WorldWideScience

Sample records for water deficit treatment

  1. Increasing Northern Hemisphere water deficit

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2015-01-01

    A monthly water-balance model is used with CRUTS3.1 gridded monthly precipitation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.

  2. A L-type lectin gene is involved in the response to hormonal treatment and water deficit in Volkamer lemon.

    Science.gov (United States)

    Vieira, Dayse Drielly Sousa Santana; Emiliani, Giovanni; Bartolini, Paola; Podda, Alessandra; Centritto, Mauro; Luro, François; Carratore, Renata Del; Morillon, Raphaël; Gesteira, Abelmon; Maserti, Biancaelena

    2017-11-01

    Combination of biotic and abiotic stress is a major challenge for crop and fruit production. Thus, identification of genes involved in cross-response to abiotic and biotic stress is of great importance for breeding superior genotypes. Lectins are glycan-binding proteins with a functions in the developmental processes as well as in the response to biotic and abiotic stress. In this work, a lectin like gene, namely ClLectin1, was characterized in Volkamer lemon and its expression was studied in plants exposed to either water stress, hormonal elicitors (JA, SA, ABA) or wounding to understand whether this gene may have a function in the response to multiple stress combination. Results showed that ClLectin1 has 100% homology with a L-type lectin gene from C. sinensis and the in silico study of the 5'UTR region showed the presence of cis-responsive elements to SA, DRE2 and ABA. ClLectin1 was rapidly induced by hormonal treatments and wounding, at local and systemic levels, suggesting an involvement in defence signalling pathways and a possible role as fast detection biomarker of biotic stress. On the other hand, the induction of ClLectin1 by water stress pointed out a role of the gene in the response to drought. The simultaneous response of ClLectin1 expression to water stress and SA treatment could be further investigated to assess whether a moderate drought stress may be useful to improve citrus performance by stimulating the SA-dependent response to biotic stress. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. The Effect of Chemical, Biological and Organic Nutritional Treatments on Sunflowers Yield and Yield Components under the Influence of Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    fatemeh soleymani

    2016-07-01

    Azospirilium lipoferum was impregnated with seeds. Vermicompost was mixed with the soil before planting based on the recommendation of the producer company (15 t.ha-1. After determining evapotranspiration of the reference plant (ET0 by FAO- Penman-Monteith method and crop coefficients (Kc in different stages of crop growth, plant water requirement was determined (Allen et al., 1998. Finally, the irrigation water volume was estimated according to the effective rainfall, irrigation efficiency (60% and 45% depletion of soil moisture in the root zone (Doorenbos & Kassam, 1979. Results and discussion Water deficit stress and nutrient treatments significantly affected all measured traits except the harvest index. Water deficit stress significantly reduced head diameter by 24% in comparison with optimum irrigation. The maximum diameter (17.03 cm was obtained in vermicompost treatment. One thousand seed weight of sunflower under optimum irrigation was 1.3 times as much as water deficit treatment. Combined treatment of vermicompost and half of recommended chemical fertilizer yielded maximum 1000- seed weight (56.67 g. Under optimum irrigation, the highest weight of the head was achieved from 100% chemical fertilizer application, while under water stress, maximum head weight (830.67 g was obtained in vermicompost treatment and the minimum value (485.33 g was obtained from chemical fertilizer + vermicompost + phospho nitro kara. In both irrigation levels, the highest biological yield was obtained from full application of chemical fertilizer, but this treatment in stress condition did not have significant difference with combined application of vermicompost and half of chemical fertilizer, vermicompost and 50% of chemical fertilizer. 100% recommended chemical fertilizer in optimum irrigation, had a maximum grain yield (693.67 g.m-2. Organic fertilizers by increasing soil organic matter, improving soil chemical properties such as pH and CEC, increasing the activity of microorganisms and

  4. Water deficit imposed by deficit irrigation at different plant growth stages of maize

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, C.

    1995-01-01

    The purpose of this study was to identify specific growth stages of maize Crop, at which the plant is less sensitive to water stress so that irrigation can be omitted withhout significant decrease yield. The field experiment was conducted at a University experiment station, Tumbaco, Pichincha, Ecuador, during may - october 1993, on a sandy loam soil ( typic durustoll). Soil moisture was monitored with a neutron probe down to 0.70 m depth, before and 24 h after each irrigation. The actual evapotranspiration of the crop was estimated by the water - balance technique. Field water efficiency and crop water use efficiency were calculated by dividing actual grain yield by irrigation and by ETa, respectively. Nitrogen fertilizer use efficiency was calculated using N - 15 methodology in the 75 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering and yield formation stages were the most sensitive to moisture stress. Nitrogen fertilization significantly increased the grain yield. The crop water use effeciency was the lowest at the flowering and yield formation of the region, the treatments I1 and I7 had the same crop water use efficiency. The results of N - 15 labelled plots ( F1) showed that soil water deficiency significantly affects nitrogen was derived from fertilizer in treatments I3 and I7 and only 11 - 9% in the treatments I2 and I5 respectively. ( Author)

  5. Effects of Nutrients Foliar Application on Agrophysiological Characteristics of Maize under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Nour Ali SAJEDI

    2010-09-01

    Full Text Available To investigate effects of nutrients foliar application on agrophysiological characteristics of maize hybrid �KSC 704� water deficit stress conditions, an experiment was arranged in a split plot factorial based on a randomized complete block design with four replications to the Research Station of Islamic Azad University-Arak Branch, Iran in 2007-2008. Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V8, blister stage (R2 and filling grain stage (R4 in the main plot. Combined levels of selenium treatment (without and with application 20 gha-1 and micronutrients (without and with application 2 lha-1 were situated in sub plots. Results showed that water deficit stress decreased grain yield 19.7% in blister stage as compared with control. Using selenium increased relative content water at R2 and R4 stages significantly. Using selenium in water deficit stress condition increased measured traits except plant height as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. Between treatments of water deficit stress, highest grain yield equal 6799.52 and 6736.97 kgha-1 was obtained from combined treatments of water deficit stress at eight-leaf stage+without selenium+without micronutrients and water deficit stress at eight-leaf stage+selenium+without micronutrients respectively which compared with treatment of irrigation equal to crop water requirement+selenium+microelements did not differ significant. According to the results of experiment, it is concluded that with micronutrients fertilizer spray under optimum irrigation and selenium spray under water deficit obtain optimum yield.

  6. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system.

    Directory of Open Access Journals (Sweden)

    Syed Suhail Ahmed

    Full Text Available Increasing temperature and CO2 concentrations can alter tritrophic interactions in ecosystems, but the impact of increasingly severe drought on such interactions is not well understood. We examined the response of a wheat-aphid-parasitoid system to variation in water-deficit stress levels. Our results showed that arid area clones of the aphid, Sitobion avenae (Fabricius, tended to have longer developmental times compared to semiarid and moist area clones, and the development of S. avenae clones tended to be slower with increasing levels of water-deficit. Body sizes of S. avenae clones from all areas decreased with increasing water-deficit levels, indicating their declining adaptation potential under drought. Compared to arid area clones, moist area clones of S. avenae had a higher frequency of backing under severe water stress only, but a higher frequency of kicking under well-watered conditions only, suggesting a water-deficit level dependent pattern of resistance against the parasitoid, Aphidius gifuensis (Ashmead. The number of S. avenae individuals attacked by the parasitoid in 10 min showed a tendency to decrease with increasing water-deficit levels. Clones of S. avenae tended to have lower parasitism rates under treatments with higher water-deficit levels. The development of the parasitoid tended to be slower under higher levels of water-deficit stress. Thus, the bottom-up effects of water-deficit stressed plants were negative on S. avenae. However, the top-down effects via parasitoids were compromised by water-deficit, which could favor the growth of aphid populations. Overall, the first trophic level under water-deficit stress was shown to have an indirect and negative impact on the third trophic level parasitoid, suggesting that parasitoids could be increasingly vulnerable in future warming scenarios.

  7. Effect of progressive water deficit stress on proline accumulation and ...

    African Journals Online (AJOL)

    Water deficit stress is one of the important factors limiting chickpea production in arid and semi-arid regions of West Asia and North Africa. When water deficit stress is imposed, different molecular and biochemical responses take place. This study was carried out to investigate proline accumulation and protein profiles of ...

  8. Genetic variation of response to water deficit in parental genotypes ...

    African Journals Online (AJOL)

    dgomi

    In this study, we investigated morphological and photosynthetic responses to water deficit in parental genotypes of M. ... for adaptation to water deficit in legumes is a prerequisite for any research aiming to improve legume yields. ...... tolerant genotypes in rainfed lowland rice. Field Crop. Res. 99:48-58. Rouached A, Slama I, ...

  9. Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species.

    Science.gov (United States)

    McKiernan, Adam B; Potts, Brad M; Brodribb, Timothy J; Hovenden, Mark J; Davies, Noel W; McAdam, Scott A M; Ross, John J; Rodemann, Thomas; O'Reilly-Wapstra, Julianne M

    2016-02-01

    Water deficit associated with drought can severely affect plants and influence ecological interactions involving plant secondary metabolites. We tested the effect of mild water deficit and rewatering on physiological, morphological and chemical traits of juvenile Eucalyptus globulus Labill. and Eucalyptus viminalis Labill. We also tested if responses of juvenile eucalypts to water deficit and rewatering varied within species using provenances across a rainfall gradient. Both species and all provenances were similarly affected by mild water deficit and rewatering, as only foliar abscisic acid levels differed among provenances during water deficit. Across species and provenances, water deficit decreased leaf water potential, above-ground biomass and formylated phloroglucinol compound concentrations, and increased condensed tannin concentrations. Rewatering reduced leaf carbon : nitrogen, and total phenolic and chlorogenic acid concentrations. Water deficit and rewatering had no effect on total oil or individual terpene concentrations. Levels of trait plasticity due to water deficit and rewatering were less than levels of constitutive trait variation among provenances. The overall uniformity of responses to the treatments regardless of native provenance indicates limited diversification of plastic responses when compared with the larger quantitative variation of constitutive traits within these species. These responses to mild water deficit may differ from responses to more extreme water deficit or to responses of juvenile/mature eucalypts growing at each locality. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Peach response to water deficit in a semi-arid region

    Science.gov (United States)

    Paltineanu, C.; Septar, L.; Moale, C.; Nicolae, S.; Nicola, C.

    2013-09-01

    During three years a deficit irrigation experiment was performed on peach response under the semi-arid conditions of south-eastern Romania. Three sprinkler-irrigated treatments were investigated: fully irrigated, deficit irrigation treatment, and non-irrigated control treatment. Soil water content ranged between 60 and 76% of the plant available soil water capacity in fully irrigated, between 40 and 62% in deficit irrigation treatment, and between 30 and 45% in control. There were significant differences in fruit yield between the treatments. Irrigation water use efficiency was maximum in deficit irrigation treatment. Fruit yield correlated significantly with irrigation application. Total dry matter content, total solids content and titrable acidity of fruit were significantly different in the irrigated treatments vs. the control. Significant correlation coefficients were found between some fruit chemical components. For the possible future global warming conditions, when water use becomes increasingly restrictive, deficit irrigation will be a reasonable solution for water conservation in regions with similar soil and climate conditions.

  11. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit

    Directory of Open Access Journals (Sweden)

    Alexandre José da Silva

    Full Text Available Abstract Water deficit is a major factor limiting crop yield in rainfed areas. We hypothesized that under water deficit the decrease of photosynthetic production stimulates: carbohydrate remobilization from leaves, stems and roots to reproductive organs; and decreasing flowering intensity and pod development. The present work aims to study the effect of water deficit during bloom and grain pod-filling stages in two indeterminate soybean cultivar, Vtop and Nidera. The following physiological parameters were evaluated by means of daily CO2 assimilation rate (Ai, dynamic of carbohydrates in tissues, plant growth, grain yield and yield components. The study was conducted in a greenhouse with plants sown in tanks of 0.5 m3. Regardless of the phenological phase, water deficit reduced Ai, plant growth and number of pods and seeds per plant. The fact that grain yield was less affected by water deficit at bloom than at grain pod-filling stage was attributed to larger seeds found at bloom. In both treatments, a sharp reduction on carbohydrate content was found in leaves, stem and roots at the beginning of pod formation. The high amounts of carbohydrates remobilized for seed growth, along with the high values of Ai observed in well-watered plants, indicate that grain yield of soybeans is source rather than sink limited. On the other hand, in water deficit treatments, a new stimulus for carbohydrate storage was found in the leaves and stem at the beginning of grain maturity, suggesting that grain yield was limited by sink capacity.

  12. Water deficit increases stilbene metabolism in Cabernet Sauvignon berries.

    Science.gov (United States)

    Deluc, Laurent G; Decendit, Alain; Papastamoulis, Yorgos; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2011-01-12

    The impact of water deficit on stilbene biosynthesis in wine grape (Vitis vinifera) berries was investigated. Water deficit increased the accumulation of trans-piceid (the glycosylated form of resveratrol) by 5-fold in Cabernet Sauvignon berries but not in Chardonnay. Similarly, water deficit significantly increased the transcript abundance of genes involved in the biosynthesis of stilbene precursors in Cabernet Sauvignon. Increased expression of stilbene synthase, but not that of resveratrol-O-glycosyltransferase, resulted in increased trans-piceid concentrations. In contrast, the transcript abundance of the same genes declined in Chardonnay in response to water deficit. Twelve single nucleotide polymorphisms (SNPs) were identified in the promoters of stilbene synthase genes of Cabernet Sauvignon, Chardonnay, and Pinot Noir. These polymorphisms resulted in eight changes within the predicted cis regulatory elements in Cabernet Sauvignon and Chardonnay. These results suggest that cultivar-specific molecular mechanisms might exist that control resveratrol biosynthesis in grapes.

  13. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  14. Differential response to water deficit stress in alfalfa ( Medicago ...

    African Journals Online (AJOL)

    The present study was fixed as objective to compare the response to water deficit (33% of field capacity, FC) stress of eight cultivars of Medicago sativa, originating from the Mediterranean basin. Comparison was performed on some key parameters such as growth, relative water content, leaf water potential, MDA tissue ...

  15. Medication Treatment for Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Ryan, Joseph B.; Katsiyannis, Antonis; Hughes, Elizabeth M.

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) has become the most commonly diagnosed psychiatric disorder among school-age children. For more than half a century, physicians have prescribed medications to help manage behaviors such as hyperactivity, impulsivity, and inattention. Today, there is a growing consensus that ADHD is a biologically…

  16. Effect of Deficit Irrigation Treatments on Vegetative Characteristics and Quantity and Quality of Golden Delicious Apple

    Directory of Open Access Journals (Sweden)

    I. Arji

    2016-07-01

    Full Text Available Introduction: Since Iran is located in arid and semi-arid region of the world, so consumption and saving of water must be taking into account. Water is often a valuable natural resource, thus proper application methods - for increase water efficiency can be very important. Regulated deficit irrigation (RDI is one of the most important methods to increase water use efficiency and fruit quality. Apple is one of the most important fruit trees from economical point of view. Studies showed that regulated deficit irrigation led to growth reduction in apple trees and sometimes fruit quality increased. The aim of this study was to evaluate the effect deficit irrigation on vegetative growth and fruit quantity and quality of Golden delicious apple trees in Gahvareh region of Kermanshah province. Materials and Methods: This experiment was conducted on 10 years old Golden delicious apple trees in a randomized complete block design with 5 irrigation treatments and three replications during 2006. Three apple trees assigned to each experimental unit. Irrigation treatments were: T1= early deficit irrigation (40% water requirement, T2= early deficit irrigation (60% water requirement, T3= late deficit irrigation (40% water requirement, T4=late deficit irrigation (60% water requirement, T5=control (C (100% water requirement. Early deficit irrigation starts 55 days after full bloom (15th Jun and continued 60 days (16th Aug, while late deficit irrigation starts 115 days after from full bloom (16th Aug and continued 40 days near to harvesting time (23th Sept. Control trees were full irrigated based on water requirement, which calculated based on national water document of Iran and irrigation amount was calculated based on the following formulas: Q=0.0184.L.H3/2 Where Q is volumetric flow rate (liter/Second, L is parshall flume crown length (cm and H is water height (cm. Irrigation time was calculated based on national water document of Iran and volumetric flow rate

  17. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  18. Deficit irrigation of peach trees to reduce water consumption

    Science.gov (United States)

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  19. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  20. Transcriptome profiling of tobacco under water deficit conditions

    Directory of Open Access Journals (Sweden)

    Roel C. Rabara

    2015-09-01

    Full Text Available Drought is one of the limiting environmental factors that affect crop production. Understanding the molecular basis of how plants respond to this water deficit stress is key to developing drought tolerant crops. In this study we generated time course-based transcriptome profiles of tobacco plants under water deficit conditions using microarray technology. In this paper, we describe in detail the experimental procedures and analyses performed in our study. The data set we generated (available in the NCBI/GEO database under GSE67434 has been analysed to identify genes that are involved in the regulation of tobacco's responses to drought.

  1. Effect of Foliar Application of Chitosan on Growth and Biochemical Characteristics of Safflower (Carthamus tinctorius L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    batool mahdavi

    2014-09-01

    Full Text Available In order to study the effects of water deficit stress and foliar application of chitosan in safflower (Carthamus tinctorius L., a pot experiment was conducted in 2009. Experimental design was a randomized complete block in factorial arrangement with three replications. Experimental factors were water deficit levels (unstressed (control and 70% available water depletion from soil (water deficit stress, chitosan concentrations (0, 0.05, 0.1%, all dissolved in 1% acetic acid along with an additional treatment of distilled water and foliar application times (before and during stem elongation. The results showed that water deficit stress reduced plant height, leaf area, shoot and root dry weight, root height and volume. Whereas, foliar application of chitosan increased mentioned traits. In addition, water deficit stress decreased chlorophyll fluorescence, chlorophyll concentration and relative water content. Carotenoid, proline and malondialdehyde (MDA content were increased in response to stress. Foliar application of chitosan increased chlorophyll fluorescence, relative water content (68.77% and chlorophyll b in the water deficit stressed plants, whereas decreased MDA content. The results of the present study indicate that application of chitosan can reduce the harmful effects of water deficit and improve plant growth.

  2. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Directory of Open Access Journals (Sweden)

    Y. García-Orellana

    2013-01-01

    Full Text Available Field-grown lemon trees (Citrus limon (L. Burm. fil. cv. Fino were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS signal intensity (actual MDS/control treatment MDS threshold values of 1.25 (T1 treatment and 1.35 (T2 treatment, which induced two different drought stress levels. Daily variations in leaf (Yleaf and stem (Ystem water potentials, leaf conductance, net photosynthesis, sap flow (SF and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Yleaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Ystem was seen to be a better plant water status indicator than Yleaf. The difference between the two values of Y (Ystem - Yleaf  = DY was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees.

  3. Analysis of the Citrullus colocynthis transcriptome during water deficit stress.

    Directory of Open Access Journals (Sweden)

    Zhuoyu Wang

    Full Text Available Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus, an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.

  4. Effect of water deficit on growth and photosynthetic characteristics of ...

    African Journals Online (AJOL)

    Water deficit decreased total leaf area, above-ground biomass, net photosynthesis, stomatal conductance, internal CO2 concentration and the actual quantum yield of PS II electron transport relative to cultivars that were grown under control condition. Measurement of stomatal conductance provided useful information to ...

  5. Soybean response to nitrogen fertilizer under water deficit conditions

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... In order to determine the effect of water deficit and nitrogen fertilizer application on growth indices, yield and yield ... located in 39°N and 47°E longitude and has 32 m altitude. The soil ...... Stable Isotope Research (GASIR).

  6. Prepotent response inhibition predicts treatment outcome in attention deficit/hyperactivity disorder

    NARCIS (Netherlands)

    van der Oord, S.; Geurts, H.M.; Prins, P.J.M.; Emmelkamp, P.M.G.; Oosterlaan, J.

    2012-01-01

    Objective: Inhibition deficits, including deficits in prepotent response inhibition and interference control, are core deficits in ADHD. The predictive value of prepotent response inhibition and interference control was assessed for outcome in a 10-week treatment trial with methylphenidate. Methods:

  7. Daytime soybean transcriptome fluctuations during water deficit stress.

    Science.gov (United States)

    Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima

    2015-07-07

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves

  8. Water deficit mapping of soils in Southern and Insular Italy

    Energy Technology Data Exchange (ETDEWEB)

    Ciavatta, C; Vianello, G

    1987-03-01

    Cross-elaboration of climatic, pedological and vegetational factors allows the water balance of soils to be defined. The data obtained are of particular interest not only for the primary sector, but also for the economy as a whole since the availability of such information is necessary for the correct and rational use of water resources. The application of a methodology, which takes into account the previously mentioned factors, led to the realization of a map showing the overall, annual and monthly water deficit of the soils in Southern Italy, Sicily and Sardinia.

  9. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Science.gov (United States)

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  10. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  11. Rate and duration of seed filling and yield of soybean affected by water and radiation deficits

    Directory of Open Access Journals (Sweden)

    Kazem GHASSEMI-GOLEZANI

    2015-11-01

    Full Text Available Seed filling and yield of soybean under water and radiation deficits were investigated during 2011 and 2012. Treatments were irrigations (I1, I2, I3 and I4 for irrigation after 60, 90, 120 and 150 mm evaporation from class A pan, respectively in main plots and light interceptions (L1: 100 %, L2: 65 % and L3: 25 % sunlight in sub-plots. Seeds per plant under I1 and I2 decreased, but under I3 and I4 increasedas a result of radiation deficit. Maximum seed weight and seed filling duration of plants under 25 % light interception (L3 were higher than those under full sunlight (L1 and 65 % light interception (L2. In contrast, plants under full sunlight had the highest seed filling rate, particularly under water stress. Seed filling duration under severe light deficit (L3 was about 9 days longer than that under full sunlight (L1, leading to 15.8 % enhancement in maximum seed weight. Decreasing seed yield of soybean under well watering and mild water stress and improving it under moderate and severe water deficit due to low solar radiation are directly related with changes in seed filling duration and consequently in seed weight and number of seeds per plant under these conditions.

  12. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  13. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  14. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit.

    Science.gov (United States)

    Lima, J V; Lobato, A K S

    2017-01-01

    Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea

  15. Influence of water deficit on transpiration and radiation use efficiency of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Singh, P.; Sri Rama, Y.V.

    1989-01-01

    Information on the relationship between biomass production, radiation use and water use of chickpea (Cicer arietinum L.) is essential to estimate biomass production in different water regimes. Experiments were conducted during three post-rainy seasons on a Vertisol (a typic pallustert) to study the effect of water deficits on radiation use, radiation use efficiency (RUE), transpiration and transpiration efficiency (TE) of chickpea. Different levels of soil water availability were created, either by having irrigated and non-irrigated plots or using a line source. Biomass production was linearly related to both cumulative intercepted solar radiation and transpiration in both well watered and water deficit treatments. Soil water availability did not affect RUE (total dry matter produced per unit of solar radiation interception) when at least 30% of extractable soil water (ESW) was present in the rooting zone, but below 30% ESW, RUE decreased linearly with the decrease in soil water content. RUE was also significantly correlated (R 2 = 0.61, P < 0.01) with the ratio of actual to potential transpiration (T/Tp) and it declined curvilinearly with the decrease in T/Tp. TE decreased with the increase in saturation deficit (SD) of air. Normalization of TE with SD gave a conservative value of 4.8 g kPa kg −1 . To estimate biomass production of chickpea in different environments, we need to account for the effect of plant water deficits on RUE in a radiation-based model and the effect of SD on TE in a transpiration-based model. (author)

  16. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.

    Science.gov (United States)

    Cáceres-Mella, Alejandro; Talaverano, M Inmaculada; Villalobos-González, Luis; Ribalta-Pizarro, Camila; Pastenes, Claudio

    2017-08-01

    The influence of controlled water deficit on the phenolic composition and gene expression of VvLAR2, VvMYBPA1, VvMYBPA2 and VvMYB4a in Cabernet Sauvignon grape skins throughout ripening was investigated. The assay was carried out on own-rooted Vitis vinifera plants cv. Cabernet Sauvignon in a commercial vineyard from veraison until commercial harvest. Three irrigation regimes were used from veraison until harvest with the following treatments: T1: 3.6 mm day -1 ; T2: 1.8 mm day -1 and T3: 0.3 mm day -1 . The content of total phenols and total anthocyanins in grape skins increased during ripening, but water deficit did not produce differences among treatments in the total anthocyanin concentration. Proanthocyanidins (PAs) decreased throughout ripening, although approximately 25 days after veraison (DAV), their content slightly increased. This effect was more pronounced in the most restrictive treatment (T3). A similar pattern was observed in the transcript abundance of VvLAR2, VvMYBPA1 and VvMYB4a. PAs separation revealed differences in concentration but not in the proportion among fractions among the irrigation treatments. Additionally, controlled water deficit increased the mean degree of polymerization and the flavan-3-ol polymeric concentration in grape skins throughout ripening but with no effects on the extent of PAs galloylation. Our results suggest that the water status of Cabernet Sauvignon grapevines affects the gene expression for proteins involved in the synthesis of PAs, increasing their concentration and also their composition, with further evidence for the efficacy of a convenient, controlled water deficit strategy for grapevine cultivation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. The Response of Rice Root to Time Course Water Deficit Stress-Two Dimensional Electrophoresis Approach

    Directory of Open Access Journals (Sweden)

    Mahmood Toorchi

    2015-11-01

    Full Text Available Rice (Oryza sativa L. is the staple food of more than half of the population worldwide. Water deficit stress is one of the harsh limiting factors for successful production of crops. Rice during its growing period comes a cross different environmental hazards like drought stress. Recent advance in molecular physiology are promising for more progress in increasing rice yield by identification of novel candidate proteins for drought tolerance. To investigate the effect of water deficit on rice root protein expression pattern, an experiment was conducted in completely randomize design with four replications. With holding water for 24, 36 and 48 hours along with control constituted the experimental treatments. The experiment was conducted in growth chamber under controlled condition and root samples, after stress imposition, were harvested for two-dimensional electrophorese (2-DE. Proteome analysis of root tissue by 2-DE indicated that out of 135 protein spots diagnosed by Coomassie blue staining, 14 spots showed significant expression change under water deficit condition, seven of them at 1% and the other seven at 5% probability levels. Differentially changed proteins were taken into account for search in data bank using isoelectric point and molecular weight to identify the most probable responsive proteins. Up- regulation of ferredoxin oxidoreductase at first 24 hour after applying stress indicates the main role of this protein in reducing water deficit stress effects. On the other hand ribosomal proteins, GAP-3 and ATP synthase were down regulated under water deficit stress. Fructose 1,6-bisphosphate aldolase, glucose- 6-phosphate dehydrogenase and chitinase down regulated up to 36 h of stress imposition but, were later up- regulated by prolonging stress up to 48 h. It could be inferred the plant tries to decrease the effect of oxidative stress.

  18. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  19. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO

    Directory of Open Access Journals (Sweden)

    Mohamed FARISSI

    2014-06-01

    Full Text Available The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L. populations (Taf 1, Taf 2, Dem and Tata originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver. The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an amount of water corresponding to the potential evapo-transpiration of the crop, and the second treatment was water deficit stress (one irrigation per cut. For each treatment, the experiment was conducted as a split plot based on a randomized complete block design with four replications. The plants were measured and analyzed over three cuts. Some agronomic traits as, plant height, fresh and dry forage yields were measured. The forage quality was evaluated by leaf:stem ratio and the contents of plants in proteins and nitrogen. The results indicated that the water deficit has negatively affected the plant height and forage yield. The decrease in leaf:stem ratio was observed under water deficit conditions. However, the proteins and nitrogen contents were unaffected. The behavior of tested alfalfa genotypes was significantly different. The Moroccan alfalfa populations were more adapted to water deficit conditions comparatively to Siriver variety and the Tata population was the most adapted one.

  20. Response of antioxidant system of tomato to water deficit stress and its interaction with ascorbic acid

    Directory of Open Access Journals (Sweden)

    Fatemeh Daneshmand

    2014-03-01

    Full Text Available Environmental stresses including water deficit stress may produce oxidants such as reactive oxygen species that damage the membrane structure in plants. Among the antioxidants, ascorbic acid has a critical role in the cell and scavenges reactive oxygen species. In this research, effects of ascorbic acid at two levels (0 and 10 mM and water deficit stress based on 3 levels of field capacity (100, 60 and 30% were studied in tomato plants. Both levels of stress increased lipid peroxidation, reduced the amount of ascorbic acid and glutathione and increased the activity of enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and reduced the growth parameters. Ascorbic acid treatment, reduced lipid peroxidation, increased ascorbic acid and glutathione levels and decreased the activity of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase and guaiacol peroxidase and positive effects of ascorbic acid treatment appeared to improve the plant growth parameters.

  1. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Orellana, Y.; Ortuno, M. F.; Conejero, W.; Ruiz-Sanchez, M. C.

    2013-05-01

    Field-grown lemon trees (Citrus limon (L.) Burm. fil. cv. Fino) were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS) signal intensity (actual MDS/control treatment MDS) threshold values of 1.25 (T1 treatment) and 1.35 (T2 treatment), which induced two different drought stress levels. Daily variations in leaf (Y{sub l}eaf) and stem (Y{sub s}tem) water potentials, leaf conductance, net photosynthesis, sap flow (SF) and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Y{sub l}eaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Y{sub s}tem was seen to be a better plant water status indicator than Y{sub l}eaf. The difference between the two values of Y (Y{sub s}tem - Y{sub l}eaf {Delta}{Psi}) was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC) was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees. (Author) 40 refs.

  2. Prenatal treatment prevents learning deficit in Down syndrome model.

    Science.gov (United States)

    Incerti, Maddalena; Horowitz, Kari; Roberson, Robin; Abebe, Daniel; Toso, Laura; Caballero, Madeline; Spong, Catherine Y

    2012-01-01

    Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8-10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, PDown syndrome-placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome-placebo (ptreatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.

  3. Effect of Water Deficit on Water Relations, Photosynthesis and Osmolytes Accumulation of Salvia leriifolia Benth

    Directory of Open Access Journals (Sweden)

    M Dashti

    2015-04-01

    Full Text Available In order to investigate the effect of water deficit (WD stress on water relations and some physiological characteristics of Salvia leriifolia Bench., a greenhouse experiment was conducted in completely randomized design with three replications. Irrigation treatments were fully irrigated as control (-0.035 MPa, mild stress (-0.138 MPa, moderate stress (-0.516 MPa and severe stress (-1.92 MPa. One set of stressed plants were kept constantly in different levels of matric potentials and the other set (Recovery treatments irrigated to maximum water holding capacity after soil water was depleted in each stress level. Measured parameters were leaf relative water content (LRWC, membrane stability index (MSI, prolin and soluble carbohydrates content, gas exchange parameters, Intrinsic Water Use Efficiency (WUEi and Intrinsic Gas Exchange Efficiency (GEEi. The results showed that LRWC and MSI in control plants significantly (P≤0.05 were lower than mild stress but decreased 17.3% and 21% respectively in severe stress compared to control. Soluble carbohydrates content was increased with increasing WD levels but it was only significant with control plants. There was strong negative correlation between LRWC and proline content (r= -0.99***, therefore leaves proline content increased twice (1023 nmol per g fresh weight at -1.92 Mpa compared to control. Results also indicated that gas exchange parameters were not significantly difference in mild WD against control but with decreasing soil matric potential to -1.92 Mpa, net photosynthesis rate (A, transpiration rate and stomatal conductance (gs decreased 52, 62 and 75 % respectively. In contrast WUEi and GEE increased 35 and 92% respectively.

  4. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  5. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit.

    Science.gov (United States)

    Santos, Ivanildes C Dos; Almeida, Alex-Alan Furtado de; Anhert, Dário; Conceição, Alessandro S da; Pirovani, Carlos P; Pires, José L; Valle, Raúl René; Baligar, Virupax C

    2014-01-01

    Six months-old seminal plants of 36 cacao genotypes grown under greenhouse conditions were subjected to two soil water regimes (control and drought) to assess, the effects of water deficit on growth, chemical composition and oxidative stress. In the control, soil moisture was maintained near field capacity with leaf water potentials (ΨWL) ranging from -0.1 to -0.5 MPa. In the drought treatment, the soil moisture was reduced gradually by withholding additional water until ΨWL reached values of between -2.0 to -2.5 MPa. The tolerant genotypes PS-1319, MO-20 and MA-15 recorded significant increases in guaiacol peroxidase activity reflecting a more efficient antioxidant metabolism. In relation to drought tolerance, the most important variables in the distinguishing contrasting groups were: total leaf area per plant; leaf, stem and total dry biomass; relative growth rate; plant shoot biomass and leaf content of N, Ca, and Mg. From the results of these analyses, six genotypes were selected with contrasting characteristics for tolerance to soil water deficit [CC-40, C. SUL-4 and SIC-2 (non-tolerant) and MA-15, MO-20, and PA-13 (tolerant)] for further assessment of the expression of genes NCED5, PP2C, psbA and psbO to water deficit. Increased expression of NCED5, PP2C, psbA and psbO genes were found for non-tolerant genotypes, while in the majority of tolerant genotypes there was repression of these genes, with the exception of PA-13 that showed an increased expression of psbA. Mutivariate analysis showed that growth variables, leaf and total dry biomass, relative growth rate as well as Mg content of the leaves were the most important factor in the classification of the genotypes as tolerant, moderately tolerant and sensitive to water deficit. Therefore these variables are reliable plant traits in the selection of plants tolerant to drought.

  6. Identification of Genes Associated with Lemon Floral Transition and Flower Development during Floral Inductive Water Deficits: A Hypothetical Model.

    Science.gov (United States)

    Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi

    2017-01-01

    Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5' flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis -regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed.

  7. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  8. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  9. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  10. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    Science.gov (United States)

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  12. Extreme Water Deficit in Brazil Detected from Space

    Science.gov (United States)

    Vieira Getirana

    2016-01-01

    Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of 26.1 cmyr21 over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System(GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 2023 of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus.

  13. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit

    OpenAIRE

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2015-01-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% o...

  14. [Update on attention-deficit/hyperactive disorder treatment].

    Science.gov (United States)

    Loro-López, M; Quintero, J; García-Campos, N; Jiménez-Gómez, B; Pando, F; Varela-Casal, P; Campos, J A; Correas-Lauffer, J

    Attention-deficit/hyperactive disorder (ADHD) is one of the most common and investigated childhood neuropsychiatric disorder witch has an important repercussion in patient's every day life. AIM. To make an update on psychopharmacological and psychological treatment for ADHD and to asses his efficacy as a single drug treatment as well as a combined treatment. As a chronic disorder ADHD needs a carefully designed and complete treatment plan. That takes into account psychoeducation and the most recent medical evidences as well as preferences and worries of their families and patients. Psychostimulants are the most studied drugs and the gold-standard in the ADHD treatment with responses as high as 65 to 85%. Atomoxetine is another alternative for treating this patients with Food and Drug Administration and European Medicines Agency approval seal. The treatment plan for these patients must be chosen, not only by their treating doctor but should include patients and patient's family preferences and should be suited to each patient. Comorbidities are an important issue in the ADHD treatment planning, mainly in non responders' patients.

  15. Berry composition and yield of Cabernet Sauvignon and Malbec in response to water deficit severity

    Science.gov (United States)

    Water supply is a production tool used in arid climates to elicit desirable, water-deficit related changes in berry composition and yield; however, response to water deficit is known to vary by cultivar. The objectives of this research were to determine whether cultivars differed in their relations...

  16. Water-deficit tolerant classification in mutant lines of indica rice

    Directory of Open Access Journals (Sweden)

    Suriyan Cha-um

    2012-04-01

    Full Text Available Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control as water deficit sensitive, using Ward's method.

  17. Development of lucerne (Medicago sativa L.) treated with mineral fertilizer and manure at optimal and water deficit conditions.

    Science.gov (United States)

    Vasileva, V; Kostov, O; Vasilev, E

    2006-01-01

    A study on the effect of different rates of mineral fertilizer and manure on yield parameters of lucerne under optimal and water deficit conditions was carried out. Leached chernozem soil and lucerne cultivar Victoria were used. The soil was treated with ammonium nitrate and fully matured cattle manure. The plants were grown under optimum moisture content of 80% and 40% of field capacity. The water deficit stress decreased top and root biomass by 11-75% and 3-29% at mineral and organic fertilization, respectively. The applied mineral and organic N strongly depressed nodules development. Both mineral fertilizer and organic manure at dose of 210 mg N kg(-1) soil completely inhibited the appearance of nodules. Next to nitrogen, water deficit stress further inhibited the development of nodules. Nitrogen fertilization increased seed productivity in the two experimental moisture conditions. The water deficit stress decreased seed productivity by 18 to 33% as compared to optimum conditions. The plant treatments with manure were much more resistant to water deficit and recovering ability of plants was faster as compared to treatments with mineral fertilizer. The application of manure stimulates development of drought-stress tolerance in lucerne. However, the results obtained can be considered for the soil type and experimental conditions used.

  18. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW

    Directory of Open Access Journals (Sweden)

    Faissal AZIZ

    2014-12-01

    Full Text Available In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. In this context, the present work is a review focusing the reuse of treated wastewater in agriculture as an important strategy for solving water deficit problems in arid areas. Much information concerning the wastewater reuse in different regions of the world and in Morocco, the different wastewater treatment technologies existing in Morocco were discussed. The review focused also the fertilizing potential of wastewater in agriculture, the role of nutrients and their concentrations in wastewater and their advantages effects on plant growth and yield.

  19. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  20. Medicine Of Water Treatment

    International Nuclear Information System (INIS)

    Shin, Jeong Rae

    1987-02-01

    This book deals with the medicine of water handling, which includes medicine for dispersion and cohesion, zeta-potential, congelation with Shalze Hardy's law, inorganic coagulants, inorganic high molecule coagulants, aid coagulant such as fly ash and sodium hydroxide, and effect of aluminum and iron on cohesion of clay suspension, organic coagulants like history of organic coagulants, a polyelectrolyte, coagulants for cation, and organic polymer coagulant, heavy metal and cyan exfoliants, application of drugs of water treatment.

  1. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    OpenAIRE

    mohammad saeed tadaion; Gholamreza Moafpourian

    2017-01-01

    Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L.) cv. Zarde-anar) were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carri...

  2. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  3. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  4. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.

    Science.gov (United States)

    Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit

    2014-03-24

    Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P water deficit (ΨLwater availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.

  5. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  6. Long-term Root Growth Response to Thinning, Fertilization, and Water Deficit in Plantation Loblolly Pine

    Science.gov (United States)

    M.A. Sword-Sayer; Z. Tang

    2004-01-01

    High water deficits limit the new root growth of loblolly pine (Pinus taeda L.), potentially reducing soil resource availability and stand growth. We evaluated new root growth and stand production in response to thinning and fertilization in loblolly pine over a 6-year period that consisted of 3 years of low water deficit followed by 3 years of high...

  7. Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit

    NARCIS (Netherlands)

    Kadam, Niteen N.; Tamilselvan, Anandhan; Lawas, Lovely M.F.; Quinones, Cherryl; Bahuguna, Rajeev N.; Thomson, Michael J.; Dingkuhn, Michael; Muthurajan, Raveendran; Struik, Paul C.; Yin, Xinyou; Jagadish, Krishna S.V.

    2017-01-01

    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly

  8. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  9. Regulated deficit irrigation as a water management strategy in Vitis vinifera production

    International Nuclear Information System (INIS)

    Wample, R.L.; Smithyman, R.

    2002-01-01

    An initial six-year study in a commercial vineyard located in the Columbia River Valley of Washington State, United States of America, examined the management practices and potential benefits of regulated deficit irrigation (RDI) on Vitis vinifera cv. Sauvignon blanc. The objective of the treatments was to evaluate the effect of deficit irrigation prior to, compared with after, veraison. Each of four irrigation treatments was applied to 1.6 ha and replicated four times for a total 27.0 ha. Irrigation treatments were based on desired soil moisture levels in the top metre of the profile where most of the root system is found. Soil moisture was monitored using a neutron probe and the information was combined with calculations of evaporative demand to determine the irrigation required on a weekly basis. Vine growth, yield, fruit quality and cold hardiness were monitored throughout the study. The results indicated that RDI prior to veraison was effective in controlling shoot growth, as determined by shoot length and elongation rate, as well as pruning weights. Sixteen wine lots, each of approximately 12,000 litres, were prepared each season. Although there was some effect on berry weight, yield was not always significantly reduced. Full irrigation prior to veraison resulted in excessive shoot growth. RDI applied after veraison to vines with large canopies resulted in greater water deficit stress. Fruit quality was increased by pre-veraison RDI compared to postveraison RDI based on wines made. Regulated deficit irrigation applied at anytime resulted in better early-season lignification of canes and cold hardening of buds. There was a slight improvement in mid-winter cold hardiness of vines subjected to RDI. However, this effect was inconsistent. Studies on Cabernet Sauvignon and White Riesling are underway to confirm these results and to investigate the impact of RDI on fruit quality and winemaking practices. (author)

  10. Foliar nitrogen and potassium applications improve photosynthetic activities and water relations in sunflower under moisture deficit condition

    International Nuclear Information System (INIS)

    Hussain, R.A.; Ahmad, R.

    2016-01-01

    This study investigated the influence of foliar supplementation of nitrogen (N) potassium (K) and their combination on photosynthetic activities, physiological indices and water relations of two sunflower (Helianthus annuus L.) hybrids Hysen-33 and LG-5551 under water deficit condition. Studies were conducted in a wire-house at Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan. Treatments were two water stress levels [100 (control) and 60% field capacity (water deficit)], six levels of foliar spray (no spray, water spray, 1% N, 1% K, 0.5% N + 0.5% K and 1% N + 1% K) and each treatment was replicated three times. Results showed that water stress reduced the photosynthetic activities: Pn (photosynthetic rate), E (rate of tanspiration) and gs (stomatal conductance) and water relations i.e., pie w (water potential), pie s (osmotic potential) and pie p (turgor potential) . Soil moisture deficit also significantly reduced the plant height, root length, fresh and dry matter which consequently affected the plant height stress tolerance index (PHSI), root length stress tolerance index (RLSI) and dry matter stress tolerance index (DMSI) in both sunflower hybrids. However, foliar supplementation with N and K or N+K improved the photosynthetic activities, water relations and physiological indices of both the sunflower hybrids. The findings of present study suggest that application of N+K is necessary to have high plant productivity. (author)

  11. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Responses of seminal wheat seedling roots to soil water deficits.

    Science.gov (United States)

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Life-history responses of insects to water-deficit stress: a case study with the aphid Sitobion avenae.

    Science.gov (United States)

    Liu, Deguang; Dai, Peng; Li, Shirong; Ahmed, Syed Suhail; Shang, Zheming; Shi, Xiaoqin

    2018-05-29

    Drought may become one of the greatest challenges for cereal production under future warming scenarios, and its impact on insect pest outbreaks is still controversial. To address this issue, life-history responses of the English grain aphid, Sitobion avenae (Fabricius), from three areas of different drought levels were compared under three water treatments. Significant differences were identified in developmental time, fecundity and adult weight among S. avenae clones from moist, semiarid and arid areas under all the three water treatments. Semiarid and arid area clones tended to have higher heritability for test life-history traits than moist area clones. We identified significant selection of water-deficit on the developmental time of 1st instar nymphs and adult weight for both semiarid and arid area clones. The impact of intermediate and severe water-stress on S. avenae's fitness was neutral and negative (e.g., decreased fecundity and weight), respectively. Compared with arid-area clones, moist- and semiarid-area clones showed higher extents of adaptation to the water-deficit level of their respective source environment. Adult weight was identified as a good indicator for S. avenae's adaptation potential under different water-stress conditions. After their exposure to intermediate water-deficit stress for only five generations, adult weight and fecundity tended to decrease for moist- and semiarid-area clones, but increase for arid-area clones. It is evident from our study that S. avenae clones from moist, semiarid and arid areas have diverged under different water-deficit stress, and such divergence could have a genetic basis. The impact of drought on S. avenae's fitness showed a water-level dependent pattern. Clones of S. avenae were more likely to become adapted to intermediate water-deficit stress than severe water-deficit stress. After continuous water-deficit stress of only five generations, the adaptation potential of S. avenae tended to decrease for moist

  14. Effect of Water Deficit Stress on Peach Growth under Commercial Orchard Management Conditions

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2015-06-01

    Full Text Available In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard in Mashhad during 2011. Three irrigation treatments including 360 (low stress, 180 (moderate stress and 90 (severe stress m3ha-1week-1 using a drip irrigation system (minimum stem water potential near harvest: -1.2, -1.5 and -1.7 MPa, respectively from the mid-pit hardening stage (12th of June until harvest (23rd of Sep. applied. Predawn, stem and leaf water potentials, leaf photosynthesis, transpiration, stomatal conductance and leaf temperature, the number of new shoots on fruit bearing shoots and vegetative shoots lengths during growing season as well as leaf area at harvest were measured. The results showed that water deficit stress had negative effects on peach tree water status, thereby resulting in decreased leaf gas exchange and tree vegetative growth. As significant decreased assimilate production of tree was resulted from both decreased leaf assimilation rate (until about 23 % and 50 %, respectively under moderate and severe stress conditions compared to low stress conditions and decreased leaf area of tree (until about 57% and 79%, respectively under moderate and severe stress conditions compared to low stress conditions at harvest. The significant positive correlation between leaf water potential and vegetative growth of peach revealed that shoot growth would decrease by 30% and 50% of maximum at leaf water potential of –1.56 and –2.30 MPa, respectively.

  15. The Effect of Water Deficit Imposing Methods on Quantitative and Qualitative Traits of New Potato Cultivar

    Directory of Open Access Journals (Sweden)

    Kh Parvizi

    2016-02-01

    Full Text Available Introduction Water deficiency is the main factor that limits crop production in arid and semiarid regions. Due to limitation in water resources, low efficiency of water in surface irrigation method and irregular rainfall application of sprinkle and triple irrigation methods is inevitable in more regions of Iran. In this respect, it is crucial to employ methods that can improve water use efficiency and do not damage the sustainable production of potato in these regions. Introduction of some potato cultivars that have good capability of yield in deficit irrigation is anopportunity in this case. In previous study new released potato cultivar (Savalan and three other promising clones had more yield and growing potential compared with Agriacultivar. Therefore, it was necessary to evaluate new cultivar (Savalan and promising clones in water deficit irrigation. In this respect, as is expected, if cultivars or clones have more tolerance to water deficit they canbe suitable cultivar candidate and germplasms in water critical water conditions in many regions of Iran. Material and Methods This experiment has been conducted in Agricultural and Natural Resources Research Center of Hamedanin split plot design based on Randomized Complete Block in three replications with two factors, including: 1. Water deficit irrigation treatment, 50, 60, 70, 80, 90 and 100% of regular potato irrigation requirement. 2. Three clones accompanied with Savalan and Sante Cultivars. Irrigation system was tape method. Irrigation treatments were established immediately after cultivation of tubers. Water requirement was calculated through corrected vapotranspiration (ETo determined by Penman-Monteith equation considering 90% water use efficiency. During the growing season, fewgrowing indices including, flowering longevity and harvesting time were recorded along with measurement of dry and fresh root weights. Total yield was measured by selecting randomly of 2 m2in every plot

  16. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance

    Directory of Open Access Journals (Sweden)

    Xianling Wang

    2018-05-01

    Full Text Available Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT plants, PCaP2-overexpressing (PCaP2-OE plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA and salicylic acid (SA treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s and pathogenesis-related (PRs are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2, ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4, and SA-mediated drought responsive genes (PR1, -2, -5 under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the

  17. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability.

    Science.gov (United States)

    Hochberg, Uri; Bonel, Andrea Giulia; David-Schwartz, Rakefet; Degu, Asfaw; Fait, Aaron; Cochard, Hervé; Peterlunger, Enrico; Herrera, Jose Carlos

    2017-06-01

    Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts ). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s ) and leaf conductance (k leaf ) under low stem water potential (Ψ s ), despite their high xylem vulnerability and in agreement with their lower turgor loss point (Ψ TLP ). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.

  18. Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaertn.) plants.

    Science.gov (United States)

    Satish, Lakkakula; Rency, Arockiam Sagina; Ramesh, Manikandan

    2018-01-01

    Severe drought stress (water deficit) in finger millet ( Eleusine coracana L. Gaertn.) plants significantly reduced total leaf chlorophyll and relative water content in shoots and roots, whereas electrolyte leakage, concentrations of proline and hydrogen peroxide, as well as caspase-like activity were significantly increased. The role of spermidine in plant defence to water-stress was investigated after subjected to various drought treatments. Three weeks of daily spermidine sprays (0.2 mM) at early flowering stage significantly changed shoot and root growth, in both fresh and dry weights terms. At 75% of water deficit stress, leaves accumulated twice as much proline as unstressed plants, and roots accumulated thrice. Plants treated with spermidine under water stress showed lower electrolyte leakage, hydrogen peroxide and caspase-like activity than unstressed and untreated control.

  19. Neuropsychological Treatment of Attention Deficit Disorder in Infancy

    Science.gov (United States)

    Solovieva, Yulia; Quintanar, Luis

    2017-01-01

    The syndrome of attention deficit disorder is one of the most frequent pictures of disabilities in pre-scholars. The present study analyses the results of fulfillment of tasks for mechanisms of control and spatial functions. 14 pre-scholars with attention deficit disorder took part in the study. The neuropsychological evaluation was applied before…

  20. Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene.

    Science.gov (United States)

    Ghimire, Bimal Kumar; Son, Na-Young; Kim, Seung-Hyun; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic Codonopsis lanceolata plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic C. lanceolata plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in C. lanceolata seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed C. lanceolata plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g -1 dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 µg g -1  DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg g -1 DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 µg g -1 DW. Major phenolic compounds that increased in the transgenic C. lanceolata plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzjoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoicacid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to

  1. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO)

    OpenAIRE

    Mohamed FARISSI; Cherki GHOULAM; Abdelaziz BOUIZGAREN

    2014-01-01

    The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L.) populations (Taf 1, Taf 2, Dem and Tata) originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver). The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an...

  2. Effects of deficit drip-irrigation scheduling regimes with saline water on pepper yield, water productivity and soil salinity under arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2012-12-01

    Full Text Available A two-year study was carried out in order to assess the effects of different irrigation scheduling regimes with saline water on soil salinity, yield and water productivity of pepper under actual commercial-farming conditions in the arid region of Tunisia. Pepper was grown on a sandy soil and drip-irrigated with water having an ECi of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated ETc at levels of 100% (FI, full irrigation, 80% (DI-80, 60% (DI-60, when the readily available water in the control treatment (FI is depleted, deficit irrigation during ripening stage (FI-MDI60 and farmer method corresponding to irrigation practices implemented by the local farmers (FM. Results on pepper yield and soil salinity are globally consistent between the two-year experiments and shows significant difference between irrigation regimes. Higher soil salinity was maintained over the two seasons, 2008 and 2009, with DI-60 and FM treatments than FI. FI-MDI60 and DI-80 treatments resulted also in low ECe values. Highest yields for both years were obtained under FI (22.3 and 24.4 t/ha although we didn’t find significant differences with the regulated deficit irrigation treatment (FI-DI60. However, the DI-80 and DI-60 treatments caused significant reductions in pepper yields through a reduction in fruits number/m² and average fruit weight in comparison with FI treatment. The FM increased soil salinity and caused significant reductions in yield with 14 to 43%, 12 to 39% more irrigation water use than FI, FI-MDI60 and DI-80 treatments, respectively, in 2008 and 2009. Yields for all irrigation treatments were higher in the second year compared to the first year. Water productivity (WP values reflected this difference and varied between 2.31 and 5.49 kg/m3. The WP was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 treatment and FM, respectively. FI treatment provides

  3. Distribution and utilization of 15N in cowpeas injected into the stem under influence of water deficit.

    Science.gov (United States)

    Götz K-P; Herzog, H

    2000-01-01

    Investigations were carried out on Vigna unguiculata L. Walp. to estimate the distribution and utilization of 15N in different organs after stem injection during vegetative, flowering and pod filling stage. During flowering effects of water deficit were also examined. In well watered plants, within 4 days after injection, 65% of 15N accumulated in leaves. This was drastically reduced to 42% by water deficit. 15N accumulation in stems increased under water deficit. The translocation of 15N from the stem base to roots were not altered by water deficit. During pod filling 62% of recovered 15N in the plants had accumulated in seeds, 24% in leaves and 11% in stems within 4 days, whereas the uptake of nitrogen in pod walls and roots remained low (2%). These results demonstrate that the method of injecting very small quantities (1 mg/plant) of 15N into the stem base allows an exact and detailed quantitative assessment of N translocation/distribution with regard to different organs, different growth stages and different treatments.

  4. Tomato Yield and Water Use Efficiency - Coupling Effects between Growth Stage Specific Soil Water Deficits

    DEFF Research Database (Denmark)

    Chen, Si; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2015-01-01

    To investigate the sensitivity of tomato yield and water use efficiency (WUE) to soil water content at different growth stages, the central composite rotatable design (CCRD) was employed in a five-factor-five-level pot experiment under regulated deficit irrigation. Two regression models concerning...... the effects of stage-specific soil water content on tomato yield and WUE were established. The results showed that the lowest available soil water (ASW) content (around 28%) during vegetative growth stage (here denoted θ1) resulted in high yield and WUE. Moderate (around 69% ASW) during blooming and fruit...... effects of ASW in two growth stages were between θ2 and θ5, θ3. In both cases a moderate θ2 was a precondition for maximum yield response to increasing θ5 and θ3. Sensitivity analysis revealed that yield was most sensitive to soil water content at fruit maturity (θ5). Numerical inspection...

  5. Lisdexamfetamine for treatment of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Cowles, Brian J

    2009-04-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of the prodrug lisdexamfetamine for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children and adults and describe its potential place in therapy. Primary literature published between January 1, 1990, and August 1, 2008, was selected from PubMed using the search key words lisdexamfetamine, Vyvanse, and NRP104. References of selected publications were also reviewed. Posters and abstracts of research presented at national meetings were reviewed when available. The product labeling for Vyvanse was also used. Preference was given to published, randomized, and controlled research describing the pharmacokinetics, efficacy, and safety of lisdexamfetamine. Noncontrolled studies, postmarketing reports, and poster presentations were considered secondly. All published studies were included. Lisdexamfetamine is a prodrug of dextroamphetamine covalently bound to l-lysine, which is activated during first-pass metabolism. The unique pharmacokinetic profile owing to lisdexamfetamine's prodrug design and rate-limited enzymatic biotransformation allows for once-daily dosing with a duration of activity of approximately 12 hours. Lisdexamfetamine has been proven to reduce the symptoms of ADHD both in children aged 6-12 years and adults aged 18-55 years, decreasing ADHD rating scale scores by approximately 27 and 19 points, respectively. Adverse effects with an incidence greater than 10% during preclinical trials included appetite suppression, insomnia, and headache. Lisdexamfetamine's unique pharmacokinetic properties may provide additional safety with regard to reducing abuse potential. As with other central nervous system (CNS) stimulants, concerns regarding sudden cardiac death and adverse effects on growth also apply to lisdexamfetamine. Lisdexamfetamine provides another amphetamine-based CNS stimulant option for treatment of children and adults with ADHD. However, its use may be limited by a

  6. Atomoxetine treatment in adults with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Walker, Daniel J; Mason, Oren; Clemow, David B; Day, Kathleen A

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a CNS disorder that has its onset in childhood, but often persists into adulthood. There is growing recognition that adult ADHD can result in multiple negative consequences for individuals. ADHD is also often associated with a number of comorbid psychiatric disorders. Atomoxetine (ATX), a nonstimulant, selective noradrenergic reuptake inhibitor, was approved in the United States in 2002 for the treatment of ADHD in children and adolescents, as well as adults. We review here the safety and efficacy of ATX in adults with ADHD, including data in special populations, functional outcomes, as well as provider and patient real-world perceptions. We searched the databases Embase, MEDLINE and PsycINFO using the terms 'ADHD' and 'adult' and 'ATX' capturing publications from January 1, 1998, to March 27, 2014. Only publications in English were considered. ATX demonstrated significantly greater improvement than placebo (PBO) on the Conners Adult ADHD Rating Scale-Investigator rated:Screening Version (CAARS-Inv:SV) in all trials (N = 6; total score difference ranged from -3.5 to -5.5). For long-term trials using the CAARS-Inv:SV, ATX demonstrated significantly greater improvement than PBO in three of four trials (total score differences ranged from -0.1 to -6.0). In short-term studies, ATX showed significantly greater improvement than PBO on the Adult ADHD Quality-of-Life scale total score in three of three studies, but results were mixed on the Sheehan Disability Scale. Three studies of ATX have reported statistically significant improvement (compared with PBO) on the Behavior Rating Inventory of Executive Function-Adult Version Self Report scale. The most common adverse events (occurring in ≥ 10% of patients taking ATX) were nausea, dry mouth, decreased appetite, insomnia and fatigue. ATX is an important treatment option for the right patient. ATX can provide long-term, consistent symptom relief and functional improvement

  7. Nitrogen accumulation in lucerne (Medicago sativa L. under water deficit stress

    Directory of Open Access Journals (Sweden)

    Vasileva Viliana

    2013-01-01

    Full Text Available In order to study nitrogen accumulation in aboveground and root dry mass in lucerne (Medicago sativa L. under water deficit stress, a pot experiment was carried out at the Institute of Forage Crops, Pleven, Bulgaria. The plants were grown under optimum water supply (75-80% FC and 10-days water deficit stress was simulated at the stage of budding by interrupting the irrigation until soil moisture was reduced to 37-40% FC. Mineral nitrogen fertilization (ammonium nitrate at the doses of 40, 80, 120 and 160 mg N kg-1 soil was applied. It was found that nitrogen accumulation in dry aboveground mass was reduced to 18.0%, and in dry root mass to 26.5% under water deficit stress. Mineral nitrogen fertilization contributed to easily overcome the stress conditions of water deficit stress in lucerne.

  8. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  9. Effects of Soil Water Deficit on Insecticidal Protein Expression in Boll Shells of Transgenic Bt Cotton and the Mechanism

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-12-01

    Full Text Available This study was conducted to investigate the effects of soil water deficit on insecticidal protein expression in boll shells of cotton transgenic for a Bt gene. In 2014, Bt cotton cultivars Sikang 1 (a conventional cultivar and Sikang 3 (a hybrid cultivar were planted in pots and five soil water content treatments were imposed at peak boll stage: 15% (G1, 35% (G2, 40% (G3, 60% (G4, and 75% field capacity (CK, respectively. Four treatments (G2, G3, G4, and CK were repeated in 2015 in the field. Results showed that the insecticidal protein content of boll shells decreased with increasing water deficit. Compared with CK, boll shell insecticidal protein content decreased significantly when soil water content was below 60% of maximum water holding capacity for Sikang 1 and Sikang 3. However, increased Bt gene expression was observed when boll shell insecticidal protein content was significantly reduced. Activity assays of key enzymes in nitrogen metabolism showed that boll shell protease and peptidase increased but nitrogen reductase and glutamic-pyruvic transaminase (GPT decreased. Insecticidal protein content exhibited significant positive correlation with nitrogen reductase and GPT activities; and significant negative correlation with protease and peptidase activities. These findings suggest that the decrease of insecticidal protein content associated with increasing water deficit was a net result of decreased synthesis and increased decomposition.

  10. Physiological and biochemical changes in Matricaria chamomilla induced by Pseudomonas fluorescens and water deficit stress

    Directory of Open Access Journals (Sweden)

    Hamid MOHAMMADI

    2018-04-01

    Full Text Available Environmental stresses and rhizosphere microorganisms affect growth parameters and accumulation of active ingredients especially in plants with medicinal properties. The present study examined the effects of chamomile (Matricaria chamomilla L. seedling inoculation with Pseudomonas fluorescens PF-135 strain on its growth parameters, photosynthetic pigments, proline, malondialdehyde (MDA, and hydrogen peroxide (H2O2 content, and essential oil concentration at both regular watering and water deficit experiments. Based on the obtained results, water deficit stress reduced root dry mass, and flower fresh and dry mass as well. However, amount of H2O2 and MDA in root and shoot tissues were considerably lower in inoculated plants compared to non-inoculated ones under both normal watering and water deficit regimes. It indicates that lipid peroxidation and production of reactive oxygen species has been diminished in inoculated plants. Also, essential oil content in inoculated plants significantly increased compared with that of non-inoculated ones under water deficit stress condition. It can be concluded that P. fluorescens PF-135 strain has an outstanding potential to alleviate adverse effects of water deficit on plant growth, and hence can be used as an excellent PGPR in order to boost chamomile productivity especially under water deficit stress condition.

  11. Improving yield and water productivity of maize grown under deficit-irrigated in dry area conditions

    Directory of Open Access Journals (Sweden)

    Mohamed H. Abd el-wahed

    2015-10-01

    Full Text Available Scarcity of water is the most severe constraint for development of maize in arid and semi-arid areas. Based on the actual crop need, the irrigation management has to be improved so that the water supply to the crop can be reduced while still achieving high yield. Therefore, the current study has been organized to evaluate the effects of deficit sprinkler irrigation (DSI and farmyard manure (FYM on Grain yield (GY and crop water productivity (CWP of corn, a 2-year experiment was conducted in arid region of Libya. The DSI treatments were (I100 = 100%, I85 = 85% or I70 = 70% of the crop evapotranspiration. FYM treatments were (0, 10 ton ha−1 spread either on the soil surface, incorporated with surface or subsurface layer (FYM10s, FYM10m or FYM10ss, respectively and 20 ton ha−1 spread as before (FYM20s, FYM20m or FYM20ss, respectively. Results indicated that the highest values of grain yield (GY were obtained from I100 treatment, while the lowest were observed in I70. FYM20ss enhanced GY than other FYM treatments in both seasons. The highest GY and CWP were recorded with I100 and received FYM20ss. It could be considered as a suitable under arid environmental conditions and similar regions, the treatment (I100 × FYM20ss is the most suitable for producing high GY and CWP. Under limited irrigation water, application of (I85 ×FYM20ss treatment was found to be favorable to save 15% of the applied irrigation water, at the time in which produced the same GY.

  12. Transpiration and leaf growth of potato clones in response to soil water deficit

    Directory of Open Access Journals (Sweden)

    André Trevisan de Souza

    2014-04-01

    Full Text Available Potato (Solanum tuberosum ssp. Tuberosum crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation.

  13. Yield and water use efficiency of deficit-irrigated maize in a semi ...

    African Journals Online (AJOL)

    Yield and water use efficiency of deficit-irrigated maize in a semi-arid region of Ethiopia. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development.

  14. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    International Nuclear Information System (INIS)

    Bazza, M.

    1996-01-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using 13 C discrimination Δ as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as Δ were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in Δ. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with Δ although the correlation coefficient of grain yield versus Δ was not high ( ** ). The data suggest that while a high Δ value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in Δ and the yield of a cultivar. However, Δ of a genotype can also provide valuable information with respect to plant parameters responsible for the control of Δ and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs, 2 figs, 2 tabs

  15. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bazza, M [Rabat-Institus, Rabat (Morocco). Inst. Agronomique et Veterinaire Hassan II

    1996-07-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using {sup 13}C discrimination {Delta} as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as {Delta} were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in {Delta}. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with {Delta} although the correlation coefficient of grain yield versus {Delta} was not high (< 0.45{sup **}). The data suggest that while a high {Delta} value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in {Delta} and the yield of a cultivar. But, {Delta} of a genotype can also provide valuable information with respect to plant parameters responsible for the control of {Delta} and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs,2figs,2tabs.

  16. Differences in proleptic and epicormic shoot structures in relation to water deficit and growth rate in almond trees (Prunus dulcis).

    Science.gov (United States)

    Negrón, Claudia; Contador, Loreto; Lampinen, Bruce D; Metcalf, Samuel G; Guédon, Yann; Costes, Evelyne; DeJong, Theodore M

    2014-02-01

    Shoot characteristics differ depending on the meristem tissue that they originate from and environmental conditions during their development. This study focused on the effects of plant water status on axillary meristem fate and flowering patterns along proleptic and epicormic shoots, as well as on shoot growth rates on 'Nonpareil' almond trees (Prunus dulcis). The aims were (1) to characterize the structural differences between proleptic and epicormic shoots, (2) to determine whether water deficits modify shoot structures differently depending on shoot type, and (3) to determine whether shoot structures are related to shoot growth rates. A hidden semi-Markov model of the axillary meristem fate and number of flower buds per node was built for two shoot types growing on trees exposed to three plant water status treatments. The models segmented observed shoots into successive homogeneous zones, which were compared between treatments. Shoot growth rates were calculated from shoot extension measurements made during the growing season. Proleptic shoots had seven successive homogeneous zones while epicormic shoots had five zones. Shoot structures were associated with changes in growth rate over the season. Water deficit (1) affected the occurrence and lengths of the first zones of proleptic shoots, but only the occurrence of the third zone was reduced in epicormic shoots; (2) had a minor effect on zone flowering patterns and did not modify shoot or zone composition of axillary meristem fates; and (3) reduced growth rates, although patterns over the season were similar among treatments. Two meristem types, with different latency durations, produced shoots with different growth rates and distinct structures. Differences between shoot type structure responses to water deficit appeared to reflect their ontogenetic characteristics and/or resource availability for their development. Tree water deficit appeared to stimulate a more rapid progression through ontogenetic states.

  17. Water deficit imposed by partial irrigation at different plant growth stages of common bean

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, K.

    1995-01-01

    The purpose of this study was to identify specific growth stages of common bean crop, at which the plant is less sensitive to water stress so that irrigation can be omitted without significant decrease in biological nitrogen fixation and yield. Two field experiments were conducted at a University experiments station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil ( Typic durustoll ). The climate is warm and dry ( mean air temperature 16 degree Celcius and mean relative humidity 74% ) during the cropping season and rainfall of 123 mm was recorded during the cropping period. The treatments consisted of combinations of 7 irrigation regimes ( I1 = all normal watering; I2 = all stres; I3 = traditional practice; I4 = single stress at vegetation; I5 flowering; I6 = yield formation and I7 = ripening stages ) and 2 levels of applied N ( 20 and 80 kg/ ha ). Differential irrigation was started after 3 uniform irrigations for germination and crop establishment. Soil moisture was monitored with a neutron probe down to 0.60 m depth, before and 24 h after each irrigation. Biological Nitrogen Fixation was calculated using the N- 15 metodology in the 20 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering stage was the most sensitive to number of pods and grain yield. Biological Nitrogen Fixation was significantly affected by water stress at flowering and formation stages. The crop water use efficiency ( kg/ m 3 ) was the lowest at flowering period and the yield response factor ( Ky ) was higher in treatments I2 ( all stress ) and I5 (stress at flowering ). Comparing with traditional practice by farmers of the region, only treatments I1 and I7 had 13 and 10 % higher crop water use effeciency. 15 tabs., 7 refs. ( Author )

  18. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia.

    Science.gov (United States)

    Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali

    2012-12-30

    Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  20. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  1. Physiological response and productivity of safflower lines under water deficit and rehydration.

    Science.gov (United States)

    Bortolheiro, Fernanda P A P; Silva, Marcelo A

    2017-01-01

    Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  2. Physiological response and productivity of safflower lines under water deficit and rehydration

    Directory of Open Access Journals (Sweden)

    FERNANDA P.A.P. BORTOLHEIRO

    2017-12-01

    Full Text Available ABSTRACT Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L., a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  3. Effectiveness of Stability Indices for Bread Wheat Genotypes Selection to Water Deficit Tolerant

    Directory of Open Access Journals (Sweden)

    A Naderi

    2013-12-01

    Full Text Available In countries such as Iran which will be faced water deficit as the main challenge in the future and the food production is going to be dependent to water recourses, wheat water-deficit tolerant and adapted genotypes release is one of the most important strategies under such a condition. In order to study the adaptation and terminal water deficit stress tolerance, fifteen bread wheat lines and Chamran cultivar as the check were evaluated. This research was carried out at Ahvaz, Dezfool, Zabol and Darab, south warm region research stations, in 2007-08 and 2008-09, in two separated experiments (1-well-watered and 2- terminal water deficit stress, using complete randomized block design with three replications. Data were analyzed and genotypes response was evaluated based on tolerance indices. Results showed that the difference among stations, years, genotypes and double and triple effects of source variations were significant at 1% probability level. Mean grain yield was 4300 Kg/ha in first year, while grain yield increased significantly in second year and reached to 5692 Kg/ha. Mean grain yield were 5840 and 4591Kg/ha under well-watered and terminal water deficit stress conditions, respectively. Correlation coefficients among STI, GMP ،MP and K1STI were significant. Correlation coefficient between slop of linear regression of grain yield in response to drought stress intensity and grain yield under terminal water deficit stress was positively and, with K2STI, TOL and SSI was negatively significant. Grain yield index, (YIR the proportion of grain yield of each genotype to grand mean of grain yield of all genotypes was the most important components to define grain yield in stepwise regression under both experiment conditions. According to the results of this research and based on tolerance indices, lines No. 2, 14 and 15 were selected as the high potential- terminal water deficit stress tolerant genotypes.

  4. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  5. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park

    Science.gov (United States)

    James A. Lutz; Jan W. van Wagtendonk; Jerry F. Franklin

    2010-01-01

    Modelled changes in climate water deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and composition may accelerate in the future, with species responding individualistically to further declines in water availability. Declining water availability may disproportionately affect Pinus monticola...

  6. Alpha-tocopherol alters endogenous oxidative defense system in mungbean plants under water-deficit condition

    International Nuclear Information System (INIS)

    Sadiq, M.; Akram, N.A.; Javed, M.T.

    2016-01-01

    Foliar spray of plant growth regulating compounds including antioxidants is an effective strategy to overcome the adverse effects of environmental constraints on different plants. A pot experiment was conducted to assess the influence of exogenously applied alpha-tocopherol (Toc) in up-regulating the oxidative defense system in two mungbean cultivars (Cyclone 7008 and Cyclone 8009) grown under normal and water deficit conditions. After 30-day of water deficit treatment, four levels of Toc (0 (non spray), 100, 200 and 300 mg L-1) were applied as a foliage application (at vegetative growth stage). A significant reduction was observed in plant height and total soluble proteins, while an increase was observed in the levels of hydrogen peroxide (H/sub 2/O/sub 2/), ascorbic acid, total phenolics, malondialdehyde (MDA), total free amino acids and the activities of enzymatic (SOD, POD and CAT) antioxidants in both mungbean cultivars under drought conditions. Foliar spray of Toc was effective in improving plant height, AsA, total soluble proteins, total free amino acids, and activities of POD and CAT enzymes, but reduced MDA under water stress conditions. However, no prominent change was observed on the concentrations of H/sub 2/O/sub 2/, phenolics, and SOD enzyme due to foliar-applied Toc in both mungbean cultivars under both water regimes. Both mungbean cultivars were almost similar in all attributes measured except that cv. Cyclone 7008 was higher in the levels of H/sub 2/O/sub 2/ and TSP while cv. Cyclone 8009 in phenolics. So, from the results of this study we can suggest that exogenous application of Toc is effective in improving growth and antioxidative potential of mungbean plants under dry arid environment. (author)

  7. REPEATED MEASURES ANALYSIS OF CHANGES IN PHOTOSYNTHETIC EFFICIENCY IN SOUR CHERRY DURING WATER DEFICIT

    Directory of Open Access Journals (Sweden)

    Marija Viljevac

    2012-06-01

    Full Text Available The objective of this study was to investigate changes in photosynthetic efficiency applying repeated measures ANOVA using the photosynthetic performance index (PIABS of the JIP-test as a vitality parameter in seven genotypes of sour cherry (Prunus cerasus, L. during 10 days of continuous water deficit. Both univariate and multivariate ANOVA repeated measures revealed highly significant time effect (Days and its subsequent interactions with genotype and water deficit. However, the multivariate Pillai’s trace test detected the interaction Time × Genotype × Water deficit as not significant. According to the Tukey’s Studentized Range (HSD test, differences between the control and genotypes exposed to water stress became significant on the fourth day of the experiment, indicating that the plants on the average, began to lose their photosynthetic efficiency four days after being exposed to water shortage. It corroborates previous findings in other species that PIABS is very sensitive tool for detecting drought stress.

  8. Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance.

    Science.gov (United States)

    Rivas, Rebeca; Oliveira, Marciel T; Santos, Mauro G

    2013-02-01

    The main objective of this study was to assess whether recurring water stress occurring from seed germination to young plants of Moringa oleifera Lam. are able to mitigate the drought stress effects. Germination, gas exchange and biochemical parameters were analysed after three cycles of water deficit. Young plants were used 50 days after germination under three osmotic potentials (0.0, -0.3 and -0.4 MPa). For each germination treatment, control (irrigated) and stressed (10% of water control) plants were compared for a total of six treatments. There were two cycles of drought interspersed with 10 days of rehydration. The young plants of M. oleifera showed increased tolerance to repeated cycles of drought, maintaining high relative water content (RWC), high water use efficiency (WUE), increased photosynthetic pigments and increased activity of antioxidant enzymes. There was rapid recovery of the photosynthetic rate during the rehydration period. The stressed plants from the -0.3 and -0.4 MPa treatments showed higher tolerance compared to the control plants. The results suggest that seeds of M. oleifera subjected to mild water deficit have had increased the ability for drought tolerance when young plant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Remobilization of carbon and nitrogen in wheat as influenced by postanthesis water deficits

    International Nuclear Information System (INIS)

    Palta, J.A.; Kobata, T.; Turner, N.C.; Fillery, I.R.

    1994-01-01

    Preanthesis stored C and N in wheat (Triticum aestivum L.) are important in a mediterranean climate because grain filling frequently depends on the remobilization of preanthesis assimilates. We determined the effect of the rate of development of postanthesis water deficits on the remobilization of C and N to the grain using stable isotopes of C and N accumulated in the plant during the vegetative phase. Plants were grown in pots with adequate water and under similar temperature and humidity conditions until anthesis, and then were transferred to two temperature and humidity regulated greenhouses, and watering was stopped. One greenhouse was maintained at minimum relative humidity of 80% and the other at 40%. Within 6 d of anthesis the rates of development of plant water deficits became different and for the first 19 d after anthesis they were 0.10 and 0.18 MPa d-1 for the high and low humidity regimes, respectively. Total grain C with fast development of water deficits was reduced by 24%, relative to the slow rate, because postanthesis C assimilation was reduced by 57%, while remobilization of preanthesis stored C was increased by 36%. Total grain N was not affected by the rate of development of water deficits because there was a greater retranslocation of preanthesis N with fast relative to slow development of water deficits and because there was a smaller loss of preanthesis N with fast development of water deficits. Fast development of water deficits reduced losses of preanthesis N from 25% to 6%. The absolute contributions of preanthesis C and N to the grain were 449 and 35 mg plant-1, respectively, with fast development of water deficits. These contributions accounted for 64 and 81% of the total grain C and N, respectively. The gain in grain 13C and 15N in the mainstem and Tiller 1 of plants exposed to rapid development of water deficits, arose not only from remobilization from the straw of those shoots, but also seemed to be supplemented by C and N

  10. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize ( Zea mays l.) in subtropical northeastern Himalayas

    Science.gov (United States)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  11. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    NARCIS (Netherlands)

    Kadam, N.N.; Yin, X.; Bindraban, P.S.; Struik, P.C.; Jagadish, K.S.V.

    2015-01-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other

  12. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    Science.gov (United States)

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  13. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  14. Nitrogen accumulation in lucerne (Medicago sativa L.) under water deficit stress

    OpenAIRE

    Vasileva Viliana; Vasilev Emil

    2013-01-01

    In order to study nitrogen accumulation in aboveground and root dry mass in lucerne (Medicago sativa L.) under water deficit stress, a pot experiment was carried out at the Institute of Forage Crops, Pleven, Bulgaria. The plants were grown under optimum water supply (75-80% FC) and 10-days water deficit stress was simulated at the stage of budding by interrupting the irrigation until soil moisture was reduced to 37-40% FC. Mineral nitrogen fertilization (ammonium nitrate) at the doses of 40, ...

  15. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    Science.gov (United States)

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    Science.gov (United States)

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  17. Study of Sesame (Sesame indicum L. Cultivars based on Morphological Characteristics Under Water Deficit Stress Condition Using Factor Analysis

    Directory of Open Access Journals (Sweden)

    A Asghari

    2014-03-01

    Full Text Available In order to evaluation sesame cultivars based on morphological characteristics under water deficit stress condition using factor analysis, an experiment was conducted as a split plot based on randomized complete block design with three replications during 2009 in Research Center of Agriculture and Natural Resources in Parsabad. In this experiment, irrigation as the main factor at three levels (50, 75 and 100 percent of crop water requirement and ten sesame cultivars as the sub-factor were studied. The water requirement of sesame was calculated using CROPWAT software (Penman-Monteith method according to FAO-56. Results showed significant differences between the cultivars and the irrigation levels for all studied traits. Interaction between cultivars and irrigation levels was significant for some of traits. Comparisons of means showed that in water deficit condition, yield and all of traits reduced. In all traits the greatest amounts observed in complete irrigation treatment. In 50 percent of water requirement treatment, amount of leaf chlorophyll, root length, root branches and root length/plant height ratio were greater than other treatments. The Karaj1, Ultan, Naze and IS cultivars were better than other cultivars in stress and non stress condition. In factor analysis 5 and 4 first factors in non stress and stress condition explained 91.36 and 89.52 percent of trait variance, respectively. Grouping of sesame cultivars based on first and second factors in non stress conditions showed that Karaj1, Ultan and Naze cultivars were better than other cultivars. Also, in stress conditions Karaj1 and Ultan cultivars grouped as water deficit stress and better cultivars.

  18. Water curative treatment device

    International Nuclear Information System (INIS)

    Fridrihsons, J.

    2011-01-01

    The device is made of two water containers (water that is intended to be activated) which are connected with a glass pipe in lower parts. In these containers disinfectant ultraviolet radiance “U” type luminescent light bulbs are placed which are connected to a mono-phase electrical power network from the shell surface spiral steel wire electrodes through a voltage duplicator. In water such harmless chemical composition coagulator is placed which automatically in the lower part of the connecting glass pipe creates residue hydra-gate that separates fractions of anion and cation. The lower parts of the containers are equipped with coal filter taps; mixing the anion and cation in equal proportions allows collecting single fractions of activated water selectively and gain drinking water which is refined from residues and processed antibacterially. (author)

  19. Early discontinuation of attention-deficit/hyperactivity disorder drug treatment: a danish nationwide drug utilization study

    DEFF Research Database (Denmark)

    Pottegård, Anton; Bjerregaard, B. K.; Kortegaard, L. S.

    2015-01-01

    Knowledge of patterns of treatment discontinuation in attention-deficit/hyperactivity disorder (ADHD) drug treatment is of importance, for both the clinical practice and the study of long-term treatment outcomes. The purpose of this study was to describe early discontinuation of ADHD drug treatme...

  20. water deficit effects on morpho-physiologicals parameters in durum ...

    African Journals Online (AJOL)

    S. Chahbar

    1 sept. 2016 ... ABSTRACT. Various morpho-physiological characters r rate water loss, stomatal density, stomata genotypes under two hydrous conditions strategies develops by each genotype have present an appreciable variability intrasp related to the adaptation to the water defici for relative water content who is ...

  1. Response of Eucalyptus grandis trees to soil water deficits

    CSIR Research Space (South Africa)

    Dye, PJ

    1996-01-01

    Full Text Available , and sap flow rates revealed that prevention of soil water recharge resulted in only moderate drought stress. At Site 1, the trees abstracted water down to 8 m below the surface, whereas trees at Site 2 obtained most of their water from depths below 8 m. I...

  2. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    Science.gov (United States)

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  3. Methamphetamine treatment during development attenuates the dopaminergic deficits caused by subsequent high-dose methamphetamine administration

    OpenAIRE

    McFadden, Lisa M; Hoonakker, Amanda J; Vieira-Brock, Paula L; Stout, Kristen A; Sawada, Nicole M; Ellis, Jonathan D; Allen, Scott C; Walters, Elliot T; Nielsen, Shannon M; Gibb, James W; Alburges, Mario E; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2011-01-01

    Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent (i.e., postnatal day (PND) 40) rats are less susceptible to this damage than young adult (PND90) rats. In addition, biweekly treatment with METH, beginning at PND40 and continuing throughout development, prevents the persistent dopaminergic deficits caused by a “challenge” high-dose METH regimen when administered ...

  4. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  5. Mine water treatment in Donbass

    Energy Technology Data Exchange (ETDEWEB)

    Azarenkov, P A; Anisimov, V M; Krol, V A

    1980-10-01

    About 2,000,000 m$SUP$3 of mine water are discharged by coal mines yearly to surface waters in the Donbass. Mine water in the region is rich in mineral salts and suspended matter (coal and rock particles). The DonUGI Institute developed a system of mine water treatment which permits the percentage of suspended matter to be reduced to 1.5 mg/l. The treated mine water can be used in fire fighting and in dust suppression systems in coal mines. A scheme of the water treatment system is shown. It consists of the following stages: reservoir of untreated mine water, chamber where mine water is mixed with reagents, primary sedimentation tanks, sand filters, and chlorination. Aluminium sulphate is used as a coagulation agent. To intensify coagulation polyacrylamide is added. Technical specifications of surface structures in which water treatment is carried out are discussed. Standardized mine water treatment systems with capacities of 600 m$SUP$3/h, with 900, 1200, 1500, 1800 and 2100 m$SUP$3/h capacities are used. (In Russian)

  6. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba

    Science.gov (United States)

    Kabbadj, Ablaa; Makoudi, Bouchra; Mouradi, Mohammed; Frendo, Pierre; Ghoulam, Cherki

    2017-01-01

    Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d’Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes. PMID:29281721

  7. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba.

    Directory of Open Access Journals (Sweden)

    Ablaa Kabbadj

    Full Text Available Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD, Luz d'Otonio (LO and Reina Mora (RM to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity. A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.

  8. Evaluating effect of biofertilizer on nodulation and soybean (Glycine max L plants growth characteristics under water deficit stress of seed

    Directory of Open Access Journals (Sweden)

    M. Tajik Khaveh

    2016-05-01

    Full Text Available In order to evaluate the effects of biofertilizer on soybean (Glycine max L. seed vigor that produced under water deficit condition and related traits, an experiment was conducted in a factorial layout based of complete randomized block design with four replications at the research greenhouse of Aboureihan campus- Tehran University, Iran. Experimental treatments were include biofertilizer (seed inoculation with Bradyrhizobium japonicum, co-inoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens, co-inoculation with Bradyrhizobium japonicum and Glomus mosseae, Cultivar (Zalta Zalha and Clark×Hobbit line and water deficit stress [irrigation plants after 50 (normal irrigation, 100 (medium stress, 150 (sever stress mm evaporation from pan class A, in parents field]. Results showed that the water deficit stress had negative effects on seed quality and seedling emergence percentage, mean daily seedling emergence, root, leaf and shoot dry weight, number of nodule were decreased. ZaltaZalha cultivar had higher shoot dry weight and number of leaf compared with other cultivars. Applications of biofertilzer was effective on stem diameter, root, leaf and shoot dry weight, number of leaf and nodule and those attributes increased by co-inoculation of Bradyrhizobium japonicum and Glomus mosseae. Also, use of biofertilizer in stress levels was effective on stem dry weight. Stem dry weight was increased by Co-inoculation of cultivar seeds with Bradyrhizobium japonicum and Glomus mosseae.

  9. Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex.

    Science.gov (United States)

    Toriumi, Kazuya; Oki, Mika; Muto, Eriko; Tanaka, Junko; Mouri, Akihiro; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2016-06-01

    We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.

  10. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid.

    Science.gov (United States)

    Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén

    2016-12-01

    High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit.

    Science.gov (United States)

    Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki

    2013-07-01

    We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.

  12. Effects of Foliar Applications of Sulfur, Nitrogen and Phosphorus on Castor Bean (Ricinus cmmunis L. Seed Yield and its Components under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    M. Mosavi

    2015-08-01

    Full Text Available To determine the effects of foliar applications of some macroelements on castor seed yield and its components under drought stress conditions, an experiment was conducted at the Agricultural Research Center of East Azerbaijan province. A factorial experiment, based on randomized complete block design with three replications, was carried out during 2013 growing season. Treatment factors consisted of irrigations with two levels (no water deficit and water deficit during grain filling stage and of foliar applications of macroelements with four levels [control, wettable sulfur (0.2 percent, nitrogen (urea: 0.6 percent and phosphor (super phosphate triple: 0.4 percent. Traits studied were: plant height, number of inflorescence, number of lateral branches, number of leaves, leaf temperature, relative water content, number of seeds per plant, 1000-kernal weight and seed yield. All traits, except number of inflorescence, were affected significantly by drought stress. Water deficit reduced plant height, number of leaves, number of seeds per plant, 1000-kernal weight, seed yield, relative water content, while it increased leaf temperature. Number of lateral branches was affected significantly by interaction between factors. Maximum latral branches (1.86 were obtained under non-stress treatment with nitrogen foliar application. Moderate drought stress had significant effect on leaf temperature and relative water content. It seems that, these traits can be used in determination of water deficit effects on castor bean.

  13. Effect of water deficit on growth and photosynthetic characteristics of ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... Danièle Clavel, Omar Diouf, Jean L, Khalfaoui, SB (2006). Genotypes ... chlorophyll fluorescence parameters and carbon isotope discrimination of ... oxygen evolution at low water potential in leaf discs lacking an epidermis.

  14. Working to reverse a water deficit | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and Yugoslavia, Bataineh began work for the Ministry of Water and Irrigation in 1975. ... cubic metres of wastewater treated in Jordan can only be used in agriculture ... Consequently, the ministry has started to improve existing wastewater ...

  15. Current Medications for the Treatment of Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Vaughan, Brigette S.; Roberts, Holly J.; Needelman, Howard

    2009-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is common among children. Fortunately, ADHD is highly treatable with medication. The purpose of this article is to serve as a primer on medication treatment for ADHD for school psychologists. The article discusses the available stimulant and nonstimulant medication for the treatment of ADHD.…

  16. Attention Deficit Hyperactive Disorder: Alternative Treatment Plans for School Age Children Diagnosed with ADHD.

    Science.gov (United States)

    Carbonell, Claudia L.

    This literature review of attention deficit hyperactivity disorder (ADHD) reviews the diagnosis and treatment options for children diagnosed with ADHD. It describes the complexity of ADHD, its symptoms, treatments, and implications on a child's social and academic development as well as strategies for assisting such children. Individual sections…

  17. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  18. Genetic variation of response to water deficit in parental genotypes ...

    African Journals Online (AJOL)

    dgomi

    2016-06-22

    Jun 22, 2016 ... variability of measured parameters was explained by the effects of line, treatment and their interaction with treatment .... The pH and the electrical .... FLOR, Date of the first stem flower bud stage (days); LS, length ...... Plant Cell.

  19. Mechanism and treatment for the learning and memory deficits associated with mouse models of Noonan syndrome

    Science.gov (United States)

    Lee, Yong-Seok; Ehninger, Dan; Zhou, Miou; Oh, Jun-Young; Kang, Minkyung; Kwak, Chuljung; Ryu, Hyun-Hee; Butz, Delana; Araki, Toshiyuki; Cai, Ying; Balaji, J.; Sano, Yoshitake; Nam, Christine I.; Kim, Hyong Kyu; Kaang, Bong-Kiun; Burger, Corinna; Neel, Benjamin G.; Silva, Alcino J.

    2015-01-01

    In Noonan Syndrome (NS) 30% to 50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated Ptpn11 mutations show hippocampal-dependent spatial learning impairments and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of the PTPN11D61G in adult hippocampus results in increased baseline excitatory synaptic function, deficits in LTP and spatial learning, which can all be reversed by a MEK inhibitor. Furthermore, brief treatment with lovastatin reduces Ras-Erk activation in the brain, and normalizes the LTP and learning deficits in adult Ptpn11D61G/+ mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS. PMID:25383899

  20. Water treatments of the future

    International Nuclear Information System (INIS)

    Poon, John; Moore Kenneth

    2011-01-01

    This article discusses and reviews nine water technologies. They are solar desalination, synthetic aquaporin membranes, microbial fuel cell and desalination, forward osmosis, resource recovery and brine managment, 'Smart' water grids, micropollutant treatment, the Cities of the Future program and high retention membrane bioreactors.

  1. Membrane technology water treatment facility

    International Nuclear Information System (INIS)

    Gruzdev, E. N.; Starikov, E.N.

    2009-01-01

    The suggested technical solution, in contrast with the traditional treatment methods using pressure filtration and sorption cleaning, can be applied with minimal used for equipment, stable production and the use of reagents, prevention of the formation of waste water with high mineral content and avoid the need for neutralization of the main stream of waste water

  2. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  3. Water deficit and water surplus maps for Brazil, based on FAO Penman-Monteith potential evapotranspiration

    Directory of Open Access Journals (Sweden)

    Ronalton Evandro Machado

    2008-12-01

    Full Text Available The climatological water balance (CWB proposed by Thornthwaite and Mather (1957 is a useful tool for agricultural planning. This method requires the soil water holding capacity (SWHC, rainfall (R and potential evapotranspiration (PET data as input. Among the methods used to estimate PET, the one proposed by Thornthwaite (1948 is the simplest and the most used in Brazil, however it presents limitations of use, which is caused by its empirical relationships. When Thornthwaite PET method is used into the CWB, the errors associated to PET are transferred to the output variables, mainly water deficit (WD and water surplus (WS. As all maps of WD and WS for Brazil are based on Thornthwaite PET, the objective of this study was to produce new maps of these variables considering Penman-Monteith PET. For this purpose, monthly normal climate data base (1961-1990 from Brazilian Meteorological Service (INMET, with 219 locations in all country, was used. PET data were estimated by Thornthwaite (TH and FAO Penman-Monteith (PM methods. PET, from both methods, and R data were used to estimate the CWB for a SWHC of 100 mm, having as results actual ET (AET, WD and WS. Results obtained with PET from the two methods were compared by regression analysis. The results showed that TH method underestimated annual PM PET by 13% in 84% of the places. Such underestimation also led to AET and WD underestimations of 7% (in 69% of places and 40% (in 83% of places, respectively. For WS, the use of TH PET data in the CWB resulted in overestimations of about 80% in 78% of places. The differences observed in the CWB variables resulted in changes in the maps of WD and WS for Brazil. These new maps, based on PM PET, provide more accurate information, mainly for agricultural and hydrological planning and irrigation and drainage projects purposes.

  4. Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Angelo Albano da Silva Bertholdi

    2017-11-01

    Full Text Available ABSTRACT Water deficit is most frequent in forest physiognomies subjected to climate change. As a consequence, several tree species alter tissue water potential, gas exchange and production of carbon compounds to overcome damage caused by water deficiency. The working hypothesis, that a reduction in gas exchange by plants experiencing water deficit will affect the composition of carbon compounds in soluble sugars, lipids and vegetative structures, was tested on Copaifera langsdorffii. Stomatal conductance, leaf water potential, and CO2 assimilation rate declined after a period of water deficit. After rehydration, leaf water potential and leaf gas exchange did not recover completely. Water deficit resulted in 13C enrichment in leaves, soluble sugars and root lipids. Furthermore, the amount of soluble sugars and root lipids decreased after water deficit. In rehydration, the carbon isotopic composition and amount of root lipids returned to levels similar to the control. Under water deficit, 13C-enriched in root lipids assists in the adjustment of cellular membrane turgidity and avoids damage to the process of water absorption by roots. These physiological adjustments permit a better understanding of the responses of Copaifera langsdorffi to water deficit.

  5. Functionally relevant climate variables for arid lands: Aclimatic water deficit approach for modelling desert shrub distributions

    Science.gov (United States)

    Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers

    2015-01-01

    We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...

  6. An evaluation of water deficit tolerance screening in pigmented indica rice genotypes

    International Nuclear Information System (INIS)

    Chutipaijit, S.; Sompornpailin, K.

    2011-01-01

    Eight pigmented genotypes of indica subspecies were geminated and then treated by mannitol-induced water deficit stress. A change of growth characteristics, photosynthetic pigments, lipid peroxidation, DNA content, proline content and anthocyanin accumulation in stressed seedling (100 mM mannitol) and control plant (0 mM mannitol) were calculated. Growth performances, photosynthetic pigment concentrations , and DNA contents in all rice genotypes were dropped whereas proline, anthocyanin contents and the lipid peroxidation levels were enriched. The stabilization in total photosynthetic pigment concentrations of stressed-seedlings were positively correlated to the proline or anthocyanin accumulation. In contrast, MDA content, the increases in the percentages of drought-stressed seedlings were negatively correlated to the proline or anthocyanin accumulation. The changes in biochemical, physiological and growth parameters were subjected to Wards cluster analysis for water deficit tolerance. These cultivars could be classified into two groups, water deficit sensitive, SY, KD, KLD and TD49 and water deficit tolerance, KS, KK1, KK2 and BSR. (author)

  7. Diallelic analysis to obtain cowpea (Vigna unguiculata L. Walp.) populations tolerant to water deficit.

    Science.gov (United States)

    Rodrigues, E V; Damasceno-Silva, K J; Rocha, M M; Bastos, E A

    2016-05-13

    The purpose of this study was to identify parents and obtain segregating populations of cowpea (Vigna unguiculata L. Walp.) with the potential for tolerance to water deficit. A full diallel was performed with six cowpea genotypes, and two experiments were conducted in Teresina, PI, Brazil in 2011 to evaluate 30 F2 populations and their parents, one under water deficit and the other under full irrigation. A triple-lattice experimental design was used, with six 2-m-long rows in each plot. Sixteen plants were sampled per plot. The data were subjected to analysis of variance, and general and specific combining ability estimates were obtained based on the means. Additive effects were more important than non-additive effects, and maternal inheritance had occurred. The genotypes BRS Xiquexique, Pingo de Ouro-1-2, and MNC99-510F-16-1 were the most promising for use in selection programs aimed at water deficit tolerance. The hybrid combinations Pingo de Ouro-1-2 x BRS Xiquexique, BRS Xiquexique x Santo Inácio, CNCx 698-128G x MNC99-510F-16-1, Santo Inácio x CNCx 698-128G, MNC99-510F-16-1 x BRS Paraguaçu, MNC99- 510F-16-1 x Pingo de Ouro-1-2, and MNC99-510F-16-1 x BRS Xiquexique have the potential to increase grain production and tolerate water deficit.

  8. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    NARCIS (Netherlands)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-01-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (gF) derives a canopy conductance (gW) from measured transpiration by inverting the coupled transpiration model to yield gW = m − n ln(D) where m and n are fitting parameters. In contrast, this paper

  9. Effect of water deficit on Argan tree seedlings (Argania spinosa L ...

    African Journals Online (AJOL)

    USER

    2015-03-17

    Mar 17, 2015 ... The Argan tree, Argania spinosa L., Skeels, is an endemic species in North-West Africa perfectly adapted to aridity and drought. It is in this context that we studied the physiological impact of water deficit on the Argan tree seedlings for eight weeks at a field capacity of 30%. The obtained results reveal.

  10. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  12. Phenotypic plasticity in plants of Lippia dulcis (verbenaceae) subjected to water deficit

    International Nuclear Information System (INIS)

    Villamizar Cujar, Javier Mauricio; Rodriguez Lopez, Nelson Facundo; Tezara Fernandez, Wilmer

    2012-01-01

    Phenotypic plasticity (FP) is one of the mechanisms by which plants can respond to environmental heterogeneity by adjusting their morphology and physiology. This study tested and quantified the FP of Lippia dulcis plants in response to water availability in soil (low, medium and high), on morphologic and biomass allocation traits during the vegetative ontogeny (days 39, 45, 59 and 66). We hypothesized that in response to water availability, a higher FP should be expected in morphological compared to biomass allocation traits. The leaf mass fraction, leaf area ratio, branch length, number of leaves and root mass/leaf mass ratio, showed the largest capacity of plastic adjustment in the L. dulcis plants to water deficit, whereas the specific leaf area represented the trait with the lowest FP along vegetative ontogeny. The magnitude and pattern of FP changed depending on trait, water availability and ontogenic development. Contrary to our hypothesis the morphological traits and biomass allocation traits showed equivalent FP. The models of optimum allocation and optimum foraging are not mutually exclusive under water deficit. L. dulcis changed its pattern of biomass allocation, leaf and root morphology and as an adaptive advantage optimized the balance between organs involved in water acquisition and use. L. dulcis showed a remarkable ability to avoid water deficit.

  13. RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus

    Science.gov (United States)

    2011-01-01

    Background In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. Results Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. Conclusions For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance

  14. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  15. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  16. [TREATMENT OF ATTENTION DEFICIT AND HYPERACTIVITY DISORDER (ADHD): NURSING IMPLICATIONS].

    Science.gov (United States)

    Luna Delgado, Laura; Moriones Jiménez, Olalla

    2014-09-01

    This review aims to know the role of the nurse in ADHD treatment, identifying the most appropriate therapeutic options between nursing interventions and pharmacological treatment. In ADHD, the role of the nurse is to respond family needs about the effectiveness of medication, behavior modification treatment and other alternatives. There are family interventions of psychoeducation that assist the child in the recovery process. Through the education for health, the nurse should promote the combination of behavioral therapy and pharmacological as the only one able to improve child's quality of life. Nurses have a privileged role due to its experience in education for health; this contributes to being a competent agent that provides families essential information about the disease treatment. Spanish schools are lacking a figure that represent health as a relevant subject in the vital process, hence the need of the school nurse.

  17. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  18. An assessment of crop water deficits of the plants growing on the Małopolska Upland (Poland

    Directory of Open Access Journals (Sweden)

    Kowalczyk Agnieszka

    2016-06-01

    Full Text Available The problem of water scarcity is unfavourable for the economy, with the most significant water deficits felt by agriculture. In Poland water deficits in agriculture are occurring more frequently, causing losses in yield, not only in the Lowland areas but also in the Uplands. This paper presents an assessment of the water deficits at various excedance probability levels for four varieties of field crop and for soil types with various water retention capacity, which occur in the Małopolska Upland. Calculations were performed by balancing the amount of available soil water in the root zone. The study was based on the meteorological data from the Institute of Meteorology and Water Management for the years 1971–2010. Daily precipitation data from six rainfall stations: Borusowa, Igołomia, Książ Wielki, Miechów, Olewin and Sielec was utilised as well as average decadal air temperature, water vapour pressure, wind speed and sunshine hours from the meteorological station at Kraków–Balice. The water deficits at an excedance probability level of 20% fluctuated during the growing season from 5 mm (Phaeozems to 190 mm (Leptosols. In the Małopolska Upland in soils with a medium capacity to retain water (110–160 mm, water deficits have occurred even in years of average rainfall (with probability 50%. This study confirms the considerable impact of the high variability of the soil and pluvial conditions in the region on the water deficits of the field crops.

  19. Moisture Supply From the Western Ghats Forests to Water Deficit East Coast of India

    Science.gov (United States)

    Paul, Supantha; Ghosh, Subimal; Rajendran, K.; Murtugudde, Raghu

    2018-05-01

    The mountainous western coast of India, known as the Western Ghats, is considered to be a biodiversity hot spot, but it is under a constant threat due to human activities. The region is characterized by high orographic monsoon precipitation resulting in dense vegetation cover. Feedback of such a dense vegetation on the southwest monsoon rainfall is not yet explored. Here we perform regional climate simulations with the Weather Research and Forecasting model and find that evapotranspiration from the vegetation of Western Ghats contributes 25-40% of the southwest monsoon rainfall over the water-deficit state of Tamil Nadu. This contribution reaches 50% during deficit monsoon years or dry spells within a season. Our findings suggest that recent deforestation in this area will affect not only the biodiversity of the region but also the water availability over Peninsular India, which is already impacted by water scarcity.

  20. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd.

    Science.gov (United States)

    Bascuñán-Godoy, Luisa; Reguera, Maria; Abdel-Tawab, Yasser M; Blumwald, Eduardo

    2016-03-01

    Water deficit stress followed by re-watering during grain filling resulted in the induction of the ornithine pathway and in changes in Quinoa grain quality. The genetic diversity of Chenopodium quinoa Willd. (Quinoa) is accompanied by an outstanding environmental adaptability and high nutritional properties of the grains. However, little is known about the biochemical and physiological mechanisms associated with the abiotic stress tolerance of Quinoa. Here, we characterized carbon and nitrogen metabolic changes in Quinoa leaves and grains in response to water deficit stress analyzing their impact on the grain quality of two lowland ecotypes (Faro and BO78). Differences in the stress recovery response were found between genotypes including changes in the activity of nitrogen assimilation-associated enzymes that resulted in differences in grain quality. Both genotypes showed a common strategy to overcome water stress including the stress-induced synthesis of reactive oxygen species scavengers and osmolytes. Particularly, water deficit stress induced the stimulation of the ornithine and raffinose pathways. Our results would suggest that the regulation of C- and N partitioning in Quinoa during grain filling could be used for the improvement of the grain quality without altering grain yields.

  1. Effects of water deficit and nitrogen levels on grain yield and oil and protein contents of maize

    Directory of Open Access Journals (Sweden)

    Kazem Ghassemi-Golezani

    2015-02-01

    Full Text Available This research was conducted in 2014, to evaluate the effects of water deficit and nitrogen fertilizer on grain yield, oil and protein contents of maize (cv. double Cross 303. The experiment was arranged as split-plot based on Randomized Complete Block design (RCB with three replications. Irrigation treatments (irrigation after 60, 90, 120 and 150 mm evaporation and nitrogen levels (0, 46 and 92 kg N/ha were located in the main and sub plots, respectively. Mean grain yield per unit area decreased with decreasing water availability, but it was improved with increasing nitrogen fertilizer. Grain oil percentage significantly decreased, but protein percentage slightly increased as a result of water deficit. In general, oil and protein yields significantly decreased under moderate and severe water stress, mainly because of decreasing grain yield under these conditions. Nitrogen application decreased oil percentage, but increased protein percentage significantly. Nevertheless, nitrogen fertilizer enhanced oil and protein yields per unit area, with no significant difference between nitrogen rates. These results were positively related with grain yield per unit area in maize.

  2. Stimulant treatment for attention-deficit hyperactivity disorder and risk of developing substance use disorder

    NARCIS (Netherlands)

    Groenman, A.P.; Oosterlaan, J.; Rommelse, N.N.J.; Franke, B.; Greven, C.U.; Hoekstra, P.J.; Hartman, C.A.; Luman, M.; Roeyers, H.; Oades, R.D.; Sergeant, J.A.; Buitelaar, J.K.; Faraone, S.V.

    2013-01-01

    BACKGROUND: Attention-deficit hyperactivity disorder (ADHD) is linked to increased risk for substance use disorders and nicotine dependence. AIMS: To examine the effects of stimulant treatment on subsequent risk for substance use disorder and nicotine dependence in a prospective longitudinal ADHD

  3. Stimulant treatment for attention-deficit hyperactivity disorder and risk of developing substance use disorder

    NARCIS (Netherlands)

    Groenman, Annabeth P.; Oosterlaan, Jaap; Rommelse, Nanda N. J.; Franke, Barbara; Greven, Corina U.; Hoekstra, Pieter J.; Hartman, Catharina A.; Luman, Marjolein; Roeyers, Herbert; Oades, Robert D.; Sergeant, Joseph A.; Buitelaar, Jan K.; Faraone, Stephen V.

    Background Attention-deficit hyperactivity disorder (ADHD) is linked to increased risk for substance use disorders and nicotine dependence. Aims To examine the effects of stimulant treatment on subsequent risk for substance use disorder and nicotine dependence in a prospective longitudinal ADHD

  4. Stimulant treatment for attention-deficit hyperactivity disorder and risk of developing substance use disorder.

    NARCIS (Netherlands)

    Groenman, A.P.; Oosterlaan, J.; Rommelse, N.; Franke, B.; Greven, C.U.; Hoekstra, P.J.; Hartman, C.A.; Luman, M.; Roeyers, H.; Oades, R.D.; Sergeant, J.A.; Buitelaar, J.K.; Faraone, S.V.

    2013-01-01

    Background: Attention-deficit hyperactivity disorder (ADHD) is linked to increased risk for substance use disorders and nicotine dependence. Aims: To examine the effects of stimulant treatment on subsequent risk for substance use disorder and nicotine dependence in a prospective longitudinal ADHD

  5. Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment. Fourth Edition

    Science.gov (United States)

    Barkley, Russell A., Ed.

    2014-01-01

    Widely regarded as the standard clinical reference, this volume provides the best current knowledge about attention-deficit/hyperactivity disorder (ADHD) in children, adolescents, and adults. The field's leading authorities address all aspects of assessment, diagnosis, and treatment, including psychological therapies and pharmacotherapy. Core…

  6. Methamphetamine treatment during development attenuates the dopaminergic deficits caused by subsequent high-dose methamphetamine administration.

    Science.gov (United States)

    McFadden, Lisa M; Hoonakker, Amanda J; Vieira-Brock, Paula L; Stout, Kristen A; Sawada, Nicole M; Ellis, Jonathan D; Allen, Scott C; Walters, Elliot T; Nielsen, Shannon M; Gibb, James W; Alburges, Mario E; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2011-08-01

    Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent [i.e., postnatal day (PND) 40] rats are less susceptible to this damage than young adult (PND90) rats. In addition, biweekly treatment with METH, beginning at PND40 and continuing throughout development, prevents the persistent dopaminergic deficits caused by a "challenge" high-dose METH regimen when administered at PND90. Mechanisms underlying this "resistance" were thus investigated. Results revealed that biweekly METH treatment throughout development attenuated both the acute and persistent deficits in VMAT2 function, as well as the acute hyperthermia, caused by a challenge METH treatment. Pharmacokinetic alterations did not appear to contribute to the protection afforded by the biweekly treatment. Maintenance of METH-induced hyperthermia abolished the protection against both the acute and persistent VMAT2-associated deficits suggesting that alterations in thermoregulation were caused by exposure of rats to METH during development. These findings suggest METH during development prevents METH-induced hyperthermia and the consequent METH-related neurotoxicity. Copyright © 2011 Wiley-Liss, Inc.

  7. Treatment of Proper Name Retrieval Deficits in an Individual with Temporal Lobe Epilepsy

    Science.gov (United States)

    Minkina, Irene; Ojemann, Jeffrey G.; Grabowski, Thomas J.; Silkes, JoAnn P.; Phatak, Vaishali; Kendall, Diane L.

    2013-01-01

    Purpose: Studies investigating language deficits in individuals with left temporal-lobe epilepsy have consistently demonstrated impairments in proper name retrieval. The aim of this Phase I rehabilitation study was to investigate the effects of a linguistically distributed word retrieval treatment on proper name retrieval in an individual with…

  8. An update on the safety of psychostimulants for the treatment of attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Groenman, Annabeth P.; Schweren, Lizanne J. S.; Dietrich, Andrea; Hoekstra, Pieter J.

    Introduction: Methylphenidate is the first-line pharmacological treatment of attention-deficit/hyperactivity disorder (ADHD). Although methylphenidate has a well-established evidence base for treating ADHD, its long-term benefits are unclear.Areas covered: Physical adverse effects, psychiatric

  9. Attention Deficit Hyperactivity Disorder among Asian American Families: Challenges in Assessment and Treatment

    Science.gov (United States)

    Pham, Andy V.

    2013-01-01

    Studies addressing assessment and treatment of attention deficit hyperactivity disorder (ADHD) have primarily been focused on Caucasian populations, although a growing number of studies have included ethnic minority populations, particularly Hispanic and African American children. Findings regarding the relationship between ADHD diagnosis and race…

  10. Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations.

    Science.gov (United States)

    Duan, Baoli; Li, Yan; Zhang, Xiaolu; Korpelainen, Helena; Li, Chunyang

    2009-12-01

    The aim of this study was to examine the response of internal conductance to CO(2) (g(i)) to soil water deficit and contrasting light conditions, and their consequences on photosynthetic physiology in two Picea asperata Mast. populations originating from wet and dry climate regions of China. Four-year-old trees were subjected to two light treatments (30% and 100% of full sunlight) and two watering regimes (well watered, drought) for 2 years. In both tested populations, drought significantly decreased g(i) and the net photosynthesis rate (A) and increased carbon isotope composition (delta(13)C) values in both light treatments, in particular in the sun. Moreover, drought resulted in a significantly higher relative limitation due to stomatal conductance (L(s)) in both light treatments and higher relative limitation due to internal conductance (L(i)) and abscisic acid (ABA) in the sun plants. The results also showed that L(i) (0.26-0.47) was always greater than L(s) (0.12-0.28). On the other hand, drought significantly decreased the ratio of chloroplastic to internal CO(2) concentration (C(c)/C(i)), photosynthetic nitrogen utilization efficiency (PNUE) and total biomass in the sun plants of the wet climate population, whereas there were no significant changes in these parameters in the dry climate population. Our results also showed that the dry climate population possessed higher delta(13)C values with higher ratio of internal conductance to stomatal conductance (g(i)/g(s)), suggesting that increasing the g(i)/g(s) ratio enhances water-use efficiency (WUE) in plants evolved in arid environments. Thus, we propose that the use of the g(i)/g(s) parameter to screen P. asperata plants with higher water deficit tolerance is certainly worthy of consideration. Furthermore, g(i) is an important variable, which reflects the population differences in PNUE, and it should thus be included in plant physiological investigations related to leaf economics.

  11. Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor' genotypes to water deficit stress

    Directory of Open Access Journals (Sweden)

    Abid, G.

    2017-01-01

    Full Text Available Description of the subject. Drought is one of the major abiotic factors affecting growth and productivity of plants by imposing certain morphological, physiological and biochemical changes at different growth stages. Objectives. The objective of this work is to study key morphological, physiological and biochemical responses of faba bean (Vicia faba L. var. 'minor' to soil water deficit stress and to assess the contribution of genetic factors in improving faba bean tolerance to water deficit. Method. Plants of 11 faba bean cultivars were grown in the greenhouse and subjected to three levels of water deficit (90, 50 and 30% of field capacity [FC] in a simple randomized design for 20 days. Water deficit effects on plant growth, relative water content (RWC, gas exchange, chlorophyll a (Chla and chlorophyll b (Chlb content, osmoprotectant accumulations (such as proline and soluble sugars, antioxidant enzyme activities and grain yield were determined. Results. Soil water deficit stress reduced growth and affected physiological parameters, especially antioxidant enzyme activities. Water deficit also increased proline, soluble sugars and protein contents. The studied cultivars significantly differed in their responses to water deficit stress. Photosynthetic parameters were less affected in the 'Hara' cultivar. Furthermore, this cultivar produced the highest value of grain yield at 30% FC, and showed higher antioxidant enzyme activities (CAT, GPX and APX, osmoprotectant accumulations, Chlb and RWC. The 'Hara' cultivar was found to be more tolerant to water deficit stress than the other cultivars. Conclusions. Our methodology can be used for assessing the response of faba bean genetic resources to soil water deficit. The identified tolerant cultivar can be utilized as a source for water stress tolerance in faba bean breeding programs aimed at improving drought tolerance.

  12. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  13. Telepsychiatrists' Medication Treatment Strategies in the Children's Attention-Deficit/Hyperactivity Disorder Telemental Health Treatment Study

    Science.gov (United States)

    Tse, Yuet Juhn; Fesinmeyer, Megan D.; Garcia, Jessica; Myers, Kathleen

    2016-01-01

    Abstract Objective: The purpose of this study was to examine the prescribing strategies that telepsychiatrists used to provide pharmacologic treatment in the Children's Attention-Deficit/Hyperactivity Disorder (ADHD) Telemental Health Treatment Study (CATTS). Methods: CATTS was a randomized controlled trial that demonstrated the superiority of a telehealth service delivery model for the treatment of ADHD with combined pharmacotherapy and behavior training (n=111), compared with management in primary care augmented with a telepsychiatry consultation (n=112). A diagnosis of ADHD was established with the Computerized Diagnostic Interview Schedule for Children (CDISC), and comorbidity for oppositional defiant disorder (ODD) and anxiety disorders (AD) was established using the CDISC and the Child Behavior Checklist. Telepsychiatrists used the Texas Children's Medication Algorithm Project (TCMAP) for ADHD to guide pharmacotherapy and the treat-to-target model to encourage their assertive medication management to a predetermined goal of 50% reduction in ADHD-related symptoms. We assessed whether telepsychiatrists' decision making about making medication changes was associated with baseline ADHD symptom severity, comorbidity, and attainment of the treat-to-target goal. Results: Telepsychiatrists showed high fidelity (91%) to their chosen algorithms in medication management. At the end of the trial, the CATTS intervention showed 46.0% attainment of the treat-to-target goal compared with 13.6% for the augmented primary care condition, and significantly greater attainment of the goal by comorbidity status for the ADHD with one and ADHD with two comorbidities groups. Telepsychiatrists' were more likely to decide to make medication adjustments for youth with higher baseline ADHD severity and the presence of disorders comorbid with ADHD. Multiple mixed methods regression analyses controlling for baseline ADHD severity and comorbidity status indicated that the telepsychiatrists

  14. Effect of Foliar Application of Phosphorus and Water Deficit on Yield and Yield Components of Winter Wheat (Cultivar Alvand

    Directory of Open Access Journals (Sweden)

    M. Vafapour

    2011-04-01

    Full Text Available In order to study the effects of foliar application of phosphorus (P and water deficit on yield and yield components of winter wheat (Triticum aestivum L., cv. Alvand, a split-plot experiment, with completely randomized blocks design and three replications, was carried out at the Research Farm of Boyer Ahmad Agricultural and Natural Resources Research Station, 13 km west of Yasouj, in 2008-2009. The main plots were irrigation at three levels (1- full irrigation (control, 2- deficit irrigation from the stem elongation to booting stage, and 3- deficit irrigation from booting stage to the end of growth period and the subplots were five levels of foliar application of P fertilizer (0, 3, 6, 9 and 12 kg/ha KH2PO4. The results showed that the effects of different irrigation regimes and foliar application of P were significant on all traits, and their interaction was significant on plant height, number of grain per spike, grain yield and biological yield. Full irrigation and foliar application of 6 kg/ha P produced the highest grain and biological yield (6000 and 14170 kg/ha, respectively and deficit irrigation from the stem elongation to booting stage without foliar application of P produced the lowest grain and biological yield (2920 and 8219 kg/ha, respectively. Foliar application of P affects significantly the evaluated traits only in drought-stress treatments and its effect was not significant in full irrigation treatment. In general, foliar application of 9 kg/ha P compensated the losses in wheat due to drought stress.

  15. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays l.) in subtropical northeastern Himalayas.

    Science.gov (United States)

    Marwein, M A; Choudhury, B U; Chakraborty, D; Kumar, M; Das, A; Rajkhowa, D J

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ET c ) of maize crop under controlled condition (pot experiment) of water deficit (W 25 -25 % and W 50 -50 % of field capacity soil moistures) and well watered (W 100  = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ET c losses and water use efficiency was also studied. The measured seasonal ET c loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant (p losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha -1 significantly (p losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W 25 ) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W 100 ) while seasonal ET c loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ET c losses while weekly crop ET c loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ET c losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg -1  water and 4.21 to 8.56 g dry matter kg -1 , respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ET c loss, growth duration, grain formation, and water use efficiency of maize.

  16. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  17. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    Science.gov (United States)

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  18. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  19. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  20. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  1. The effect of medical treatment of attention deficit hyperactivity disorder (ADHD) on foster care caseloads

    DEFF Research Database (Denmark)

    Fallesen, Peter; Wildeman, Christopher

    2015-01-01

    = 157,938) in the period from 1998 to 2010 to show that increasing medical treatment of attention deficit hyperactivity disorder (ADHD) accounts for a substantial share of the decrease in foster care caseloads. According to our estimates, the decline in foster care caseloads during this period would...... have been 45% smaller absent increases in medical treatment of ADHD. These findings are especially provocative in light of recent research showing ambiguous effects of medical treatment of ADHD. Future research should be attentive to how medical treatment aimed at addressing children’s acute behavioral...

  2. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    Science.gov (United States)

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  3. Control of expansive growth in water deficit: from phenotyping to field simulations

    OpenAIRE

    Parent , Boris; Cabrera Bosquet , Llorenç; Cané , Maria Angela; Chaumont , François; Alvarez Prado , Santiago; CALDEIRA JuNIOR , Cecilio Frois; Lacube , Sébastien; Fleury , Delphine; Welcker , Claude; Tuberosa , Roberto; Tardieu , Francois

    2015-01-01

    Maintenance of expansive growth under water deficit has been selected as a key target trait of DROPS because of its early response in drying conditions, its large genetic variability, its partially common control with reproductive growth and its consequences on light interception and transpiration. Development of methods to measure shoot growth in Phenotyping platforms (PhenoArch and Phenodyn, M3P, Montpellier, France; The Plant Accelerator, Adelaide, Australia) allowed identification of a...

  4. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  5. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit.

    Science.gov (United States)

    Silveira, Neidiquele M; Frungillo, Lucas; Marcos, Fernanda C C; Pelegrino, Milena T; Miranda, Marcela T; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Ribeiro, Rafael V

    2016-07-01

    Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

  6. Stimulant treatment history predicts frontal-striatal structural connectivity in adolescents with attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Schweren, L. J. S.; Hartman, C. A.; Zwiers, M. P.; Heslenfeld, D. J.; Franke, B.; Oosterlaan, J.; Buitelaar, J. K.; Hoekstra, P. J.

    Diffusion tensor imaging (DTI) has revealed white matter abnormalities in individuals with attention-deficit/hyperactivity disorder (ADHD). Stimulant treatment may affect such abnormalities. The current study investigated associations between long-term stimulant treatment and white matter integrity

  7. Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Abou Kheira, Abdrabbo A. [Water Management Research Institute, National Water Research Center, Delta Barrage, P.O. Box 13621/5 (Egypt); Atta, Nahed M.M. [Oil and Fat Research Department, Food Technology Research Institute, Agricultural Research Center, Giza (Egypt)

    2009-10-15

    Field experiment was carried out at Enshas Experiment Station; Jatropha was transplanted and treated after the second year of the transplanting by different amounts of water stress, viz. 125%, 100%, 75% and 50% of potential evapotranspiration (ETp). The study aims to ensure the multiple benefits of Jatropha and its suitability under Egypt's climate in unused lands under scarce water conditions. The results revealed that the average water consumption rate of Jatropha is 6 L week{sup -1} throughout the growing season, which means that Jatropha can survive and produce full yield with high quality seeds under minimum water requirements compared to other crops. The yield of extracted oil was 85.5, 175.2, 90.5 and 66.5 kg ha{sup -1} at 125%, 100%, 75% and 50% of ETp, respectively. The lowest values of total lipid (oil) (25% and 24.5% of Jatropha seeds) were recorded with Jatropha trees that were irrigated by 125% and 50% of ETp, respectively. On the other hand, the treatment that was irrigated by 100% of ETp (control) recorded the highest value of total oil in the seeds (29.93%). The results also revealed that there are no significant differences among the values of the determined oil characteristics due to different water stress ratios. From the results, it could be concluded that the highest characteristics of Jatropha seed oil were recorded with 100% of ETp. In addition water stress had no significant effect on the fatty acid composition of Jatropha seed oil. (author)

  8. Evaluation of Yield and Yield Components of Some Pinto bean (Phaseolus vulgaris L. Genotypes under Late Season Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    somayyeh soheili movahhed

    2017-10-01

    indicated that Ks21189 genotype showed maximum number of pod perplant (9.2, number of grain per pod (2.91, 100 grain weight, grain yield (741.6 Kg.Ha-1, biological yield (2857 Kg.Ha-1 and Harvest Index (27.31% under drought stress conditions. In addition, this genotype had the least reduction for all traits under water limitation conditions in comparison to control. These findings confirm the resistance of Ks21189 genotype to drought stress and stimulating this genotype to least reduction in Grain yield under water limitation conditions. Minimum number of pod per plant (4.52, number of grain per pod (1.62, grain yield (503.1 Kg.Ha-1, biological yield (2301.6 Kg.Ha-1 and Harvest Index (22.66% was obtained in sadri genotype under drought conditions. Sadri genotype was identified as water deficit stress sensitive genotypes with reduction of yield up to 80.18%. In all genotypes, water deficit stress reduced grain yield due to reduced yield components (number of pod per plant, number of grain per pod and 100 grain weight. Conclusion The results of this experiment showed that water deficit stress on yield and yield components of bean genotypes had a negative effect. The highest and lowest yield and yield components were obtained from normal irrigation and drought stress treatments, respectively. Ks21189 genotype was more stable in water deficit treatment than other genotypes; however grain yield reduce in normal irrigation treatment was lower than other genotypes. Therefore, it seems that this genotype can be used as an appropriate genotype for supplemental evaluation in water deficit stress conditions. Correlation analysis showed significant and positive correlation between biological yield, number of pods per plant, number of grains per pod with grain yield. We concluded that genotypes with higher biological yield under drought stress conditions can produce maximum number of pods per plant, number of grains per pod and grain yield. Acknowledgments We would like to express our

  9. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Park, Wonkeun; Scheffler, Brian E; Bauer, Philip J; Campbell, B Todd

    2012-06-15

    Cotton is the world's primary fiber crop and is a major agricultural commodity in over 30 countries. Like many other global commodities, sustainable cotton production is challenged by restricted natural resources. In response to the anticipated increase of agricultural water demand, a major research direction involves developing crops that use less water or that use water more efficiently. In this study, our objective was to identify differentially expressed genes in response to water deficit stress in cotton. A global expression analysis using cDNA-Amplified Fragment Length Polymorphism was conducted to compare root and leaf gene expression profiles from a putative drought resistant cotton cultivar grown under water deficit stressed and well watered field conditions. We identified a total of 519 differentially expressed transcript derived fragments. Of these, 147 transcript derived fragment sequences were functionally annotated according to their gene ontology. Nearly 70 percent of transcript derived fragments belonged to four major categories: 1) unclassified, 2) stress/defense, 3) metabolism, and 4) gene regulation. We found heat shock protein-related and reactive oxygen species-related transcript derived fragments to be among the major parts of functional pathways induced by water deficit stress. Also, twelve novel transcripts were identified as both water deficit responsive and cotton specific. A subset of differentially expressed transcript derived fragments was verified using reverse transcription-polymerase chain reaction. Differential expression analysis also identified five pairs of duplicated transcript derived fragments in which four pairs responded differentially between each of their two homologues under water deficit stress. In this study, we detected differentially expressed transcript derived fragments from water deficit stressed root and leaf tissues in tetraploid cotton and provided their gene ontology, functional/biological distribution, and

  10. Attitudes Toward Stimulant Treatment of Offspring of Adult Patients with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Canela, Carlos; Buadze, Anna; Dube, Anish; Eich, Dominique; Liebrenz, Michael

    2017-06-01

    The objective of this study was to investigate how adult patients with attention-deficit/hyperactivity disorder viewed the testing and use of stimulants in their children. Using a qualitative approach, we interviewed 32 outpatients from a special care unit of a university hospital. Emerging themes centered around concerns about the right age to test children and opinions about stimulant treatment ranging from unreserved agreement to reluctance, as well as the need for a shared decision with the child. Our results suggest that better psychoeducational programs are needed, especially for adults with attention-deficit/hyperactivity disorder, in which long-term consequences of the disorder, areas of impairment, and possible treatment effects in their children are explained and concerns about unknown side effects and the right time to test and treat are addressed.

  11. Assessing Treatment Outcomes in Attention-Deficit/Hyperactivity Disorder: A Narrative Review

    Science.gov (United States)

    Weiss, Margaret D.

    2012-01-01

    Objective: To review measures used to assess treatment response in patients with attention-deficit/hyperactivity disorder (ADHD) across the life span. Data Sources: Keyword searches of English-language articles in the PubMed database up to and including the May 4, 2011, index date were performed with the search strings (1) (attention deficit disorder with hyperactivity [MeSH] OR ADHD) AND (outcome assessment [MeSH] OR adaptation of life skills OR executive function [MeSH]) and (2) (attention deficit disorder with hyperactivity [MeSH] OR ADHD) AND (function OR functioning OR quality of life [MeSH]). Study Selection: Articles found through this search were then selected based on relevance to the topic area; no specific quality criteria were applied. Data Extraction: Narrative review. Results: The vast majority of studies assessing ADHD treatments have measured treatment response using ADHD symptom measures. Additional domains relevant for assessing treatment response among children and adults with ADHD include functional impairment, quality of life, adaptive life skills, and executive function. Validated rating scales exist for assessing these additional domains, but there has been minimal research evaluating the sensitivity of these instruments for detecting treatment response in pediatric and adult samples. Conclusions: Assessment of treatment outcomes in ADHD should move beyond symptom assessment to incorporate measures of functioning, quality of life, adaptive skills, and executive function, especially when assessing long-term treatment response. The authors recommend a potential battery and schedule of measures that could be used to more comprehensively assess treatment response in patients with ADHD. PMID:23585986

  12. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  13. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: a review

    OpenAIRE

    Colucci, Luisa; Bosco,; Amenta,; Fasanaro,Angiola Maria; Ziello,Antonio; Rea,

    2012-01-01

    Luisa Colucci,1,2 Massimiliano Bosco,2 Antonio Rosario Ziello,1,2 Raffaele Rea,1,2 Francesco Amenta,1 Angiola Maria Fasanaro21Centro di Ricerche Cliniche, Telemedicina e Telefarmacia, Università di Camerino, Camerino, 2Unità Valutazione Alzheimer, Naples, ItalyAbstract: Nootropics represent probably the first “smart drugs” used for the treatment of cognitive deficits. The aim of this paper is to verify, by a systematic analysis of the literature, the ...

  14. Measurement of Impairment among Children with Attention Deficit Hyperactivity Disorder as Part of Evaluating Treatment Outcome

    OpenAIRE

    Al-Ansari, Ahmed M.

    2013-01-01

    This study assesses the impairment and treatment outcome of children with attention deficit hyperactivity disorder (ADHD) in an outpatient child psychiatry clinic, using multiple sources, including the Children Global Assessment Scale (C-GAS). Methods: A total of 20 children, aged 4 to 16 years, were recruited serially in 2010 from the Child Psychiatric Unit of the Psychiatric Hospital, Manama, Bahrain. The children received a diagnosis of ADHD using the Diagnostic and Statistical Manual of M...

  15. Risperidone Versus Methylphenidate in Treatment of Preschool Children With Attention-Deficit Hyperactivity Disorder

    OpenAIRE

    Arabgol, Fariba; Panaghi, Leily; Nikzad, Vahid

    2015-01-01

    Background: Attention Deficit Hyperactivity Disorder (ADHD) is a common psychiatric diagnosis among preschool children. Objectives: The aim of this study was to examine the Risperidone treatment compared to Methylphenidate (MPH) in preschool children with ADHD. Patients and Methods: Thirty three outpatient preschool children, aged 3-6 years, diagnosed with ADHD (The diagnosis of ADHD was established by two child and adolescent psychiatrists according to the DSM-IV-TR criteria), participated i...

  16. Genes responding to water deficit in apple (Malus × domestica Borkh.) roots.

    Science.gov (United States)

    Bassett, Carole Leavel; Baldo, Angela M; Moore, Jacob T; Jenkins, Ryan M; Soffe, Doug S; Wisniewski, Michael E; Norelli, John L; Farrell, Robert E

    2014-07-08

    Individual plants adapt to their immediate environment using a combination of biochemical, morphological and life cycle strategies. Because woody plants are long-lived perennials, they cannot rely on annual life cycle strategies alone to survive abiotic stresses. In this study we used suppression subtractive hybridization to identify genes both up- and down-regulated in roots during water deficit treatment and recovery. In addition we followed the expression of select genes in the roots, leaves, bark and xylem of 'Royal Gala' apple subjected to a simulated drought and subsequent recovery. In agreement with studies from both herbaceous and woody plants, a number of common drought-responsive genes were identified, as well as a few not previously reported. Three genes were selected for more in depth analysis: a high affinity nitrate transporter (MdNRT2.4), a mitochondrial outer membrane translocase (MdTOM7.1), and a gene encoding an NPR1 homolog (MpNPR1-2). Quantitative expression of these genes in apple roots, bark and leaves was consistent with their roles in nutrition and defense. Additional genes from apple roots responding to drought were identified using suppression subtraction hybridization compared to a previous EST analysis from the same organ. Genes up- and down-regulated during drought recovery in roots were also identified. Elevated levels of a high affinity nitrate transporter were found in roots suggesting that nitrogen uptake shifted from low affinity transport due to the predicted reduction in nitrate concentration in drought-treated roots. Suppression of a NPR1 gene in leaves of drought-treated apple trees may explain in part the increased disease susceptibility of trees subjected to dehydrative conditions.

  17. Fluorescence Indices for the Proximal Sensing of Powdery Mildew, Nitrogen Supply and Water Deficit in Sugar Beet Leaves

    OpenAIRE

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    Using potted sugar beet plants we aimed to investigate the suitability of four fluorescence indices to detect and differentiate the impact of nitrogen supply, water deficit and powdery mildew in two sugar beet cultivars (Beta vulgaris L.). Plants were grown inside a polytunnel under two nitrogen levels combined with water deficit or full irrigation. Changes in plant physiology were recorded at two physiological stages with a multiparametric handheld fluorescence sensor and a fluorescence ima...

  18. Review of the Literature Regarding the Efficacy of Neurofeedback in the Treatment of Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Lingenfelter, Jennifer E.

    This document presents a review of the most recent literature regarding the efficacy of electroencephalographic biofeedback, more commonly known as neurofeedback, in the treatment of attention deficit hyperactivity disorder (ADHD). The studies reviewed indicated that neurofeedback can be a successful component of treating attentional deficits and…

  19. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.

  20. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  2. Vine water deficit impacts aging bouquet in fine red Bordeaux wine

    Science.gov (United States)

    Picard, Magali; van Leeuwen, Cornelis; Guyon, François; Gaillard, Laetitia; de Revel, Gilles; Marchand, Stéphanie

    2017-08-01

    The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth) in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ13C), this ratio was quantified for each wine studied. Statistical analyses combining δ13C and sensory data highlighted that δ13C values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis revealed correlations between δ13C values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances.

  3. Photosynthetic and enzymatic metabolism of Schinus terebinthifolius Raddi seedlings under water deficit

    Directory of Open Access Journals (Sweden)

    Danieli Pieretti Nunes

    Full Text Available ABSTRACT Schinus terebinthifolius Raddi is a tree species that can be used in the recovery of degraded areas, as it exhibits rapid growth and has a very expansive root system, facilitating water uptake from the deeper layers of the soil. The objective of this study was to evaluate photosynthesis and enzymatic activity in S. terebinthifolius seedlings under conditions of water deficit and their potential to recover following re-irrigation. The experiment was conducted in a greenhouse under a plastic covering where plants were distributed into two groups: Group 1 - control plants, where irrigation was maintained at 70% of the water retention capacity, and Group 2 - stressed plants, where irrigation was suspended until the photosynthetic rate neared zero, followed by rehydration for 12 days, then a further suspension of irrigation. At the beginning of the experiment and during the suspension of irrigation and rehydration, plants were evaluated for gas and antioxidant enzyme exchanges. Hydric stress significantly reduced photosynthesis, stomatal transpiration conductance, carboxylation efficiency of Rubisco, and the chlorophyll content of the S. terebinthifolius plants. Following rehydration, plants recovered the carboxylation efficiency of Rubisco, but not the photosynthetic rate. Antioxidant enzyme activity increased in both the aerial part and the root in response to water deficit.

  4. Vine Water Deficit Impacts Aging Bouquet in Fine Red Bordeaux Wine

    Directory of Open Access Journals (Sweden)

    Magali Picard

    2017-08-01

    Full Text Available The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ13C, this ratio was quantified for each wine studied. Statistical analyses combining δ13C and sensory data highlighted that δ13C-values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis (PCA revealed correlations between δ13C-values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances.

  5. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  6. Partitioning and mobilization of photoassimilate in alfalfa subjected to water deficits

    International Nuclear Information System (INIS)

    Hall, M.H.; Sheaffer, C.C.; Heichel, G.H.

    1988-01-01

    Faster regrowth of a stressed alfalfa (Medicago sativa L.) crop compared to an unstressed crop after rewatering has been reported. The bases of this compensatory response are unknown, but they may be important to understanding adaptation to water stress and to developing crop water management strategies. The authors objectives was to determine the effect of stress induced by water deficit on photoassimilate partitioning and the utilization of stored assimilates during regrowth of alfalfa. Field and greenhouse experiments were conducted using cultivars differing in winterhardiness. Plants were subjected to water stress, pulse-labeled with 14 CO 2 , and sampled following 0, 1, 14, 21, and 28-d translocation periods. Following the 14-d sampling, herbage was harvested and water stress was removed. Cultivars contrasting in winterhardiness responded similarly to water stress. Stressed plant roots contained 73 and 114% more total plant radioactivity (TPR) than the control at the 1 and 14-d translocation periods, respectively. Water stress significantly increased root starch and TPR percentage in the starch fraction, but had much smaller effects on root soluble-sugar concentration and TPR percentage of the root sugar fraction. Herbage regrowth mass following harvest and rewatering of the water-stressed plants was similar to that of the control. Compared to the control, water-stressed alfalfa has greater total nonstructural carbohydrates in the roots, apparently due to increased photoassimilate partitioning to the roots. However, the greater root carbohydrate concentrations did not result in compensatory herbage regrowth following rewatering

  7. Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China.

    Science.gov (United States)

    Liu, Zhandong; Qin, Anzhen; Zhao, Ben; Ata-Ul-Karim, Syed Tahir; Xiao, Junfu; Sun, Jingsheng; Ning, Dongfeng; Liu, Zugui; Nan, Jiqin; Duan, Aiwang

    2016-01-01

    Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity. Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment. Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments. Deepinter-row subsoilingwith annual repetition significantly boosts yield by

  8. Dl-3-n-Butylphthalide Treatment Enhances Hemodynamics and Ameliorates Memory Deficits in Rats with Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Zhilin Xiong

    2017-07-01

    Full Text Available Our previous study has revealed that chronic cerebral hypoperfusion (CCH activates a compensatory vascular mechanism attempting to maintain an optimal cerebral blood flow (CBF. However, this compensation fails to prevent neuronal death and cognitive impairment because neurons die prior to the restoration of normal CBF. Therefore, pharmacological invention may be critical to enhance the CBF for reducing neurodegeneration and memory deficit. Dl-3-n-butylphthalide (NBP is a compound isolated from the seeds of Chinese celery and has been proven to be able to prevent neuronal loss, reduce inflammation and ameliorate memory deficits in acute ischemic animal models and stroke patients. In the present study, we used magnetic resonance imaging (MRI techniques, immunohistochemistry and Morris water maze (MWM to investigate whether NBP can accelerate CBF recovery, reduce neuronal death and improve cognitive deficits in CCH rats after permanent bilateral common carotid artery occlusion (BCCAO. Rats were intravenously injected with NBP (5 mg/kg daily for 14 days beginning the first day after BCCAO. The results showed that NBP shortened recovery time of CBF to pre-occlusion levels at 2 weeks following BCCAO, compared to 4 weeks in the vehicle group, and enhanced hemodynamic compensation through dilation of the vertebral arteries (VAs and increase in angiogenesis. NBP treatment also markedly reduced reactive astrogliosis and cell apoptosis and protected hippocampal neurons against ischemic injury. The escape latency of CCH rats in the MWM was also reduced in response to NBP treatment. These findings demonstrate that NBP can accelerate the recovery of CBF and improve cognitive function in a rat model of CCH, suggesting that NBP is a promising therapy for CCH patients or vascular dementia.

  9. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Sharma, Alok; Couture, Justin

    2014-02-01

    To review the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). A literature search was conducted in PubMed and EMBASE using the terms attention deficit hyperactive disorder, ADHD, pathophysiology, etiology, and neurobiology. Limits applied were the following: published in the past 10 years (January 2003 to August 2013), humans, review, meta-analysis, and English language. These yielded 63 articles in PubMed and 74 in EMBASE. After removing duplicate/irrelevant articles, 86 articles and their relevant reference citations were reviewed. ADHD is a neurological disorder that affects children, but symptoms may persist into adulthood. Individuals suffering from this disorder exhibit hyperactivity, inattention, impulsivity, and problems in social interaction and academic performance. Medications used to treat ADHD such as methylphenidate, amphetamine, and atomoxetine indicate a dopamine/norepinephrine deficit as the neurochemical basis of ADHD, but the etiology is more complex. Moreover, these agents have poor adverse effect profiles and a multitude of drug interactions. Because these drugs are also dispensed to adults who may have concomitant conditions or medications, a pharmacist needs to be aware of these adverse events and drug interactions. This review, therefore, focuses on the pathophysiology, etiology, and treatment of ADHD and details the adverse effects and drug interaction profiles of the drugs used to treat it. Published research shows the benefit of drug therapy for ADHD in children, but given the poor adverse effect and drug interaction profiles, these must be dispensed with caution.

  10. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions.

    Science.gov (United States)

    Rahmati, Mitra; Davarynejad, Gholam Hossein; Génard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The C source was estimated through the leaf area dynamics and leaf photosynthesis rate along the season. The C sink was estimated for maintenance respiration and growth of shoots and fruits. Water stress significantly reduced gas exchange, and fruit, and shoot growth, but increased fruit dry matter concentration. Growth was more affected by water deficit than photosynthesis, and shoot growth was more sensitive to water deficit than fruit growth. Reduction of shoot growth was associated with a decrease of shoot elongation, emergence, and high shoot mortality. Water scarcity affected tree C assimilation due to two interacting factors: (i) reduction in leaf photosynthesis (-23% and -50% under moderate (MS) and severe (SS) water stress compared to low (LS) stress during growth season) and (ii) reduction in total leaf area (-57% and -79% under MS and SS compared to LS at harvest). Our field data analysis suggested a Ψstem threshold of -1.5 MPa below which daily net C gain became negative, i.e. C assimilation became lower than C needed for respiration and growth. Negative C balance under MS and SS associated with decline of trunk carbohydrate reserves--may have led to drought-induced vegetative mortality.

  11. Effect of Azofert®on the yield of common bean varieties (Phaseolus vulgaris L.under conditions of water deficit

    Directory of Open Access Journals (Sweden)

    Wilfredo Estrada Prado

    2017-10-01

    Full Text Available The effect of Azofert® on the induction of tolerance of bean varieties to water deficit was evaluated. The experiment was developed during the period 2013-2014 at the Cooperative for Credits and Services Strengthened "Roberto Aguilar", Bayamo municipality, Granma, Cuba. Varieties CC-25-9R and Tomeguín-93 were used, which were applied four treatments, consisting of normal irrigation conditions throughout the crop cycle and conditions of water deficit at the beginning of flowering, formation and filling of the pods. In each case Azofert® was applied, with a dose of 200 mL per 50 kg of seed at the time of planting and as controls treatments were used without the application of this product. A randomized block design was used according to divided plots and four replicates. Ten plants were selected at random for each treatment to evaluate pod length (cm, pod width (mm, pod diameter (cm, number of pods per plant, number of seeds per pods, number of seeds per plant, weight of seeds per plant (g, weight of 100 seeds (g, as well as yield (t ha-1. The results showed the significant effect of Azofert ® in increasing tolerance to the water deficit of the studied varieties.

  12. Perturabation of nodular operation under salt and water deficit stress in rhizobium common bean symbiosis

    International Nuclear Information System (INIS)

    Harzalli Jebara, Salwa

    2006-01-01

    This work aims at the search for markers of tolerance to the osmotic stress and nodular efficiency of symbiosis Haricot Rhizobium. Thus, after having fixed the best period of hydroponic culture, we showed that a severe salt treatment generated an inhibition of the parameters of growth and nodulation. These inhibitions are accompanied by an inhibition of the enzymatic activities: ascorbate peroxidase (APX) and catalase (CAT), but an activation of peroxidase (POX) and superoxide dismutase (SOD), suggesting that these two antioxydants can be biochemical markers of the tolerance to salinity. To check the validity of these markers and to see the participation of the vegetable genotype in the response to the stress, we compared the effect of two concentrations salt 25 and 50 mM NaCe at two contrasting genotypes BAT477 tolerant and sensitive COCOT. This study illustrates the role of the vegetable genotype in the tolerance and efficiency and emphasize a significant result that SOD and POX constitute biochemical markers of tolerance to salinity. In order to ensure itself of the validity of this assumption in the event of water deficit stress, a treatment of 50 mM mannitol is applied to 16 symbioses formed by four genotypes of bean BAT477, COCOT, Flamingo and BRB17 inoculated by four strains of rhizobium CIAT899, 12 to 3, 1 to 6 and 8 to 3. This study permits us to make a screening of these symbioses according to their efficiency and their tolerance based on parameters of growth, of fixing and extent of the antioxydant enzymatic activities. It gets clear that the response of enzymatic antioxydants is in relation to the intrinsic potentialities of the partners of symbioses and appears to act as of the first stages of recognition plants bacterium. It will be retained that activities POX and SOD are markers of nodular tolerance. The CAT is the enzyme most connected to each partner of symbiosis and the APX would play a rather functional role. The heterogeneity of found answer

  13. Effect of PEG-6000 Imposed Water Deficit on Chlorophyll Metabolism in Maize Leaves

    Directory of Open Access Journals (Sweden)

    Rekha Gadre

    2013-08-01

    Full Text Available Drought stress is one of the major abiotic constraint limiting plant growth and productivity world wide. The current study was undertaken with the aim to investigate the effect of water deficit imposed by PEG-6000, on chlorophyll metabolism in maize leaves to work out the mechanistic details. Leaf segments prepared from primary leaves of etiolated maize seedlings were treated with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v- 5%, 10%, 20%, 30% in continuous light of intensity 40 Wm-2 at 26±2 °C for 24 h in light chamber. The results demonstrate a concentration dependent decline in chlorophyll content with increasing concentration of polyethylene glycol-6000 (PEG-6000. Reduction in chlorophyll ‘a’ level was to a greater extent than the chlorophyll ‘b’. The RNA content decreased in a concentration dependent manner with PEG, however, proline content increased significantly. Relative water content decreased significantly with the supply of 30% PEG only. A substantial decrease in chlorophyll synthesis due to significant reduction in ALA content and ALAD activity, with no change in chlorophyllase activity with the supply of PEG suggests that water deficit affects chlorophyll formation rather than its degradation.

  14. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-01-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly

  15. Training, executive, attention and motor skills (TEAMS) training versus standard treatment for preschool children with attention deficit hyperactivity disorder

    DEFF Research Database (Denmark)

    Vibholm, Helle Annette; Pedersen, Jesper; Faltinsen, Erlend

    2018-01-01

    OBJECTIVE: This study compared the effectiveness of manualised training, executive, attention, and motor skills (TEAMS) training versus standard treatment in preschool children with attention deficit hyperactivity disorder (ADHD). We conducted a randomised parallel group, single...

  16. Effects of Salicylic Acid on Some Morphophysiological Characteristics of Border Flowers from Asteraceae Family under Water Deficit

    Directory of Open Access Journals (Sweden)

    majid zargarian

    2017-02-01

    (52% sand, 30% silt and 18% clay with 7.04 pH and 3.6 ds/m electrical conductivity (EC and total N (0.175mg/kg, P (142.7 mg/kg and K (142.3mg/kg were reported, too. Investigated characteristics were height of the plants, leaf area,flower number,root dry weight, flower dry weight, aerial parts dry weight,chlorophyll a, chlorophyll b, ,total chlorophyll,carotenoide,stomata conductance,relative water content (RWC and electrolyte leakage. Tomeasureleaf area and stomata conductance, leaf area meter and prometer were used, respectively. In addition, electrolyte leakage, RWC, chlorophyll and carotenoide were evaluated by Sairamet al., Smart and Bingham, Arnon and Rangan methods, respectively. Minitab 16 software was used for data analysis and LSD test (p≤ 5% for mean comparison was applied. Results and Discussion: The results of this study showed that all characteristics of examined flowers decreased underwater deficit treatment (50% FC. SA had different effect on flowers properties. Although SA had not significant effect on flower number, it improved the percentage of characteristicssuch asflower dry weight, chlorophyll a, stomata conductance and RWC of Ageratum houstonianum; root dry weight, carotenoid andstomata conductance of Zinnia elegans; carotenoid of Tagetserecta; flower number, flower dry weight, carotenoid and stomata conductance of Tagetspatula; root dry weight, flower dry weight, aerial parts dry weight andstomata conductance of Callistephuschinensis. Moreover, SA had significant effect on the considered characteristics of the other studied flowers. Interaction effect of these two factors had different effects on all of the examined characteristics of five flowers. The highest amounts of the investigated characteristics mostly obtained from water deficit with SA application treatment. Under water deficit, SA could influence leaf area and electrolyte leakage of all examined flowers and aerial parts dry weight of all flowers except Callistephuschinensis. Among

  17. [Treatment of attention deficit hyperactivity disorder in adults using virtual reality through a mindfulness programme].

    Science.gov (United States)

    Serra-Pla, J F; Pozuelo, M; Richarte, V; Corrales, M; Ibanez, P; Bellina, M; Vidal, R; Calvo, E; Casas, M; Ramos-Quiroga, J A

    2017-02-24

    Attention deficit hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder, which presents a high comorbidity with anxiety and affective signs and symptoms. It has repercussions on the functioning of those suffering from it, who also have low therapy compliance and generate a significant cost both at a personal level and for society. Mindfulness is a psychological treatment that has proved to be effective for ADHD. Virtual reality is widely used as treatment in cases of phobias and other pathologies, with positive results. To develop the first treatment for ADHD in adults based on virtual reality and mindfulness, while also resulting in increased treatment adherence and reduced costs. We conducted a pilot study with 25 patients treated by means of virtual reality, in four 30-minute sessions, and 25 treated with psychostimulants. Measures will be taken pre-treatment, post-treatment and at 3 and 12 months post-treatment, to evaluate both ADHD and also depression, anxiety, functionality and quality of life. Data will be later analysed with the SPSS v. 20 statistical program. An ANOVA of independent groups will be performed to see the differences between treatments and also a test-retest to detect whether the changes will be maintained. It is necessary to use treatments that are effective, reduce costs and increase therapy adherence. Treatment with virtual reality is an interesting alternative to the classical treatments, and is shorter and more attractive for patients.

  18. Environmental effects on stem water deficit in co-occurring conifers exposed to soil dryness

    Science.gov (United States)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Wieser, Gerhard

    2015-04-01

    We monitored dynamics of stem water deficit (Δ W) and needle water potential ( Ψ) during two consecutive growing seasons (2011 and 2012) in a dry inner Alpine environment (750 m above sea level, Tyrol, Austria), where Pinus sylvestris, Picea abies and Larix decidua form mixed stands. Δ W was extracted from stem circumference variations, which were continuously recorded by electronic band dendrometers (six trees per species) and correlations with environmental variables were performed. Results revealed that (i) Δ W reached highest and lowest values in P. abies and L. decidua, respectively, while mean minimum water potential ( Ψ ea) amounted to -3.0 MPa in L. decidua and -1.8 MPa in P. abies and P. sylvestris. (ii) Δ W and Ψ ea were significantly correlated in P. abies ( r = 0.630; P = 0.038) and L. decidua ( r = 0.646; P = 0.032). (iii) In all species, Δ W reached highest values in late summer and was most closely related to temperature ( P drought-sensitive L. decidua and drought-tolerant P. sylvestris indicate that various water storage locations are depleted in species showing different strategies of water status regulation, i.e. anisohydric vs. isohydric behavior, respectively, and/or water uptake efficiency differs among these species. Close coupling of Δ W to temperature suggests that climate warming affects plant water status through its effect on atmospheric demand for moisture.

  19. Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L. Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline

    Directory of Open Access Journals (Sweden)

    Suravoot Yooyongwech

    2017-08-01

    Full Text Available The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. ‘Tainung 57’ using a foliar application of paclobutrazol (PBZ. The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control, 17, 34, and 51 μM before exposure to 47.5% (well irrigation, 32.3% (mild water deficit or 17.5% (severe water deficit soil water content. A sweet potato cultivar, ‘Japanese Yellow’, with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose increased by 3.96-folds in ‘Tainung 57’ plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate. In addition, under the same treatment, free proline content (2.15 μmol g-1 FW increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1 at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII and net photosynthetic rate was demonstrated (r2 = 0.73. The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield.

  20. Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L.) Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline.

    Science.gov (United States)

    Yooyongwech, Suravoot; Samphumphuang, Thapanee; Tisarum, Rujira; Theerawitaya, Cattarin; Cha-Um, Suriyan

    2017-01-01

    The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. 'Tainung 57' using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, 'Japanese Yellow', with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in 'Tainung 57' plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g -1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant -1 ) at the harvesting stage. A positive relationship between photon yield of PSII (Φ PSII ) and net photosynthetic rate was demonstrated ( r 2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield.

  1. Comparative study of the protein profiles of Sunki mandarin and Rangpur lime plants in response to water deficit.

    Science.gov (United States)

    Oliveira, Tahise M; da Silva, Fernanda R; Bonatto, Diego; Neves, Diana M; Morillon, Raphael; Maserti, Bianca E; Filho, Mauricio A Coelho; Costa, Marcio G C; Pirovani, Carlos P; Gesteira, Abelmon S

    2015-03-03

    Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels. Changes in the abundance of 36 and 38 proteins in Rangpur lime and 'Sunki Maravilha' mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of 'Sunki Maravilha' in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of 'Sunki Maravilha' to stress was aided by the activation of DNA repair and processing proteins. Our study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and 'Sunki Maravilha' mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the

  2. Silicon induced improvement in morpho-physiological traits of maize (zea mays l.) under water deficit

    International Nuclear Information System (INIS)

    Amin, M.; Ahmad, R.; Basra, S.M.A.; Murtaza, G.

    2014-01-01

    Current water scarcity is an emerging issue in semi-arid regions like Pakistan and cause of deterioration in productivity of crops to reduce crop yield all over the world. Silicon is known to be better against the deleterious effects of drought on plant growth and development. A pot study was conducted to evaluate the effect of Si nutrition (0, 50, 100 and 150 mg/kg) on the growth of a relatively drought tolerant (P-33H25) and sensitive (FH-810) maize hybrids. Two levels of soil water content were used viz. 100 and 60% of field capacity. Water deficit condition in soil significantly reduced morphological and physiological attributes of maize plants. Silicon application significantly improved the plant height, leaf area per plant, primary root length, dry matter of shoot and roots and plant dry matter, water relation and gas exchange characteristics of both maize cultivars under water deficit condition. Poor growth of drought stressed plants was significantly improved with Si application. The silicon fertilized (100 mg/kg) drought stressed plants of hybrid P-33H25 produced maximum (21.68% more) plant dry matter as compared to plants that were not provided with silicon nutrition. Nonetheless, silicon application (150 mg/kg) resulted in maximum increase (26.03%) in plant dry weight of hybrid FH-810 plants that were grown under limited moisture supply i.e., 60% FC. In conclusion silicon application to drought stressed maize plants was better to improve the growth and dry matter could be attributed to improved osmotic adjustment, photosynthetic rate and lowered transpiration. (author)

  3. Effect of nitrogen and water deficit type on the yield gap between the potential and attainable wheat yield

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2015-12-01

    Full Text Available Water deficit and N fertilizer are the two primary limiting factors for wheat yield in the North China plain, the most important winter wheat (Triticum aestivum L. production area in China. Analyzing the yield gap between the potential yield and the attainable yield can quantify the potential for increasing wheat production and exploring the limiting factors to yield gap in the high-yielding farming region of North China Plain. The Decision Support System for Agrotechnology Transfer (DSSAT model was used to identify methods to increase the grain yield and decrease the gap. In order to explore the impact of N and cultivars on wheat yield in the different drought types, the climate conditions during 1981 to 2011 growing seasons was categorized into low, moderate, and severe water deficit classes according to the anomaly percentage of the water deficit rate during the entire wheat growing season. There are differences (P < 0.0001 in the variations of the potential yields among three cultivars over 30 yr. For all three water deficit types, the more recent cultivars Jimai22 and Shijiazhuang8 had higher yields compared to the older 'Jinan17'. As the N fertilizer rate increased, the yield gap decreased more substantially during the low water deficit years because of the significant increase in attainable yield. Overall, the yield gaps were smaller with less water stress. Replacement of cultivars and appropriate N fertilizer application based on the forecasted drought types can narrow the yield gap effectively.

  4. [The course of behaviour changes in children with attention deficit and hyperactivity after drug treatment].

    Science.gov (United States)

    Roselló, B; Pitarch, I; Abad, L

    2002-02-01

    Several studies have reported differences in behaviour in patients with various subtypes of attention deficit with hyperactivity and the benefits of psychostimulant medication in the treatment of behaviour problems of patients with the attention deficit hyperactivity syndrome (TDAH). 1. To determine possible differences in behaviour between patients with subtypes of the attention deficit hyperactivity disorder; 2. To analyze the efficacy of methylphenidate on behaviour in three subtypes of TDAH, evaluated on the opinions of patients and teachers. A total of 90 children were studied: 39 children with TDAH-C; 36 with TDAH-1 and 15 with TDAH-H/I. All patients were given 0.5 mg/kg of methylphenidate for a period of three months, once in the morning and once in the afternoon. The results show that the children with the three subtypes of TDAH have significant differences in all the behaviour variables studied except for the variable timidity anxiety, in which no differences were observed between the subtypes of TDAH. Statistical analysis also showed that children with all three subtypes of TDAH improved significantly with regard to most of the aspects of behaviour studied after psychostimulant medication, in the opinions of parents and teachers. Our findings are similar to those of other studies and give fresh data on the behaviour and advantages of methylphenidate in the new subtype included in the DSM-1V, the predominantly hyperactive impulsive type.

  5. [Treatment of attention deficit disorders in adulthood using psychostimulants and low-dose neuroleptics--a critical case report].

    Science.gov (United States)

    Schmidt, L G; Schlünder, M; Reischies, F M

    1988-03-01

    Psychiatric research and therapy recently evinced increasing interest in patients suffering from attention deficit disorder. "Attention deficit disorder" is a category of mental disorders listed in DSM III, with a separate diagnostic subgroup for attention deficit disorders persisting in adults who had been hyperkinetic in childhood ("attention deficit disorder-residual type"); however, this does not feature in a corresponding manner in the ICD 9 version. Since there are practically no therapy studies in existence within the ICD range that can be relevant for such disorders, we studied the treatment of an adult patient with the psychostimulant fenetylline under clinical conditions and found a significant improvement in attention performance. However, on integration in a long-term day-clinic rehabilitation programme we found that low-dose neuroleptic treatment was on the whole of greater benefit than fenetylline treatment.

  6. Estimating Runoff and Soil Moisture Deficit in Guinea Savannah Region of Nigeria using Water Balance Method

    Directory of Open Access Journals (Sweden)

    A. R. Adesiji

    2012-12-01

    Full Text Available The estimation of runoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration, type and date of planting of crop, and soil parameters. The estimated runoff was validated with field measurement taken in a 67.23 ha catchment in the study area. The annual rainfall for the year under study (2009 is 1356.2 mm, the estimated annual evapotranspiration. runoff and recharge are 638mm, 132.93mm, and 447.8mm respectively. Recharge was experienced 23 days after a significant depth of rainfall was recorded. For the crop growth in the catchment, the soil was cropped with a pepper and the growth monitored from the planting to the harvesting. The crop enjoyed so much moisture throughout the growing period as Total Available Water in the soil is greater than Soil Moisture Deficit (TAW>SMD. The model results show that the larger percentage of the total annual rainfall was lost to evaporation and recharge during the growing season. The low runoff and high recharge are attributed to soil characteristics of the area and moderate terrain of the study area.

  7. Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots.

    Science.gov (United States)

    Dubos, Christian; Plomion, Christophe

    2003-01-01

    Root adaptation to soil environmental factors is very important to maritime pine, the main conifer species used for reforestation in France. The range of climates in the sites where this species is established varies from flooded in winter to drought-prone in summer. No studies have yet focused on the morphological, physiological or molecular variability of the root system to adapt its growth to such an environment. We developed a strategy to isolate drought-responsive genes in the root tissue in order to identify the molecular mechanisms that trees have evolved to cope with drought (the main problem affecting wood productivity), and to exploit this information to improve drought stress tolerance. In order to provide easy access to the root system, seedlings were raised in hydroponic solution. Polyethylene glycol was used as an osmoticum to induce water deficit. Using the cDNA-AFLP technique, we screened more than 2500 transcript derived fragments, of which 33 (1.2%) showed clear variation in presence/absence between non stressed and stressed medium. The relative abundance of these transcripts was then analysed by reverse northern. Only two out of these 33 genes showed significant opposite behaviour between both techniques. The identification and characterization of water-deficit responsive genes in roots provide the emergence of physiological understanding of the patterns of gene expression and regulation involved in the drought stress response of maritime pine.

  8. Partitioning and mobilization of photoassimilate by alfalfa subjected to water deficits

    International Nuclear Information System (INIS)

    Hall, M.H.

    1987-01-01

    Our objective was to determine the effect of stress induced by water deficit on photoassimilate partitioning and the utilization of stored assimilates during regrowth. Field and greenhouse experiments were conducted using alfalfa cultivars differing in winter hardiness. Plants were subjected to water stress, pulse-labeled with 14 CO 2 , and sampled following 0, 1, and 14 d translocation periods. Subsequent samples were taken at 7 and 14 d after harvest and rewatering. Water stress resulted in herbage and root dry mass of 65 and 119% of the control, respectively, 14 d after labeling. Stressed plants had similar net carbon exchange and respiration rates but retained 10% greater percent total plant radioactivity (%TPR) in the leaves at the onset of the translocation period than did those of the control. Roots of water-stressed plants had 8% more starch and 12% greater %TPR in the starch fraction 14 d after labeling than did roots of control plants. The stressed plant roots contained 73 and 114% more %TPR than the control at the 1 and 14 d translocation periods, respectively. Water stress had no effect on individual or total root sugar concentration or the %TPR of the root sugar fraction. Alfalfa regrowth mass following harvest and rewatering of the water-stressed plants were similar to that of the control

  9. Membrane technology revolutionizes water treatment.

    Science.gov (United States)

    Wilderer, P A; Paris, S

    2007-01-01

    Membranes play a crucial role in living cells, plants and animals. They not only serve as barriers between the inside and outside world of cells and organs. More importantly, they are means of selective transport of materials and host for biochemical conversion. Natural membrane systems have demonstrated efficiency and reliability for millions of years and it is remarkable that most of these systems are small, efficient and highly reliable even under rapidly changing ambient conditions. Thus, it appears to be advisable for technology developers to keep a close eye on Mother Nature. By doing so it is most likely that ideas for novel technical solutions are born. Following the concept of natural systems it is hypothesized that the Millennium Development Goals can be best met when counting on small water and wastewater treatment systems. The core of such systems could be membranes in which chemical reactions are integrated allowing recovery and direct utilization of valuable substances.

  10. The effect of water deficit stress and nitrogen fertilizer levels on morphology traits, yield and leaf area index in maize

    International Nuclear Information System (INIS)

    Moosavi, S.G.

    2012-01-01

    In order to study the effect of water deficit stress at different growth stages and N fertilizer levels on morphological traits, yield and yield components of maize cv. Single Cross 704, an experiment was conducted as a split-plot based on a Randomized Complete Block Design with three replications. The main plot included irrigation at four levels (irrigation stop at 10-leaf, tasselling and grain-filling stages and optimum irrigation) and the sub-plot was N fertilizer at three levels (75, 150 and 225 kg N/ha). The results of analysis of variance showed that water-deficit stress and N fertilizer level significantly affected leaf area index at silking stage, ear length, grain number per ear, 1000-grain weight and grain yield. Stem diameter, ear diameter and harvest index were only affected by irrigation treatments and the interaction between irrigation and N level did not significantly affect the studied traits. Means comparison indicated that ear diameter under optimum irrigation was higher than that under the treatments of irrigation stop at 8-leaf, tasselling and grain-filling stages by 29.9, 19.1 and 33.5%, respectively; and ear length was higher than them by 38.1, 28.9 and 25.2%, respectively. Moreover, the highest grain number per ear, 1000-grain weight and grain yield were obtained under optimum irrigation treatment, and irrigation stop at 10-leaf, tasselling and grain-filling stages decreased grain yield by 52.8, 66.4 and 44.9%, respectively; and it decreased grain number/ear by 45.9, 59.3 and 30.1%, respectively. In addition, optimum irrigation treatment with mean 1000-grain weight of 289.2 g was significantly superior over other irrigation stop treatments by 27.6-42.8% and produced the highest leaf area index at silking stage (4.1). Means comparison of traits at different N levels indicated that N level of 225 kg/ha produced the highest ear length (17.82 cm), grain number per ear (401.9), 1000-grain weight (258.8 g), leaf area index at silking stage (4

  11. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  12. [Adult attention deficit/hyperactivity disorder, associated symptoms and comorbid psychiatric disorders: diagnosis and pharmacological treatment].

    Science.gov (United States)

    Paslakis, G; Schredl, M; Alm, B; Sobanski, E

    2013-08-01

    Adult attention deficit/hyperactivity disorder (ADHD) is characterised by inattention and/or hyperactivity and impulsivity and is a frequent psychiatric disorder with childhood onset. In addition to core symptoms, patients often experience associated symptoms like emotional dysregulation or low self-esteem and suffer from comorbid disorders, particularly depressive episodes, substance abuse, anxiety or sleep disorders. It is recommended to include associated symptoms and comorbid psychiatric disorders in the diagnostic set-up and in the treatment plan. Comorbid psychiatric disorders should be addressed with disorder-specific therapies while associated symptoms also often improve with treatment of the ADHD core symptoms. The most impairing psychiatric disorder should be treated first. This review presents recommendations for differential diagnosis and treatment of adult ADHD with associated symptoms and comorbid psychiatric disorders with respect to internationally published guidelines, clinical trials and expert opinions. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Economics of mine water treatment

    OpenAIRE

    Dvořáček, Jaroslav; Vidlář, Jiří; Štěrba, Jiří; Heviánková, Silvie; Vaněk, Michal; Barták, Pavel

    2012-01-01

    Mine water poses a significant problem in lignite coal mining. The drainage of mine water is the fundamental prerequisite of mining operations. Under the legislation of the Czech Republic, mine water that discharges into surface watercourse is subject to the permission of the state administration body in the water management sector. The permission also stipulates the limits for mine water pollution. Therefore, mine water has to be purified prior to discharge. Although all...

  14. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  15. Water Relations, Gas Exchange, and Nutrient Response to a Long Term Constant Water Deficit

    Science.gov (United States)

    Berry, Wade L.; Goldstein, Guillermo; Dreschel, Thomas W.; Wheeler, Raymond M.; Sager, John C.; Knott, William M.

    1992-01-01

    Wheat plants (Triticum aestivum) were grown for 43 days in a micro-porous tube nutrient delivery system. Roots were unable to penetrate the microporous tube, but grew on the surface and maintained capillary contact with the nutrient solution on the inside of the tube through the 5-micron pores of the porous tube. Water potential in the system was controlled at -0.4, -0.8, and -3.0 kPa by adjusting the applied pressure (hydrostatic head) to the nutrient solution flowing through the microporous tubes. A relatively small decrease in applied water potential from -0.4 to -3.0 kPa resulted in a 34% reduction of shoot growth but only a moderate reduction in the midday leaf water potential from -1.3 to -1.7 MPa. Carbon dioxide assimilation decreased and water use efficiency increased with the more negative applied water potentials, while intercellular CO2 concentration remained constant. This was associated with a decrease in stomatal conductance to water vapor from 1.90 to 0.98 mol/(sq m sec) and a decrease in total apparent hydraulic conductance from 47 to 12 (micro)mol/(sec MPa). Although the applied water potentials were in the -0.4 to -3.0 kPa range, the actual water potential perceived by the plant roots appeared to be in the range of -0.26 to -0.38 MPa as estimated by the leaf water potential of bagged plants. The amount of K, Ca, Mg, Zn, Cu, and B accumulated with each unit of transpired water increased as the applied water potential became less negative. The increase in accumulation ranged from 1.4-fold for K to 2.2-fold for B. The physiological responses observed in this study in response to small constant differences in applied water potentials were much greater than expected from either the applied water potential or the observed plant water potential. Even though the micro-porous tube may not represent natural conditions and could possibly introduce morphological and physiological artifacts, it enables a high degree of control of water potential that

  16. Water deficit effects on maize yields modeled under current and greenhouse climates

    International Nuclear Information System (INIS)

    Muchow, R.C.; Sinclair, T.R.

    1991-01-01

    The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO 2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO 2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall

  17. Nitrate reductase and photosynthetic activities of wheat and their relationship with plant productivity under soil water deficit conditions (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.Y.; Sarwar, G.; Hussain, F.

    2005-01-01

    Experiments were conducted in lysimeters with wheat during two consecutive years. The first year experiment comprised of eight wheat genotypes with four water stress treatments, i.e. normal irrigation, pre-anthesis drought, post-anthesis drought and terminal drought, with four replications. The results showed that yield and yield parameters reduced with the severity of drought in all wheat lines. However, wheat lines Chakwal-86, DS-4 and Barani-83 had comparatively higher yield and yield components than others. The maximum reduction in all parameters was under terminal drought. The difference between pre- and post-anthesis drought was nonsignificant, particularly for grain yield. The second experiment was conducted with four wheat lines: two were tolerant (Chakwal-86 and DS-4) and two susceptible (Pavon and DS-17) under similar environments with same treatments to study the photosynthetic efficiency, nitrogen metabolism and their relationship with plant productivity (yield). The results showed that leaf area, transpiration, dry matter accumulation and nitrate reductase activity were reduced while diffusive resistance and total amino acids increased in all the wheat lines under water deficit conditions. The relationship between yield and leaf area, transpiration, dry matter accumulation and nitrate reductase activity was positive. The overall results showed that wheat lines Chakwal-86 and DS-4 showed better performance than others. (author)

  18. Comparison of duloxetine and methylphenidate in the treatment of children with attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Nasrin Dodangi

    2016-06-01

    Full Text Available Background: Attention-deficit/hyperactivity disorder (ADHD is a common and mostly chronic mental health condition that affects children, adolescents, and adults. Stimulants and atomoxetine are first-line agents for the treatment of ADHD. Despite the impressive track record of stimulants in the treatment of ADHD, they fail in 25% of patients due to lack of efficacy or the emergence of unwanted side effects. Accordingly, this study carried out to compare efficacy and safety of duloxetine (a serotonin and norepinephrine reuptake inhibitor and methylphenidate (a short acting stimulant in the treatment of children with attention-deficit/hyperactivity disorder. Methods: Twenty-four children diagnosed with ADHD participated in this 6 weeks open clinical trial. Patients were between 6 to 11 years old that had been referred to psychiatry clinic at Akhavan and Rofide Medical and Rehabilitation Center in Tehran from September 2012 to July 2014. Diagnosis was made by two child psychiatrist according to DSM-IV TR criteria. Thirteen patients received duloxetine and others received methylphenidate. Conner’ parent rating scale-revised-short form (CPRS-RS and ADHD-rating scale (ADHD-RS were used at the beginning and then each two weeks to assess efficacy of treatment. Routine laboratory tests and electrocardiogram (ECG was carried out in the beginning and end of the trial. Results: Twenty children with ADHD completed the study (Ten in methylphenidate and ten in duloxetine group. In both groups, scales of CPRS-RS and ADHD-RS were reduced from baseline to endpoint, but this reduction in methylphenidate group was significantly greater than duloxetine group (P= 0.000. The most common side effect was gastrointestinal problems in duloxetine group and anorexia in methylphenidate group. No serious side effects and no changes in laboratory and ECG indexes were seen in both groups. Conclusion: Duloxetine is not efficacious as well as methylphenidate in treatment of

  19. Treatment of Attention Deficit/Hyperactivity Disorder among Children with Special Health Care Needs.

    Science.gov (United States)

    Visser, Susanna N; Bitsko, Rebecca H; Danielson, Melissa L; Ghandour, Reem M; Blumberg, Stephen J; Schieve, Laura A; Holbrook, Joseph R; Wolraich, Mark L; Cuffe, Steven P

    2015-06-01

    To describe the parent-reported prevalence of treatments for attention deficit/hyperactivity disorder (ADHD) among a national sample of children with special health care needs (CSHCN), and assess the alignment of ADHD treatment with current American Academy of Pediatrics guidelines. Parent-reported data from the 2009-2010 National Survey of Children with Special Health Care Needs allowed for weighted national and state-based prevalence estimates of medication, behavioral therapy, and dietary supplement use for ADHD treatment among CSHCN aged 4-17 years with current ADHD. National estimates were compared across demographic groups, ADHD severity, and comorbidities. Medication treatment by drug class was described. Of CSHCN with current ADHD, 74.0% had received medication treatment in the past week, 44.0% had received behavioral therapy in the past year, and 10.2% used dietary supplements for ADHD in the past year. Overall, 87.3% had received past week medication treatment or past year behavioral therapy (both, 30.7%; neither, 12.7%). Among preschool-aged CSHCN with ADHD, 25.4% received medication treatment alone, 31.9% received behavioral therapy alone, 21.2% received both treatments, and 21.4% received neither treatment. Central nervous system stimulants were the most common medication class (84.8%) among CSHCN with ADHD, followed by the selective norepinephrine reuptake inhibitor atomoxetine (8.4%). These estimates provide a benchmark of clinical practice for the period directly preceding issuance of the American Academy of Pediatrics' 2011 ADHD guidelines. Most children with ADHD received medication treatment or behavioral therapy; just under one-third received both. Multimodal treatment was most common for CSHCN with severe ADHD and those with comorbidities. Approximately one-half of preschoolers received behavioral therapy, the recommended first-line treatment for this age group. Published by Elsevier Inc.

  20. Prediction of methylphenidate treatment outcome in adults with attention-deficit/hyperactivity disorder (ADHD).

    Science.gov (United States)

    Retz, Wolfgang; Retz-Junginger, Petra

    2014-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent mental disorder of childhood, which often persists in adulthood. Methylphenidate (MPH) is one of the most effective medications to treat ADHD, but also few adult patients show no sufficient response to this drug. In this paper, we give an overview regarding genetic, neuroimaging, clinical and other studies which have tried to reveal the reasons for non-response in adults with ADHD, based on a systematic literature search. Although MPH is a well-established treatment for adults with ADHD, research regarding the prediction of treatment outcome is still limited and has resulted in inconsistent findings. No reliable neurobiological markers of treatment response have been identified so far. Some findings from clinical studies suggest that comorbidity with substance use disorders and personality disorders has an impact on treatment course and outcome. As MPH is widely used in the treatment of adults with ADHD, much more work is needed regarding positive and negative predictors of long-term treatment outcome in order to optimize the pharmacological treatment of adult ADHD patients.

  1. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    Science.gov (United States)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  2. DEFICIT IRRIGATION TECHNIQUE FOR REDUCING WATER USE OF TOMATO UNDER POLYTUNNEL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Sladjana SAVIC

    2012-01-01

    Full Text Available The aim of paper was to asses the use of regulated deficit irrigation (RDI for production of two tomato cultivars (Cedrico and Abellus in polytunnels in Serbia. RDI plants received 60% of the water that was applied to FI plants and significant saving of water for irrigation and increased in irrigation water use efficiency (IWUE were achieved. Yield data for Cedrico cultivar showed no differences between RDI and FI, while due to the bigger sensitivity to drought, yield of Abellus was reduced under RDI. In general, fruit quality (soluble solids, titrable acidity was sustained or improved in both cultivars under RDI. Economic analyses showed that due to the current low prices of water and electricity in Serbia, the profit increase of Cedrico, similarly to the previously trialed cultivar Amati, was not high under RDI comparing to FI. Reduction of yield and consequent profit for Abellus, indicated that for future commercial growing of tomato under RDI should be used drought resistant cultivars.

  3. Water deficit at different growth stages for common bean (Phaseolus vulgaris L. cv. Imbabello) on yield and water and nitrogen use efficiency

    International Nuclear Information System (INIS)

    Calvache, Marcelo Angel

    1997-03-01

    To identify specific growth stages of the common bean crop at which the plant is less sensitive to water stress, in which irrigation could be omitted without significant decrease in biological nitrogen fixation and final yield, a field experiment was conducted at 'La Tola' University Experiment Station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil (Typic Haplustoll). The climate is tempered and dry (mean air temperature 16 C and mean relative humidity 74%) during the cropping season, and 123 mm of rainfall were recorded during the cropping period. The treatments consisted of the combinations of 7 irrigation regimes (IR1=normal watering; IR2= full stress; IR3= traditional practice; IR4=single stress at vegetation; IR5= flowering; IR6=yield formation and IR7=ripening) and 2 levels of applied N (20 and 80 kg/ha). These 14 treatment combinations were arranged and analysed in a split-plot design with 4 replications. The plot size was 33.6 m sub 2 (8 rows, 7 m long) with a population of 120.000 plants/ha. Irrigation treatments were started after uniform germination and crop establishment. Soil moisture was monitored with neutron probe down to the 0.50 m depth, 24 hours before and after each irrigation. Yield data show that treatments which had irrigation deficit had lower yield than those with supplementary irrigation (1% prob). The yield formation stage was the most sensitive to moisture stress, in which crop water use efficiency (0.46 kg/m3) was the lowest and the yield response factor (Ky=2.2.) was higher. Nitrogen fixation was significantly affected by water stress at the flowering and yield formation stages. (author)

  4. Early Identification and Treatment of Communication and Swallowing Deficits in Parkinson Disease

    Science.gov (United States)

    Ciucci, Michelle R.; Grant, Laura M.; Paul Rajamanickam, Eunice S.; Hilby, Breanna L.; Blue, Katherine V.; Jones, Corinne A.; Kelm-Nelson, Cynthia A.

    2015-01-01

    Parkinson disease (PD) is a complex, progressive, neurodegenerative disorder that leads to a wide range of deficits including fine and gross sensorimotor impairment, autonomic dysfunction, mood disorders, and cognitive decline. Traditionally, the focus for diagnosis and treatment has been on sensorimotor impairment related to dopamine depletion. It is now widely recognized, however, that PD-related pathology affects multiple central nervous system neurotransmitters and pathways. Communication and swallowing functions can be impaired even in the early stages, significantly affecting health and quality of life. The purpose of this article is to review the literature on early intervention for communication and swallowing impairment in PD. Overarching themes were that (1) studies and interpretation of data from studies in early PD are limited; (2) best therapy practices have not been established, in part due to the heterogeneous nature of PD; and (3) as communication and swallowing problems are pervasive in PD, further treatment research is essential. PMID:24166192

  5. A review of medications used in the treatment of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Matej Štuhec

    2013-04-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is one of the most common developmental disorders in children and adolescents with core symptoms of hyperactivity, impulsivity andinattention. Atomoxetine, immediate-release methylphenidate and extended release methylphenidate are approved for use in patients with ADHD in Slovenia. In addition, ADHD is also treated off-label with bupropion, tricyclic antidepressants and some other drugs. According to the recently adopted American and European guidelines, pharmacotherapy includes the initial, maintenance and terminal phase. Consideration of pharmacokinetic parameters of the selected drugs and potential drug-drug interactions, if the patient is taking other medications, helps to reduce symptoms of ADHD, and improves the selection of drug and appropriate dosing regimen. Clinical outcomes should be measured by standardised questionnaires. The drug of choice is methylphenidate. Guidelines for the treatment of ADHD should also include recommendations on psychosocial treatments and destigmatization of patients with this disorder. In this paper, pharmacotherapy guidelines for patients with ADHD are highlighted.

  6. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  7. Treatment of attention deficit hyperactivity disorder in children: Predictors of treatment outcome

    NARCIS (Netherlands)

    van der Oord, S.; Prins, P.J.M.; Oosterlaan, J.; Emmelkamp, P.M.G.

    2008-01-01

    Objective: The present study investigated the predictive power of anxiety, IQ, severity of ADHD and parental depression on the outcome of treatment in children with ADHD. Method: Fifty children with ADHD (ages 8-12) were randomized to a 10-week treatment of methylphenidate or to a treatment of

  8. Differential Antioxidative Responses to Water Deficit Among four Barley (Hordeum vulgare L. Genotypes

    Directory of Open Access Journals (Sweden)

    Z Amini

    2013-08-01

    Full Text Available Future climate changes are expected to increase risks of drought, which already represent the most common stress factor for stable barley (Hordeum vulgare L. production in Iran. Up to now, extensive research projects have been done to study effects of drought stress on the antioxidant enzyme activity. While there is a few works of such studies on the field condition. In order to study of water deficit effects on the antioxidant enzymes activities as a secondary stress, we evaluate the effects of mild and severe drought stress on activities of antioxidative enzymes including superoxide dismutases, ascorbate peroxidase, catalase and peroxidase, among four barley genotypes, differing in the capacity to maintain the grain yield under drought condition during beginning on anthesis, kernel watery ripe and late milk stages under field condition. Results showed that drought increased the activity of antioxidant enzymes in all genotypes. At beginning of anthesis, POX activity of Q22 was higher than it in other genotypes ( P

  9. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit.

    Science.gov (United States)

    Liu, Chenggang; Wang, Yanjie; Pan, Kaiwen; Jin, Yanqiang; Li, Wei; Zhang, Lin

    2015-11-01

    Dwarf bamboo (Fargesia rufa Yi), one of the staple foods for the endangered giant pandas, is highly susceptible to water deficit due to its shallow roots. In the face of climate change, maintenance and improvement in its productivity is very necessary for the management of the giant pandas' habitats. However, the regulatory mechanisms underlying plant responses to water deficit are poorly known. To investigate the effects of P application on photosynthetic C and N metabolism, water use efficiency (WUE) and growth of dwarf bamboo under water deficit, a completely randomized design with two factors of two watering (well-watered and water-stressed) and two P regimes (with and without P fertilization) was arranged. P application hardly changed growth, net CO2 assimilation rate (P(n)) and WUE in well-watered plants but significantly increased relative growth rate (RGR) and P(n) in water-stressed plants. The effect of P application on RGR under water stress was mostly associated with physiological adjustments rather than with differences in biomass allocation. P application maintained the balance of C metabolism in well-watered plants, but altered the proportion of nitrogenous compounds in N metabolism. By contrast, P application remarkably increased sucrose-metabolizing enzymes activities with an obvious decrease in sucrose content in water-stressed plants, suggesting an accelerated sucrose metabolism. Activation of nitrogen-metabolizing enzymes in water-stressed plants was attenuated after P application, thus slowing nitrate reduction and ammonium assimilation. P application hardly enlarged the phenotypic plasticity of dwarf bamboo in response to water in the short term. Generally, these examined traits of dwarf bamboo displayed weak or negligible responses to water-P interaction. In conclusion, P application could accelerate P(n) and sucrose metabolism and slow N metabolism in water-stressed dwarf bamboo, and as a result improved RGR and alleviated damage from soil

  10. Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat and maize to heat and water deficit: implications for modeling photosynthesis

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Perdomo

    2016-11-01

    Full Text Available The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa, and a high temperature (HT, 38°C, VPD 3.5 kPa, both under well-watered (WW and water deficit (WD conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species.

  11. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    Science.gov (United States)

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  13. 1-year follow-up of neurofeedback treatment in adolescents with attention-deficit hyperactivity disorder : Randomised controlled trial

    NARCIS (Netherlands)

    Bink, M.; Bongers, I.L.; Popma, A.; Janssen, T.W.P.; van Nieuwenhuizen, Ch.

    2016-01-01

    Background Estimates of the effectiveness of neurofeedback as a treatment for attention-deficit hyperactivity disorder (ADHD) are mixed. Aims To investigate the long-term additional effects of neurofeedback (NFB) compared with treatment as usual (TAU) for adolescents with ADHD. Method Using a

  14. Methylphenidate treatment in children with attention deficit hyperactivity disorder and comorbid social phobia.

    Science.gov (United States)

    Golubchik, Pavel; Sever, Jonathan; Weizman, Abraham

    2014-07-01

    The aim of this study was to assess the response of social phobia (SP) symptoms to methylphenidate (MPH) treatment in children with attention deficit hyperactivity disorder (ADHD). Twenty-one ADHD patients with SP, aged between 8 and 18 years, received 12 weeks of MPH treatment. The severity of SP symptoms were assessed by the Liebowitz Social Anxiety Scale for Children and Adolescents (LSAS-CA), and the severity of ADHD symptoms was assessed by the ADHD Rating Scale at baseline and at endpoint. MPH treatment was associated with a significant decrease in the ADHD Rating Scale scores (P<0.0001) and in the total LSAS-CA scores (P=0.013), as well as the school-related items of LSAS-CA (P=0.011). A significant correlation was found between the reductions in ADHD score and total LSAS-CA score (P=0.038), especially in school-related SP. The improvement in ADHD symptoms because of MPH treatment correlates with a parallel improvement in SP. MPH treatment appears to be safe and effective in ADHD/SP children.

  15. An update on lisdexamfetamine dimesylate for the treatment of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Wigal, Sharon B; Raja, Pooja; Shukla, Ankita

    2013-01-01

    The efficacy and safety of stimulants for the pharmacologic management of attention deficit hyperactivity disorder (ADHD) is well documented. The US Food and Drug Administration approval of additional classes of medication even within stimulant treatments expands the prescribing options for practitioners. The focus of this paper is the prodrug amphetamine stimulant, lisdexamfetamine (LDX) , which is an example of such an agent with a novel delivery system. This review covers the proof-of-concept and later studies of LDX to describe its use to treat ADHD in pediatric and adult populations. A literature search and review of LDX were carried out using the PubMed database up to August 2012. Clinical studies of LDX in children and adults with ADHD demonstrate its tolerability and its efficacy in reducing ADHD symptoms. Future research should be less restrictive in order to address some of the unmet needs in ADHD treatment. The inclusion of patients with ADHD and co-occurring mental health disorders and/or medical conditions is typically not studied in clinical trials nor is the prior ADHD treatment exposure of study participants. The preschool age population also is understudied in recently approved ADHD treatments such as LDX. Finally, how to approach the treatment of participants or first-degree relatives with a medical history or presence of substance use disorder presents an ongoing clinical challenge.

  16. Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit.

    Science.gov (United States)

    Sziderics, Astrid Heide; Oufir, Mouhssin; Trognitz, Friederike; Kopecky, Dieter; Matusíková, Ildikó; Hausman, Jean-Francois; Wilhelm, Eva

    2010-03-01

    Drought is one of the major factors that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants (Capsicum annuum L.) were grown in a greenhouse and stressed by withholding water for 1 week. Plants adapted to the decreasing water content of the soil by adjustment of their osmotic potential in root tissue. As a consequence of drought, strong accumulation of raffinose, glucose, galactinol and proline was detected in the roots. In contrast, in leaves the levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves, whereas the concentration of polyamines was reduced in roots. To study the molecular basis of these responses, a combined approach of suppression subtractive hybridisation and microarray technique was performed on the same material. A total of 109 unique ESTs were detected as responsive to drought, while additional 286 ESTs were selected from the bulk of rare transcripts on the array. The metabolic profiles of stressed pepper plants are discussed with respect to the transcriptomic changes detected, while attention is given to the differences between defence strategies of roots and leaves.

  17. Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report

    Directory of Open Access Journals (Sweden)

    Tan-kam T

    2013-01-01

    Full Text Available Teerarat Tan-kam,1 Chutamanee Suthisisang,2 Chosita Pavasuthipaisit,1 Penkhae Limsila,1 Apichaya Puangpetch,3 Chonlaphat Sukasem31Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, 2Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 3Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandAbstract: This case report highlights the importance of pharmacogenetic testing in the treatment of attention deficit hyperactive disorder (ADHD. A 6-year-old boy diagnosed with ADHD was prescribed methylphenidate 5 mg twice daily (7 am and noon and the family was compliant with administration of this medication. On the first day of treatment, the patient had an adverse reaction, becoming disobedient, more mischievous, erratic, resistant to discipline, would not go to sleep until midnight, and had a poor appetite. The All-In-One PGX (All-In-One Pharmacogenetics for Antipsychotics test for CYP2D6, CYP2C19, and CYP2C9 was performed using microarray-based and real-time polymerase chain reaction techniques. The genotype of our patient was identified to be CYP2D6*2/*10, with isoforms of the enzyme consistent with a predicted cytochrome P450 2D6 intermediate metabolizer phenotype. Consequently, the physician adjusted the methylphenidate dose to 2.5 mg once daily in the morning. At this dosage, the patient had a good response without any further adverse reactions. Pharmacogenetic testing should be included in the management plan for ADHD. In this case, cooperation between the medical team and the patients' relatives was key to successful treatment.Keywords: attention deficit hyperactive disorder, pharmacogenomics, CYP2D6, adverse drug reactions, dose adjustment, intermediate metabolizer

  18. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  19. Six week open-label reboxetine treatment in children and adolescents with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Arabgol F

    2007-10-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a common psychiatric disorder among children and adolescents. This disorder causes difficulties in academic, behavioral, emotional, social and family performance. Stimulants show robust efficacy and a good safety profile in children with this disorder, but a significant percent of ADHD children do not respond adequately or cannot tolerate the associated adverse effects with stimulants. Such difficulties highlight the need for alternative safe and effective medications in the treatment of this disorder. This open-label study assessed the effectiveness of reboxetine, a selective norepinephrine reuptake inhibitor, in children and adolescents with attention deficit hyperactivity disorder (ADHD."nMethods: Fifteen child and adolescent outpatients, aged 7 to 16 (Mean± SD=9.72±2.71 years, diagnosed with ADHD were enrolled in a six open-label study with reboxetine 4-6 mg/d. The principal measure of the outcome was the teacher and parent Attention Deficit Hyperactive Disorder Rating Scale (ADHD Rating Scale. Patients were assessed by a child psychiatrist at baseline, 2, 4 and 6 weeks of the medication started. Side effects questionnaire was used to detect side effects of reboxetine. Repeated measures Analysis of variance (ANOVA was done for comparison of Teacher and Parent ADHD Rating Scale scores during the intervention."nResults: Twelve of 15 (80% participants completed the treatment protocol. A significant decrease in ADHD symptoms on teacher (p=0.04 and parent (p=0.003 ADHD rating scale was noted. Adverse effects were mild to moderate in severity. The most common adverse effects were drowsiness/sedation and appetite decrease."nConclusion: The results of the current study suggest the effectiveness of reboxetine in the treatment of ADHD in children and adolescents. Double-blind, placebo-controlled studies and larger sample size with long duration of intervention are indicated to rigorously

  20. Exploring the outcomes of a novel computer-assisted treatment program targeting expressive-grammar deficits in preschoolers with SLI.

    Science.gov (United States)

    Washington, Karla N; Warr-Leeper, Genese; Thomas-Stonell, Nancy

    2011-01-01

    The impact of a newly designed computer-assisted treatment (C-AT) program, My Sentence Builder, for the remediation of expressive-grammar deficits in children with specific language impairment (SLI) was explored. This program was specifically designed with features to directly address expressive-grammar difficulties, thought to be associated with hypothesized deficits in verbal working memory (VWM). Thirty-four preschoolers with deficits in expressive-grammar morphology participated. Using the randomization procedure of consecutive sampling, participants were recruited. Twenty-two participants were consecutively assigned to one of two treatment groups, C-AT or non C-AT (nC-AT). The nC-AT utilized conventional language stimulation procedures containing features which have been traditionally used to address expressive-grammar deficits. A group of equivalent children awaiting treatment and chosen from the same sample of children as the treatment participants served as a control group. Blind assessments of outcomes were completed pre-, post-, and 3-months post-treatment in a formal and informal context. C-AT and nC-AT participants significantly outperformed controls pre-to-post to 3-months post-treatment in both assessment contexts. No significant differences in treatment gains were found between C-AT and nC-AT. Results suggested that treatments designed to directly address expressive-grammar deficits were better than no treatment for preschool SLI. Further, use of a C-AT program may be another feasible treatment method for this disorder population. As a result of this activity, the reader will recognize that: (1) expressive-grammar treatment is better than no treatment for immediate and continued language growth, (2) use of a C-AT program containing specific features designed to directly address expressive-grammar deficits is another viable, but not necessarily a better treatment option for the remediation of expressive-grammar deficits in preschool children with SLI

  1. Course of self-reported symptoms of attention deficit and hyperactivity in substance abusers during early treatment

    DEFF Research Database (Denmark)

    Hesse, Morten

    2010-01-01

    Attention deficit and hyperactivity disorder has been associated with poor outcome in studies of substance use disorders. This study aimed to assess the course of self-reported symptoms of both attention deficit and hyperactivity among adults presenting for treatment for substance use disorders....... A sample of 75 substance abusers were assessed after they were admitted to a centralized intake unit, and followed at 3 and 6 months after intake by independent interviewers (follow-up rate 81%). Symptoms of attention deficit and hyperactivity were assessed with the Adult Self-report Scale for ADHD (ASRS......). Both types of symptoms declined significantly during follow-up, but attention symptoms had a high intraclass correlation (0.79), and hyperactivity had a moderate intraclass correlation (0.64). Both baseline attention deficit and hyperactivity symptoms were associated with worse work and social...

  2. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  3. Effect of Water Deficit-Induced at Vegetative and Reproductive Stages on Protein and Oil Content in Soybean Grains

    Directory of Open Access Journals (Sweden)

    Liliane M. Mertz-Henning

    2017-12-01

    Full Text Available Soybean is one of the most common grain crops worldwide, representing an important protein and oil source. Although genetic variability in the chemical composition of grains is seen in soybean, the mean levels of proteins have remained stagnant or, in some cases, have decreased over time, arousing concern in the agricultural industry. Furthermore, environmental conditions influence the chemical composition of grains. Thus, the present study evaluated the effect of water deficit (WD induced at the vegetative period (vegetative stress (VS and reproductive period (reproductive stress (RS on the protein and oil contents of grains in different soybean genotypes. Yield and its components were evaluated to evaluate the interrelation of these traits. The experiment was completed over three crop seasons under field conditions in Londrina, Paraná (PR, Brazil. WD was induced using rainout shelters and then stress treatments with irrigated and non-irrigated conditions were compared. WD negatively affected yield and its components. All evaluated genotypes showed similar responses for oil and protein contents under different water conditions. Higher protein content and lower oil content were observed in grains under RS. Such a relationship was not equally established under VS. Additionally, negative relationships between protein and oil content and between protein content and yield were confirmed.

  4. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  5. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    Science.gov (United States)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  6. Effluent and water treatment at AERE Harwell

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1977-01-01

    The treatment of liquid wastes at Harwell is based on two main principles: separation of surface water, domestic sewage, trade wastes and radioactive effluents at source, and a system of holding tanks which are sampled so that the appropriate treatment can be given to any batch. All discharges are subject to independent monitoring by the authorising departments and the Thames Water Inspectors. (author)

  7. Moderate water stress from regulated deficit irrigation decreases transpiration similarly to net carbon exchange in grapevine canopies

    Science.gov (United States)

    To determine the effects of timing and extent of regulated deficit irrigation (RDI) on grapevine (Vitis vinifera) canopies, whole-canopy transpiration (TrV) and canopy conductance to water vapor (gc) were calculated from whole-vine gas exchange near key stages of fruit development. The vines were ma...

  8. Genomic Architecture and Phenotypic Plasticity of Forage Quality in Response to Water Deficit in Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    A panel of alfalfa cultivars and landraces originated worldwide with potential value of drought tolerance were selected from USDA-Western Region Plant Germplasm Center. Field trials were conducted in the in Roza farm in Prosser, WA and a gradient of water deficits were applied. Aboveground biomass w...

  9. Postnatal nutritional treatment of neurocognitive deficits in fetal alcohol spectrum disorder.

    Science.gov (United States)

    Bastons-Compta, A; Astals, M; Andreu-Fernandez, V; Navarro-Tapia, E; Garcia-Algar, O

    2018-04-01

    Ethanol is the most important teratogen agent in humans. Prenatal alcohol exposure can lead to a wide range of adverse effects, which are broadly termed as fetal alcohol spectrum disorder (FASD). The most severe consequence of maternal alcohol abuse is the development of fetal alcohol syndrome, defined by growth retardation, facial malformations, and central nervous system impairment expressed as microcephaly and neurodevelopment abnormalities. These alterations generate a broad range of cognitive abnormalities such as learning disabilities and hyperactivity and behavioural problems. Socioeconomic status, ethnicity, differences in genetic susceptibility related to ethanol metabolism, alcohol consumption patterns, obstetric problems, and environmental influences like maternal nutrition, stress, and other co-administered drugs are all factors that may influence FASD manifestations. Recently, much attention has been paid to the role of nutrition as a protective factor against alcohol teratogenicity. There are a great number of papers related to nutritional treatment of nutritional deficits due to several factors associated with maternal consumption of alcohol and with eating and social disorders in FASD children. Although research showed the clinical benefits of nutritional interventions, most of work was in animal models, in a preclinical phase, or in the prenatal period. However, a minimum number of studies refer to postnatal nutrition treatment of neurodevelopmental deficits. Nutritional supplementation in children with FASD has a dual objective: to overcome nutritional deficiencies and to reverse or improve the cognitive deleterious effects of prenatal alcohol exposure. Further research is necessary to confirm positive results, to determine optimal amounts of nutrients needed in supplementation, and to investigate the collective effects of simultaneous multiple-nutrient supplementation.

  10. Deficits in latent inhibition induced by estradiol replacement are ameliorated by haloperidol treatment

    Directory of Open Access Journals (Sweden)

    Anne eAlmey

    2013-10-01

    Full Text Available There are sex differences in the symptomatology of schizophrenia, and in the response to antipsychotic treatments. One hallmark symptom of schizophrenia is a deficit in selective attention. Selective attention can be measured using a latent inhibition (LI paradigm in humans; LI can be measured in rodents, and is used as an animal model of the selective attention deficits observed in schizophrenia. In the current experiments LI was used to clarify whether selective attention differs between male rats and ovariectomized (OVX female rats receiving different estradiol (E2 replacement regimens. An additional aim was to determine whether haloperidol's facilitation of LI is enhanced by E2. Males and OVX female rats were trained in a conditioned emotional response LI paradigm. Females received no E2 replacement, a chronic low dose of E2 via silastic capsule, or a high phasic dose of E2 via silastic capsule accompanied by E2 (10 ug/kg SC injections every fourth day. Actual plasma levels of E2 were determined using an enzyme linked immunosorbent assay. Rats were also administered a vehicle treatment, a 0.05mg/kg, or a 0.1mg/kg IP injection of haloperidol. Males and OVX females that did not receive E2 replacement both exhibited LI, but LI was not observed in the low and high E2 replacement groups. Haloperidol restored LI at a lower dose in the females receiving high E2 replacement compared to females receiving low E2 replacement, indicating that E2 replacement facilitates haloperidol in restoring LI.

  11. Attention-deficit hyperactivity disorder, multimodal treatment, and longitudinal outcome: evidence, paradox, and challenge.

    Science.gov (United States)

    Hinshaw, Stephen P; Arnold, L Eugene

    2015-01-01

    Given major increases in the diagnosis of attention-deficit hyperactivity disorder (ADHD) and in rates of medication for this condition, we carefully examine evidence for effects of single versus multimodal (i.e., combined medication and psychosocial/behavioral) interventions for ADHD. Our primary data source is the Multimodal Treatment Study of Children with ADHD (MTA), a 14-month, randomized clinical trial in which intensive behavioral, medication, and multimodal treatment arms were contrasted with one another and with community intervention (treatment-as-usual), regarding outcome domains of ADHD symptoms, comorbidities, and core functional impairments. Although initial reports emphasized the superiority of well-monitored medication for symptomatic improvement, reanalyses and reappraisals have highlighted (1) the superiority of combination treatment for composite outcomes and for domains of functional impairment (e.g., academic achievement, social skills, parenting practices); (2) the importance of considering moderator and mediator processes underlying differential patterns of outcome, including comorbid subgroups and improvements in family discipline style during the intervention period; (3) the emergence of side effects (e.g., mild growth suppression) in youth treated with long-term medication; and (4) the diminution of medication's initial superiority once the randomly assigned treatment phase turned into naturalistic follow-up. The key paradox is that while ADHD clearly responds to medication and behavioral treatment in the short term, evidence for long-term effectiveness remains elusive. We close with discussion of future directions and a call for greater understanding of relevant developmental processes in the attempt to promote optimal, generalized, and lasting treatments for this important and impairing neurodevelopmental disorder. © 2014 John Wiley & Sons, Ltd.

  12. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  13. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  14. Effect of readily available water deficit in soil on maize yield and evapotranspiration

    Directory of Open Access Journals (Sweden)

    Pejić Borivoj

    2010-01-01

    Full Text Available An investigation was carried out at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops, Novi Sad on calcareous chernozem soil on the loess terrace, in the period 2000-2007, and included irrigated variant (T1 and non-irrigated i.e. control variant (T0. NS-640, maize hybrid from the FAO maturity group 600, was analyzed. Readily available soil water deficit (RASWD in the layer of 60 cm in the course of growing season and actual evapotranspiration (ETa were calculated by the water balance method. Water consumption for potential evapotranspiration (ETm in individual months and the growing season were calculated by the bioclimatic procedure, using hydrophytothermic indexes. The correlation analysis revealed highly significant dependences of maize yield (Y on RASWD (r = -0.941 and the amount of precipitation (P in August (r = 0.931. Statistically significant dependence was also found between Y and RASWD (r = -0.765 and P (r = 0.768 in July and August. The obtained results indicate that maize production in Vojvodina under the rainfed conditions is unreliable, and that it is correlated with weather conditions, especially with the amount and distribution of precipitation. The statistically significant correlation obtained between Y and ETa (r = 0.755 confirms that water supply is the basic prerequisite which allows the other production factors to be realized. Significantly higher maize yields in the T1 variant (13.517 t ha-1 in relation to the T0 variant (11.210 t ha-1 indicate clearly that under the climatic conditions of Vojvodina high and stable yields of maize can be achieved only in irrigation. .

  15. Molecular Characterization and Germination Analysis of Cotton (Gossypium hirsutum L. Genotypes under Water Deficit Irrigation

    Directory of Open Access Journals (Sweden)

    Eminur ELÇİ

    2016-09-01

    Full Text Available Cotton is an important crop in terms of economic and strategic impacts. Drought stress is one of the most important environmental stress factors which negatively affects growth and yield of plants in Turkey as occurred in many countries in the world. In this study, 11 different cotton cultivars selected based on their agronomical characters were tested under water deficit irrigation strategies. Thus, it was aimed to select and/or determine appropriate new varieties for breeding new national materials resistant to drought stress, and to characterize with the molecular microsatellite markers. According to the different irrigation levels (25%, 50%, 75% and 100% plants were observed under the stressed conditions at the irrigation levels of 50% and 25%. Among the tested varieties, Tamcot Sphinx, Tamcot 94, Tamcot CamdEs and BA525 varieties were found to be more water stress tolerant than others in terms of germination time and germinated plant. The UPGMA (Unweighted Pair-Group Method Using Arithmetic Averages analysis was carried out using 28 markers with average 0.306 polymorphism information content (PIC for molecular characterization studies. Based on the UPGMA results, the varieties were clustered into two groups. It is expected that the results obtained from this study might provide considerable data for improving new drought tolerant varieties.

  16. The shift from plant-plant facilitation to competition under severe water deficit is spatially explicit.

    Science.gov (United States)

    O'Brien, Michael J; Pugnaire, Francisco I; Armas, Cristina; Rodríguez-Echeverría, Susana; Schöb, Christian

    2017-04-01

    The stress-gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta-analysis to compare temporal differences of species diversity and productivity under a nurse plant ( Retama sphaerocarpa ) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below-average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.

  17. Remobilisation of carbon and nitrogen supports seed filling in chickpea subjected to water deficit

    International Nuclear Information System (INIS)

    Davies, S.L.; Plummer, J.A.

    2000-01-01

    In the Mediterranean-type environment of south-western Australia, pod filling of chickpea occurs when net photosynthesis and nitrogen fixation is low as a result of the onset of terminal drought. Remobilization of carbon (C) and nitrogen (N) from vegetative parts to developing seed may be an important alternative source of C and N for seed filling. The contribution of stored pre-podding C and N to seed filling was studied by labelling the vegetative tissues with the stable isotopes, 13 C and 15 N, prior to podding and following their subsequent movement to the seed. In ICCV88201, an advanced desi breeding line, 9% of the C and 67% of the N in the seed were derived from pre-podding C and N in well-watered plants compared with 13% of the seed C and 88% of the seed N in water-stressed plants. Furthermore, the contribution of pre-podding C and N was higher for earlier set compared with later set seeds. Pre-podding C and N were derived predominantly from the leaves with relatively little from the stems, roots, and pod walls. Genotypic variation in remobilization ability was identified in contrasting desi (Tyson) and kabuli (Kaniva) cultivars. In well-watered Tyson, 9% of the seed C and 85% of the seed N were remobilised from vegetative tissues compared with 7% of the seed C and 62% of seed N in well-watered Kaniva. Water deficit decreased the amount of C remobilized by 3% in Tyson compared with 66% in Kaniva, whereas the total amount of N remobilized was decreased by 11% in Tyson and 48% in Kaniva. This was related to the maintenance of greater sink strength in Tyson, in which the number of filled pods was reduced by 66% in stressed plants compared with a 91% decrease in Kaniva. This indicates that better drought tolerance in desi genotypes is partly a consequence of better remobilization and higher pod number. These studies show that C and N assimilated prior to podding can supplement the supply of current assimilates to the filling seed in both well-watered and water

  18. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit.

    Science.gov (United States)

    Akashi, Kinya; Yoshida, Kazuo; Kuwano, Masayoshi; Kajikawa, Masataka; Yoshimura, Kazuya; Hoshiyasu, Saki; Inagaki, Naoyuki; Yokota, Akiho

    2011-05-01

    Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.

  19. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  20. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.

    Science.gov (United States)

    Petridis, Antonios; Therios, Ioannis; Samouris, Georgios; Koundouras, Stefanos; Giannakoula, Anastasia

    2012-11-01

    The olive tree (Olea europaea L.) is often exposed to severe water stress during the summer season. In this study, we determined the changes in total phenol content, oleuropein and hydroxytyrosol in the leaves of four olive cultivars ('Gaidourelia', 'Kalamon', 'Koroneiki' and 'Megaritiki') grown under water deficit conditions for two months. Furthermore, we investigated the photosynthetic performance in terms of gas exchange and chlorophyll a fluorescence, as well as malondialdehyde content and antioxidant activity. One-year-old self-rooted plants were subjected to three irrigation treatments that received a water amount equivalent to 100% (Control, C), 66% (Field Capacity 66%, FC(66)) and 33% (Field Capacity 33%, FC(33)) of field capacity. Measurements were conducted 30 and 60 days after the initiation of the experiment. Net CO(2) assimilation rate, stomatal conductance and F(v)/F(m) ratio decreased only in FC(33) plants. Photosynthetic rate was reduced mainly due to stomatal closure, but damage to PSII also contributed to this decrease. Water stress induced the accumulation of phenolic compounds, especially oleuropein, suggesting their role as antioxidants. Total phenol content increased in FC(33) treatment and oleuropein presented a slight increase in FC(66) and a sharper one in FC(33) treatment. Hydroxytyrosol showed a gradual decrease as water stress progressed. Malondialdehyde (MDA) content increased due to water stress, mostly after 60 days, while antioxidant activity increased for all cultivars in the FC(33) treatment. 'Gaidourelia' could be considered as the most tolerant among the tested cultivars, showing higher phenolic concentration and antioxidant activity and lower lipid peroxidation and photochemical damage after two months of water stress. The results indicated that water stress affected olive tree physiological and biochemical parameters and magnitude of this effect depended on genotype, the degree of water limitation and duration of treatment

  1. Risperidone Versus Methylphenidate in Treatment of Preschool Children With Attention-Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Arabgol, Fariba; Panaghi, Leily; Nikzad, Vahid

    2015-02-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a common psychiatric diagnosis among preschool children. The aim of this study was to examine the Risperidone treatment compared to Methylphenidate (MPH) in preschool children with ADHD. Thirty three outpatient preschool children, aged 3-6 years, diagnosed with ADHD (The diagnosis of ADHD was established by two child and adolescent psychiatrists according to the DSM-IV-TR criteria), participated in a 6-week, double-blind clinical trial with risperidone (0.5-1.5 mg/d) and methylphenidate (5-20 mg/d), in two divided doses. Treatment outcomes were assessed using the Parent ADHD Rating Scale and Conners Rating Scale. Patients were assessed by a child psychiatrist at baseline, 2, 4 and 6 weeks after the medication started. Side effects were also rated by side effects questionnaire. There were no significant differences between the two protocols on the Parent ADHD Rating Scale scores (P > 0.05) and Parent Conners Rating Scale scores (P > 0.05). Both groups showed a significant improvement in ADHD symptoms over the 6 weeks of treatment for parent ADHD Rating Scale (P benefits and adverse effects in long term use and comorbid conditions.

  2. Atomoxetine for the treatment of attention-deficit/hyperactivity disorder in children and adolescents: a review

    Directory of Open Access Journals (Sweden)

    Paul Hammerness

    2009-03-01

    Full Text Available Paul Hammerness, Katherine McCarthy, Elizabeth Mancuso, Cassandra Gendron, Daniel GellerClinical and Research Program in Pediatric Psychopharmacology, Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USAObjective: This review examines and summarizes the pharmacodynamic and pharmacokinetic properties, short- and longer-term efficacy, the moderating effect of comorbid disorders, as well as short- and long-term safety and tolerability of atomoxetine for the treatment of pediatric attention-deficit/hyperactivity disorder (ADHD.Methods: A systematic literature search was performed to review the extant literature on articles pertaining to the pharmacological treatment with atomoxetine in pediatric and/or adolescent ADHD.Results: There is an extensive literature on atomoxetine; over 4000 children have participated in clinical trials of atomoxetine, demonstrating its short- and longer-term efficacy. In addition, studies have examined the moderating effect of comorbid disorders on atomoxetine response, as well as atomoxetine’s therapeutic potential for other psychiatric conditions. Short- and longer-term safety and tolerability continue to be reported.Conclusions: Atomoxetine is indicated for both acute and maintenance/extended treatment of pediatric ADHD. Clinicians and families must be familiar with atomoxetine’s evidence base, including its profile of clinical response and its possible effectiveness in the presence of comorbidity.Keywords: ADHD, atomoxetine, pediatric

  3. Quality of life of methylphenidate treatment-responsive adolescents with attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Pin-Chen Yang

    2012-05-01

    Full Text Available Quality of life (QOL in methylphenidate treatment-responsive adolescents with attention deficit/hyperactivity disorder (ADHD was assessed. Patients were 12- to 18-year-old adolescents with ADHD (total n = 45 who had been on methylphenidate treatment for at least 3 months and were clinically judged to be improved. The self-completed Taiwanese Quality of Life Questionnaire for Adolescents (TQOLQA was used, and the resulting measures were compared between adolescents with ADHD and: (1 community adolescents (n = 2316; (2 treatment-responsive adolescents with a chronic medical condition (i.e., adolescents with leukemia in its first and complete continuous remission for at least 3 years after chemotherapy (n = 39. Patients’ cognitive profile and their daily executive functioning were also obtained for analysis. The QOL of the treated adolescents with ADHD was reported to be worse than that of both the community healthy adolescents and the adolescent leukemia survivors in the self-reported TQOLQA domain of “psychological well-being”. Treated adolescents with ADHD still had impaired executive skills in natural, everyday environments, and the scores for daily executive abilities could predict the QOL measures. Factors besides pharmacotherapy should be explored to further improve the QOL of medication-treated adolescents with ADHD.

  4. [Needs satisfaction deficit among cocaine and/or marijuana users asking for treatment].

    Science.gov (United States)

    García-Aurrecoechea, Raúl; Díaz-Guerrero, Rogelio; Medina-Mora, María Elena

    2007-01-01

    As part of a pioneer investigation line on the field of addiction and mental health centred on the operationalization of clinical implications of the motivational theory of Maslow (1954/1970) and feedback treatment and prevention strategies of drug use and its associated disturbances, it is tested the psycho-pathogenesis construct of this theory by means of a cross sectional design of four independent samples, on which it is explored the satisfaction degree of 16 deficitary needs on intentional samples of adolescents and young adults: Three samples of actual users of marihuana (n = 47), cocaine (n = 47) and both substances (n = 50), that were gotten between treatment solicitors and a sample of students and workers non illicit drug users (n = 150). The comparative and predictive statistical analysis provide validity to the psycho-pathogenesis construct of the theory of motivation of Maslow, and its stand out: 1)The potential utility for the treatment of the development of techniques and instruments oriented to cover the deficit of satisfaction of the needs of health, tranquillity, order, emotional security, family justice, love, friendship, respect, tenderness, power, domination, success and money and; 2) The importance for the prevention of the actual consumption of drugs as cocaine or marihuana of the development of strategies focused to keep satisfied the needs of health, tranquillity, affection, respect and success.

  5. Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report.

    Science.gov (United States)

    Tan-Kam, Teerarat; Suthisisang, Chutamanee; Pavasuthipaisit, Chosita; Limsila, Penkhae; Puangpetch, Apichaya; Sukasem, Chonlaphat

    2013-01-01

    This case report highlights the importance of pharmacogenetic testing in the treatment of attention deficit hyperactive disorder (ADHD). A 6-year-old boy diagnosed with ADHD was prescribed methylphenidate 5 mg twice daily (7 am and noon) and the family was compliant with administration of this medication. On the first day of treatment, the patient had an adverse reaction, becoming disobedient, more mischievous, erratic, resistant to discipline, would not go to sleep until midnight, and had a poor appetite. The All-In-One PGX (All-In-One Pharmacogenetics for Antipsychotics test for CYP2D6, CYP2C19, and CYP2C9) was performed using microarray-based and real-time polymerase chain reaction techniques. The genotype of our patient was identified to be CYP2D6*2/*10, with isoforms of the enzyme consistent with a predicted cytochrome P450 2D6 intermediate metabolizer phenotype. Consequently, the physician adjusted the methylphenidate dose to 2.5 mg once daily in the morning. At this dosage, the patient had a good response without any further adverse reactions. Pharmacogenetic testing should be included in the management plan for ADHD. In this case, cooperation between the medical team and the patients' relatives was key to successful treatment.

  6. Treatment of attention deficit hyperactivity disorder insomnia with blue wavelength light-blocking glasses

    Directory of Open Access Journals (Sweden)

    Fargason RE

    2013-01-01

    Full Text Available Rachel E Fargason, Taylor Preston, Emily Hammond, Roberta May, Karen L GambleDepartment of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USABackground: The aim of this study was to examine a nonmedical treatment alternative to medication in attention deficit hyperactivity disorder (ADHD insomnia, in which blue wavelength light-blocking glasses are worn during the evening hours to counteract the phase-delaying effect of light. Outcome measures included sleep quality and midsleep time. The capacity of ADHD subjects to comply with treatment using the glasses was assessed.Methods: Daily bedtime, wake-up time, and compliance diaries were used to assess sleep quality and timing during a baseline observation week and a 2-week intervention period. The Pittsburgh Sleep Quality Index (PSQI was administered following baseline and intervention. The intervention protocol consisted of use of blue wavelength-blocking glasses and a moderate lighting environment during evening hours.Results: Partial and variable compliance were noted, with only 14 of 22 subjects completing the study due to nonadherence with wearing the glasses and diary completion. Despite the minimum 3-hour recommendation, glasses were worn, on average, for 2.4 hours daily. Lighting was reduced for only 58.7% of the evening. Compared with baseline, the intervention resulted in significant improvement in global PSQI scores, PSQI subcomponent scores, and sleep diary measures of morning refreshment after sleep (P = 0.037 and night-time awakenings (P = 0.015. Global PSQI scores fell from 11.15 to 4.54, dropping below the cut-off score of 5 for clinical insomnia. The more phase-delayed subjects, ie, those with an initial midsleep time after 4:15 am, trended towards an earlier midsleep time by 43.2 minutes following the intervention (P = 0.073. Participants reported less anxiety following the intervention (P = 0.048.Conclusions

  7. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  8. Water treatment for 500 MWe PHWR plants

    International Nuclear Information System (INIS)

    Vasist, Sudheer; Sharma, M.C.; Agarwal, N.K.

    1995-01-01

    Large quantities of treated water is required for power generation. For a typical 500 MWe PHWR inland station with cooling towers, raw water at the rate of 6000 m 3 /hr is required. Impurities in cooling water give rise to the problems of corrosion, scaling, microbiological contamination, fouling, silical deposition etc. These problems lead to increased maintenance cost, reduced heat transfer efficiency, and possible production cut backs or shutdowns. The problems in coastal based power plants are more serious because of the highly corrosive nature of sea water used for cooling. An overview of the cooling water systems and water treatment method is enumerated. (author). 2 refs., 1 fig

  9. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  10. Prevalence of attention deficit/hyperactivity disorder among adults in obesity treatment

    Directory of Open Access Journals (Sweden)

    Altfas Jules R

    2002-09-01

    Full Text Available Abstract Background Bariatric patients showing poor "focus" during treatment more often failed to lose weight or maintain reduced weight. Evaluation of these patients identified a number having attention deficit/hyperactivity disorder (ADHD, evidently a potent factor limiting successful weight control. After searches found no published reports describing comorbid ADHD and obesity, this report was conceived to begin exploring the prevalence and characteristics of these patients. Method Clinical records of 215 patients receiving obesity treatment during 2000 were reviewed. Data collected and analyzed included age, sex, beginning and ending body mass index (BMI, number of clinic visits, months of treatment, and diagnostic category (ADHD, some ADHD symptoms, non-ADHD. DSM-IV criteria were used, except age of onset was modified to Results Whole sample ADHD prevalence was 27.4% (CI:21.1,32.9, but 42.6% (CI: 36.3% to 48.9% for BMI >= 40. Mean weight loss among obese patients with ADHD (OB+ADHD was 2.6 BMI (kg/m2 vs. 4.0 for non-ADHD (NAD (p = 40, OB+ADHD had BMI loss 2.9 vs. 7.0 (NAD (p Conclusions ADHD was highly prevalent among obese patients and highest in those with extreme obesity. Comorbid obesity and ADHD symptoms rendered treatment less successful compared to NAD counterparts. Reasons for the comorbidity are unknown, but may involve brain dopamine or insulin receptor activity. If replicated in further studies, these findings have important implications for treatment of severe and extreme obesity.

  11. Factors influencing parental decision making about stimulant treatment for attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Ahmed, Rana; McCaffery, Kirsten J; Aslani, Parisa

    2013-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is a pediatric psychological condition commonly treated with stimulant medications. Negative media reports and stigmatizing societal attitudes surrounding the use of these medications make it difficult for parents of affected children to accept stimulant treatment, despite it being first line therapy. The purpose of this study was to identify factors that influence parental decision making regarding stimulant treatment for ADHD. A systematic review of the literature was conducted to identify studies: 1) that employed qualitative methodology, 2) that highlighted treatment decision(s) about stimulant medication, 3) in which the decision(s) were made by the parent of a child with an official ADHD diagnosis, and 4) that examined the factors affecting the decision(s) made. Individual factors influencing parental treatment decision making, and the major themes encompassing these factors, were identified and followed by a thematic analysis. Eleven studies reporting on the experiences of 335 parents of children with ADHD were included. Four major themes encompassing influences on parents' decisions were derived from the thematic analysis performed: confronting the diagnosis, external influences, apprehension regarding therapy, and experience with the healthcare system. The findings of this systematic review reveal that there are multiple factors that influence parents' decisions about stimulant therapy. This information can assist clinicians in enhancing information delivery to parents of children with ADHD, and help reduce parental ambivalence surrounding stimulant medication use. Future work needs to address parental concerns about stimulants, and increase their involvement in shared decision making with clinicians to empower them to make the most appropriate treatment decision for their child.

  12. Common and unique therapeutic mechanisms of stimulant and nonstimulant treatments for attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Schulz, Kurt P; Fan, Jin; Bédard, Anne-Claude V; Clerkin, Suzanne M; Ivanov, Iliyan; Tang, Cheuk Y; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2012-09-01

    CONTEXT Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and impairing psychiatric disorder that affects both children and adults. There are Food and Drug Administration-approved stimulant and nonstimulant medications for treating ADHD; however, little is known about the mechanisms by which these different treatments exert their therapeutic effects. OBJECTIVE To contrast changes in brain activation related to symptomatic improvement with use of the stimulant methylphenidate hydrochloride vs the nonstimulant atomoxetine hydrochloride. DESIGN Functional magnetic resonance imaging before and after 6 to 8 weeks of treatment with methylphenidate (n = 18) or atomoxetine (n = 18) using a parallel-groups design. SETTING Specialized ADHD clinical research program at Mount Sinai School of Medicine, New York, New York. PARTICIPANTS Thirty-six youth with ADHD (mean [SD] age, 11.2 [2.7] years; 27 boys) recruited from randomized clinical trials. MAIN OUTCOME MEASURES Changes in brain activation during a go/no-go test of response inhibition and investigator-completed ratings on the ADHD Rating Scale-IV-Parent Version. RESULTS Treatment with methylphenidate vs atomoxetine was associated with comparable improvements in both response inhibition on the go/no-go test and mean (SD) improvements in ratings of ADHD symptoms (55% [30%] vs 57% [25%]). Improvement in ADHD symptoms was associated with common reductions in bilateral motor cortex activation for both treatments. Symptomatic improvement was also differentially related to gains in task-related activation for atomoxetine and reductions in activation for methylphenidate in the right inferior frontal gyrus, left anterior cingulate/supplementary motor area, and bilateral posterior cingulate cortex. These findings were not attributable to baseline differences in activation. CONCLUSIONS Treatment with methylphenidate and atomoxetine produces symptomatic improvement via both common and divergent neurophysiologic

  13. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Parent perspectives on the decision to initiate medication treatment of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Coletti, Daniel J; Pappadopulos, Elizabeth; Katsiotas, Nikki J; Berest, Alison; Jensen, Peter S; Kafantaris, Vivian

    2012-06-01

    Despite substantial evidence supporting the efficacy of stimulant medication for children with attention-deficit/hyperactivity disorder (ADHD), adherence to stimulant treatment is often suboptimal. Applying social/cognitive theories to understanding and assessing parent attitudes toward initiating medication may provide insight into factors influencing parent decisions to follow ADHD treatment recommendations. This report describes results from formative research that used focus groups to obtain parent input to guide development of a provider-delivered intervention to improve adherence to stimulants. Participants were caregivers of children with ADHD who were given a stimulant treatment recommendation. Focus groups were recorded and transcribed verbatim. Data were analyzed by inductive, grounded theory methods as well as a deductive analytic strategy using an adapted version of the Unified Theory of Behavior Change to organize and understand parent accounts. Five groups were conducted with 27 parents (mean child age=9.35 years; standard deviation [SD]=2.00), mean time since diagnosis=3.33 years (SD=2.47). Most parents (81.5%) had pursued stimulant treatment. Inductive analysis revealed 17 attitudes facilitating adherence and 25 barriers. Facilitators included parent beliefs that medication treatment resulted in multiple functional gains and that treatment was imperative for their children's safety. Barriers included fears of personality changes and medication side effects. Complex patterns of parent adherence to medication regimens were also identified, as well as preferences for psychiatrists who were diagnostically expert, gave psychoeducation using multiple modalities, and used a chronic illness metaphor to explain ADHD. Theory-based analyses revealed conflicting expectancies about treatment risks and benefits, significant family pressures to avoid medication, guilt and concern that their children required medication, and distorted ideas about treatment risks

  15. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  16. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  17. Atomoxetine Treatment in Children and Adolescents with Attention-Deficit/hyperactivity Disorder and Comorbid Oppositional Defiant Disorder

    Science.gov (United States)

    Newcorn, Jeffrey H.; Spencer, Thomas J.; Biederman, Joseph; Milton, Denai R.; Michelson, David

    2005-01-01

    Objective: To examine (1) moderating effects of oppositional defiant disorder (ODD) on attention-deficit/hyperactivity disorder (ADHD) treatment response and (2) responses of ODD symptoms to atomoxetine. Method: Children and adolescents (ages 8-18) with ADHD were treated for approximately 8 weeks with placebo or atomoxetine (fixed dosing: 0.5,…

  18. Neurofeedback as a Treatment for Attention-Deficit/Hyperactivity Disorder: A Systematic Review of Evidence for Practice

    Science.gov (United States)

    Willis, W. Grant; Weyandt, Lisa L.; Lubiner, Anna G.; Schubart, Chelsea D.

    2011-01-01

    Neurofeedback training is being offered with increasing frequency as a treatment for Attention-Deficit/Hyperactivity Disorder (ADHD). School psychologists are in a unique position to educate teachers, parents, students, and others about a variety of disorders including ADHD, and it is important for them to be properly informed about the validity…

  19. A randomized, double-blind study of continuation treatment for attention-deficit/hyperactivity disorder after 1 year.

    NARCIS (Netherlands)

    Buitelaar, J.K.; Michelson, D.; Danckaerts, M.; Gillberg, C.; Spencer, T.J.; Zuddas, A.; Faries, D.E.; Zhang, S.; Biederman, J.

    2007-01-01

    BACKGROUND: The efficacy of atomoxetine in maintaining symptom response following 1 year of treatment was assessed in children and adolescents (n = 163) with DSM-IV defined attention-deficit/hyperactivity disorder (ADHD). METHODS: Subjects had previously responded to atomoxetine acutely and had

  20. Buspirone versus Methylphenidate in the Treatment of Attention Deficit Hyperactivity Disorder: A Double-Blind and Randomized Trial

    Science.gov (United States)

    Davari-Ashtiani, Rozita; Shahrbabaki, Mahin Eslami; Razjouyan, Katayoon; Amini, Homayoun; Mazhabdar, Homa

    2010-01-01

    The efficacy and side effects of buspirone compared with methylphenidate (MPH) in the treatment of children with attention-deficit/hyperactivity disorder (ADHD). A total of 34 children with ADHD as defined by DSM-IV-TR were randomized to buspirone or methylphenidate dosed on weight-adjusted basis at buspirone (0.5 mg/kg/day) and methylphenidate…

  1. Measurement of Impairment among Children with Attention Deficit Hyperactivity Disorder as Part of Evaluating Treatment Outcome.

    Science.gov (United States)

    Al-Ansari, Ahmed M

    2013-05-01

    This study assesses the impairment and treatment outcome of children with attention deficit hyperactivity disorder (ADHD) in an outpatient child psychiatry clinic, using multiple sources, including the Children Global Assessment Scale (C-GAS). A total of 20 children, aged 4 to 16 years, were recruited serially in 2010 from the Child Psychiatric Unit of the Psychiatric Hospital, Manama, Bahrain. The children received a diagnosis of ADHD using the Diagnostic and Statistical Manual of Mental Disorders Text Revision (DSM-IV-TR). The children were assessed with the C-GAS by a blinded investigator, initially at the beginning of the treatment and then one year later. The parents of the patients reported improvement in all cases; the improvement in impairment after one year, assessed using the C-GAS, was significant for all of the cases (P = 0.001) and low for those with comorbidity (P = 0.07). Measurement of improvement using the C-GAS was a suitable method of collecting data, and hence should be included in routine clinical practice for both ADHD diagnosis and outcome measurement.

  2. Mindfulness based cognitive therapy versus treatment as usual in adults with attention deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Janssen, Lotte; Kan, Cornelis C; Carpentier, Pieter J; Sizoo, Bram; Hepark, Sevket; Grutters, Janneke; Donders, Rogier; Buitelaar, Jan K; Speckens, Anne E M

    2015-09-15

    Adults with attention deficit hyperactivity disorder (ADHD) often present with a lifelong pattern of core symptoms that is associated with impairments of functioning in daily life. This has a substantial personal and economic impact. In clinical practice there is a high need for additional or alternative interventions for existing treatments, usually consisting of pharmacotherapy and/or psycho-education. Although previous studies show preliminary evidence for the effectiveness of mindfulness-based interventions in reducing ADHD symptoms and improving executive functioning, these studies have methodological limitations. This study will take account of these limitations and will examine the effectiveness of Mindfulness Based Cognitive Therapy (MBCT) in further detail. A multi-centre, parallel-group, randomised controlled trial will be conducted in N = 120 adults with ADHD. Patients will be randomised to MBCT in addition to treatment as usual (TAU) or TAU alone. Assessments will take place at baseline and at three, six and nine months after baseline. Primary outcome measure will be severity of ADHD symptoms rated by a blinded clinician. Secondary outcome measures will be self-reported ADHD symptoms, executive functioning, mindfulness skills, self-compassion, positive mental health and general functioning. In addition, a cost-effectiveness analysis will be conducted. This trial will offer valuable information about the clinical and cost-effectiveness of MBCT in addition to TAU compared to TAU alone in adults swith ADHD. ClinicalTrials.gov NCT02463396. Registered 8 June 2015.

  3. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  4. Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E

    Science.gov (United States)

    Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.

    2007-12-01

    Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  5. Free proline accumulation in leaves of cultivated plant species under water deficit conditions

    Directory of Open Access Journals (Sweden)

    Hanna Bandurska

    2013-12-01

    Full Text Available The effect of water deficit caused by soil drought on the content of free proline as well as the degree of cell membrane damages in the leaves of three cultivated plant species having different farm usefulness and water requirements have been studied. The used pIants were: poinsettia (Euphorbia pulcherrima Willd., 'Regina' and 'Cortez' grown for decorative purposes, a green vegetable of broccoli (Brassica oleracea var. botrytis, subvar. cymosa, 'Colonel' and 'Marathon' and a cereal plant of barley (the wild form Hordeum spontaneumm and Hordeum vulgaree 'Maresi'. The examined species differed in the size of the experienced stress. the Iargest RWC reduction was found iii broccoli leaves, while somewhat smaller - in barley. In poinsettia leaves, the reduction of RWC level was not large or did not occur at all. The accumulation of free proline in the species under study was also variable. The largest amount of this amino acid tended to accumulate in broccoli leaves, whereas the increase of its level took place only at a strong dehydration of tissues. The increase of proline level was smaller in barley leaves than in broccoli, but that was found already at a smalI dehydration of tissues. In poinsettia leaves, a several f`old increase of proline level was found at the early stage of the stress. The level of that amino acid gradually increased at consecutive times and did not depend on tissue dehydration. Damage of cell membranes amounted to 8.5-9.5% in barley leaves, about 3% in brocolli and to 0-2.6% in poinsettia. The role of proline in prevention of leaf dehydration and in alleviation of dehydration effects in the studied species has been discussed.

  6. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses.

    Science.gov (United States)

    Yin, Zepeng; Ren, Jing; Zhou, Lijuan; Sun, Lina; Wang, Jiewan; Liu, Yulong; Song, Xingshun

    2016-01-01

    Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry ( Cerasus humilis ) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis . Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. WD promoted the CO 2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under

  7. Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats.

    Science.gov (United States)

    Egerton, Alice; Reid, Lee; McGregor, Sandie; Cochran, Susan M; Morris, Brian J; Pratt, Judith A

    2008-05-01

    We have previously demonstrated that subchronic (five daily administrations of 2.6 mg/kg PCP) and chronic intermittent administration of 2.6 mg/kg PCP to rats produces hypofrontality and other neurochemical changes akin to schizophrenia pathology (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003). We sought to determine whether behavioral alterations related to discrete aspects of schizophrenia are also induced by these PCP treatment regimes. Following administration of vehicle or PCP according to the protocols described above, rats were assessed for attentional set shifting ability, prepulse inhibition (PPI), or social interaction and the locomotor response to a challenge dose of amphetamine. Ability to shift attentional set was impaired 72 h after the last PCP administration following the subchronic and chronic intermittent treatment regimes. PPI was disrupted after each acute administration of PCP in animals under the subchronic treatment regime. However, PPI deficits were not sustained 72 h after the last of five daily administrations. In subchronic and chronic PCP treated animals, no change was found in social interaction behavior, and there was little change in baseline or amphetamine-stimulated locomotor activity, employed as an indicator of dopaminergic hyperfunction. The temporally distinct behavioral effects of these PCP treatment regimes suggest that PPI deficits relate directly to acute NMDA receptor antagonism, whereas the more enduring set shifting deficits relate to the longer term consequences of NMDA receptor blockade. Therefore, these subchronic and chronic PCP treatment regimes produce hypofrontality (Cochran et al., Neuropsychopharmacology, 28:265-275, 2003) and associated prefrontal cortex-dependent deficits in behavioral flexibility which mirror core deficits in schizophrenia.

  8. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  9. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  10. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.; Hoek, Eric M.V.

    2011-01-01

    readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality

  11. Sweet corn water productivity under several deficit irrigation regimes applied during vegetative growth stage using treated wastewater as water irrigation source

    DEFF Research Database (Denmark)

    Hirich, A.; Rami, A.; Laajaj, K.

    2012-01-01

    Yield and Crop Water Productivity are crucial issues in sustainable agriculture, especially in high-demand resource crops such as sweet corn. This study was conducted to investigate agronomic responses such as plant growth, yield and soil parameters (EC and Nitrate accumulation) to several deficit...

  12. Dobowe wahania deficytu wodnego i ich zależność od czynników klimatycznych [Diurnal changes of water saturation deficit in leaves and their dependence on the climatic factors

    Directory of Open Access Journals (Sweden)

    J. Czerski

    2015-01-01

    Full Text Available Daily changes in water suction deficit (WSD in different species of Nicotiana, Digitalis, Calendula, Beta and Brassica were studied. Significant water deficit in the middle of the day was demonstrated for all plants studied.

  13. Sertindole, in contrast to clozapine and olanzapine, does not disrupt water maze performance after acute or chronic treatment

    DEFF Research Database (Denmark)

    Didriksen, Michael; Kreilgaard, Mads; Arnt, Jørn

    2006-01-01

    Cognitive deficits in schizophrenia are associated with poor functional outcome, and may be further aggravated by treatment with antipsychotics. In the present study the acute and chronic (3 weeks of treatment) effects of clozapine, olanzapine, and sertindole on performance in the Morris water ma...

  14. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming

    2018-03-12

    Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Chronic Anatabine Treatment Reduces Alzheimer's Disease (AD)-Like Pathology and Improves Socio-Behavioral Deficits in a Transgenic Mouse Model of AD.

    Science.gov (United States)

    Verma, Megha; Beaulieu-Abdelahad, David; Ait-Ghezala, Ghania; Li, Rena; Crawford, Fiona; Mullan, Michael; Paris, Daniel

    2015-01-01

    Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe) of Alzheimer's disease (AD) which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.

  16. Chronic Anatabine Treatment Reduces Alzheimer's Disease (AD-Like Pathology and Improves Socio-Behavioral Deficits in a Transgenic Mouse Model of AD.

    Directory of Open Access Journals (Sweden)

    Megha Verma

    Full Text Available Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe of Alzheimer's disease (AD which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.

  17. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  18. Sewage water treatment by irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Othman, I.

    1999-06-01

    Irradiation of the outlet wastewater from Adra Plant shows that radiation sensitivity for the total count of the microorganism, fungi, and pathogenic microorganism were 0.328, 0.327, 0.305 kGy respectively at 3.4 kGy/h. No Ascaris Lumbricoides eggs were found. These results show that radiation technology in wastewater treatment at Adra Plant for reuse in irrigation safely from microbial point of view can be applied. (author)

  19. Predictors of Treatment Response in Adolescents with Comorbid Substance Use Disorder and Attention-Deficit/Hyperactivity Disorder

    OpenAIRE

    Tamm, Leanne; Trello-Rishel, Kathlene; Riggs, Paula; Nakonezny, Paul A.; Acosta, Michelle; Bailey, Genie; Winhusen, Theresa

    2012-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) frequently co-occurs with substance use disorder (SUD) and is associated with poor substance-use treatment outcomes. A trial evaluating osmotic-release oral system methylphenidate (OROS-MPH) for adolescents with ADHD and SUD, concurrently receiving behavioral therapy, revealed inconsistent medication effects on ADHD or SUD. Clinical care for this population would be advanced by knowledge of treatment outcome predictors. Data from the randomized ...

  20. Efficacy and Safety of Atomoxetine in the Treatment of Children and Adolescents with Attention Deficit Hyperactivity Disorder

    OpenAIRE

    Kohn, Michael R.; Tsang, Tracey W.; Clarke, Simon D.

    2012-01-01

    Several non-stimulant medications have been used in the treatment of attention deficit hyperactivity disorder (ADHD). Atomoxetine, was introduced in 2002. The safety and efficacy of atomoxetine in the treatment of ADHD for children, adolescents, and adults has been evaluated in over 4000 patients in randomized controlled studies and double blinded studies as well as in recent large longitudinal studies. This paper provides an updated summary of the literature on atomoxetine, particularly in r...

  1. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodiesel

    Science.gov (United States)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Oliveira, Ronaldo A.; Cunha, Patrícia C.; Costa, Ernande B.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2011-02-01

    Light-emitting-diode induced chlorophyll fluorescence analysis is employed to investigate the effect of water and salt stress upon the growth process of physicnut(jatropha curcas) grain oil plants for biofuel. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were observed and examined as a function of the stress intensity(salt concentration and water deficit) for a period of time of 30 days. The chlorophyll fluorescence(ChlF) ratio Fr/FFr which is a valuable nondestructive and nonintrusive indicator of the chlorophyll content of leaves was exploited to monitor the level of stress experienced by the jatropha plants. The ChlF technique data indicated that salinity plays a minor role in the chlorophyll concentration of leaves tissues for NaCl concentrations in the 25 to 200 mM range, and results agreed quite well with those obtained using conventional destructive spectrophotometric methods. Nevertheless, for higher NaCl concentrations a noticeable decrease in the Chl content was observed. The Chl fluorescence ratio analysis also permitted detection of damage caused by water deficit in the early stages of the plants growing process. A significant variation of the Fr/FFr ratio was observed sample in the first 10 days of the experiment when one compared control and nonwatered samples. The results suggest that the technique may potentially be applied as an early-warning indicator of stress caused by water deficit.

  2. Meta-analysis: treatment of attention-deficit/hyperactivity disorder in children with comorbid tic disorders.

    Science.gov (United States)

    Bloch, Michael H; Panza, Kaitlyn E; Landeros-Weisenberger, Angeli; Leckman, James F

    2009-09-01

    The Food and Drug Administration currently requires the package inserts of most psychostimulant medications to list the presence of a tic disorder as a contraindication to their use. Approximately half of children with Tourette's syndrome experience comorbid attention-deficit/hyperactivity disorder (ADHD). We sought to determine the relative efficacy of different medications in treating ADHD and tic symptoms in children with both Tourette's syndrome and ADHD. We conducted a PubMed search to identify all double-blind, randomized, placebo-controlled trials examining the efficacy of medications in the treatment of ADHD in the children with comorbid tics. We used a random effects meta-analysis with standardized mean difference as our primary outcome to estimate the effect size of pharmaceutical agents in the treatment of ADHD symptoms and tics. Our meta-analysis included nine studies involving 477 subjects. We assessed the efficacy of six medications-dextroamphetamine, methylphenidate, alpha-2 agonists (clonidine and guanfacine), desipramine, atomoxetine, and deprenyl. Methylphenidate, alpha-2 agonists, desipramine, and atomoxetine demonstrated efficacy in improving ADHD symptoms in children with comorbid tics. Alpha-2 agonists and atomoxetine significantly improved comorbid tic symptoms. Although there was evidence that supratherapeutic doses of dextroamphetamine worsens tics, there was no evidence that methylphenidate worsened tic severity in the short term. Methylphenidate seems to offer the greatest and most immediate improvement of ADHD symptoms and does not seem to worsen tic symptoms. Alpha-2 agonists offer the best combined improvement in both tic and ADHD symptoms. Atomoxetine and desipramine offer additional evidence-based treatments of ADHD in children with comorbid tics. Supratherapeutic doses of dextroamphetamine should be avoided.

  3. Sarcosine treatment for oppositional defiant disorder symptoms of attention deficit hyperactivity disorder children.

    Science.gov (United States)

    Tzang, Ruu-Fen; Chang, Yue-Cune; Tsai, Guochuan E; Lane, Hsien-Yuan

    2016-10-01

    Methylphenidate, a stimulant that activates dopaminergic and noradrenergic function, is an important agent in the treatment of attention deficit hyperactivity disorder (ADHD). Sarcosine, a glycine transporter-1 inhibitor, may also play a role in treating ADHD by modulating the glutamatergic neurotransmission system through activating N-methyl-D-aspartate type glutamate receptors. This study aimed to assess the efficacy of sarcosine in treating children with ADHD. We conducted a six-week, randomized, double-blind, placebo-controlled clinical trial. The primary outcome measures were those on the Inattention, Hyperactivity/impulsivity, and oppositional defiant disorder (ODD) subscales of the Swanson, Nolan, and Pelham, version IV scale. Efficacy and safety were measured bi-weekly. A total of 116 children with ADHD were enrolled. Among them, 48 (83%) of the 58 sarcosine recipients and 44 (76%) of the 58 placebo recipients returned for the first post-treatment visit. The missing data values were imputed by the last observation carry forward method. From a multiple linear regression analysis, using the generalized estimating equation approach, and an intention to treat analysis, the efficacy of sarcosine marginally surpassed that of placebo at weeks 2, 4, and 6, with p-values=0.01, 0.026, and 0.012, respectively, although only for ODD symptoms. Treatment of ADHD by sarcosine (0.03 g/kg/day) was well tolerated. Sarcosine could possibly be a novel agent for managing ODD symptoms in the context of ADHD. However, future larger-scale studies are warranted to optimize its dosage. © The Author(s) 2016.

  4. Ginkgo biloba as an adjunct to methylphenidate in the treatment of attention deficit hyperactivity disorder in children: review of articles

    Directory of Open Access Journals (Sweden)

    Paria Hebrani

    2015-01-01

    Full Text Available Attention-deficit/hyperactivity disorder is one of the most common psychiatric disorders in childhood. The medications which inhibit the reuptake of noradrenline and dopamine including psychostimulants such as methylphenidate and dextroamphetamine and non-stimulating pre-frontal cortex noradrenaline reuptake inhibitor such as atomoxetine, are the standard treatment of ADHD. Adverse effects of stimulants have been reported in thirty percent of patients with attention-deficit/hyperactivity disorder. More than fifty percent of the parents of these children have tried one or more complementary or alternative medicines including vitamins in their children. Ginkgo biloba has been described to be effective for various neuropsychiatric symptoms. It was assumed that ginkgo biloba might improve some symptoms of attention deficit disorder as well. Nevertheless, no systematic study reported a possible efficacy of ginkgo biloba in attention deficit disorder. This review article evaluates the available evidence on the efficacy of ginkgo biloba medication in Attention-deficit/hyperactivity disorder children to present an appropriate guidance for this common child disorder.

  5. Neurocognitive Deficits Associated with Antisocial Personality Disorder in Non-treatment-seeking Young Adults.

    Science.gov (United States)

    Chamberlain, Samuel R; Derbyshire, Katie L; Leppink, Eric W; Grant, Jon E

    2016-06-01

    Antisocial personality disorder (ASPD) is a relatively common problem, but the neuropsychological profile of affected individuals has seldom been studied outside of criminal justice recruitment settings. Non-treatment-seeking young adults (18-29 years) were recruited from the general community by media advertisements. Participants with ASPD (n = 17), free from substance use disorders, were compared with matched controls (n = 229) using objective computerized neuropsychological tasks tapping a range of cognitive domains. Compared with controls, individuals with ASPD showed significantly elevated pathological gambling symptoms, previous illegal acts, unemployment, greater nicotine consumption, and relative impairments in response inhibition (Stop-Signal Task) and decision-making (less risk adjustment, Cambridge Gamble Task). General response speed, set-shifting, working memory, and executive planning were intact. ASPD was also associated with higher impulsivity and venturesomeness on the Eysenck Questionnaire. These findings implicate impaired inhibitory control and decision-making in the pathophysiology of ASPD, even in milder manifestations of the disorder. Future work should explore the neural correlates of these impairments and use longitudinal designs to examine the temporal relationship between these deficits, antisocial behavior, and functional impairment. © 2016 American Academy of Psychiatry and the Law.

  6. Attention Deficit Disorder (ADHD: Primary school teachers' knowledge of symptoms, treatment and managing classroom behaviour

    Directory of Open Access Journals (Sweden)

    Beryl Topkin

    2015-05-01

    Full Text Available ADHD is one of the most common chronic conditions of childhood. Teachers are a valuable source of information with regard to referral and diagnosis of the disorder. They also play a major role in creating an environment that is conducive to academic, social and emotional success for children with ADHD. The aim of this study was to examine primary school teachers' knowledge of the symptoms and management of children in their classrooms who were diagnosed with ADHD. The participants were 200 South African primary school teachers (178 female, 22 male; mean age = 43 years of children enrolled in Grades One to Four. A self-administered questionnaire, the Knowledge of Attention-Deficit Disorder Scale (KADDS, which measures the misperceptions and understanding of the disorder, was used to collect the data. The results indicated that overall, 45% of the teachers correctly identified the responses to the items asked in the questionnaire. The "don't know responses" accounted for 31% of responses, while 22% of the responses were incorrectly identified. Furthermore, teachers were more knowledgeable of the general associated features of ADHD than of symptoms, diagnosis and treatment. A majority of teachers indicated that they had received training. These findings suggest a need to consider improving evidenced-based classroom interventions for ADHD among South African teachers.

  7. Sleep Problems as Predictors in Attention-Deficit Hyperactivity Disorder: Causal Mechanisms, Consequences and Treatment.

    Science.gov (United States)

    Um, Yoo Hyun; Hong, Seung-Chul; Jeong, Jong-Hyun

    2017-02-28

    Attention-deficit hyperactivity disorder (ADHD) is notorious for its debilitating consequences and early age of onset. The need for early diagnosis and intervention has frequently been underscored. Previous studies have attempted to clarify the bidirectional relationship between ADHD and sleep problems, proposing a potential role for sleep problems as early predictors of ADHD. Sleep deprivation, sleep-disordered breathing, and circadian rhythm disturbances have been extensively studied, yielding evidence with regard to their induction of ADHD-like symptoms. Genetic-phenotypic differences across individuals regarding the aforementioned sleep problems have been elucidated along with the possible use of these characteristics for early prediction of ADHD. The long-term consequences of sleep problems in individuals with ADHD include obesity, poor academic performance, and disrupted parent-child interactions. Early intervention has been proposed as an approach to preventing these debilitating outcomes of ADHD, with novel treatment approaches ranging from melatonin and light therapy to myofunctional therapy and adjustments of the time point at which school starts.

  8. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  9. Physical water treatment against calcification and rust

    International Nuclear Information System (INIS)

    Burger, A.

    1995-01-01

    In contrast to Germany, where the installation of small-sized, decentralised plants is still prefered, water supply companies in countries such as Denmark have already for some time successfully been using physical water treatment systems. Although the health and environmental benefits of this non-chemical method of water treatment are undisputed and its proper application is also economically beneficial, there is still a widerspread lack of information as to where such plants can be used. Consequently, older methods are often resorted to combatting calcification and rust. (orig.) [de

  10. Effect of the organic matter and soil water deficit on the castor bean inflorescences emission

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Rogerio Dantas de; Araujo, Ester Luiz de; Nascimento, Elka Costa Santos; Barros Junior, Genival [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Guerra, Hugo O. Carvallo; Chaves, Lucia Helena G. [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola

    2008-07-01

    The castor bean culture has become important due to the several applications of its oil, which constitutes one of the best row materials for biodiesel manufacturing, and the base for several other industrial products. The objective of the present work was to study the effect of different soil water and soil organic matter on the castor bean inflorescence emission. The experiment was conducted from April to August 2006 under Greenhouse conditions using a randomized block 2x4 factorial design with two soil organic mater content (5.0 g.kg{sup -1} e 25.0 g.kg{sup -1}), four levels of available water (100, 90, 80 e 70% ) and three replicates. For this, 24 plastic containers, 75 kg capacity, were used on which was grown one plant 120 days after the seedling. When flowering occurred it was measured the number, the time required for the emission and the height of the emissions. The results were analyzed statistically; for the qualitative factor (with and without organic matter) the treatment means were compared through the Tukey test. For the quantitative ones (water levels) regressions were used. The time for the emission of the inflorescences was affected significantly by the organic matter and the available soil water content for plants. The number of inflorescences was affected positively by both treatments. (author)

  11. Influence of the organic matter and soil water deficit on the castor bean absolute growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Rogerio Dantas de; Guerra, Hugo O. Carvallo; Chaves, Lucia Helena G. [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola; Araujo, Ester Luiz de; Nascimento, Elka Costa Santos; Barros Junior, Genival [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    Even when under low precipitations conditions, the castor bean production decrease, it constitutes a very good alternative. It has an elevated economical importance, because from the plant it is used their leaves, stem and seeds. From the stem it is obtained cellulose for the paper industry, from the leaves textile products and from the seeds oil and tort. The oil is the only glycerin soluble in alcohol and the base for several industrial products such as the biodiesel. The objective of the present work was to study the effect of different soil water and soil organic matter on the castor bean, BRS 188 cultivar rate growth. The experiment was conducted from April to August 2006 under greenhouse conditions using a randomized block 2x4 factorial design with two soil organic mater content (5.0 g.kg{sup -1} e 25.0 g.kg{sup -1}), four levels of available water (100, 90, 80 e 70% ) and three replicates. For this, 24 plastic containers, 75 kg capacity, were used on which was grown one plant 120 days after the seedling. At regular intervals the plant height was measured and the results analyzed statistically. For the qualitative treatments (with and without organic matter) the treatment means were compared through the Tukey test. For the quantitative ones (water levels) regressions were used. It was observed that both, organic matter and available water for plants proportionated benefit effects to the growth rate of the plant. (author)

  12. Water (electrolyte) balance after abdominal therapeutic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cionini, L; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia

    1976-07-01

    Total body water, plasma volume and Na space have been studied in 34 patients receiving external radiotherapy on the pelvic region. Determinations were made on the same patients before, and half-way treatment; in a few cases, some determinations were also repeated after the end of treatment. The results failed to show any appreciable modification of the different parameters studied.

  13. Treatment of water closet flush water for recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.E.

    1985-01-01

    Results from the operation of a 37.8 m/sup 3//d extended aeration and sand filtration system in the closed-loop treatment of water closet flush water are presented. The system has operated for four and one-half years at 95 percent recycle. During this period over 30,000 m/sup 3/ of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human wastes plus wastage form potable water uses. Wasted potable water inputs were from wash basins, water fountains and custodial services. Operation of both the biological treatment unit and the pressure sand filter followed acceptable conventional practice. Variations in nitrogen (ammonia, nitrite and nitrate), pH and alkalinity that were observed could be accounted for through fundamental biological, chemical and physical relationships. The pH throughout the entire recycle system varied between 5.5 and 8.4. Recycled water pH rose from a preflush pH of approximately 7.0 to a pH of 8.4 immediately after flushing. The biological unit lowered the pH and functioned between pH values of 5.5 and 7.0. A slight rise in pH between the biological unit (through storage and filtration) and water closets was observed. The predominate biomass in the biological unit was fungi. Biological solids were threadlike; however, they readily separated by gravity settling. Wastage of biological solids from the biological unit in the recycle-reuse system was the same experienced for a comparable biological unit used to treat water closet wastewater that was not recycled. Results from this study have conclusively demonstrated on a full-scale basis the acceptability of using biological oxidation and sand filtration as a treatment train in the reuse of water closet wastewater with a recycle ratio of 20.

  14. Pharmacological treatment for Attention Deficit Hyperactivity Disorder (ADHD) in children with comorbid tic disorders.

    Science.gov (United States)

    Pringsheim, Tamara; Steeves, Thomas

    2011-04-13

    Attention Deficit Hyperactivity Disorder (ADHD) is the most prevalent of the comorbid psychiatric disorders that complicate tic disorders. Medications commonly used to treat ADHD symptoms include the stimulants methylphenidate and amphetamine; nonstimulants, such as atomoxetine; tricyclic antidepressants; and alpha agonists. Due to the impact of ADHD symptoms on the child with tic disorder, treatment of ADHD is often of greater priority than the medical management of tics. However, for many decades clinicians have been reluctant to use stimulants to treat children with ADHD and tics for fear of worsening their tics.  To assess the effects of pharmacological treatments for ADHD on ADHD symptoms and tic severity in children with ADHD and comorbid tic disorders.  We searched CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to July 2009), EMBASE (1980 to July 2009), CINAHL (1982 to July 2009), PsycINFO (1806 to July Week 4 2009) and BIOSIS Previews (1985 to July 2009). Dissertation Abstracts (searched via Dissertaation Express), and the metaRegister of Controlled Trials were searched (30 July 2009). We included randomized, double-blind, controlled trials of any pharmacological treatment for ADHD used specifically in children with comorbid tic disorders. We included both parallel group and cross-over study designs. Two authors independently extracted data using standardized forms. We included a total of eight randomized controlled studies in the review but were unable to combine any of these in meta-analysis. Several of the trials assessed multiple agents. Medications assessed included methylphenidate, clonidine, desipramine, dextroamphetamine, guanfacine, atomoxetine, and deprenyl. All treatments, with the exception of deprenyl, were efficacious in treating symptoms of ADHD. Tic symptoms improved in children treated with guanfacine, desipramine, methylphenidate, clonidine, and the combination of methylphenidate and clonidine. Fear of worsening tics

  15. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  16. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    Science.gov (United States)

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  17. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  18. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    OpenAIRE

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected ...

  19. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  20. Summer treatment program for children with attention deficit hyperactivity disorder: Japanese experience in 5 years.

    Science.gov (United States)

    Yamashita, Yushiro; Mukasa, Akiko; Anai, Chizuru; Honda, Yuko; Kunisaki, Chie; Koutaki, Junichi; Tada, Yahuhiro; Egami, Chiyomi; Kodama, Naoko; Nakashima, Masayuki; Nagamitsu, Shin-ichiro; Matsuishi, Toyojiro

    2011-03-01

    In 2005 we established the first American-style summer treatment program (STP) for children with attention deficit hyperactivity disorder (ADHD) located outside North America. This program was based on methods established by professor Pelham and has been used in a number of studies and at a number of sites in the USA. A total of 137 children diagnosed with ADHD, ranging in age from 6 to 12 years, participated in at least one of five annual summer treatment programs in Kurume city, Japan, during 2005-2009. The duration of the STP was 2 weeks in 2005, 2008, and 2009; 3 weeks in 2006 and 2007. A set of evidence-based behavioral modification techniques comprising the STP behavioral program (e.g., point system, daily report card, positive reinforcement, time out) was used. We also assessed the cognitive function of individual children before and after STP using the CogState(R) batteries. Every year, regardless of the duration of the STP, most children showed positive behavioral changes in multiple domains of functioning, demonstrated by significant improvement in points earned daily, which reflect behavior frequencies. Cognitive functions, particularly the rate of anticipatory errors in executive function, significantly improved after the STP, suggesting that STP has positive effects not only on behavioral aspects but also on some cognitive functions. Further studies are necessary to confirm this finding by studying sequential cognitive function of age-matched children who do not attend STP. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.

    Science.gov (United States)

    Cesari, A B; Paulucci, N S; Biasutti, M A; Reguera, Y B; Gallarato, L A; Kilmurray, C; Dardanelli, M S

    2016-01-01

    We study the Azospirillum brasilense tolerance to water deficit and the dynamics of adaptive process at the level of the membrane. Azospirillum brasilense was exposed to polyethylene glycol (PEG) growth and PEG shock. Tolerance, phospholipids and fatty acid (FA) composition and membrane fluidity were determined. Azospirillum brasilense was able to grow in the presence of PEG; however, its viability was reduced. Cells grown with PEG showed membrane fluidity similar to those grown without, the lipid composition was modified, increasing phosphatidylcholine and decreasing phosphatidylethanolamine amounts. The unsaturation FAs degree was reduced. The dynamics of the adaptive response revealed a decrease in fluidity 20 min after the addition of PEG, indicating that the PEG has a fluidizing effect on the hydrophobic region of the cell membrane. Fluidity returned to initial values after 60 min of PEG exposure. Azospirillum brasilense is able to perceive osmotic changes by changing the membrane fluidity. This effect is offset by changes in the composition of membrane phospholipid and FA, contributing to the homeostasis of membrane fluidity under water deficit. This knowledge can be used to develop new Azospirillum brasilense formulations showing an adapted membrane to water deficit. © 2015 The Society for Applied Microbiology.

  2. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  3. The Evolution of Total Phenolic Compounds and Antioxidant Activities during Ripening of Grapes (Vitis vinifera L., cv. Tempranillo Grown in Semiarid Region: Effects of Cluster Thinning and Water Deficit

    Directory of Open Access Journals (Sweden)

    Inmaculada Garrido

    2016-11-01

    Full Text Available A study was made of how water status (rainfed vs. irrigated and crop load (no cluster thinning vs. cluster thinning can together affect the grapes of Vitis vinifera cv. Tempranillo vines growing in a semiarid zone of Extremadura (Spain. The grapes were monitored at different stages of ripening, measuring the peroxidase (POX and superoxide dismutase (SOD antioxidant activities and the phenolic content (flavonoids and phenylpropanoids, together with other parameters. The irrigation regime was adjusted to provide 100% of crop evapotranspiration (ETc. The findings confirmed previous results that both thinning and water deficit advance ripening, while irrigation and high crop load (no thinning lengthen the growth cycle. The SOD activity remained practically constant throughout ripening in the thinned treatments and was always lower than in the unthinned treatments, an aspect which could have been the cause of the observed greater level of lipid peroxidation in the water deficit, thinned treatment. The nonspecific peroxidase activity was very low, especially in the thinned treatments. The effect of thinning was enhanced when combined with water deficit, inducing increases in phenylpropanoids and, above all, flavonoids at the harvest stage of ripening, while leaving the polyphenol oxidase activity (PPO unaffected.

  4. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  5. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  6. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  7. The Impact of Precipitation Deficit and Urbanization on Variations in Water Storage in the Beijing-Tianjin-Hebei Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2017-12-01

    Full Text Available Depletion of water resources has threatened water security in the Beijing-Tianjin-Hebei urban agglomeration, China. However, the relative importance of precipitation and urbanization to water storage change has not been sufficiently studied. In this study, both terrestrial water storage (TWS and groundwater storage (GWS change in Jing-Jin-Ji from 1979 to the 2010s were investigated, based on the global land data assimilation system (GLDAS and the EartH2Observe (E2O outputs, and we used a night light index as an index of urbanization. The results showed that TWS anomaly varied in three stages: significant increase from 1981 to 1996, rapid decrease from 1996 to 2002 and increase from 2002 to the 2010s. Simultaneously, GWS has decreased with about 41.5 cm (500% of GWS in 1979. Both urbanization and precipitation change influenced urban water resource variability. Urbanization was a relatively important factor to the depletion of TWS (explains 83% and GWS (explains 94% since the 1980s and the precipitation deficit explains 72% and 64% of TWS and GWS variabilities. It indicates that urbanization coupled with precipitation deficit has been a more important factor that impacted depletion of both TWS and GWS than climate change only, in the Jing-Jin-Ji region. Moreover, we suggested that the cumulative effect should be considered when discussing the relationship between influence factors and water storage change.

  8. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.

    Science.gov (United States)

    Arango-Velez, Adriana; González, Leonardo M Galindo; Meents, Miranda J; El Kayal, Walid; Cooke, Barry J; Linsky, Jean; Lusebrink, Inka; Cooke, Janice E K

    2014-11-01

    Conifers exhibit a number of constitutive and induced mechanisms to defend against attack by pests and pathogens such as mountain pine beetle (Dendroctonus ponderosae Hopkins) and their fungal associates. Ecological studies have demonstrated that stressed trees are more susceptible to attack by mountain pine beetle than their healthy counterparts. In this study, we tested the hypothesis that water deficit affects constitutive and induced responses of mature lodgepole pine × jack pine hybrids (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats. × Pinus banksiana Lamb.) to inoculation with the mountain pine beetle fungal associate Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield. The degree of stress induced by the imposed water-deficit treatment was sufficient to reduce photosynthesis. Grosmannia clavigera-induced lesions exhibited significantly reduced dimensions in water-deficit trees relative to well-watered trees at 5 weeks after inoculation. Treatment-associated cellular-level changes in secondary phloem were also observed. Quantitative RT-PCR was used to analyze transcript abundance profiles of 18 genes belonging to four families classically associated with biotic and abiotic stress responses: aquaporins (AQPs), dehydration-responsive element binding (DREB), terpene synthases (TPSs) and chitinases (CHIs). Transcript abundance profiles of a TIP2 AQP and a TINY-like DREB decreased significantly in fungus-inoculated trees, but not in response to water deficit. One TPS, Pcb(+)-3-carene synthase, and the Class II CHIs PcbCHI2.1 and PcbCHI2.2 showed increased expression under water-deficit conditions in the absence of fungal inoculation, while another TPS, Pcb(E)-β-farnesene synthase-like, and two CHIs, PcbCHI1.1 and PcbCHI4.1, showed attenuated expression under water-deficit conditions in the presence of fungal inoculation. The effects were observed both locally and systemically. These results demonstrate

  9. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  10. Effect of soil structures and nitrogen nutrition on yield and yield components of Barley: utilization of δC13 as an indicator of water deficit

    International Nuclear Information System (INIS)

    Wibawa, Gede; Menard, J.M.

    1995-01-01

    The objective of this study was to analyze the effect of combination between soil structures and nitrogen doses on the yield and its components. The treatments consisted of three soil structures: loose(O), block(B) and alternate between loose and compact(G) and five doses of nitrogen ranging from 0 to 200 kg/ha which were tested at TASS2, TASS3 and TASS4. Results showed that soil structures influenced nitrogen absorption and yield mainly through grain number/m2. The soil structure effect depends greatly on the climate. This study proved that carbon isotopic composition δC 1 3 related greatly to the carbon and water nutrition of the plant, therefore it can be used as an indicator of water deficit. (author), 17 refs, 2 tabs, 7 figs

  11. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    Science.gov (United States)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests

  12. Preferences for treatment of Attention-Deficit/Hyperactivity Disorder (ADHD: a discrete choice experiment

    Directory of Open Access Journals (Sweden)

    Lincke Hans-Joachim

    2009-08-01

    Full Text Available Abstract Background While there is an increasing emphasis on patient empowerment and shared decision-making, subjective values for attributes associated with their treatment still need to be measured and considered. This contribution seeks to define properties of an ideal drug treatment of individuals concerned with Attention-Deficit/Hyperactivity Disorder (ADHD. Because of the lack of information on patient needs in the decision-makers assessment of health services, the individuals' preferences often play a subordinate role at present. Discrete Choice Experiments offer strategies for eliciting subjective values and making them accessible for physicians and other health care professionals. Methods The evidence comes from a Discrete Choice Experiments (DCE performed in 2007. After reviewing the literature about preferences of ADHS we conducted a qualitative study with four focus groups consisting of five to eleven ADHS-patients each. In order to achieve content validity, we aimed at collecting all relevant factors for an ideal ADHS treatment. In a subsequent quantitative study phase (n = 219, data was collected in an online or paper-pencil self-completed questionnaire. It included sociodemographic data, health status and patients' preferences of therapy characteristics using direct measurement (23 items on a five-point Likert-scale as well as a Discrete-Choice-Experiment (DCE, six factors in a fold-over design. Results Those concerned were capable of clearly defining success criteria and expectations. In the direct assessment and the DCE, respondents attached special significance to the improvement of their social situation and emotional state (relative importance 40%. Another essential factor was the desire for drugs with a long-lasting effect over the day (relative importance 18%. Other criteria, such as flexibility and discretion, were less important to the respondents (6% and 9%, respectively. Conclusion Results point out that ADHD patients

  13. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  14. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  15. Factors Associated With Adherence to Methylphenidate Treatment in Adult Patients With Attention-Deficit/Hyperactivity Disorder and Substance Use Disorders.

    Science.gov (United States)

    Skoglund, Charlotte; Brandt, Lena; Almqvist, Catarina; DʼOnofrio, Brian M; Konstenius, Maija; Franck, Johan; Larsson, Henrik

    2016-06-01

    Adherence to treatment is one of the most consistent factors associated with a favorable addiction treatment outcome. Little is known about factors associated with treatment adherence in individuals affected with comorbid attention-deficit/hyperactivity disorder and substance use disorders (SUD). This study aimed to explore whether treatment-associated factors, such as the prescribing physician's (sub)specialty and methylphenidate (MPH) dose, or patient-related factors, such as sex, age, SUD subtype, and psychiatric comorbidity, were associated with adherence to MPH treatment. Swedish national registers were used to identify adult individuals with prescriptions of MPH and medications specifically used in the treatment of SUD or a diagnosis of SUD and/or coexisting psychiatric diagnoses. Primary outcome measure was days in active MPH treatment in stratified dose groups (≤36 mg, ≥37 mg to ≤54 mg, ≥55 mg to ≤72 mg, ≥73 mg to ≤90 mg, ≥91 mg to ≤108 mg, and ≥109 mg). Lower MPH doses (ie, ≤36 mg day 100) were associated with treatment discontinuation between days 101 and 830 (HR≤36 mg, 1.67; HR37-54mg, 1.37; HR55-72mg, 1.36; HR73-90mg, 1.19; HR≥108mg, 1.09). The results showed a linear trend (P attention-deficit/hyperactivity disorder and SUD.

  16. Attentional Control and Subjective Executive Function in Treatment-Naive Adults with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Grane, Venke Arntsberg; Endestad, Tor; Pinto, Arnfrid Farbu; Solbakk, Anne-Kristin

    2014-01-01

    We investigated performance-derived measures of executive control, and their relationship with self- and informant reported executive functions in everyday life, in treatment-naive adults with newly diagnosed Attention Deficit Hyperactivity Disorder (ADHD; n = 36) and in healthy controls (n = 35). Sustained attentional control and response inhibition were examined with the Test of Variables of Attention (T.O.V.A.). Delayed responses, increased reaction time variability, and higher omission error rate to Go signals in ADHD patients relative to controls indicated fluctuating levels of attention in the patients. Furthermore, an increment in NoGo commission errors when Go stimuli increased relative to NoGo stimuli suggests reduced inhibition of task-irrelevant stimuli in conditions demanding frequent responding. The ADHD group reported significantly more cognitive and behavioral executive problems than the control group on the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A). There were overall not strong associations between task performance and ratings of everyday executive function. However, for the ADHD group, T.O.V.A. omission errors predicted self-reported difficulties on the Organization of Materials scale, and commission errors predicted informant reported difficulties on the same scale. Although ADHD patients endorsed more symptoms of depression and anxiety on the Achenbach System of Empirically Based Assessment (ASEBA) than controls, ASEBA scores were not significantly associated with T.O.V.A. performance scores. Altogether, the results indicate multifaceted alteration of attentional control in adult ADHD, and accompanying subjective difficulties with several aspects of executive function in everyday living. The relationships between the two sets of data were modest, indicating that the measures represent non-redundant features of adult ADHD. PMID:25545156

  17. Attentional control and subjective executive function in treatment-naive adults with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Grane, Venke Arntsberg; Endestad, Tor; Pinto, Arnfrid Farbu; Solbakk, Anne-Kristin

    2014-01-01

    We investigated performance-derived measures of executive control, and their relationship with self- and informant reported executive functions in everyday life, in treatment-naive adults with newly diagnosed Attention Deficit Hyperactivity Disorder (ADHD; n = 36) and in healthy controls (n = 35). Sustained attentional control and response inhibition were examined with the Test of Variables of Attention (T.O.V.A.). Delayed responses, increased reaction time variability, and higher omission error rate to Go signals in ADHD patients relative to controls indicated fluctuating levels of attention in the patients. Furthermore, an increment in NoGo commission errors when Go stimuli increased relative to NoGo stimuli suggests reduced inhibition of task-irrelevant stimuli in conditions demanding frequent responding. The ADHD group reported significantly more cognitive and behavioral executive problems than the control group on the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A). There were overall not strong associations between task performance and ratings of everyday executive function. However, for the ADHD group, T.O.V.A. omission errors predicted self-reported difficulties on the Organization of Materials scale, and commission errors predicted informant reported difficulties on the same scale. Although ADHD patients endorsed more symptoms of depression and anxiety on the Achenbach System of Empirically Based Assessment (ASEBA) than controls, ASEBA scores were not significantly associated with T.O.V.A. performance scores. Altogether, the results indicate multifaceted alteration of attentional control in adult ADHD, and accompanying subjective difficulties with several aspects of executive function in everyday living. The relationships between the two sets of data were modest, indicating that the measures represent non-redundant features of adult ADHD.

  18. Attentional control and subjective executive function in treatment-naive adults with Attention Deficit Hyperactivity Disorder.

    Directory of Open Access Journals (Sweden)

    Venke Arntsberg Grane

    Full Text Available We investigated performance-derived measures of executive control, and their relationship with self- and informant reported executive functions in everyday life, in treatment-naive adults with newly diagnosed Attention Deficit Hyperactivity Disorder (ADHD; n = 36 and in healthy controls (n = 35. Sustained attentional control and response inhibition were examined with the Test of Variables of Attention (T.O.V.A.. Delayed responses, increased reaction time variability, and higher omission error rate to Go signals in ADHD patients relative to controls indicated fluctuating levels of attention in the patients. Furthermore, an increment in NoGo commission errors when Go stimuli increased relative to NoGo stimuli suggests reduced inhibition of task-irrelevant stimuli in conditions demanding frequent responding. The ADHD group reported significantly more cognitive and behavioral executive problems than the control group on the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A. There were overall not strong associations between task performance and ratings of everyday executive function. However, for the ADHD group, T.O.V.A. omission errors predicted self-reported difficulties on the Organization of Materials scale, and commission errors predicted informant reported difficulties on the same scale. Although ADHD patients endorsed more symptoms of depression and anxiety on the Achenbach System of Empirically Based Assessment (ASEBA than controls, ASEBA scores were not significantly associated with T.O.V.A. performance scores. Altogether, the results indicate multifaceted alteration of attentional control in adult ADHD, and accompanying subjective difficulties with several aspects of executive function in everyday living. The relationships between the two sets of data were modest, indicating that the measures represent non-redundant features of adult ADHD.

  19. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    Science.gov (United States)

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. Copyright © 2015. Published by Elsevier B.V.

  20. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  1. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  2. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Han, Ji-Mei; Chow, Wah Soon; Fan, Da-Yong; Zhang, Wang-Feng

    2018-01-01

    To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO 2 assimilation rate (A N ) and stomatal conductance (g s ) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (F v /F m ) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Drainage treatment technology for water pollution prevention

    Energy Technology Data Exchange (ETDEWEB)

    Ebise, Sen' ichi

    1988-03-01

    Drainage is purified either at terminal treatment plants or by septic tanks for sewage. At terminal treatment plants, sewage is purified by activated sludge prosessing or by biological treatment equipment. By the normal activated sludge processing, only 20 - 30 % of nitrogen and phosphur can be removed. To solve this problem, many advanced processing systems have been employed, representative systems being coagulating sedimentation, rapid filtration, recirculating nitro-denitrification, etc. The coagulating sedimentation is a treatment process in which such metallic salt coagulations as aluminum, iron, etc. are injected and mixed with sewage, and then phosphur and the like are sedimented in the form of grains. The rapid filtration requires no large space, and can reliably remove suspended matter. For large scale septic tank processing system, advance treatment processing is supplemented to improve the quality of treated water. Among other systems of sewage purification are oxidized channel, oxidized pond, soil treatment, etc. (2 figs, 2 refs)

  4. Variation in total sugars and reductive sugars in the moss Pleurozium schreberi (hylocomiaceae) under water deficit conditions

    International Nuclear Information System (INIS)

    Montenegro Ruiz, Luis Carlos; Melgarejo Munoz, Luz Marina.

    2012-01-01

    The structural simplicity of the bryophytes exposed them easily to water stress, forcing them to have physiological and biochemical mechanisms that enable them to survive. This study evaluated the variation of total soluble sugars and reducing sugars in relation to relative water content, in Pleurozium schreberi when faced with low water content in the Paramo de Chingaza (Colombia) and under simulated conditions of water deficit in the laboratory. we found that total sugars increase when the plant is dehydrated and returned to their normal content when re-hydrated moss, this could be interpreted as a possible mechanism of osmotic adjustment and osmoprotection of the cell content and cellular structure. Reducing sugars showed no significant variation, showing that monosaccharides do not have a protective role during dehydration.

  5. Effect of free and symbiotic nitrogen fixing bacterial co-inoculation on seed and seedling of soybean seeds produced under deficit water condition

    Directory of Open Access Journals (Sweden)

    Hamed Hadi

    2016-04-01

    Full Text Available Effect of free and symbiotic nitrogen fixing bacteria on seed and seedling produced seeds under deficit irrigation was conducted in laboratory and field experiments in 2006. In laboratory of karaj’s Seed and Plant Research and Certificate Institute an experiment was conducted based on factorial in form of completely randomized design with four replications and in field’s of Islamic Azad University, Varamin Branch were split factorial in form of randomized completely block design with three replications. Treatments included water stress [Irrigation after 50 (Normal irrigation, 100 (Middle stress, 150 (Severe stress mm evaporation from pan class A], Cultivar [Manokin & Williams and SRF×T3 Line] and inoculation [Inoculation with Bradyrhizobium japonicum, Bradyrhizobium japonicum co-inoculated with Azotobacter chroococcum, No seed inoculation]. Results showed that drought stress decreased the uniformity and germination speed and seedling emergence. Bacteria increased leaf dry weight, stem dry weight, leaf area and seedling vigor index but had no effect on emergence. In irrigation levels inoculated treatments had higher seedling length, leaf, stem, seedling dry weight and seedling vigor. Severs stress seeds inoculated with Bradyrhizobium japonicum had higher root dry weight than control. Therefore in seeds which were produced under deficit irrigation conditions, bacteria increased seedlings vigor.

  6. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions.

    Science.gov (United States)

    Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2017-10-01

    Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Treatment of children with attention-deficit/hyperactivity disorder (ADHD) and irritability: results from the multimodal treatment study of children with ADHD (MTA).

    Science.gov (United States)

    Fernández de la Cruz, Lorena; Simonoff, Emily; McGough, James J; Halperin, Jeffrey M; Arnold, L Eugene; Stringaris, Argyris

    2015-01-01

    Clinically impairing irritability affects 25% to 45% of children with attention-deficit/hyperactivity disorder (ADHD); yet, we know little about what interventions are effective in treating children with ADHD and co-occurring irritability. We used data from the Multimodal Treatment Study of Children With ADHD (MTA) to address 3 aims: to establish whether irritability in children with ADHD can be distinguished from other symptoms of oppositional defiant disorder (ODD); to examine whether ADHD treatment is effective in treating irritability; and to examine how irritability influences ADHD treatment outcomes. Secondary analyses of data from the MTA included multivariate analyses, and intent-to-treat random-effects regression models were used. Irritability was separable from other ODD symptoms. For treating irritability, systematic stimulant treatment was superior to behavioral management but not to routine community care; a combination of stimulants and behavioral treatment was superior to community care and to behavioral treatment alone, but not to medication alone. Irritability did not moderate the impact of treatment on parent- and teacher-reported ADHD symptoms in any of the 4 treatment groups. Treatments targeting ADHD symptoms are helpful for improving irritability in children with ADHD. Moreover, irritability does not appear to influence the response to treatment of ADHD. Multimodal Treatment Study of Children With Attention Deficit and Hyperactivity Disorder (MTA); http://www.clinicaltrials.gov; NCT00000388. Copyright © 2015 American Academy of Child & Adolescent Psychaitry. Published by Elsevier Inc. All rights reserved.

  8. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats.

    Science.gov (United States)

    Kougias, Daniel G; Hankosky, Emily R; Gulley, Joshua M; Juraska, Janice M

    2017-03-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim

    2014-01-01

    Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.

  11. Cognitive Training and Work Therapy for the Treatment of Verbal Learning and Memory Deficits in Veterans With Alcohol Use Disorders.

    Science.gov (United States)

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-01-01

    This study focused on the efficacy of cognitive training for verbal learning and memory deficits in a population of older veterans with alcohol use disorders. Veterans with alcohol use disorders, who were in outpatient treatment at VA facilities and in early-phase recovery (N = 31), were randomized to receive a three-month trial of daily cognitive training plus work therapy (n = 15) or work therapy alone (n = 16), along with treatment as usual. Participants completed assessments at baseline and at three- and six-month follow-ups; the Hopkins Verbal Learning Task (HVLT) was the primary outcome measure. Participants were primarily male (97%) and in their mid-50s (M = 55.16, SD = 5.16) and had been sober for 1.64 (SD = 2.81) months. Study retention was excellent (91% at three-month follow-up) and adherence to treatment in both conditions was very good. On average, participants in the cognitive training condition had more than 41 hours of cognitive training, and both conditions had more than 230 hours of productive activity. HVLT results at three-month follow-up revealed significant condition effects favoring cognitive training for verbal learning (HVLT Trial-3 T-score, p cognitive training condition with clinically significant verbal memory deficits (p therapy alone condition and a trend toward significance for verbal learning deficits, which was not sustained at six-month follow-up. This National Institute on Drug Abuse-funded pilot study demonstrates that cognitive training within the context of another activating intervention (work therapy) may have efficacy in remediating verbal learning and memory deficits in patients with alcohol use disorder. Findings indicate a large effect for cognitive training in this pilot study, which suggests that further research is warranted. This study is registered on ClinicalTrials.gov (NCT 01410110).

  12. Gastrointestinal adverse events during methylphenidate treatment of children and adolescents with attention deficit hyperactivity disorder

    DEFF Research Database (Denmark)

    Holmskov, Mathilde; Storebø, Ole Jakob; Moreira-Maia, Carlos R

    2017-01-01

    OBJECTIVES: To study in more depth the relationship between type, dose, or duration of methylphenidate offered to children and adolescents with attention deficit hyperactivity disorder and their risks of gastrointestinal adverse events based on our Cochrane systematic review. METHODS AND FINDINGS...... differences in the risk according to type, dose, or duration of administration. The required information size was achieved in three out of four outcomes. CONCLUSION: Methylphenidate increases the risks of decreased appetite, weight loss, and abdominal pain in children and adolescents with attention deficit...... hyperactivity disorder. No differences in the risks of gastrointestinal adverse events according to type, dose, or duration of administration were found....

  13. Managing peatland vegetation for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  14. WATER MICROPOLLUTANTS: CLASSIFICATION AND TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yolanda Patiño

    2014-06-01

    Full Text Available This article reviews the different kinds of emerging contaminants, their origin and use, and their presence in the Spanish waters, both in surface and groundwater. Micropollutants are compounds of different origin and chemical nature which had been unnoticed (due to their low concentration and don’t have specific regulation. They are divided into six major groups, and many of them behave as endocrine disruptors causing large negative effects on human health and environment. They are in waters because the waste water treatment plants are not designed for their removal, so they are being discharged. Different alternatives for their removal are discussed - physico- chemical, biological and hybrid treatment technologies -. Among the physicochemical process, the advance oxidation processes (AOPs are very promising.

  15. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  16. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  17. Magnetic Field Water Treatment Section - Overview

    International Nuclear Information System (INIS)

    Kopec, M.

    1999-01-01

    Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)

  18. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  19. Efficacy and Safety of Atomoxetine in the Treatment of Children and Adolescents with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Michael R. Kohn

    2012-01-01

    Full Text Available Several non-stimulant medications have been used in the treatment of attention deficit hyperactivity disorder (ADHD. Atomoxetine, was introduced in 2002. The safety and efficacy of atomoxetine in the treatment of ADHD for children, adolescents, and adults has been evaluated in over 4000 patients in randomized controlled studies and double blinded studies as well as in recent large longitudinal studies. This paper provides an updated summary of the literature on atomoxetine, particularly in relation to findings on the short- and long-term safety of atomoxetine in children and adolescents arising from recent large longitudinal cohort studies. Information is presented about the efficacy, safety, and tolerability of this medication.

  20. Efficacy and Safety of Atomoxetine in the Treatment of Children and Adolescents with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Kohn, Michael R.; Tsang, Tracey W.; Clarke, Simon D.

    2012-01-01

    Several non-stimulant medications have been used in the treatment of attention deficit hyperactivity disorder (ADHD). Atomoxetine, was introduced in 2002. The safety and efficacy of atomoxetine in the treatment of ADHD for children, adolescents, and adults has been evaluated in over 4000 patients in randomized controlled studies and double blinded studies as well as in recent large longitudinal studies. This paper provides an updated summary of the literature on atomoxetine, particularly in relation to findings on the short- and long-term safety of atomoxetine in children and adolescents arising from recent large longitudinal cohort studies. Information is presented about the efficacy, safety, and tolerability of this medication. PMID:23641171

  1. Quantitative EEG neurofeedback for the treatment of pediatric attention-deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy.

    Science.gov (United States)

    Hurt, Elizabeth; Arnold, L Eugene; Lofthouse, Nicholas

    2014-07-01

    Neurofeedback (NF) using surface electroencephalographic signals has been used to treat various child psychiatric disorders by providing patients with video/audio information about their brain's electrical activity in real-time. Research data are reviewed and clinical recommendations are made regarding NF treatment of youth with attention deficit/hyperactivity disorder, autism, learning disorders, and epilepsy. Most NF studies are limited by methodological issues, such as failure to use or test the validity of a full-blind or sham NF. The safety of NF treatment has not been thoroughly investigated in youth or adults, although clinical experience suggests reasonable safety. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Simultaneous Treatment of Grammatical and Speech-Comprehensibility Deficits in Children with Down Syndrome

    Science.gov (United States)

    Camarata, Stephen; Yoder, Paul; Camarata, Mary

    2006-01-01

    Children with Down syndrome often display speech-comprehensibility and grammatical deficits beyond what would be predicted based upon general mental age. Historically, speech-comprehensibility has often been treated using traditional articulation therapy and oral-motor training so there may be little or no coordination of grammatical and…

  3. Polyunsaturated fatty acids in the treatment of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Lange, Klaus W.; Hauser, Joachim; Kanaya, Shigehiko; Kaunzinger, Ivo; Lange, Katharina M.; Makulska-Gertruda, Ewelina; Nakamura, Yukiko; Sontag, Thomas A.; Tucha, Lara

    2014-01-01

    Background: Attention deficit/hyperactivity disorder (ADHD) is one of the most common behavioral disorders in children. Insufficient dietary intake of long-chain polyunsaturated fatty acids (LC-PUFAs) has been suggested to have an impact on the development of symptoms of ADHD in children.

  4. Cardiovascular Risk of Stimulant Treatment in Pediatric Attention-Deficit/Hyperactivity Disorder: Update and Clinical Recommendations

    Science.gov (United States)

    Hammerness, Paul G.; Perrin, James M.; Shelley-Abrahamson, Rachel; Wilens, Timothy E.

    2011-01-01

    Objective: This review provides an update on the cardiovascular impact of therapeutic stimulant-class medication for children and adolescents with attention-deficit/hyperactivity disorder (ADHD). Method: Relevant clinical literature was ascertained using PubMed searches limited to human studies and the English language as of May 2011. Current…

  5. Attention Deficit/Hyperactivity Disorder: Perspectives of Participants in the Identification and Treatment Process.

    Science.gov (United States)

    Davison, Judy C.

    2001-01-01

    Questions the rising incidence of Attention Deficit/Hyperactivity Disorder (AD/HD) diagnosis in the United States. Suggests that AD/HD is a socially constructed phenomenon rather than biologically based. Urges educators, medical personnel, and parents to take a holistic view of each child, with a serious examination of the wide range of causation…

  6. Meta-Analysis: Treatment of Attention-Deficit/Hyperactivity Disorder in Children with Comorbod Tic Disorders

    Science.gov (United States)

    Bloch, Michael H.; Panza, Kaitlyn E.; Landeros-Weisenberger, Angeli; Leckman, James F.

    2009-01-01

    Methylphenidate appears to provide the greatest and most immediate improvement of the symptoms of attention deficit hyperactivity disorder and does not appear to worsen tic symptoms based on a meta-analysis study. The meta-analysis included nine studies with 477 subjects.

  7. Atomoxetine Treatment for Pediatric Patients with Attention-Deficit/Hyperactivity Disorder with Comorbid Anxiety Disorder

    Science.gov (United States)

    Geller, Daniel; Donnelly, Craig; Lopez, Frank; Rubin, Richard; Newcorn, Jeffrey; Sutton, Virginia; Bakken, Rosalie; Paczkowski, Martin; Kelsey, Douglas; Sumner, Calvin

    2007-01-01

    Objective: Research suggests 25% to 35% of children with attention-deficit/hyperactivity disorder (ADHD) have comorbid anxiety disorders. This double-blind study compared atomoxetine with placebo for treating pediatric ADHD with comorbid anxiety, as measured by the ADHD Rating Scale-IV-Parent Version: Investigator Administered and Scored…

  8. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  9. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  10. Semantic Feature Analysis (SFA in the Treatment of Naming Deficits: Evidence from a Malay Speaker with Non-Fluent Aphasia

    Directory of Open Access Journals (Sweden)

    Mohd Azmarul A Aziz

    2015-04-01

    Full Text Available Introduction Semantic Feature Analysis (SFA is a treatment for lexical retrieval impairment in which participants are cued by providing semantic information regarding concepts they have difficulty with in naming tasks in an effort to facilitate accurate lexical retrieval (Boyle & Coelho, 1995. People with aphasia are commonly found to have naming deficits and speech-language therapists (SLTs face difficulties in providing an effective treatment method to treat this deficit. This study aims to examine the use of SFA to address naming deficits for nouns and verbs in a Malay patient (KM with non-fluent aphasia. Methods The following tests were administered to the subject pre- and post- treatment: 1 Boston Diagnostic Aphasia Examination (BDAE; 2 Malay Object and Action Test (MOAT; and 3 A series of comprehension and production assessments in Malay. Subject was asked to name 101 and 50 pictures from MOAT. The stimuli were coloured photograph pictures. Treatment and probe (untrained stimuli were selected from pictures that a subject could not name, yielding 40 nouns and 30 verbs. From these, 20 stimuli were randomly chosen as probe items and 20 as treatment stimuli (nouns, 15 treatment and 15 probes (verbs. For the treatment study, single subject A-B-A design was implemented. Three baseline sessions were completed prior to treatment initiation naming for both probe and treatment pictures. Subject attended once-weekly therapy sessions over 8 months. Probes assessing generalizations to untrained pictures were presented at 4th, 8th, and 12th and so on until the end of the programme. Results Results showed that KM’s ability to name trained and untrained picture stimuli improved for both nouns and verbs. KM demonstrated steady improvement in the SFA treatment of trained nouns and verbs: from 5% baseline accuracy to over 90% accuracy at treatment end for nouns and from 0% baseline accuracy to 90% accuracy at treatment end for verbs. Generalizations to

  11. Effect of Zeolite and Nitrogen Fertilizer Application under Water Deficit Stress Conditions on Agronomical and Physiological Traits of Rapeseed

    Directory of Open Access Journals (Sweden)

    A. Ghiasvand Ghiasi

    2014-08-01

    Full Text Available In order to evaluation of zeolite and nitrogen fertilizer application effect on agronomic and physilogical traits of rapeseed (cv RGS003 under water deficit stress conditions, an experiment was conducted in factorial based on randomized complete block design with three replications during 2010 in Qazvin region, Iran. In the where, the two levels of irrigation factor as the normal irrigation (irrigation after 80 mm evaporation from class A pan as control and irrigation cease from stem elongation stage till end of growth, nitrogen factor was at three levels (0, 75 and 150 kg.ha-1 and zeolite factor (0 and 10tons per hectare were studied. Results showed that drought stress decreased evaluated traits such as silique per plant (41%, grain per silique (26%, 1000 seed weight (33%, grain yield (52.5%, oil percent (14%, RWC (31.5% and chlorophyll content (35%. Non-application of nitrogen had adverse effects on total traits and reduced them. However, zeolite application at water deficit stress conditions had positive and significant effect on total traits except of oil percent and chlorophyll content, specially improved grain yield and oil yield. Based on the results of this experiment, application of zeolite (10ton/ha-1 through storage and maintenance of water and nutrients, reduced the intensity and harmful effects of stress in plants and enhances crop yield.

  12. Water deficit during pit hardening enhances phytoprostanes content, a plant biomarker of oxidative stress, in extra virgin olive oil.

    Science.gov (United States)

    Collado-González, Jacinta; Pérez-López, David; Memmi, Houssem; Gijón, M Carmen; Medina, Sonia; Durand, Thierry; Guy, Alexandre; Galano, Jean-Marie; Ferreres, Federico; Torrecillas, Arturo; Gil-Izquierdo, Angel

    2015-04-15

    No previous information exists on the effects of water deficit on the phytoprostanes (PhytoPs) content in extra virgin olive oil from fruits of mature olive (Olea europaea L. cv. Cornicabra) trees during pit hardening. PhytoPs profile in extra virgin olive oil was characterized by the presence of 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP + ent-16-B1-PhytoP, and 9-L1-PhytoP + ent-9-L1-PhytoP. The qualitative and quantitative differences in PhytoPs content with respect to those reported by other authors indicate a decisive effect of cultivar, oil extraction technology, and/or storage conditions prone to autoxidation. The pit hardening period was critical for extra virgin olive oil composition because water deficit enhanced the PhytoPs content, with the concomitant potential beneficial aspects on human health. From a physiological and agronomical point of view, 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, and 16-B1-PhytoP + ent-16-B1-PhytoP could be considered as early candidate biomarkers of water stress in olive tree.

  13. Produced water treatment methods for SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2008-07-01

    Produced water treatment methods for steam assisted gravity drainage (SAGD) processes were presented. Lime softening is used to remove sludge before weak acid cation processes. However, the process is not reliable in cold climates, and disposal of the sludge is now posing environmental problems in Alberta. High pH MVC evaporation processes use sodium hydroxide (NaOH) additions to prevent silica scaling. However the process produces silica wastes that are difficult to dispose of. The sorption slurry process was designed to reduce the use of caustic soda and develop a cost-effective method of disposing evaporator concentrates. The method produces 98 per cent steam quality for SAGD injection. Silica is sorbed onto crystals in order to prevent silica scaling. The evaporator concentrate from the process is suitable for on- and off-site deep well disposal. The ceramic membrane process was designed to reduce the consumption of chemicals and improve the reliability of water treatment processes. The ion exchange desilication process uses 80 per cent less power and produces 80 per cent fewer CO{sub 2} emissions than MVC evaporators. A comparative operating cost evaluation of various electric supply configurations and produced water treatment processes was also included, as well as an analysis of produced water chemistry. tabs., figs.

  14. Substance Use Disorders in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder: Implications for Treatment and the Role of the Primary Care Physician

    OpenAIRE

    Upadhyaya, Himanshu P.

    2008-01-01

    Objectives: Review the association between attention-deficit/hyperactivity disorder (ADHD) and substance use disorder (SUD) in children and adolescents. Discuss treatment implications and the role of the primary care physician in the management of this comorbidity.

  15. International consensus statement on attention-deficit/hyperactivity disorder (ADHD) and disruptive behaviour disorders (DBDs): clinical implications and treatment practice suggestions.

    NARCIS (Netherlands)

    Kutcher, S.; Aman, M.; Brooks, S.J.; Daalen, E. van; Fegert, J.; Findling, R.L.; Fisman, S.; Greenhill, L.L.; Huss, M.; Kusumakar, V.; Pine, D.; Taylor, E.; Tyano, S.

    2004-01-01

    Researchers and clinicians worldwide share concerns that many youngsters with attention-deficit/hyperactivity disorder (ADHD) and/or disruptive behaviour disorders (DBDs) do not receive appropriate treatment despite availability of effective therapies. At the request of Johnson and Johnson

  16. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  17. Increased water deficit decreases Douglas fir growth throughout western US forests.

    Science.gov (United States)

    Restaino, Christina M; Peterson, David L; Littell, Jeremy

    2016-08-23

    Changes in tree growth rates can affect tree mortality and forest feedbacks to the global carbon cycle. As air temperature increases, evaporative demand also increases, increasing effective drought in forest ecosystems. Using a spatially comprehensive network of Douglas fir (Pseudotsuga menziesii) chronologies from 122 locations that represent distinct climate environments in the western United States, we show that increased temperature decreases growth via vapor pressure deficit (VPD) across all latitudes. Using an ensemble of global circulation models, we project an increase in both the mean VPD associated with the lowest growth extremes and the probability of exceeding these VPD values. As temperature continues to increase in future decades, we can expect deficit-related stress to increase and consequently Douglas fir growth to decrease throughout its US range.

  18. Linking water treatment practices and fish welfare

    DEFF Research Database (Denmark)

    Zubiaurre, Claire; Pedersen, Lars-Flemming

    2016-01-01

    Peracetic acids can be used as sanitizers to control water quality in aquaculture systems. As an alternative to formalin, chloramine-T or copper sulphate, PAA has strong anti-microbial effects, degrades quickly and is relatively safe to use. Its mode of action and associated rapid decay can make....... Supportive enzymatic, biochemical and physiological biomarkers can be used along with gill and epidermal histological measures to evaluate the effects on water treatment regimens. The ultimate goal is to define the therapeutic window where fish welfare is not compromised.PAA is among the few disinfectants...

  19. Natural Product-Derived Treatments for Attention-Deficit/Hyperactivity Disorder: Safety, Efficacy, and Therapeutic Potential of Combination Therapy

    Science.gov (United States)

    Ahn, James; Ahn, Hyung Seok; Cheong, Jae Hoon; dela Peña, Ike

    2016-01-01

    Typical treatment plans for attention-deficit/hyperactivity disorder (ADHD) utilize nonpharmacological (behavioral/psychosocial) and/or pharmacological interventions. Limited accessibility to behavioral therapies and concerns over adverse effects of pharmacological treatments prompted research for alternative ADHD therapies such as natural product-derived treatments and nutritional supplements. In this study, we reviewed the herbal preparations and nutritional supplements evaluated in clinical studies as potential ADHD treatments and discussed their performance with regard to safety and efficacy in clinical trials. We also discussed some evidence suggesting that adjunct treatment of these agents (with another botanical agent or pharmacological ADHD treatments) may be a promising approach to treat ADHD. The analysis indicated mixed findings with regard to efficacy of natural product-derived ADHD interventions. Nevertheless, these treatments were considered as a “safer” approach than conventional ADHD medications. More comprehensive and appropriately controlled clinical studies are required to fully ascertain efficacy and safety of natural product-derived ADHD treatments. Studies that replicate encouraging findings on the efficacy of combining botanical agents and nutritional supplements with other natural product-derived therapies and widely used ADHD medications are also warranted. In conclusion, the risk-benefit balance of natural product-derived ADHD treatments should be carefully monitored when used as standalone treatment or when combined with other conventional ADHD treatments. PMID:26966583

  20. Managing urban water systems with significant adaptation deficits - a unified framework for secondary cities

    Science.gov (United States)

    Pathirana, A.; Radhakrishnan, M.; Zevenbergen, C.; Quan, N. H.

    2016-12-01

    The need to address the shortcomings of urban systems - adaptation deficit - and shortcomings in response to climate change - `adaptation gap' - are both major challenges in maintaining the livability and sustainability of cities. However, the adaptation actions defined in terms of type I (addressing adaptation deficits) and type II (addressing adaptation gaps), often compete and conflict each other in the secondary cities of the global south. Extending the concept of the environmental Kuznets curve, this paper argues that a unified framework that calls for synergistic action on type I and type II adaptation is essential in order for these cities to maintain their livability, sustainability and resilience facing extreme rates of urbanization and rapid onset of climate change. The proposed framework has been demonstrated in Can Tho, Vietnam, where there are significant adaptation deficits due to rapid urbanisation and adaptation gaps due to climate change and socio-economic changes. The analysis in Can Tho reveals the lack of integration between type I and type II measures that could be overcome by closer integration between various stakeholders in terms of planning, prioritising and implementing the adaptation measures.

  1. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  2. High dose methylphenidate treatment in adult attention deficit hyperactivity disorder: a case report

    Directory of Open Access Journals (Sweden)

    Liebrenz Michael

    2012-05-01

    Full Text Available Abstract Introduction Stimulant medication improves hyperactivity, inattention, and impulsivity in both pediatric and adult populations with Attention Deficit Hyperactivity Disorder (ADHD. However, data regarding the optimal dosage in adults is still limited. Case presentation We report the case of a 38-year-old Caucasian patient who was diagnosed with Attention Deficit Hyperactivity Disorder when he was nine years old. He then received up to 10 mg methylphenidate (Ritalin® and 20 mg sustained-release methylphenidate (Ritalin SR® daily. When he was 13, his medication was changed to desipramine (Norpramin®, and both Ritalin® and Ritalin SR® were discontinued; and at age 18, when he developed obsessive-compulsive symptoms, his medication was changed to clomipramine (Anafranil® 75 mg daily. Still suffering from inattention and hyperactivity, the patient began college when he was 19, but did not receive stimulant medication until three years later, when Ritalin® 60 mg daily was re-established. During the 14 months that followed, he began to use Ritalin® excessively, both orally and rectally, in dosages from 4800-6000 mg daily. Four years ago, he was referred to our outpatient service, where his Attention Deficit Hyperactivity Disorder was re-evaluated. At that point, the patient’s daily Ritalin® dosage was reduced to 200 mg daily orally, but he still experienced pronounced symptoms of, Attention Deficit Hyperactivity Disorder so this dosage was raised again. The patient’s plasma levels consistently remained between 60–187 nmol/l—within the recommended range—and signs of his obsessive-compulsive symptoms diminished with fluoxetine 40 mg daily. Finally, on a dosage of 378 mg extended-release methylphenidate (Concerta®, his symptoms of Attention Deficit Hyperactivity Disorder have improved dramatically and no further use of methylphenidate has been recorded during the 24 months preceding this report. Conclusions Symptoms of

  3. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  4. A conceptual framework for a long-term economic model for the treatment of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A

    2017-06-01

    Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.

  5. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  6. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  7. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  8. Randomised social-skills training and parental training plus standard treatment versus standard treatment of children with attention deficit hyperactivity disorder

    DEFF Research Database (Denmark)

    Storebo, Ole Jakob; Pedersen, Jesper; Skoog, Maria

    2011-01-01

    Background: Children with attention deficit hyperactivity disorder (ADHD) are hyperactive and impulsive, cannot maintain attention, and have difficulties with social interactions. Medical treatment may alleviate symptoms of ADHD, but seldom solves difficulties with social interactions. Social...... on the Conners 3(rd) Edition subscale for 'hyperactivity-impulsivity' between the intervention group and the control group. The outcomes will be assessed 3 and 6 months after randomisation. The primary outcome measure is ADHD symptoms. The secondary outcome is social skills. Tertiary outcomes include...

  9. MULTIVITAMINS AND POLYUNSATURATED FATTY ACIDS IN THE TREATMENT OF ATTENTION DEFICIT HYPERACTIVITY DISORDER IN CHILDREN

    Directory of Open Access Journals (Sweden)

    L.M. Kuzenkova

    2009-01-01

    Full Text Available Therapeutic effect of Multi-tabs Intello Kids with Omega-3 and Multi-tabs Teenager has been assessed in the open controlled study included 70 patients with attention deficit hyperactivity disorder (ADHD, aged from 6 to 10 years . Group I and group II (20 +20 patients received Multi-tabs Intello Kids with Omega-3/or Multi-tabs Teenager as a mono therapy of cognitive dis functions (СF for 2 monthes. No pharmacological therapy was conducted in group of a control which included 30 patients with ADHD. Utilising the computer testing systems, basic of parameters CF were analyzed before and after the course of therapy. Statistically relevant positive effect of the vitaminis on cognitive functions was demonstrated.Key words: attention deficit hyperactivity disorder, therapy, multivitamins.

  10. Treatment of oily water by flotation

    International Nuclear Information System (INIS)

    Ortiz O, H.B.

    2002-01-01

    The operation of the nuclear power plants such as Laguna Verde (CLV) with nuclear reactors of the boiling water type (BWR) produce radioactive waste solids, liquids and gaseous which require of a special treatment in their operation and arrangement. Such is the case of the liquid wastes from CLV which are a mixture of water and synthetic oils coming from leaks and spilling by pressure of maintenance of electro-mechanical equipment associated to the performance of the nuclear power plant. This mixture of water and spent oils is pretreated by means of sedimentation, centrifugation and evaporation. However the realized efforts by the CLV, the spent oil obtained from the pretreatment contains concentrations of radioactive material higher than the tolerance limits established in the normative in force in radiological safety (0.37 Bq m L -1 for 60 Co and 54 Mn). In this context it was necessary to design an efficient treatment system and economically profitable which separates the oil, the heavy metals and the leftovers of radioactive material that could be present in water, with the purpose of fulfil with the Mexican Official Standards corresponding for its unload or even it can reuse it in the wash process of treated oil. The treatment system of oily water waste consists of: a) Coagulation-flocculation, b) Flotation system with modified air dissolved (DAFm). The proposed flotation process allows to reach a higher separation efficiencies of: Concentration of greases and oils: 94.11 %; Turbidity: 98.6 %; 60 Co: 82.3 % ; Co: 94.8 % and Cr: 99.9 % (Author)

  11. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  12. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  13. Water Supply and Treatment Equipment. Change Notice 1

    Science.gov (United States)

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  14. Fluorescence Indices for the Proximal Sensing of Powdery Mildew, Nitrogen Supply and Water Deficit in Sugar Beet Leaves

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-03-01

    Full Text Available Using potted sugar beet plants we aimed to investigate the suitability of four fluorescence indices to detect and differentiate the impact of nitrogen supply, water deficit and powdery mildew in two sugar beet cultivars (Beta vulgaris L.. Plants were grown inside a polytunnel under two nitrogen levels combined with water deficit or full irrigation. Changes in plant physiology were recorded at two physiological stages with a multiparametric handheld fluorescence sensor and a fluorescence imaging system. The analysis of chlorophyll content and osmotic potential served as reference. Based on our results, the fluorescence indices “Nitrogen Balance Index” and “Simple Fluorescence Ratio” responded quite sensitively to drought stress and mildew infection. Moreover, the blue-to-far-red fluorescence ratio revealed significant stress-induced alterations in the plant physiology. In all, fluorescence indices might be used as single or combined indices for successful stress sensing. However, a robust stress differentiation by using only one fluorescence ratio could not be accomplished.

  15. Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice.

    Science.gov (United States)

    Sade, Nir; Umnajkitikorn, Kamolchanok; Rubio Wilhelmi, Maria Del Mar; Wright, Matthew; Wang, Songhu; Blumwald, Eduardo

    2018-02-12

    Abiotic stress-induced senescence in crops is a process particularly affecting the photosynthetic apparatus, decreasing photosynthetic activity and inducing chloroplast degradation. A pathway for stress-induced chloroplast degradation that involves the CHLOROPLAST VESICULATION (CV) gene was characterized in rice (Oryza sativa) plants. OsCV expression was up-regulated with the age of the plants and when plants were exposed to water-deficit conditions. The down-regulation of OsCV expression contributed to the maintenance of the chloroplast integrity under stress. OsCV-silenced plants displayed enhanced source fitness (i.e. carbon and nitrogen assimilation) and photorespiration, leading to water-deficit stress tolerance. Co-immunoprecipitation, intracellular co-localization, and bimolecular fluorescence demonstrated the in vivo interaction between OsCV and chloroplastic glutamine synthetase (OsGS2), affecting source-sink relationships of the plants under stress. Our results would indicate that the OsCV-mediated chloroplast degradation pathway is involved in the regulation of nitrogen assimilation during stress-induced plant senescence. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand.

    Science.gov (United States)

    Prado, Santiago Alvarez; Cabrera-Bosquet, Llorenç; Grau, Antonin; Coupel-Ledru, Aude; Millet, Emilie J; Welcker, Claude; Tardieu, François

    2018-02-01

    Stomatal conductance is central for the trades-off between hydraulics and photosynthesis. We aimed at deciphering its genetic control and that of its responses to evaporative demand and water deficit, a nearly impossible task with gas exchanges measurements. Whole-plant stomatal conductance was estimated via inversion of the Penman-Monteith equation from data of transpiration and plant architecture collected in a phenotyping platform. We have analysed jointly 4 experiments with contrasting environmental conditions imposed to a panel of 254 maize hybrids. Estimated whole-plant stomatal conductance closely correlated with gas-exchange measurements and biomass accumulation rate. Sixteen robust quantitative trait loci (QTLs) were identified by genome wide association studies and co-located with QTLs of transpiration and biomass. Light, vapour pressure deficit, or soil water potential largely accounted for the differences in allelic effects between experiments, thereby providing strong hypotheses for mechanisms of stomatal control and a way to select relevant candidate genes among the 1-19 genes harboured by QTLs. The combination of allelic effects, as affected by environmental conditions, accounted for the variability of stomatal conductance across a range of hybrids and environmental conditions. This approach may therefore contribute to genetic analysis and prediction of stomatal control in diverse environments. © 2017 John Wiley & Sons Ltd.

  17. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment

    Directory of Open Access Journals (Sweden)

    Aarron Phensy

    2017-06-01

    Full Text Available Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH precursor N-acetyl-cysteine (NAC can prevent the development of these behavioral deficits. On postnatal days (PND 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg of ketamine or saline. Two groups (either ketamine or saline treated also received NAC throughout development. In adult animals (PND 70–120 we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

  18. Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury.

    Science.gov (United States)

    Cuthbert, Jeffrey P; Staniszewski, Kristi; Hays, Kaitlin; Gerber, Don; Natale, Audrey; O'Dell, Denise

    2014-01-01

    To evaluate the feasibility and safety of utilizing a commercially available virtual reality gaming system as a treatment intervention for balance training. A randomized controlled trial in which assessment and analysis were blinded. An inpatient rehabilitation facility. Interventions included balance-based physical therapy using a Nintendo Wii, as monitored by a physical therapist, and receipt of one-on-one balance-based physical therapy using standard physical therapy modalities available for use in the therapy gym. Participants in the standard physical therapy group were found to have slightly higher enjoyment at mid-intervention, while those receiving the virtual reality-based balance intervention were found to have higher enjoyment at study completion. Both groups demonstrated improved static and dynamic balance over the course of the study, with no significant differences between groups. Correlational analyses suggest a relationship exists between Wii balance board game scores and BBS scores for measures taken beyond the baseline assessment. This study provides a modest level of evidence to support using commercially available VR gaming systems for the treatment of balance deficits in patients with a primary diagnosis of TBI receiving inpatient rehabilitation. Additional research of these types of interventions for the treatment of balance deficits is warranted.

  19. Mindfulness Meditation Training for Attention-Deficit/Hyperactivity Disorder in Adulthood: Current Empirical Support, Treatment Overview, and Future Directions

    Science.gov (United States)

    Mitchell, John T.; Zylowska, Lidia; Kollins, Scott H.

    2015-01-01

    Research examining nonpharmacological interventions for adults diagnosed with attention-deficit/hyperactivity disorder (ADHD) has expanded in recent years and provides patients with more treatment options. Mindfulness-based training is an example of an intervention that is gaining promising preliminary empirical support and is increasingly administered in clinical settings. The aim of this review is to provide a rationale for the application of mindfulness to individuals diagnosed with ADHD, describe the current state of the empirical basis for mindfulness training in ADHD, and summarize a treatment approach specific to adults diagnosed with ADHD: the Mindful Awareness Practices (MAPs) for ADHD Program. Two case study examples are provided to demonstrate relevant clinical issues for practitioners interested in this approach. Directions for future research, including mindfulness meditation as a standalone treatment and as a complementary approach to cognitive-behavioral therapy, are provided. PMID:25908900

  20. Multimodal treatment in children and adolescents with attention-deficit/hyperactivity disorder: a 6-month follow-up.

    Science.gov (United States)

    Duric, Nezla S; Assmus, Jørg; Gundersen, Doris; Duric Golos, Alisa; Elgen, Irene B

    2017-07-01

    Different treatment approaches aimed at reducing attention-deficit/hyperactivity disorder (ADHD) core symptoms are available. However, factors such as intolerance, side-effects, lack of efficacy, high new technology costs, and placebo effect have spurred on an increasing interest in alternative or complementary treatment. The aim of this study is to explore efficacy of multimodal treatment consisting of standard stimulant medication (methylphenidate) and neurofeedback (NF) in combination, and to compare it with the single treatment in 6-month follow-up in ADHD children and adolescents. This randomized controlled trial with 6-month follow-up comprised three treatment arms: multimodal treatment (NF + MED), MED alone, and NF alone. A total of 130 ADHD children/adolescents participated, and 62% completed the study. ADHD core symptoms were recorded pre-/post-treatment, using parents' and teachers' forms taken from Barkley's Defiant Children: A Clinician's Manual for Assessment and Parent Training, and a self-report questionnaire. Significant ADHD core symptom improvements were reported 6 months after treatment completion by parents, teachers, and participants in all three groups, with marked improvement in inattention in all groups. However, no significant improvements in hyperactivity or academic performance were reported by teachers or self-reported by children/adolescents, respectively, in the three groups. Changes obtained with multimodal treatment at 6-month follow-up were comparable to those with single medication treatment, as reported by all participants. Multimodal treatment using combined stimulant medication and NF showed 6-month efficacy in ADHD treatment. More research is needed to explore whether multimodal treatment is suitable for ADHD children and adolescents who showed a poor response to single medication treatment, and for those who want to reduce the use of stimulant medication.

  1. Water Use Efficiency and Water Deficit Tolerance Indices in Terminal Growth Stages in Promising Bread Wheat genotypes

    Directory of Open Access Journals (Sweden)

    M. Nazeri

    2016-02-01

    - (Yd/Yp, SSI = (1-(Ydi/Ypi / D, STI = (Ypi×Ysi/ (Yp 2, TOL= Ypi – Ysi In which D is environment stress intensity; Yp, average of grain yield for all genotypes in optimum; Ys, in water limited conditions; Ypi, grain yield of one genotype in optimum; and Ysi, grain yield of one genotype in water limited conditions. Anthesis and physiological maturity were determined by observing of anthers in %50 spikes and changing color of %50 pedancles to yellow, respectively. Results and Discussions The results revealed that water stress (L2 and L3 treatments reduced grain yield (18.6% and 45.3%, respectively. Genotypes V5, V4 and V10 showed maximum water use efficiency (WUE (1.885, 1.756 and 1.833 kg.m-3 respectively. A highly significant relationship was found between grain yield under moisture limited conditions and STI (r = 0.93** and TOL (r = 0.85**. Grain yield under optimum irrigation condition was significantly (r = 0.50** correlated with STI. Therefore, stress tolerance index (STI was more efficient index for estimation the grain yield under either conditions as well as grouping the genotypes with higher grain yield and tolerant to water limited condition. So, stress tolerance index (STI was suitable for classifying the higher yielding genotypes adapted to drought prone environment. Since stress tolerance index (STI was highly and significantly associated with grain yield in both optimum (r = 0.50** and limited moisture (r = 0.93** conditions, it can be used an efficient index for evaluation in the field. Conclusions Our results indicated that genotypes V5, V4 and V10 with high stress tolerance index (STI values and the greatest WUE, had the best performance among the other genotypes, respectively. These cultivars had higher grain yield in both optimum and stress conditions than other genotypes So, these cultivars could be recommended to cultivate for similar conditions.

  2. Selegiline in Comparison with Methylphenidate in Treatment of Adults with Attention Deficit yperactivity Disorder: A Double-blind, Randomized Trial

    Directory of Open Access Journals (Sweden)

    Farbod Fadai

    2009-12-01

    Full Text Available  Objective: "n "nAttention-Deficit/Hyperactivity Disorder (ADHD is one of the most common mental disorders in childhood and it continues to adulthood without proper treatment. Stimulants have been used in treatment of ADHD for many years and the efficacy of methylphenidate (MPH in the treatment of adults with ADHD has been proven to be acceptable according to meta-analysis studies. However, there are some concerns about stimulants. Finding other effective medications for the treatment of adult ADHD seems necessary. We tried a monoamine oxidase inhibitor, Selegiline, as there are some theoretical and experimental evidences for the efficacy of this medication . "nMethod: Forty patients were randomized to receive Selegiline or methylphenidate in an equal ratio for an 8-week double-blind clinical trial. Each patient filled the CAARS self report screening form before starting to take the medication and in weeks 2-4-6 and 8. Patients were also assessed by a psychiatrist at the baseline and on each 14 days up to the 8 weeks period. "nResults: The mean score of the two groups- receiving Selegiline or methylphenidate- decreased over the 8 weeks. There was not a significant difference between the two groups. The most prevalent side-effect of methylphenidate was decrease of appetite and for Selegiline change in sleep pattern . "nConclusion: Selegiline is as effective as methylphenidate in the treatment of adults with Attention-Deficit/Hyperactivity Disorder. Selegiline can be an alternative medication for the treatment of adult ADHD If its clinical efficacy is proven by other larger studies .

  3. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  4. Extended Erythropoietin Treatment Prevents Chronic Executive Functional and Microstructural Deficits Following Early Severe Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shenandoah Robinson

    2018-06-01

    Full Text Available Survivors of infant traumatic brain injury (TBI are prone to chronic neurological deficits that impose lifelong individual and societal burdens. Translation of novel interventions to clinical trials is hampered in part by the lack of truly representative preclinical tests of cognition and corresponding biomarkers of functional outcomes. To address this gap, the ability of a high-dose, extended, post-injury regimen of erythropoietin (EPO, 3000U/kg/dose × 6d to prevent chronic cognitive and imaging deficits was tested in a postnatal day 12 (P12 controlled-cortical impact (CCI model in rats, using touchscreen operant chambers and regional analysis of diffusion tensor imaging (DTI. Results indicate that EPO prevents functional injury and MRI injury after infant TBI. Specifically, subacute DTI at P30 revealed widespread microstructural damage that is prevented by EPO. Assessment of visual discrimination on a touchscreen operant chamber platform demonstrated that all groups can perform visual discrimination. However, CCI rats treated with vehicle failed to pass reversal learning, and perseverated, in contrast to sham and CCI-EPO rats. Chronic DTI at P90 showed EPO treatment prevented contralateral white matter and ipsilateral lateral prefrontal cortex damage. This DTI improvement correlated with cognitive performance. Taken together, extended EPO treatment restores executive function and prevents microstructural brain abnormalities in adult rats with cognitive deficits in a translational preclinical model of infant TBI. Sophisticated testing with touchscreen operant chambers and regional DTI analyses may expedite translation and effective yield of interventions from preclinical studies to clinical trials. Collectively, these data support the use of EPO in clinical trials for human infants with TBI.

  5. [Cognitive deficits in first episode psychosis patients and people at risk for psychosis: from diagnosis to treatment].

    Science.gov (United States)

    Lecardeur, L; Meunier-Cussac, S; Dollfus, S

    2013-05-01

    a disruption of the cognitive development and the disturbance of scholarship in young individuals. Considering these results, the treatment of cognitive deficits should be initiated as soon as possible, e.g. in people at risk for psychosis in order to reinforce the normal cognitive development, prevent cognitive decline and to preserve the educational, professional and social status. Since antipsychotic medications do not impact on cognitive functioning, alternative therapeutics should be developed such as cognitive remediation. Several studies and meta-analyses have shown that cognitive remediation programs are particularly efficient in patients with schizophrenia or bipolar disorders. Contrary to antipsychotics, these techniques should be used in patients with a first psychotic episode, but also in individuals with subpsychotic symptoms, subthreshold to the diagnosis of schizophrenia. Copyright © 2013. Published by Elsevier Masson SAS.

  6. Toxoplasmosis infection and cognitive deficit after electroconvulsive treatment (ECT), is there a connection?

    OpenAIRE

    Berg, John Erik

    2012-01-01

    Electroconvulsive treatment (ECT) has developed over 70 years to a modern, effective way of lifting depressive moods. Memory loss and visual acuity after electroconvulsive treatment is the only remaining relevant criticism of the treatment modality when considering the overall rate of remission from this treatment compared to all other treatment modalities. A depressive state impedes memory, and memory improves on several qualities of cognition after treatment. However, the comparison of a pe...

  7. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  8. Pharmacologic treatment for the core deficits and associated symptoms of autism in children.

    Science.gov (United States)

    West, Lis; Waldrop, Julee; Brunssen, Susan

    2009-01-01

    Autism is a neurodevelopmental condition affecting 1 out of 160 children in the United States today. Only risperidone has Food and Drug Administration approval for the pharmacologic management of autism in children. However, health care providers may prescribe other drugs used off-label to assist autistic children and their families with the core deficits and associated behaviors of this condition. Evidence for the use of these medications will be discussed in this continuing education offering. Meta analyses, randomized clinical trials, and other prospective experimental studies of pharmacotherapy conducted in the United States in the past 10 years in children between the ages of 5 and 15 years were reviewed. The results support moderate success in treating the associated behaviors of autism and minimal success in treating core deficits across all drug classes. Preliminary evidence demonstrates possible uses for atypical antipsychotic agents, selective-serotonin reuptake inhibitors, stimulants, and N-methyl-D-aspirate receptor antagonists in decreasing the core behaviors and associated symptoms of autism. More studies and longer periods of follow-up are needed before definitive guidelines can be suggested.

  9. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  10. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal

    Science.gov (United States)

    Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527

  11. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal.

    Science.gov (United States)

    Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.

  12. Event-related potentials reflect the efficacy of pharmaceutical treatments in children and adolescents with attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Yamamuro, Kazuhiko; Ota, Toyosaku; Iida, Junzo; Nakanishi, Yoko; Matsuura, Hiroki; Uratani, Mitsuhiro; Okazaki, Kosuke; Kishimoto, Naoko; Tanaka, Shohei; Kishimoto, Toshifumi

    2016-08-30

    Few objective biological measures of pharmacological treatment efficacy exist for attention deficit/hyperactivity disorder (ADHD). Although we have previously demonstrated that event-related potentials (ERPs) reflect the effects of osmotic-release methylphenidate in treatment of naïve pediatric patients with ADHD, whether this is true for the therapeutic effects of atomoxetine (ATX) is unknown. Here, we used the Japanese version of the ADHD rating-scale IV to evaluate 14 patients with ADHD, and compared their ERP data with 14 age- and sex-matched controls. We measured P300 and mismatch negativity (MMN) components during an auditory oddball task before treatment (treatment naïve) and after 2 months of ATX treatment. Compared with controls, P300 components at baseline were attenuated and prolonged in the ADHD group at Fz (fronto-central), Cz (centro-parietal), Pz (parietal regions), C3 and C4 electrodes. ATX treatment reduced ADHD symptomology, and after 2 months of treatment, P300 latencies at Fz, Cz, Pz, C3, and C4 electrodes were significantly shorter than those at baseline. Moreover, MMN amplitudes at Cz and C3 electrodes were significantly greater than those at baseline. Thus, ERPs may be useful for evaluating the pharmacological effects of ATX in pediatric and adolescent patients with ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Evaluation of industrial hydrotalcite for the sulfated water treatment of the Valle de Puebla

    International Nuclear Information System (INIS)

    Rosano O, G.

    2003-01-01

    In Puebla City, the drinking water is a scarce natural resource since at the moment it exists a deficit in its supply of more than 700 L/s. Nevertheless, the region has a system of aquifer: a first-aquifer known as superior, which is overexploited, and a half-aquifer characterized by water with gases (H 2 S, CO 2 ), high hardness (1270 mgL -1 as CaCO 3 ) alkalinity (1050 mgL -1 as CaCO 3 ) and high contents of different chemical species of sulfur (985 mgL -1 SO 4 2- , 6.2 mgL -1 S 2- , 43 mgL -1 SO 3 2- ). Up to now the treatment used in the city of Puebla for this type of water consists on the following stages: de gasification, oxidation, treatment of gases, system of softening, clotting/flocculation chemical-physical treatment, load high sedimentation, treatment and dehydration of sludge, quick filtration, inverse osmosis, blended of treated water and disinfection; which represents a complex treatment. The objective of this research, was to find an alternative treatment for this ground water, in order to obtain a drinking water and, consequently, to simplify operations. An industrial hydrotalcite (anionic clay available in large quantities) has been characterized, modified by means of thermal treatment and used. Sorption tests have been made with this hydrotalcite in batch sets and in columns, these experiments have allowed to check how the concentration of the characteristic parameters of the ground water such as the high hardness and the high contents of chemical species of sulfur decrease simultaneously. This removal has allowed to obtain values of these parameters quite below the permissible maximum limits for drinking water according to the mexican norms, with the exception of the p H since values of 10 are obtained (value limit: 6.5 - 8.5). Furthermore, the results of the sorption tests in columns allowed to calculate that a column packed with 8.35 kg of the industrial hydrotalcite modified thermally and granulated to mesh 18-20, and a contact time of t c

  14. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit

    DEFF Research Database (Denmark)

    Zhou, Qin; Ravnskov, Sabine; Jiang, Dong

    2015-01-01

    Drought is a major abiotic factor limiting agricultural crop production. One of the effective ways to increase drought resistance in plants could be to optimize the exploitation of symbiosis with arbuscular mycorrhizal fungi (AMF). Hypothesizing that alleviation of water deficits by AMF in wheat...... will help maintain photosynthetic carbon-use, we studied the role of AMF on gas-exchange, light-use efficiencies, carbon/nitrogen ratios and growth and yield parameters in the contrasting wheat (Triticum aestivum L.) cultivars ‘Vinjett’ and ‘1110’ grown with/without AMF symbiosis. Water deficits applied...... at the floret initiation stage significantly decreased rates of photosynthetic carbon gain, transpiration and stomatal conductance in the two wheat cultivars. AMF increased the rates of photosynthesis, transpiration and stomatal conductance under drought conditions. Water deficits decreased electron transport...

  15. Treatment of some power plant waters

    International Nuclear Information System (INIS)

    Konecny, C.; Vanura, P.; Franta, P.; Marhol, M.; Tejnecky, M.; Fidler, J.

    1987-01-01

    Major results are summed up obtained in 1986 in the development of techniques for the treatment of coolant in the fuel transport and storage tank, of reserve coolant in the primary circuit and of waste water from the special nuclear power plant laundries, containing new washing agent Alfa-DES. A service test of the filter filled with Czechoslovak-made cation exchanger Ostion KSN in the boric acid concentrate filter station showed that the filter can be used in some technological circuits of nuclear power plants. New decontamination agents are also listed introduced in production in Czechoslovakia for meeting the needs of nuclear power plants. (author). 6 refs

  16. Temporal dynamics of stomatal conductance of plants under water deficit: can homeostasis be improved by more complex dynamics?

    Directory of Open Access Journals (Sweden)

    Gustavo Maia Souza

    2004-07-01

    Full Text Available In this study we hypothesized that chaotic or complex behavior of stomatal conductance could improve plant homeostasis after water deficit. Stomatal conductance of sunflower and sugar beet leaves was measured in plants grown either daily irrigation or under water deficit using an infrared gas analyzer. All measurements were performed under controlled environmental conditions. In order to measure a consistent time series, data were scored with time intervals of 20s during 6h. Lyapunov exponents, fractal dimensions, KS entropy and relative LZ complexity were calculated. Stomatal conductance in both irrigated and non-irrigated plants was chaotic-like. Plants under water deficit showed a trend to a more complex behaviour, mainly in sunflower that showed better homeostasis than in sugar beet. Some biological implications are discussed.Este estudo testou a hipótese de que a condutância estomática de uma população de estômatos em uma folha poderia apresentar um comportamento caótico ou complexo sob diferentes condições hídricas, o que poderia favorecer a capacidade homeostática das plantas. A condutância estomática em folhas de girassol e de beterraba cultivadas com irrigação diária e sob deficiência hídrica foi medida com um analisador de gás por infra-vermelho em condições controladas. Os dados foram registrados a cada 20s durante 6h. As séries temporais obtidas foram analisadas por meio dos coeficientes de Lyapunov, dimensão fractal, entropia KS e complexidade LZ relativa. A condutância estomática nas plantas cultivadas com e sem deficiência hídrica exibiu um comportamento provavelmente caótico. As plantas sob estresse hídrico mostraram uma tendência para um comportamento mais complexo, principalmente as plantas de girassol cuja capacidade homeostática foi superior. Algumas implicações biológicas destes comportamentos são discutidas no texto.

  17. Implications of Water Budget Deficits on Socio-Economic Stability and Food Security in the Arabian Peninsula and in North Africa

    Science.gov (United States)

    Mazzoni, A.; Heggy, E.; Scabbia, G.

    2017-12-01

    Water scarcity in the Arabian Peninsula and North Africa is accentuated by forecasted climatic variability, decreasing precipitation volumes and projected population growth, urbanization and economic development, increasing water demand. These factors impose uncertainties on food security and socio-economic stability in the region. We develop a water-budget model combining hydrologic, climatic and economic data to quantify water deficit volumes and groundwater depletion rates for the main aquifer systems in the area, taking into account three different climatic scenarios, and calculated from the precipitation forecast elaborated in the CSIRO, ECHAM4 and HADCM3 global circulation models from 2016 to 2050 over 1-year intervals. Water demand comprises water requirements for each economic sector, derived from data such as population, GDP, cropland cover and electricity production, and is based upon the five different SSPs. Conventional and non-conventional water resource supply data are retrieved from FAO Aquastat and institutional databases. Our results suggest that in the next 35 years, in North Africa, only Egypt and Libya will exhibit severe water deficits with respectively 44% and 89.7% of their current water budgets by 2050 (SSP2-AVG climatic scenario), while all the countries in the Arabian Peninsula will be subjected to water stress; the majority of small-size aquifers in the Arabian Peninsula will reach full depletion by 2050. In North Africa, the fossil aquifers' volume loss will be 1-15% by 2050, and total depletion within 200-300 years. Our study suggests that (1) anthropogenic drivers on water resources are harsher than projected climatic variability; (2) the estimated water deficit will induce substantial rise in domestic food production's costs, causing higher dependency on food imports; and (3) projected water deficits will most strongly impact the nations with the lowest GDPP, namely Egypt, Yemen and Libya.

  18. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  19. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    Subramanian, V.B.; Venkateswarlu, S.; Maheswari, M.; Sankar, G.R.M.

    1994-01-01

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  20. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    Science.gov (United States)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  1. Cigarette and cannabis use trajectories among adolescents in treatment for attention-deficit/hyperactivity disorder and substance use disorders.

    Science.gov (United States)

    Gray, Kevin M; Riggs, Paula D; Min, Sung-Joon; Mikulich-Gilbertson, Susan K; Bandyopadhyay, Dipankar; Winhusen, Theresa

    2011-09-01

    Cigarette smoking is common in adolescents with attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD). However, little is known about the relationship between cigarette and cannabis use trajectories in the context of treatment for both ADHD and SUD. To address this research gap, we report collateral analyses from a 16-week randomized, controlled trial (n=303) of osmotic-release methylphenidate (OROS-MPH) in adolescents with ADHD concurrently receiving cognitive behavioral therapy (CBT) targeting non-nicotine SUD. Participants completed cigarette and cannabis use self-report at baseline and throughout treatment. Analyses were performed to explore the relationships between cigarette smoking, cannabis use, and other factors, such as medication treatment assignment (OROS-MPH versus placebo). Baseline (pre-treatment) cigarette smoking was positively correlated with cannabis use. Negligible decline in cigarette smoking during treatment for non-nicotine SUD was observed in both medication groups. Regular cigarette and cannabis users at baseline who reduced their cannabis use by >50% also reduced cigarette smoking (from 10.8±1.1 to 6.2±1.1 cigarettes per day). Findings highlight the challenging nature of concurrent cannabis and cigarette use in adolescents with ADHD, but demonstrate that changes in use of these substances during treatment may occur in parallel. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, Cees; Buma, Anita; Peperzak, Louis

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  3. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, C.; Peperzak, L.; Buma, A.G.J.

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  4. Gastrointestinal adverse events during methylphenidate treatment of children and adolescents with attention deficit hyperactivity disorder

    DEFF Research Database (Denmark)

    Holmskov, Mathilde; Storebø, Ole Jakob; Moreira-Maia, Carlos R

    2017-01-01

    : We use data from our review including 185 randomised clinical trials. Randomised parallel-group trials and cross-over trials reporting gastrointestinal adverse events associated with methylphenidate were included. Data were extracted and quality assessed according to Cochrane guidelines. Data were...... summarised as risk ratios (RR) with 95% confidence intervals (CI) using the inverse variance method. Bias risks were assessed according to domains. Trial Sequential Analysis (TSA) was used to control random errors. Eighteen parallel group trials and 43 cross-over trials reported gastrointestinal adverse...... differences in the risk according to type, dose, or duration of administration. The required information size was achieved in three out of four outcomes. CONCLUSION: Methylphenidate increases the risks of decreased appetite, weight loss, and abdominal pain in children and adolescents with attention deficit...

  5. [Atomoxetine and piracetam in the treatment of attention deficit hyperactivity disorder in children].

    Science.gov (United States)

    Zavadenko, N N; Suvorinova, N Iu

    2008-01-01

    Therapeutic effect of atomoxetine and piracetam has been assessed in the open controlled study included 42 patients with attention deficit hyperactivity disorder (ADHD), aged from 6 to 13 years. Group 1 (16 patients) received atomoxetine (strattera) in daily dosage 0,8-1,2 mg/kg as a monotherapy for 6 weeks. Patients of group 2 (14 children) received piracetam as a monotherapy in daily dosage 50-70 mg/kg for 6 weeks. No pharmacological therapy was conducted in group 3 (a control one) which included 12 patients with ADHD. The high effectiveness of both atomoxetine and piracetam has been shown. However, comparing to piracetam, the therapeutic effect of atomoxetine was reached earlier (two weeks after the beginning of therapy) and was more pronounced for all components of syndromes.

  6. Evaluation of Water Treatment Problems: Case Study of Maiduguri Water Treatment Plant (MWTP and Maiduguri Environs

    Directory of Open Access Journals (Sweden)

    M. N. Idris

    2017-10-01

    Full Text Available Water remains the most useful universal solvent to human being and other animals, because of its derivative importance. However, effort to improve on raw water treatment would continue to be a subject of concern, because the process procedures are been violated or not properly upheld. This study was carried out in order to identify peculiar problems associate with water treatment at the Maiduguri Water Treatment Plant (MWTP. This research study was based on prompt time-schedules and plant site-visits, interviewed questions were made and accessing the technology adopted in the process stages. Analytical data were obtained through the use of sampling bottles, camera, record sheets and other necessary laboratory equipment. The analysis showed that treated water contained excess chlorine and aluminum with 1.10mg/l and 0.68mg/l respectively. From this study, the following are the root causes: poor facility lay out, poor organizational and functional structures, wear of pump impellers and surface deterioration in the transmission line, lack of calibration test, constant head system not operation properly, lack of jar test conduction, improper maintenance of filter system, and the use of chemical coagulant. Inferences were made at the end of the research to enhance process efficiency, healthier and more economical treatment MWTP.

  7. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  8. WATER DEFICIT ENSURES THE PHOTOCHEMICAL EFFICIENCY OF Copaifera langsdorffii Desf1

    Directory of Open Access Journals (Sweden)

    Angélica Lino Rodrigues

    2017-02-01

    Full Text Available ABSTRACT The intensity and frequency of drought periods has increased according to climate change predictions. The fast overcome and recovery are important adaptive features for plant species found in regions presenting water shortage periods. Copaifera langsdorffii is a neotropical species that has developed leaves presenting physiological mechanisms and morphological adaptations that allow its survival under seasonal water stress. We aimed in this work to observe substantial physiological responses for water saving and damage representative to the photochemical reaction after exposed plants to water stress and to subsequent recovery. We found in plants mechanisms to control water loss through the lower stomatal conductance, even after rehydration. It goes against the rapid recovery of leaves, indicated by the relative water content values restored to previously unstressed plants. Stomatal conductance was the only variable presenting high plasticity index. In photochemical activity, the species presented higher photochemical quenching, electron transport rate and effective quantum yield of photosystem II when they were subjected to rehydration after water stress period. Our results suggest that C. langsdorffii presented rapid rehydration and higher photochemical efficiency even after water restriction. These data demonstrate that this species can be used as a model for physiological studies due to the adjustment developed in response to different environmental schemes.

  9. Stover removal effects on seasonal soil water availability under full and deficit irrigation

    Science.gov (United States)

    Removing corn (Zea mays L.) stover for livestock feed or bioenergy feedstock may impact water availability in the soil profile to support crop growth. The role of stover in affecting soil profile water availability will depend on annual rainfall inputs as well as irrigation level. To assess how res...

  10. Integrated oil sands tailings pond water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2010-07-01

    This PowerPoint presentation discussed research currently being conducted to treat oil sands tailings pond water (TPW). The treatment of TPW is challenged by the high level of naphthenic acids (NAs), the slow settling rate of fine particulate materials, and the complex chemistry of the water. The treatment process consisted of bioflocculation, sludge blanket assisted clarification, ozonation, and oil sands coke assisted hybrid biodegradation. The aggregation and adsorption process bound small particles and cells together while also ensuring the passive uptake of pollutants using microbial masses. The mixed liquor then passed through a sludge blanket to ensure enhanced particle capture. An ozonation process was used to increase the biodegradability of the TPW as well as to increase the biodegradability of the residual NAs after ozonation. The process used a hybrid bioreactor that consisted of both suspended and fixed microbial communities. The coke served as a biofilm carrier for the waste. Further studies are being conducted to investigate the efficiency and capability of the process. tabs., figs.

  11. Callous-unemotional traits, proactive aggression, and treatment outcomes of aggressive children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Blader, Joseph C; Pliszka, Steven R; Kafantaris, Vivian; Foley, Carmel A; Crowell, Judith A; Carlson, Gabrielle A; Sauder, Colin L; Margulies, David M; Sinha, Christa; Sverd, Jeffrey; Matthews, Thomas L; Bailey, Brigitte Y; Daviss, W Burleson

    2013-12-01

    Stimulant treatment improves impulse control among children with attention-deficit/hyperactivity disorder (ADHD). Decreased aggression often accompanies stimulant pharmacotherapy, suggesting that impulsiveness is integral to aggressive behavior in these children. However, children with high callous-unemotional (CU) traits and proactive aggression may benefit less from ADHD pharmacotherapy, because their aggressive behavior seems more purposeful and deliberate. This study's objective was to determine whether pretreatment CU traits and proactive aggression affect treatment outcomes among aggressive children with ADHD receiving stimulant monotherapy. We implemented a stimulant optimization protocol with 160 children 6 to 13 years of age (mean [SD] age of 9.31 [2.02] years; 78.75% male) with ADHD, oppositional defiant or conduct disorder, and significant aggressive behavior. Family-focused behavioral intervention was provided concurrently. The primary outcome was the Retrospective Modified Overt Aggression Scale. The Antisocial Process Screening Device and the Aggression Scale, also completed by parents, measured CU traits and proactive aggression, respectively. Analyses examined moderating effects of CU traits and proactive aggression on outcomes. In all, 82 children (51%) experienced remission of aggressive behavior. Neither CU traits nor proactive aggression predicted remission (CU traits: odds ratio [OR] = 0.94, 95% CI = 0.80-1.11; proactive aggression, OR = 1.05, 95% CI = 0.86-1.29). Children whose overall aggression remitted showed decreases in CU traits (effect size = -0.379, 95% CI = -0.60 to -0.16) and proactive aggression (effect size = -0.463, 95% CI = -0.69 to -0.23). Findings suggest that pretreatment CU traits and proactive aggression do not forecast worse outcomes for aggressive children with ADHD receiving optimized stimulant pharmacotherapy. With such treatment, CU traits and proactive aggression may decline alongside other behavioral improvements

  12. [Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil].

    Science.gov (United States)

    Wang, Zhaohui; Wang, Bing; Li, Shengxiu

    2004-08-01

    Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8-113.7 mg x kg(-1)) in soil. Supplemental irrigation at over-wintering, jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2-60.3 mg x kg(-1)) in soil. But, the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants. Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain, irrigation at filling stage increased the nitrogen content by 20.9%, and doing this at jointing stage decreased the nitrogen content by 19.6%, as compared to the control.

  13. Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain

    DEFF Research Database (Denmark)

    Yang, Fen; Jørgensen, Anders Dysted; Li, Huawei

    2011-01-01

    of interaction of water deficits and/or a high-temperature event (32 degrees C) during vegetative growth (terminal spikelet) with either of these stress events applied during generative growth (anthesis) in wheat. Influence of combinations of stress on protein fractions (albumins, globulins, gliadins...... and glutenins) in grains and stress-induced changes on the albumin and gliadin proteomes were investigated by 2-DE and MS. The synthesis of individual protein fractions was shown to be affected by both the type and time of the applied stresses. Identified drought or high-temperature-responsive proteins included...... proteins involved in primary metabolism, storage and stress response such as late embryogenesis abundant proteins, peroxiredoxins and alpha-amylase/trypsin inhibitors. Several proteins, e.g. heat shock protein and 14-3-3 protein changed in abundance only under multiple high temperatures....

  14. Ecofisiologia de plantas jovens de mogno-africano submetidas a deficit hídrico e reidratação Ecophysiology of young African mahogany plants subjected to water deficit and rewetting

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Ferreira de Albuquerque

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a capacidade de plantas jovens de mogno-africano (Khaya ivorensis em recuperar seu status hídrico e trocas gasosas após período de deficit hídrico. Plantas com aproximadamente 315 dias, irrigadas (controle e não irrigadas, foram avaliadas aos 14 dias da suspensão da irrigação e após um, três e sete dias da retomada da irrigação (reidratação. No dia 14, o potencial hídrico foliar de antemanhã (Ψam das plantas estressadas foi reduzido a -2,66 MPa. Com a restrição hídrica, foram observadas reduções significativas no conteúdo relativo de água na antemanhã (redução de 32%, na taxa de assimilação líquida de CO2 (90%, na condutância estomática (95%, na transpiração (93% e na razão entre concentração intercelular e ambiental de CO2 (37%. Durante a reidratação, o status hídrico das plantas estressadas foi restabelecido após três dias. As trocas gasosas também se restabeleceram, mas de forma mais lenta que o status hídrico. Sob deficit hídrico, a concentração de prolina aumentou e a de carboidratos solúveis totais diminuiu. Plantas jovens de mogno-africano são tolerantes ao deficit hídrico moderado.The objective of this work was to evaluate the capacity of young plants of African mahogany (Khaya ivorensis to recover their water status and gas exchange after water deficit. Plants with approximately 315 days, irrigated (control and non-irrigated, were evaluated after water was withheld for 14 days, and after one, three, and seven days of irrigation resumption (rehydration. On day 14, the predawn leaf water potential (Ψam of stressed plants was reduced to -2.66 MPa. With water deficit, significant decreases were observed in predawn relative water content (32% reduction, in net assimilation rate of CO2 (90%, in stomatal conductance (95%, in transpiration (93%, and in intercellular to ambient ratio of CO2 concentration (37%. During rehydration, the water status of stressed

  15. Approximate Entropy as a measure of complexity in sap flow temporal dynamics of two tropical tree species under water deficit

    Directory of Open Access Journals (Sweden)

    Gustavo M. Souza

    2004-09-01

    Full Text Available Approximate Entropy (ApEn, a model-independent statistics to quantify serial irregularities, was used to evaluate changes in sap flow temporal dynamics of two tropical species of trees subjected to water deficit. Water deficit induced a decrease in sap flow of G. ulmifolia, whereas C. legalis held stable their sap flow levels. Slight increases in time series complexity were observed in both species under drought condition. This study showed that ApEn could be used as a helpful tool to assess slight changes in temporal dynamics of physiological data, and to uncover some patterns of plant physiological responses to environmental stimuli.Entropia Aproximada (ApEn, um modelo estatístico independente para quantificar irregularidade em séries temporais, foi utilizada para avaliar alterações na dinâmica temporal do fluxo de seiva em duas espécies arbóreas tropicais submetidas à deficiência hídrica. A deficiência hídrica induziu uma grande redução no fluxo de seiva em G. ulmifolia, enquanto que na espécie C. legalis manteve-se estável. A complexidade das séries temporais foi levemente aumentada sob deficiência hídrica. O estudo mostrou que ApEn pode ser usada como um método para detectar pequenas alterações na dinâmica temporal de dados fisiológicos, e revelar alguns padrões de respostas fisiológicas a estímulos ambientais.

  16. Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis

    Science.gov (United States)

    Karandish, Fatemeh; Mousavi, Seyed-Saeed

    2018-01-01

    For a 120-year period, the projected effects of climate change on annual, seasonal, and monthly potential evapotranspiration (ETo) and green water deficit (GWD) were analyzed involving the associated uncertainties for five climatic zones of Iran. Analysis was carried out using data obtained from 15 general circulation models (GCMs) under three SRES scenarios of A1B, A2, and B1 which were downscaled using LARS-WG for 52 synoptic stations up to 2100. The majority of GCMs as well as the median of the ensemble for each scenario project a positive change in both ETo and GWD. A total of 5.8-19.8 % increase in annual ETo, drier than normal wet seasons, as well as 2.3-56.4 % increase in ETo during December-March period well represent a probable increase in the hydrological water requirement in Iran under global warming. Regarding GWD, the country will experience more arid years requiring 113.7 × 103-576.8 × 103 Mm3 more water to supply annual atmospheric water demand. Semi-arid and Mediterranean regions, principal agricultural producer areas of Iran, will be the most vulnerable part of the country due to 1-38.6 % increase in annual GWD under climate change. In addition, water scarcity for irrigated agriculture will enhance in all climatic zones due to 0.9-41 % increase GWD in June-August. However, rain-fed agriculture might be less affected in the hyper-humid and Mediterranean regions because of 1.1-105.3 % reduction in GWD during wet season. Nevertheless, uncertainty analysis revealed that given results for monthly timescale as well as those for times and regions with lower ETo will be the most uncertain. Based on the results, suitable adaptation solutions are highly required to be undertaken to relieve the extra pressure on the decreased blue water resources in the future.

  17. Six months methylphenidate treatment improves emotion dysregulation in adolescents with attention deficit/hyperactivity disorder: a prospective study

    Directory of Open Access Journals (Sweden)

    Suzer Gamli I

    2018-05-01

    Full Text Available Ipek Suzer Gamli,1 Aysegul Yolga Tahiroglu2 1Sanliurfa Education and Research Hospital, Eyyubiye, Sanliurfa, Turkey; 2Child and Adolescent Psychiatry Department, Cukurova University School of Medicine, Saricam, Adana, Turkey Purpose: Individuals with attention deficit/hyperactivity disorder (ADHD may suffer from emotional dysregulation (ED, although this symptom is not listed among the diagnostic criteria. Methylphenidate (MPH is useful in reducing emotional symptoms in ADHD. The aim of the present study was to determine both psychosocial risk factors and presence of ED in adolescents with ADHD before and after MPH treatment. Participants and methods: Eighty-two patients aged 12–18 years with ADHD were included as participants. The Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children – Present and Lifetime, the Difficulties in Emotion Regulation Scale (DERS, sociodemographic form, and the Inventory of Statements About Self-Injury were administered. Results were compared before and after 6 months MPH treatment. Results: A significant improvement was detected on DERS for impulsivity (15.9±6.8 initial vs 14.2±6.5 final test, p<0.01 and total score (88.4±23.3 initial vs 82.4±2.7 final test, p<0.05 across all patients taking MPH regardless of subtype and sex. Despite treatment, a significant difference remained for impulsivity, strategies, and total score in patients with comorbid oppositional defiant disorder (ODD compared with those without ODD, but no difference was detected for conduct disorder comorbidity. In patients who self-harm, scores for goals, impulsivity, strategies, clarity, and total score were higher before treatment: furthermore, impulsivity and total score remained high after treatment. In maltreated patients, goals, impulsivity, strategies, and total scores were significantly higher before treatment; however, their symptoms were ameliorated after treatment with MPH. Conclusion: Individuals with

  18. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions

    OpenAIRE

    Rahmati, Mitra; Davarynejad, Gholam Hossein; G?nard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The...

  19. Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Bundgaard, Christoffer; Fejgin, Kim

    2013-01-01

    GluR5), ADX47273, and the partial agonist of the α7 nicotinic acetylcholine receptor (α7 nAChR), SSR180711. Adolescent rats (4-5 weeks) subjected to PCP treatment during the second postnatal week displayed a consistent deficit in prepulse inhibition (PPI), which was reversed by a one-week treatment...

  20. High School-Based Treatment for Adolescents with Attention-Deficit/Hyperactivity Disorder: Results from a Pilot Study Examining Outcomes and Dosage

    Science.gov (United States)

    Evans, Steven W.; Schultz, Brandon K.; DeMars, Christine E.

    2014-01-01

    The purpose of this study was to examine the efficacy and dose-response relationship of a school-based treatment program for high school students with attention-deficit/hyperactivity disorder (ADHD). Two paraprofessionals provided interventions to 24 students with ADHD randomly assigned to the treatment condition at two public high schools. They…

  1. Acetyl-L-Carnitine as an Adjunctive Therapy in the Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Placebo-Controlled Trial

    Science.gov (United States)

    Abbasi, Seyed-Hesameddin; Heidari, Shahram; Mohammadi, Mohammad-Reza; Tabrizi, Mina; Ghaleiha, Ali; Akhondzadeh, Shahin

    2011-01-01

    The objective of this study was to test whether a previous observed Acetyl-L-carnitine (ALC) treatment effect could be repeated in an ALC adjunctive therapy treatment trial of attention-deficit/hyperactivity disorder (ADHD) in children and adolescents. This was a six-week, randomized clinical trial undertaken in an outpatient child and adolescent…

  2. Behavioral outcome effects of serious gaming as an adjunct to treatment for children with attention-deficit/hyperactivity disorder: a randomized controlled trial.

    NARCIS (Netherlands)

    Bul, K.C.M.; Kato, P.M.; Van der Oord, S.; Danckaerts, M.; Vreeke, L.J.; Willems, A.; van Oers, H.J.J.; Van Den Heuvel, R.; Birnie, D.; Van Amelsvoort, T.A.M.J.; Franken, I.H.A.; Maras, A.

    2016-01-01

    Background: The need for accessible and motivating treatment approaches within mental health has led to the development of an Internet-based serious game intervention (called “Plan-It Commander”) as an adjunct to treatment as usual for children with attention-deficit/hyperactivity disorder (ADHD).

  3. Behavioral Outcome Effects of Serious Gaming as an Adjunct to Treatment for Children With Attention-Deficit/Hyperactivity Disorder: A Randomized Controlled Trial

    NARCIS (Netherlands)

    Bul, Kim Cm; Kato, Pamela M; Van Der Oord, Saskia; Danckaerts, Marina; Vreeke, Leonie J; Willems, Annik; Van Oers, Helga Jj; Van Den Heuvel, Ria; Birnie, Derk; Van Amelsvoort, Thérèse Amj; Franken, Ingmar Ha; Maras, Athanasios

    Background: The need for accessible and motivating treatment approaches within mental health has led to the development of an Internet-based serious game intervention (called “Plan-It Commander”) as an adjunct to treatment as usual for children with attention-deficit/hyperactivity disorder (ADHD).

  4. Incorporation of oxygen contribution by plant roots into classical dissolved oxygen deficit model for a subsurface flow treatment wetland.

    Science.gov (United States)

    Bezbaruah, Achintya N; Zhang, Tian C

    2009-01-01

    It has been long established that plants play major roles in a treatment wetland. However, the role of plants has not been incorporated into wetland models. This study tries to incorporate wetland plants into a biochemical oxygen demand (BOD) model so that the relative contributions of the aerobic and anaerobic processes to meeting BOD can be quantitatively determined. The classical dissolved oxygen (DO) deficit model has been modified to simulate the DO curve for a field subsurface flow constructed wetland (SFCW) treating municipal wastewater. Sensitivities of model parameters have been analyzed. Based on the model it is predicted that in the SFCW under study about 64% BOD are degraded through aerobic routes and 36% is degraded anaerobically. While not exhaustive, this preliminary work should serve as a pointer for further research in wetland model development and to determine the values of some of the parameters used in the modified DO deficit and associated BOD model. It should be noted that nitrogen cycle and effects of temperature have not been addressed in these models for simplicity of model formulation. This paper should be read with this caveat in mind.

  5. Treatment outcomes after methylphenidate in adults with attention-deficit/hyperactivity disorder treated with lisdexamfetamine dimesylate or atomoxetine

    Directory of Open Access Journals (Sweden)

    Joseph A

    2016-03-01

    Full Text Available Alain Joseph,1 Martin Cloutier,2 Annie Guérin,2 Roy Nitulescu,2 Vanja Sikirica3 1Global HEOR and Epidemiology, Shire, Zählerweg, Zug, Switzerland; 2Analysis Group, Inc., Montreal, Quebec, Canada; 3Global HEOR and Epidemiology, Shire, Wayne, PA, USA Purpose: To compare treatment adherence, discontinuation, add-on, and daily average consumption (DACON among adults with attention-deficit/hyperactivity disorder receiving second-line lisdexamfetamine dimesylate (LDX or atomoxetine (ATX, following methylphenidate.Patients and methods: A retrospective cohort study using US commercial claims databases (Q2/2009–Q3/2013.Results: At month 12, the LDX cohort (N=2,718 had a higher adherence level (proportion of days covered: 0.48 versus 0.30, P<0.001 and was less likely to discontinue (Kaplan–Meier estimate: 63% versus 85%, P<0.001 than the ATX cohort (N=674. There were no statistical differences in treatment add-on rates between cohorts (Kaplan–Meier estimate: 26% versus 25%, P=0.297. The LDX cohort had a lower DACON (1.10 versus 1.31, P<0.001 and was less likely to have a DACON >1 (adjusted odds ratio: 0.20, 95% confidence interval: 0.15–0.25, P<0.001 than the ATX cohort.Conclusion: Adults with attention-deficit/hyperactivity disorder treated with LDX following methylphenidate had a higher treatment adherence and lower discontinuation and DACON relative to those treated with ATX following methylphenidate. Keywords: ADHD, adult, adherence, lisdexamfetamine dimesylate, atomoxetine

  6. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lauren L. Jantzie

    2018-04-01

    Full Text Available Cerebral palsy (CP is the leading cause of motor impairment for children worldwide and results from perinatal brain injury (PBI. To test novel therapeutics to mitigate deficits from PBI, we developed a rat model of extreme preterm birth (<28 weeks of gestation that mimics dual intrauterine injury from placental underperfusion and chorioamnionitis. We hypothesized that a sustained postnatal treatment regimen that combines the endogenous neuroreparative agents erythropoietin (EPO and melatonin (MLT would mitigate molecular, sensorimotor, and cognitive abnormalities in adults rats following prenatal injury. On embryonic day 18 (E18, a laparotomy was performed in pregnant Sprague–Dawley rats. Uterine artery occlusion was performed for 60 min to induce placental insufficiency via transient systemic hypoxia-ischemia, followed by intra-amniotic injections of lipopolysaccharide, and laparotomy closure. On postnatal day 1 (P1, approximately equivalent to 30 weeks of gestation, injured rats were randomized to an extended EPO + MLT treatment regimen, or vehicle (sterile saline from P1 to P10. Behavioral assays were performed along an extended developmental time course (n = 6–29. Open field testing shows injured rats exhibit hypermobility and disinhibition and that combined neonatal EPO + MLT treatment repairs disinhibition in injured rats, while EPO alone does not. Furthermore, EPO + MLT normalizes hindlimb deficits, including reduced paw area and paw pressure at peak stance, and elevated percent shared stance after prenatal injury. Injured rats had fewer social interactions than shams, and EPO + MLT normalized social drive. Touchscreen operant chamber testing of visual discrimination and reversal shows that EPO + MLT at least partially normalizes theses complex cognitive tasks. Together, these data indicate EPO + MLT can potentially repair multiple sensorimotor, cognitive, and behavioral realms following PBI, using

  7. CASE STUDY: Jordan — Dealing with the water deficit in Jordan ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-20

    Dec 20, 2010 ... So researchers in Jordan found a way to reuse household wastewater ... is using more water than can be replenished by rainfall and other natural sources. ... providing training in system maintenance and irrigation techniques.

  8. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L.

    Science.gov (United States)

    Pinheiro, C; Chaves, M M; Ricardo, C P

    2001-05-01

    Water deficit (WD) in Lupinus albus L. brings about tissue-specific responses that are dependent on stress intensity. Carbohydrate metabolism is very sensitive to changes in plant water status. Six days from withholding water (DAW), sucrose, glucose and fructose levels of the leaf blade had already increased over 5-fold, and the activities of SS and INV(A) had increased c. 1.5-2 times. From 9 DAW on, when stress intensity was more pronounced, these effects were reversed with fructose and glucose concentrations as well as INV(A) activity dropping in parallel. The stem (specifically the stele) responded to the stress intensification with striking increases in the concentration of sugars, N and S, and in the induction of thaumatin-like-protein and an increase in chitinase and peroxidase. At 13 DAW, the plants lost most of the leaves but on rewatering they fully recovered. Thus, the observed changes appear to contribute to a general mechanism of survival under drought, the stem playing a key role in that process.

  9. Dealing with water deficit in Atta ant colonies: large ants scout for water while small ants transport it

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Da-Silva

    2012-07-01

    Leafcutter ants (Atta sexdens rubropilosa (Forel 1908 have an elaborate social organization, complete with caste divisions. Activities carried out by specialist groups contribute to the overall success and survival of the colony when it is confronted with environmental challenges such as dehydration. Ants detect variations in humidity inside the nest and react by activating several types of behavior that enhance water uptake and decrease water loss, but it is not clear whether or not a single caste collects water regardless of the cost of bringing this resource back to the colony. Accordingly, we investigated water collection activities in three colonies of Atta sexdens rubropilosa experimentally exposed to water stress. Specifically, we analyzed whether or not the same ant caste foraged for water, regardless of the absolute energetic cost (distance of transporting this resource back to the colony. Our experimental design offered water sources at 0 m, 1 m and 10 m from the nest. We studied the body size of ants near the water sources from the initial offer of water (time  =  0 to 120 min, and tested for specialization. We observed a reduction in the average size and variance of ants that corroborated the specialization hypothesis. Although the temporal course of specialization changed with distance, the final outcome was similar among distances. Thus, we conclude that, for this species, a specialist (our use of the word “specialist” does not mean exclusive task force is responsible for collecting water, regardless of the cost of transporting water back to the colony.

  10. Differential Responses of Water Uptake Pathways and Expression of Two Aquaporin