sustainable fuel source has been highly recommended for many reasons: it is easily propagated, drought resistant, grows rapidly, and has high-oil-content seeds, as well as medicinal and economic potential. This study uses a rural community in Senegal, West Africa, and calculates at what level of Jatropha curcas production the village is able to be self-sufficient in fueling their water system to meet drinking, sanitation and irrigation requirements. The current water distribution system was modelled to represent irrigation requirements for nine different Jatropha curcas cultivation and processing schemes. It was found that a combination of using recycled greywater for irrigation and a mechanical press to maximize oil recovered from the seeds of mature Jatropha curcas trees, would be able to operate the water system with no diesel required.

  2. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system.

    Science.gov (United States)

    Liu, Gang; Tao, Yu; Zhang, Ya; Lut, Maarten; Knibbe, Willem-Jan; van der Wielen, Paul; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-11-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm) and their corresponding potential contribution to water quality deterioration remain unknown. This precludes an in-depth understanding of water quality deterioration and the development of proactive management strategies. The present study quantitatively evaluated the distribution of elements, ATP, Aeromonas spp., and bacterial communities in distribution pipes (PVC-U, D = 110 mm, loose deposit and biofilm niches) and household connection pipes (HDPE, D = 32 mm, HDPE biofilm niches) at ten locations in an unchlorinated distribution system. The results show that loose deposits in PVC-U pipes, acting as sinks, constitute a hotspot (highest total amount per meter pipe) for elements, ATP, and target bacteria groups (e.g., Aeromonas spp., Mycobacterium spp., and Legionella spp.). When drinking water distribution system niches with harbored elements and microbes become sources in the event of disturbances, the highest quality deterioration potential (QDP) is that of HDPE biofilm; this can be attributed to its high surface-to-volume ratio. 16s rRNA analysis demonstrates that, at the genus level, the bacterial communities in the water, loose deposits, PVC-U biofilm, and HDPE biofilm were dominated, respectively, by Polaromonas spp. (2-23%), Nitrosipra spp. (1-47%), Flavobacterium spp. (1-36%), and Flavobacterium spp. (5-67%). The combined results of elemental composition and bacterial community analyses indicate that different dominant bio-chemical processes might occur within the different niches-for example, iron-arsenic oxidizing in loose deposits, bio-calumniation in PVC-U biofilm, and methane oxidizing in HDPE biofilm. The release of 20% loose deposits, 20% PVC-U biofilm

  3. Diversity, Community Composition, and Dynamics of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria in an Urban Tap Water Production and Distribution System

    OpenAIRE

    Dubrou, S.; Konjek, J.; Macheras, E.; Welté, B.; Guidicelli, L.; Chignon, E.; Joyeux, M.; Gaillard, J. L.; Heym, B.; Tully, T.; Sapriel, G.

    2013-01-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 w...

  4. Hydraulic Network Modelling of Small Community Water Distribution ...

    African Journals Online (AJOL)

    Prof Anyata

    ... design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using ..... self cleansing drinking water distribution system is set at 0.4m/s, .... distribution network offers advantages over manual ...

  5. Diversity and distribution of polyphagan water beetles (Coleoptera in the Lake St Lucia system, South Africa

    Directory of Open Access Journals (Sweden)

    Matthew S. Bird

    2017-02-01

    Full Text Available Water beetles belonging to the suborder Polyphaga vary greatly in larval and adult ecologies, and fulfil important functional roles in shallow-water ecosystems by processing plant material, scavenging and through predation. This study investigates the species richness and composition of aquatic polyphagan assemblages in and around the St Lucia estuarine lake (South Africa, within the iSimangaliso Wetland Park, a UNESCO World Heritage Site. A total of 32 sites were sampled over three consecutive collection trips between 2013 and 2015. The sites encompassed a broad range of aquatic habitats, being representative of the variety of freshwater and estuarine environments present on the St Lucia coastal plain. Thirty-seven polyphagan taxa were recorded during the dedicated surveys of this study, in addition to seven species-level records from historical collections. Most beetles recorded are relatively widespread Afrotropical species and only three are endemic to South Africa. Samples were dominated by members of the Hydrophilidae (27 taxa, one of which was new to science (Hydrobiomorpha perissinottoi Bilton, 2016. Despite the fauna being dominated by relatively widespread taxa, five represent new records for South Africa, highlighting the poor state of knowledge on water beetle distribution patterns in the region. Wetlands within the dense woodland characterising the False Bay region of St Lucia supported a distinct assemblage of polyphagan beetles, whilst sites occurring on the Eastern and Western Shores of Lake St Lucia were very similar in their beetle composition. In line with the Afrotropical region as a whole, the aquatic Polyphaga of St Lucia appear to be less diverse than the Hydradephaga, for which 68 species were recorded during the same period. However, the results of the present study, in conjunction with those for Hydradephaga, show that the iSimangaliso Wetland Park contains a high beetle diversity. The ongoing and future ecological

  6. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  7. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  8. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  9. Seasonal and spatial evolution of trihalomethanes in a drinking water distribution system according to the treatment process.

    Science.gov (United States)

    Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, Tamara; Gómez-Ariza, J L

    2015-11-01

    This paper comparatively shows the influence of four water treatment processes on the formation of trihalomethanes (THMs) in a water distribution system. The study was performed from February 2005 to January 2012 with analytical data of 600 samples taken in Aljaraque water treatment plant (WTP) and 16 locations along the water distribution system (WDS) in the region of Andévalo and the coast of Huelva (southwest Spain), a region with significant seasonal and population changes. The comparison of results in the four different processes studied indicated a clear link of the treatment process with the formation of THM along the WDS. The most effective treatment process is preozonation and activated carbon filtration (P3), which is also the most stable under summer temperatures. Experiments also show low levels of THMs with the conventional process of preoxidation with potassium permanganate (P4), delaying the chlorination to the end of the WTP; however, this simple and economical treatment process is less effective and less stable than P3. In this study, strong seasonal variations were obtained (increase of THM from winter to summer of 1.17 to 1.85 times) and a strong spatial variation (1.1 to 1.7 times from WTP to end points of WDS) which largely depends on the treatment process applied. There was also a strong correlation between THM levels and water temperature, contact time and pH. On the other hand, it was found that THM formation is not proportional to the applied chlorine dose in the treatment process, but there is a direct relationship with the accumulated dose of chlorine. Finally, predictive models based on multiple linear regressions are proposed for each treatment process.

  10. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal).

    Science.gov (United States)

    Rodrigues, M O; Abrantes, N; Gonçalves, F J M; Nogueira, H; Marques, J C; Gonçalves, A M M

    2018-08-15

    Microplastics (particles with a sizemicroplastics in freshwater systems is less understood than in marine environment. Hence, the present study aims to provide new insights into microplastics abundances and distribution in Antuã River (Portugal) by applying the isolation method of wet peroxide oxidation with addition of zinc chloride to water and sediment samples collected in March and October 2016, in three sampling sites. The abundance of microplastics in water ranged from 5 to 8.3mgm -3 or 58-193itemsm -3 in March and from 5.8-51.7mgm -3 or 71-1265itemsm -3 in October. In sediments, the abundance ranged from 13.5-52.7mgkg -1 or 100-629itemskg -1 in March and from 2.6-71.4mgkg -1 or 18-514itemskg -1 in October. The water and sediment samples with the greatest abundances were from São João da Madeira and Aguincheira, respectively. Spatio-temporal distribution showed different pattern according to methodological approaches, seasonal and hydrodynamic conditions and the proximity to urban/industry areas. Analysis of plastics by Fourier transform infrared spectroscopy underline polyethylene and polypropylene as the most common polymer types identified in this work. The low medium high oxidation ratio was 56:22:22 (%) in March and 61:31:8 (%) in October. Foams and fibers were the most abundant type in São João da Madeira, while fibers and fragments were the most abundant in Aguincheira and Estarreja in water and sediment samples, respectively. This study emphasizes the importance of rivers as carriage systems of microplastics. Further studies should be performed to identify point sources in order to mitigate the microplastics contamination in aquatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    Science.gov (United States)

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Monitoring nitrosamines in large water distribution systems and their removal using cyclodextrin polyurethanes

    OpenAIRE

    2010-01-01

    M.Sc. The disinfection of drinking water is an important step in the water treatment process. However, toxic (unwanted) disinfection by-products (DBPs) are often produced during the disinfection of drinking water. One such group of DBPs are the nitrosamines such as N-Nitrosodimethylamine (NDMA). Nitrosamines, particularly NDMA, are highly carcinogenic, mutagenic and teratogenic. The US Environmental Protection Agency (USEPA) placed these compounds into the group B2, which indicates compoun...

  13. Application of Least-Squares Support Vector Machines for Quantitative Evaluation of Known Contaminant in Water Distribution System Using Online Water Quality Parameters

    Directory of Open Access Journals (Sweden)

    Kexin Wang

    2018-03-01

    Full Text Available In water-quality, early warning systems and qualitative detection of contaminants are always challenging. There are a number of parameters that need to be measured which are not entirely linearly related to pollutant concentrations. Besides the complex correlations between variable water parameters that need to be analyzed also impairs the accuracy of quantitative detection. In aspects of these problems, the application of least-squares support vector machines (LS-SVM is used to evaluate the water contamination and various conventional water quality sensors quantitatively. The various contaminations may cause different correlative responses of sensors, and also the degree of response is related to the concentration of the injected contaminant. Therefore to enhance the reliability and accuracy of water contamination detection a new method is proposed. In this method, a new relative response parameter is introduced to calculate the differences between water quality parameters and their baselines. A variety of regression models has been examined, as result of its high performance, the regression model based on genetic algorithm (GA is combined with LS-SVM. In this paper, the practical application of the proposed method is considered, controlled experiments are designed, and data is collected from the experimental setup. The measured data is applied to analyze the water contamination concentration. The evaluation of results validated that the LS-SVM model can adapt to the local nonlinear variations between water quality parameters and contamination concentration with the excellent generalization ability and accuracy. The validity of the proposed approach in concentration evaluation for potassium ferricyanide is proven to be more than 0.5 mg/L in water distribution systems.

  14. Experimental Study on Characteristics of Oil Particle Distribution in Water-Gelled Crude Oil Two-Phase Flow System

    Directory of Open Access Journals (Sweden)

    Liu Xiaoyan

    2014-06-01

    Full Text Available The conventional gathering and transportation mode of heating the produced fluid of oil wells with hot water or steam may result in excessive energy consumption. In order to perform the unheated transportation, the idea of hydraulic suspension transport of the gelled crude oil is proposed based on the actual production of Daqing Oilfield, and the experimental system is established to test characteristics of oil particle distribution which have an important effect on the hydraulic suspension transportation. In the experiment, the image of gelled crude oil particle distribution was obtained in a horizontal pipe with inner diameter of 0.053 m, and then the law of particle distribution was investigated by the theoretical model. The results showed that the gelled crude oil hydraulic suspension transport could be achieved without any chemical reagent when the gelled crude oil was transformed into particles and dispersedly suspended in water. The results also showed that the gelled oil particles of 0–4 mm in size accounted for 92% or more of all particles, and the percentage of gelled crude oil particles of a size of 4 mm gradually increased with the increasing mixed flow rate.

  15. Spatial variations in the occurrence of potentially genotoxic disinfection by-products in drinking water distribution systems in China.

    Science.gov (United States)

    Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian

    2017-12-01

    We investigated the occurrence of disinfection by-products (DBPs) with genotoxic potential in plant effluent and distribution water samples from four drinking water treatment plants in two Chinese cities using comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry. We tested the samples for 37 DBPs with genotoxic potential, which we had previously identified and prioritized in water under controlled laboratory conditions. Thirty of these DBPs were found in the water samples at detection frequencies of between 10% and 100%, and at concentrations between 3.90 and 1.77 × 10 3  ng/L. Of the DBPs detected, the concentrations of 1,1,1-trichloropropan-2-one were highest, and ranged from 299 to 1.77 × 10 3  ng/L with an average of 796 ng/L. The concentrations of 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine and 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione were also much higher, and ranged from 107 to 721 ng/L, and from 152 to 504 ng/L, respectively. Concentrations of 1,1,1-trichloropropan-2-one, 2-chloro-1-phenylethanone, 2,2-dichloro-1-phenylethanone and 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine were highest at or near the treatment plants and decreased with increasing distance from the plants. Patterns in the concentrations of benzaldehyde, 2-phenylpropan-2-ol, and 1-methylnaphthalene differed between plants. The levels of DBPs such as 4-ethylbenzaldehyde, (E)-non-2-enal, and 1-phenylethanone were relatively constant within the distribution systems, even at the furthest sampling points (20 km drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.

    Science.gov (United States)

    Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe

    2013-09-15

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2013-01-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  18. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  19. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  20. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-09-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  1. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    Science.gov (United States)

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.

  2. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment.

    Science.gov (United States)

    Santos, Ewerton; Souza, Michel R R; Vilela Junior, Antônio R; Soares, Laiane S; Frena, Morgana; Alexandre, Marcelo R

    2018-02-01

    This study aimed to evaluate the PAH distribution, sources, seasonal variations and ecological risk assessment in superficial water from the Japaratuba River, Brazil. PAH concentrations ranged from 4 to 119ngL -1 . It was observed that the PAH total concentrations and profiles showed significant differences when comparing the dry season (summer) with the rainy season (winter). Furthermore, most of the PAH originated from pyrogenic sources in the winter, whereas a mixture of sources was observed in the summer. PAH concentration levels found in this study were considered lower than those obtained in other estuarine systems. Ecological risk assessment was determined for individual PAH, based on the risk quotient (RQ) to evaluate the risk of aquatic biota's exposure to PAH. Results suggested that the Japaratuba River has achieved a moderate degree of ecological risk for high molecular weight, showing the importance of identifying these carcinogenic and mutagenic compounds in aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Short- and Long-Term Lead Release after Partial Lead Service Line Replacements in a Metropolitan Water Distribution System.

    Science.gov (United States)

    Deshommes, Elise; Laroche, Laurent; Deveau, Dominique; Nour, Shokoufeh; Prévost, Michèle

    2017-09-05

    Thirty-three households were monitored in a full-scale water distribution system, to investigate the impact of recent (sampling over a period of 1-20 months. Point-of-entry filters were installed to capture sporadic release of particulate lead from the lead service lines (LSLs). Mean concentrations increased immediately after PLSLRs and erratic particulate lead spikes were observed over the 18 month post-PLSLR monitoring period. The mass of lead released during this time frame indicates the occurrence of galvanic corrosion and scale destabilization. System-wide, lead concentrations were however lower in households with PLSLRs as compared to those with no replacement, especially for old PLSLRs. Nonetheless, 61% of PLSLR samples still exceeded 10 μg/L, reflecting the importance of implementing full LSL replacement and efficient risk communication. Acute concentrations measured immediately after PLSLRs demonstrate the need for appropriate flushing procedures to prevent lead poisoning.

  4. A painless approach to use distributed digital-control system for Heavy Water Plant- Tuticorin

    Energy Technology Data Exchange (ETDEWEB)

    Potti, V S; Krishnan, S; Rao, V C; Lamba, D S [Heavy Water Project, Tuticorin (India)

    1994-06-01

    Heavy Water Plant (Tuticorin) production is based on mono thermal process of ammonia-hydrogen exchange and is connected with a 1100 tons per day capacity ammonia plant of M/s Southern Petrochemical Industries Limited for getting its feed. The deuterium concentration in the syngas (N{sub 2} + 3H{sub 2}) is extracted through ammonia-hydrogen exchange process and finally burnt with air in the final product unit to get heavy water. The depleted syngas is sent back to M/s SPIC`s synthesis unit. The purpose of this paper is to highlight the instrumentation requirements of heavy water production, problems encountered in use of DDCS along with remedial action taken for the back up facility. (author). 3 refs., 2 figs.

  5. A painless approach to use distributed digital-control system for Heavy Water Plant- Tuticorin

    International Nuclear Information System (INIS)

    Potti, V.S.; Krishnan, S.; Rao, V.C.; Lamba, D.S.

    1994-01-01

    Heavy Water Plant (Tuticorin) production is based on mono thermal process of ammonia-hydrogen exchange and is connected with a 1100 tons per day capacity ammonia plant of M/s Southern Petrochemical Industries Limited for getting its feed. The deuterium concentration in the syngas (N 2 + 3H 2 ) is extracted through ammonia-hydrogen exchange process and finally burnt with air in the final product unit to get heavy water. The depleted syngas is sent back to M/s SPIC's synthesis unit. The purpose of this paper is to highlight the instrumentation requirements of heavy water production, problems encountered in use of DDCS along with remedial action taken for the back up facility. (author)

  6. IMPACT OF REALIZED IMS SYSTEM IN PRODUCTION AND DISTRIBUTION OF WATER ON QUALITY OF LIFE

    Directory of Open Access Journals (Sweden)

    Gordana Todorović

    2017-03-01

    Full Text Available In this paper from the assessments: the satisfaction of the citizens with the services PUC "Waterworks and Sewerage" and the total time interruption in water supply, appreciating their importance, we carried out the assessment of the implemented IMS PUC "Waterworks and Sewerage" in Kragujevac.

  7. The Fate of Malathion on Copper and Iron Piping Within a Water Distribution System

    Science.gov (United States)

    2015-03-26

    application in biological, polymers and plastics , explosive, inorganic compounds as well as metal and alloy research (Dodd & Tonge, 1987). There are...submerged in a dielectric fluid [i.e. water] prior to the EDM sending an electrically charged brass wire over the sample. The wire disintegrated the...period, the coupon samples were removed from the glass vial, placed on a plastic sample holder, and allowed to dry in the desiccator for a four-hour

  8. Overview of biofilm formation in distribution systems and its impact on the deterioration of water quality

    CSIR Research Space (South Africa)

    Momba, MNB

    2000-01-01

    Full Text Available in drinking water have long been known to cause disease and death in consumers (Craun, 1986). The health risks associated with these pathogens range from viral and bacterial gastroenteric diseases to infections such as hepatitis A and giardiasis... range from viral and bacterial gastro-enteric diseases to infections such as hepatitis A and giardiasis. Recently there have also been reports of the survival of Campylobacter spp., Helicobacter pylori and Cryptosporidium parvum in biofilms...

  9. Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H2O2 Production and UV Photolysis.

    Science.gov (United States)

    Barazesh, James M; Prasse, Carsten; Wenk, Jannis; Berg, Stephanie; Remucal, Christina K; Sedlak, David L

    2018-01-02

    As water scarcity intensifies, point-of-use and point-of-entry treatment may provide a means of exploiting locally available water resources that are currently considered to be unsafe for human consumption. Among the different classes of drinking water contaminants, toxic trace elements (e.g., arsenic and lead) pose substantial operational challenges for distributed drinking water treatment systems. Removal of toxic trace elements via adsorption onto iron oxides is an inexpensive and robust treatment method; however, the presence of metal-complexing ligands associated with natural organic matter (NOM) often prevents the formation of iron precipitates at the relatively low concentrations of dissolved iron typically present in natural water sources, thereby requiring the addition of iron which complicates the treatment process and results in a need to dispose of relatively large amounts of accumulated solids. A point-of-use treatment device consisting of a cathodic cell that produced hydrogen peroxide (H 2 O 2 ) followed by an ultraviolet (UV) irradiation chamber was used to decrease colloid stabilization and metal-complexing capacity of NOM present in groundwater. Exposure to UV light altered NOM, converting ∼6 μM of iron oxides into settable forms that removed between 0.5 and 1 μM of arsenic (As), lead (Pb), and copper (Cu) from solution via adsorption. After treatment, changes in NOM consistent with the loss of iron-complexing carboxylate ligands were observed, including decreases in UV absorbance and shifts in the molecular composition of NOM to higher H/C and lower O/C ratios. Chronoamperometric experiments conducted in synthetic groundwater revealed that the presence of Ca 2+ and Mg 2+ inhibited intramolecular charge-transfer within photoexcited NOM, leading to substantially increased removal of iron and trace elements.

  10. Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2017-04-01

    Full Text Available Reduction of leakages in a water distribution system (WDS is one of the major concerns of water industries. Leakages depend on pressure, hence installing pressure reducing valves (PRVs in the water network is a successful techniques for reducing leakages. Determining the number of valves, their locations, and optimal control setting are the challenges faced. This paper presents a new algorithm-based rule for determining the location of valves in a WDS having a variable demand pattern, which results in more favorable optimization of PRV localization than that caused by previous techniques. A multiobjective genetic algorithm (NSGA-II was used to determine the optimized control value of PRVs and to minimize the leakage rate in the WDS. Minimum required pressure was maintained at all nodes to avoid pressure deficiency at any node. Proposed methodology is applied in a benchmark WDS and after using PRVs, the average leakage rate was reduced by 6.05 l/s (20.64%, which is more favorable than the rate obtained with the existing techniques used for leakage control in the WDS. Compared with earlier studies, a lower number of PRVs was required for optimization, thus the proposed algorithm tends to provide a more cost-effective solution. In conclusion, the proposed algorithm leads to more favorable optimized localization and control of PRV with improved leakage reduction rate.

  11. Developing a chloramine decay index to understand nitrification: A case study of two chloraminated drinking water distribution systems.

    Science.gov (United States)

    Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose

    2017-07-01

    The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification. Copyright © 2016. Published by Elsevier B.V.

  12. Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems

    Science.gov (United States)

    2013-04-22

    compounds are Sr2+SO4 (celestite) and Sr 2+ CO3 (strontianite). Naturally occurring Sr2+ compounds are highly soluble in water; consequently, Sr2+ is readily...and one from Utility C (UC) were collected from single 30 cm long sections of 15 cm id unlined cast iron residential mains. Two iron corrosion...in top-up mode at 7 GeV and a ring current of 101 mA. A 0.5 mm premonochromator slit width and a Si(111) double crystal monochromator detuned by 10

  13. 30 CFR 71.602 - Drinking water; distribution.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  14. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China

    DEFF Research Database (Denmark)

    Qin, Ning; He, Wei; Kong, Xiang-Zhen

    2014-01-01

    in the water, while no obvious seasonal trend was found in the SPM. The residues and distributions of PAHs in the water, SPM and sediment relied heavily on carbon content. Significant Pearson correlations were found between LogKoc and LogKow as well as some hydro-meteorological factors. Three major sources...

  15. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes.

    Science.gov (United States)

    Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2017-10-01

    The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.

  16. Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system.

    Science.gov (United States)

    Dubrou, S; Konjek, J; Macheras, E; Welté, B; Guidicelli, L; Chignon, E; Joyeux, M; Gaillard, J L; Heym, B; Tully, T; Sapriel, G

    2013-09-01

    Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network.

  17. Whole-Genome Sequences of Four Strains Closely Related to Members of the Mycobacterium chelonae Group, Isolated from Biofilms in a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome sequences of four Mycobacterium chelonae group strains from biofilms obtained after a ‘chlorine burn’ in a chloraminated drinking water distribution system simulator. These opportunistic pathogens have been detected in drinking and hospital water distr...

  18. A risk-based multi-objective model for optimal placement of sensors in water distribution system

    Science.gov (United States)

    Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein

    2018-02-01

    In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value

  19. Thallium-rich rust scales in drinkable water distribution systems: A case study from northern Tuscany, Italy.

    Science.gov (United States)

    Biagioni, Cristian; D'Orazio, Massimo; Lepore, Giovanni O; d'Acapito, Francesco; Vezzoni, Simone

    2017-06-01

    Following the detection of a severe thallium contamination of the drinkable water from the public distribution system of Valdicastello Carducci-Pietrasanta (northern Tuscany, Italy), and the identification of the source of contamination in the Molini di Sant'Anna spring (average Tl content≈15μgL -1 ), the replacement of the contaminated water with a virtually Tl-free one (Tlwater. This suggested that the pipeline interior had become a secondary source of Tl contamination, promoting its mineralogical and geochemical study. Rust scales samples taken from several pipeline segments, as well as leaching products obtained from these samples, were investigated through scanning electron microscopy, X-ray fluorescence chemical analyses, inductively coupled plasma - mass spectrometry, X-ray diffraction, and X-ray absorption spectroscopy. Thallium-rich rust scales (up to 5.3wt% Tl) have been found only in pipeline samples taken downstream the water treatment plant, whereas the sample taken upstream contains much less Tl (~90μgg -1 ). The Tl-rich nature of such scales is related to the occurrence of nano- and micro-spherules of Tl 2 O 3 and less abundant nanocrystalline μm-sized encrustations of TlCl. Leaching experiments on Tl-rich rust scales indicate that a fraction of the available Tl is easily dissolved in tap water; X-ray absorption spectroscopy suggests that monovalent thallium occurs in water equilibrated with the rust scales, probably related to the dissolution of TlCl encrustations. Therefore, Tl dissolved as Tl + only in the water from the Molini di Sant'Anna spring was partially removed through oxidative precipitation of Tl 2 O 3 and precipitation of TlCl. This highlights the critical role played by the addition of chlorine-based oxidants in water treatment plants that could favour the deposition of Tl-rich coatings within the pipelines, giving rise to unexpected secondary sources of contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency

    International Nuclear Information System (INIS)

    Abd El-Moniem, M.; El-Gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

  1. Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition

    Science.gov (United States)

    2013-06-01

    attributes with a defined datatype indicating a measure datatype ; • To all properties and quantities with a defined datatype indicating a measure... datatype and with no local unit definitions provided. 3.2.3.4 Project context A project representation context indicates the coordinate system orienta

  2. Smart Distribution Systems

    Directory of Open Access Journals (Sweden)

    Yazhou Jiang

    2016-04-01

    Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.

  3. Distribution coefficients of purine alkaloids in water-ammonium sulfate-alkyl acetate-dialkyl phthalate systems

    Science.gov (United States)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-12-01

    The distribution of purine alkaloids (caffeine, theobromine, theophylline) was studied in the systems: alkyl acetates-dialkyl phtalate-salting-out agent (ammonium sulfate). The quantitative characteristics of the extraction-distribution coefficients ( D) and the degree of extraction ( R, %) are calculated. The relationships between the distribution coefficients of alkaloids and the length of the hydrocarbon radical in the molecule of alkyl acetate (dialkyl phtalate) are determined. The possibility of predicting the distribution coefficients is demonstrated.

  4. Electric distribution systems

    CERN Document Server

    Sallam, A A

    2010-01-01

    "Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--

  5. Distributed Operating Systems

    NARCIS (Netherlands)

    Mullender, Sape J.

    1987-01-01

    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups. In this paper, an overview of recent research in distributed systems is given. In turn, the

  6. Distribution of zirconium in the nitric acid-water-TPB-diluent system

    International Nuclear Information System (INIS)

    Shu, J.; Floh de Araujo, B.

    1984-10-01

    This paper deals with the extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems. The main purpose is to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a mininum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon ziconium behaviour was also verified. With the data obtained it was possible to introduce some modification in the standard Purex flow-sheet with the increase of the decontamination of uranium from zirconium. 5 refs., 9 figs

  7. COMPARISON OF MYCOBACTERIUM AVIUM ISOLATES FROM A DRINKING WATER DISTRIBUTION SYSTEM AND FROM THE POPULATION SERVED BY THE SYSTEM

    Science.gov (United States)

    Background: Current evidence suggests that drinking water, soil, and produce are potential sources of Mycobacterium avium infections, a pathogen not known to be transmitted person-to-person. Methods: We sampled water during 2000-2002 from a large municipal drinking water ...

  8. Pervasive Electricity Distribution System

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Tahir

    2017-06-01

    Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.

  9. Factors that may compromise bulk water distribution reliability

    OpenAIRE

    2012-01-01

    D.Ing. This thesis considers water supply and divides the water supply environment into three categories; the macro water supply environment, the water supply scheme and the consumers. Each of the categories is briefly explored in terms of the factors that may influence it. Subsequently, some of the unique features of a bulk water distribution system are dealt with, as well as different approaches related to bulk water distribution system design and assessment. One of these approaches, the...

  10. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  11. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  12. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems

    Directory of Open Access Journals (Sweden)

    Cetron Martin S

    2011-06-01

    Full Text Available Abstract Background Malaria is a major health concern for displaced persons occupying refugee camps in sub-Saharan Africa, yet there is little information on the incidence of infection and nature of transmission in these settings. Kakuma Refugee Camp, located in a dry area of north-western Kenya, has hosted ca. 60,000 to 90,000 refugees since 1992, primarily from Sudan and Somalia. The purpose of this study was to investigate malaria prevalence and attack rate and sources of Anopheles vectors in Kakuma refugee camp, in 2005-2006, after a malaria epidemic was observed by staff at camp clinics. Methods Malaria prevalence and attack rate was estimated from cases of fever presenting to camp clinics and the hospital in August 2005, using rapid diagnostic tests and microscopy of blood smears. Larval habitats of vectors were sampled and mapped. Houses were sampled for adult vectors using the pyrethrum knockdown spray method, and mapped. Vectors were identified to species level and their infection with Plasmodium falciparum determined. Results Prevalence of febrile illness with P. falciparum was highest among the 5 to 17 year olds (62.4% while malaria attack rate was highest among the two to 4 year olds (5.2/1,000/day. Infected individuals were spatially concentrated in three of the 11 residential zones of the camp. The indoor densities of Anopheles arabiensis, the sole malaria vector, were similar during the wet and dry seasons, but were distributed in an aggregated fashion and predominantly in the same zones where malaria attack rates were high. Larval habitats and larval populations were also concentrated in these zones. Larval habitats were man-made pits of water associated with tap-stands installed as the water delivery system to residents with year round availability in the camp. Three percent of A. arabiensis adult females were infected with P. falciparum sporozoites in the rainy season. Conclusions Malaria in Kakuma refugee camp was due mainly

  13. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  14. Reduction of water losses by rehabilitation of water distribution network.

    Science.gov (United States)

    Güngör, Mahmud; Yarar, Ufuk; Firat, Mahmut

    2017-09-11

    Physical or real losses may be indicated as the most important component of the water losses occurring in a water distribution network (WDN). The objective of this study is to examine the effects of piping material management and network rehabilitation on the physical water losses and water losses management in a WDN. For this aim, the Denizli WDN consisting of very old pipes that have exhausted their economic life is selected as the study area. The fact that the current network is old results in the decrease of pressure strength, increase of failure intensity, and inefficient use of water resources thus leading to the application of the rehabilitation program. In Denizli, network renewal works have been carried out since the year 2009 under the rehabilitation program. It was determined that the failure rate at regions where network renewal constructions have been completed decreased down to zero level. Renewal of piping material enables the minimization of leakage losses as well as the failure rate. On the other hand, the system rehabilitation has the potential to amortize itself in a very short amount of time if the initial investment cost of network renewal is considered along with the operating costs of the old and new systems, as well as water loss costs. As a result, it can be stated that renewal of piping material in water distribution systems, enhancement of the physical properties of the system, provide significant contributions such as increase of water and energy efficiency and more effective use of resources.

  15. Advanced Distribution Management System

    OpenAIRE

    Avazov, Artur; Sobinova, Lubov Anatolievna

    2016-01-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  16. Advanced Distribution Management System

    Science.gov (United States)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  17. Advanced Distribution Management System

    Directory of Open Access Journals (Sweden)

    Avazov Artur R.

    2016-01-01

    Full Text Available This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  18. Sustainable Water Distribution Strategy with Smart Water Grid

    Directory of Open Access Journals (Sweden)

    Seongjoon Byeon

    2015-04-01

    Full Text Available Many problems that are encountered in regards to water balance and resources management are related to challenges of economic development under limited resources and tough competition among various water uses. The development of major infrastructure like airports in remote areas that have limited water resources is becoming a common problem. In order to overcome these difficulties, water management has to articulate and combine several resources in order to respond to various demands while preserving the ecological quality of the environment. The paper discusses the interest in implementing the Smart Water Grid concept on Yeongjongdo Island, which is the location of Korea’s main airport. This new concept is based on the connection of various water resources and their optimized management with new information technology solutions. The proposed system integrates water generated through rainfall, external water resources (i.e., metropolitan water distribution system, gray water and other types of alternative water resources. The paper analyses the feasibility of this approach and explores interest in the Smart Water Grid concept.

  19. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Verho, P.; Jaerventausta, P.; Kaerenlampi, M.; Paulasaari, H. [Tampere Univ. of Technology (Finland); Partanen, J. [Lappeenranta Univ. of Technology (Finland)

    1996-12-31

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system

  20. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Verho, P; Jaerventausta, P; Kaerenlampi, M; Paulasaari, H [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion of the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the vendors of the other systems. In the research project this alternative is preferred and used in developing an independent distribution management system

  1. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Jaerventausta, P; Verho, P; Kaerenlampi, M; Pitkaenen, M [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)

    1998-08-01

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion to the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. Nowadays the SCADA is the main computer system (and often the only) in the control center. However, the information displayed by the SCADA is often inadequate, and several tasks cannot be solved by a conventional SCADA system. A need for new computer applications in control center arises from the insufficiency of the SCADA and some other trends. The latter means that the overall importance of the distribution networks is increasing. The slowing down of load-growth has often made network reinforcements unprofitable. Thus the existing network must be operated more efficiently. At the same time larger distribution areas are for economical reasons being monitored at one control center and the size of the operation staff is decreasing. The quality of supply requirements are also becoming stricter. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the

  2. Hydrodynamic modeling of the intrusion phenomenon in water distribution systems; Modelacion hidrodinamica del fenomeno de intrusion en tuberia de abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Jimenez, Petra Amparo; Mora-Rodriguez, Jose de Jesus; Perez-Garcia, Rafael; Martinez-Solano, F. Javier [Universidad Politecnica de Valencia (Spain)

    2008-10-15

    This paper describes a strategy for the hydrodynamic modeling of the pathogen intrusion phenomenon in water distribution systems by the combination of a breakage with a depression situation. This scenario will be modeled computationally and experimentally. The phenomenon to be represented by both simulations is the same: the entrance of an external volume into the circulation of a main volume, known as a pathogen intrusion, as long as the main volume is potable water. To this end, a prototype and a computational model based on Computational Fluid Dynamics (CFD) are used, which allow visualizing the fields of speeds and pressures in a simulated form. With the comparison of the results of both models, conclusions will be drawn on the detail of the studied pathogen intrusion phenomenon. [Spanish] En el presente documento se describe una estrategia de modelacion del fenomeno hidrodinamico de la intrusion patogena en redes de distribucion de agua por combinacion de una rotura con una situacion de depresion. Este escenario sera modelado computacional y experimentalmente. El fenomeno que se desea representar con ambas simulaciones es el mismo: la entrada de un caudal externo a una conduccion para la que circula un caudal principal, denominado intrusion patogena, siempre y cuando el caudal principal sea agua potable. Para ello se dispone de un prototipo y un modelo computacional basado en la Dinamica de Fluidos Computacional (DFC de aqui en adelante), que permite visualizar los campos de velocidades y presiones de forma simulada. Con la comparacion de los resultados de ambos modelos se extraeran conclusiones sobre el detalle del fenomeno de la intrusion patogena estudiado.

  3. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    Science.gov (United States)

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  4. Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Yussuf, Mustafe A.; Kontogeorgis, Georgios

    2013-01-01

    + water. These data are satisfactorily correlated (binaries) and predicted (ternaries) using Cubic Plus Association (CPA) equation of state (EoS). CPA is also applied to binary LLE of aromatic hydrocarbon + water and VLE of methane + methanol. Finally the distribution of water and inhibitors (methanol...... and MEG) in various phases is modeled using CPA. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n-butane, n-heptane, toluene and n-decane). CPA can satisfactorily predict the water content in the gas phase of the multicomponent systems...

  5. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.

    2016-01-06

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach combines (i) quantification of changes in autochthonous bacterial cell concentrations in full-scale distribution systems with (ii) laboratoryscale batch bacterial growth potential tests of drinking water samples under defined conditions. The growth potential tests were done by direct incubation of water samples, without modification of the original bacterial flora, and with flow cytometric quantification of bacterial growth. This method was shown to be reproducible (ca. 4% relative standard deviation) and sensitive (detection of bacterial growth down to 5 μg L-1 of added assimilable organic carbon). The principle of step-wise assessment of bacterial growth-controlling factors was demonstrated on bottled water, shown to be primarily carbon limited at 133 (±18) × 103 cells mL-1 and secondarily limited by inorganic nutrients at 5,500 (±1,700) × 103 cells mL-1. Analysis of the effluent of a Dutch full-scale drinking water treatment plant showed (1) bacterial growth inhibition as a result of end-point chlorination, (2) organic carbon limitation at 192 (±72) × 103 cells mL-1 and (3) inorganic nutrient limitation at 375 (±31) × 103 cells mL-1. Significantly lower net bacterial growth was measured in the corresponding full-scale distribution system (176 (±25) × 103 cells mL-1) than in the laboratory-scale growth potential test of the same water (294 (±35) × 103 cells mL-1), highlighting the influence of distribution on bacterial growth. The systematic approach described herein provides quantitative information on the effect of drinking water properties and distribution system conditions on biological stability, which can assist water utilities in decision-making on treatment or distribution system improvements to

  6. Effects of Ni(2+) on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system.

    Science.gov (United States)

    Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia

    2014-07-01

    Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Distributed processor systems

    International Nuclear Information System (INIS)

    Zacharov, B.

    1976-01-01

    In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)

  8. An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system (DWDS).

    Science.gov (United States)

    Zhou, Xinyan; Zhang, Kejia; Zhang, Tuqiao; Li, Cong; Mao, Xinwei

    2017-05-01

    It is important for water utilities to provide esthetically acceptable drinking water to the public, because our consumers always initially judge the quality of the tap water by its color, taste, and odor (T&O). Microorganisms in drinking water contribute largely to T&O production and drinking water distribution systems (DWDS) are known to harbor biofilms and microorganisms in bulk water, even in the presence of a disinfectant. These microbes include T&O-causing bacteria, fungi, and algae, which may lead to unwanted effects on the organoleptic quality of distributed water. Importantly, the understanding of types of these microbes and their T&O compound-producing mechanisms is needed to prevent T&O formation during drinking water distribution. Additionally, new disinfection strategies and operation methods of DWDS are also needed for better control of T&O problems in drinking water. This review covers: (1) the microbial species which can produce T&O compounds in DWDS; (2) typical T&O compounds in DWDS and their formation mechanisms by microorganisms; (3) several common factors in DWDS which can influence the growth and T&O generation of microbes; and (4) several strategies to control biofilm and T&O compound formation in DWDS. At the end of this review, recommendations were given based on the conclusion of this review.

  9. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    Science.gov (United States)

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However

  10. Production and distribution of chlorination by-products in the cooling water system of a coastal power station

    International Nuclear Information System (INIS)

    Vinnitha, E.; Rajamohan, R.; Venugopalan, V.P.; Narasimhan, S.V.

    2008-01-01

    Employing chlorination as antifouling agent in cooling water circuits of coastal power plants can lead to the production of chlorination by-products (CBP), mainly due to chlorine's reactions with the organic compounds present in natural seawater. Important among the by products are trihalomethane, haloacetonitriles, halo acetic acids, halo phenols etc., with trihalomethanes (THM) generally being the predominant compounds. The THM species that are commonly observed are chloroform, mono bromodichloromethane, dibromochloro-methane and bromoform. The present work was carried out to understand the production and distribution of chlorination by products (mainly trihalomethanes) in the cooling water systems of Madras Atomic Power Station (MAPS). Field studies were carried out in which samples collected from the intake, forebay pump house, out fall point and mixing point were analysed for THM using gas chromatograph with electron capture detector. The results showed that bromoform was the dominant THM formed as a result of chlorination, followed by dibromochloromethane. Mono bromodichloromethane and chloroform were not observed in seawater throughout the study period. Moreover, no THM could be detected at the intake point. The total THM values at other stations ranged between 25-250 μgL -1 , the highest values were observed at the process seawater pump outlet and the lowest at the mixing point. The concentrations of CBP's formed were found to be related to the chlorine residuals measured. In addition, laboratory experiments were carried out to understand CBP formation as a function of chlorine dose and contact time. Chlorine doses ranging from 1 to 10 mgL -1 were added to unfiltered seawater and the various THMs formed were analysed after different time intervals. The results confirmed that bromoform was the dominant THM species, followed by dibromochloromethane, as observed in the field studies. As the chlorine doses increased, the other THMs, namely, mono

  11. Distributed Treatment Systems.

    Science.gov (United States)

    Zgonc, David; Plante, Luke

    2017-10-01

    This section presents a review of the literature published in 2016 on topics relating to distributed treatment systems. This review is divided into the following sections with multiple subsections under each: constituent removal; treatment technologies; and planning and treatment system management.

  12. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System

    OpenAIRE

    Ginige, Maneesha P.; Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. Th...

  13. Open Data, Open Specifications and Free and Open Source Software: A powerful mix to create distributed Web-based water information systems

    Science.gov (United States)

    Arias, Carolina; Brovelli, Maria Antonia; Moreno, Rafael

    2015-04-01

    We are in an age when water resources are increasingly scarce and the impacts of human activities on them are ubiquitous. These problems don't respect administrative or political boundaries and they must be addressed integrating information from multiple sources at multiple spatial and temporal scales. Communication, coordination and data sharing are critical for addressing the water conservation and management issues of the 21st century. However, different countries, provinces, local authorities and agencies dealing with water resources have diverse organizational, socio-cultural, economic, environmental and information technology (IT) contexts that raise challenges to the creation of information systems capable of integrating and distributing information across their areas of responsibility in an efficient and timely manner. Tight and disparate financial resources, and dissimilar IT infrastructures (data, hardware, software and personnel expertise) further complicate the creation of these systems. There is a pressing need for distributed interoperable water information systems that are user friendly, easily accessible and capable of managing and sharing large volumes of spatial and non-spatial data. In a distributed system, data and processes are created and maintained in different locations each with competitive advantages to carry out specific activities. Open Data (data that can be freely distributed) is available in the water domain, and it should be further promoted across countries and organizations. Compliance with Open Specifications for data collection, storage and distribution is the first step toward the creation of systems that are capable of interacting and exchanging data in a seamlessly (interoperable) way. The features of Free and Open Source Software (FOSS) offer low access cost that facilitate scalability and long-term viability of information systems. The World Wide Web (the Web) will be the platform of choice to deploy and access these systems

  14. Distributed Computerized Catalog System

    Science.gov (United States)

    Borgen, Richard L.; Wagner, David A.

    1995-01-01

    DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.

  15. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  17. Prioritising alternatives for maintenance of water distribution ...

    African Journals Online (AJOL)

    ... for maintenance of water distribution networks: A group decision approach. ... Difficulties related to the group decision-making process in the water supply sector, ... This study focused on the rational use of water resources and reduction of ...

  18. Formation and elimination of the biofilm in drinking water distribution system; Formacion y eliminacion de biofilm en las redes de distribucion de agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Ubeda, J.; Briones, A. [Universidad de Castilla-La Mancha (Spain); Lopez, E. [Aquagest, S. A. Ciudad Real (Spain)

    2000-07-01

    The water distribution system is a proper medium for the developing of microorganisms. This growth together to the excretion of organic polymers promote the formation of the bio films. Its develop on the surface of the distribution systems depend of different factors, underlying the composition of the pipes. The formation of the biofilm cause a deterioration of the organoleptic and micro biologic quality of water since it behaves as a protector barrier of the pathogenic bacteria that have outlived the water treatment process. A biofilm can be visualized using microscopic techniques, even though at the present genetic and immuno fluorescent techniques are employed. The cleaning and disinfection are used for its elimination: when the chloride is used, a great residual concentration is needed. (Author) 22 refs.

  19. Optimizing electrical distribution systems

    International Nuclear Information System (INIS)

    Scott, W.G.

    1990-01-01

    Electrical utility distribution systems are in the middle of an unprecedented technological revolution in planning, design, maintenance and operation. The prime movers of the revolution are the major economic shifts that affect decision making. The major economic influence on the revolution is the cost of losses (technical and nontechnical). The vehicle of the revolution is the computer, which enables decision makers to examine alternatives in greater depth and detail than their predecessors could. The more important elements of the technological revolution are: system planning, computers, load forecasting, analytical systems (primary systems, transformers and secondary systems), system losses and coming technology. The paper is directed towards the rather unique problems encountered by engineers of utilities in developing countries - problems that are being solved through high technology, such as the recent World Bank-financed engineering computer system for Sri Lanka. This system includes a DEC computer, digitizer, plotter and engineering software to model the distribution system via a digitizer, analyse the system and plot single-line diagrams. (author). 1 ref., 4 tabs., 6 figs

  20. Distributed Systems 3/e

    NARCIS (Netherlands)

    Tanenbaum, A.S.; van Steen, M.R.

    2016-01-01

    For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A

  1. Molecular Survey of the Occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba Hosts in Two Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Wang, Hong; Edwards, Marc; Falkinham, Joseph O.

    2012-01-01

    The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems. PMID:22752174

  2. Distributed Optimization System

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  3. Distributed Data Management and Distributed File Systems

    CERN Document Server

    Girone, Maria

    2015-01-01

    The LHC program has been successful in part due to the globally distributed computing resources used for collecting, serving, processing, and analyzing the large LHC datasets. The introduction of distributed computing early in the LHC program spawned the development of new technologies and techniques to synchronize information and data between physically separated computing centers. Two of the most challenges services are the distributed file systems and the distributed data management systems. In this paper I will discuss how we have evolved from local site services to more globally independent services in the areas of distributed file systems and data management and how these capabilities may continue to evolve into the future. I will address the design choices, the motivations, and the future evolution of the computing systems used for High Energy Physics.

  4. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  5. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.

    Science.gov (United States)

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2011-05-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus

  6. Income Distribution Impacts of Irrigation Water Distribution Policy

    Science.gov (United States)

    Sampath, Rajan K.

    1984-06-01

    In the majority of lesser developed countries (LDC's) there is acute inequality in income distribution in the rural sector, particularly between large and small farms on the one hand and between land owners and the landless on the other. Irrigation water distribution policy of the government is both an economic and political problem. It has both equity and efficiency implications. It has effects on both the level and distribution of income. This paper deals with the conditions under which using water redistribution as an effective governmental policy variable can reduce inequality in the distribution of income. This paper also deals with the relationship between the objectives of equity and efficiency in water distribution under different objective realities, such as dualistic versus nondualistic conditions, two-sector versus three-sector modeling, optimum versus equal water distribution, specifically to derive the conditions under which promotion of equity promotes efficiency and vice versa and the conditions under which it does not.

  7. Distributed System Design Checklist

    Science.gov (United States)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  8. Review on Water Distribution of Cooling Tower in Power Station

    Science.gov (United States)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  9. Electrical distribution system management

    International Nuclear Information System (INIS)

    Hajos, L.; Mortarulo, M.; Chang, K.; Sparks, T.

    1990-01-01

    This paper reports that maintenance of electrical system data is essential to the operation, maintenance, and modification of a nuclear station. Load and equipment changes affect equipment sizing, available short-circuit currents and protection coordination. System parameters must be maintained in a controlled manner to enable evaluation of proposed modifications and provide adequate verification and traceability. For this purpose, Public Service Electric and Gas Company has implemented a Verified and Validated Electric Distribution System Management (EDSM) program at the Hope Creek and Salem Nuclear Power Stations. EDSM program integrates computerized configuration management of electrical systems with calculational software the Technical Standard procedures. The software platform is PC-based. The Database Manager and Calculational programs have been linked together through a user friendly menu system. The database management nodule enable s assembly and maintenance of databases for individual loads, buses, and branches within the electrical systems with system access and approval controlled through electronic security incorporated within the database manger. Reports drawn from the database serve as the as-built and/or as-designed record of the system configurations. This module also creates input data files of network parameters in a format readable by the calculational modules. Calculations modules provide load flow, voltage drop, motor starting, and short-circuit analyses, as well as dynamic analyses of bus transfers

  10. Planning Systems for Distributed Operations

    Science.gov (United States)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  11. Managing Distributed Knowledge Systems

    DEFF Research Database (Denmark)

    Sørensen, Brian Vejrum; Gelbuda, Modestas

    2005-01-01

    . This paper contributes to the research on organizations as distributed knowledge systems by addressing two weaknesses of the social practice literature. Firstly, it downplays the importance of formal structure and organizational design and intervention efforts by key organizational members. Secondly, it does......The article argues that the growth of de novo knowledge-based organization depends on managing and coordinating increasingly growing and, therefore, distributed knowledge. Moreover, the growth in knowledge is often accompanied by an increasing organizational complexity, which is a result...... of integrating new people, building new units and adding activities to the existing organization. It is argued that knowledge is not a stable capacity that belongs to any actor alone, but that it is rather an ongoing social accomplishment, which is created and recreated as actors engage in mutual activities...

  12. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Distributed road assessment system

    Science.gov (United States)

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  14. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare.

    Science.gov (United States)

    Moore, Ginny; Stevenson, David; Thompson, Katy-Anne; Parks, Simon; Ngabo, Didier; Bennett, Allan M; Walker, Jimmy T

    2015-01-01

    Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.

  15. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    Science.gov (United States)

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  16. A Geology-Based Estimate of Connate Water Salinity Distribution

    Science.gov (United States)

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  17. Communication Facilities for Distributed Systems

    Directory of Open Access Journals (Sweden)

    V. Barladeanu

    1997-01-01

    Full Text Available The design of physical networks and communication protocols in Distributed Systems can have a direct impact on system efficiency and reliability. This paper tries to identify efficient mechanisms and paradigms for communication in distributed systems.

  18. Optimizing queries in distributed systems

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2006-01-01

    Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.

  19. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi

    2017-07-01

    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  20. Evaluation of corrosion and scaling tendency indices in a drinking water distribution system: a case study of Bandar Abbas city, Iran.

    Science.gov (United States)

    Alipour, Vali; Dindarloo, Kavoos; Mahvi, Amir Hossein; Rezaei, Leila

    2015-03-01

    Corrosion and scaling is a major problem in water distribution systems, thus evaluation of water corrosivity properties is a routine test in water networks. To evaluate water stability in the Bandar Abbas water distribution system, the network was divided into 15 clusters and 45 samples were taken. Langelier, Ryznar, Puckorius, Larson-Skold (LS) and Aggressive indices were determined and compared to the marble test. The mean parameters included were pH (7.8 ± 0.1), electrical conductivity (1,083.9 ± 108.7 μS/cm), total dissolved solids (595.7 ± 54.7 mg/L), Cl (203.5 ± 18.7 mg/L), SO₄(174.7 ± 16.0 mg/L), alkalinity (134.5 ± 9.7 mg/L), total hardness (156.5 ± 9.3 mg/L), HCO₃(137.4 ± 13.0 mg/L) and calcium hardness (71.8 ± 4.3 mg/L). According to the Ryznar, Puckorius and Aggressive Indices, all samples were stable; based on the Langelier Index, 73% of samples were slightly corrosive and the rest were scale forming; according to the LS index, all samples were corrosive. Marble test results showed tested water of all 15 clusters tended to scale formation. Water in Bandar Abbas is slightly scale forming. The most appropriate indices for the network conditions are the Aggressive, Puckorius and Ryznar indices that were consistent with the marble test.

  1. Quality monitored distributed voting system

    Science.gov (United States)

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  2. Employment of the generalized adsorption model for the prediction of the solid-water distribution of radiocesium in the river-estuary-ocean system

    International Nuclear Information System (INIS)

    Fan, Qiaohui; Takahashi, Yoshio

    2017-01-01

    Since last century, a large amount of radiocesium (RCs) released from atomic weapon tests and nuclear accidents, such as in Chernobyl and Fukushima, was directly introduced into the environment through atmospheric transportation and deposition on land surface soil, discharged into river systems by erosion effects during rainfall, and finally released into the ocean. In this study, a generalized adsorption model (GAM) for Cs + was employed to estimate the solid-water distribution of Cs + in the river-estuary-ocean system. The results confirmed that the capacity of each adsorption site of river sediments, i.e., interlayer site, type II site, and planar site, can be precisely optimized through the adsorption isotherm of Cs + on the river sediments combined with the radiocesium interception potential (RIP) and cation exchange capacity (CEC). According to the GAM, the main contributor for Cs + adsorption is the frayed edge site rather than others due to the very low concentration of Cs + in the river-estuary-ocean system. The different solid-water distribution of Cs + in the river-estuary-ocean system was dominantly controlled by the salinity in the aqueous phase. Therefore, Cs + should be highly reactive with strong adsorptive character to particulate matter in the river system, whereas a conservative distribution must be dominant in ocean with much weaker affinity to particulate matter because of the high salinity. - Highlights: • A new method to extend the utility range of GAM from illite to natural samples. • GAM was adapted to quantitatively explore the transportation of radiocesium in river in rive-estuary-ocean system. • High reactivity in river water and conservative behavior in seawater were clarified.

  3. Octanol-water distribution of engineered nanomaterials.

    Science.gov (United States)

    Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D

    2011-01-01

    The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.

  4. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  5. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Ginige, Maneesha P; Garbin, Scott; Wylie, Jason; Krishna, K C Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.

  6. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    Maneesha P Ginige

    Full Text Available A Modified Robbins Device (MRD was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.

  7. Distributed security in closed distributed systems

    DEFF Research Database (Denmark)

    Hernandez, Alejandro Mario

    properties. This is also restricted to distributed systems in which the set of locations is known a priori. All this follows techniques borrowed from both the model checking and the static analysis communities. In the end, we reach a step towards solving the problem of enforcing security in distributed...... systems. We achieve the goal of showing how this can be done, though we restrict ourselves to closed systems and with a limited set of enforceable security policies. In this setting, our approach proves to be efficient. Finally, we achieve all this by bringing together several fields of Computer Science......The goal of the present thesis is to discuss, argue and conclude about ways to provide security to the information travelling around computer systems consisting of several known locations. When developing software systems, security of the information managed by these plays an important role...

  8. Optimizing Mexico’s Water Distribution Services

    Science.gov (United States)

    2011-10-28

    government pursued a decentralization policy in the water distribution infrastructure sector.5 This is evident in Article 115 of the Mexican Constitution ...infrastructure, monitoring water 5 Ibid, 47. 6 Mexican Constitution . http://www.oas.org/juridico...54 Apogee Research International, Ltd., Innovative Financing of Water and Wastewater Infrastructure in the NAFTA Partners: A Focus on

  9. Distribution of tritiated compounds (tritiated thymidine and tritiated water) in the mother-fetus system and its consequences for the radiotoxic effect of tritium

    Energy Technology Data Exchange (ETDEWEB)

    Schreml, W; Fliedner, T M [Ulm Univ. (Germany, F.R.). Abt. Klinische Physiologie

    1978-01-01

    The incorporation and distribution of tritiated thymidine (/sup 3/H-TdR) and tritiated water (HTO) have been measured in newborn rats exposed to various levels of tritium by continuous infusion into pregnant rats from day 9 until term. In the animals exposed to HTO, the tritium activity was homogeneously distributed while /sup 3/H-TdR led to accumulation of DNA-bound and homogeneously distributed tritium. The incorporated activity and the specific activity of DNA from ovaries which showed a reduction of total oocyte number by approximately 50% were used to estimate the dose absorbed by the ovarian cell nuclei in both systems. From the absorbed dose a factor of 3.7 was calculated for the 'internal relative biological effectiveness' of DNA-bound tritium as compared to homogeneously distributed /sup 3/H under the restrictive assumption that the static description of the system at birth reflects the situation during the time of dynamic development of the ovaries when the toxic effect occurs. The influence of these dynamic factors of changing nuclear size and tritium incorporation during the sensitive period is weighed against the possibility that the continuous /sup 3/H-TdR infusion during pregnancy might represent a model in which DNA-bound tritium shows a higher effectiveness than homogeneously distributed tritium.

  10. Distribution of water in fresh cod

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Rinnan, A.

    2002-01-01

    Low-field (1)H nuclear magnetic resonance (NMR) transverse relaxation was used to measure water mobility and distribution of water in fresh cod fillets. The NMR relaxations were analysed with the so-called SLICING method giving uni-exponential profiles from which the transverse relaxation time (T(2......)-values) and the relative sizes of the water populations were calculated. Two water populations with the T(2)-values of 50 and 94 ms were obtained. The shortest relaxation time was primarily found near the head, and water with the longest relaxation time was primarily found near the tail. This variation...... can he explained by the smaller muscle cells and muscle fibers in the tail, which may influence the distributions of water into the different pools. The amount of one of the water populations was correlated to the overall water content with a correlation coefficient of -0.94. (C) 2002 Elsevier Science...

  11. Characterization of Cloud Water-Content Distribution

    Science.gov (United States)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  12. Distribution System Pricing with Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-16

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.

  13. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  14. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    Science.gov (United States)

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  15. RBAC Administration in Distributed Systems

    NARCIS (Netherlands)

    Dekker, M.A.C.; Crampton, J.; Etalle, Sandro

    2007-01-01

    Despite a large body of literature on the administration of RBAC policies in centralized systems, the problem of the administration of a distributed system has hardly been addressed. We present a formal system for modelling a distributed RBAC system and its administration. We define two basic

  16. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  17. Analysis of Distribution System and Domestic Service Line Pipe Deposits to Understand Water Treatment/Metal Release Relationships

    Science.gov (United States)

    This project puts the U.S. Environmental Protection Agency (EPA) into a unique position of being able to bring analytical tools to bear to solve or anticipate future drinking water infrastructure water quality and metallic or cement material performance problems, for which little...

  18. Hydrology and heterogeneneous distribution of water quality ...

    African Journals Online (AJOL)

    A study was carried out on the hydrology and heterogeneous distribution of water quality characteristics in the Lagoon of Porto-Novo between July 2014 and June 2015. The water body was stratified into 12 strata for sampling. Data and samples were collected based on season and stations. The results were analyzed in the ...

  19. Distribution system modeling and analysis

    CERN Document Server

    Kersting, William H

    2001-01-01

    For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...

  20. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  1. Monitoring of THMs Concentration in Isfahan Water Distribution System and Zoning by GIS, a Case Study in the Center of Iran

    Directory of Open Access Journals (Sweden)

    Amir Mohammadi

    2016-01-01

    Full Text Available Trihalomethanes (THMs formation in treated water is a consequence of a reaction between the chlorine used for water disinfection and some natural organic matters. The objectives of the present study were monitoring of THMs concentration in Isfahan (A metropolis city in center of Iran water distribution network (IWDN, evaluation factors that affect the THMs formation potential and identification of critical points by using geographical information system (GIS. The study was performed in summer months of 2014. For sampling point's selection, city divided into 30 zones and water quality parameters such as pH, Electric Conductivity (EC, residual Chlorine, Total Organic Carbon (TOC and THMs of IWDN measured. Multi regression analysis was used to estimate the correlation between THMs formation and these variables. While the statistical analysis with Spearman non-parametric correlation coefficients showed a positive correlation between distance from treatment plant and THMs concentration(r=0.45, P =0.01 and negative strong correlation(r=-0.95, p>0.001 between THMs and TOC concentrations, there was no strong significant relationship between THMs formation in IWDN and some variables including pH, temperature and residual Chlorine. The results reveal that the average value of the THMs at sampling points for summer attained 42.56 ppb which was lower than the EPA and WHO standards. It is recommended that the distance from the treatment plant was used as an effective parameter for estimation of THMs formation potential.

  2. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  3. Optimum reliable operation of water distribution networks by ...

    African Journals Online (AJOL)

    In recent decades much attention has been paid to optimal operation of water distribution networks (WDNs). In this regard, the system operation costs, including energy and disinfection chemicals, as well as system reliability should be simultaneously considered in system performance optimisation, to provide the minimum ...

  4. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Radon levels in a water distribution network

    International Nuclear Information System (INIS)

    Alabdula'aly, A.I.

    1997-01-01

    The capital city of Saudi Arabia, Riyadh, relies on both desalinated sea water as well as treated groundwater to meet all its water requirements. About 66% of the water demand is met by desalinated sea water, and the remaining is supplied by six groundwater treatment plants located in the vicinity of the city and supplied with water from 161 wells. The desalinated sea water is blended with only one plant product water and pumped to the distribution network, whereas the other five plants product water is pumped directly to the network. A study of 222 Rn levels in the city distribution network was carried out in which 89 samples were collected from different locations representing the city districts. All samples have shown low radon levels with an average concentration of 0.2 Bq l -1 and a range values of 0.1-1.0 Bq l -1 . The level of radon in different parts of the network was found to be influenced by the water sources to which they are supplied. The lowest radon levels were observed in districts supplied mostly by desalinated sea water. (Author)

  6. Characterisation of the physical composition and microbial community structure of biofilms within a model full-scale drinking water distribution system.

    Science.gov (United States)

    Fish, Katherine E; Collins, Richard; Green, Nicola H; Sharpe, Rebecca L; Douterelo, Isabel; Osborn, A Mark; Boxall, Joby B

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  7. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Science.gov (United States)

    Fish, Katherine E.; Collins, Richard; Green, Nicola H.; Sharpe, Rebecca L.; Douterelo, Isabel; Osborn, A. Mark; Boxall, Joby B.

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important

  8. Distributed systems status and control

    Science.gov (United States)

    Kreidler, David; Vickers, David

    1990-01-01

    Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.

  9. Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India II: Impact of viable water management scenarios

    NARCIS (Netherlands)

    Singh, R.; Jhorar, R.K.; Dam, van J.C.; Feddes, R.A.

    2006-01-01

    This study focuses on the identification of appropriate strategies to improve water management and productivity in an irrigated area of 4270 km2 in India (Sirsa district). The field scale ecohydrological model SWAP in combination with field experiments, remote sensing and GIS has been applied in a

  10. Real-time adjustment of pressure to demand in water distribution systems: Parameter-less P-controller algorithm

    CSIR Research Space (South Africa)

    Page, Philip R

    2016-08-01

    Full Text Available Remote real-time control is currently the most advanced form of pressure management. Here the parameters describing pressure control valves (or pumps) are changed in real-time in such a way to provide the most optimal pressure in the water...

  11. CHARACTERIZING THE EFFECT OF CHLORINE AND CHLORAMINES ON THE FORMATION OF BIOFILM IN A SIMULATED DRINKING WATER DISTRIBUTION SYSTEM

    Science.gov (United States)

    Drinking wate treatment in the US has played a major role in protecting public health through the reduction of wateborne disease. However, carcinogenic and toxic contaminants continue to threaten the quality of surface and ground water in the US. The passage of the Safe Drinking ...

  12. Water column distribution of phospholipid-derived fatty acids of marine microorganisms in the Humboldt Current system off northern Chile

    Science.gov (United States)

    Espinosa, Luisa F.; Pantoja, Silvio; Pinto, Luis A.; Rullkötter, Jürgen

    2009-07-01

    Suspended particulate matter samples from the oxygenated surface zone, the oxygen minimum zone, and the oxygenated deeper zone were collected from the upwelling area off Antofagasta in northern Chile during austral autumn (April 2001) to study the composition of microbial phospholipid-derived fatty acid methyl esters, using capillary gas chromatography-mass spectrometry. Whereas phytoplanktonic carbon dominated living organic matter near the coast, bacterial carbon was most abundant offshore. The biomarker distribution showed some differences between the depth levels sampled, such as the highest microbial abundance in the epipelagic zone represented by phytoplankton, especially diatoms, and a homogeneous distribution of bacterial biomarkers, with no indication of vertical segregation of functional groups as previously thought.

  13. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  14. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    NARCIS (Netherlands)

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of

  15. Distributed co-simulation of embedded control software with exhaust gas recirculation water handling system using INTO-CPS

    DEFF Research Database (Denmark)

    Pedersen, Nicolai; Lausdahl, Kenneth; Sanchez, Enrique Vidal

    2017-01-01

    to reduce the overall costs of validation. This paper demonstrates how this can be achieved for a commercial system developed by MAN Diesel & Turbo using a newly developed tool chain based on the Functional Mock-up Interface standard for co-simulation supporting different operating systems. The generality...

  16. Parameter-less remote real-time control for the adjustment of pressure in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-09-01

    Full Text Available , Tshwane University of Technology, Pretoria, 0001, South Africa cMeraka Institute, Council for Scientific and Industrial Research (CSIR), Pretoria, 0184, South Africa Corresponding author email address: pagepr7@gmail.com June 2017 ∗ Abstract Reducing... of Water Resources Planning and Management, 2017, 143(9): 04017050. Link: http://ascelibrary.org/doi/full/10.1061/(ASCE)WR.1943-5452.0000805 1 control parameter values; hence the method can match onto a real-world WDS. There has been recent work...

  17. Focus on CSIR research in water resources: antimicrobial properties of copper and its effects on micro-organisms in drinking water distribution systems

    CSIR Research Space (South Africa)

    Genthe, Bettina

    2007-08-01

    Full Text Available understanding of the mechanisms involved in copper toxicity in bacteria to better understand the potential applications of copper in treating drinking water. Further research is needed to determine why the growth continues after initial inactivation and whether...

  18. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  19. Distributed co-simulation of embedded control software with exhaust gas recirculation water handling system using INTO-CPS

    DEFF Research Database (Denmark)

    Pedersen, Nicolai; Lausdahl, Kenneth; Sanchez, Enrique Vidal

    2017-01-01

    properties is often desirable. However, it is non-trivial to be able to combine such different models of different constituent elements. In order to reduce the need for expensive tests on the real system it is advantageous to be able to combine such heterogeneous models in a joint co-simulation in order...

  20. Molecular Detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system.

    Science.gov (United States)

    Lu, J; Struewing, I; Vereen, E; Kirby, A E; Levy, K; Moe, C; Ashbolt, N

    2016-02-01

    This study investigated waterborne opportunistic pathogens (OPs) including potential hosts, and evaluated the use of Legionella spp. for indicating microbial water quality for OPs within a full-scale operating drinking water distribution system (DWDS). To investigate the occurrence of specific microbial pathogens within a major city DWDS we examined large volume (90 l drinking water) ultrafiltration (UF) concentrates collected from six sites between February, 2012 and June, 2013. The detection frequency and concentration estimates by qPCR were: Legionella spp. (57%/85 cell equivalent, CE l(-1) ), Mycobacterium spp. (88%/324 CE l(-1) ), Pseudomonas aeruginosa (24%/2 CE l(-1) ), Vermamoeba vermiformis (24%/2 CE l(-1) ) and Acanthamoeba spp. (42%/5 cyst equivalent, CE l(-1) ). There was no detection of the following microorganisms: human faecal indicator Bacteroides (HF183), Salmonella enterica, Campylobacter spp., Escherichia coli O157:H7, Giardia intestinalis, Cryptosporidium spp. or Naegleria fowleri. There were significant correlations between the qPCR signals of Legionella spp. and Mycobacterium spp., and their potential hosts V. vermiformis and Acanthamoeba spp. Sequencing of Legionella spp. demonstrated limited diversity, with most sequences coming from two dominant groups, of which the larger dominant group was an unidentified species. Other known species including Legionella pneumophila were detected, but at low frequency. The densities of Legionella spp. and Mycobacterium spp. were generally higher (17 and 324 folds, respectively) for distal sites relative to the entry point to the DWDS. Legionella spp. occurred, had significant growth and were strongly associated with free-living amoebae (FLA) and Mycobacterium spp., suggesting that Legionella spp. could provide a useful DWDS monitoring role to indicate potential conditions for non-faecal OPs. The results provide insight into microbial pathogen detection that may aid in the monitoring of microbial water

  1. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Studies of up date radionuclides, macro- and microelements distribution in system 'soil from water-collecting areas - water - bottom sediment' of the Skazka's lake

    International Nuclear Information System (INIS)

    Vosel, Yu.S.; Strakhovenko, V.D.

    2008-01-01

    Distribution of radionuclides, macro- and microelements have been studied in bottom sediments of lake Skazka. The lake occur in south Baikal coast. The average contents of the radiocesium excess over background 3 times more. From the 137 Cs and 210 Pb distribution throughout the column, we have estimated the dynamics of changes in the sediments. The known depth and time of formation of these bench marks permitted estimation of the rate of recent sedimentation in the lake: 0,3 and 0,2 sm/year.

  3. Water distribution function across the curved lipid bilayer: SANS study

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Ryabova, N.Y.; Hauss, T.; Dante, S.; Lombardo, D.

    2008-01-01

    The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The use of a separated form factors method has been applied for the identification of the structural features of the polydispersed unilamellar DMPC vesicle system. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The application of the model to the obtained SANS spectra allow the determination of the main parameters of the system, such as the average vesicle radius (and its polydispersity), the membrane thickness, the thickness of hydrocarbon chain region, the number of water molecules located per lipid molecule, and the phospholipid surface area. Moreover the approach allow the calculation of some relevant parameters connected with the water distribution function across the bilayer system. The main features of the obtained results furnish an explanation of why lipid membrane is easily penetrated by the water molecules of the solution

  4. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  5. Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: seven years of monitoring (2000-2006).

    Science.gov (United States)

    Abu Amr, S S; Yassin, M M

    2008-11-01

    To assess total and faecal coliform contamination in water wells and distribution networks over the past 7 years, and their association with human health in Khan Yunis Governorate, Gaza Strip. Historical data and interview questionnaire. Data were obtained from the Palestinian Ministry of Health on total and faecal coliform contamination in water wells and distribution networks, and on the incidence of water-related diseases in Khan Yunis Governorate. An interview questionnaire was conducted with 210 residents of Khan Yunis Governorate. Total and faecal coliform contamination exceeded the World Health Organization's limit for water wells and networks. However, the contamination percentages were higher in networks than in wells. Diarrhoeal diseases were strongly correlated with faecal coliform contamination in water networks (r=0.98). This is consistent with the finding that diarrhoeal diseases were the most common self-reported diseases among the interviewees. Such diseases were more prevalent among subjects who drank municipal water than subjects who drank desalinated or home-filtered water (odds ratio=2.03). Intermittent water supply, insufficient chlorination and sewage flooding seem to be associated with self-reported diseases. Residents in the Gaza Strip have a good level of knowledge about drinking water contamination, and this is reflected in good practice. Water quality has deteriorated in the Gaza Strip, and this may contribute to the prevalence of water-related diseases. Self-reported diseases among interviewees in Khan Yunis Governorate were associated with source of drinking water, intermittent water supply, insufficient chlorination, sewage flooding and age of water networks.

  6. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    Science.gov (United States)

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spatial distribution of the radon concentration in soil and subterranean water in the Nuclear Center of Mexico and its surrounding using a geographical information system

    International Nuclear Information System (INIS)

    Cardenas, S.; Pena, P.; Lopez, M.B.E.; Balcazar, M.; Madrigal, D.

    2003-01-01

    The radon concentration in soil of the Nuclear Center of Mexico using solid detectors of nuclear traces (LR 115, type ll) and in water of two aquifers of the Asuncion Tepexoyuca, by means of the liquid scintillation technique it was determined; both places located in the Ocoyoacac municipality, Estado de Mexico. The analysis of spatial distribution it was supported by means of a Geographic Information System. The results of the radon concentration in soil, they registered an average of 2. 64 kBq m -3 in the study area, the more high average value it was of 5. 25 kBq m -3 in the station 12-ZM (Military Area) and the minimum value was of 0. 54 kBq m -3 in the point 7-CO (Dining room). In the radon concentration in water of La Perita it was observed an average value 0.52 Bq L -1 and in El Tunel it was of 0.7 Bq L -1 . (Author)

  8. Surface effects on phase distributions of a fast-quenched miscibility gap type system - Succinonitrile-water

    Science.gov (United States)

    Frazier, D. O.; Facemire, B. R.; Fanning, U. S.

    1986-01-01

    If a binary homogeneous melt is cooled into an immiscible region, the newly formed second phase will generally have a density different from the parent phase, and will separate readily by sedimentation. Observation of solidification processes in microgravity indicates that outside of sedimentation, at least two other important effets can separate the phases: (1) preferential wetting, and (2) thermal migration of second-phase droplets due to interfacial tension gradients. The latter effect would drive the minority phase along the thermal gradient toward the hottest part (assuming the interfacial tension decreases with increasing temperature), which is usually away from the crucible wall. On the other hand, if the minority phase preferentially wets the crucible, a minority phase layer which thickens as initial solution compositions approach critical, will form adjacent to the solid surface and remain in the coldest region of the ingot. This study presents compelling preliminary evidence that these two effects do exist and that they compete with one another. However, the temperature dependence of preferential wetting below T(c) for the current system of study is, as yet, undetermined. These effects are sensitive to the initial concentration of a hypermonotectic solution cooling through a miscibility gap.

  9. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  10. The THUDSOS Distributed Operating System

    Institute of Scientific and Technical Information of China (English)

    廖先Zhi; 刘旭峰; 等

    1991-01-01

    The THUDSOS is a distributed operating system modeled as an abstract machine which provides decentralized control,transparency,availability,and reliability,as welol as a good degree of autonomy at each node,that makes our distributed system usable.Our operating system supports transparent access to data through network wide filesystem.The simultaneous access to any device is discussed for the case when the peripherals are treated as files.This operating system allows spawning of parallel application programs to solve problems in the fields,such as numerical analysis and artificial intelligence.

  11. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  12. Condensation driven water hammer studies for feed water distribution pipe

    International Nuclear Information System (INIS)

    Savolainen, S.; Katajala, S.; Elsing, B.; Nurkkala, P.; Longvinov, S.A.; Trunov, N.B.; Sitnik, Yu.K.

    1997-01-01

    Special T-shaped feedwater distribution pipes were installed in steam generators at the Loviisa (Finland) and Rovno (Russia) nuclear power plants. The new shape was tested in an extensive testing programme. Since the tubes frequently suffer from corrosion damage, large-scale water hammer experiments were performed on a model facility in 1996. The main objectives of the water hammer experiments were to find out the prevailing parameters leading to water hammers, as well as the sensitivity of hammering to boundary conditions. A water hammer may occur when the mass flow rate into the steam generator exceeds 6 kg/s and the temperature difference between steam generator and feedwater exceeds 100 degC. Visual experiments and stress analyses of the pipe were also carried out. The weakest part, the T-joint, may hold against such water hammers only for a limited time of the order of few minutes. (M.D.)

  13. Modeling human-water-systems: towards a comprehensive and spatially distributed assessment of co-evolutions for river basins in Central Europe

    OpenAIRE

    P. Krahe; E. Nilson; M. Knoche; A.-D. Ebner von Eschenbach

    2016-01-01

    In the context of river basin and flood risk management there is a growing need to improve the understanding of and the feedbacks between the driving forces “climate and socio-economy” and water systems. We make use of a variety of data resources to illustrate interrelationships between different constituents of the human-water-systems. Taking water storage for energy production as an example we present a first analysis on the co-evolution of socio-economic and hydrological ...

  14. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized control,  control with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  15. Using ELECTRE TRI to support maintenance of water distribution networks

    Directory of Open Access Journals (Sweden)

    Flavio Trojan

    2012-08-01

    Full Text Available Problems encountered in the context of the maintenance management of water supply are evidenced by the lack of decision support models which gives a manager overview of the system. This paper, therefore, develops a model that uses, in its framework, the multicriteria outranking method ELECTRE TRI. The objective is to sort the areas of water flow measurement of a water distribution network, by priority of maintenance, with data collected from an automated system of abnormalities detection. This sorting is designed to support maintenance decisions in terms of the measure more appropriate to be applied per region. To illustrate the proposed model, an application was performed in a city with 100 thousand water connections. With this model it becomes possible to improve the allocation of maintenance measures for regions and mainly to improve the operation of the distribution network.

  16. RBAC administration in distributed systems

    NARCIS (Netherlands)

    Dekker, M.A.C.; Crampton, J.; Etalle, Sandro; Li, N.

    Large and distributed access control systems are increasingly common, for example in health care. In such settings, access control policies may become very complex, thus complicating correct and efficient adminstration of the access control system. Despite being one of the most widely used access

  17. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  18. THE FRANCHISE SYSTEM OF DISTRIBUTION.

    Science.gov (United States)

    The working relationships between franchise companies and their franchised dealers are analyzed. The benefits derived from the use of a franchisesise...system of distribution for both the franchisor and franchisee are determined. The principal problems encountered by the parties to the franchise ...agreement are isolated, and this method of distribution is evaluated from the standpoint of both the franchise company and franchised dealers and to assess its impact on the marketing economy of the nation.

  19. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  20. Resilience-based optimal design of water distribution network

    Science.gov (United States)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  1. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  2. Distribution network strengthens sales systems

    International Nuclear Information System (INIS)

    Janoska, J.

    2003-01-01

    Liberalisation of the electricity market pushes Slovak distribution companies to upgrade their sale technologies. The first one to invest into a complex electronic sales system will be Stredoslovenska energetika, a.s., Zilina. The system worth 200 million Sk (4,83 million Euro) will be supplied by Polish software company Winuel. The company should also supply a software that would allow forecasting and planning of sales. The system should be fully operational by 2006. TREND has not managed to obtain information regarding plans Zapadoslovenska energetika - the largest and most active distribution company - might have in this area. In eastern Slovakia distribution company Vychodoslovenska energetika, a.s., Kosice has also started addressing this issue. (Author)

  3. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  4. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  5. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  6. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  7. Corroded scale analysis from water distribution pipes

    Directory of Open Access Journals (Sweden)

    Rajaković-Ognjanović Vladana N.

    2011-01-01

    Full Text Available The subject of this study was the steel pipes that are part of Belgrade's drinking water supply network. In order to investigate the mutual effects of corrosion and water quality, the corrosion scales on the pipes were analyzed. The idea was to improve control of corrosion processes and prevent impact of corrosion on water quality degradation. The instrumental methods for corrosion scales characterization used were: scanning electron microscopy (SEM, for the investigation of corrosion scales of the analyzed samples surfaces, X-ray diffraction (XRD, for the analysis of the presence of solid forms inside scales, scanning electron microscopy (SEM, for the microstructural analysis of the corroded scales, and BET adsorption isotherm for the surface area determination. Depending on the composition of water next to the pipe surface, corrosion of iron results in the formation of different compounds and solid phases. The composition and structure of the iron scales in the drinking water distribution pipes depends on the type of the metal and the composition of the aqueous phase. Their formation is probably governed by several factors that include water quality parameters such as pH, alkalinity, buffer intensity, natural organic matter (NOM concentration, and dissolved oxygen (DO concentration. Factors such as water flow patterns, seasonal fluctuations in temperature, and microbiological activity as well as water treatment practices such as application of corrosion inhibitors can also influence corrosion scale formation and growth. Therefore, the corrosion scales found in iron and steel pipes are expected to have unique features for each site. Compounds that are found in iron corrosion scales often include goethite, lepidocrocite, magnetite, hematite, ferrous oxide, siderite, ferrous hydroxide, ferric hydroxide, ferrihydrite, calcium carbonate and green rusts. Iron scales have characteristic features that include: corroded floor, porous core that contains

  8. Distributed systems for the protection of nuclear stations

    International Nuclear Information System (INIS)

    Jover, P.

    1980-01-01

    The advantages of distributed control systems usually mentioned are improved exploitation, cost reduction, and adaptation to changes in technology. These advantages are obviously very interesting for nuclear power plant applications, and many such systems have been proposed. This note comments on the application of the distributed system concept to protection systems - what should be distributed - and closes with a brief description of a protection system based on microprocessors for pressurized water stations being built in France. (auth) [fr

  9. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  10. Distributed Supervisory Protection Interlock System

    International Nuclear Information System (INIS)

    Walz, H.V.; Agostini, R.C.; Barker, L.; Cherkassky, R.; Constant, T.; Matheson, R.

    1989-03-01

    The Distributed Supervisory Protection Interlock System, DSPI, is under development at the Stanford Linear Accelerator Center for requirements in the areas of personnel protection, beam containment and equipment protection interlocks. The DSPI system, distributed over the application site, consists of segments with microprocessor-based controller and I/O modules, local area networks for communication, and a global supervisor computer. Segments are implemented with commercially available controller and I/O modules arranged in local interlock clusters, and associated software. Segments provide local interlock data acquisition, processing and control. Local area networks provide the communication backbone between segments and a global supervisor processor. The supervisor processor monitors the overall system, reports detail status and provides human interfaces. Details of an R and D test system, which will implement the requirements for personnel protection of 4 typical linear accelerator sectors, will be described. 4 refs., 2 figs

  11. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  12. Distributed Systems: The Hard Problems

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Nicholas Bellerophon** works as a client services engineer at Basho Technologies, helping customers setup and run distributed systems at scale in the wild. He has also worked in massively multiplayer games, and recently completed a live scalable simulation engine. He is an avid TED-watcher with interests in many areas of the arts, science, and engineering, including of course high-energy physics.

  13. Distribution system analysis and automation

    CERN Document Server

    Gers, Juan

    2013-01-01

    A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.

  14. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  15. A Distributed User Information System

    Science.gov (United States)

    1990-03-01

    NOE08 Department of Computer Science NOVO 8 1990 University of Maryland S College Park, MD 20742 D Abstract Current user information database technology ...Transactions on Computer Systems, May 1988. [So189] K. Sollins. A plan for internet directory services. Technical report, DDN Network Information Center...2424 A Distributed User Information System DTiC Steven D. Miller, Scott Carson, and Leo Mark DELECTE Institute for Advanced Computer Studies and

  16. A novel method for the investigation of liquid/liquid distribution coefficients and interface permeabilities applied to the water-octanol-drug system.

    Science.gov (United States)

    Stein, Paul C; di Cagno, Massimiliano; Bauer-Brandl, Annette

    2011-09-01

    In this work a new, accurate and convenient technique for the measurement of distribution coefficients and membrane permeabilities based on nuclear magnetic resonance (NMR) is described. This method is a novel implementation of localized NMR spectroscopy and enables the simultaneous analysis of the drug content in the octanol and in the water phase without separation. For validation of the method, the distribution coefficients at pH = 7.4 of four active pharmaceutical ingredients (APIs), namely ibuprofen, ketoprofen, nadolol, and paracetamol (acetaminophen), were determined using a classical approach. These results were compared to the NMR experiments which are described in this work. For all substances, the respective distribution coefficients found with the two techniques coincided very well. Furthermore, the NMR experiments make it possible to follow the distribution of the drug between the phases as a function of position and time. Our results show that the technique, which is available on any modern NMR spectrometer, is well suited to the measurement of distribution coefficients. The experiments present also new insight into the dynamics of the water-octanol interface itself and permit measurement of the interface permeability.

  17. The ATLAS distributed analysis system

    International Nuclear Information System (INIS)

    Legger, F

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  18. The ATLAS distributed analysis system

    Science.gov (United States)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  19. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  1. Distributed optimization system and method

    Science.gov (United States)

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  2. World-wide distribution automation systems

    International Nuclear Information System (INIS)

    Devaney, T.M.

    1994-01-01

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems

  3. Distributed Persistent Identifiers System Design

    Directory of Open Access Journals (Sweden)

    Pavel Golodoniuc

    2017-06-01

    Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

  4. Water-Pressure Distribution on Seaplane Float

    Science.gov (United States)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  5. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  6. Hydraulic Network Modelling of Small Community Water Distribution ...

    African Journals Online (AJOL)

    Prof Anyata

    community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using. WaterCAD ..... Table 1: Criteria Relating Population to Water Demand (NWSP, 2000) ..... timely manner ... Department, Middle East Technical.

  7. Using self-consistent Gibbs free energy surfaces to calculate size distributions of neutral and charged clusters for the sulfuric acid-water binary system

    Science.gov (United States)

    Smith, J. A.; Froyd, K. D.; Toon, O. B.

    2012-12-01

    We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.

  8. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A

    2013-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  9. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  10. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    Science.gov (United States)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  11. Prevalence and distribution of Legionella spp in potable water systems in Germany, risk factors associated with contamination, and effectiveness of thermal disinfection.

    Science.gov (United States)

    Kruse, Eva-Brigitta; Wehner, Arno; Wisplinghoff, Hilmar

    2016-04-01

    Worldwide, Legionella spp are a common cause of community-acquired pneumonia. Potable water systems are a main reservoir; however, exposure in the community is unknown. Water samples from 718 buildings in Germany were collected. Possible risk factors were prospectively recorded. All samples were tested for Legionella spp using cultural microbiologic methods. Samples were assigned to 1 of 5 levels of contamination. Statistical analysis was performed to determine the influence of risk factors for contamination and, in a subgroup of buildings, for unsuccessful thermal disinfection. In total, 4,482 water samples from 718 different water supply systems were analyzed. In 233 buildings (32.7%), Legionella spp were identified, 148 (63.5%) of which had a medium or higher level of contamination. The most common species was Legionella pneumophila (94%). Contamination was strongly associated with temperature in the circulation, but not with the size of the building, time of the year, or transport time to the laboratory. Thermal disinfection was successful in fewer than half of the buildings. There is relevant exposure to Legionella spp in the community. Water systems are not always up to current technical standards. Although microbiological risk assessment remains a challenge, there is a case for monitoring for Legionella spp outside of hospitals. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Distributed optimal coordination for distributed energy resources in power systems

    DEFF Research Database (Denmark)

    Wu, Di; Yang, Tao; Stoorvogel, A.

    2017-01-01

    Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...

  13. Small Aircraft Data Distribution System

    Science.gov (United States)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  14. The octanol/water distribution of mercury compounds

    International Nuclear Information System (INIS)

    Halbach, S.

    1985-01-01

    Lipophilicity plays an important role in the biological action of mercurials. The distribution of one inorganic and five organic mercury compounds was determined in an n-octanol/water system. Lipophilicity decreased in the order CH 3 HgCl, bromomercurihydroxypropane HgCl 2 chlormerodrin, p-chloromercuribenzoic acid (PCMB), p-chloromercuriphenylsulfonic acid (PCMBS). The toxicity of mercurials, as reported in the literature, appears to parallel their lipophilicity. (orig.)

  15. Modeling human-water-systems: towards a comprehensive and spatially distributed assessment of co-evolutions for river basins in Central Europe

    Directory of Open Access Journals (Sweden)

    P. Krahe

    2016-05-01

    Full Text Available In the context of river basin and flood risk management there is a growing need to improve the understanding of and the feedbacks between the driving forces “climate and socio-economy” and water systems. We make use of a variety of data resources to illustrate interrelationships between different constituents of the human-water-systems. Taking water storage for energy production as an example we present a first analysis on the co-evolution of socio-economic and hydrological indicators. The findings will serve as for the development of conceptual, but fully coupled socio-hydrological models for selected sectors and regions. These models will be used to generate integrated scenarios of the climate and socio-economic change.

  16. Distribution of radioactive constituents in river waters

    International Nuclear Information System (INIS)

    Herranz, M.; Elejalde, C.; Legarda, F.; Romero, F.

    1994-01-01

    For a research project on the distribution and evaluation of natural and artificial radioactive constituents in ecological segments of Biscay (northeast spain), the amounts of nuclides present in the main river waters were measured. Radioactive procedures include i) total alpha and beta indexes with a gas flow detector, dry residues near to 2 and 10 mg/ cm sup 2, respectively and counting periods of 1000 mn, ii) gamma emitters with a low level gamma spectrometer (Ge-HP detector + 8000 channels analyser) using the dry residue from 8 litres and a counting period of 4 days and iii) statistical treatment of data at 95% confidence.In this paper, ten water samples from the nervion river basin are included. Physical and chemical parameters of samples were also determined by standard procedures, because there is a sharp change in the composition of this river in the first part of the course. Radioactive constituents were identified as follows: a sample has a detectable alpha index, all samples contains beta emitters with a high variability, natural nuclides from uranium and thorium families were detected in some cases. A parallel behaviour is found between samples where K-40 and Cs-137 were found. The paper tries at last to find relations among chemical and radioactive constituents by the application of multivariate statistical methods, specially for the case of Cs-137, the only artificial nuclide identified in this work. 1 tab., 2 figs., 5 refs. (author)

  17. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China.

    Science.gov (United States)

    Du, Yajun; Luo, Kunli; Ni, Runxiang; Hussain, Rahib

    2018-03-01

    The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.

  18. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  19. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.

    2009-01-01

    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  20. Water in the Earth's Interior: Distribution and Origin

    Science.gov (United States)

    Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro

    2017-10-01

    The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet's deep interior (mantle and core), water affects Earth's thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth's atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth's "water" actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet's crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth's total water content is estimated at 18_{-15}^{+81} times the equivalent mass of the oceans (or a concentration of 3900_{-3300}^{+32700} ppm weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410-670 km depth). For the lower mantle (670-2900 km) and core (2900-4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology). The Earth's accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to ˜60-90% of its current size, while core formation

  1. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  2. Video distribution system cost model

    Science.gov (United States)

    Gershkoff, I.; Haspert, J. K.; Morgenstern, B.

    1980-01-01

    A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.

  3. Distributed software framework and continuous integration in hydroinformatics systems

    Science.gov (United States)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  4. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  5. Contamination potential of drinking water distribution network biofilms.

    Science.gov (United States)

    Wingender, J; Flemming, H C

    2004-01-01

    Drinking water distribution system biofilms were investigated for the presence of hygienically relevant microorganisms. Early biofilm formation was evaluated in biofilm reactors on stainless steel, copper, polyvinyl chloride (PVC) and polyethylene coupons exposed to unchlorinated drinking water. After 12 to 18 months, a plateau phase of biofilm development was reached. Surface colonization on the materials ranged between 4 x 10(6) and 3 x 10(7) cells/cm2, with heterotrophic plate count (HPC) bacteria between 9 x 10(3) and 7 x 10(5) colony-forming units (cfu)/cm2. Established biofilms were investigated in 18 pipe sections (2 to 99 years old) cut out from distribution pipelines. Materials included cast iron, galvanized steel, cement and PVC. Colonization ranged from 4 x 10(5) to 2 x 10(8) cells/cm2, HPC levels varied between 1 and 2 x 10(5) cfu/cm2. No correlation was found between extent of colonization and age of the pipes. Using cultural detection methods, coliform bacteria were rarely found, while Escherichia coli, Pseudomonas aeruginosa and Legionella spp. were not detected in the biofilms. In regular operation, distribution system biofilms do not seem to be common habitats for pathogens. However, nutrient-leaching materials like rubber-coated valves were observed with massive biofilms which harboured coliform bacteria contaminating drinking water.

  6. Distribution system protection with communication technologies

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    Due to the communication technologies’ involvement in the distribution power system, the time-critical protection function may be implemented more accurately, therefore distribution power systems’ stability, reliability and security could be improved. This paper presents an active distribution...

  7. Loss Allocation in a Distribution System with Distributed Generation Units

    DEFF Research Database (Denmark)

    Lund, Torsten; Nielsen, Arne Hejde; Sørensen, Poul Ejnar

    2007-01-01

    In Denmark, a large part of the electricity is produced by wind turbines and combined heat and power plants (CHPs). Most of them are connected to the network through distribution systems. This paper presents a new algorithm for allocation of the losses in a distribution system with distributed...... generation. The algorithm is based on a reduced impedance matrix of the network and current injections from loads and production units. With the algorithm, the effect of the covariance between production and consumption can be evaluated. To verify the theoretical results, a model of the distribution system...

  8. Topological Taxonomy of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Carlo Giudicianni

    2018-04-01

    Full Text Available Water Distribution Networks (WDNs can be regarded as complex networks and modeled as graphs. In this paper, Complex Network Theory is applied to characterize the behavior of WDNs from a topological point of view, reviewing some basic metrics, exploring their fundamental properties and the relationship between them. The crucial aim is to understand and describe the topology of WDNs and their structural organization to provide a novel tool of analysis which could help to find new solutions to several arduous problems of WDNs. The aim is to understand the role of the topological structure in the WDNs functioning. The methodology is applied to 21 existing networks and 13 literature networks. The comparison highlights some topological peculiarities and the possibility to define a set of best design parameters for ex-novo WDNs that could also be used to build hypothetical benchmark networks retaining the typical structure of real WDNs. Two well-known types of network ((a square grid; and (b random graph are used for comparison, aiming at defining a possible mathematical model for WDNs. Finally, the interplay between topology and some performance requirements of WDNs is discussed.

  9. Water Purification, Distribution and Sewage Disposal. Appropriate Technologies for Development. Reprint R-29.

    Science.gov (United States)

    1979

    This document, designed to serve as a training manual for technical instructors and as a field resource reference for Peace Corps volunteers, consists of nine units. Unit topics focus on: (1) water supply sources; (2) water treatment; (3) planning water distribution systems; (4) characteristics of an adequate system; (5) construction techniques;…

  10. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  11. Quantum distribution function of nonequilibrium system

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1990-03-01

    A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)

  12. Stochastic water demand modelling for a better understanding of hydraulics in water distribution networks

    NARCIS (Netherlands)

    Blokker, E.J.M.

    2010-01-01

    In the water distribution network water quality process take place influenced by de flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the water distribution network, a good understanding of hydraulics is required. Specifically in