WorldWideScience

Sample records for water critical assembly

  1. Compound effects of operating parameters on burnup credit criticality analysis in boiling water reactor spent fuel assemblies

    Directory of Open Access Journals (Sweden)

    Shang-Chien Wu

    2018-02-01

    Full Text Available This study proposes a new method of analyzing the burnup credit in boiling water reactor spent fuel assemblies against various operating parameters. The operating parameters under investigation include fuel temperature, axial burnup profile, axial moderator density profile, and control blade usage. In particular, the effects of variations in one and two operating parameters on the curve of effective multiplication factor (keff versus burnup (B are, respectively, the so-called single and compound effects. All the calculations were performed using SCALE 6.1 together with the Evaluated Nuclear Data Files, part B (ENDF/B-VII238-neutron energy group data library. Furthermore, two geometrical models were established based on the General Electric (GE14 10 × 10 boiling water reactor fuel assembly and the Generic Burnup-Credit (GBC-68 storage cask. The results revealed that the curves of keff versus B, due to single and compound effects, can be approximated using a first degree polynomial of B. However, the reactivity deviation (or changes of keff,Δk in some compound effects was not a summation of the all Δk resulting from the two associated single effects. This phenomenon is undesirable because it may to some extent affect the precise assessment of burnup credit. In this study, a general formula was thus proposed to express the curves of keff versus B for both single and compound effects.

  2. ANL Critical Assembly Covariance Matrix Generation

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grimm, Karl N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-15

    This report discusses the generation of a covariance matrix for selected critical assemblies that were carried out by Argonne National Laboratory (ANL) using four critical facilities-all of which are now decommissioned. The four different ANL critical facilities are: ZPR-3 located at ANL-West (now Idaho National Laboratory- INL), ZPR-6 and ZPR-9 located at ANL-East (Illinois) and ZPPr located at ANL-West.

  3. Consistent Pl Analysis of Aqueous Uranium-235 Critical Assemblies

    Science.gov (United States)

    Fieno, Daniel

    1961-01-01

    The lethargy-dependent equations of the consistent Pl approximation to the Boltzmann transport equation for slowing down neutrons have been used as the basis of an IBM 704 computer program. Some of the effects included are (1) linearly anisotropic center of mass elastic scattering, (2) heavy element inelastic scattering based on the evaporation model of the nucleus, and (3) optional variation of the buckling with lethargy. The microscopic cross-section data developed for this program covered 473 lethargy points from lethargy u = 0 (10 Mev) to u = 19.8 (0.025 ev). The value of the fission neutron age in water calculated here is 26.5 square centimeters; this value is to be compared with the recent experimental value given as 27.86 square centimeters. The Fourier transform of the slowing-down kernel for water to indium resonance energy calculated here compared well with the Fourier transform of the kernel for water as measured by Hill, Roberts, and Fitch. This method of calculation has been applied to uranyl fluoride - water solution critical assemblies. Theoretical results established for both unreflected and fully reflected critical assemblies have been compared with available experimental data. The theoretical buckling curve derived as a function of the hydrogen to uranium-235 atom concentration for an energy-independent extrapolation distance was successful in predicting the critical heights of various unreflected cylindrical assemblies. The critical dimensions of fully water-reflected cylindrical assemblies were reasonably well predicted using the theoretical buckling curve and reflector savings for equivalent spherical assemblies.

  4. Assembling quantum dots via critical Casimir forces

    NARCIS (Netherlands)

    Marino, E.; Kodger, T.E.; Hove, J.B. ten; Velders, A.H.; Schall, P.

    2016-01-01

    Programmed assembly of colloidal inorganic nanocrystal superstructures is crucial for the realization of future artificial solids as well as present optoelectronic applications. Here, we present a new way to assemble quantum dots reversibly using binary solvents. By tuning the temperature and

  5. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  6. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    Energy Technology Data Exchange (ETDEWEB)

    Percher, Catherine [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  7. Reactivity effects of void formations in a solution critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Steven G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1994-01-01

    SHEBA II (Solution High Energy Burst Assembly) was constructed in order to better understand the neutronics of solutions of fissile materials. In order to estimate the effect on criticality from the formation of bubbles, models were devised in MCNP (Monte Carlo Neutron Photon transport code) and THREEDANT (THREE dimensional, Diffusion-Accelerated, Neutral-Particle Transport). It was found that the formation of voids in all but the outside bottom edge of the assembly cylinder tend to act as a negative insertion of reactivity. Also, an experiment has been designed which will verify the results of the codes.

  8. Measure Guideline: Water Management at Tub and Shower Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, B.

    2011-12-01

    Due to the high concentrations of water and the consequential risk of water damage to the home's structure a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. This guide shows how to install fundamental waterproofing strategies to prevent water related issues at shower and tub areas. When conducting a total gut rehab of a structure or constructing a new home, best practice installation and detailing for effective waterproofing are critically important at bathtub and shower assemblies. Water management issues in a structure may go unrecognized for long periods, so that when they are finally observed, the damage from long-term water exposure is extensive. A gut rehab is often undertaken when a home has experienced a natural disaster or when the homeowners are interested in converting an old, high-energy-use building into a high-quality, efficient structure that meets or exceeds one of the national energy standards, such as ENERGY STAR or LEED for homes. During a gut rehab, bath areas need to be replaced with diligent attention to detail. Employing effective water management practices in the installation and detailing of tub and shower assemblies will minimize or eliminate water issues within the building cavities and on the finished surfaces. A residential tub-and-shower surround or shower-stall assembly is designed to handle a high volume of water - 2.5 gallons per minute, with multiple baths occurring during a typical day. Transitions between dissimilar materials and connections between multiple planes must be installed with care to avoid creating a pathway for water to enter the building assemblies. Due to the high volume of water and the consequential risk of water damage to the home's structure, a comprehensive water management system is imperative to protect the building assemblies underlying the finish surround of tub and shower areas. At each stage of

  9. Fuel assembly design study for a reactor with supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, J. [RWE Power AG, Huyssenallee 2, D-45128 Essen (Germany); Waata, C. [ANSYS Germany GmbH, Staudenfeldweg 12, D-83624 Otterfing (Germany); Starflinger, J. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany); Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: thomas.schulenberg@iket.fzk.de; Laurien, E. [University of Stuttgart, Institute for Nuclear Technology and Energy Systems (IKE), Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2007-08-15

    The European concept of the High Performance Light Water Reactor (HPLWR) differs from current light water reactors in a higher system pressure beyond the critical point of water, as well as a higher heat-up of the coolant within the core and thus higher core outlet temperatures, leading to a significant increase in turbine power and thermal efficiency of the power plant. The motivation to develop a novel fuel assembly for the HPLWR is caused by the high variation of coolant density in the core by more than a factor of seven. A systematic design study shows that a square fuel assembly with two rows of fuel rods and a central moderator box is best to minimize the structural material, to optimize the moderator to fuel ratio and to reduce differences of fuel rod power. Using neutronic and thermal-hydraulic analyses, a detailed mechanical design of a fuel assembly of the HPLWR has been worked out. Moreover, concepts for the head piece, the foot piece, the steam plenum and the lower mixing plenum, including the lower core plate, have been developed to account for the individual flow paths of this reactor. These allow a leak-tight counter current flow of moderator water and coolant as well as uniform mixing of different mass flows. The assembly design concept can be used as a general key component for any advanced core design of this reactor.

  10. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  11. Criticality of Water: Aligning Water and Mineral Resources Assessment.

    Science.gov (United States)

    Sonderegger, Thomas; Pfister, Stephan; Hellweg, Stefanie

    2015-10-20

    The concept of criticality has been used to assess whether a resource may become a limiting factor to economic activities. It has been primarily applied to nonrenewable resources, in particular to metals. However, renewable resources such as water may also be overused and become a limiting factor. In this paper, we therefore developed a water criticality method that allows for a new, user-oriented assessment of water availability and accessibility. Comparability of criticality across resources is desirable, which is why the presented adaptation of the criticality approach to water is based on a metal criticality method, whose basic structure is maintained. With respect to the necessary adaptations to the water context, a transparent water criticality framework is proposed that may pave the way for future integrated criticality assessment of metals, water, and other resources. Water criticality scores were calculated for 159 countries subdivided into 512 geographic units for the year 2000. Results allow for a detailed analysis of criticality profiles, revealing locally specific characteristics of water criticality. This is useful for the screening of sites and their related water criticality, for indication of water related problems and possible mitigation options and water policies, and for future water scenario analysis.

  12. Self-assembly behaviour of conjugated terthiophene surfactants in water

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M.; Stuart, Marc C. A.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2011-01-01

    Conjugated self-assembled systems in water are of great interest because of their potential application in biocompatible supramolecular electronics, but so far their supramolecular chemistry remains almost unexplored. Here we present amphiphilic terthiophenes as a general self-assembling platform

  13. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  14. Self assembly of anisotropic particles with critical Casimir forces

    NARCIS (Netherlands)

    Nguyễn, Trúc Anh

    2016-01-01

    Building new materials with structures on the micron and nanoscale presents a grand challenge currently. It requires fine control in the assembly of well-designed building blocks, and understanding of the mechanical, thermodynamic, and opto-electronic properties of the resulting structures. Patchy

  15. Critical Self-assembly Concentration of Bolaamphiphilic Peptides ...

    African Journals Online (AJOL)

    The study of the self-assembly properties of peptides and proteins is important for the understanding of molecular recognition processes and for the rational design of functional biomaterials. Novel bolaamphiphilic peptides and peptide hybrids incorporating non-natural aminoacids were designed around a model ...

  16. Artificial Photosynthesis at Dynamic Self-Assembled Interfaces in Water.

    Science.gov (United States)

    Hansen, Malte; Troppmann, Stefan; König, Burkhard

    2016-01-04

    Artificial photosynthesis is one of the big scientific challenges of today. Self-assembled dynamic interfaces, such as vesicles or micelles, have been used as microreactors to mimic biological photosynthesis. These aggregates can help to overcome typical problems of homogeneous photocatalytic water splitting. Microheterogeneous environments organize catalyst-photosensitizer assemblies at the interface in close proximity and thus enhance intermolecular interactions. Thereby vesicles and micelles may promote photoinitiated charge separation and suppress back electron transfer. The dynamic self-assembled interfaces solubilize non-polar compounds and protect sensitive catalytic units and intermediates against degradation. In addition, vesicles provide compartmentation that was used to separate different redox environments needed for an overall water splitting system. This Minireview provides an overview of the applications of micellar and vesicular microheterogeneous systems for solar energy conversion by photosensitized water oxidation and hydrogen generation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental critical parameters of plutonium metal cylinders flooded with water

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Forty-nine critical configurations are reported for experiments involving arrays of 3 kg plutonium metal cylinders moderated and reflected by water. Thirty-four of these describe systems assembled in the laboratory, while 15 others are derived critical parameters inferred from 46 subcritical cases. The arrays included 2x2xN, N = 2, 3, 4, and 5, in one program and 3x3x3 configurations in a later study. All were three-dimensional, nearly square arrays with equal horizontal lattice spacings but a different vertical lattice spacing. Horizontal spacings ranged from units in contact to 180 mm center-to-center; and vertical spacings ranged from about 80 mm to almost 400 mm center-to-center. Several nearly-equilateral 3x3x3 arrays exhibit an extremely sensitive dependence upon horizontal separation for identical vertical spacings. A line array of unreflected and essentially unmoderated canned plutonium metal units appeared to be well subcritical based on measurements made to assure safety during the manual assembly operations. All experiments were performed at two widely separated times in the mid-1970s and early 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory.

  18. Reactor physics studies in the GCFR Phase III critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Morman, J A [ed.

    1980-03-01

    The third phase of the gas cooled fast reactor (GCFR) program, ZPR-9 Assembly 30, is based on a multi-zoned core of PuO/sub 2/-UO/sub 2/ with radial and axial blankets of UO/sub 2/. Studies performed in this assembly will be compared to the previous phases of the GCFR program and will help to define parameters in this power-flattened demonstration plant-type core. Measurements in the Phase III program included small sample reactivity worths of various materials, central reaction rates and reaction rate distributions, absorption-to-fission ratios and the central point conversion ratio and the worth of steam entry into a small central zone. The reactivity change associated with the construction of a central pin zone in the core and axial blanket was measured. Reaction rate and steam entry measurements were repeated in the pin environment. Standard analysis methods using ENDF/B-IV data are described and the results are compared to measurements performed during the program.

  19. Investigation of DMSD Trend in the ISS Water Processor Assembly

    Science.gov (United States)

    Carter, Layne; Bowman, Elizabeth; Wilson, Mark; Gentry, Greg; Rector, Tony

    2013-01-01

    The ISS Water Recovery System (WRS) is responsible for providing potable water to the crew, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. The WRS includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WPA processes condensate from the cabin air and distillate produced by the UPA. In 2010, an increasing trend in the Total Organic Carbon (TOC) in the potable water was ultimately identified as dimethylsilanediol (DMSD). The increasing trend was ultimately reversed after replacing the WPA's two multifiltration beds. However, the reason for the TOC trend and the subsequent recovery was not understood. A subsequent trend occurred in 2012. This paper summarizes the current understanding of the fate of DMSD in the WPA, how the increasing TOC trend occurred, and the plan for modifying the WPA to prevent recurrence.

  20. Temperature-Induced, Selective Assembly of Supramolecular Colloids in Water

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G.P.; Vilanova, Neus; De Feijter, Isja; Kegel, Willem K.; Voets, Ilja K.

    2017-01-01

    In this article, we report the synthesis and physical characterization of colloidal polystyrene particles that carry water-soluble supramolecular N,N′,N″,-trialkyl-benzene-1,3,5-tricarboxamides (BTAs) on their surface. These molecules are known to assemble into one-dimensional supramolecular

  1. Critical Self-assembly Concentration of Bolaamphiphilic Peptides ...

    African Journals Online (AJOL)

    NJD

    organization processes, from protein folding and unfolding to. DNA and RNA expression, from lipid vesicles ... Several techniques are commonly used to study peptide aggregation in water. Well known are surface ... the fluorescence spectrum of pyrene depends strongly on the polarity of the microenvironment. The relative ...

  2. Trace Water as Prominent Factor to Induce Peptide Self-Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids.

    Science.gov (United States)

    Wang, Juan; Yuan, Chengqian; Han, Yuchun; Wang, Yilin; Liu, Xiaomin; Zhang, Suojiang; Yan, Xuehai

    2017-11-01

    The interaction between water and biomolecules including peptides is of critical importance for forming high-level architectures and triggering life's functions. However, the bulk aqueous environment has limitations in detecting the kinetics and mechanisms of peptide self-assembly, especially relating to interactions of trace water. With ionic liquids (ILs) as a nonconventional medium, herein, it is discovered that trace amounts of water play a decisive role in triggering self-assembly of a biologically derived dipeptide. ILs provide a suitable nonaqueous environment, enabling us to mediate water content and follow the dynamic evolution of peptide self-assembly. The trace water is found to be involved in the assembly process of dipeptide, especially leading to the formation of stable noncovalent dipeptide oligomers in the early stage of nucleation, as evident by both experimental studies and theoretical simulations. The thermodynamics of the growth process is mainly governed by a synergistic effect of hydrophobic interaction and hydrogen bonds. Each step of assembly presents a different trend in thermodynamic energy. The dynamic evolution of assembly process can be efficiently mediated by changing trace water content. The decisive role of trace water in triggering and mediating self-assembly of biomolecules provides a new perspective in understanding supramolecular chemistry and molecular self-organization in biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  4. Passive gamma analysis of the boiling-water-reactor assemblies

    Science.gov (United States)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  5. Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J. C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-01-31

    The Interim Staff Guidance on bumup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission's Spent Fuel Project Office, recommends a bumup measurement for each assembly to confirm the reactor record and compliance with the assembly bumup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained. This report presents a computational criticality safety analysis of the consequences of misloading fuel assemblies in a highcapacity cask that relies on burnup credit for criticality safety. The purpose of this report is to provide a quantitative understanding of the effects of fuel misloading events on safety margins. A wide variety of fuel-misloading configurations are investigated and results are provided for informational purposes. This report does not address the likelihood of occurrence for any of the misload configurations considered. For representative, qualified bumup-enrichment combinations, with and without fission products included, misloading two assemblies that are underburned by 75% results in an increase in keff of 0.025-0.045, while misloading four assemblies that are underburned by 50% also results in an increase in keff of 0.025-0.045. For the cask and conditions considered, a reduction in bumup of 20% in all assemblies results in an increase in kff of less than 0.035. Misloading a single fresh assembly with 3, 4, or 5 wt% 235U enrichment results in an increase in keffof--0.02, 0.04, or 0.06, respectively. The report concludes with a summary of these and other important findings, as well as a discussion of relevant issues that should be considered when assessing the appropriate role of burnup measurements.

  6. Self-assembly of water-soluble nanocrystals

    Science.gov (United States)

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  7. Heat pump water heater and storage tank assembly

    Science.gov (United States)

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  8. Critical heat flux tests for a 12 finned-element assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J., E-mail: Jun.Yang@cnl.ca; Groeneveld, D.C.; Yuan, L.Q.

    2017-03-15

    Highlights: • CHF tests for a 12 finned-fuel-element assembly at highly subcooled conditions. • Test approach to maximize experimental information and minimize heater failures. • Three series of tests were completed in vertical upward light water flow. • Bundle simulators of two axial power profiles and three heated lengths were tested. • Results confirm that the prediction method predicts lower CHF values than measured. - Abstract: An experimental study was undertaken to provide relevant data to validate the current critical heat flux (CHF) prediction method of the NRU driver fuel for safety analysis, i.e., to confirm no CHF occurrence below the predicted values. The NRU driver fuel assembly consists of twelve finned fuel elements arranged in two rings – three in the inner ring and nine in the outer ring. To satisfy the experimental objective tests at very high heat fluxes, very high mass velocities, and high subcoolings were conducted where the CHF mechanism is the departure from nucleate boiling (DNB). Such a CHF experiment can be very difficult, costly and time consuming since failure of the heating surface due to rupture or melting (physical burnout) is expected when the DNB type of CHF is reached. A novel experimental approach has been developed to maximize the amount of relevant experimental information on safe operating conditions in the tests, and to minimize any possible heater failures that inherently accompany the CHF occurrence at these conditions. Three series of tests using electrically heated NRU driver fuel simulators with three heated lengths and two axial power profiles (or axial heat flux distribution (AFD)) were completed in vertical upward light water flow. Each series of tests covered two mass flow rates, several heat flux levels, and local subcoolings that bound the ranges of interest for the analysis of postulated slow loss-of-regulation accident (LORA) and loss-of-flow accident (LOFA) scenarios. Tests for each mass flow rate of

  9. Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.e [European Commission, JRC, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2010-10-15

    In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).

  10. Novel thermoresponsive assemblies of co-grafted natural and synthetic polymers for water purification.

    Science.gov (United States)

    Paneysar, Joginder Singh; Barton, Stephen; Chandra, Sudeshna; Ambre, Premlata; Coutinho, Evans

    2017-03-01

    Water contamination and its purification are a global problem. The current approach to purify water is reduction of impurities to acceptable levels. One of the ways to achieve this is by use of water-soluble polymers that extract organic and metallic contaminants, from water. This paper presents a blend of composite polymers that eliminates both the contaminants simultaneously by the principle of adsorption at lower critical solution temperature. These composite polymers have been synthesized by grafting poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) on-to the natural polymer chitosan or its derivatives, giving smart graft polymeric assemblies (GPAs). One of the graft polymers, GPA-2, exhibits excellent adsorption properties able to remove metal ions like cadmium, cobalt, copper, lead, iron and also organic impurities like chlorophenol and phthalic anhydride. Studies reveal that 6 mg/ml GPA-2 is able to effect a 100% removal of organic impurities - chlorophenol (50 ppm) and phthalic anhydride (70 ppm) - from water, while complete removal of the heavy metal ions (Cu+2, Co+2 and Cd+2) together at 30 ppm concentration has been achieved with 7.5 mg/ml GPA-2. The reduction in level of impurities along with recyclability and reproducibility in the elimination spectrum makes these assemblies promising materials in water treatment.

  11. Test Suite for Nuclear Data I: Deterministic Calculations for Critical Assemblies and Replacement Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Brown, D A; Descalle, M

    2006-05-22

    The authors describe tools developed by the Computational Nuclear Physics group for testing the quality of internally developed nuclear data and the fidelity of translations from ENDF formatted data to ENDL formatted data used by Livermore. These tests include S{sub n} calculations for the effective k value characterizing critical assemblies and for replacement coefficients of different materials embedded in the Godiva and Jezebel critical assemblies. For those assemblies and replacement materials for which reliable experimental information is available, these calculations provide an integral check on the quality of data. Because members of the ENDF and reactor communities use calculations for these same assemblies in their validation process, a comparison between their results with ENDF formatted data and their results with data translated into the ENDL format provides a strong check on the accuracy of translations. As a first application of the test suite they present a study comparing ENDL 99 and ENDF/B-V. They also consider the quality of the ENDF/B-V translation previously done by the Computational Nuclear Physics group. No significant errors are found.

  12. Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder

    Directory of Open Access Journals (Sweden)

    Xiaobo Liu

    2017-01-01

    Full Text Available Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are − 0.00286, − 0.00242 and − 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.

  13. Benchmarking of HEU Mental Annuli Critical Assemblies with Internally Reflected Graphite Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Xiaobo, Liu; Bess, John D.; Marshall, Margaret A.

    2016-09-01

    Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches) metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00055, 0.00055 and 0.00055 respectively, and biases to the detailed benchmark models which are -0.00179, -0.00189 and -0.00114 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified model. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF VII.1 agree well to the benchmark experimental results with a difference of less than 0.2%. These are acceptable benchmark experiments for inclusion in the ICSBEP Handbook.

  14. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Mahdi [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali, Jamshid [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2016-12-15

    Dual purpose cask technology is one of the most prominent options for interim storage of spent fuels following their removal from reactors. Criticality safety of the spent fuel assemblies are ensured by design of the basket within these casks. In this study, a set of criticality design calculations of a dual purpose cask for 12 VVER 1000 spent fuel assemblies of Bushehr nuclear power plant were carried out. The basket material of borated stainless steel with 0.5 to 2.5 wt% of boron and Boral (Al-B{sub 4}C) with 1.5 to 40 wt% of boron carbide, were investigated and the minimum required receptacle pitch of the basket was determined. Using the calculated receptacle pitch of the basket, the minimum required diameter of the cavity could be established.

  15. Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder

    Science.gov (United States)

    Xiaobo, Liu; Bess, John D.; Marshall, Margaret A.

    2017-09-01

    Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches) metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are - 0.00286, - 0.00242 and - 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.

  16. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration.

    Directory of Open Access Journals (Sweden)

    Luis Concha-Marambio

    Full Text Available Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1-2 μM at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown

  17. Orientation-controlled parallel assembly at the air-water interface

    Science.gov (United States)

    Park, Kwang Soon; Hao Hoo, Ji; Baskaran, Rajashree; Böhringer, Karl F.

    2012-10-01

    This paper presents an experimental and theoretical study with statistical analysis of a high-yield, orientation-specific fluidic self-assembly process on a preprogrammed template. We demonstrate self-assembly of thin (less than few hundred microns in thickness) parts, which is vital for many applications in miniaturized platforms but problematic for today's pick-and-place robots. The assembly proceeds row-by-row as the substrate is pulled up through an air-water interface. Experiments and analysis are presented with an emphasis on the combined effect of controlled surface waves and magnetic force. For various gap values between a magnet and Ni-patterned parts, magnetic force distributions are generated using Monte Carlo simulation and employed to predict assembly yield. An analysis of these distributions shows that a gradual decline in yield following the probability density function can be expected with degrading conditions. The experimentally determined critical magnetic force is in good agreement with a derived value from a model of competing forces acting on a part. A general set of design guidelines is also presented from the developed model and experimental data.

  18. Criticality experiments with low enriched UO/sub 2/ fuel rods in water containing dissolved gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO/sub 2/ and PuO/sub 2/-UO/sub 2/ fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO/sub 2/ rods at two enrichments (2.35 wt % and 4.31 wt % /sup 235/U) and on mixed fuel-water assemblies of UO/sub 2/ and PuO/sub 2/-UO/sub 2/ rods containing 4.31 wt % /sup 235/U and 2 wt % PuO/sub 2/ in natural UO/sub 2/ respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in /sup 235/U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel.

  19. Analysis of experiments in the Phase III GCFR benchmark critical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hess, A.L.; Baylor, K.J.

    1980-04-01

    Experiments carried out in the third gas-cooled fast breeder reactor (GCFR) benchmark critical assembly on the Zero Power Reactor-9 at Argonne National Laboratory were analyzed using methods and computer codes employed routinely for design and performance evaluations on power-plant GCFR cores. The program for the Phase III GCFR assembly, with a 1900-liter, three-enrichment zone core, included measurements of reaction-rate profiles in a typical power-flattened design, studies of material reactivity coefficients, reaction ratio and breeding parameter determinations, and comparison of pin with plate fuel loadings. Calculated parameters to compare with all of the measured results were obtained using 10-group cross sections based on ENDF/B-4 and two-dimensional diffusion theory, with adjustments for fuel-cell heterogeneity and void-lattice streaming effects.

  20. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    Science.gov (United States)

    Morris, C. L.; Bacon, Jeffery; Ban, Yuichiro; Borozdin, Konstantin; Fabritius, J. M.; Izumi, Mikio; Miyadera, Haruo; Mizokami, Shinya; Otsuka, Yasuyuki; Perry, John; Ramsey, John; Sano, Yuji; Sugita, Tsukasa; Yamada, Daichi; Yoshida, Noriyuki; Yoshioka, Kenichi

    2014-01-01

    A 1.2 × 1.2 m2 muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ˜4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  1. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes.

    Science.gov (United States)

    Gugliuzza, Annarosa; Aceto, Marianna Carmela; Macedonio, Francesca; Drioli, Enrico

    2008-08-28

    Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.

  2. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  3. Pendulum support of the W7-X plasma vessel: Design, tests, manufacturing, assembly, critical aspects, status

    Energy Technology Data Exchange (ETDEWEB)

    Missal, B., E-mail: bernd.missal@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Leher, F.; Schiller, T. [MAN Diesel and Turbo SE, Werftstraße 17, 94469 Deggendorf (Germany); Friedrich, P. [Universität Rostock, FB Maschinenbau und Schiffstechnik, Albert-Einsteins-Straße 2, 18051 Rostock (Germany); Capriccioli, A. [ENEA Frascati, Fusion Technology Unit, Frascati (Italy)

    2014-10-15

    Highlights: • Plasma vessel support has to allow vertical adjustment and horizontal passive movement. • Planar sliding tables with PTFE do not fulfill all requirements. • Pendulums can fulfill all requirements. • Geometry and material of spherical bearings had to be optimized in calculations and tests. • Optimized pendulums were manufactured and assembled. - Abstract: The superconducting helical advanced stellarator Wendelstein 7-X (W7-X) is under construction at the Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald, Germany. The three dimensional shape of plasma will be generated by 50 non-planar magnetic coils. The plasma vessel geometry follows exactly this three dimensional shape of plasma. To ensure the superconductivity of coils a cryo vacuum has to be generated. Therefore the coils and their support structure are enclosed within the outer vessel. Plasma vessel, coil structures and outer vessel have to be supported separately. This paper will describe the vertical supports of plasma vessel which have to fulfill two special requirements, vertical adjustability and horizontal mobility. These two tasks will be carried out by plasma vessel supports (PVS) with hydraulic cylinders, special sliding tables during assembly and pendulum supports during operating phase. The paper will give an overview of design, calculation, tests, fabrication, assembly, critical aspects and status of PVS.

  4. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  5. Critical role of the fusion protein cytoplasmic tail sequence in parainfluenza virus assembly.

    Directory of Open Access Journals (Sweden)

    Raychel Stone

    Full Text Available Interactions between viral glycoproteins, matrix protein and nucleocapsid sustain assembly of parainfluenza viruses at the plasma membrane. Although the protein interactions required for virion formation are considered to be highly specific, virions lacking envelope glycoprotein(s can be produced, thus the molecular interactions driving viral assembly and production are still unclear. Sendai virus (SeV and human parainfluenza virus type 1 (hPIV1 are highly similar in structure, however, the cytoplasmic tail sequences of the envelope glycoproteins (HN and F are relatively less conserved. To unveil the specific role of the envelope glycoproteins in viral assembly, we created chimeric SeVs whose HN (rSeVhHN or HN and F (rSeVh(HN+F were replaced with those of hPIV1. rSeVhHN grew as efficiently as wt SeV or hPIV1, suggesting that the sequence difference in HN does not have a significant impact on SeV replication and virion production. In sharp contrast, the growth of rSeVh(HN+F was significantly impaired compared to rSeVhHN. rSeVh(HN+Fstail which expresses a chimeric hPIV1 F with the SeV cytoplasmic tail sequence grew similar to wt SeV or rSeVhHN. Further analysis indicated that the F cytoplasmic tail plays a critical role in cell surface expression/accumulation of HN and F, as well as NP and M association at the plasma membrane. Trafficking of nucelocapsids in infected cells was not significantly affected by the origin of F, suggesting that F cytoplasmic tail is not involved in intracellular movement. These results demonstrate the role of the F cytoplasmic tail in accumulation of structural components at the plasma membrane assembly sites.

  6. Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas; Kaliatka, Algirdas; Uspuras, Eudenijus; Vaisnoras, Mindaugas [Lithuanian Energy Institute, Kaunas (Lithuania); Mochizuki, Hiroyasu; Rooijen, W.F.G. van [Fukui Univ. (Japan). Research Inst. of Nuclear Engineering

    2017-05-15

    Because of the uncertainties associated with the definition of Critical Heat Flux (CHF), the best estimate approach should be used. In this paper the application of best-estimate approach for the analysis of CHF phenomenon in the boiling water reactors is presented. At first, the nodalization of RBMK-1500, BWR-5 and ABWR fuel assemblies were developed using RELAP5 code. Using developed models the CHF and Critical Heat Flux Ratio (CHFR) for different types of reactors were evaluated. The calculation results of CHF were compared with the well-known experimental data for light water reactors. The uncertainty and sensitivity analysis of ABWR 8 x 8 fuel assembly CHFR calculation result was performed using the GRS (Germany) methodology with the SUSA tool. Finally, the values of Minimum Critical Power Ratio (MCPR) were calculated for RBMK-1500, BWR-5 and ABWR fuel assemblies. The paper demonstrate how, using the results of sensitivity analysis, to receive the MCPR values, which covers all uncertainties and remains best estimated.

  7. Critical contaminant/critical pathway analysis - surface water transport for nonradioactive contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuo-Fu

    1996-11-01

    The health risks for an individual exposed to contaminants released from SRS outfalls from 1989 to 1995 were estimated. The exposure pathways studied are ingestion of drinking water, ingestion of contaminated fish and dermal contact with contaminants in water while swimming. The estimated incremental risks for an individual developing cancer vary from 3.E-06 to 1.0E-05. The estimated total exposure chronic noncancer hazard indices vary from 6.E-02 to 1.E-01. The critical contaminants were ranked based on their cancer risks and chronic noncarcinogenic hazard quotients. For cancer risks, the critical contaminants released from SRS outfalls are arsenic, tetrachloroethylene, and benzene. For chronic noncarcinogenic risks, the critical contaminants released from srs outfalls are cadmium, arsenic, silver, chromium, mercury, selenium, nitrate, manganese, zinc, nickel, uranium, barium, copper, tetrachloroethylene, cyanide, and phenol. The critical pathways in decreasing risk order are ingestion of contaminated fish, ingestion of drinking water and dermal contact with contaminants in water while swimming.

  8. Drowning in muddied waters or swimming downstream? A critical ...

    African Journals Online (AJOL)

    Drowning in muddied waters or swimming downstream? A critical analysis of literature reviewing in a phenomenological study through an exploration of the lifeworld, reflexivity and role of the researcher.

  9. Industrial Water Analysis Program: A Critical Study.

    Science.gov (United States)

    1983-09-01

    The effect that time has on the boiler water constituents is an important aspect which must be considered when reviewing the results of the independent...an independent laboratory [2:441. Research Objectives The objectives of this study are the following: 1. Review the current Air Force practice of...any substance which tends to keep a compound, mixture, or solution from changing its form or chemical nautre [6:964]. Quebracho tannin : [a chemical

  10. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  11. Benchmark calculation of deuterium critical assembly for WIMS-AECL and RFSP

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Min, Byung Joo

    2003-01-01

    The benchmark calculations have been performed for WIMS-AECL (WIMS) and RFSP using experimental data of Deuterium Critical Assembly (DCA). The lattice parameters were generated for the 1.2 wt% enriched uranium and PuO{sub 2}-UO{sub 2} fuels based on ENDF/B-V cross section library of WIMS code. The benchmark calculations were carried out for the criticality and void reactivity by RFSP code using rectangular mesh structure to model whole reactor system that includes both the fuel and structural material. The simulation was performed in two energy groups and the results were compared to the measured values. The results have shown that the WIMS/RFSP over-predicts the criticality and void reactivity by 0.67%{delta}k and 0.28%{delta}(1/k), respectively. The sensitivity calculation on the input parameter has shown that the prediction error can be reduced reasonably by updating the resonance cross-sections of WIMS library and by using finer axial mesh structure in the RFSP model.

  12. Chirality controlled responsive self-assembled nanotubes in water

    NARCIS (Netherlands)

    van Dijken, D. J.; Stacko, P.; Stuart, M. C. A.; Browne, W. R.; Feringa, B. L.

    2017-01-01

    The concept of using chirality to dictate dimensions and to store chiral information in self-assembled nanotubes in a fully controlled manner is presented. We report a photoresponsive amphiphile that co-assembles with its chiral counterpart to form nanotubes and demonstrate how chirality can be used

  13. Mechanical Analysis of an Innovative Assembly Box with Honeycomb Structures Designed for a High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herbell, Heiko [EnBW Kernkraft GmbH, 76661 Philippsburg (Germany); Himmel, Steffen; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    The High Performance Light Water Reactor (HPLWR) is a water cooled reactor concept of the 4. generation, operated at a pressure beyond the critical point of water. Assemblies of this innovative reactor concept need to be built with assembly and moderator boxes, like boiling water reactors, to provide enough moderator water between them to compensate the low coolant density in the core. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce the heat up of the moderator water. As a new an innovative approach, this paper describes moderator- and assembly boxes built from stainless steel honeycomb sandwich structures, in which the honeycomb cells are filled with alumina for thermal insulation. In comparison to solid box walls, the use of the presented design can provide the same stiffness but allows a drastic reduction of structural material and thus less neutron absorption. Finite element analyses are used to verify the required stiffness, to identify stress concentrations and to optimize the design. (authors)

  14. In-cell reaction rate distributions and cell-average reaction rates in fast critical assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, S.B.; Gasidlo, J.M.

    1985-08-01

    Measurements are described for determining average values of fission rates in /sup 235/U, /sup 238/U and /sup 239/Pu and capture rates in /sup 238/U for heterogeneous cells used to construct fast critical assemblies. The measurements are based on irradiations of foils of /sup 238/U, /sup 235/U and /sup 239/Pu with counting of fission and capture products using gamma-ray spectroscopy. Both plate and pin cells are considered. Procedures are described for inferring cell-average reaction rate values from a single foil location based on a cell using a quantity called a cell factor. Cell factors are determined from special measurements in which several foils are irradiated within a cell. Comparisons are presented between cell factors determined by measurements and by Monte Carlo calculations which lend credibility to the measurement procedures.

  15. Scheduling of an assembly process of a chosen technical mean using the critical chain approach

    Directory of Open Access Journals (Sweden)

    Paprocka Iwona

    2017-01-01

    Full Text Available In the work is presented the CCPM (Critical Chain Project Management method that differs from other network approaches. The differences are related with: the scheduling process, with restrictions of the project that are taken into account and with the time buffers allowing avoiding delays in realized tasks. Each project should be such organized to effectively achieve the previously assumed goals. The paper presents all the steps involved with utilization the CCPM method for determining the schedule of an assembly process of a mining shearer machine. It is presented the elaboration of the network of tasks and preparation the process schedule. It is also realized the resource optimization and the safety buffers introduction.

  16. Electro-assembly of a chromophore-catalyst bilayer for water oxidation and photocatalytic water splitting.

    Science.gov (United States)

    Ashford, Dennis L; Sherman, Benjamin D; Binstead, Robert A; Templeton, Joseph L; Meyer, Thomas J

    2015-04-13

    The use of electropolymerization to prepare electrocatalytically and photocatalytically active electrodes for water oxidation is described. Electropolymerization of the catalyst Ru(II)(bda)(4-vinylpyridine)2 (bda=2,2'-bipyridine-6,6'-dicarboxylate) on planar electrodes results in films containing semirigid polymer networks. In these films there is a change in the water oxidation mechanism compared to the solution analogue from bimolecular to single-site. Electro-assembly construction of a chromophore-catalyst structure on mesoporous, nanoparticle TiO2 films provides the basis for a dye-sensitized photoelectrosynthesis cell (DSPEC) for sustained water splitting in a pH 7 phosphate buffer solution. Photogenerated oxygen was measured in real-time by use of a two-electrode cell design. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structures and ultrafast dynamics of interfacial water assemblies on smooth hydrophobic surfaces

    Science.gov (United States)

    Yang, Ding-Shyue; He, Xing

    2017-09-01

    Using time-averaged and ultrafast electron diffraction, structures and ultrafast dynamics of interfacial water assemblies on smooth hydrophobic surfaces are reported. The lack of hydrophilic interaction and topographical template effect from the support surface leads to the formation of small, mostly randomly-oriented, ice crystallites with the cubic structure. Dynamically, following the substrate photoexcitation, interfacial water assemblies undergo four stages of changes-ultrafast melting, nonequilibrium isotropic phase transformation, annealing, and restructuring-which are closely correlated with the substrate dynamics. The connectivity and cooperative nature of the hydrogen-bonded network is considered crucial for water assemblies to withstand large structural motions without sublimation on ultrashort times.

  18. Heme-Protein Active Site Models via Self-Assembly in Water

    NARCIS (Netherlands)

    Fiammengo, R.; Wojciechowski, Kamil; Crego Calama, Mercedes; Figoli, A.; Wessling, Matthias; Reinhoudt, David; Timmerman, P.

    2003-01-01

    Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K1·2 = 105 M-1). Selective binding of ligands either outside or inside the cavity of assemblies 1·2 via coordination to the zinc center has been observed.

  19. Critical seeding density improves the properties and translatability of self-assembling anatomically shaped knee menisci.

    Science.gov (United States)

    Hadidi, Pasha; Yeh, Timothy C; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-01-01

    A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were to: (i) determine the minimum seeding density, normalized by an area of 44 mm(2), necessary for the self-assembling process of fibrocartilage to occur; (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density; and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Water-triggered self-assembly polycondensation for the one-pot synthesis of cyclomatrix polyphosphazene nanoparticles from amino acid ester.

    Science.gov (United States)

    Huang, Zhangjun; Chen, Shuangshuang; Lu, Xuemin; Lu, Qinghua

    2015-05-14

    Water-triggered self-assembly polycondensation was proposed for preparation of cyclomatrix polyphosphazene nanoparticles from amino acid esters, and a critical solubility parameter was found to determine whether the nanoparticles were formed. Based on this rule, we also investigated the control of the size of its nanoparticles.

  1. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  2. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces

    Science.gov (United States)

    Patel, Bijal B.; Diao, Ying

    2018-01-01

    Organic semiconducting small molecules and polymers provide a rich phase space for investigating the fundamentals of molecular and hierarchical assembly. Stemming from weak intermolecular interactions, their assembly sensitively depends on processing conditions, which in turn drastically modulate their electronic properties. Much work has gone into molecular design strategies that maximize intermolecular interactions and encourage close packing. Less understood, however, is the non-equilibrium assembly that occurs during the fabrication process (especially solution coating and printing) which is critical to determining thin film morphology across length scales. This encompasses polymorphism and molecular packing at molecular scale, assembly of π-bonding aggregates at the tens of nanometers scale, and the formation of domains at the micron-millimeter device scale. Here, we discuss three phenomena ubiquitous in solution processing of organic electronic thin films: the confinement effect, fluid flows, and interfacial assembly and the role they play in directing assembly. This review focuses on the mechanistic understanding of how assembly outcomes couple closely to the solution processing environment, supported by salient examples from the recent literature.

  4. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice.

    Science.gov (United States)

    Burnett, Jacob B; Lupu, Floria I; Eggenschwiler, Jonathan T

    2017-10-01

    Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  6. Fellowship at orita: A critical analysis of the leadership crisis in the Assemblies of God, Nigeria

    Directory of Open Access Journals (Sweden)

    Williams O. Mbamalu

    2016-07-01

    Full Text Available This article is a critical analysis of the present crisis in the Assemblies of God, Nigeria (AGN. A background history of the church is given to show how growth had taken place and how decline had set in. Doing this involves analysing the factors responsible for the present crisis that has brought the church to its knees. The article finds that the AGN’s membership and leadership are dominated by the Igbo ethnic group whose worldviews are known to be highly competitive, individualistic and ‘pantomimic’. The AGN’s constitution and bye-laws do not include a clause that prevents pastors from the same ethnic group from holding the two top-most positions of the General Superintendent and the Assistant General Superintendent at the same time. Therefore the article submits that the AGN should amend its constitution to deal with these pertinent issues. The significance of the article is that it calls the attention of other Pentecostal denominations in Nigeria and the rest of Africa to the crisis-ridden AGN, whose eschatological and Pentecostal persuasion is at orita [the crossroads] and urges them to learn from it.

  7. Fellowship at orita: A critical analysis of the leadership crisis in the Assemblies of God, Nigeria

    Directory of Open Access Journals (Sweden)

    Williams O. Mbamalu

    2016-03-01

    Full Text Available This article is a critical analysis of the present crisis in the Assemblies of God, Nigeria (AGN. A background history of the church is given to show how growth had taken place and how decline had set in. Doing this involves analysing the factors responsible for the present crisis that has brought the church to its knees. The article finds that the AGN’s membership and leadership are dominated by the Igbo ethnic group whose worldviews are known to be highly competitive, individualistic and ‘pantomimic’. The AGN’s constitution and bye-laws do not include a clause that prevents pastors from the same ethnic group from holding the two top-most positions of the General Superintendent and the Assistant General Superintendent at the same time. Therefore the article submits that the AGN should amend its constitution to deal with these pertinent issues. The significance of the article is that it calls the attention of other Pentecostal denominations in Nigeria and the rest of Africa to the crisis-ridden AGN, whose eschatological and Pentecostal persuasion is at orita [the crossroads] and urges them to learn from it.

  8. Pervasive Investigations of Critical Speed over Weight and Deflection Factors of Shaft Assembly in CNC Ball Screw System

    Directory of Open Access Journals (Sweden)

    Kuldeep Verma

    2016-01-01

    Full Text Available The demand for higher productivity requires machine tools to work on the adequate critical speed to have faster and more accurate ball screw system. Ball screw affects severely over the higher rotation speed of the shaft in computer numeric control (CNC machining centers. This paper deals with an approach to calculate the initial critical speed of the shaft. Critical speed requires significant attention due to its major use in the manufacturing sectors. The impacts of weight on the critical speed of shaft assembly have been analyzed from theoretical as well as analytical investigations. Additionally, we evaluated the impact of weight on the deflection of the shafts along with failure analysis of shafts with respect to critical speed. Further, we computed the results for critical speed based factor to enhance the accuracy of CNC machining centers. Finally, the analytical estimations have been carried out to prove the validity of our proposal.

  9. Trapping and Assembly of Living Colloids at Water/Water Interfaces

    Science.gov (United States)

    Hann, Sarah D.; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J.

    2017-01-01

    We study the assembly of colloids in a two phase water-water system that provides an environment that can sustain bacteria, providing a new structure with rich potential to confine and structure living colloids. The water-water system, formed via phase separation of a casein and xanthan mixture, forms a 3-D structure of coexisting casein-rich and xanthan-rich phases. Fluorescent labelling and confocal microscopy reveal the attachment of these living colloids, including Escherichia coli and Pseudomonas aeruginosa, at the interface between the two phases. Inert colloids also become trapped at the interfaces, suggesting that the observed attachment can be attributed to capillarity. Over time, these structures coarsen and eventually degrade, illustrating the dynamic nature of these systems. This system lays the foundation for future studies of the interplay of physicochemical properties of the fluid interfaces and bulk phases and microbial responses they provoke to induce complex spatial organization, to study species which occupy distinct niches, and to optimize efficient microbial cross-feeding or protection from competitors. PMID:25600991

  10. Trapping and assembly of living colloids at water-water interfaces.

    Science.gov (United States)

    Hann, Sarah D; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J

    2015-03-07

    We study the assembly of inert and living colloids in a two-phase water-water system that provides an environment that can sustain bacteria, providing a new structure with rich potential to confine and structure microbial communities. The water-water system, formed via phase separation of a casein and xanthan mixture, forms a 3-D structure of coexisting casein-rich and xanthan-rich phases. Fluorescent labelling and confocal microscopy reveal the attachment of these living colloids, including Escherichia coli and Pseudomonas aeruginosa, at the interface between the two phases. Inert colloids also become trapped at the interfaces, suggesting that the observed attachment can be attributed to capillarity. Over time, these structures coarsen and eventually degrade, illustrating the dynamic nature of these systems. This system lays the foundation for future studies of the interplay of physicochemical properties of the fluid interfaces and bulk phases and microbial responses they provoke to induce complex spatial organization, to study species which occupy distinct niches, and to optimize efficient microbial cross-feeding or protection from competitors.

  11. Dynamic and programmable self-assembly of micro-rafts at the air-water interface.

    Science.gov (United States)

    Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin

    2017-05-01

    Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future.

  12. Solid-liquid critical behavior of water in nanopores.

    Science.gov (United States)

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  13. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments.

  14. Microbiological Characterization of the International Space Station Water Processor Assembly External Filter Assembly S/N 01

    Science.gov (United States)

    Weir, Natalee; Wilson, Mark; Yoets, Airan; Yoets, Airan; Molina, Thomas; Bruce, Rebekah; Sitler, Glenn; Carter, Layne

    2012-01-01

    The External Filter Assembly (EFA) S/N 01 is a mesh screen filter with a pore size of approximately 300 micron that was installed in the International Space Station (ISS) Water Processor Assembly (WPA) between the Waste Tank and the Mostly Liquid Separator (MLS) on February 11, 2010 to protect clearances in the MLS solenoid valve SV_1121_3. A removal & replacement of the EFA Filter was performed on March 22, 2011 in response to increasing pressure across the Waste Tank solenoid valve SV_1121_1 and the EFA Filter. The EFA Filter was returned on ULF6 and received in the Boeing Huntsville Laboratory on June 13, 2011. The filter was aseptically removed from the housing, and the residual water was collected for enumeration and identification of bacteria and fungi. Swab samples of the filter surface were also collected for microbiological enumeration and identification. Sample analyses were performed by Boeing Huntsville Laboratory and NASA Johnson Space Center Microbiology for comparison. Photographic documentation of the EFA filter was performed using a stereo microscope and environmental scanning electron microscope. This paper characterizes the amount and types of microorganisms on the filter surface and in the residual water from the filter housing following 1 year of utilization in the ISS WPA.

  15. Neutronic study on seed-blanket type reduced-moderation water reactor fuel assembly

    OpenAIRE

    Shelley, A.; 久語 輝彦; 嶋田 昭一郎; 大久保 努; 岩村 公道

    2004-01-01

    Neutronic study has been done for a PWR-type reduced-moderation water reactor with seed-blanket fuel assemblies to achieve a high conversion ratio, a negative void coefficient and a high burnup by using a MOX fuel. The results of the precise assembly burnup calculations show that the recommended numbers of seed and blanket layers are 15(S15) and 5(B5), respectively. By the optimization of axial configuration, the S15B5 assembly with the seed of 1000times2 mm high, internal blanket of 150 mm h...

  16. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Waata, C.L.

    2006-07-15

    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  17. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    Science.gov (United States)

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  18. Solid−liquid critical behavior of water in nanopores

    Science.gov (United States)

    Mochizuki, Kenji; Koga, Kenichiro

    2015-01-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid−liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature−pressure−diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid−liquid critical phenomena of nanoconfined water. Solid−liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid−liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line. PMID:26100904

  19. Prediction of critical heat flux in fuel assemblies using a CHF table method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)

  20. Critical discharge of initially subcooled water through slits. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Amos, C N; Schrock, V E

    1983-09-01

    This report describes an experimental investigation into the critical flow of initially subcooled water through rectangular slits. The study of such flows is relevant to the prediction of leak flow rates from cracks in piping, or pressure vessels, which contain sufficient enthalpy that vaporization will occur if they are allowed to expand to the ambient pressure. Two new analytical models, which allow for the generation of a metastable liquid phase, are developed. Experimental results are compared with the predictions of both these new models and with a Fanno Homogeneous Equilibrium Model.

  1. Vertical wicking tester for monitoring water transportation behavior in fibrous assembly.

    Science.gov (United States)

    Singh, Pratibha; Chatterjee, Arobindo; Ghosh, Subrata

    2016-10-01

    An instrument based on the principle of change of resistance of fibrous assembly on wetting has been developed for precise monitoring of the water transportation behaviour in the fibrous assemblies. The conducting probes sense the change in resistance of a dry fibrous assembly on wetting. This change in resistance generates analog signals which trigger an amplifying circuit. This circuit produces an enlarged copy of the received signals which are further converted to digital signals by a Darlington pair and are encoded to measurable quantity with the help of a microcontroller. The data thus obtained are displayed on a suitable display device. Comparison between conventional strip test and experimental results obtained by the developed instrument shows its reliability. The developed instrument measures the initial rate of water transport with increased precision and hence could be used for detailed study of fluid flow in the fibrous structure.

  2. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    Science.gov (United States)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  3. Estimating critical water supply for debris flow initiation in Norway

    Science.gov (United States)

    Meyer, N. K.; Dyrrdal, A. V.; Frauenfelder, R.; Etzelmüller, B.; Nadim, F.

    2012-04-01

    Debris flows frequently affect the Norwegian road and railway infrastructure, especially during spring and autumn. While the debris flow activity in autumn is mainly due to the occurrence of extreme rainfall events, debris flows in spring often occur during periods of rapid snow melt. Existing rainfall threshold values that indicate critical conditions for debris-flow initiation are largely based on precipitation data recorded by meteorological stations. However, during winter the measured amount of precipitation (accumulated as snow) can differ significantly from the actual amount of water that is released to the ground, which is in turn the more critical factor for debris flow initiation. In this study, the data on the actual water supply by the Norwegian Water and Energy Directorate (NVE), and the Norwegian Meteorological Institute (met.no) were used to assess the threshold values. Compared to rainfall data, these data define the hydro-meteorological threshold conditions more accurately throughout the year - i.e. the debris flow triggering conditions due to snow accumulation in autumn and winter and snow melt in spring and summer. Three intensity-duration threshold curves were derived by analyzing the data on 502 past debris flows for water supply durations of 1 to 7 days. Normalization of the data was accomplished using the local "precipitation day normal" to account for regional differences in climate. The minimum threshold indicates the lower boundary above which debris-flow occurrence has been recorded and ranges between 6 and 63 mm/day for different locations and durations. The medium threshold (ranging between 7 and 131 mm/day) characterizes the conditions that are likely to initiate debris flows. Water supply rates exceeding the maximum threshold are regarded as a certain trigger and lie between 12 and 250 mm/day. Based on the obtained threshold curves a frequency analysis over durations of 1, 3 and 7 days for the period 1981-2010 was conducted

  4. The Prompt Fission Neutron Spectrum: From Experiment to the Evaluated Data and its Impact on Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rising, Michael Evan [Los Alamos National Laboratory

    2015-06-10

    After a brief introduction concerning nuclear data, prompt fission neutron spectrum (PFNS) evaluations and the limited PFNS covariance data in the ENDF/B-VII library, and the important fact that cross section uncertainties ~ PFNS uncertainties, the author presents background information on the PFNS (experimental data, theoretical models, data evaluation, uncertainty quantification) and discusses the impact on certain well-known critical assemblies with regard to integral quantities, sensitivity analysis, and uncertainty propagation. He sketches recent and ongoing research and concludes with some final thoughts.

  5. Critical Salt Bridges Guide Capsid Assembly, Stability, and Maturation Behavior in Bacteriophage HK97*

    Science.gov (United States)

    Gertsman, Ilya; Fu, Chi-Yu; Huang, Rick; Komives, Elizabeth A.; Johnson, John E.

    2010-01-01

    HK97 is a double-stranded DNA bacteriophage that undergoes dramatic conformational changes during viral capsid maturation and for which x-ray structures, at near atomic resolution, of multiple intermediate and mature capsid states are available. Both amide H/2H exchange and crystallographic comparisons between the pre-expanded Prohead II particles and the expanded Head II of bacteriophage HK97 revealed quaternary interactions that remain fixed throughout maturation and appear to maintain intercapsomer integrity at all quasi- and icosahedral 3-fold axes. These 3-fold staples are formed from Arg and Glu residues and a metal binding site. Mutations of either Arg-347 or Arg-194 or a double mutation of E344Q and E363A resulted in purification of the phage in capsomer form (hexamers and pentamers). Mutants that did assemble had both decreased thermal stability and decreased in vitro expansion rates. Amide H/2H exchange mass spectrometry showed that in the wild type capsid some subunits had a bent “spine” helix (highly exchanging), whereas others were straight (less exchanging). Similar analysis of the never assembled mutant capsomers showed uniform amide exchange in all of these that was higher than that of the straight spine helices (characterized in more mature intermediates), suggesting that the spine helix is somewhat bent prior to capsid assembly. The result further supports a previously proposed mechanism for capsid expansion in which the delta domains of each subunit induce a high energy intermediate conformation, which now appears to include a bent helix during capsomer assembly. PMID:20332083

  6. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Photocurable oil/water interfaces as a universal platform for 2-D self-assembly.

    Science.gov (United States)

    Benkoski, Jason J; Jones, Ronald L; Douglas, Jack F; Karim, Alamgir

    2007-03-27

    We present a novel platform, dubbed fossilized liquid assembly, for the creation of 2-D assemblies from nanoscale building blocks. The system consists of an oil/water interface in which the oil phase can be flash-cured upon UV exposure. The photopolymerizable material, 1,12-dodecanediol dimethacrylate, solidifies in as little as 1 s when exposed to UV light. The rapid cross-linking allows one to obtain a "snapshot" of the assembly process for particles that segregate to the oil/water interface. Among the particles investigated were nonpolar 0.39 microm poly(methyl methacrylate) latex spheres, nonpolar 10 microm polystyrene latex spheres, highly polarizable 5 nm Au nanocrystals, dipolar 10 nm CdTe quantum dots, and magnetic 25 nm magnetite nanoparticles. The aggregates formed by this process were typically either globular or fractal in appearance. By comparing with simulation, we can perform quantitative image analysis on the resulting micrographs to define a rigorous set of standards for distinguishing among the main classes of aggregation: flocculation, equilibrium phase separation, and true self-assembly.

  8. Leptin-promoted cilia assembly is critical for normal energy balance.

    Science.gov (United States)

    Han, Yu Mi; Kang, Gil Myoung; Byun, Kyunghee; Ko, Hyuk Wan; Kim, Joon; Shin, Mi-Seon; Kim, Hyun-Kyong; Gil, So Young; Yu, Ji Hee; Lee, Bonghee; Kim, Min-Seon

    2014-05-01

    The majority of mammalian cells have nonmotile primary cilia on their surface that act as antenna-like sensory organelles. Genetic defects that result in ciliary dysfunction are associated with obesity in humans and rodents, which suggests that functional cilia are important for controlling energy balance. Here we demonstrated that neuronal cilia lengths were selectively reduced in hypothalami of obese mice with leptin deficiency and leptin resistance. Treatment of N1 hypothalamic neuron cells with leptin stimulated cilia assembly via inhibition of the tumor suppressors PTEN and glycogen synthase kinase 3β (GSK3β). Induction of short cilia in the hypothalamus of adult mice increased food intake and decreased energy expenditure, leading to a positive energy balance. Moreover, mice with short hypothalamic cilia exhibited attenuated anorectic responses to leptin, insulin, and glucose, which indicates that leptin-induced cilia assembly is essential for sensing these satiety signals by hypothalamic neurons. These data suggest that leptin governs the sensitivity of hypothalamic neurons to metabolic signals by controlling the length of the cell's antenna.

  9. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  10. Water in the critical zone: soil, water and life from profile to planet

    Science.gov (United States)

    Kirkby, M. J.

    2016-12-01

    Earth is unique in the combination of abundant liquid water, plate tectonics and life, providing the broad context within which the critical zone exists, as the surface skin of the land. Global differences in the availability of water provide a major control on the balance of processes operating in the soil, allowing the development of environments as diverse as those dominated by organic soils, by salty deserts or by deeply weathered lateritic profiles. Within the critical zone, despite the importance of water, the complexity of its relationships with the soil material continue to provide many fundamental barriers to our improved understanding, at the scales of pore, hillslope and landscape. Water is also a vital resource for the survival of increasing human populations. Intensive agriculture first developed in semi-arid areas where the availability of solar energy could be combined with irrigation water from more humid areas, minimising the problems of weed control with primitive tillage techniques. Today the challenge to feed the world requires improved, and perhaps novel, ways to optimise the combination of solar energy and water at a sustainable economic and environmental cost.

  11. Missing mediated interruptions in manual assembly: Critical aspects of breakpoint selection.

    Science.gov (United States)

    Kolbeinsson, Ari; Lindblom, Jessica; Thorvald, Peter

    2017-05-01

    The factory of the future aims to make manufacturing more effective and easily customisable, using advanced sensors and communications to support information management. In this paper, we examine how breakpoint selection during interruption management can fail, even when using recommendations for interruption management from existing research. We present an experiment based on prior work where mediated interruptions (i.e. smart interruptions that should interrupt at opportune moments) were missed by participants when sent at one of two pre-defined breakpoints. These breakpoints were selected based on existing research to minimise the cost of interruption, which can involve longer times to complete tasks as well as making errors on tasks. Missing mediated interruptions in this way was unexpected, and the prior study was not configured to measure this effect, which has led to the experiment detailed here. We strive to explore whether there is a risk of missing notifications when mediated interruptions are used, and how this is affected by breakpoint selection. This was investigated through an experiment that uses tasks and environments that simulate a manufacturing assembly facility. The results indicate that the effect exists, i.e. that participants miss significantly more notifications when interrupted at fine breakpoints than when interrupted at coarse breakpoints. An embodied cognition perspective was used for analysis of the tasks to understand the cause of the effect. This analysis shows that an overlap between "action" and "anticipation of action" can account for why participants miss notifications at fine breakpoints. Based on these findings, recommendations were developed for designing interruption systems that minimise the costs (errors and time) imposed by interruptions during assembly tasks in manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nitrotoga is selected over Nitrospira in newly assembled biofilm communities from a tap water source community at increased nitrite loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Gülay, Arda; Albrechtsen, Hans-Jørgen

    2017-01-01

    a source community, present in the tap water, to determine the extent of selection and neutral processes in newly assembled biofilm communities at both the community and the functional guild (of nitrite-oxidizing bacteria, NOB) levels. The community composition of biofilms assembled under low and high...... that can only be interrogated by observing multiple assemblies under controlled conditions. This article is protected by copyright. All rights reserved....

  13. Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water

    DEFF Research Database (Denmark)

    Zepik, H.; Shavit, E.; Tang, M.

    2002-01-01

    Differences in the two-dimensional packing arrangements of racemic and enantiomeric crystalline self-assemblies on the water surface of amphiphilic activated analogs of lysine and glutamic acid have been used to prepare oligopeptides of homochiral sequence and oligopeptides of single handedness...... from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results...... suggest that reactivity of ordered clusters at interfaces might have played a role in the generation of early homochiral biopolymers....

  14. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Polyethylene Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McMahan, Kimberly L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [French Atomic Energy Commission (CEA), Saclay (France); Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Piot, Jerome [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Jacquet, Xavier [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Salives (France). Valduc Centre for Nuclear Studies; Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 19, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc depositing energy in a Si solid state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  15. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [ORNL; Isbell, Kimberly McMahan [ORNL; Lee, Yi-kang [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Gagnier, Emmanuel [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Authier, Nicolas [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Piot, Jerome [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Jacquet, Xavier [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Rousseau, Guillaume [French Atomic Energy Commission (CEA), Centre de Valduc, Is-sur-Tille; Reynolds, Kevin H. [Y-12 National Security Complex

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  16. Transboundary water justice: a combined reading of literature on critical transboundary water interaction and "justice", for analysis and diplomacy

    NARCIS (Netherlands)

    Zeitoun, M.; Warner, J.F.; Mirumachi, N.; Matthews, N.; McLaughlin, K.

    2014-01-01

    By reviewing and blending two main bodies of research (critical transboundary water interaction analysis and centuries of thought on social justice) this paper seeks to improve international transboundary water interaction analysis and diplomacy. Various implications for transboundary analysis and

  17. Photoactivation: The light-driven assembly of the water oxidation complex of photosystem II

    Directory of Open Access Journals (Sweden)

    Han eBao

    2016-05-01

    Full Text Available Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. The assembly of the Mn4O5Ca requires light and involves a sequential process called photoactivation. This process harnesses the charge-separation of the photochemical reaction center and the coordination environment provided by the amino acid side chains of the protein to oxidize and organize the incoming manganese ions to form the oxo-bridged metal cluster capable of H2O-oxidation. Although most aspects of this assembly process remain poorly understood, recent advances in the elucidation of the crystal structure of the fully assembled cyanobacterial PSII complex help in the interpretation of the rich history of experiments designed to understand this process. Moreover, recent insights on the structure and stability of the constituent ions of the Mn4CaO5 cluster may guide future experiments. Here we consider the literature and give a possible model of assembly involving single Mn2+ oxidation site and ion relocation.

  18. Critical review: Uncharted waters? The future of the electricity-water nexus.

    Science.gov (United States)

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  19. Design and Fluid Dynamic Investigations for a High Performance Light Water Reactor Fuel Assembly

    Science.gov (United States)

    Hofmeister, Jan; Laurin, Eckart; Class, Andreas G.

    2005-11-01

    Within the 5th Framework Program of the European Commission a nuclear light water reactor with supercritical steam conditions has been investigated called High Performance Light Water Reactor (HPLWR). This reactor concept is distinct from conventional light water reactor concepts by the fact, that supercritical water is used to achieve higher core outlet temperatures. The reactor operates with a high system pressure, high heat-up of the coolant within the core, and high outlet temperatures of the coolant resulting in a thermal efficiency of up to 44%. We present the design concept proposed by IKET, and a fluid dynamic problem in the foot piece of the fuel assembly, where unacceptable temperature variations must be omitted.

  20. Crystalline mono- and multilayer self-assemblies of oligothiophenes at the air-water interface

    DEFF Research Database (Denmark)

    Isz, S.; Weissbuch, I.; Kjær, K.

    1997-01-01

    The formation of Langmuir monolayers at the air-water interface has long been believed to be limited to amphiphilic molecules containing a hydrophobic chain and a hydrophilic headgroup. Here we report the formation of crystalline mono- and multilayer self-assemblies of oligothiophenes, a class...... of aromatic nonamphiphilic molecules, self-aggregated at the air-water interface. As model systems we have examined the deposition of quaterthiophene (S-4), quinquethiophene (S-5). and sexithiophene (S-6) from chloroform solutions on the water surface. The structures of the films were determined by surface...... pressure-area isotherms, by scanning force microscopy (SFM) after transfer of the films onto atomically smooth mica, by cryo-transmission electron microscopy (Cryo-TEM) on vitreous ice, and by grazing incidence synchrotron X-ray diffraction (GID) directly on the water surface. S-4 forms two polymorphic...

  1. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values.

  2. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    Energy Technology Data Exchange (ETDEWEB)

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  3. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells

    Science.gov (United States)

    Xu, C.; Zhao, T. S.; Yang, W. W.

    In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol-water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.

  4. Critical strain region evaluation of self-assembled semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sales, D L [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Garcia, R [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Trevisi, G [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Frigeri, P [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Nasi, L [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Franchi, S [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Molina, S I [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain)

    2007-11-28

    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga)As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor devices.

  5. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    Science.gov (United States)

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Coiled Brine Recovery Assembly (CoBRA): A New Approach to Recovering Water from Wastewater Brines

    Science.gov (United States)

    Pensinger, Stuart J.

    2015-01-01

    Brine water recovery represents a current technology gap in water recycling for human spaceflight. The role of a brine processor is to take the concentrated discharge from a primary wastewater processor, called brine, and recover most of the remaining water from it. The current state-of-the-art primary processor is the ISS Urine Processor Assembly (UPA) that currently achieves 70% water recovery. Recent advancements in chemical pretreatments are expected to increase this to 85% in the near future. This is a welcome improvement, yet is still not high enough for deep space transit. Mission architecture studies indicate that at least 95% is necessary for a Mars mission, as an example. Brine water recovery is the technology that bridges the gap between 85% and 95%, and moves life support systems one step closer to full closure of the water loop. Several brine water recovery systems have been proposed for human spaceflight, most of them focused on solving two major problems: operation in a weightless environment, and management and containment of brine residual. Brine residual is the leftover byproduct of the brine recovery process, and is often a viscous, sticky paste, laden with crystallized solid particles. Due to the chemical pretreatments added to wastewater prior to distillation in a primary processor, these residuals are typically toxic, which further complicates matters. Isolation of crewmembers from these hazardous materials is paramount. The Coiled Brine Recovery Assembly (CoBRA) is a recently developed concept from the Johnson Space Center that offers solutions to these challenges. CoBRA is centered on a softgoods evaporator that enables a passive fill with brine, and regeneration by discharging liquid brine residual to a collection bag. This evaporator is meant to be lightweight, which allows it to be discarded along with the accumulated brine solids contained within it. This paper discusses design and development of a first CoBRA prototype, and reports

  7. From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations.

    Science.gov (United States)

    Bochicchio, Davide; Pavan, Giovanni M

    2017-01-24

    Supramolecular polymers, formed via noncovalent self-assembly of elementary monomers, are extremely interesting for their dynamic bioinspired properties. In order to understand their behavior, it is necessary to access their dynamics while maintaining high resolution in the treatment of the monomer structure and monomer-monomer interactions, which is typically a difficult task, especially in aqueous solution. Focusing on 1,3,5-benzenetricarboxamide (BTA) water-soluble supramolecular polymers, we have developed a transferable coarse-grained model that allows studying BTA supramolecular polymerization in water, while preserving remarkable consistency with the atomistic models in the description of the key interactions between the monomers (hydrophobic, H-bonding, etc.), self-assembly cooperativity, and amplification of order into the growing fibers. This permitted us to monitor the amplification of the key interactions between the monomers (including H-bonding) in the BTA fibers during the dynamic polymerization process. Our molecular dynamics simulations provide a picture of a stepwise cooperative polymerization mechanism, where initial fast hydrophobic aggregation of the BTA monomers in water is followed by the slower reorganization of these disordered aggregates into ordered directional oligomers. Supramolecular polymer growth then proceeds on a slower time scale. We challenged our models via comparison with the experimental evidence, capturing the effect of temperature variations and subtle changes in the monomer structure on the polymerization and on the properties of the fibers seen in the real systems. This work provides a multiscale spatiotemporal characterization of BTA self-assembly in water and a useful platform to study a variety of BTA-based supramolecular polymers toward structure-property relationships.

  8. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; Welfare, F.G.

    1979-07-01

    Close-packed storage of LWR fuel assemblies is needed in order to expand the capacity of existing underwater storage pools. This increased capacity is required to accommodate the large volume of spent fuel produced by prolonged onsite storage. To provide benchmark criticality data in support of this effort, 20 critical assemblies were constructed that simulated a variety of close-packed LWR fuel storage configurations. Criticality calculations using the Monte Carlo KENO-IV code were performed to provide an analytical basis for comparison with the experimental data. Each critical configuration is documented in sufficient detail to permit the use of these data in validating calculational methods according to ANSI Standard N16.9-1975.

  9. Neutron Activation Foil and Thermoluminescent Dosimeter Responses to a Lead Reflected Pulse of the CEA Valduc SILENE Critical Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Isbell, Kimberly McMahan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Yi-kang [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Gagnier, Emmanuel [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Authier, Nicolas [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Piot, Jerome [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Jacquet, Xavier [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Rousseau, Guillaume [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); Reynolds, Kevin H. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 13, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. The CIDAS detects gammas with a Geiger-Muller tube, and the Rocky Flats detects neutrons via charged particles produced in a thin 6LiF disc, depositing energy in a Si solid-state detector. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  10. Solvent-free, molecular-level modeling of self-assembling amphiphiles in water

    Science.gov (United States)

    Dey, Somajit; Saha, Jayashree

    2017-02-01

    Aggregation mesophases of self-assembling amphiphiles in water are highly important in the context of biology (biomembranes), therapy (liposomes), industry (polymer surfactants), and condensed-matter physics (lyotropic liquid crystals). Besides helping to increase fundamental understanding of collective molecular behavior, simulations of these lyotropic phases are pivotal to technological and medical developments such as smart drug carriers for gene therapy. Implicit-solvent, coarse-grained, low resolution modeling with a simple pair potential is the key to realizing the larger length and time scales associated with such mesoscopic phenomena during a computer simulation. Modeling amphiphiles by directed, soft, ellipsoidal cores interacting via a computationally simple yet tunable anisotropic pair potential, we have come to such a single-site model amphiphile that can rapidly self-assemble to give diverse lyotropic phases (such as fluid bilayers, micelles, etc.) without requiring the explicit incorporation of solvent particles. The model directly represents a tunable packing parameter that manifests in the spontaneous curvature of the amphiphile aggregates. Besides the all-important hydrophobic interaction, the hydration force is also treated implicitly. Thanks to the efficient solvent-free molecular-level coarse graining, this model is suitable for generic mesoscale studies of phenomena such as self-assembly, amphiphile mixing, domain formation, fusion, elasticity, etc., in amphiphile aggregates.

  11. Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation.

    Science.gov (United States)

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin; Yang, Ri-Long

    2017-03-29

    Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

  12. Peracids in water treatment:a critical review

    OpenAIRE

    Luukkonen, T. (Tero); Pehkonen, S. O. (Simo O.)

    2017-01-01

    Abstract Peracids have gained interest in the water treatment over the last few decades. Peracetic acid (CH₃CO₃H) has already become an accepted alternative disinfectant in wastewater disinfection whereas performic acid (CHO₃H) has been studied much less, although it is also already commercially available. Additionally, peracids have been studied for drinking water disinfection, oxidation of aqueous (micro)pollutants, sludge treatment, and ballast water treatment, to name just a few exampl...

  13. A quantitative evaluation of multiple biokinetic models using an assembled water phantom: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Da-Ming Yeh

    Full Text Available This study examined the feasibility of quantitatively evaluating multiple biokinetic models and established the validity of the different compartment models using an assembled water phantom. Most commercialized phantoms are made to survey the imaging system since this is essential to increase the diagnostic accuracy for quality assurance. In contrast, few customized phantoms are specifically made to represent multi-compartment biokinetic models. This is because the complicated calculations as defined to solve the biokinetic models and the time-consuming verifications of the obtained solutions are impeded greatly the progress over the past decade. Nevertheless, in this work, five biokinetic models were separately defined by five groups of simultaneous differential equations to obtain the time-dependent radioactive concentration changes inside the water phantom. The water phantom was assembled by seven acrylic boxes in four different sizes, and the boxes were linked to varying combinations of hoses to signify the multiple biokinetic models from the biomedical perspective. The boxes that were connected by hoses were then regarded as a closed water loop with only one infusion and drain. 129.1±24.2 MBq of Tc-99m labeled methylene diphosphonate (MDP solution was thoroughly infused into the water boxes before gamma scanning; then the water was replaced with de-ionized water to simulate the biological removal rate among the boxes. The water was driven by an automatic infusion pump at 6.7 c.c./min, while the biological half-life of the four different-sized boxes (64, 144, 252, and 612 c.c. was 4.8, 10.7, 18.8, and 45.5 min, respectively. The five models of derived time-dependent concentrations for the boxes were estimated either by a self-developed program run in MATLAB or by scanning via a gamma camera facility. Either agreement or disagreement between the practical scanning and the theoretical prediction in five models was thoroughly discussed. The

  14. Water pollution abatement programme. The Czech Republic. Project 4.2. Assessing critical loads of acidity to surface waters in The Czech Republic. Critical loads of acidity to surface waters, Northern Moravia and Silesia, The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Lien, L.; Raclavsky, K.; Henriksen, A.; Raclavska, H.; Matysek, D.

    1994-12-31

    The governments of Norway and Czech and Slovak Federal Republic have signed a bilateral environmental protection agreement. This report describes Project 4.2 of the agreement: Assessing critical loads of acidity to surface waters in The Czech Republic. Critical load of acidity to surface waters and exceedance of critical load were estimated by using standard methods modified for the sampling area. Water samples were mainly taken from small forest streams, which were the only available surface waters with negligible pollution from local sources. High critical loads were calculated, averaging 20 times higher than the corresponding value for southern Norway. The deposition of acidifying components in the region was high, but did not exceed the critical load and so there is a reserve for additional acid deposition. Scattered water analyses from several other parts of The Czech Republic indicate both low critical loads and exceedance of critical load in various regions (e.g. Bohemia). 21 refs., 14 figs., 3 tabs.

  15. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly.

    Science.gov (United States)

    Aceti, Massimiliano; Creson, Thomas K; Vaissiere, Thomas; Rojas, Camilo; Huang, Wen-Chin; Wang, Ya-Xian; Petralia, Ronald S; Page, Damon T; Miller, Courtney A; Rumbaugh, Gavin

    2015-05-01

    Genetic haploinsufficiency of SYNGAP1/Syngap1 commonly occurs in developmental brain disorders, such as intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder. Thus, studying mouse models of Syngap1 haploinsufficiency may uncover pathologic developmental processes common among distinct brain disorders. A Syngap1 haploinsufficiency model was used to explore the relationship between critical period dendritic spine abnormalities, cortical circuit assembly, and the window for genetic rescue to understand how damaging mutations disrupt key substrates of mouse brain development. Syngap1 mutations broadly disrupted a developmentally sensitive period that corresponded to the period of heightened postnatal cortical synaptogenesis. Pathogenic Syngap1 mutations caused a coordinated acceleration of dendrite elongation and spine morphogenesis and pruning of these structures in neonatal cortical pyramidal neurons. These mutations also prevented a form of developmental structural plasticity associated with experience-dependent reorganization of brain circuits. Consistent with these findings, Syngap1 mutant mice displayed an altered pattern of long-distance synaptic inputs into a cortical area important for cognition. Interestingly, the ability to genetically improve the behavioral endophenotype of Syngap1 mice decreased slowly over postnatal development and mapped onto the developmental period of coordinated dendritic insults. Pathogenic Syngap1 mutations have a profound impact on the dynamics and structural integrity of pyramidal cell postsynaptic structures known to guide the de novo wiring of nascent cortical circuits. These findings support the idea that disrupted critical periods of dendritic growth and spine plasticity may be a common pathologic process in developmental brain disorders. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.

  16. Anticipatory Water Management: Using ensemble weather forecasts for critical events

    NARCIS (Netherlands)

    Van Andel, S.J.

    2009-01-01

    Day-to-day water management is challenged by meteorological extremes, causing floods and droughts. Often operational water managers are informed too late about these upcoming events to be able to respond and mitigate their effects, such as by taking flood control measures or even requiring

  17. Mechanical analysis of an assembly box with honeycomb structure designed for a performance light water reactor; Strukturmechanische Auslegung eines HPLWR Brennelementkastens in Leichtbauweise

    Energy Technology Data Exchange (ETDEWEB)

    Herbell, H.; Himmel, S.

    2008-06-15

    The High Performance Light Water Reactor (HPLWR) is a water cooled reactor concept of the 4{sup th} generation, operated at a pressure beyond the critical point of water. In this report an innovative design for moderator- and assembly boxes is investigated, consisting of an alumina filled stainless steel honeycomb structure, built as a sandwich design between two stainless steel liners. Such temperatures and pressures (25 MPa, 500 C) require the use of stainless steel assembly boxes; however, such walls cause significant neutron absorption. Moreover, the moderator water is heated up, which makes it less effective. Therefore, the thermal conductivity of the box walls should be decreased by a good thermal isolation, ensuring that the moderator water remains at high density. As an innovative approach, thin walled assembly boxes with sufficient stiffness and low thermal conductivity could be made from honeycomb structures, in which the cavities are filled with alumina for thermal insulation. Finite element analyses are used to verify the required stiffness, to identify stress concentrations and to optimize the design. The sandwich panel has been designed with regard to sandwich specific failure modes. A stress analysis of the assembly box according to KTA 3201.2 guideline as used for components of the primary circle of light water reactors is performed. The corner pieces turned out as the weak points of the initial design. Even a significant increase of the number of stiffening ribs in corner pieces did not reduce the stress peaks sufficiently, thus massive corner pieces were finally taken. Panel deflection is within the design limits whereas the estimated bending line along the total height of the assembly box exceeds geometrical boundaries. Therefore some spacers between the fuel elements are necessary. The results presented in this study indicate that honeycomb sandwich structures could be applicable in the core of the HPLWR reactor. This feature will minimize the

  18. Critical sustainability parameters in defluoridation of drinking water

    DEFF Research Database (Denmark)

    Bregnhøj, Henrik

    Experiences from household and community defluoridation projects have been collected. They are presented in the form of critical parameters that need to be considered for the success of household defluoridation projects. Parameters are classified in three groups. Motivation of households seems...

  19. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  20. A simple method for determining the critical point of the soil water retention curve

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Ren, Tusheng

    2017-01-01

    he transition point between capillary water and adsorbed water, which is the critical point Pc [defined by the critical matric potential (ψc) and the critical water content (θc)] of the soil water retention curve (SWRC), demarcates the energy and water content region where flow is dominated...... by capillarity or liquid film flow. Accurate estimation of Pc is crucial for modeling water movement in the vadose zone. By modeling the dry-end (matric potential –104.2 cm H2O) sections of the SWRC using the models of Campbell and Shiozawa, and of van Genuchten......, a fixed tangent line method was developed to estimate Pc as an alternative to the commonly used flexible tangent line method. The relationships between Pc, and particle-size distribution and specific surface area (SSA) were analyzed. For 27 soils with various textures, the mean RMSE of water content from...

  1. Research to More Effectively Manage Critical Ground-Water Basins

    Science.gov (United States)

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  2. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  3. High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast.

    Science.gov (United States)

    Burlacu, Elena; Lackmann, Fredrik; Aguilar, Lisbeth-Carolina; Belikov, Sergey; Nues, Rob van; Trahan, Christian; Hector, Ralph D; Dominelli-Whiteley, Nicholas; Cockroft, Scott L; Wieslander, Lars; Oeffinger, Marlene; Granneman, Sander

    2017-09-28

    While the protein composition of various yeast 60S ribosomal subunit assembly intermediates has been studied in detail, little is known about ribosomal RNA (rRNA) structural rearrangements that take place during early 60S assembly steps. Using a high-throughput RNA structure probing method, we provide nucleotide resolution insights into rRNA structural rearrangements during nucleolar 60S assembly. Our results suggest that many rRNA-folding steps, such as folding of 5.8S rRNA, occur at a very specific stage of assembly, and propose that downstream nuclear assembly events can only continue once 5.8S folding has been completed. Our maps of nucleotide flexibility enable making predictions about the establishment of protein-rRNA interactions, providing intriguing insights into the temporal order of protein-rRNA as well as long-range inter-domain rRNA interactions. These data argue that many distant domains in the rRNA can assemble simultaneously during early 60S assembly and underscore the enormous complexity of 60S synthesis.Ribosome biogenesis is a dynamic process that involves the ordered assembly of ribosomal proteins and numerous RNA structural rearrangements. Here the authors apply ChemModSeq, a high-throughput RNA structure probing method, to quantitatively measure changes in RNA flexibility during the nucleolar stages of 60S assembly in yeast.

  4. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy

    Science.gov (United States)

    Liu, Yamei; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Shen, Guizhi; Yan, Xuehai

    2017-02-01

    Nanoengineering of hydrophobic photosensitizers (PSs) is a promising approach for improved tumor delivery and enhanced photodynamic therapy (PDT) efficiency. A variety of delivery carriers have been developed for tumor delivery of PSs through the enhanced permeation and retention (EPR) effect. However, a high-performance PS delivery system with minimum use of carrier materials with excellent biocompatibility is highly appreciated. In this work, we utilized the spatiotemporal interfacial adhesion and assembly of supramolecular coordination to achieve the nanoengineering of water-insoluble photosensitizer Chlorin e6 (Ce6). The hydrophobic Ce6 nanoparticles are well stabilized in a aqueous medium by the interfacially-assembled film due to the coordination polymerization of tannic acid (TA) and ferric iron (Fe(III)). The resulting Ce6@TA-Fe(III) complex nanoparticles (referenced as Ce6@TA-Fe(III) NPs) significantly improves the drug loading content (~65%) and have an average size of 60 nm. The Ce6@TA-Fe(III) NPs are almost non-emissive as the aggregated states, but they can light up after intracellular internalization, which thus realizes low dark toxicity and excellent phototoxicity under laser irradiation. The Ce6@TA-Fe(III) NPs prolong blood circulation, promote tumor-selective accumulation of PSs, and enhanced antitumor efficacy in comparison to the free-carrier Ce6 in vivo evaluation.

  5. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    Science.gov (United States)

    Howson, Suzanne E.; Bolhuis, Albert; Brabec, Viktor; Clarkson, Guy J.; Malina, Jaroslav; Rodger, Alison; Scott, Peter

    2012-01-01

    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans).

  6. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  7. The initiation of subduction: criticality by addition of water?

    Science.gov (United States)

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  8. Emerging desalination technologies for water treatment: a critical review.

    Science.gov (United States)

    Subramani, Arun; Jacangelo, Joseph G

    2015-05-15

    In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Critical Readiness Review EHS Water Quality and Microbiology

    Science.gov (United States)

    Woo, Cindy

    2010-01-01

    Presentation reviews the status in reference to the Environmental, Health and Safety (EHS) of the water quality and microbiology for the International Space Station. It includes information about crew training, hardware delivery, and those items that will be returned for study.

  10. Final Critical Habitat for the Huachuca water umbel (Lilaeopsis schaffneriana var. recurva)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To provide the user with a general idea of areas where final critical habitat for Huachuca water umbel (Lilaeopsis schaffneriana var. recurva) occur based on the...

  11. Bioethical considerations about water fluoridation: a critical review.

    Directory of Open Access Journals (Sweden)

    María Elisa Quinteros

    2016-08-01

    Full Text Available Dental caries is one of the oral pathologies with greater burden of disease in the Chilean population. Fluoridation of drinking water has been used as a caries prevention strategy. However, its application as a public policy has been questioned since its implementation. The aim of this article is to analyze whether fluoridation of drinking water is a justified measure in reducing the incidence and prevalence of caries from the perspective of bioethics, taking into account the current evidence on its effectiveness. The arguments reviewed are based on the belief that water fluoridation is effective and, in general terms, ethically acceptable. A recent systematic review concludes that there is not enough evidence to support fluoridation as a public policy. There is a gap of knowledge that ought to be closed so that public health authorities can assess the significance of the intervention and make a democratic decision on its continuation or suspension based on scientific evidence. This decision should be informed and disseminated within the community.

  12. Experimental Study on the Performance of Water Source Trans-Critical CO2 Heat Pump Water Heater

    OpenAIRE

    Xiufang Liu; Changhai Liu; Ze Zhang; Liang Chen; Yu Hou

    2017-01-01

    The effect of the discharge pressure on the performance of the trans-critical CO2 heat pump with a low gas-cooler outlet temperature is experimentally investigated on a test rig of water source heat-pump water heater. The optimal discharge pressure of the trans-critical CO2 heat pump is investigated under different external operation conditions. When the tap-water temperature is low, the characteristic of the S-shape isotherm at the supercritical region has little effect on the occurrence of ...

  13. A study on the use of the reactor basic experiments in the U-D2O lattices of the RB critical assembly for validation of modern nuclear data libraries

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2016-01-01

    Full Text Available Demand on the availability of well-defined reactor experiments for validation of computer codes for use in nuclear industry and nuclear technology is everlasting. Users must be confident of the results obtained by the proven computer codes and nuclear data libraries chosen in the models. The well-defined (mostly historical and evaluated reactor experiments (about 5000 in 2015 were collected continuously as the benchmarks within the frame of the OECD/NEA international projects ICSBEP (since 1995 and IRPhEP (since 2003. The Handbooks of the Projects are published in electronic forms (at the NEA web site of the OECD and at a DVD media every year. This study is aimed to (a examine and evaluate reactor basic experiments, carried out in the lattice of the natural uranium metal fuel in the heavy water of the RB critical assembly first core in 1958, and (b demonstrate their possibility for validation of modern nuclear data libraries. These RB reactor basic experiments include: (1 approach to criticality, (2 determination of the reactivity gradient at the D2O critical level, (3 measurement of the dependence of the D2O critical level on the D2O temperature, i. e. dependence of the reactivity with change in the D2O temperature; (4 the critical reactor geometrical parameter (buckling measurements, (5 the migration length measurements, (6 determination of the neutron multiplication factor in the infinite lattice, and (7 the safety rods reactivity measurements. Results of the experiments are compared to the results obtained using modern nuclear data libraries of the ACE type by applying the MCNP6.1, a well-known and proven computer code based on the Monte Carlo method. A short overview of these experiments (done at the RB assembly is shown. A brief description of the neutron ACE type nuclear data libraries (created in the LANL, based on the ENDF/B-VII.0 and ENDF/B-VII.1 files, or created in the OECD/NEA, based on the JEFF-3.2 evaluated nuclear data files

  14. Research on critical size of water barrier in underground coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Ding, K. [China University of Mining and Technology, Xuzhou (China). College of Energy Science and Engineering

    2001-12-01

    The calculation formula of the width of the water barrier used in nowadays was derived from considering the coal mass tensile damage, and the theoretical foundation of tensile damage is the beam theory of Mechanics of Materials. Because simplifying water barrier to beam is not reasonable, and the calculation formula did not take into account the other important factors such as the surroundings and so on, in many cases, there are great differences between the theoretical results and the actual results. Further analysis indicates that besides the physical and mechanical characteristics of the coal seams and water pressure, the critical size of the water barrier in underground coal mine is also affected by underground pressure which is depending on the coal seam depth, roof and floor rocks structural characteristics and other factors. The collapse of the water barrier caused by critical water pressure is the macrographic behaviour of the combined action of water pressure and underground pressure. 5 refs., 2 figs.

  15. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    OpenAIRE

    Jae-Yong Lim; Cheol Ho Pyeon; Takahiro Yagi; Tsuyoshi Misawa

    2012-01-01

    Basic experiments on the accelerator-driven system (ADS) at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at...

  16. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    Energy Technology Data Exchange (ETDEWEB)

    De, Souvik [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Nandasiri, Manjula I. [Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland WA 99352 USA; Schaef, Herbert T. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; McGrail, Benard Peter [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Nune, Satish K. [Energy & Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99352 USA; Lutkenhaus, Jodie L. [Artie McFerrin Department of Chemical Engineering, Texas A& M University, 77843-3122 TAMU College Station TX 77843-3122 USA; Department of Materials Science & Engineering, Texas A& M University, 3122 TAMU College Station TX 77843-3122 USA

    2016-12-27

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to be coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.

  17. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    Directory of Open Access Journals (Sweden)

    Tae Hyung Lee

    2016-10-01

    Full Text Available A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  18. Exploring the Relationship between Critical Thinking Style and Water Conservation Behavior: Implications for Extension

    Science.gov (United States)

    Owens, Courtney T.; Lamm, Alexa J.

    2016-01-01

    In the past several years Cooperative Extension has focused on developing educational programs that address water conservation, specifically for individuals using exorbitant amounts of water, with limited success. However, few research studies have examined how the way people think, including their critical thinking styles, can be used to inform…

  19. Hydrophobic-induced Surface Reorganization: Molecular Dynamics Simulations of Water Nanodroplet on Perfluorocarbon Self-Assembled Monolayers

    OpenAIRE

    Park, Sung Hyun; Carignano, Marcelo A.; Nap, Rikkert J.; Szleifer, Igal

    2010-01-01

    We carried out molecular dynamics simulations of water droplets on self-assembled monolayers of perfluorocarbon molecules. The interactions between the water droplet and the hydrophobic fluorocarbon surface were studied by systematically changing the molecular surface coverage and the mobility of the tethered head groups of the surface chain molecules. The microscopic contact angles were determined for different fluorocarbon surface densities. The contact angle at a nanometer length scale doe...

  20. Effect of moderator density distribution of annular flow on fuel assembly neutronic characteristics in boiling water reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Ama, Tsuyoshi; Hyoudou, Hideaki; Takeda, Toshikazu [Osaka Univ., Graduate School of Engineering, Suita, Osaka (Japan); Ikeda, Hideaki; Kosaka, Shinya [Tepco Systems Corp., In-core Fuel Management Department, Tokyo (Japan)

    2002-05-01

    The effect of the moderator density distribution of annular flow on the fuel assembly neutronic characteristics in a boiling water nuclear reactor was investigated using the SRAC95 code system. For the investigation, a model of annular flow for fuel assembly calculation was utilized. The results of the assembly calculation with the model (Method 1) and those of the fuel assembly calculation with the uniform void fraction distribution (Method 2) were compared. It was found that Method 2 underestimates the infinite multiplication factor in the fuel assembly including the gadolinia rod (type 1 assembly). This phenomenon is explained by the fact that the capture rate in the thermal energy region in gadolinia fuel is estimated to be smaller when the liquid film of annular flow at the fuel rod surface is considered. A burnup calculation was performed under the condition of a void fraction of 65% and a volumetric fraction of the liquid film in liquid phase of 1. It is found that Method 2 underestimates the infinite multiplication factor in comparison to Method 1 in the early stage of burnup, and that Method 2 becomes to overestimate the factor after a certain degree of burnup. This is because Method 2 overestimates the depletion rate of the gadolinia. (author)

  1. Water Resistant Container Technical Basis Document for the TA-55 Criticality Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Teague, Jonathan Gayle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-30

    Criticality safety at TA-55 relies on nuclear material containers that are water resistant to prevent significant amounts of water from coming into contact with fissile material in the event of a fire that causes a breach of glovevbox confinement and subsequent fire water ingress. A “water tight container” is a container that will not allow more than 50ml of water ingress when fully submerged, except when under sufficient pressure to produce structural discontinuity. There are many types of containers, welded containers, hermetically sealed containers, filtered containers, etc.

  2. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods (1.506-cm Pitch)

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed from 1962–1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967.a The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were performed to determine critical reflector arrangements, relative fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector” (see Reference 1). The experiment studied in this evaluation was the second of the series and had the fuel rods in a 1.506-cm-triangular pitch. One critical configuration was found (see Reference 3). Once the critical configuration had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U,bc and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configuration are described in Sections 1.3, 1.4, and 1.7, respectively.

  3. Experimental Study on the Performance of Water Source Trans-Critical CO2 Heat Pump Water Heater

    Directory of Open Access Journals (Sweden)

    Xiufang Liu

    2017-06-01

    Full Text Available The effect of the discharge pressure on the performance of the trans-critical CO2 heat pump with a low gas-cooler outlet temperature is experimentally investigated on a test rig of water source heat-pump water heater. The optimal discharge pressure of the trans-critical CO2 heat pump is investigated under different external operation conditions. When the tap-water temperature is low, the characteristic of the S-shape isotherm at the supercritical region has little effect on the occurrence of the optimal discharge pressure; while the mass flow rate of CO2, the suction pressure and the gas-cooler outlet temperature play a significant role in determining the emergence of the optimal discharge pressure. At the optimal discharge pressure, the COP reaches the peak; however, the corresponding heating capacity is still lower than its maximum, which is reached as the discharge pressure is slightly above the optimal discharge pressure. Reducing the tap-water flowrate or increasing the water-source temperature can increase the optimal discharge pressure. The COP is positively dependent on both the tap-water flowrate and the water-source temperature. In addition, the tap-water flowrate has a negligible influence on the maximum heating capacity while increasing the water-source temperature can greatly enhance the heating capacity.

  4. Design of a weapons-grade plutonium assembly for optimal burnup in a standard pressurized water reactor

    Science.gov (United States)

    Alonso-Vargas, Gustavo

    We created a new MOX fuel assembly design that can be used in standard Westinghouse pressurized water reactors (PWR) to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which is called MIX-33, appears to be a good option for the disposition of weapons-grade plutonium (WG-Pu), increasing the plutonium disposition rate by 8% compared to a previous Westinghouse design. It is based in two novel ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the increase of the moderation ratio of the assembly. We replaced 8 fuel pins by water holes to increase the moderation ratio. We can transition smoothly from a full LEU core to a full MIX-33 core meeting the operational and safety regulations of a standard PWR. Given a MOX supply interruption scenario we can transition smoothly to full LEU meeting the safety regulations and using standard LEU assemblies with uniform enriched pin-wise distribution. If the MOX supply is interrupted for only one cycle, we are able to transition back to full MIX-33 core. However, in this case we probably need to de-rate the power by a few percent for a few weeks at the beginning of the cycle (BOC) to accommodate high peaking. For comparison we created another assembly design without extra water holes, which we called "MIX-25". It behaves in all the conditions analyzed in a similar way to the MIX-33 but it does present minor control problems. These can be solved by making small modifications to the control and safety systems, namely by enriching the boron-10 content of some boron absorbers. Thus, the addition of water holes replacing fuel pins helps to improve the MIX-33 performance and eliminate the difficulties seen in the MIX-25 design. We also performed a benchmarking analysis to test the code CASMO-3 to analyze WG-Pu assemblies, using the code MCNP-4A to compare. We found good agreement between CASMO-3 and

  5. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  6. Implementation of hazard analysis and critical control points in the drinking water supply system

    Directory of Open Access Journals (Sweden)

    Asghar Tavasolifar

    2012-01-01

    Full Text Available Aims: This study was aimed to design comprehensive risk management based on hazard analysis and critical control points (HACCP in the Isfahan drinking water system. Materials and Methods: Data obtained from field inspections and through related organizations of Isfahan, Iran. The most important risks and risky events of water quality in all sources of raw water in the study area including the Zayanderoud river, the water treatment plant, and the distribution system were identified and analyzed. Practical measures for the protection, control, and limitation of the risks in different phases, from water supply to consumption point, were presented in the form of seven principles of the HACCP system. Results: It was found that there was a potential of hazards during the treatment process of water because of seasonal changes and discharge of various pollutants. Water contamination could occur in eight identified critical control points (CCP. River water could be contaminated by rural communities on the banks of the river, by natural and sudden accidents, by subversive accidents, by incomplete operation, by lack of proportionate of the current treatment process, and by the high extent of antiquity of the Isfahan water distribution system. Conclusions: In order to provide safe drinking water, it is necessary to implement a modern risk management system such as the HACCP approach. The increasing trend of the Zayandehroud river pollution needs urgent attention. Therefore, the role of the government in developing and mandating the HACCP system in water industries is essential.

  7. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    Science.gov (United States)

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  8. Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion.

    Science.gov (United States)

    Ou, Chun-Wei; Su, Chiu-Hun; Jeng, U-Ser; Hsu, Shan-hui

    2014-04-23

    Waterborne polyurethanes (PU) with different compositions of biodegradable oligodiols as the soft segment were synthesized as nanoparticles (NPs) in this study. Using dynamic light scattering (DLS), multiangle light scattering (MALS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), we demonstrated that these NPs were compact spheres with different shape factors. The temperature-dependent swelling of the PU NPs in water was distinct. In particular, PU NPs with 80 mol % polycaprolactone (PCL) diol and 20 mol % poly(L-lactide) (PLLA) diol as the soft segment had significant swelling (∼450%) at 37 °C. This was accompanied by a sol-gel transition observed in about 2 min for the NP dispersion. The thermally induced swelling and self-assembly of these NPs were associated with the secondary force (mainly hydrogen bonding) and degree of crystallinity, which depended on the soft segment compositions. The thermo-responsiveness of the PU NPs with mixed biodegradable oligodiols may be employed to design smart biodegradable carriers for delivery of cells or drugs near body temperature.

  9. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    Directory of Open Access Journals (Sweden)

    Francesco Di Stasio

    2013-10-01

    Full Text Available We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm. We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm. Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm, but elongated within the stop-band (by ∼13%, in the range 448–482 nm. We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  10. Critical Contribution of Tyr15 in the HIV-1 Integrase (IN) in Facilitating IN Assembly and Nonenzymatic Function through the IN Precursor Form with Reverse Transcriptase.

    Science.gov (United States)

    Takahata, Tatsuro; Takeda, Eri; Tobiume, Minoru; Tokunaga, Kenzo; Yokoyama, Masaru; Huang, Yu-Lun; Hasegawa, Atsuhiko; Shioda, Tatsuo; Sato, Hironori; Kannagi, Mari; Masuda, Takao

    2017-01-01

    sites targeted by INSTI, have been discovered. Importantly, ALLINIs affect the nonenzymatic role(s) of HIV-1 IN, providing a rationale for the development of next-generation IN inhibitors with a mechanism that is distinct from that of INSTI. Here, we demonstrate that Tyr15 in the HIV-1 IN NTD plays a critical role during IN assembly by facilitating the hydrophobic interaction of the NTD with the other domains of IN. Importantly, we found that the functional assembly of IN through its fusion form with RT is critical for IN to exert its nonenzymatic function. Our results provide a novel mechanistic insight into the nonenzymatic function of HIV-1 IN and its prevention. Copyright © 2016 American Society for Microbiology.

  11. Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification.

    Science.gov (United States)

    Wang, Miaoqi; Wang, Zhining; Wang, Xida; Wang, Shuzheng; Ding, Wande; Gao, Congjie

    2015-03-17

    We fabricated a biomimetic nanofiltration (NF) membrane by immobilizing an Aquaporin Z (AqpZ)-incorporated supported lipid bilayer (SLB) on a layer-by-layer (LbL) complex polyelectrolyte membrane to achieve excellent permeability and salt rejection with a high stability. The polyelectrolyte membranes were prepared by LbL assembly of poly(ethylenimine) (PEI) with positive charges and poly(sodium 4-styrenesulfonate) (PSS) with negative charges alternately on a porous hydrolyzed polyacrylonitrile (H-PAN) substrate. AqpZ-incorporated 1,2-dioleloyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-3-trimethylammo-nium-propane (chloride salt) (DOTAP) vesicles with positive charges were deposited on the H-PAN/PEI/PSS polyelectrolytes membrane surface. The resulting biomimetic membrane exhibited a high flux of 22 L·m(-2)·h(-1) (LMH), excellent MgCl2 rejection of ∼97% and NaCl rejection of ∼75% under an operation pressure of 0.4 MPa. Due to the attractive electrostatic interaction between SLB and the polyelectrolyte membrane, the biomimetic membrane showed satisfactory stability and durability as well as stable NF flux and rejection for at least 36 h. In addition, the AqpZ-containing biomimetic membrane was immersed in a 0.24 mM (critical micellar concentration, CMC) Triton X-100 solution for 5 min. The flux and rejection were slightly influenced by the Triton X-100 treatment. The current investigation demonstrated that the AqpZ-incorporated biomimetic membranes fabricated by the LbL method led to excellent separation performances and robust structures that withstand a high operation pressure for a relatively long time.

  12. Water pollution abatement programme. The Czech Republic. Project 4.2. Assessing critical loads of acidity to surface waters in the Czech Republic. Critical loads of acidity to surface waters, north-eastern Bohemia and northern Moravia, The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Lien, L.; Raclavsky, K.; Raclavska, H.; Matysek, D.; Hovind, H.

    1996-01-01

    This report discusses estimates of critical loads of acidity to surface waters and their exceedances, for north-eastern Bohemia and Moravia in The Czech Republic. The survey covers 13 400 km{sup 2}, or 17% of the area of the country. Varying critical loads were observed within the examined region. 19% of the examined area showed exceedance of critical load and another 11% was close to exceedance. The survey should continue in Bohemia. 24 refs., 20 figs., 4 tabs.

  13. A critical discussion of the physics of wood–water interactions

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund; Thygesen, L. G.; Svensson, Staffan

    2013-01-01

    is put on water in the broadest concept of wood products, that is, the living tree is not considered. Moreover, the review covers the basic wood–water relation, states and transitions. Secondary effects such as the ability of water to alter physical properties of wood are only discussed in cases where......This paper reviews recent findings on wood–water interaction and puts them into context of established knowledge in the field. Several new findings challenge prevalent theories and are critically discussed in an attempt to advance current knowledge and highlight gaps. The focus of this review...

  14. A critical discussion of the physics of wood–water interactions

    DEFF Research Database (Denmark)

    Thybring, Emil Engelund; Thygesen, L. G.; Svensson, Staffan

    2013-01-01

    This paper reviews recent findings on wood–water interaction and puts them into context of established knowledge in the field. Several new findings challenge prevalent theories and are critically discussed in an attempt to advance current knowledge and highlight gaps. The focus of this review...... is put on water in the broadest concept of wood products, that is, the living tree is not considered. Moreover, the review covers the basic wood–water relation, states and transitions. Secondary effects such as the ability of water to alter physical properties of wood are only discussed in cases where...

  15. A rigorous calculation of the critical point from the fundamental equation of state for the water + ammonia mixture

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Ryo [Faculty of Humanities, Kyushu Lutheran College, 3-12-16 Kurokami, Kumamoto 860-8520 (Japan)

    2009-01-15

    The critical point of the water + ammonia mixture was calculated directly from the Helmholtz free energy formulation. The calculation was performed according to the critical point criteria expressed in terms of the derivatives of the Helmholtz free energy with respect to mole numbers. Smooth critical locus linking between the critical points of pure water and ammonia was obtained. The critical locus showed a good agreement with the most reliable experimental data. Simple correlations for the critical temperature, pressure, and molar volume for a given composition were developed. The information obtained in this study is helpful for design and simulation of the cycles using the water + ammonia mixture as working fluid. (author)

  16. Experiment of Critical Swimming Speed of Fingerling Masu Salmon (Oncorhynchus masou masou) Using River Water

    Science.gov (United States)

    Izumi, Mattashi; Kato, Koh

    The authors conducted a field swimming experiment using cultured masu salmon (Oncorhynchus masou masou) fingerlings in order to study their critical swimming speed during their release into the river in the Iwaki River diversion weir. The experimental equipment was a small, rectangular cross-section channel, which was installed in a local riverbed at the fishway. The experiment was conducted using an average cross-sectional water flow velocity of 17 to 92 cm·s-1, and using masu salmon fingerlings from 4.8 to 7.1 cm in the length. River water temperature was between 13.7 and 20.6 °C. The critical swimming speed measured over 60 minutes was between 16 and 41 cm·s-1 and a positive correlation was found between the critical swimming speed and body length. The critical swimming speed measured by body length (BL) was 3.5 to 6.9 times (that is, the distance travelled per second based on body length), and the mean critical swimming speed was 5.5 (with a standard deviation of 1.1). Results showed that water temperature differences in the experiment had no significant effect on the critical swimming speed measured over 60 minutes.

  17. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  18. Critical Configuration and Physics Mesaurements for Graphite Reflected Assemblies of U(93.15)O2 Fuel Rods (1.27-CM Pitch)

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2011-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory's Critical Experiments Facility in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950's efforts were made to study 'power plants for the production of electrical power in space vehicles'. The MPRE program was a part of those efforts and studied the feasibility of a stainless steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in FY 1964, 1965, and 1966. A summary of the program's effort was compiled in 1967. The delayed critical experiments served as a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated 253 stainless steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. 'The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.' The experiment studied within this evaluation was the first of the series and had the 253 fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Information for this evaluation was compiled from Reference 1 and 2, reports on subsequent experiments in the series, and the experimental logbook as well as from communication with the experimenter, John T. Mihalczo.

  19. Increased water intake to reduce headache: Learning from a critical appraisal

    OpenAIRE

    Price, A.; Burls, A

    2015-01-01

    Clinical Bottom Line\\ud Water intake is a cost effective, non-invasive and low-risk intervention to reduce or prevent headache pain. Rationale: Chronic mild dehydration may trigger headache. Increased water intake could help. A small trial shows modest benefit; however, a larger methodologically sound randomized controlled trial is needed to confirm efficacy.\\ud \\ud Critically Appraised Paper\\ud Spigt, M., Weerkamp, N., Troost, J., van Schayck, C. P., & Knottnerus, J. A. (2012). ‘A randomized...

  20. Determination of water-lock critical value of low-permeability sandstones based on digital core

    Directory of Open Access Journals (Sweden)

    Honglin Zhu

    2016-05-01

    Full Text Available Research and development of water lock inhibiting measures is very crucial in verifying the link mechanism between the internal factors of water lock and its extent of damage. Based on conventional water-lock physics experiments, however, only the consequence of macro water lock damage can be investigated, while the microscopic mechanism cannot be studied. In this paper, 3D digital cores of low-permeability sandstones were prepared by means of high-resolution micro-CT scan, and their equivalent pore network model was built as well. Virtual “imbibition” experiments controlled by capillary force were carried out by using pore-scale flow simulation. Then the link mechanism between the microscopic internal factors (e.g. wettability, water saturation and pore–throat structure parameters and the water-lock damage degree was discussed. It is shown that the damage degree of water lock reduces gradually as the wettability transits from water wet to gas wet. Therefore, the water lock damage can be reduced effectively and gas-well productivity can be improved so long as the capillary environment is changed from strong water wettability to weak gas wettability. The more different the initial water saturation is from the irreducible water saturation, the more serious the water lock damage is. The damage degree of water lock is in a negative correlation with the coordinate number, but a positive correlation with the pore–throat ratio. Based on the existing research results, water lock tends to form in the formations composed of medium-sized throats. It is concluded that there is a critical throat radius, at which the water lock is the most serious.

  1. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP; Calculos de criticidad de un contenedor de combustible generico para ensambles combustibles PWR, mediante el codigo MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  2. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    Science.gov (United States)

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  3. OPTIMUM, CRITICAL AND THRESHOLD VALUES FOR WATER OXYGENATION FOR MULLETS (MUGILIDAE AND FLATFISHES (PLEURONECTIDAE IN ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    P. Shekk

    2014-12-01

    Full Text Available Purpose. To determine the optimum, critical, and threshold values of water oxygenation for embryos, larvae and fingerlings of mullets and flatfishes under different temperature conditions. Methodology. Oxygen consumption was studied in chronic experiments with «interrupted flow» method with automatic fixation of dissolved oxygen in water with the aid of an oxygen sensor and automatic, continuous recording of the obtained results. «Critical» (Pcrit., and the «threshold» (Pthr. oxygen tension in the water have been determined. Findings. Under optimum conditions, the normal embryogenesis of mullets and flatfish to the gastrulation stage, provided 90–130% oxygen saturation. The critical content was 80–85%, the threshold – 65–70% of the saturation. At the stage of «movable embryo» depending on water temperature and fish species, the optimum range of water oxygenation was within 70‒127.1%. The most tolerant to oxygen deficiency was flounder Platichthys luscus (Pcrit – 25.4–27,5; Pthr. – 20.5–22.5%, the least resistant to hypoxia was striped mullet Mugil серhalus (Pcrit. – 50–60; Pthr. – 35–40%. The limits of the critical and threshold concentration of dissolved oxygen directly depended on the temperature and salinity, at which embryogenesis occurred. An increase in water temperature and salinity resulted in an increase in critical and threshold values for oxygen tension embryos. Mullet and flatfish fingerlings in all stages of development had a high tolerance to hypoxia, which increased as they grew. They were resistant to the oversaturation of water with oxygen. The most demanding for the oxygen regime are larvae and fingerlings of striped mullet and Liza aurata. Hypoxia tolerance of Psetta maeoticus (Psetta maeoticus and flounder at all stages of development is very high. The fingerlings of these species can endure reduction of the dissolved oxygen in water to 2.10 and 1.65 mgO2/dm3 respectively for a long time

  4. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water

    DEFF Research Database (Denmark)

    Nguyen, Thi Dieu Huyen; Maschietti, Marco; Åmand, Lars-Erik

    2014-01-01

    The catalytic conversion of suspended LignoBoost Kraft lignin was performed in near-critical water using ZrO2/K2CO3 as the catalytic system and phenol as the co-solvent and char suppressing agent. The reaction temperature was varied from 290 to 370 C and its effect on the process was investigated...

  5. Assembly and comparison of available solar hot water system reliability databases and information.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2009-05-01

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  6. A critical review of integrated urban water modelling – Urban drainage and beyond

    DEFF Research Database (Denmark)

    Bach, Peter M.; Rauch, Wolfgang; Mikkelsen, Peter Steen

    2014-01-01

    considerations (e.g. data issues, model structure, computational and integration-related aspects), common methodology for model development (through a systems approach), calibration/optimisation and uncertainty are discussed, placing importance on pragmatism and parsimony. Integrated urban water models should......Modelling interactions in urban drainage, water supply and broader integrated urban water systems has been conceptually and logistically challenging as evidenced in a diverse body of literature, found to be confusing and intimidating to new researchers. This review consolidates thirty years...... of research (initially driven by interest in urban drainage modelling) and critically reflects upon integrated modelling in the scope of urban water systems. We propose a typology to classify integrated urban water system models at one of four ‘degrees of integration’ (followed by its exemplification). Key...

  7. Weathering, Fractures and Water in the deep Critical Zone: Geophysical investigations in the U.S. Critical Zone Observatories

    Science.gov (United States)

    Holbrook, W. S.; Carr, B.; Moon, S.; Perron, J. T.; Hayes, J. L.; Flinchum, B. A.; St Clair, J. T.; Riebe, C. S.; Richter, D., Jr.; Leone, J.

    2015-12-01

    The Critical Zone (CZ) is Earth's breathing skin: the thin layer from treetop to bedrock that supports most terrestrial life. Key hydrological, biogeochemical, and physical processes occur in the CZ, including physical and chemical weathering, soil production, erosion, nutrient cycling, and surface/groundwater exchange. These processes in turn influence subsurface water storage capacity, landscape evolution, ecological stability, aquifer recharge and stream flow. Because the deep CZ is hidden from direct observation, it can only be studied by drilling and/or geophysical measurements. Given the relative scarcity of such data, we lack a complete understanding of the architecture of the CZ, how it varies across landscapes, and what controls that variation. We present geophysical data that address these questions at six Critical Zone Observatories (CZO): Calhoun, Boulder Creek, Eel River, Reynolds Creek, Catalina-Jemez, and Southern Sierra. Conclusions include: (1) Regolith depth is influenced by the opening of fractures due to the release of regional and topographic stress as rocks are exhumed toward the surface. Stress models at Calhoun and Boulder Creek show remarkable agreement with seismic velocities in the shallow subsurface, suggesting that stress release controls the development of fracture porosity in the CZ. (2) Chemical weathering (plagioclase dissolution) begins at depths where fractures open (~40 m at Calhoun), implying that fracturing and chemical weathering are intimately paired in the deep CZ. (3) Volumetric strain is an underappreciated contributor to porosity in the CZ. In the Southern Sierra, strain dominates over chemical weathering in the upper 10 m, consistent with the stress-release model. (4) Geological structure and lithology can trump environmental controls (e.g., aspect and climate) on regolith development. At Catalina, strongly contrasting regolith thickness on north- and south-facing slopes, is not due to "northness", but rather to

  8. Evaluation of multifrequency bioimpedance spectroscopy for measurement of the extracellular water space in critically ill patients.

    Science.gov (United States)

    Plank, L D; Monk, D N; Woollard, G A; Hill, G L

    1998-01-01

    The purpose of this study was to compare multifrequency bioimpedance spectroscopy (BIS) estimates of extracellular water volume (ECW) in critically ill patients with measurements by bromide dilution. Stable bromide dilution and BIS were performed in 37 critically ill patients as soon as haemodynamic stability was achieved (day 0) and again 10 days later. While BIS underestimated the dilution results on each day of measurement, the 10-day changes in ECW agreed closely for the two methods (4.42 +/- 4.25 (s.d.) vs 4.43 +/- 4.84 1).

  9. Critical Dimensions of Water-tamped Slabs and Spheres of Active Material

    Science.gov (United States)

    Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

    1946-08-06

    The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

  10. Application of Transistors in Textiles: Monitoring Water Transportation Behaviour in Fibrous Assemblies

    Science.gov (United States)

    Chatterjee, Arobindo; Singh, Pratibha; Ghosh, Subrata

    2017-06-01

    Simple semiconductor device has been used for amplifying the analog signals, obtained with the change in electrical resistance in fibrous assembly and converting these amplified copies of signals to digital signals. This paper deals with the application of transistors as amplifier, as well as switch. Different circuit configurations using transistors have been tried for sensing and reciprocating the real time data on suitable display device. It is found that transistors configured as common-emitter amplifiers can precisely sense the liquid at the surface of fibrous assembly at different levels with respect to time.

  11. Kinetic partitioning during de novo septin filament assembly creates a critical G1 "window of opportunity" for mutant septin function.

    Science.gov (United States)

    Schaefer, Rachel M; Heasley, Lydia R; Odde, David J; McMurray, Michael A

    2016-09-16

    Septin proteins form highly conserved cytoskeletal filaments composed of hetero-oligomers with strict subunit stoichiometry. Mutations within one hetero-oligomerization interface (the "G" interface) bias the mutant septin toward conformations that are incompatible with filament assembly, causing disease in humans and, in budding yeast cells, temperature-sensitive defects in cytokinesis. We previously found that, when the amount of other hetero-oligomerization partners is limiting, wild-type and G interface-mutant alleles of a given yeast septin "compete" along parallel but distinct folding pathways for occupancy of a limited number of positions within septin hetero-octamers. Here, we synthesize a mathematical model that outlines the requirements for this phenomenon: if a wild-type septin traverses a folding pathway that includes a single rate-limiting folding step, the acquisition by a mutant septin of additional slow folding steps creates an initially large disparity between wild-type and mutant in the cellular concentrations of oligomerization-competent monomers. When the 2 alleles are co-expressed, this kinetic disparity results in mutant exclusion from hetero-oligomers, even when the folded mutant monomer is oligomerization-competent. To test this model experimentally, we first visualize the kinetic delay in mutant oligomerization in living cells, and then narrow or widen the "window of opportunity" for mutant septin oligomerization by altering the length of the G1 phase of the yeast cell cycle, and observe the predicted exacerbation or suppression, respectively, of mutant cellular phenotypes. These findings reveal a fundamental kinetic principle governing in vivo assembly of multiprotein complexes, independent of the ability of the subunits to associate with each other.

  12. Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics.

    Science.gov (United States)

    Venkata Mohan, S; Srikanth, S; Veer Raghuvulu, S; Mohanakrishna, G; Kiran Kumar, A; Sarma, P N

    2009-04-01

    Six different types of ecological water bodies were evaluated to assess their potential to generate bioelectricity using benthic type fuel cell assemblies. Experiments were designed with various combinations of electrode assemblies, surface area of anode and anodic materials. Among the 32 experiments conducted, nine combinations evidenced stable electron-discharge/current. Nature, flow conditions and characteristics of water bodies showed significant influence on the power generation apart from electrode assemblies, surface area of anode and anodic material. Stagnant water bodies showed comparatively higher power output than the running water bodies. Placement of cathode on algal mat (as bio-cathode) documented several folds increment in power output. Electron-discharge started at 1000 Omega resistance in polluted water bodies (Nacaharam cheruvu, Hussain Sagar lake Musi river), whereas, in relatively less polluted water bodies (Uppal pond/stream, Godavari river) electron-discharge was observed at low resistances (500/750 Omega).

  13. Numerical analysis on inlet and outlet sections of a test fuel assembly for a Supercritical Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Attila, E-mail: kissa@reak.bme.hu; Vágó, Tamás; Aszódi, Attila

    2015-12-15

    Graphical abstract: - Highlights: • SCWR-FQT, first facility works with nuclear fuel cooled by SCW, was analysed. • The inlet and outlet section of the test fuel assembly was investigated by CFD. • Two thermohydraulic problems were revealed, described and analysed. • To solve them design changes were proposed and proven by further analysis. - Abstract: The Supercritical Water Reactor (SCWR) is one of the six reactor concepts being investigated under the framework of the Generation IV International Forum (GIF). One of the major challenges in the development of a SCWR is to develop materials for the fuel and core structures that will be sufficiently corrosion-resistant to withstand supercritical water conditions. Previously, core, reactor and plant design concept of the European High Performance Light Water Reactor (HPLWR) have been worked out in substantial detail. As the next step, it has been proposed to carry out a fuel qualification test of a small scale fuel assembly in a research reactor under typical prototype conditions. Therefore design and licensing of an experimental facility for the fuel qualification test, including the small scale fuel assembly with four fuel rods, the required coolant loop with supercritical water and safety and auxiliary systems, is the scope of the project “Supercritical Water Reactor—Fuel Qualification Test” (SCWR-FQT). This project is a collaborative project co-funded by the European Commission, which takes advantage of a Chinese—European collaboration. As a sub-task of the SCWR-FQT project, the geometry of inlet and outlet sections of the fuel assembly has to be investigated and optimized according to thermohydraulic considerations such as expected stable and uniform inflow pattern and uniform outflow temperature field conditions. To accomplish this task three dimensional CFD analysis has been performed. During the analysis two main problems were identified. On the one hand, generation of a huge eddy was

  14. Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water

    Science.gov (United States)

    Go, Eun Bin; Srisuknimit, Veerasak; Cheng, Stephanie L.; Vosburg, David A.

    2016-01-01

    A green organic-inorganic laboratory experiment has been developed in which students prepare a self-assembling iron cage in D[subscript 2]O at room temperature. The tetrahedral cage captures a small, neutral molecule such as cyclohexane or tetrahydrofuran. [Superscript 1]H NMR analysis distinguishes captured and free guests through diagnostic…

  15. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  16. EFFECT OF THE CRITICAL IRRADIANCE ON PHOTOVOLTAIC WATER PUMP DISCHARGE UNDER EGYPTIAN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Mamdouh Abbas HELMY

    2015-04-01

    Full Text Available The present investigation aimed to study the effect of critical irradiance due to changing tilt angle of PV panel and tracking sun on submersible pump discharge. The authors used solar tracker and suitable tilt angle for the panel to increase the time interval during which the water pump operates. For the same irradiance collected by the PV, all systems pump the same amount of water, although they occur at different periods of the day. The pump itself 'does not know whether the electric power comes from any processes, as long as it has the same intensity.

  17. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Myers, W.; Hayes, D. [and others

    1997-01-01

    The nuclear criticality characteristics of mixtures of plutonium, silicon dioxide, and water (Part A) or plutonium, silicon dioxide, Nevada Yucca Mountain tuff, and water (Part B) have become of interest because of the appearance of recent papers on the subject. These papers postulate that if excess weapons plutonium is vitrified into a silicate log and buried underground, a self-sustaining neutron chain reaction may develop given sufficient time and interaction with the burial medium. Moreover, given specific geologic actions resulting in postulated configurations, the referenced papers state that nuclear explosions could occur with multi-kiloton yields or yields equivalent to hundreds of tons of TNT.

  18. Reforming of glucose and wood at the critical conditions of water

    Science.gov (United States)

    Modell, M.

    1977-01-01

    Reforming of organics in aqueous solutions is being investigated as a potential waste treatment process. Earlier studies showed that glucose in water reacts to form a gaseous mixture of CO, H2, CH4, CO2, C2H6, and C2H4 in the vicinity of the critical conditions of water (374 C, 22 MPa). The earlier work has been extended to determine the effect of variations in temperature and feed concentration on the extent of gasification. The percent gasification decreases with increasing feed concentration, indicating an overall kinetic order less than unity. Surprisingly, the percent gasification decreases with increasing temperature. A number of preliminary experiments were conducted with maple sawdust feed, which was thought to be representative of complex organic wastes from paper and vegetable matter. Once again, no solid products were found under the critical conditions; the percent gasification ranged from 16 to 88 percent, depending on the feed composition and residence time.

  19. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration.

    OpenAIRE

    Heerklotz, H; Seelig, J.

    2000-01-01

    The membrane/water partition coefficients, K, of 15 electrically neutral (non-charged or zwitterionic) detergents were measured with phospholipid vesicles by using isothermal titration calorimetry, and were compared to the corresponding critical micellar concentrations, cmc. The detergents measured were oligo(ethylene oxide) alkyl ethers (C(m)EO(n) with m = 10/n = 3, 7 and m = 12/n = 3.8); alkylglucosides (octyl, decyl); alkylmaltosides (octyl, decyl, dodecyl); diheptanoylphosphatidylcholine;...

  20. Critical level of water recharges in the catchment areas of Manna watershed Bengkulu Province Indonesia

    Science.gov (United States)

    Amri, Khairul; Nugraha, Loparedo; Barchia, Muhammad Faiz

    2017-11-01

    Land use changes in Manna watershed are caused degradation in the watershed functions. When water infiltration goes down, some water runs off flowing to Manna River cause submerged on the downstream. The aim of this study is to analyze how the Manna watershed overcoming environmentally degraded conditions. The critical level of the Manna catchment areas was determined by overlaying some digital maps based on procedure applying in the Ministry of Forestry, Republic of Indonesia (P.32/MENHUT-II/2009). Measuring the critical level of the catchment also needed natural and actual infiltrations map, and the interpretation process of the analysis used ArcGIS 10.1 software. Based on the spatial data analysis by overlaying maps of slope, soils, and rainfall, the natural infiltration rate in the Manna watershed categorized high level (44.1%). While, the critical level of the catchment areas of the Manna watershed classified in good condition cover about 64,5 % of the areas, and starting to degraded state cover about 35,5 % of the watershed areas. The environment degradation conditions indicated the land use changes in the Manna watershed could deteriorate infiltration rates. The cultivated agricultural activities neglected conservation rule could accelerate the critical catchment areas in the Manna watershed.

  1. Polaronic exciton in self-organized assemblies of protonated meso-tetraphenylporphine dimers and water at room temperature

    Science.gov (United States)

    Udal'tsov, Alexander V.

    2016-12-01

    Assemblies consisting of protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by UV-vis and infrared (IR) spectroscopy and by atomic force microscopy (AFM) in thin layers. Features of electronic absorption spectra of the assemblies are interpreted in terms of hole polaron combined with exciton theory using quantum well with parameters obtained from the dimer structure. It appears to be hole polaron moving defines kinetic energy of polaronic exciton confined in a quantum well when the electron absorbs photon. Hole polaron characteristics such as polaron self-energy, energy of Frank-Condon transitions, and radius of hole polaron moving through water are found to be 1.38 eV, 0.2445 eV, and 0.246 Å, respectively. A doublet at 1944, 1960 cm-1 (0.2412, 0.2432 eV) observed in IR spectra matches the energy of Frank-Condon transitions. Excitation energies estimated using molecular parameters for polaronic excitons in pure water and in the TPP dimers are found in a good agreement with the experimental data.

  2. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  3. Impact of uncertainties in the uranium 235 cross section resonance structure on characteristics measured in the BFS-79 critical assemblies

    Directory of Open Access Journals (Sweden)

    Andrianova Olga

    2017-01-01

    Full Text Available The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005 carried out at the the SSC RF – IPPE in cooperation with the Idaho National Laboratory (INL, USA applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.

  4. Impact of uncertainties in the uranium 235 cross section resonance structure on characteristics measured in the BFS-79 critical assemblies

    Science.gov (United States)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005) carried out at the the SSC RF - IPPE in cooperation with the Idaho National Laboratory (INL, USA) applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.

  5. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  6. Encapsulation and Characterization of Proton-Bound Amine Homodimers in a Water Soluble, Self-Assembled Supramolecular Host

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael; Fiedler, Dorothea; Mugridge, Jeffrey; Bergman, Robert; Raymond, Kenneth

    2008-10-01

    Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly which are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tertbutyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation.

  7. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  8. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly.

    Directory of Open Access Journals (Sweden)

    Kelley J Dowd

    Full Text Available The cholesterol-dependent cytolysins (CDCs constitute a family of pore-forming toxins that contribute to the pathogenesis of a large number of Gram-positive bacterial pathogens.The most highly conserved region in the primary structure of the CDCs is the signature undecapeptide sequence (ECTGLAWEWWR. The CDC pore forming mechanism is highly sensitive to changes in its structure, yet its contribution to the molecular mechanism of the CDCs has remained enigmatic. Using a combination of fluorescence spectroscopic methods we provide evidence that shows the undecapeptide motif of the archetype CDC, perfringolysin O (PFO, is a key structural element in the allosteric coupling of the cholesterol-mediated membrane binding in domain 4 (D4 to distal structural changes in domain 3 (D3 that are required for the formation of the oligomeric pore complex. Loss of the undecapeptide function prevents all measurable D3 structural transitions, the intermolecular interaction of membrane bound monomers and the assembly of the oligomeric pore complex. We further show that this pathway does not exist in intermedilysin (ILY, a CDC that exhibits a divergent undecapeptide and that has evolved to use human CD59 rather than cholesterol as its receptor. These studies show for the first time that the undecapeptide of the cholesterol-binding CDCs forms a critical element of the allosteric pathway that controls the assembly of the pore complex.

  9. Quantitative self-assembly of a purely organic three-dimensional catenane in water

    Science.gov (United States)

    Li, Hao; Zhang, Huacheng; Lammer, Aaron D.; Wang, Ming; Li, Xiaopeng; Lynch, Vincent M.; Sessler, Jonathan L.

    2015-12-01

    Self-assembly by means of coordinative bond formation has opened up opportunities for the high-yield synthesis of molecules with complex topologies. However, the preparation of purely covalent molecular architectures in aqueous media has remained a challenging task. Here, we present the preparation of a three-dimensional catenane through a self-assembly process that relies on the formation of dynamic hydrazone linkages in an acidic aqueous medium. The quantitative synthesis process and the mechanically interlocked structure of the resulting catenane were established by NMR spectroscopy, mass spectrometry, X-ray crystallography and HPLC studies. In addition, the labile hydrazone linkages of the individual [2]catenane components may be ‘locked’ by increasing the pH of the solution, yielding a relatively kinetically stable molecule. The present study thus details a simple approach to the creation and control of complex molecular architectures under reaction conditions that mimic biological milieux.

  10. Haemozoin (B-haematin) biomineralization occurs by self-assembly near the lipid/water interface

    CSIR Research Space (South Africa)

    Egan, TJ

    2006-09-01

    Full Text Available remained unknown, although lipids or proteins have been suggested to catalyse its formation. We have found that B-haematin (synthetic haemozoin) forms rapidly under physiologically realistic conditions near octanol/water, pentanol/water and lipid...

  11. A Critical Review of Public-Public Partnerships in Water Services

    Directory of Open Access Journals (Sweden)

    Gemma Boag

    2010-02-01

    Full Text Available There is a profusion of literature on the commercialisation of water services around the world, but relatively little of this research speaks of alternatives to privatisation. The literature that does exist tends to be scattered in its regional and thematic orientation and inconsistent in its analytical frameworks. The writing on public-public partnerships (PUPs is arguably the best known and most rigorous of this literature, but even this is relatively thin, with a tendency to uncritically celebrate PUP initiatives and to gloss over ambiguous conceptual frameworks. This paper provides a critical review of the PUPs literature, in part to reveal some of these problematic trends, but ultimately in an effort to advance our understanding and practice of public alternatives in the water sector (and beyond. Specifically, it analyses the different partnership arrangements available, discusses the advantages and critiques of the PUP model in both theoretical and practical terms, and considers the recent emergence of Water Operator Partnerships (WOPs.

  12. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy.

    Science.gov (United States)

    Feindel, Kirk W; LaRocque, Logan P-A; Starke, Dieter; Bergens, Steven H; Wasylishen, Roderick E

    2004-09-22

    Proton NMR imaging was used to investigate in situ the distribution of water in a polymer electrolyte membrane fuel cell operating on H2 and O2. In a single experiment, water was monitored in the gas flow channels, the membrane electrode assembly, and in the membrane surrounding the catalysts. Radial gradient diffusion removes water from the catalysts into the surrounding membrane. This research demonstrates the strength of 1H NMR microscopy as an aid for designing fuel cells to optimize water management.

  13. Critical reflections on building a community of conversation about water governance in Australia

    Directory of Open Access Journals (Sweden)

    Naomi Rubenstein

    2016-02-01

    Full Text Available Water governance has emerged as a field of research endeavour in response to failures of current and historical management approaches to adequately address persistent decline in ecological health of many river catchments and pressures on associated communities. Attention to situational framing is a key aspect of emerging approaches to water governance research, including innovations that build capacity and confidence to experiment with approaches capable of transforming situations usefully framed as 'wicked'. Despite international investment in water governance research, a national research agenda on water governance was lacking in Australia in the late 2000s as were mechanisms to build the capacity of interdisciplinary and transdisciplinary research and collaborative policy practice. Through a two-year Water Governance Research Initiative (WGRI, we designed and facilitated the development of a community of conversation between researchers concerned with the dynamics of human-ecological systems from the natural sciences, humanities, social sciences, policy, economics, law and philosophy. The WGRI was designed as a learning system, with the intention that it would provide opportunities for conversations, learning and reflection to emerge. In this paper we outline the starting conditions and design of the WGRI, critically reflect on new narratives that arose from this initiative, and evaluate its effectiveness as a boundary organisation that contributed to knowledge co-production in water governance. Our findings point to the importance of investment in institutions that can act as integrative and facilitative governance mechanisms, to build capacity to work with and between research, policy, local stakeholders and practitioners.

  14. Organic chloramines in chlorine-based disinfected water systems: A critical review.

    Science.gov (United States)

    How, Zuo Tong; Kristiana, Ina; Busetti, Francesco; Linge, Kathryn L; Joll, Cynthia A

    2017-08-01

    This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides. Organic chloramines can form when dissolved organic nitrogen or dissolved organic carbon react with either free chlorine or inorganic chloramines. They are potentially harmful to humans and may exist as an intermediate for other disinfection by-products. However, little information is available on the formation or occurrence of organic chloramines in water due to a number of challenges. One of the biggest challenges for the identification and quantification of organic chloramines in water systems is the lack of appropriate analytical methods. In addition, many of the organic chloramines that form during disinfection are unstable, which results in difficulties in sampling and detection. To date research has focussed on the study of organic monochloramines. However, given that breakpoint chlorination is commonly undertaken in water treatment systems, the formation of organic dichloramines should also be considered. Organic chloramines can be formed from many different precursors and pathways. Therefore, studying the occurrence of their precursors in water systems would enable better prediction and management of their formation. Copyright © 2017. Published by Elsevier B.V.

  15. Self-assembly of neuroprotective carbazolium based small molecules at octane/water interface: A simulation investigation

    Science.gov (United States)

    Zolghadr, Amin Reza; Heydari Dokoohaki, Maryam

    2016-11-01

    The self-assembly of dibromocarbazole based small molecule (P7C3) and its analogues is studied at the octane/water interface by using molecular dynamics simulations. P7C3 protects newborn neurons from apoptotic cell death and enhances neurogenesis. The bromines on the carbazole appear particularly important, as the derivatives with dichloro and parent carbazole did not appear active at the concentrations tested. We are mainly focused on the question that why is dibromocarbazole derivative an effective neuroprotective drug, but not dichlorocarbazole or parent carbazole? It was found that P7C3 and P7C3-Cl were concentrated in the interfacial region, whereas the parent carbazole derivative were distributed throughout the water phase. The diffusion of P7C3 molecules in the interfacial region are higher than P7C3-Cl. This approach could use by experimentalist to evaluate the permeability of drug candidates prior to their synthesis.

  16. Water-Driven Assembly of Laser Ablation-Induced Au Condensates as Mesomorphic Nano- and Micro-Tubes

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2009-01-01

    Full Text Available Abstract Reddish Au condensates, predominant atom clusters and minor amount of multiply twinned particles and fcc nanoparticles with internal compressive stress, were produced by pulsed laser ablation on gold target in de-ionized water under a very high power density. Such condensates were self-assembled as lamellae and then nano- to micro-diameter tubes with multiple walls when aged at room temperature in water for up to 40 days. The nano- and micro-tubes have a lamellar- and relaxed fcc-type wall, respectively, both following partial epitaxial relationship with the co-existing multiply twinned nanoparticles. The entangled tubes, being mesomorphic with a large extent of bifurcation, flexibility, opaqueness, and surface-enhanced Raman scattering, may have potential encapsulated and catalytic/label applications in biomedical systems.

  17. Compilation of criticality data involving thorium or 233U and light water moderation

    Energy Technology Data Exchange (ETDEWEB)

    Gore, B.F.

    1978-07-01

    The literature has been searched for criticality data for light water moderated systems which contain thorium or /sup 233/U, and data found are compiled herein. They are from critical experiments, extrapolations, and exponential experiments performed with homogeneous solutions and metal spheres of /sup 233/U; with lattices of fuel rods containing highly enriched /sup 235/UO/sub 2/ - ThO/sub 2/ and /sup 233/UO/sub 2/ - ThO/sub 2/; and with arrays of cyclinders of /sup 233/U solutions. The extent of existing criticality data has been compared with that necessary to implement a thorium-based fuel cycle. No experiments have been performed with any solutions containing thorium. Neither do data exist for homogeneous /sup 233/U systems with H/U < 34, except for solid metal systems. Arrays of solution cylinders up to 3 x 3 x 3 have been studied. Data for solutions containing fixed or soluble poisons are very limited. All critical lattices using /sup 233/UO/sub 2/ - ThO/sub 2/ fuels (LWBR program) were zoned radially, and in most cases axially also. Only lattice experiments using /sup 235/UO/sub 2/ - ThO/sub 2/ fuels have been performed using a single fuel rod type. Critical lattices of /sup 235/UO/sub 2/ - ThO/sub 2/ rods poisoned with boron have been measured, but only exponential experiments have been performed using boron-poisoned lattices of /sup 233/UO/sub 2/ - ThO/sub 2/ rods. No criticality data exist for denatured fuels (containing significant amounts of /sup 238/U) in either solution or lattice configurations.

  18. Critical experiments with mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.R. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-06-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er{sub 2}O{sub 3} at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs.

  19. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays

    OpenAIRE

    Shen, Yue-xiao; Si, Wen; Erbakan, Mustafa; Decker, Karl; De Zorzi, Rita; Saboe, Patrick O.; Kang, You Jung; Majd, Sheereen; Butler, Peter J.; Walz, Thomas; Aksimentiev, Aleksei; Hou, Jun-Li; Kumar, Manish

    2015-01-01

    This study focuses on the design of highly permeable artificial water channels for the use in membrane-based separation materials. A platform was developed for the systematic characterization of the single-channel water conduction of artificial channels, which is based on permeability measurement by stopped-flow light-scattering experiments and single-molecule counting by fluorescence correlation spectroscopy. With this platform the water conduction of the redesigned peptide-appended pillar[5...

  20. Thermolysis of scrap tire and rubber in sub/super-critical water.

    Science.gov (United States)

    Li, Qinghai; Li, Fuxin; Meng, Aihong; Tan, Zhongchao; Zhang, Yanguo

    2017-10-25

    The rapid growth of waste tires has become a serious environmental issue. Energy and material recovery is regarded as a promising use for waste tires. Thermolysis of scrap tire (ST), natural rubber (NR), and styrene-butadiene rubber (SBR) was carried out in subcritical and supercritical water using a temperature-pressure independent adjustable batch tubular reactor. As a result, oil yields increased as temperature and pressure increased, and they reached maximum values as the state of water was near the critical point. However, further increases in water temperature and pressure reduced the oil yields. The maximum oil yield of 21.21% was obtained at 420 °C and 18 MPa with a reaction time of 40 min. The relative molecular weights of the chemicals in the oil products were in the range of 70-140 g/mole. The oil produced from ST, NR, and SBR contained similar chemical compounds, but the oil yield of SR was between those of NR and SBR. The oil yield from thermolysis of subcritical or supercritical water should be further improved. The main gaseous products, including CH4, C2H2, C2H4, C2H6, and C3H8, increased with reaction time, temperature, and pressure, whereas the solid residues, including carbon black and impurities, decreased. These results provide useful information to develop a sub/super-critical water thermolysis process for energy and material regeneration from waste tires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G.; Myers, W.; Stratton, W.

    1996-06-01

    The major objective of this study has been to examine the possibility of a nuclear explosion should 50 to 100 kg of plutonium be mixed with SiO{sub 2}, vitrified, placed within a heavy steel container, and buried in the material known as Nevada tuff. To accomplish this objective, the authors have created a survey of critical states or configurations of mixtures of plutonium, SiO{sub 2}, tuff, and water and examined these data to determine those configurations that might be unstable or autocatalytic. They have identified regions of criticality instability with the possibility of autocatalytic power behavior. Autocatalytic behavior is possible but improbable, for a very limited range of wet systems.

  2. Effects of streamflow variation on critical water quality for multiple discharges of decaying pollutants

    Science.gov (United States)

    Eheart, J. W.

    1988-01-01

    The assumption that the worst water quality occurs at the lowest streamflow may not always hold in instances involving multiple discharges and nonconservative pollutants. The additional dilution resulting from increased streamflow may be offset by adverse changes in the parameters that govern water quality and in decreased residence time, which allows the stream less time to recover from the effect of one discharge before receiving another. This paper addresses the question of whether, with multiple sources of decaying pollutants, water quality might worsen with increasing streamflow. For an isothermal uniform stream it is shown that the pattern of discharge that maximizes the derivative with respect to streamflow of critical dissolved oxygen deficit or the concentration of a substance exhibiting a first-order decay is an infinite uniform distributed load. Whether the maximum value of the derivative is positive or negative depends on the values of the parameters that characterize the hydraulic geometry of the channel and the dependence of reaeration on flow. Theoretical results presented here indicate that for most natural streams the traditional assumption, that the lowest streamflow is the worst from a water quality perspective, will usually be valid for first-order pollutants. Nevertheless, they also lead to the expectation that increases in impacts with increasing streamflow might occur for dissolved oxygen, especially in highly polluted and regulated streams (pollution, water quality models, rules and regulations, and management).

  3. Critical wetting of n-alkanes on water; Mouillage critique des alcanes sur l`eau

    Energy Technology Data Exchange (ETDEWEB)

    Ragil, K.

    1996-10-18

    This study concerns the wetting properties of n-alkanes on water under thermodynamic equilibrium conditions, a problem that is interesting for the petroleum industry as well as for the fundamental understanding of wetting phenomena. An experimental study using ellipsometry reveals that pentane on water undergoes a continuous or critical wetting transition at a temperature equal to 53.1 deg. C. This is the first experimental observation of such a transition, confirming theoretical predictions made on this subject over ten years. This transition is characterized by a continuous and reversible evolution of the thickness of the film of pentane with temperature from a thick (but finite film) to a macroscopic film. The critical wetting transition occurs when the Hamaker constant of the system, which gives the net interaction between the two interfaces bounding the wetting layer of pentane in terms of the van der Waals forces, changes sign. A theoretical approach based on the Cahn-Landau theory, which takes into account long range forces (van der Waals forces), enables us to explain the mechanism of the critical wetting transition and to show that a first-order wetting transition should precede it. Because of their similar dispersive properties, linear alkanes could all be able to show such a succession of transitions. An ellipsometry study performed on a brine/hexane/vapor system confirms that a discontinuous transition from a thin microscopic film to a thick but finite adsorbed film takes place. THis study demonstrates that the wetting of alkanes on water is determined by subtle interplay between short range and long range forces, which can lead to an intermediary state between partial and complete wetting. (author)

  4. Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation

    Science.gov (United States)

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

    1982-05-13

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  5. Application of oligonucleotide as a template for the assembly of nucleoamphiphile bearing azobenzene at the air-water interface.

    Science.gov (United States)

    Haruta, Osamu; Ijiro, Kuniharu

    2007-03-01

    In order to assemble amphiphilic adenine having azobenzene, C12AzoC5Ade (AzoAde), at the air-water interface based on the molecular recognition of DNA, we prepared aqueous linear oligothymidylic acids, dTn (n = 4, 6, 8, 10, 30), subphase as templates. Surface pressure-area (pi-A) isotherms and UV-Vis reflection absorption spectra of AzoAde were measured to investigate the effect of chain length of the oligothymidylic acid on the molecular recognition by forming a complementary A-T base pair. It was showed that AzoAde did not form a stable monolayer on the dT4 subphase and remained monomeric state. While AzoAde provided expanded monolayers and formed J-aggregates of azobenzene moieties on the dTn (n > 4) subphases even at the low molecular density. We also investigated the molecular recognition of template oligonucleotides by comparing dT30 with dA30, indicating that AzoAde had not a specific interaction with dA30 at the air-water interface due to base mismatching. The AzoAde monolayer on the dA30 subphase gave H-aggregate from monomeric state by compressing it. On the other hand, it remained J-aggregated state on dT30 subphase regardless of compression. It was, therefore, suggested that the linear oligothymidylic acids, dT, (n > 4), acted as templates for assembling AzoAde at the air-water interface.

  6. Critical Issues in Sensor Science To Aid Food and Water Safety

    Energy Technology Data Exchange (ETDEWEB)

    Farahi, R. H.; Passian, A.; Tetard, L.; Thundat, T.

    2012-06-26

    The stability of food and water supplies is widely recognized as a global issue of fundamental importance. Sensor development for food and water safety by nonconventional assays continues to overcome technological challenges. The delicate balance between attaining adequate limits of detection, chemical fingerprinting of the target species, dealing with the complex food matrix, and operating in difficult environments are still the focus of current efforts. While the traditional pursuit of robust recognition methods remains important, emerging engineered nanomaterials and nanotechnology promise better sensor performance but also bring about new challenges. Both advanced receptor-based sensors and emerging non-receptor-based physical sensors are evaluated for their critical challenges toward out-of-laboratory applications.

  7. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    National Research Council Canada - National Science Library

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME...

  8. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui-Kang [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China)

    2014-08-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior.

  9. Intermediates in assembly by photoactivation after thermally accelerated disassembly of the manganese complex of photosynthetic water oxidation.

    Science.gov (United States)

    Barra, Marcos; Haumann, Michael; Loja, Paola; Krivanek, Roland; Grundmeier, Alexander; Dau, Holger

    2006-12-05

    The Mn4Ca complex bound to photosystem II (PSII) is the active site of photosynthetic water oxidation. Its assembly involves binding and light-driven oxidation of manganese, a process denoted as photoactivation. The disassembly of the Mn complex is a thermally activated process involving distinct intermediates. Starting from intermediate states of the disassembly, which was initiated by a temperature jump to 47 degrees C, we photoactivated PSII membrane particles and monitored the activity recovery by O2 polarography and delayed chlorophyll fluorescence measurements. Oxidation state and structural features of the formed intermediates of the Mn complex were assayed by X-ray absorption spectroscopy at the Mn K-edge. The photoactivation time courses, which exhibit a lag phase characteristic of intermediate formation only when starting with the apo-PSII, suggest that within approximately 5 min of photoactivation of apo-PSII, a binuclear Mn complex is formed. It is proposed that a MnIII2(di-mu-oxo) complex is a key intermediate both in the disassembly and in the assembly reaction paths.

  10. Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Ali Chami Khazraji

    2013-01-01

    Full Text Available Cellulose chains are linear and aggregation occurs via both intra- and intermolecular hydrogen bonds. Cellulose has a strong affinity to itself and toward materials containing hydroxyls groups. Based on the preponderance of hydroxyl functional groups, cellulose is very reactive with water. At room temperature, cellulose chains will have at least a monomolecular layer of water associated to it. The formation of hydrogen bonds at the cellulose/water interface is shown to depend essentially on the adsorption site, for example, the equatorial hydroxyls or OH moieties pointing outward from the cellulose chains. The vdW forces also contribute significantly to the adsorption energy. They are a considerable cohesive energy into the cellulose network. At the surface of the cellulose chains, many intermolecular hydrogen bonds of the cellulose chains are lost. However, they are compensated by hydrogen bonds with water molecules. Electronic clouds can be distorted and create electrostatic dipoles. The large antibonding electron cloud that exists around the glucosidic bonds produces an induced polarization at the approach of water molecules. The electron cloud can be distorted and create an electrostatic dipole. It applies to the total displacement of the atoms within the material. Orbitals play a special role in reaction mechanism. Hydrophilic/hydrophobic nature of cellulose is based on its structural anisotropy. Cellulose-water interactions are exothermic reactions. These interactions may occur spontaneously and result in higher randomness of the system. They are denoted by a negative heat flow (heat is lost to the surroundings. Energy does not need to be inputted in order for cellulose-water interactions to occur.

  11. Critical review of the literature on the corrosion of copper by water

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada))

    2010-12-15

    The conventional belief that copper is thermodynamically stable in oxygen-free water has been questioned by a research group from the Royal Inst. of Technology, Stockholm lead by Dr. Gunnar Hultquist. A critical review of the literature both in support of the proposed mechanism and that which argues against it has been conducted. The critical review has been supported by supplementary analyses, with particular focus on the scientific validity of the reported observations and their significance for the corrosion of a copper canister. It is found that: - the scientific evidence in support of the suggestion that water oxidises copper is not conclusive and there are many aspects which are unclear and contradictory, - despite a number of attempts, no other researchers have been able to reproduce the observations of Hultquist and co-workers, - even if correct, the mechanism is not important for copper canisters in a repository, both because of differences in the environmental conditions and because, even if corrosion did occur by this mechanism, it would quickly stop, and - there is no adverse impact on the lifetime of copper canisters due to this proposed, but unproven, mechanism

  12. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Myers, W.; Hayes, D.; Kimpland, R. [and others

    1996-09-01

    The major objective of this study has been to examine the possibility of a nuclear explosion (and evaluate this event if it is possible) should 50 to 100 kg of plutonium be mixed with SiO{sub 2}, vitrified, placed within a heavy steel container, and buried in the material known as Nevada tuff. To accomplish this objective we have created a survey of the critical states or configurations of mixtures of plutonium, SiO{sub 2}, tuff, and water and examined these data to isolate those configurations that might be unstable or autocatalytic. The survey of critical data now exists and is published herein. We identify regions of criticality instability with the possibility of autocatalytic power behavior (the existence of such autocatalytic phenomena is not new). Autocatalytic power behavior is possible for a very limited range of wet systems, but this behavior is improbable. A quantitative and conservative evaluation of the fission power behavior of these autocatalytic mixtures shows that no explosion should be expected.

  13. CO₂-Responsive Pillar[5]arene-Based Molecular Recognition in Water: Establishment and Application in Gas-Controlled Self-Assembly and Release.

    Science.gov (United States)

    Jie, Kecheng; Zhou, Yujuan; Yao, Yong; Shi, Bingbing; Huang, Feihe

    2015-08-26

    Here we developed a novel CO2-responsive pillararene-based molecular recognition motif established from a water-soluble pillar[5]arene and an anionic surfactant, sodium dodecyl sulfonate (SDS). The inclusion complex acted as a supramolecular amphiphile and self-assembled into spherical bilayer vesicles as confirmed by DLS, SEM, and TEM experiments. These vesicles were disrupted upon bubbling N2 or adding much more SDS to eliminate the inclusion complex. The assembly and disassembly of vesicles were successfully employed in gas and surfactant triggered releases of calcein, a water-soluble dye.

  14. Bottom head to shell junction assembly for a boiling water nuclear reactor

    Science.gov (United States)

    Fife, Alex Blair; Ballas, Gary J.

    1998-01-01

    A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.

  15. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  16. Soil water storage, mixing dynamics and resulting travel times through the critical zone in northern latitudes

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Weiler, Markus; Soulsby, Chris

    2017-04-01

    Water partitioning in the unsaturated zone into groundwater recharge, plant transpiration, and evaporation is fundamental for estimating storages and travel times. How water is mixed and routed through the soil is of broad interest to understand plant available water, contamination transport and weathering rates in the critical zone. Earlier work has shown how seasonal changes in hydroclimate influence the time variant character of travel times. A strong seasonality characterizes the northern latitudes which are particularly sensitive to climate and land use changes. It is crucial to understand how variation and change in hydroclimate and vegetation phenology impact time variant storage dynamics and flow path partitioning in the unsaturated zone. To better understand the influence of these ecohydrological processes on travel times of evaporative, transpiration and recharge fluxes in northern latitudes, we characterized soil physical properties, hydrometric conditions and soil water isotopic composition in the upper soil profile in two different land scape units in the long term experimental catchment, Bruntland Burn in the Scottish Highlands. Our two sampling locations are characterized by podzol soils with high organic matter content but they differ with regard to their vegetation cover with either Scots Pine (Pinus sylvestris) or heather (Calluna sp. and Erica Sp). To assess storage and mixing dynamics in the vadose zone, we parameterized a numerical 1-D flow model using the soil textural information along with soil moisture and soil water stable isotopes (δ2H and δ18O). The water flow and transport were simulated based on the Richards and the advection dispersion equation. Differences between water flows of mobile and tightly bound soil waters and the mixing between the two pore spaces were considered. Isotopic fractionation due to evaporation from soil and interception storage was taken into account, while plant water uptake did not alter the isotopic

  17. Water-Based Assembly and Purification of Plasmon-Coupled Gold Nanoparticle Dimers and Trimers

    Directory of Open Access Journals (Sweden)

    Sébastien Bidault

    2012-01-01

    Full Text Available We describe a simple one-pot water-based scheme to produce gold nanoparticle groupings with short interparticle spacings. This approach combines a cross-linking molecule and a hydrophilic passivation layer to control the level of induced aggregation. Suspensions of dimers and trimers are readily obtained using a single electrophoretic purification step. The final interparticle spacings allow efficient coupling of the particle plasmon modes as verified in extinction spectroscopy.

  18. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions

    Science.gov (United States)

    Gibard, Clémentine; Bhowmik, Subhendu; Karki, Megha; Kim, Eun-Kyong; Krishnamurthy, Ramanarayanan

    2018-02-01

    Prebiotic phosphorylation of (pre)biological substrates under aqueous conditions is a critical step in the origins of life. Previous investigations have had limited success and/or require unique environments that are incompatible with subsequent generation of the corresponding oligomers or higher-order structures. Here, we demonstrate that diamidophosphate (DAP)—a plausible prebiotic agent produced from trimetaphosphate—efficiently (amido)phosphorylates a wide variety of (pre)biological building blocks (nucleosides/tides, amino acids and lipid precursors) under aqueous (solution/paste) conditions, without the need for a condensing agent. Significantly, higher-order structures (oligonucleotides, peptides and liposomes) are formed under the same phosphorylation reaction conditions. This plausible prebiotic phosphorylation process under similar reaction conditions could enable the systems chemistry of the three classes of (pre)biologically relevant molecules and their oligomers, in a single-pot aqueous environment.

  19. [Comparison of conductivity-water content curve and visual methods for ascertaintation of the critical water content of O/W microemulsions formation].

    Science.gov (United States)

    Xiang, Da-wei; Tang, Tian-tian; Peng, Jin-fei; Li, Lan-lin; Sun, Xiao-bo; Xiang, Da-xiong

    2010-08-01

    This study is to screen 23 blank O/W type microemulsion (ME) samples, that is 15 samples from our laboratory, and 8 samples from literature; compare the conductivity-water content curve (CWCC) method and visual method in determining the critical water content during O/W type MEs' formation, to analyze the deficiency and the feasibility of visual method and to exploxe scientific meanings of CWCC method in judging the critical water content of O/W type MEs during formation. The results show that there is a significant difference between the theoretical feasible CWCC method and visual method in determining the critical water content (Pcontent. Therefore, this article firmly confirmed the shortcomings of visual method and suggested that the eye-base "critical water content" may falls into continuous ME stage during O/W MEs' formation. Further more, the CWCC method has theoretical feasibility and scientific meanings in determining the critical water content of O/W type MEs during formation.

  20. Using Isotopic Age of Water as a Constraint on Model Identification at a Critical Zone Observatory

    Science.gov (United States)

    Duffy, C.; Thomas, E.; Bhatt, G.; George, H.; Boyer, E. W.; Sullivan, P. L.

    2016-12-01

    This paper presents an ecohydrologic model constrained by comprehensive space and time observations of water and stable isotopes of oxygen and hydrogen for an upland catchment, the Susquehanna/Shale Hills Critical Zone Observatory (SSH_CZO). The paper first develops the theoretical basis for simulation of flow, isotope ratios and "age" as water moves through the canopy, to the unsaturated and saturated zones and finally to an intermittent stream. The model formulation demonstrates that the residence time and age of environmental tracers can be directly simulated without knowledge of the form of the underlying residence time distribution function and without the addition of any new physical parameters. The model is used to explore the observed rapid attenuation of event and seasonal isotopic ratios in precipitation over the depth of the soil zone and the impact of decreasing hydraulic conductivity with depth on the dynamics of streamflow and stream isotope ratios. The results suggest the importance of mobile macropore flow on recharge to groundwater during the non-growing cold-wet season. The soil matrix is also recharged during this season with a cold-season isotope signature. During the growing-dry season, root uptake and evaporation from the soil matrix along with a declining water table provides the main source of water for plants and determines the growing season signature. Flow path changes during storm events and transient overland flow is inferred by comparing the frequency distribution of groundwater and stream isotope histories with model results. Model uncertainty is evaluated for conditions of matrix-macropore partitioning and heterogeneous variations in conductivity with depth. The paper concludes by comparing the fully dynamical model with the simplified mixing model form in dynamic equilibrium. The comparison illustrates the importance of system memory on the time scales for flow and mixing processes and the limitations of the dynamic equilibrium

  1. Critical speed for capillary-gravity surface flows in the dispersive shallow water limit

    Science.gov (United States)

    Pham, Chi-Tuong; Nore, Caroline; Brachet, Marc-Étienne

    2005-06-01

    The stability of perfect-fluid capillary-gravity surface flows past a cylindrical obstacle is studied in the shallow water limit, using the two-dimensional compressible Euler equations, with leading-order dispersive corrections. Stationary solutions with different contact angles are obtained by Newton branch following, based on Fourier pseudospectral methods, using mapped Chebychev polynomials. Stable and unstable branches are found to meet, through a saddle-node bifurcation, at a critical speed beyond which no stationary solution exists. For large obstacles, the stable branch is compared with the stationary solutions of the compressible Euler equation without dispersion. Boundary layers are investigated. In this regime, the unstable dynamics are shown to lead to a finite-time dewetting singularity.

  2. Zooplankton assembly in mountain lentic waters is primarily driven by local processes

    Science.gov (United States)

    Tavernini, Silvia; Primicerio, Raul; Rossetti, Giampaolo

    2009-01-01

    The influence of local (i.e. physico-chemical constraints) and regional (i.e. dispersal) processes in determining the structure of zooplankton communities in lentic waters was analysed in a mountain district of 4500 km 2 (northern Apennines, Italy). In the 47 lakes and ponds considered in this study, a total of 139 taxa were found. Surface area (SA) and maximum depth ( Zmax) significantly influenced species richness and nestedness, stressing the importance of habitat availability for zooplankton diversity and composition. Species richness and nestedness did not correlate with site isolation, indicating low influence of dispersal for these community properties. A negative relationship between the similarity in species composition among sites and their mutual geographic distance was also found. The relative importance of different sources of compositional variation was quantified by direct ordination. Local environmental conditions (i.e. Zmax, altitude, pH and conductivity) accounted for 65.9 % of the variation in rotifer assemblages. The importance of environmental constraints in structuring zooplankton communities was best documented by the microcrustacean distribution in the study area, which was mainly correlated (73.4 % of the variation in the species data) with water ionic content, surface area and hydroperiod of the habitats. Although previous studies on processes shaping zooplankton assemblages that operate at different scales have yielded contrasting results, our data provide clear evidence for a major role of local constraints.

  3. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas [Tulane University, Department of Chemistry (United States); Alb, Alina [Tulane University, Department of Physics and Engineering Physics (United States); Mitchell, Brian S. [Tulane University, Department of Chemical and Biomolecular Engineering (United States); Grayson, Scott M.; Fink, Mark J., E-mail: fink@tulane.edu [Tulane University, Department of Chemistry (United States)

    2015-01-15

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  4. A Self-assembled Fluoride-Water Cyclic Cluster of $[F(H_2O)]_4^{4-}$ in a Molecular Box

    CERN Document Server

    Hossain, Md Alamgir; Pramanik, Avijit; Wong, Bryan M; Haque, Syed A; Powell, Douglas R

    2013-01-01

    We present an unprecedented fluoride-water cyclic cluster of $[F(H_2O)]_4^{4-}$ assembled in a cuboid-shaped molecular box formed by two large macrocycles. Structural characterization reveals that the $[F(H_2O)]_4^{4-}$ is assembled by strong H-bonding interactions (OH...F = 2.684(3) to 2.724(3) {\\AA}), where a fluoride anion plays the topological role of a water molecule in the classical cyclic water octamer. The interaction of fluoride was further confirmed by $^{19}$F NMR and $^1$H NMR spectroscopies, indicating the encapsulation of the anionic species within the cavity in solution. High level DFT calculations and Bader topological analyses fully support the crystallographic results, demonstrating that the bonding arrangement in the fluoride-water cluster arises from the unique geometry of the host.

  5. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  6. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    Science.gov (United States)

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  7. Water Quality Improvement Performance of Geotextiles Within Permeable Pavement Systems: A Critical Review

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2013-04-01

    Full Text Available Sustainable drainage systems (SuDS; or best management practices are increasingly being used as ecological engineering techniques to prevent the contamination of receiving watercourses and groundwater. Permeable paving is a SuDS technique, which is commonplace in car parks, driveways and minor roads where one of their functions is to improve the quality of urban runoff. However, little is known about the water quality benefits of incorporating an upper geotextile within the paving structure. The review focuses on five different categories of pollutants: organic matter, nutrients, heavy metals, motor oils, suspended solids originating from street dust, and chloride. The paper critically assesses results from previous international tests and draws conclusions on the scientific rigour and significance of the data. Findings indicate that only very few studies have been undertaken to address the role of geotextiles directly. All indications are that the presence of a geotextile leads only to minor water quality improvements. For example, suspended solids are being held back by the geotextile and these solids sometimes contain organic matter, nutrients and heavy metals. However, most studies were inconclusive and data were often unsuitable for further statistical analysis. Further long-term research on industry-relevant, and statistically and scientifically sound, experimental set-ups is recommended.

  8. Removal and recovery of Critical Rare Elements from contaminated waters by living Gracilaria gracilis.

    Science.gov (United States)

    Jacinto, Jéssica; Henriques, Bruno; Duarte, A C; Vale, Carlos; Pereira, E

    2017-10-27

    The experiments performed in this work proved the ability of Gracilaria gracilis to concentrate and recover Critical Rare Elements (CRE) from contaminated waters. The importance of recycling these elements is related to their very limited sources in Nature and progressive use in technologies. Moreover, their mining exploitation has negative environmental impact, and recent studies point them as new emerging pollutants. To the best of our knowledge, this is the first report on the application of living macroalgae for the removal and recovery of CRE. G. gracilis (2.5gL-1, fresh weight) was exposed to mono- and multi-element saline solutions of 500μgL-1 of Y, Ce, Nd, Eu and La. Removal was up to 70% in 48h, with bioaccumulation following Elovich kinetic model. In multi-element solutions, selectivity was not observed although removal of lanthanides improved comparatively to single-element solutions. No mortality or adverse effect on growth was registered. The subsequent macroalgae digestion allowed collecting virtually 100% of all elements in a 300-fold more concentrated solution. The overall results suggest the application of living macroalgae as a simple and effective alternative technology for removing and recovering CRE from wastewaters, contributing to an improvement of water quality and CRE recycling. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Integration of In-Flight and Post-Flight Water Monitoring Resources in Addressing the U.S. Water Processor Assembly Total Organic Carbon (TOC) Anomaly

    Science.gov (United States)

    Straub, John E., II; McCly, J. Torin

    2011-01-01

    Beginning in June of 2010, the total organic carbon (TOC) concentration in the U.S. Water Processor Assembly (WPA) product water started to increase. A surprisingly consistent upward TOC trend was observed through weekly ISS total organic carbon analyzer (TOCA) monitoring. As TOC is a general organic compound indicator, return of water archive samples was needed to make better-informed crew health decisions on the specific compounds of concern and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to the health-based screening limit of 3,000 g/L before archive samples were returned. Archive samples were returned on 22 Soyuz in September 2010 and on ULF5 in November of 2010. The samples were subjected to extensive analysis. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were detected at high levels. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of siloxanes which are thought to be ubiquitous in the ISS atmosphere. A toxicological limit was set for DMSD and a forward plan was developed for conducting operations in the context of understanding the composition of the TOC measured in flight. This required careful consideration of existing ISS flight rules, coordination with ISS stakeholders, and development of a novel approach for the blending of inflight TOCA data with archive results to protect crew health. Among other challenges, team members had to determine how to utilize TOCA readings when making decisions about crew consumption of WPA water. This involved balancing very real concerns associated with the assumption that TOC would continue to be comprised of only DMSD. Demonstrated teamwork, multidisciplinary awareness, and innovative problem-solving were required to respond effectively to this anomaly.

  10. EVALUATION OF ACOUSTICAL HOLOGRAPHY FOR THE INSPECTION OF LIGHT WATER REACTOR WELD ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Collins, H. D.; Gribble, R. P.

    1982-06-01

    The primary objective of this program was the evaluation of acoustical holography techniques for characterization of the light water reactor weld surface signatures in the nuclear safeguards program. The accurate characterization of weld surface irregulari ties and vertical deviations was achieved using acoustical holographic interferometric techniques. Preselected weld surfaces were inspected and the vertical deviations characterized by phase measurements or fringe densities in the image. Experimental results on Sandia samples verify depth deviation sensitivities of 0.11 {micro}m to 0.16 {micro}m. The two point interferogram technique is recommended for surveillance of the weld surface associated wi th fuel rod removal in the nuclear safeguard program. The use of this unique holographic signal processing provides essentially a fail-safe method for surveillance of clandestine fuel rod removal. Statistical analysis indicates 99.99% (weld surface deviation) confidence interval between 2~m and 3~m can be achieved. These results illustrate the extremely high resolution capabilities of the surveillance technique employing coherent signal processing.

  11. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  12. Consequences of CO2-rich water intrusion into the Critical Zone

    Science.gov (United States)

    Gal, Frédérick; Lions, Julie

    2017-04-01

    From a geochemical point of view, the sensitivity of the Critical Zone to hazards is not only linked to its proximity to the surface. It may also be linked to - albeit less common - intrusion of upward migrating fluids. One of the hazard scenarios to observe these pathways in surface environments is the occurrence of CO2-rich fluid leakage from deeper horizons and especially leakage from reservoir in the case of underground storage such as Carbon Storage applications. Much effort is done to prevent this risk but it necessary to consider the mitigation of this leak to insure safe storage. Numerous active or planned CO2 storage sites belong to large sedimentary basins. In that perspective, a CO2 injection has been performed in a multi-layered - carbonated aquifer (Beauce aquifer) from the Paris basin as this basin has been considered for such applications. The aquifer mineralogy of the targeted site is dominated by calcite (95 to 98%) with traces of quartz and clay minerals. Around 10,000 liters of CO2 were injected at 50 m depth during a series of gaseous pulsed injections for 5 days. After 3 days of incubation in the aquifer, the groundwater was pumped during 5 days allowing the recovery of 140 m3 of backward water. Physico-chemical parameters, major and trace elements concentrations and dissolved CO2 concentrations were monitored to evaluate water-rock interactions occurring within the aquifer and impacts onto water quality. Main changes that were observed during the CO2 release are in good agreement with results from previous experiments performed worldwide. A strong decrease of the pH value (2 units), a rise of the electrical conductivity (2 fold) and changes in the redox conditions (from oxidising to less oxidising) are monitored few hours after the initiation of the pumping. The dissolution of CO2 induces a drop of pH that favours water-rock interaction processes. The kinetic of reactions appears to be dominated by the dissolution of carbonate, mainly calcite

  13. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  14. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development

  15. De-novo assembly of mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment.

    Science.gov (United States)

    Luria, Neta; Sela, Noa; Yaari, Mor; Feygenberg, Oleg; Kobiler, Ilana; Lers, Amnon; Prusky, Dov

    2014-11-05

    The mango belongs to the genus Mangifera, consisting of numerous tropical fruiting trees in the flowering plant family, Anacardiaceae. Postharvest treatment by hot water brushing (HWB) for 15-20 s was introduced commercially to improve fruit quality and reduce postharvest disease. This treatment enabled successful storage for 3-4 weeks at 12°C, with improved color and reduced disease development, but it enhanced lenticel discoloration on the fruit peel. We investigated global gene expression induced in fruit peel by HWB treatment, and identified key genes involved in mechanisms potentially associated with fruit resistance to pathogens, peel color improvement, and development of lenticel discoloration; this might explain the fruit's phenotypic responses. The mango transcriptome assembly was created and characterized by application of RNA-seq to fruit-peel samples. RNA-seq-based gene-expression profiling identified three main groups of genes associated with HWB treatment: 1) genes involved with biotic and abiotic stress responses and pathogen-defense mechanisms, which were highly expressed; 2) genes associated with chlorophyll degradation and photosynthesis, which showed transient and low expression; and 3) genes involved with sugar and flavonoid metabolism, which were highly expressed. We describe a new transcriptome of mango fruit peel of cultivar Shelly. The existence of three main groups of genes that were differentially expressed following HWB treatment suggests a molecular basis for the biochemical and physiological consequences of the postharvest HWB treatment, including resistance to pathogens, improved color development, and occurrence of lenticel discoloration.

  16. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Murphy, Michael F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  17. CRITICAL CONFIGURATION AND PHYSICS MEASUREMENTS FOR BERYLLIUM REFLECTED ASSEMBLIES OF U(93.15)O2 FUEL RODS (1.506-CM PITCH AND 7-TUBE CLUSTERS)

    Energy Technology Data Exchange (ETDEWEB)

    Margaret A. Marshall

    2014-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil when it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one Na

  18. Studies on validation possibilities for computational codes for criticality and burnup calculations of boiling water reactor fuel; Untersuchungen zu Validierungsmoeglichkeiten von Rechencodes fuer Kritikalitaets- und Abbrandrechnungen von Siedewasserreaktor-Brennstoff

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthais; Hannstein, Volker; Kilger, Robert; Sommer, Fabian; Stuke, Maik

    2017-06-15

    The Application of the method of Burn-up Credit on Boiling Water Reactor fuel is much more complex than in the case of Pressurized Water Reactors due to the increased heterogeneity and complexity of the fuel assemblies. Strongly varying enrichments, complex fuel assembly geometries, partial length fuel rods, and strong axial variations of the moderator density make the verification of conservative irradiation conditions difficult. In this Report, it was investigated whether it is possible to take into account the burn-up in criticality analyses for systems with irradiated Boiling Water Reactor fuel on the basis of freely available experimental data and by additionally applying stochastic methods. In order to achieve this goal, existing methods for stochastic analysis were adapted and further developed in order to being applicable to the specific conditions needed in Boiling Water Reactor analysis. The aim was to gain first insight whether a workable scheme for using burn-up credit in Boiling Water Reactor applications can be derived. Due to the fact that the different relevant quantities, like e.g. moderator density and the axial power profile, are strongly correlated, the GRS-tool SUnCISTT for Monte-Carlo uncertainty quantification was used in the analysis. This tool was coupled to a simplified, consistent model for the irradiation conditions. In contrast to conventional methods, this approach allows to simultaneously analyze all involved effects.

  19. Supramolecular Assembly of Water-Soluble Poly(ferrocenylsilanes): Multilayer Structures on Flat Interfaces and Permeability of Microcapsules

    NARCIS (Netherlands)

    Ma, Y.; Dong, Wen-Fei; Kooij, Ernst S.; Hempenius, Mark A.; Mohwald, Helmuth; Vancso, Gyula J.

    2007-01-01

    We report on the layer-by-layer (LBL) supramolecular assembly of redox responsive, organometallic polyion films on planar and curved (spherical) substrates. Organometallic poly(ferrocenylsilane) (PFS) polyanions and polycations were first used to assemble multilayers on planar quartz, silicon and

  20. Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review.

    Science.gov (United States)

    Demars, B O L; Manson, J R

    2013-01-01

    The gas transfer velocity (K(L)) and related gas transfer coefficient (k(2) = K(L)A/V, with A, area and V, volume) at the air-water interface are critical parameters in all gas flux studies such as green house gas emission, whole stream metabolism or industrial processes. So far, there is no theoretical model able to provide accurate estimation of gas transfer in streams. Hence, reaeration is often estimated with empirical equations. The gas transfer velocity need then to be corrected with a temperature coefficient θ = 1.0241. Yet several studies have long reported variation in θ with temperature and 'turbulence' of water (i.e. θ is not a constant). Here we re-investigate thoroughly a key theoretical model (Dobbins model) in detail after discovering important discrepancies. We then compare it with other theoretical models derived from a wide range of hydraulic behaviours (rigid to free continuous surface water, wave and waterfalls with bubbles). The results of the Dobbins model were found to hold, at least theoretically in the light of recent advances in hydraulics, although the more comprehensive results in this study highlighted a higher degree of complexity in θ's behaviour. According to the Dobbins model, the temperature coefficient θ, could vary from 1.005 to 1.042 within a temperature range of 0-35 °C and wide range of gas transfer velocities, i.e. 'turbulence' condition (0.005 turbulence', and only modest variability in θ with change in temperature. However, the other theoretical models did not have the same temperature coefficient θ (with 1.000 turbulence and bubble mediated gas transfer velocities suggested a lower temperature dependence for bubble (1.013turbulence (1.023turbulence on the temperature dependence of gas transfer at the air-water interface has still to be clarified, although many models simulate different flow conditions which may explain some of the observed discrepancies. We suggest that the temperature dependence curves produced by

  1. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    Science.gov (United States)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  2. Fluid-flow-templated self-assembly of calcium carbonate tubes in the laboratory and in biomineralization: The tubules of the watering-pot shells, Clavagelloidea.

    Science.gov (United States)

    Cardoso, Silvana S S; Cartwright, Julyan H E; Checa, Antonio G; Sainz-Díaz, C Ignacio

    2016-10-01

    We show with laboratory experiments that self-assembled mineral tube formation involving precipitation around a templating jet of fluid - a mechanism well-known in the physical sciences from the tubular growth of so-called chemical gardens - functions with carbonates, and we analyse the microstructures and compositions of the precipitates. We propose that there should exist biological examples of fluid-flow-templated tubes formed from carbonates. We present observational and theoretical modelling evidence that the complex structure of biomineral calcium carbonate tubules that forms the 'rose' of the watering-pot shells, Clavagelloidea, may be an instance of this mechanism in biomineralization. We suggest that this is an example of self-organization and self-assembly processes in biomineralization, and that such a mechanism is of interest for the production of tubes as a synthetic biomaterial. The work discussed in the manuscript concerns the self-assembly of calcium carbonate micro-tubes and nano-tubes under conditions of fluid flow together with chemical reaction. We present the results of laboratory experiments on tube self-assembly together with theoretical calculations. We show how nature may already be making use of this process in molluscan biomineralization of the so-called watering-pot shells, and we propose that we may be able to take advantage of the formation mechanism to produce synthetic biocompatible micro- and nano-tubes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Critical body residues linked to octanol-water partitioning, organism composition, and LC50 QSARs: Meta-analysis and model

    NARCIS (Netherlands)

    Hendriks, A.J.; Traas, T.P.; Huijbregts, M.A.J.

    2005-01-01

    To protect thousands of species from thousands of chemicals released in the environment, various risk assessment tools have been developed. Here, we link quantitative structure-activity relationships (QSARs) for response concentrations in water (LC50) to critical concentrations in organisms (C-50)

  4. Study on the introduction of hazard analysis and critical control point (HACCP) concept of the water quality management in water supply systems.

    Science.gov (United States)

    Yokoi, H; Embutsu, I; Yoda, M; Waseda, K

    2006-01-01

    In the latest revision in 2004, the 3rd edition, the Water Safety Plans (WSP) was newly introduced into the World Health Organization (WHO) Guidelines for Drinking Water Quality. The Hazard analysis and critical control point (HACCP) is a basic concept that underlies the WSPs, and is also known as the product quality management method in the field of food and the medical manufacturing industries. In the amendments of the Drinking Water Quality Standards in Japan, water suppliers are required to reasonably achieve both safe water and efficient water quality management. Therefore, the HACCP concept is focused as an adequate management method covering a whole process of water supply systems, in a systematic way. The purpose of this study is to investigate a practical procedure in introducing the HACCP into water quality management in Japan. In comparison to conventional applications of the HACCP, unmanageable variations of raw water quality, continuous treatment and supply, and numerous standards of water quality items need to be considered. The HACCP system is expected to achieve a quick response to improvements in water quality, accountability towards consumers and a decrease in accidents.

  5. Regaining water swallowing function in the rehabilitation of critically ill patients with intensive-care-unit acquired muscle weakness.

    Science.gov (United States)

    Thomas, Simone; Sauter, Wolfgang; Starrost, Ulrike; Pohl, Marcus; Mehrholz, Jan

    2017-03-21

    Treatment in intensive care units (ICUs) often results in swallowing dysfunction. Recent longitudinal studies have described the recovery of critically ill people, but we are not aware of studies of the recovery of swallowing function in patients with ICU-acquired muscle weakness. This paper aims to describe the time course of regaining water swallowing function in patients with ICU-acquired weakness in the post-acute phase and to describe the risks of regaining water swallowing function and the risk factors involved. This cohort study included patients with ICU-acquired muscle weakness in our post-acute department, who were unable to swallow. We monitored the process of regaining water swallowing function using the 3-ounce water swallowing test. We included 108 patients with ICU-acquired muscle weakness. Water swallowing function was regained after a median of 12 days (interquartile range =17) from inclusion in the study and after a median of 59 days (interquartile range= 36) from the onset of the primary illness. Our multivariate Cox Proportional Hazard model yielded two main risk factors for regaining water swallowing function: the number of medical tubes such as catheters at admission to the post-acute department (adjusted hazard ratio [HR] = 1.282; 95% confidence interval [CI]: 1.099-1.495) and the time until weaning from the respirator in days (adjusted HR =1.02 per day; 95%CI: 0.998 to 1.008). We describe a time course for regaining water swallowing function based on daily tests in the post-acute phase of critically ill patients. Risk factors associated with regaining water swallowing function in rehabilitation are the number of medical tubes and the duration of weaning from the respirator. Implications for rehabilitation Little guidance is available for the management of swallowing dysfunction in the rehabilitation of critically ill patients with intensive-care-units acquired muscle weakness. There is a time dependent pattern of recovery from

  6. Use of a macroinvertebrate based biotic index to estimate critical metal concentrations for good ecological water quality.

    Science.gov (United States)

    Van Ael, Evy; De Cooman, Ward; Blust, Ronny; Bervoets, Lieven

    2015-01-01

    Large datasets from total and dissolved metal concentrations in Flemish (Belgium) fresh water systems and the associated macroinvertebrate-based biotic index MMIF (Multimetric Macroinvertebrate Index Flanders) were used to estimate critical metal concentrations for good ecological water quality, as imposed by the European Water Framework Directive (2000). The contribution of different stressors (metals and water characteristics) to the MMIF were studied by constructing generalized linear mixed effect models. Comparison between estimated critical concentrations and the European and Flemish EQS, shows that the EQS for As, Cd, Cu and Zn seem to be sufficient to reach a good ecological quality status as expressed by the invertebrate-based biotic index. In contrast, the EQS for Cr, Hg and Pb are higher than the estimated critical concentrations, which suggests that when environmental concentrations are at the same level as the EQS a good quality status might not be reached. The construction of mixed models that included metal concentrations in their structure did not lead to a significant outcome. However, mixed models showed the primary importance of water characteristics (oxygen level, temperature, ammonium concentration and conductivity) for the MMIF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Towards field detection of polycyclic aromatic hydrocarbons (PAHs) in environment water using a self-assembled SERS sensor

    Science.gov (United States)

    Yan, Xia; Shi, Xiaofeng; Yang, Jie; Zhang, Xu; Jia, Wenjie; Ma, Jun

    2017-10-01

    A self-assembled surface enhanced Raman scattering (SERS) sensor is reported in this paper. To achieve high sensitivity, a high sensitive SERS substrate and a high efficient self-constructed light path were made. The SERS substrate was composed by gold nanoparticles (AuNPs, pH=13), glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material and syringe filter. The substrate had a good repeatability, and the relative standard deviation (RSD) of the same substrate was less than 5%. The efficiency of the self-constructed light path is about two times better than RPB Y type reflection fiber when the energy density was roughly equal on samples. The size of the SERS sensor is 350×300×180 mm and the weight is 15 kg. Its miniaturization and portable can comply with the requirements of field detection. Besides, it has good sensitivity, stability and selectivity. For lab experiments, strong enhancements of Raman scattering from organic pollutant polycyclic aromatic hydrocarbons (PAHs) molecules were exhibited. The dependences of SERS intensities on concentrations of PAHs were investigated, and the results indicated that they revealed a satisfactory linear relationship in low concentrations. The limits of detection (LODs) of PAHs phenanthrene and fluorene are 8.3×10-10 mol/L and 7.1×10-10 mol/L respectively [signal to noise ratio (S/N) =3]. Based on this SERS sensor, signals of benzo (a) pyrene and pyrene were found in environmental water and the sensor would be an ideal candidate for field detection of PAHs.

  8. Interactions of Gaseous HNO3 and Water with Individual and Mixed Alkyl Self-Assembled Monolayers at Room Temperature

    Science.gov (United States)

    Nishino, Noriko; Hollingsworth, Scott A.; Stern, Abraham C.; Roeselová, Martina; Tobias, Douglas J.; Finlayson-Pitts, Barbara J.

    2014-01-01

    The major removal processes for gaseous nitric acid (HNO3) in the atmosphere are dry and wet deposition onto various surfaces. The surface in the boundary layer is often covered with organic films, but the interaction of gaseous HNO3 with them is not well understood. To better understand the factors controlling the uptake of gaseous nitric acid and its dissociation in organic films, studies were carried out using single component and mixtures of C8 and C18 alkyl self-assembled monolayers (SAMs) attached to a germanium (Ge) attenuated total reflectance (ATR) crystal upon which a thin layer of SiOx had been deposited. For comparison, diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies were also carried out using a C18 SAM attached to the native oxide layer on the surface of silicon powder. These studies show that the alkyl chain length and order/disorder of the SAMs does not significantly affect the uptake or dissociation/recombination of molecular HNO3. Thus, independent of the nature of the SAM, molecular HNO3 is observed up to 70–90 % relative humidity. After dissociation, molecular HNO3 is regenerated on all SAM surfaces when water is removed. Results of molecular dynamics simulations are consistent with experiments and show that defects and pores on the surfaces control the uptake, dissociation and recombination of molecular HNO3. Organic films on surfaces in the boundary layer will certainly be more irregular and less ordered than SAMs studied here, therefore undissociated HNO3 may be present on surfaces in the boundary layer to a greater extent than previously thought. The combination of this observation with the results of recent studies showing enhanced photolysis of nitric acid on surfaces suggests that renoxification of deposited nitric acid may need to be taken into account in atmospheric models. PMID:24352159

  9. Comparison between critical velocity and anaerobic threshold in deep water running

    Directory of Open Access Journals (Sweden)

    Fernando de Oliveira

    2006-06-01

    Full Text Available The comparison between critical velocity and anaerobic threshold has not been investigated in deep water running. Therefore, the aim of this study was to compare these two variables in this activity. Ten subjects of both sexes (23.1 ± 2.2 years, 174.0 ± 10.0 cm, 66.5 ± 18.7 kg and without previous practice in the activity weresubmitted to: 1 two to four familiarization sessions; 2 a progressive test, starting with velocity of 0.15 m.s-1 and increments of 0,05 m.s-1 every three minutes; 3 three tests of constant velocities in different days, with velocities ranging from 0.25 to 0.40 m.s-1. The comparison between anaerobic threshold (velocity at 3.5 mM and critical velocity (identified by three different equations was performed by analysis of variance and the Bland-Altman method. No significant differences were identified among the variables (p = 0.28, however, the limits of agreement provided by the Bland-Altman plots were very large (between –0.054 e +0.080 m.s-1. These results suggest caution when using the critical velocity to estimate the anaerobic threshold. RESUMO A comparação entre velocidade crítica e limiar anaeróbio não tem sido realizada em atividades como corrida aquática. Assim, o objetivo desse estudo foi comparar essas duas variáveis, ambas identificadas nesse tipo de exercício. Dez sujeitos de ambos os sexos (23,1 ± 2,2 anos, 174,0 ± 10,0 cm, 66,5 ± 18,7 kg, sem experiência prévia na modalidade, foram submetidos a: 1 de duas a quatro sessões de familiarização; 2 um teste de intensidade progressiva, com velocidade inicial de 0,15 m.s-1 e incrementos de 0,05 m.s-1 a cada três minutos; 3 três testes de velocidade constante, realizados em dias diferentes, com velocidades entre 0,25 a 0,40m.s-1. A comparação entre o limiar anaeróbio (velocidade referente a 3,5mM e a velocidade crítica (obtida por três equações diferentes foi feita pela análise de variância (ANOVA e técnica de Bland-Altman. Não foram

  10. Development of an Advanced Recycle Filter Tank Assembly for the ISS Urine Processor Assembly

    Science.gov (United States)

    Link, Dwight E., Jr.; Carter, Donald Layne; Higbie, Scott

    2010-01-01

    Recovering water from urine is a process that is critical to supporting larger crews for extended missions aboard the International Space Station. Urine is collected, preserved, and stored for processing into water and a concentrated brine solution that is highly toxic and must be contained to avoid exposure to the crew. The brine solution is collected in an accumulator tank, called a Recycle Filter Tank Assembly (RFTA) that must be replaced monthly and disposed in order to continue urine processing operations. In order to reduce resupply requirements, a new accumulator tank is being developed that can be emptied on orbit into existing ISS waste tanks. The new tank, called the Advanced Recycle Filter Tank Assembly (ARFTA) is a metal bellows tank that is designed to collect concentrated brine solution and empty by applying pressure to the bellows. This paper discusses the requirements and design of the ARFTA as well as integration into the urine processor assembly.

  11. Critical water requirements for food, methodology and policy consequences for food security

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Nonhebel, S.

    2004-01-01

    Food security and increasing water scarcity have a dominant place on the food policy agenda. Food security requires sufficient water of adequate quality because water is a prerequisite for plant growth. Nowadays, agriculture accounts for 70% of the worldwide human fresh water use. The expected

  12. Catchment organisation, free energy dynamics and network control on critical zone water flows

    Science.gov (United States)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological

  13. Facile synthesis of a peptidic Au(i)-metalloamphiphile and its self-assembly into luminescent micelles in water

    NARCIS (Netherlands)

    Kemper, Benedict; Hristova, Yana R; Tacke, Sebastian; Stegemann, Linda; van Bezouwen, Laura S; Stuart, Marc C A; Klingauf, Jürgen; Strassert, Cristian A; Besenius, Pol

    2014-01-01

    We report a short synthetic route for the preparation of a peptidic Au(i)-metalloamphiphile which, in buffered environments of physiological ionic strength, self-assembles into luminescent micellar nanostructures of 14 nm in diameter.

  14. A chemical test of critical point isomorphism: reactive dissolution of ionic solids in isobutyric acid + water near the consolute point.

    Science.gov (United States)

    Baird, James K; Baker, Jonathan D; Hu, Baichuan; Lang, Joshua R; Joyce, Karen E; Sides, Alison K; Richey, Randi D

    2015-03-12

    Binary liquid mixtures having a consolute point can be used as solvents for chemical reactions. When excess cerium(IV) oxide is brought into equilibrium with a mixture of isobutyric acid + water, and the concentration of cerium in the liquid phase is plotted in van't Hoff form, a straight line results for temperatures sufficiently in excess of the critical solution temperature. Within 1 K of the critical temperature, however, the concentration becomes substantially suppressed, and the van't Hoff slope diverges toward negative infinity. According to the phase rule, one mole fraction can be fixed. Given this restriction, the temperature behavior of the data is in exact agreement with the predictions of both the principle of critical point isomorphism and the Gibbs-Helmholtz equation. In addition, we have determined the concentration of lead in the liquid phase when crystalline lead(II) sulfate reacts with potassium iodide in isobutyric acid + water. When plotted in van't Hoff form, the data lie on a straight line for all temperatures including the critical region. The phase rule indicates that two mole fractions can be fixed. With this restriction, the data are in exact agreement with the principle of critical point isomorphism.

  15. Soil Moisture/ Tree Water Status Dynamics in Mid-Latitude Montane Forest, Southern Sierra Critical Zone Observatory, CA

    Science.gov (United States)

    Hartsough, P. C.; Malazian, A.; Meadows, M. W.; Roudneva, K.; Storch, J.; Bales, R. C.; Hopmans, J. W.

    2010-12-01

    As part of an effort to understand the root-water-nutrient interactions in the multi-dimensional soil/vegetation system surrounding large trees, in August 2008 we instrumented a mature white fir (Abies concolor) and the surrounding soil to better define the water balance in a single tree. In July 2010, we instrumented a second tree, a Ponderosa pine (Pinus ponderosa) in shallower soils on a drier, exposed slope. The trees are located in a mixed-conifer forest at an elevation of 2000m in the Southern Sierra Critical Zone Observatory. The deployment of more than 250 sensors to measure temperature, volumetric water content, matric potential, and snow depth surrounding the two trees complements sap-flow measurements in the trunk and stem-water-potential measurements in the canopy to capture the seasonal cycles of soil wetting and drying. We show here the results of a multi-year deployment of soil moisture sensors as critical integrators of hydrologic/ biotic interaction in a forested catchment. Sensor networks such as deployed here are a valuable tool in closing the water budget in dynamic forested catchments. While the exchange of energy, water and carbon is continuous, the pertinent fluxes are strongly heterogeneous in both space and time. Thus, the prediction of the behavior of the system across multiple scales constitutes a major challenge.

  16. Critical heat flux and boiling heat transfer to water in a 3-mm-diameter horizontal tube.

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Wambsganss, M. W.; Hull, J. R.; France, D. M.

    2000-12-04

    Boiling of the coolant in an engine, by design or by circumstance, is limited by the critical heat flux phenomenon. As a first step in providing relevant engine design information, this study experimentally addressed both rate of boiling heat transfer and conditions at the critical point of water in a horizontal tube of 2.98 mm inside diameter and 0.9144 m heated length. Experiments were performed at system pressure of 203 kPa, mass fluxes in range of 50 to 200 kg/m{sup z}s, and inlet temperatures in range of ambient to 80 C. Experimental results and comparisons with predictive correlations are presented.

  17. Property, legal pluralism, and water rights: the critical analysis of water governance and the politics of recognizing "local" rights

    NARCIS (Netherlands)

    Roth, D.; Boelens, R.; Zwarteveen, M.

    2015-01-01

    In this paper we assess the impact of Franz von Benda-Beckmann's work in the field of water rights. We argue that his contributions to understanding water, a field dominated by engineers and economists, cannot be overestimated. Over the years, Franz's nuanced and empathic anthropological attitude,

  18. Funding models for financing water infrastructure in South Africa: framework and critical analysis of alternatives

    CSIR Research Space (South Africa)

    Ruiters, C

    2013-04-01

    Full Text Available by putting in place new institutional structures and funding models for effective strategies leading to prompt water infrastructure provision. The research identified several funding models for financing water infrastructure development projects. The existing...

  19. Critical Issues Facing America's Community Colleges: A Summary of the Community College Futures Assembly 2011 Mixed Methods/Appreciative Inquiry Research Project

    Science.gov (United States)

    Basham, Matthew J.; Campbell, Dale F.; Mahmood, Hajara; Martin, Kenyatta

    2012-01-01

    For almost 20 years the Community College Futures Assembly (CCFA) has met annually in Orlando, Florida to serve as a showcase of best practices in community college administration and to serve as a think-tank for research and policy. Through the years the research methodology has evolved. The 2011 CCFA used a mixed-methods approach: qualitative…

  20. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  1. Integration challenges of water and land reform – A critical review of South Africa [chapter

    CSIR Research Space (South Africa)

    Funke, Nicola S

    2011-12-01

    Full Text Available and water is politically, economically and culturally complex and this complexity is expected to increase with the progression of growing populations, increasing water scarcity, growing demand for water, and food security concerns. This challenge is bound... innovative opportunities for regional economic development by contributing to ecosystem stability, sustainable livelihoods and food security. Water and land reform in South Africa is a special case highlighting the importance of integrated approaches...

  2. Self-Assembly, Surface Activity and Structure of n-Octyl-β-D-thioglucopyranoside in Ethylene Glycol-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Cristóbal Carnero Ruiz

    2013-02-01

    Full Text Available The effect of the addition of ethylene glycol (EG on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-D-thioglucopyranoside (OTG has been investigated. Critical micelle concentrations (cmc upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153. Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent.

  3. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle.

    Science.gov (United States)

    Sobral, H; Peña-Gomar, M

    2015-10-01

    A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.

  4. Critical analysis of laboratory measurements and monitoring system of water-pipe network corrosion-case study.

    Directory of Open Access Journals (Sweden)

    Agata Jazdzewska

    2016-06-01

    Full Text Available Case study of corrosion failure of urban water supply system caused by environmental factors was presented. Nowadays corrosion monitoring of water distribution systems is an object of major concern. There is possibility of application broad range of techniques like gravimetric and electrochemical. Both kinds of techniques can be applied in laboratory and field conditions. In many cases researches limit the case analysis to measurements in laboratory conditions. Presented work contain critical analysis of results obtained in laboratory and field conditions based on corrosion monitoring of three pipelines systems failure in Krakow.

  5. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy.

  6. Critical chain construction with multi-resource constraints based on portfolio technology in South-to-North Water Diversion Project

    Directory of Open Access Journals (Sweden)

    Jing-chun Feng

    2011-06-01

    Full Text Available Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the system analysis theory and project portfolio theory, this paper discusses the creation of project portfolios based on the similarity principle and gives the definition of priority in multi-resource allocation based on quantitative analysis. A model with multi-resource constraints, which can be applied to the critical chain construction of the A-bid section in the South-to-North Water Diversion Project, was proposed. Contrast analysis with the comprehensive treatment construction method and aggressive treatment construction method was carried out. This paper also makes suggestions for further research directions and subjects, which will be useful in improving the theories in relevant research fields.

  7. A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study

    Science.gov (United States)

    2014-05-01

    INFORMATIVE STATEMENTS CSSP -2012-CD-1020 A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving...Drinking Water Utilities was supported by the Canadian Safety and Security Program ( CSSP ) which is led by Defence Research and Development Canada’s Centre...Section. CSSP is a federally-funded program to strengthen Canada’s ability to anticipate, prevent/mitigate, prepare for, respond to, and recover

  8. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  9. Assembly of the tetra-Mn site of photosynthetic water oxidation by photoactivation: Mn stoichiometry and detection of a new intermediate.

    Science.gov (United States)

    Ananyev, G M; Dismukes, G C

    1996-04-02

    The process of photoactivation, the assembly of the water-oxidizing complex (WOC) of photosystem II (PSII) membranes, has been examined using two major improvements in methodology. First a new lipophilic chelator, N,N,N',N'-tetrapropionate-1,3-bis(aminomethyl)benzene (TPDBA), has been used that permits complete extraction of both manganese and calcium and the three extrinsic WOC polypeptides while minimizing damage to the apo-PSII protein and, importantly, eliminating the need to use reductants. Second, an ultrasensitive, fast-response, polarographic cell and detection system were built. The apparatus features (a) an ultrabright red light-emitted diode (LED) for controlling the light intensity, pulse duration, and dark intervals, features critical for minimization of photoinhibition; (b) a microvolume (5 microL) O2 polarographic cell (Clark type) fitted with a thin silicone membrane for rapid response (100 ms); and (c) DC/AC preamplifier integrated into the microcell and interfaced to a bandpass AC amplifier. The sensitivity enables detection of approximately 5 x 10(-14) mol of O2 per flash at a signal to noise = 5/1. These improvements permit 100-fold lower Mn concentrations to be explored. Under optimum conditions, complete recovery of O2-evolving activity could be restored compared to that of PSII membranes depleted of the three extrinsic polypeptides (35% Vmax vs intact PSII). Titration of the photoactivation steady-state O2 yield, Yss, and the half-time for recovery, t1/2, vs Mn concentration demonstrate that 4.0 Mn/P680 are cooperatively taken up at 95% restoration of Yss and that 1.1-1.2 Mn atoms are involved in the rate-limiting photolytic step under steady-state conditions. Due to minimization of photoihibition, this intermediate exhibits a single exponential recovery kinetic over the entire population of PSII centers. Mn atoms in excess of 4 Mn/P680 accelerate the rate of photoactivation but decrease the yield above 8-10 Mn/P680. Maxima in both Yss and t1

  10. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Bing [Department; Sherman, Benjamin D. [Department; Klug, Christina M. [Center; Nayak, Animesh [Department; Marquard, Seth L. [Department; Liu, Qing [Department; Bullock, R. Morris [Center; Meyer, Thomas J. [Department

    2017-08-31

    We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over a period of several hours with a Faradaic yield of ~90%.

  11. Water management analysis of the city of Tijuana, Baja California: Critical factors and challenges

    Directory of Open Access Journals (Sweden)

    Karina Navarro–Chaparro

    2015-12-01

    Full Text Available This article analyzes water management issues in the urban area of Tijuana for the period from 1991 to 2009. A comprehensive systematic management system was used as a theoretical framework. For the methodological framework, robust databases were compiled through documentary research, semi–structured interviews were conducted, and Geographical Information Systems (GIS were used to visualize the spatial distribution of water use. The results reveal that water resource management is conducted under a linear process that does not consider a broad assessment of social elements in water anagement. The research results show also inequality in the spatial distribution of water services, and little reuse of treated wastewater and the need for long–term planning to secure water supply and consumption after 2020.

  12. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.

    Science.gov (United States)

    Szori, Milán; Jedlovszky, Pál; Roeselová, Martina

    2010-05-14

    Grand canonical Monte Carlo simulations are used to determine water adsorption on prototypical organic surfaces as a function of relative humidity at 300 K. Three model surfaces formed by well-ordered self-assembled monolayers (SAMs) of alkanethiolate chains on gold are investigated: (i) a smooth hydrophobic surface of methyl-terminated C(7)-CH(3) SAM; (ii) a rough hydrophobic surface of randomly mixed two-component SAM, composed of equal fractions of C(5)-CH(3) and C(7)-CH(3) chains (C(5)/C(7)-CH(3) SAM); and (iii) a smooth hydrophilic surface of carboxyl-terminated C(7)-COOH SAM. The all atom CHARMM22 force field is used for the SAM chains together with the SPC/E model for water. No noticeable water adsorption is observed on the smooth hydrophobic surface up to saturation. The mild surface roughness introduced by the uneven chain length of the two components constituting the C(5)/C(7)-CH(3) SAM has no significant effect on the surface hydrophobicity, and the rough hydrophobic surface also remains dry up to the point when water condensation occurs. In contrast, water readily adsorbs onto the hydrophilic surface by forming hydrogen bonds with the COOH groups of the substrate. In addition, hydrogen bonding with pre-adsorbed water molecules contributes to the mechanism of water uptake. Under low humidity conditions, water is present on the hydrophilic surface as individual molecules or small water clusters and, with increasing relative humidity, the surface coverage grows continuously beyond a monolayer formation. The adsorbed water film is observed to be rather inhomogeneous with patches of bare surface exposed. The amount of water constituting a stable adsorption layer prior to condensation is estimated to consist of about 2-5 molecular layers. Detailed analysis of the simulation results is used to obtain important insights into the structure and energetics of water adsorbed on highly oxidized organic surfaces exposed to ambient air of increasing relative humidity.

  13. Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria

    OpenAIRE

    Passot, Stéphanie; Cenard, Stéphanie; Douania, Inès; Trelea, Ioan Cristian; Fonseca, Fernanda

    2012-01-01

    International audience; The aim of this study was to investigate the influence of the water activity on the stability of lyophilised lactic acid bacteria, especially in the solid glassy region. Lactobacillus bulgaricus CFL1 was co-lyophilised with sucrose and stored under controlled relative humidity at 25 °C. Glass transition temperature (T g), water activity, water content and loss of specific acidification activity during storage were determined. The rates of bacteria degradation were anal...

  14. Plasma Pyrolysis Assembly Regeneration Evaluation

    Science.gov (United States)

    Medlen, Amber; Abney, Morgan B.; Miller, Lee A.

    2011-01-01

    In April 2010 the Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS). This technology requires hydrogen to recover oxygen from carbon dioxide. This results in the production of water and methane. Water is electrolyzed to provide oxygen to the crew. Methane is vented to space resulting in a loss of valuable hydrogen and unreduced carbon dioxide. This is not critical for ISS because of the water resupply from Earth. However, in order to have enough oxygen for long-term missions, it will be necessary to recover the hydrogen to maximize oxygen recovery. Thus, the Plasma Pyrolysis Assembly (PPA) was designed to recover hydrogen from methane. During operation, the PPA produces small amounts of carbon that can ultimately reduce performance by forming on the walls and windows of the reactor chamber. The carbon must be removed, although mechanical methods are highly inefficient, thus chemical methods are of greater interest. The purpose of this effort was to determine the feasibility of chemically removing the carbon from the walls and windows of a PPA reactor using a pure carbon dioxide stream.

  15. Assessment of the Sustainability of Water Resources Management : A Critical Review of the City Blueprint Approach

    NARCIS (Netherlands)

    Koop, Steven H A; van Leeuwen, Cornelis J.|info:eu-repo/dai/nl/071976817

    2015-01-01

    Climate change, urbanization and water pollution cause adverse effects and rehabilitation costs that may exceed the carrying capacity of cities. Currently, there is no internationally standardized indicator framework for urban Integrated Water Resources Management (IWRM). The City Blueprint® is a

  16. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management.

    Science.gov (United States)

    Zahedi, Alireza; Paparini, Andrea; Jian, Fuchun; Robertson, Ian; Ryan, Una

    2016-04-01

    Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.

  17. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management

    Directory of Open Access Journals (Sweden)

    Alireza Zahedi

    2016-04-01

    Full Text Available Cryptosporidium is an enteric parasite that is transmitted via the faecal–oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.

  18. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  19. Acid generation upon thermal concentration of natural water: The critical water content and the effects of ionic composition

    Science.gov (United States)

    Pulvirenti, April L.; Needham, Karen M.; Adel-Hadadi, Mohamad A.; Marks, Charles R.; Gorman, Jeffrey A.; Shettel, Donald L.; Barkatt, Aaron

    2009-10-01

    Thermal evaporation of a variety of simulated pore waters from the region of Yucca Mountain, Nevada, produced acidic liquids and gases during the final stages of evaporation. Several simulated pore waters were prepared and then thermally distilled in order to collect and analyze fractions of the evolved vapor. In some cases, distillates collected towards the end of the distillation were highly acidic; in other cases the pH of the distillate remained comparatively unchanged during the course of the distillation. The results suggest that the pH values of the later fractions are determined by the initial composition of the water. Acid production stems from the hydrolysis of magnesium ions, especially at near dryness. Near the end of the distillation, magnesium nitrate and magnesium chloride begin to lose water of hydration, greatly accelerating their thermal decomposition to form acid. Acid formation is promoted further when precipitated calcium carbonate is removed. Specifically, calcium chloride-rich pore waters containing moderate (10-20 ppm) levels of magnesium and nitrate and low levels of bicarbonate produced mixtures of nitric and hydrochloric acid, resulting in a precipitous drop in pH to values of 1 or lower after about 95% of the original volume was distilled. Waters with either low or moderate magnesium content coupled with high levels of bicarbonate produced slightly basic fractions (pH 7-9). If calcium was present in excess of bicarbonate, waters containing moderate levels of magnesium produced acid even in the presence of bicarbonate, due to the precipitation of calcium carbonate. Other salts such as halite and anhydrite promote the segregation of acidic vapors from residual basic solids. The concomitant release of wet acid gas has implications for the integrity of the alloys under consideration for containers at the Yucca Mountain nuclear waste repository. Condensed acid gases at very low pH, especially mixtures of nitric and hydrochloric acid, are

  20. Using economic valuation techniques to inform water resources management: a survey and critical appraisal of available techniques and an application.

    Science.gov (United States)

    Birol, Ekin; Karousakis, Katia; Koundouri, Phoebe

    2006-07-15

    The need for economic analysis for the design and implementation of efficient water resources management policies is well documented in the economics literature. This need is also emphasised in the European Union's recent Water Framework Directive (2000/60/EC), and is relevant to the objectives of Euro-limpacs, an EU funded project which inter alia, aims to provide a decision-support system for valuing the effects of future global change on Europe's freshwater ecosystems. The purpose of this paper is to define the role of economic valuation techniques in assisting in the design of efficient, equitable and sustainable policies for water resources management in the face of environmental problems such as pollution, intensive land use in agriculture and climate change. The paper begins with a discussion of the conceptual economic framework that can be used to inform water policy-making. An inventory of the available economic valuation methods is presented and the scope and suitability of each for studying various aspects of water resources are critically discussed. Recent studies that apply these methods to water resources are reviewed. Finally, an application of one of the economic valuation methods, namely the contingent valuation method, is presented using a case study of the Cheimaditida wetland in Greece.

  1. Water Information System Platforms Addressing Critical Societal Needs in the Mena Region

    Science.gov (United States)

    Habib, Shahid; Kfouri, Claire; Peters, Mark

    2012-01-01

    The MENA region includes 18 countries, the occupied Palestinian territories and Western Sahara. However, the region of interest for this study has a strategic interest in countries adjacent to the Mediterranean Sea, which includes, Morocco, Tunisia, Egypt, Lebanon and Jordan. The 90% of the water in the MENA region is used for the agriculture use. By the end of this century. this region is projected to experience an increase of 3 C to 5 C in mean temperatures and a 20% decline in precipitation (lPCC, 2007). Due to lower precipitation, water run-off is projected to drop by 20% to 30% in most of MENA by 2050 Reduced stream flow and groundwater recharge might lead to a reduction in water supply of 10% or greater by 2050. Therefore, per IPCC projections in temperature rise and precipitation decline in the region, the scarcity of water will become more acute with population growth, and rising demand of food in the region. Additionally, the trans boundary water issues will continue to plague the region in terms of sharing data for better management of water resources. Such pressing issues have brought The World Bank, USAID and NASA to jointly collaborate for establishing integrated, modern, up to date NASA developed capabilities for countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making and societal benefit. This initiative was launched in October 2011 and is schedule to be completed by the end of2015.

  2. Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone.

    Science.gov (United States)

    Samuel, Jitin; Sinha, Debarshi; Zhao, John Cong-Gui; Wang, Xiaodu

    2014-02-01

    Water may affect the mechanical behavior of bone by interacting with the mineral and organic phases through two major pathways: i.e. hydrogen bonding and polar interactions. In this study, dehydrated bone was soaked in several solvents (i.e. water, heavy water (D2O), ethylene glycol (EG), dimethylformamide (DMF), and carbon tetrachloride(CCl4)) that are chemically harmless to bone and different in polarity, hydrogen bonding capability and molecular size. The objective was to examine how replacing the original matrix water with the solvents would affect the mechanical behavior of bone. The mechanical properties of bone specimens soaked in these solvents were measured in tension in a progressive loading scheme. In addition, bone specimens without any treatments were tested as the baseline control whereas the dehydrated bone specimens served as the negative control. The experimental results indicated that 22.3±5.17vol% of original matrix water in bone could be replaced by CCl4, 71.8±3.77vol% by DMF, 85.5±5.15vol% by EG, and nearly 100% by D2O and H2O, respectively. CCl4 soaked specimens showed similar mechanical properties with the dehydrated ones. Despite of great differences in replacing water, only slight differences were observed in the mechanical behavior of EG and DMF soaked specimens compared with dehydrated bone samples. In contrast, D2O preserved the mechanical properties of bone comparable to water. The results of this study suggest that a limited portion of water (water) plays a pivotal role in the mechanical behavior of bone and it most likely resides in small matrix spaces, into which the solvent molecules larger than 4.0Å cannot infiltrate. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Synthesis of Janus-like gold nanoparticles with hydrophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water.

    Science.gov (United States)

    Iida, Ryo; Kawamura, Hitoshi; Niikura, Kenichi; Kimura, Takashi; Sekiguchi, Shota; Joti, Yasumasa; Bessho, Yoshitaka; Mitomo, Hideyuki; Nishino, Yoshinori; Ijiro, Kuniharu

    2015-04-14

    This study aims at the synthesis of Janus gold nanoparticles (Janus GNPs) with hydrophilic/hydrophobic faces by a simple ligand exchange reaction in an homogeneous system and at the elucidation of the self-assembled structures of the Janus GNPs in water. As hydrophilic surface ligands, we synthesized hexaethylene glycol (E6)-terminated thiolate ligands with C3, C7, or C11 alkyl chains, referred to as E6C3, E6C7, and E6C11, respectively. As a hydrophobic ligand, a butyl-headed thiolate ligand C4-E6C11, in which a C4 alkyl was introduced on the E6C11 terminus, was synthesized. The degree of segregation between the two ligands on the GNPs (5 nm in diameter) was examined by matrix-assisted laser desorption/ionization time-of fright mass spectrometry (MALDI-TOF MS) analysis. We found that the choice of immobilization methods, one-step or two-step addition of the two ligands to the GNP solution, crucially affects the degree of segregation. The two-step addition of a hydrophilic ligand (E6C3) followed by a hydrophobic ligand (C4-E6C11) produced a large degree of segregation on the GNPs, providing Janus-like GNPs. When dispersed in water, these Janus-like GNPs formed assemblies of ∼160 nm in diameter, whereas Domain GNPs, in which the two ligands formed partial domains on the surface, were precipitated even when the molar ratio of the hydrophilic ligand and the hydrophobic ligand on the surface of the NPs was almost 1:1. The assembled structure of the Janus-like GNPs in water was directly observed by pulsed coherent X-ray solution scattering using an X-ray free-electron laser, revealing irregular spherical structures with uneven surfaces.

  4. Reanalysis of water and carbon cycle models at a critical zone observatory

    Science.gov (United States)

    The Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is a forested, hill-slope catchment located in the temperate-climate of central Pennsylvania with an extensive network of ground-based instrumentation for model testing and development. In this paper we discuss the use of multi-state fi...

  5. Water footprint, extended water footprint and virtual water trade of the Cantabria region, Spain. A critical appraisal of results, uncertainties and methods.

    Science.gov (United States)

    Diaz-Alcaide, Silvia; Martinez-Santos, Pedro; Willaarts, Barbara; Hernández-Moreno, Enrique; Llamas, M. Ramon

    2015-04-01

    Water footprint assessments have gradually gained recognition as valuable tools for water management, to the point that they have been officially incorporated to water planning in countries such as Spain. Adequate combinations of the virtual water and water footprint concepts present the potential to link a broad range of sectors and issues, thus providing appropriate frameworks to support optimal water allocation and to inform production and trade decisions from the water perspective. We present the results of a regional study carried out in Cantabria, a 5300 km2 autonomous region located in northern Spain. Our approach deals with the municipal, shire and regional scales, combining different methods to assess each of the main components of Cantabria's water footprint (agriculture, livestock, forestry, industry, mining, tourism, domestic use and reservoirs), as well as exploring the significance of different approaches, assumptions and databases in the overall outcomes. The classic water footprint method is coupled with extended water footprint analyses in order to provide an estimate of the social and economic value of each sector. Finally, virtual water imports and exports are computed between Cantabria and the rest of Spain and between Cantabria and the world. The outcome of our work (a) highlights the paramount importance of green water (mostly embedded in pastures) in the region's water footprint and virtual water exports; (b) establishes the role of the region as a net virtual water exporter; (c) shows the productivity of water (euro/m3 and jobs/m3) to be highest in tourism and lowest in agriculture and livestock; and (d) demonstrates that statistical databases are seldom compiled with water footprint studies in mind, which is likely to introduce uncertainties in the results. Although our work shows that there is still plenty of room for improvement in regional-scale water footprint assessments, we contend that the available information is sufficient to

  6. North Raccoon River Topeka Shiner Critical Habitat Unit, Iowa Water Quality Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Between 2006 and 2008, we tested surface water in the Buttrick Creek system for nitrogen chemicals (ammonia, nitrite, and nitrate). Buttrick Creek is in the North...

  7. Effect of water on critical and subcritical fracture properties of Woodford shale

    Science.gov (United States)

    Chen, Xiaofeng; Eichhubl, Peter; Olson, Jon E.

    2017-04-01

    Subcritical fracture behavior of shales under aqueous conditions is poorly characterized despite increased relevance to oil and gas resource development and seal integrity in waste disposal and subsurface carbon sequestration. We measured subcritical fracture properties of Woodford shale in ambient air, dry CO2 gas, and deionized water by using the double-torsion method. Compared to tests in ambient air, the presence of water reduces fracture toughness by 50%, subcritical index by 77%, and shear modulus by 27% and increases inelastic deformation. Comparison between test specimens coated with a hydrophobic agent and uncoated specimens demonstrates that the interaction of water with the bulk rock results in the reduction of fracture toughness and enhanced plastic effects, while water-rock interaction limited to the vicinity of the propagating fracture tip by a hydrophobic specimen coating lowers subcritical index and increases fracture velocity. The observed deviation of a rate-dependent subcritical index from the power law K-V relations for coated specimens tested in water is attributed to a time-dependent weakening process resulting from the interaction between water and clays in the vicinity of the fracture tip.

  8. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies...... and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  9. Initiation of V(DJ recombination by Dbeta-associated recombination signal sequences: a critical control point in TCRbeta gene assembly.

    Directory of Open Access Journals (Sweden)

    Don-Marc Franchini

    Full Text Available T cell receptor (TCR beta gene assembly by V(DJ recombination proceeds via successive Dbeta-to-Jbeta and Vbeta-to-DJbeta rearrangements. This two-step process is enforced by a constraint, termed beyond (B12/23, which prohibits direct Vbeta-to-Jbeta rearrangements. However the B12/23 restriction does not explain the order of TCRbeta assembly for which the regulation remains an unresolved issue. The initiation of V(DJ recombination consists of the introduction of single-strand DNA nicks at recombination signal sequences (RSSs containing a 12 base-pairs spacer. An RSS containing a 23 base-pairs spacer is then captured to form a 12/23 RSSs synapse leading to coupled DNA cleavage. Herein, we probed RSS nicks at the TCRbeta locus and found that nicks were only detectable at Dbeta-associated RSSs. This pattern implies that Dbeta 12RSS and, unexpectedly, Dbeta 23RSS initiate V(DJ recombination and capture their respective Vbeta or Jbeta RSS partner. Using both in vitro and in vivo assays, we further demonstrate that the Dbeta1 23RSS impedes cleavage at the adjacent Dbeta1 12RSS and consequently Vbeta-to-Dbeta1 rearrangement first requires the Dbeta1 23RSS excision. Altogether, our results provide the molecular explanation to the B12/23 constraint and also uncover a 'Dbeta1 23RSS-mediated' restriction operating beyond chromatin accessibility, which directs Dbeta1 ordered rearrangements.

  10. Soil Moisture/ Tree Water Status Dynamics in a Mid-Latitude Montane Forest, Southern Sierra Critical Zone Observatory, CA

    Science.gov (United States)

    Hartsough, P. C.; Malazian, A.; Kamai, T.; Roudneva, E.; Hopmans, J. W.

    2009-12-01

    In the Mediterranean climate of the Sierra Nevada, snow pack persists well into the spring after precipitation has effectively stopped. With the onset of summer and continued dry conditions, snow quickly melts, and soil profiles dry out as shrubs and trees deplete the available soil moisture. A better understanding of surface and subsurface water budgets in remote landscapes warrants closer monitoring of moisture and temperature variability in near surfaces soils. As part of the Southern Sierra Critical Zone Observatory (CZO), investigators from University of California deployed approximately 150 soil moisture, water potential and temperature sensors within the root structure of an individual white fir tree (Abies concolor) located in the Kings River Experimental Watershed (KREW). These sensors complement sap flow measurements in the trunk, stem water potential measurements in the canopy, and snow depth measurements, to enable the Southern Sierra CZO researchers to investigate how soil environmental stresses (water, temperature, and nutrients) impact forest ecosystems across the rain-to-snow-dominated transition zone. We captured the dynamics of the soil profile desiccation at various depths beneath the snow pack as soils went from wet to very dry conditions. Monitoring of sap flow and periodic leaf water potential measurements, we tracked the activity of the tree as it responded to changing available moisture in the root zone. All sensors were reactive to moisture and temperature variations and showed dynamic responses to precipitation, snow melt and changes in vegetative demand. We demonstrate here the initial phase of a multi-year deployment of soil moisture sensors as a critical integrator of hydrologic/ biotic interaction in a forested catchment as part of a wider effort to document changing ecosystem response to changing environmental inputs.

  11. Molecular-dynamics study of anomalous volumetric behavior of water-benzene mixtures in the vicinity of the critical region

    Science.gov (United States)

    Ikawa, Shun-ichi

    2005-12-01

    Molecular-dynamics simulations of water-benzene mixtures at 573 K and pressures in the 85-140 bars range have been performed to examine local structure and dynamics of the mixtures, which exhibit anomalously large volume expansion on mixing as recently found by in situ near-infrared measurements. Fractional charges for a simple-point-charge-type potential of water were adjusted so as to reproduce liquid densities and the gas-to-liquid transition pressure of neat water at 573 K. A Lennard-Jones-type potential for benzene was used and the Lorentz-Berthelot combination rule was applied to the water-benzene interaction. Simulations with a N-P-T ensemble of 800-molecule system have been performed and the results reproduce well the anomalous volumetric behavior of the mixtures with the mole fraction of benzene in the 0.3-0.8 range. Pair distribution functions, coordination numbers, and self-diffusion coefficients for the mixtures are calculated, and it is suggested that the local structure around water molecules undergoes drastic change by dissolution of benzene in the vicinity of the critical region, but that around benzene molecules seems to be understood as that of ordinary liquid mixtures.

  12. Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Fan, Hongyou; Lu, Yunfeng; Rieker, Thomas; Stump, Arron; Ward, Timothy L.

    1999-05-07

    Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

  13. Integrating modeling, monitoring, and management to reduce critical uncertainties in water resource decision making.

    Science.gov (United States)

    Peterson, James T; Freeman, Mary C

    2016-12-01

    Stream ecosystems provide multiple, valued services to society, including water supply, waste assimilation, recreation, and habitat for diverse and productive biological communities. Managers striving to sustain these services in the face of changing climate, land uses, and water demands need tools to assess the potential effectiveness of alternative management actions, and often, the resulting tradeoffs between competing objectives. Integrating predictive modeling with monitoring data in an adaptive management framework provides a process by which managers can reduce model uncertainties and thus improve the scientific bases for subsequent decisions. We demonstrate an integration of monitoring data with a dynamic, metapopulation model developed to assess effects of streamflow alteration on fish occupancy in a southeastern US stream system. Although not extensive (collected over three years at nine sites), the monitoring data allowed us to assess and update support for alternative population dynamic models using model probabilities and Bayes rule. We then use the updated model weights to estimate the effects of water withdrawal on stream fish communities and demonstrate how feedback in the form of monitoring data can be used to improve water resource decision making. We conclude that investment in more strategic monitoring, guided by a priori model predictions under alternative hypotheses and an adaptive sampling design, could substantially improve the information available to guide decision-making and management for ecosystem services from lotic systems. Published by Elsevier Ltd.

  14. Critical insights for a sustainability framework to address integrated community water services: Technical metrics and approaches

    Science.gov (United States)

    Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been ...

  15. Water-Electrolytic and Acid-Base Balance in Critically Ill Patients

    Directory of Open Access Journals (Sweden)

    L. V. Gerasimov

    2008-01-01

    Full Text Available The review deals with some aspects of correction of water-electrolytic and acid-base balance and this problem-associated infusion therapy. It characterizes various electrolytic solutions and considers the efficacy and safety of their use in terms of homeostatic maintenance. Key words: homeostasis, dyshidria, acid-base balance, acidosis, infusion therapy, crystalloid solutions.

  16. The solubility of magnesium chloride and calcium chloride in near-critical and supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    Applications using supercritical water often encounter the presence of inorganic compounds in feed streams, most often with a minor concentration. These compounds can lead to damage of the equipment via erosion, scaling and corrosion or can influence and disturb the main reaction and processes

  17. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    Accuracy of correlations was estimated by calculating both the average and RMS error with available experimental data, and a new correlation is presented. The new correlation predicts the CHF data with average error 0.07% and RMS error 7.91 %. Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes.

  18. Kinetic partitioning during de novo septin filament assembly creates a critical G1 “window of opportunity” for mutant septin function

    Science.gov (United States)

    Schaefer, Rachel M.; Heasley, Lydia R.; Odde, David J.; McMurray, Michael A.

    2016-01-01

    ABSTRACT Septin proteins form highly conserved cytoskeletal filaments composed of hetero-oligomers with strict subunit stoichiometry. Mutations within one hetero-oligomerization interface (the “G” interface) bias the mutant septin toward conformations that are incompatible with filament assembly, causing disease in humans and, in budding yeast cells, temperature-sensitive defects in cytokinesis. We previously found that, when the amount of other hetero-oligomerization partners is limiting, wild-type and G interface-mutant alleles of a given yeast septin “compete” along parallel but distinct folding pathways for occupancy of a limited number of positions within septin hetero-octamers. Here, we synthesize a mathematical model that outlines the requirements for this phenomenon: if a wild-type septin traverses a folding pathway that includes a single rate-limiting folding step, the acquisition by a mutant septin of additional slow folding steps creates an initially large disparity between wild-type and mutant in the cellular concentrations of oligomerization-competent monomers. When the 2 alleles are co-expressed, this kinetic disparity results in mutant exclusion from hetero-oligomers, even when the folded mutant monomer is oligomerization-competent. To test this model experimentally, we first visualize the kinetic delay in mutant oligomerization in living cells, and then narrow or widen the “window of opportunity” for mutant septin oligomerization by altering the length of the G1 phase of the yeast cell cycle, and observe the predicted exacerbation or suppression, respectively, of mutant cellular phenotypes. These findings reveal a fundamental kinetic principle governing in vivo assembly of multiprotein complexes, independent of the ability of the subunits to associate with each other. PMID:27398993

  19. Behaviour of hybrid inside/out Janus nanotubes at an oil/water interface. A route to self-assembled nanofluidics?

    Science.gov (United States)

    Picot, P; Taché, O; Malloggi, F; Coradin, T; Thill, A

    2016-10-06

    Imogolites are natural aluminosilicate nanotubes that have a diameter of a few nanometers and can be several microns long. These nanotubes have different chemical groups on their internal (Si-OH) and external (Al-OH-Al) surfaces, that can be easily functionalised independently on both surfaces. Here we show that taking advantage of the particular shape and chemistry of imogolite, it is possible to prepare inside/out Janus nanotubes. Two kinds of symmetric Janus nanotubes are prepared: one with an external hydrophilic surface and an internal hydrophobic cavity (imo-CH3) and one with an external hydrophobic surface and a hydrophilic internal cavity (OPA-imo). The behaviour of such inside/out Janus nanotubes at oil/water interfaces is studied. The OPA-imo adsorbs strongly at the oil/water interface and is very efficient in stabilising water-in-oil emulsions through an arrested coalescence mechanism. Imo-CH3 also adsorbs at the oil/water interface. It stabilises oil-in-water emulsions by inducing slow oil-triggered modifications of the viscosity of the continuous phase. The possible transport of small molecules inside the imo-CH3 nanotubes is evidenced, opening up routes towards self-assembled nanofluidics.

  20. Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions.

    Science.gov (United States)

    Bodoira, Romina; Velez, Alexis; Andreatta, Alfonsina E; Martínez, Marcela; Maestri, Damián

    2017-12-15

    Sesame seeds contain a vast array of lignans and phenolic compounds having important biological properties. An optimized method to obtain these seed components was designed by using water and ethanol at high pressure and temperature conditions. The maximum concentrations of lignans, total phenolics, flavonoids and flavonols compounds were achieved at 220°C extraction temperature and 8MPa pressure, using 63.5% ethanol as co-solvent. Under these conditions, the obtained sesame extracts gave the best radical scavenging capacity. Kinetic studies showed a high extraction rate of phenolic compounds until the first 50min of extraction, and it was in parallel with the highest scavenging capacity. The comparison of our results with those obtained under conventional extraction conditions (normal pressure, ambient temperature) suggests that recovery of sesame bioactive compounds may be markedly enhanced using water/ethanol mixtures at sub-critical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone

    Directory of Open Access Journals (Sweden)

    M. Sprenger

    2017-07-01

    Full Text Available Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris and heather (Calluna sp. and Erica Sp and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly and depth (5 cm intervals revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical

  2. Potential of coconut shell activated carbon (CSAC) in removing contaminants for water quality improvement: A critical review

    Science.gov (United States)

    Akhir, Muhammad Fitri Mohd; Saad, Noor Aida; Zakaria, Nor Azazi

    2017-10-01

    Commonly, water contaminations occur due to human-induced conditions such as industrial discharge and urban activities. The widely identified contaminants are heavy metal. The toxicity of those heavy metal elements is high and very poisonous to humans' health and environment even at lower dose or concentration of exposure. Chronic poisoning can cause fatal or defect to one's body or environment. Organic contaminants such as oil and microbial are also found due to decomposition of organic matter. The excellent quality adsorption of contaminants is highly related to surface area, pore size, pore volume, and amount plus type of functional group on surface of CSAC. The higher the surface area and pore volume, the higher adsorption that CSAC have towards contaminants. In comparison to meso-pore and macro-pore, micro-pore is better for trapping and adsorbing water contaminants. The purpose of this article is to critically review the potential of CSAC in increasing adsorption to remove contaminants for water quality improvement. A critical review is implemented using search engine like Science Direct. Alkali-modification is shown to have good adsorption in anion elements and organic matter due to improvement of hydrophobic organic compound (HOC) while acid-modification is good in cation elements adsorption. Strong alkali impregnated solution makes CSAC more hydrophobic and positively charge especially after increasing the impregnation dosage. Strong acid of adsorbate affects the quality of adsorption by reducing the surface area, pore volume and it also breaks the Van der Waals forces between adsorbent and adsorbate. However, the formation of oxygen helps the activated carbon surface to become more hydrophilic and negative charge is produced. It helps the effectiveness of metal adsorption. Therefore, by controlling dosage and types of functional groups on surface of CSAC and the pH of adsorbate, it can contribute to high adsorption of organic and inorganic contaminants in

  3. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low temperature district heating (DH) is designed as 55/25oC for supply/return temperature to fulfill the low energy demand of future buildings. However, to secure the safety of domestic hot water, the supply temperature has to be kept around 60oC to avoid the existence of legionella, which...... reproduces rapidly at the temperature around 25oC- 45 oC. After several outbreaks of pheumonia and fever caused by legionella bacteria, most countries require 60 oC in the network and 50-55 oC at the faucets with periodic flush by hot water above 60 oC as disinfection solution. That makes obstacles of low...... temperature DH implementation. Therefore, effective solution of legionella bacteria is in urgent demand. To select optimal disinfection treatments for certain cases which are quite different in dimension or purpose of use, various methods were reviewed, including shock hyperchlorination, super heating...

  4. Glycyrrhetinic acid-poly(ethylene glycol)-glycyrrhetinic acid tri-block conjugates based self-assembled micelles for hepatic targeted delivery of poorly water soluble drug.

    Science.gov (United States)

    Wu, Fengbo; Xu, Ting; Liu, Chi; Chen, Can; Song, Xiangrong; Zheng, Yu; He, Gu

    2013-01-01

    The triblock 18β-glycyrrhetinic acid-poly(ethylene glycol)18β-glycyrrhetinic acid conjugates (GA-PEG-GA) based self-assembled micelles were synthesized and characterized by FTIR, NMR, transmission electron microscopy, and particle size analysis. The GA-PEG-GA conjugates having the critical micelle concentration of 6 × 10(-5) M were used to form nanosized micelles, with mean diameters of 159.21 ± 2.2 nm, and then paclitaxel (PTX) was incorporated into GA-PEG-GA micelles by self-assembly method. The physicochemical properties of the PTX loaded GA-PEG-GA micelles were evaluated including in vitro cellular uptake, cytotoxicity, drug release profile, and in vivo tissue distribution. The results demonstrate that the GA-PEG-GA micelles had low cytotoxicity and good ability of selectively delivering drug to hepatic cells in vitro and in vivo by the targeting moiety glycyrrhetinic acid. In conclusion, the GA-PEG-GA conjugates have potential medical applications for targeted delivery of poor soluble drug delivery.

  5. Water adsorption on carbons--critical review of the most popular analytical approaches.

    Science.gov (United States)

    Furmaniak, Sylwester; Gauden, Piotr A; Terzyk, Artur P; Rychlicki, Gerhard

    2008-03-18

    The purpose of the current study is to present the state of art in the field of analytical description of water sorption on carbons. We discuss the most important and promising models proposed recently (for example by Mahle; Talu and Meunier; and Malakhov and Volkov) as well as some older theoretical models inspired by the pioneering ideas proposed in the papers of Dubinin, Serpinsky, Barton, D'Arcy, Watt, Do and Do and others. The applicability, advantages, and defects of all these analytical formulas are pointed out and some new approaches in this field are presented. The special attention is paid to the finite adsorption space and the possible involvement of partial chemisorption, i.e. the existence of various types of the hydrophilic centres. Since the calculation of isosteric enthalpy from an adsorption equation, and the comparison of theoretical enthalpy plot with the values measured calorimetrically, is the fundamental condition for the verification of the correctness of an adsorption model, for all considered models we show the corresponding adsorption enthalpy equations. The validity of all mentioned above models is verified for the data measured for five water-activated carbon systems. Finally, a summary of obtained results and some perspectives and suggestions for the description of experimental data are presented. From the analysis of experimental data it is seen that developed recently- the heterogeneous Do and Do model is probably the most successful for the simultaneous description of water adsorption and enthalpy of adsorption results.

  6. Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media

    Science.gov (United States)

    Steinberg, Susan L. (Editor); Ming, Doug W. (Editor); Henninger, Don (Editor)

    2002-01-01

    This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.

  7. Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042 (India); Dewan, Srishti [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Biomedical Engineering Department, Deenbandhu Chhotu Ram University of Science & Technology, Haryana 131039 (India); Chawla, Seema [Biomedical Engineering Department, Deenbandhu Chhotu Ram University of Science & Technology, Haryana 131039 (India); Yadav, Birendra Kumar [Rajiv Gandhi Cancer Institute and Research Centre, Rohini, Delhi 110085 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042 (India)

    2016-09-21

    We report results of the studies relating to controlled deposition of the amino-functionalized silica-coated zinc oxide (Am-Si@ZnO) nano-assemblies onto an indium tin oxide (ITO) coated glass substrate using Langmuir-Blodgett (LB) technique. The monolayers have been deposited by transferring the spread solution of Am-Si@ZnO stearic acid prepared in chloroform at the air-water interface, at optimized pressure (16 mN/m), concentration (10 mg/ml) and temperature (23 °C). The high-resolution transmission electron microscopic studies of the Am-Si@ZnO nanocomposite reveal that the nanoparticles have a microscopic structure comprising of hexagonal assemblies of ZnO with typical dimensions of 30 nm. The surface morphology of the LB multilayer observed by scanning electron microscopy shows uniform surface of the Am-Si@ZnO film in the nanometer range (<80 nm). These electrodes have been utilized for chronic myelogenous leukemia (CML) detection by covalently immobilizing the amino-terminated oligonucleotide probe sequence via glutaraldehyde as a crosslinker. The response studies of these fabricated electrodes carried out using electrochemical impedance spectroscopy show that this Am-Si@ZnO LB film based nucleic acid sensor exhibits a linear response to complementary DNA (10{sup −6}–10{sup −16} M) with a detection limit of 1 × 10{sup −16} M. This fabricated platform is validated with clinical samples of CML positive patients and the results demonstrate its immense potential for clinical diagnosis. - Graphical abstract: Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for label free electrochemical detection of chronic myelogenous leukemia. - Highlights: • Stable and controlled deposition of Am-Si@ZnO nano-assemblies using LB technique. • Uniform monolayer deposition of the Am-Si@ZnO LB film within the nanometer range. • Am-Si@ZnO LB film shows enhanced electrochemical properties. • Fabricated

  8. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties.

    Science.gov (United States)

    Urich, Christian; Rauch, Wolfgang

    2014-12-01

    Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.

    Science.gov (United States)

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2007-04-21

    The relation between the performance of a self-humidifying H(2)/O(2) polymer electrolyte membrane fuel cell and the amount and distribution of water as observed using (1)H NMR microscopy was investigated. The integrated (1)H NMR image signal intensity (proportional to water content) from the region of the polymer electrolyte membrane between the catalyst layers was found to correlate well with the power output of the fuel cell. Several examples are provided which demonstrate the sensitivity of the (1)H NMR image intensity to the operating conditions of the fuel cell. Changes in the O(2)(g) flow rate cause predictable trends in both the power density and the image intensity. Higher power densities, achieved by decreasing the resistance of the external circuit, were found to increase the water in the PEM. An observed plateau of both the power density and the integrated (1)H NMR image signal intensity from the membrane electrode assembly and subsequent decline of the power density is postulated to result from the accumulation of H(2)O(l) in the gas diffusion layer and cathode flow field. The potential of using (1)H NMR microscopy to obtain the absolute water content of the polymer electrolyte membrane is discussed and several recommendations for future research are provided.

  10. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Holly [Univ. of Colorado, Boulder, CO (United States); Brooks, Paul [Univ. of Utah, Salt Lake City, UT (United States); Univ. of Arizona, Tucson, AZ (United States)

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a natural experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.

  11. Climate change-induced water stress suppresses the regeneration of the critically endangered forest tree Nyssa yunnanensis.

    Science.gov (United States)

    Zhang, Shanshan; Kang, Hongmei; Yang, Wenzhong

    2017-01-01

    Climatic change-induced water stress has been found to threaten the viability of trees, especially endangered species, through inhibiting their recruitment. Nyssa yunnanensis, a plant species with extremely small populations (PSESP), consists of only two small populations of eight mature individuals remaining in southwestern China. In order to determine the barriers to regeneration, both in situ and laboratory experiments were performed to examine the critical factors hindering seed germination and seedling establishment. The results of in situ field experiments demonstrated that soil water potentials lower than -5.40 MPa (experienced in December) had significantly inhibitory effects on seedling survival, and all seedlings perished at a soil water potential of -5.60 MPa (January). Laboratory experiments verified that N. yunnanensis seedlings could not survive at a 20% PEG 6000 concentration (-5.34 MPa) or 1/5 water-holding capacity (WHC; -5.64 MPa), and seed germination was inhibited in the field from September (-1.10 MPa) to November (-4.30 MPa). Our results suggested that soil water potentials between -5.34 and -5.64 MPa constituted the range of soil water potentials in which N. yunnanensis seedlings could not survive. In addition to water deficit, intensified autotoxicity, which is concentration-dependent, resulted in lower seed germination and seedling survival. Thus, seed establishment was probably simultaneously impacted by water deficit and aggravated autotoxicity. Meteorological records from the natural distribution areas of N. yunnanensis indicated that mean annual rainfall and relative humidity have declined by 21.7% and 6.3% respectively over past 55 years, while the temperature has increased by 6.0%. Climate change-induced drought, along with a poor resistance and adaptability to drought stress, has severely impacted the natural regeneration of N. yunnanensis. In conclusion, climate change-induced drought has been implicated as a regulating factor in

  12. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success.

    Directory of Open Access Journals (Sweden)

    Joshua B Benoit

    2014-04-01

    Full Text Available Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response and perform functional analysis of three specific genes utilizing RNA interference (RNAi gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4-6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20-25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and

  13. Geophysics in the Critical Zone: Constraints on Deep Weathering and Water Storage Potential in the Southern Sierra CZO

    Science.gov (United States)

    Holbrook, W.; Riebe, C. S.; Hayes, J. L.; Reeder, K.; Harry, D. L.; Malazian, A. I.; Dosseto, A.; Hartsough, P. C.; Hopmans, J. W.

    2012-12-01

    Quantifying the depth and degree of subsurface weathering in landscapes is crucial for quantitative understanding of the biogeochemistry of weathering, the mechanics of hillslope sediment transport, and biogeochemical cycling of nutrients and carbon over both short and long timescales. Although the degree of weathering can be readily measured from geochemical and physical properties of regolith and rock, many distributed samples are needed to measure it over broad spatial scales. Moreover, quantifying the thickness of subsurface weathering has remained challenging, in part because the interface between altered and unaltered rock is often buried at difficult to access depths. To overcome these challenges, we combined seismic refraction and resistivity surveys to estimate regolith thickness and generate representative hillslope-scale images of subsurface weathering and water storage at the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities of the subsurface provide evidence for a weathering zone with thickness ranging from 10 to 35 m (average = 23 m) along one intensively studied transect. This weathering zone consists of roughly equal thicknesses of saprolite (P-velocity < 2 km/s) and moderately weathered bedrock (P-velocity < 4 km/s). We use a rock physics model of seismic velocities, based on Hertz-Mindlin contact theory, to estimate lateral and vertical variations in porosity as a metric of water storage potential along the transect. Inferred porosities are as high as 55% near the surface and decrease to zero at the base of weathered rock. Model-predicted porosities are broadly consistent with values measured from physical properties of saprolite, suggesting that our analysis of the geophysical data provides realistic estimates of subsurface water storage potential. A major advantage of our geophysical approach is that it quickly and non-invasively quantifies porosity over broad vertical and lateral scales

  14. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M. [CEA/DSM/DRFC Centre de Cadarache, 13 - Saint-Paul lez Durance (France); Blanchet, J.; Cellier, F. [Framatome, 71 - Saint Marcel (France). Centre Technique

    2007-07-01

    Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)

  15. Synthesis and Electrochemical, Photophysical, and Self-Assembly Studies on Water-Soluble pH-Responsive Alkynylplatinum(II) Terpyridine Complexes.

    Science.gov (United States)

    Chung, Clive Yik-Sham; Li, Steve Po-Yam; Lo, Kenneth Kam-Wing; Yam, Vivian Wing-Wah

    2016-05-02

    A series of water-soluble pH-responsive alkynylplatinum(II) terpyridine complexes have been synthesized and characterized. The electronic absorption, emission, and electrochemical properties of the complexes have been studied. The self-assembly processes of representative complexes in aqueous media, presumably through Pt···Pt and/or π-π interactions, have been investigated by concentration- and temperature-dependent UV-vis absorption measurements and dynamic light scattering experiments. Interestingly, some of the complexes have been found to undergo induced self-assembly and disassembly in aqueous media through modulation of the pH value of the solutions, resulting in remarkable UV-vis absorption and emission spectral changes. The emission spectral changes have been rationalized by the change in the hydrophilicity of the complexes, electrostatic repulsion among the complex molecules, and/or the extent of photoinduced electron transfer (PET) quenching upon protonation/deprotonation of the pH-responsive groups on the complexes. By simple modifications of the chemical structures of the complexes, induced self-assembly/disassembly of the complexes can occur at different and/or multiple pH regions, thus allowing the probing of changes at the desired pH region by triplet metal-metal-to-ligand charge-transfer emission of the complexes in the near-infrared (NIR) region. Fixed-cell imaging experiments have further demonstrated the potential of this class of complexes as pH-responsive NIR luminescent probes in vitro, while the NIR emissions of the complexes from live cells have been found to show good differentiation of acidic organelles such as lysosomes from other cellular compartments.

  16. Critical Masses for Various Terrestrial Planet Atmospheric Gases and Water in/on Mars

    Directory of Open Access Journals (Sweden)

    Lin-gun Liu

    2014-01-01

    Full Text Available The lower critical mass boundaries (CM for various atmospheric gas species on terrestrial planets are estimated. The CM is different for different gas molecules. Except for He, the observed atmospheric compositions of the terrestrial planets are consistent with these estimates. The lower CM boundary for gaseous H2O is calculated as 8.06 × 1026 g, which is significantly greater than the Martian mass (6.419 × 1026 g. Thus, Mars is not capable of retaining H2O in its atmosphere. If the speculated ocean on Mars and the claimed H2O ice in the Martian soil are true, both the ocean and ice had to be derived earlier from H2O degassed from the Martian interior after the surface temperature cooled much below 100°C. These watery bodies cannot be sustained for long durations because evaporation and sublimation would turn them into gaseous H2O, which would be lost to outer-space. It is concluded that H2O in/on Mars is inherent and that the primordial planetesimals that formed Mars must have contained appreciable amounts of hydrous minerals, if the oceans and/or H2O ice on Mars are true.

  17. Soil-Water Repellency and Critical Humidity as Cleanup Criteria for Remediation of a Hydrocarbon Contaminated Mud

    Science.gov (United States)

    Guzmán, Francisco Javier; Adams, Randy H.

    2010-05-01

    The majority of soil remediation programs focus mainly on reducing the hydrocarbon concentration, based on the assumption that the primary impact is toxicity and/or leachates and that these are directly proportional to concentration. None-the-less, interference with natural soil-water interactions are frequently more damaging, especially for sites contaminated with very viscous, weathered hydrocarbons. Therefore, the kind of hydrocarbons present in the soil and their interactions with soil surfaces may be more important than the overall hydrocarbon concentration in terms of soil restoration. One recently patented technology, the Chemical-Biological Stabilization process, focuses specifically on restoring soil fertility as the main objective for remediation of sites with agricultural use. This method was recently validated at an industrial scale by the treatment of 150 cubic meters of bentonitic drilling muds (70,5% fines) from an old sulphur mine, which were contaminated with very weathered oil (4° API), consisting of 31% asphaltenes. This material was treated by adding 4% (w/w, dry) of calcium hydroxide, followed by 4% (w/w, dry) of sugar cane cachasse (a fine fibered agricultural waste), thoroughly mixing between additions using an excavator. After the soil had dried sufficiently and the pH was planted by seed. Over a two year period this material was monitored for several factors including field moisture (%H), field capacity (FC), and soil water repellency. MED was measured on air dried soil and WDPT values were calculated from the extrapolation of penetration time vs. ethanol molarity functions (Rx=0,99). Additionally, water penetration times were measured at different humidities to determine critical moisture levels for absorption in growth was established. During two years of treatment the MED values were reduced 30% from 5,13 to 3,58M, and WDPT values were reduced over 25 times (from 10 exp5,6 s to 10 exp4,2 s). Critical humidity values varied from ~16

  18. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M.; Blanchet, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Cellier, F. [Framatome, Centre Technique, 71 - Saint Marcel (France)

    2007-07-01

    Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal

  19. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  20. Mechanisms and energetics of surface reactions at the copper-water interface. A critical literature review with implications for the debate on corrosion of copper in anoxic water

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Adam Johannes; Brinck, Tore [Applied Physical Chemistry, KTH Royal Inst. of Technology, Stockholm (Sweden)

    2012-06-15

    In order to make a critical analysis of the discussion of corrosion of copper in pure anoxic water it is necessary to understand the chemical reactivity at the copper-water interface. Even though the most fundamental issue, i.e. the nature and existence of a hypothetical product that is thermodynamically stable, is still under debate, it is clear that if anoxic corrosion really exists, it must be initiated through oxidative surface reactions at the copper-water interface. This report presents a survey of the peer reviewed literature on the reactivity of copper surfaces in water. Reactions discussed involve molecular adsorption of water, dissociation of the OH-bonds in adsorbed water molecules and hydroxyl groups, the disproportionation/synproportionation equilibrium between hydroxyl groups/hydroxide ions, water molecules and atomic oxygen, the surface diffusion of adsorbed species, and the formation of hydrogen gas (molecular hydrogen). Experimental, as well as theoretical (quantum chemical) studies are reviewed. It is concluded that a limited amount of hydrogen gas (H{sub 2}) should be formed as the result of dissociative water adsorption at certain copper surfaces. Quantitative estimates of the amounts of H2 that could form at the copper-water interface are made. Assuming that the water-cleavage/hydrogen-formation reaction proceeds on an ideal [110] or [100] surface until a hydroxyl monolayer (ML) is reached, the amount of H{sub 2} formed is {approx} 2.4 ng cm{sup -2} copper surface. Based on the literature cited, this is most likely possible, thermodynamically as well as kinetically. Although not proven, it is not unlikely that the reaction can proceed until an oxide ML is formed, which would give 4.8 ng cm{sup -2}. If the formation of an oxide ML is thermodynamically feasible the surface will probably react further, since Cu{sub 2}O(s) is known to activate and cleave the water molecule when it adsorbs at the Cu{sub 2}O(s) surface. Assuming the formation of a

  1. A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines?

    Science.gov (United States)

    Murphy, Heather M; McBean, Edward A; Farahbakhsh, Khosrow

    2010-12-01

    Point-of-use (POU) technologies have been proposed as solutions for meeting the Millennium Development Goal (MDG) for safe water. They reduce the risk of contamination between the water source and the home, by providing treatment at the household level. This study examined two POU technologies commonly used around the world: BioSand and ceramic filters. While the health benefits in terms of diarrhoeal disease reduction have been fairly well documented for both technologies, little research has focused on the ability of these technologies to treat other contaminants that pose health concerns, including the potential for formation of contaminants as a result of POU treatment. These technologies have not been rigorously tested to see if they meet World Health Organization (WHO) drinking water guidelines. A study was developed to evaluate POU BioSand and ceramic filters in terms of microbiological and chemical quality of the treated water. The following parameters were monitored on filters in rural Cambodia over a six-month period: iron, manganese, fluoride, nitrate, nitrite and Escherichia coli. The results revealed that these technologies are not capable of consistently meeting all of the WHO drinking water guidelines for these parameters.

  2. In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations.

    Science.gov (United States)

    Xiao, Fang-Xing; Liu, Bin

    2017-11-09

    Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.

  3. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    Science.gov (United States)

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    Unconventional natural gas and oil resources in the United States are important components of a national energy program. While the Nation seeks greater energy independence and greener sources of energy, Federal agencies with environmental responsibilities, state and local regulators and water-resource agencies, and citizens throughout areas of unconventional shale gas development have concerns about the environmental effects of high volume hydraulic fracturing (HVHF), including those in the Appalachian Basin in the northeastern United States (fig. 1). Environmental concerns posing critical challenges include the availability and use of surface water and groundwater for hydraulic fracturing; the migration of stray gas and potential effects on overlying aquifers; the potential for flowback, formation fluids, and other wastes to contaminate surface water and groundwater; and the effects from drill pads, roads, and pipeline infrastructure on land disturbance in small watersheds and headwater streams (U.S. Government Printing Office, 2012). Federal, state, regional and local agencies, along with the gas industry, are striving to use the best science and technology to develop these unconventional resources in an environmentally safe manner. Some of these concerns were addressed in U.S. Geological Survey (USGS) Fact Sheet 2009–3032 (Soeder and Kappel, 2009) about potential critical effects on water resources associated with the development of gas extraction from the Marcellus Shale of the Hamilton Group (Ver Straeten and others, 1994). Since that time, (1) the extraction process has evolved, (2) environmental awareness related to high-volume hydraulic fracturing process has increased, (3) state regulations concerning gas well drilling have been modified, and (4) the practices used by industry to obtain, transport, recover, treat, recycle, and ultimately dispose of the spent fluids and solid waste materials have evolved. This report updates and expands on Fact Sheet 2009

  4. Prevalence of Epidermal Conditions in Critically Endangered Indo-Pacific Humpback Dolphins (Sousa chinensis from the Waters of Western Taiwan

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang1, Wei-Lung Chang2, Ka-Hei Kwong1, Yi-Ting Yao1 and Lien-Siang Chou2*

    2013-11-01

    Full Text Available The prevalence of epidermal conditions in a small critically endangered population (<100 individuals of coastal Indo-Pacific humpback dolphins (Sousa chinensis from the waters of western Taiwan was assessed during a photo-identification study conducted between 2006 and 2010. Of 97 individuals photographically examined, 37% were affected by one or multiple conditions. Besides, mature individuals had significantly higher prevalence than immature ones. Five different skin condition categories were considered, including pox-like lesion, pale lesion, orange film, prolonged ulcer lesion, and nodule on body. This first study to investigate epidermal conditions on S. chinensis in the world offers data for comparison with other studies in the future and new ground for discussion on the health of these animals and the potential impact of anthropogenic activities.

  5. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  6. Fuel assembly design for APR1400 with low CBC

    Energy Technology Data Exchange (ETDEWEB)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  7. Fuel assembly design for APR1400 with low CBC

    Science.gov (United States)

    Hah, Chang Joo

    2015-04-01

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to ΔkTARGET. A set of new designed fuel assembly satisfies an objective function, min [f =∑i (ΔkF A-Δki ) ] , and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to ΔkTARGET as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  8. Effect of self-assembly on triiodide diffusion in water based polymer gel electrolytes: an application in dye solar cell.

    Science.gov (United States)

    Soni, S S; Fadadu, K B; Vekariya, R L; Debgupta, J; Patel, K D; Gibaud, A; Aswal, V K

    2014-07-01

    The preparation of ordered polymer gels from the amphiphilic block copolymers, Pluronic® F77, P123 and polyethylene glycol in the presence of ionic liquid, iodine and organic additives is presented. At 35%(w/w) concentration these copolymers (F77 and P123) self-assembled into cubic liquid crystalline phase in aqueous solution and characterized by using SAXS and AFM measurements. The effects of micellar aggregation formed by polymers on the ionic transport and triiodide diffusion have been studied by electrochemistry and SANS experiments. The ionic migration or triiodide diffusion through these polymer gels is found to be affected by the PEO/PPO content in the polymer backbone. These gels were successfully employed as an electrolyte in a dye sensitized solar cell. A remarkable solar to electricity conversion efficiency and good stability was obtained using Pluronic® F77 based gel, which is attributed to its thermoreversible sol to gel transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity.

    Science.gov (United States)

    Ma, Jian-Guo; Boyd, Ben J; Drummond, Calum J

    2006-10-10

    Commercial linear alkyl benzene sulfonates (ABS) are a very important class of anionic surfactants that are employed in a wide variety of applications, especially those involving wetting and detergency. Linear ABS surfactants generally consist of a complex mixture of different chain lengths and positional isomers. This diversity and level of complexity makes it difficult to develop fundamental structure-property correlations for the commercial surfactants. In this work, six monodisperse headgroup positional isomers of sodium para-dodecyl benzene sulfonate (Na-x-DBS, x = 1-6) have been studied. The influence of headgroup position and added electrolyte (NaCl) on the solubility and self-assembly (micellar and vesicular aggregation and lyotropic liquid crystalline phase behavior) in the temperature range from 10 to 90 degrees C have been investigated. Additionally, the air-aqueous solution interfacial adsorption at 25 (no added NaCl) and 50 degrees C (from 0 to 1.0 M added NaCl) has been examined. The observed physicochemical behavior is interpreted in terms of local molecular packing constraints, and in the case of the lyotropic liquid crystalline behavior global aggregate packing constraints as well.

  10. Steadiness of a “water bell” surface to a destruction at a flow around of the thin rods assembly

    Directory of Open Access Journals (Sweden)

    Slesareva Ekaterina

    2015-01-01

    Full Text Available The experimental research of hydrodynamic stability of a dome-shaped film liquid at a flow around a thin plate has been carried out. Experiments were carry out with a film in shape a «water bell». The film was formed by a leak-in jet of water width 10 mm on a hard disk with diameter 14.5 mm. The width of a plate ζ changed from 0.05 to 3.5 mm. The plate placed along or across relative to the vector of velocity of a liquid in a film. Experiments have shown, that stability of a film of liquid at a flow around the plate is defined by velocity of water and a thickness of a film δ in front of the rod. It is shown, that for the appointed value of Reynolds number Reδ probably continuous flow at a flow around the plate, if Weber number Weζ less than threshold value. The criterion of steadiness a film of the «water bell» by a surface destruction at a flow around the rod is determined on the transverse size of the rod relative to the vector of velocity of a liquid.

  11. Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery.

    Science.gov (United States)

    Kang, Se Won; Patnaik, Bharat Bhusan; Hwang, Hee-Ju; Park, So Young; Chung, Jong Min; Song, Dae Kwon; Patnaik, Hongray Howrelia; Lee, Jae Bong; Kim, Changmu; Kim, Soonok; Park, Hong Seog; Park, Seung-Hwan; Park, Young-Su; Han, Yeon Soo; Lee, Jun Sang; Lee, Yong Seok

    2017-03-01

    Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Oil-in-water microfluidics on the colloidal scale: new routes to self-assembly and glassy packings

    Science.gov (United States)

    Meissner, Max; Dong, Jun; Eggers, Jens; Seddon, Annela M.; Royall, C. Patrick

    We have developed Norland Optical Adhesive (NOA) flow focusing devices, making use of the excellent solvent compatibility and surface properties of NOA to generate micron scale oil-in-water emulsions with polydispersities as low as 5%. While current work on microfluidic oil-in-water emulsification largely concerns the production of droplets with sizes on the order of 10s of micrometres, large enough that Brownian motion is negligible, our NOA devices can produce droplets with radii ranging from 2 {\\mu}m to 12 {\\mu}m. To demonstrate the utility of these emulsions as colloidal model systems we produce fluorescently labelled polydimethylsiloxane droplets suitable for particle resolved studies with confocal microscopy. We analyse the structure of the resulting emulsion in 3D using coordinate tracking and the topological cluster classification and reveal a new mono-disperse thermal system.

  13. Hot Water Treatment, Trunk Diseases and Other Critical Factors in the Production of High-Quality Grapevine Planting Material

    Directory of Open Access Journals (Sweden)

    H. Waite

    2007-04-01

    Full Text Available This review describes the critical factors on which successful grapevine propagation depends and discusses the steps that can be taken to improve the quality of planting material available to growers. Spasmodic occurrences of young vine decline and the failure of planting material have plagued the wine industry since the 1990s. The syndrome now described as Petri disease has been identified as the probable cause of many of the failures, but hot water treatment (HWT of dormant cuttings (50°C/30 min, for the control of Phaeomoniella chlamydospora and other endogenous pathogens, has also been implicated in the losses. HWT is known to cause a temporary switch to fermentative respiration and early retarded growth in treated material, particularly in Pinot Noir, but the effects of HWT on dormant vine tissue are not yet fully understood. Poor nursery hygiene and poor storage and handling practices during propagation and planting have also been implicated in vine failure. Demand for planting material has exceeded supply and there has been little incentive for nurseries to improve their standards. The quality of planting material could be significantly improved by changing nursery practices, particularly by discontinuing the practice of soaking cuttings in water, treated or untreated, and by improving general standards of nursery hygiene and the management of cool rooms. There is a need to develop a set of universal quality standards for cuttings and rooted vines. Growers also need to be made aware of the characteristics and benefits of high quality planting material.

  14. Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas.

    Science.gov (United States)

    Giray, E Sultan; Kirici, Saliha; Kaya, D Alpaslan; Türk, Murat; Sönmez, Ozgür; Inan, Memet

    2008-01-15

    The volatile extract composition of Lavandula stoechas flowers obtained by hydrodistillation (HD), subcrtical water extraction (SbCWE) and organic solvent extraction under ultrasonic irradiation (USE) were estimated by gas chromatography-mass spectrometry (GC-MS). One hundred and twenty four components were detected in SbCWE extracts while 94 and 65 signals were gained from HD and USE extracts, respectively. Most of the constituents were identified. The major compounds in all three extracts were fenchon, camphor, myrtenyl acetate, myrtenol and 1,8-cineol, but they differ in quantitatively. The total monoterpene hydrocarbons are higher in HD and USE extracts than those of SbCWE extract. However, SbCWE extract had higher concentration of light oxygenated compounds which contributes to the fragrance of the oil in a major extension. Heavy-oxygenated compounds was also in higher abundance in SbCWE extract (9.90%) than those of HD and USE extracts (3.19 and 4.78%, respectively). Effect of temperature on the extraction yield of SbCWE was investigated and while oil yield was increasing with an increase in temperature, a decrease in the extraction ability of sub-critical water toward the more polar compounds such as, 1,8-cineol, camphor and fenchon, was observed. Kinetic studies shown that SbCWE is clearly quicker than conventional alternatives. Most of components of volatile compounds were extracted at 15min.

  15. Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) seeds.

    Science.gov (United States)

    Ntuli, Tobias M; Finch-Savage, William E; Berjak, Patricia; Pammenter, Norman W

    2011-04-01

    The potential to cryopreserve embryonic axes of desiccation-sensitive (recalcitrant) seeds is limited by damage during the desiccation necessary for low temperature survival, but the basis of this injury and how to reduce it is not well understood. The effects of drying rate on the viability, respiratory metabolism and free radical-mediated processes were therefore investigated during dehydration of Quercus robur L. embryonic axes. Viability, assessed by evidence of germination and tetrazolium staining, showed a sharp decline at 0.27 and 0.8 g/g during rapid (<12 h) or slow (3 d) dehydration, respectively. Rapid dehydration therefore lowered the critical water content for survival. At any given water content rapid dehydration was associated with higher activities of the free radical processing enzymes, superoxide dismutase, catalase and glutathione reductase and lower levels of hydroperoxide and membrane damage. Rapid dehydration was also associated with lower malate dehydrogenase activity, and a reduced decline in phosphofructokinase activity and in levels of the oxidized form of nicotinamide dinucleotide. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in hydrated storage after 3 d. The results presented are consistent with rapid dehydration reducing the accumulation of damage resulting from desiccation induced aqueous-based deleterious reactions. © 2011 Institute of Botany, Chinese Academy of Sciences.

  16. Self-assembly of polar food lipids.

    Science.gov (United States)

    Leser, Martin E; Sagalowicz, Laurent; Michel, Martin; Watzke, Heribert J

    2006-11-16

    Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.

  17. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  18. Homochiral oligopeptides by chiral amplification within two-dimensional crystalline self-assemblies at the air-water interface; Relevance to biomolecular handedness

    DEFF Research Database (Denmark)

    Weissbuch, I.; Zepik, H.; Bolbach, G.

    2003-01-01

    A possible role that might have been played by ordered clusters at interfaces for the generation of homochiral oligopeptides under prebiotic conditions has been probed by a catalyzed polymerization of amphiphilic activated a-amino acids, in racemic and chiral non-racemic forms, which had self......-stearyl-glutamic thioacid (C-18-thio-Glu). According to insitu grazing incidence X-ray diffraction measurements on the water surface, (R,S)-C-18-TE-Lys, (RA-C-18-TE-Glu, and (R,S)-C-18-Glu-NCA amphiphiles self-assembled into ordered racemic 2D crystallites. Oligopeptides 2-12 units long were obtained at the air......-aqueous solution interface after injection of appropriate catalysts into the water subphase. The experimental relative abundance of oligopeptides with homochiral sequence generated from (R,S)-C-18-TE-Lys and (R,S)-C-18-TE-Glu, as determined by mass spectrometry on enantioselectively deuterium-labeled samples...

  19. Effect of H-bonding interactions of water molecules in the self assembly of supramolecular architecture-joint experimental and computational studies

    Science.gov (United States)

    Jassal, Amanpreet Kaur; Kaur, Rajwinder; Islam, Nasarul; Anu; Mudsainiyan, Rahul Kumar

    2017-08-01

    A new {[Cu(4,4‧-BP)2.(H2O)4].2,6-NDC.3(H2O)} complex has been synthesized by refluxing Cu(NO3)2, 2,6-NDC and 4,4‧-BP (1:1:1 ratio) (2,6-NDC = 2,6-Naphthalene Dicarboxylic acid, 4,4‧-BP = 4,4'-bipyridine) in methanol/ammonia mixture and characterized by various spectroscopic techniques. The geometry around Cu2+ ion is typical octahedral in cationic complex, while the deprotonated 2,6-NDC act as a charge balancing counter anionic part. Water molecules (lattice and coordinated) also play important role in the self-assembly by forming Hsbnd bonded supramolecular architecture involving strong inter/intramolecular secondary interactions. The luminescence property and thermogravimetric analyses were also investigated. Both the intermolecular interactions of molecular and crystal structures of this complex were compared and discussed using Hirshfeld surface analysis and 2D-fingerprint plots. Hirshfeld surface analysis indicates that H⋯H, O⋯H and π···π contacts can account for 40.4, 19.3 and 7.7% respectively of the total Hirshfeld surface area. The DFT calculation at the CAM-B3LYP level of theory revealed the existence of three hydrogens binds in the complex. These hydrogen bonds exist between the oxygen atom of ligand and the hydrogen of coordinated water molecules.

  20. An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro.

    Science.gov (United States)

    Muthuraj, B; Mukherjee, Sudip; Chowdhury, Sayan Roy; Patra, Chitta Ranjan; Iyer, Parameswar K

    2017-03-15

    A strategy to develop water soluble, biocompatible nanocomposite probe for the detection of pyrophosphate (PPi) in physiological conditions and in in vitro live melanoma cancer cells (B16F10) is reported. The self-assembled nanocomposite probe comprised of amino acid (histidine) functionalized perylenediimide (PDI-HIS), copper ion and graphene oxide (GO) and that could be utilized as a highly effective sensing platform in biological conditions and cellular environment via fluorescence "turn-on" for PPi detection. This controlled fabrication of metal organic self-assembled spheres along with GO proved very valuable for the detection of PPi in unprecedented sensitivity over other competing ions. The PDI-HIS-Cu-GO (PCG) nanocomposite sensor provides a unique platform for the fluorogenic detection of PPi having a very low limit of detection (LOD) of 0.60×10 -7 M based on the strong affinity (1.0×10 6 M -1 ) between the copper complex of PDI-HIS receptor and PPi. The intracellular detection of PPi using PCG also carried out in B16F10 cells where >10 times observed as compared to the PDI-HIS+Cu 2+ complex. Thus early cancer detection via PPi recognition in physiological conditions and in live cells was possible using PCG. Furthermore, the fabrication of PDI-HIS and PCG with PVA hydrogel films and on thin layer chromatography plates demonstrated the practical utility for the detection of PPi anions by "off-on" response rapidly in a label free manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation.

    Science.gov (United States)

    Bai, Feng; Diao, Jiajing; Wang, Ying; Sun, Shixin; Zhang, Hongmei; Liu, Yunyun; Wang, Yanqing; Cao, Jian

    2017-08-16

    Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and (1)H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.

  2. Implosion chain reaction mitigation in underwater assemblies of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie, E-mail: jjling@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Bishai, Mary; Diwan, Milind; Dolph, Jeffrey; Kettell, Steve; Sexton, Kenneth; Sharma, Rahul; Simos, Nikolaos; Stewart, James [Brookhaven National Laboratory, Upton, NY 11973 (United States); Tanaka, Hidekazu [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 456 Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Viren, Brett [Brookhaven National Laboratory, Upton, NY 11973 (United States); Arnold, Douglas; Tabor, Philip; Turner, Stephen [Naval Undersea Warfare Center, Newport, RI 02841 (United States); Benson, Terry; Wahl, Daniel; Wendt, Christopher [University of Wisconsin-Madison, WI 53706 (United States); Hahn, Alan; Kaducak, Marc; Mantsch, Paul [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); and others

    2013-11-21

    Since the accident with a cascade failure of photomultiplier tubes (PMTs) in the Super-Kamiokande experiment in 2001, the mechanical performance of large format semi-hemispherical PMTs has become a critical issue for large water Cherenkov detectors. The subject of this study is the survival of an assembled array of PMTs under significant hydrostatic pressure and subjected to shock waves caused by the failure of a single PMT. This paper details the results of the second stage of a R and D program focused on the design and testing of different PMT assemblies to mitigate the risk of a “chain-reaction” of PMT failures. The initial results show that our PMT assembly design can effectively reduce the magnitude of the shock wave. With the testing results in this paper and the hydrodynamic simulation calculation, we can further improve the design of PMT deployment to mitigate the risk of chain reactions caused by implosion induced shock waves.

  3. Counterion identity effects on the self-assembly processes in a series of perfluorinated surfactant-water mixtures

    CERN Document Server

    Zhou, R

    2003-01-01

    The effects of counterion on the lyotropic liquid crystalline phase behaviour of some quaternary ammonium salts of perfluorodecanoic acid in water have been studied using a combination of optical polarising microscopy (OPM), deuterium nuclear magnetic resonance ( sup 2 H NMR) and cryo-transmission electron microscopy (cryo-TEM). The results from the phase diagram studies fall into two groups. Firstly the ammonium (A) and tetramethylammonium (TMA) counterions show a phase behaviour with nematic (N) and random mesh (Mh sub 1 (0)) phase which possess non-uniform interfacial curvature. The second group of surfactants with counterions, butyltrimethylammonium (BTMA), dibutyidimetylammonium (DBDMA), and tetrabutylammonium (TEA), form only a classical lamellar phase (L subalpha). For both DBDMA and TBA lower consolute behaviour has been observed. At fixed concentration in all five systems cryo-TEM visualises isotropic liquid phase structures that vary from sphere / rod micelles for A and TMA to vesicles / bilayer pie...

  4. Rape of a Nation: An Eco-critical Reading of Helon Habila’s Oil on Water

    Directory of Open Access Journals (Sweden)

    Solomon Adedokun Edebor

    2017-09-01

    Full Text Available A number of literary and linguistic researches have been carried out on post-independent Nigerian quagmire. The concerns of some of these studies range from investigating many of the topical issues that have come to define the country, particularly with regard to the issues of bad governance and socio-economic oppression, to the roles played by the masses in aggravating the nation’s predicaments. However, not many critics and scholars have paid the deserved attention to the ecological concerns of Nigerian novelists. This paper, therefore, examines Helon Habila’s Oil on Water as a testament to the environmental mindfulness of Nigerian novelists. The choice of Oil on Water is informed by the fact that there is a dearth of serious scholarly research on the novel. Using the sociological approach and adopting a content analysis method, this study finds out that Habila is not oblivious of the ecological implications of man’s exploitative tendencies on earth’s resources as he makes bare the grim effects of Man’s reckless actions on the environment, the society and other living things, thereby rousing the consciousness of his readers as a way of forcing them to contribute their quota towards making the earth a safe place to live in, free from further gratuitous exploitations by a few to the disadvantage of many. It is, nevertheless, found out that the author fails to suggest pragmatic solutions to the staggering challenges confronting the oil-polluted and violence-ridden nation of Niger Delta.

  5. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  6. Critical heat flux for water boiling in channels. Modern state, typical regularities, unsolved problems, and ways for solving them (a review)

    Science.gov (United States)

    Bobkov, V. P.

    2015-02-01

    Some general matters concerned with description of burnout in channels are outlined. Data obtained from experimental investigations on critical heat fluxes (CHF) in different channels, CHF data banks, the main determining parameters, CHF basic dependences, and a system of correction functions are discussed. Two methods for estimating the CHF description errors are analyzed. The influence of operating parameters, transverse sizes of channels, and conditions at their inlet are analyzed. The effects of heat-transfer surface shape and heat supply arrangement are considered for concentric annular channels. The notions of a thermal boundary layer and an elementary thermal cell during burnout in channels with an intricate cross section are defined. New notions for describing CHF in rod assemblies are introduced: bundle effect, thermal misalignment, assembly-section-averaged and local parameters (for an elementary cell), cell-wise CHF analysis in bundles, and standard and nonstandard cells. Possible influence of wall thermophysical properties on CHF in dense assemblies and other effects are considered. Thermal interaction of nonequivalent cells and the effect of heat supply arrangement over the cell perimeter are analyzed. Special attention is paid to description of the effect the heat release nonuniformity along the channels has on CHF. Objectives to be pursued by studies of CHF in channels of different cross-section shapes are formulated.

  7. Coupled analysis of the HPLWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Lanfranco; Schulenberg, Thomas; Starflinger, Joerg [Forschungszentrum Karlsruhe (Germany). Inst. for Nuclear and Energy Technologies

    2008-07-01

    The High Performance Light Water Reactor (HPLWR) [1] is an innovative type of reactor cooled and moderated with water at super-critical pressure. Due to the nominal operation pressure of 25 MPa no two-phase transition occurs and thus the issues related to the nucleate boiling are eliminated permitting a larger coolant temperature rise than for common LWRs and hence the thermodynamic efficiency of the power plant is also increased. The target water heat up, from 550K to 770K, is split into three parts and, because of the associated strong density reduction, the presence of additional in-core flow paths for high density water is required in order to achieve a thermal neutron spectrum. Since the water densities determine the neutron spectrum and hence the power generation which in turn may change the water temperatures and densities, a coupled Neutronic / Thermal-Hydraulic analysis is mandatory even for steady-state conditions as already shown in [2] and [3]. Two stand alone codes where chosen and coupled trough external procedures which exchange the coupling parameters, namely the water density together with the fuel temperature from the thermalhydraulic analysis and the axial power distribution from the neutronic one. This paper will present preliminary results obtained for a steady state coupled analysis of one single HPLWR fuel assembly together with the computational methods developed. (orig.)

  8. Assembly of the fluorescent acrosomal matrix and its fate in fertilization in the water strider, Aquarius remigis.

    Science.gov (United States)

    Miyata, Haruhiko; Noda, Naoki; Fairbairn, Daphne J; Oldenbourg, Rudolf; Cardullo, Richard A

    2011-04-01

    Animal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi-aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of flavin adenine dinucleotide (FAD), which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis. Fluorescence recovery after photobleaching reveals that the fluorescent molecule exhibits unrestricted mobility in the acrosomal vesicle of round spermatids but is completely immobile in the acrosome of mature sperm. Fluorescence polarization microscopy shows a net alignment of the fluorescent molecules in the acrosome of the mature sperm but not in the acrosomal vesicle of round spermatids. These results suggest that acrosomal molecules are rearranged in the elongating acrosome and FAD is incorporated into the acrosomal matrix during its formation. Further, we followed the fate of the acrosomal matrix in fertilization utilizing the intrinsic fluorescence. The fluorescent acrosomal matrix was observed inside the fertilized egg and remained structurally intact even after gastrulation started. This observation suggests that FAD is not released from the acrosomal matrix during the fertilization process or early development and supports an idea that FAD is involved in the formation of the acrosomal matrix. The intrinsic fluorescence of the A. remigis acrosome will be a useful marker for following spermatogenesis and fertilization. Copyright © 2010 Wiley-Liss, Inc.

  9. Letter to the editor: Generation of self organized critical connectivity network map (SOCCNM of randomly situated water bodies during flooding process

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2001-01-01

    Full Text Available This letter presents a brief framework based on nonlinear morphological transformations to generate a self organized critical connectivity network map (SOCCNM in 2-dimensional space. This simple and elegant framework is implemented on a section that contains a few simulated water bodies to generate SOCCNM. This is based on a postulate that the randomly situated surface water bodies of various sizes and shapes self organize during flooding process.

  10. Computed tomography to estimate cardiac preload and extravascular lung water. A retrospective analysis in critically ill patients

    Directory of Open Access Journals (Sweden)

    Schmid Roland M

    2011-05-01

    Full Text Available Abstract Background In critically ill patients intravascular volume status and pulmonary edema need to be quantified as soon as possible. Many critically ill patients undergo a computed tomography (CT-scan of the thorax after admission to the intensive care unit (ICU. This study investigates whether CT-based estimation of cardiac preload and pulmonary hydration can accurately assess volume status and can contribute to an early estimation of hemodynamics. Methods Thirty medical ICU patients. Global end-diastolic volume index (GEDVI and extravascular lung water index (EVLWI were assessed using transpulmonary thermodilution (TPTD serving as reference method (with established GEDVI/EVLWI normal values. Central venous pressure (CVP was determined. CT-based estimation of GEDVI/EVLWI/CVP by two different radiologists (R1, R2 without analyzing software. Primary endpoint: predictive capabilities of CT-based estimation of GEDVI/EVLWI/CVP compared to TPTD and measured CVP. Secondary endpoint: interobserver correlation and agreement between R1 and R2. Results Accuracy of CT-estimation of GEDVI ( 800 mL/m2 was 33%(R1/27%(R2. For R1 and R2 sensitivity for diagnosis of low GEDVI (2 was 0% (specificity 100%. Sensitivity for prediction of elevated GEDVI (> 800 mL/m2 was 86%(R1/57%(R2 with a specificity of 57%(R1/39%(R2 (positive predictive value 38%(R1/22%(R2; negative predictive value 93%(R1/75%(R2. Estimated CT-GEDVI and TPTD-GEDVI were significantly different showing an overestimation of GEDVI by the radiologists (R1: mean difference ± standard error (SE: 191 ± 30 mL/m2, p 2, p 10 mL/kg was 30% for R1 and 40% for R2. CT-EVLWI and TPTD-EVLWI were significantly different (R1: mean difference ± SE: 3.3 ± 1.2 mL/kg, p = 0.013; R2: mean difference ± SE: 2.8 ± 1.1 mL/kg, p = 0.021. Again ccc was low with -0.02 (R1; 95% CI: -0.20 to +0.13, BCF = 0.44 and +0.14 (R2; 95% CI: -0.05 to +0.32, BCF = 0.53. GEDVI, EVLWI and CVP estimations of R1 and R2 showed a poor

  11. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.

    Science.gov (United States)

    Giusti, Fabrice; Popot, Jean-Luc; Tribet, Christophe

    2012-07-17

    Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the

  12. Critical Loads of Acid Deposition for Wilderness Lakes in the Sierra Nevada (California) Estimated by the Steady-State Water Chemistry Model

    Science.gov (United States)

    Glenn D. Shaw; Ricardo Cisneros; Donald Schweizer; James O. Sickman; Mark E. Fenn

    2014-01-01

    Major ion chemistry (2000-2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (...

  13. Evaluation of sub-critical water as an extraction fluid for model contaminants from recycled PET for reuse as food packaging material.

    Science.gov (United States)

    Santos, Amélia S F; Agnelli, José A M; Manrich, Sati

    2010-04-01

    Recycling of plastics for food-contact packaging is an important issue and research into meaningful and cost-effective solutions is in progress. In this paper, the use of sub-critical water was evaluated as an alternative way of purifying poly(ethylene terephthalate) (PET) flakes for direct food contact applications. The effects of temperature, pressure and flow rate were assessed on the extraction efficiency of two of the most challenging classes of contaminants (toluene and benzophenone) from PET by sub-critical water using a first-order fractional experimental design. Extraction yield was quantified using GC/FID. The most important parameter was flow rate, indicating that the decrease in sub-critical water polarity with temperature was insufficient to eliminate partition effects. Temperature was also important, but only for the optimization of toluene extraction. These results may be explained by the poor solubility of higher molar mass compounds in sub-critical water compared to lower molar mass compounds under the same conditions, and the small decrease in dielectric constant with temperature under the experimental conditions evaluated. As cleaning efficiency is low and PET is very susceptible to hydrolysis, which limits the use of higher temperatures vis-à-vis physical recycling, the proposed extraction is unsuitable for a standalone super-clean process but may be a step in the process.

  14. Extravascular lung water index measurement in critically ill children does not correlate with a chest x-ray score of pulmonary edema.

    NARCIS (Netherlands)

    Lemson, J.; Die, L. van; Hemelaar, A.E.A.; Hoeven, J.G. van der

    2010-01-01

    INTRODUCTION: Extravascular lung water index (EVLWI) can be measured at the bedside using the transpulmonary thermodilution technique (TPTD). The goal of this study was to compare EVLWI values with a chest x-ray score of pulmonary edema and markers of oxygenation in critically ill children. METHODS:

  15. Dispersive micro-solid phase extraction based on self-assembling, ionic liquid-coated magnetic particles for the determination of clofentezine and chlorfenapyr in environmental water samples.

    Science.gov (United States)

    Peng, Bing; Zhang, Jiaheng; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2013-11-21

    Two ionic liquid-coated-Fe3O4 magnetic particles (IL-Fe3O4 MPs) were developed for use in two types of dispersive micro-solid phase extraction (D-μ-SPE) for the high-performance liquid chromatographic analysis of clofentezine and chlorfenapyr in environmental water samples. Self-assembling IL-Fe3O4 MPs were used in D-μ-SPE as adsorbents. Two D-μ-SPE extraction methods, namely, direct dispersive micro-solid phase extraction (d-D-μ-SPE) and in situ solvent formation-based dispersive micro-solid phase extraction (ISF-D-μ-SPE), were proposed, using [C8MIM][PF6] to extract analytes through two pathways. Lower IL doses were required in the extraction process compared with those in other IL-based methods. Fe3O4 MPs can also be recycled and reused after extraction and are thus environmentally friendly. These newly developed methods were demonstrated to be feasible for use in the quantitation of clofentezine and chlorfenapyr at trace levels, with lower limit of detection values ranging from 0.4 to 0.5 ng mL(-1) for d-D-μ-SPE and 0.4 ng mL(-1) for ISF-D-μ-SPE. Finally, relative standard deviations of less than 6.0% were obtained.

  16. Lambda-type sharp rise in the widths of Raman and infra-red line shape near the Widom line in super-critical water above its gas-liquid critical temperature

    CERN Document Server

    Samanta, Tuhin

    2016-01-01

    A lambda-type divergent rise of Raman linewidth of liquid nitrogen near its critical temperature has been a subject of many discussions in the past[1-5]. Here we explore the possibility of such an anomaly in infra-red and Raman spectroscopy of super-critical water (SCW) by varying the density across the Widom line just above its critical temperature. Vibrational phase relaxation is expected to be a sensitive probe of fluid dynamics. We carry out computer simulations of two different model potentials (SPC/E and TIP4P/2005) to obtain the necessary time correlation functions. An additional feature of this work is a quantum chemical calculation of the anharmonicity parameter that largely controls frequency fluctuations. We find a sharp rise in the vibrational relaxation rate (or the line widths) for both the models as we travel across the Widom line. The rise is noticeably less sharp in water than in nitrogen. We attribute this difference to the faster relaxation rate in water. We demonstrate that the anomalous r...

  17. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide

    Science.gov (United States)

    Salehi, Hasan; Rastgar, Masoud; Shakeri, Alireza

    2017-08-01

    To date, forward osmosis (FO) has received considerable attention due to its potential application in seawater desalination. FO does not require external hydraulic pressure and consequently is believed to have a low fouling propensity. Despite the numerous privileges of FO process, a major challenge ahead for its development is the lack of high performance membranes. In this study, we fabricated a novel highly-efficient FO membrane using layer-by-layer (LbL) assembly of positive chitosan (CS) and negative graphene oxide (GO) nanosheets via electrostatic interaction on a porous support layer. The support layer was prepared by blending hydrophilic sulfonated polyethersulfone (SPES) into polyethersulfone (PES) matrix using wet phase inversion process. Various characterization techniques were used to confirm successful fabrication of LbL membrane. The number of layers formed on the SPES-PES support layer was easily adjusted by repeating the CS and GO deposition cycles. Thin film composite (TFC) membrane was also prepared by the same SPES-PES support layer and polyamide (PA) active layer to compare membranes performances. The water permeability and salt rejection of the fabricated membranes were obtained by two kinds of draw solutions (including Na2SO4 and sucrose) under two different membrane orientations. The results showed that membrane coated by a CS/GO bilayers had water flux of 2-4 orders of magnitude higher than the TFC one. By increasing the number of CS/GO bilayers, the selectivity of the LbL membrane was improved. The novel fabricated LbL membrane showed better fouling resistance than the TFC one in the feed solution containing 200 ppm of sodium alginate as a foulant model.

  18. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  19. A Paradigm Shift in Water Quality Governance in a Transitional Context: A Critical Study about the Empowerment of Local Governance in Georgia

    Directory of Open Access Journals (Sweden)

    Sisira S. Withanachchi

    2018-01-01

    Full Text Available The management of water quality is an important part of natural resource governance. Assurance of water quality therefore requires formulation of the regulatory framework and institutional process. Water quality-related problems and their management are mainly recognized as local responsibilities in Integrated Water Resources Management (IWRM. The politics of environmental policy-making should consider the political economic dynamics and socio-ecological patterns. Decentralization by providing more power to the local level and moving to a new spatial management system that is based on water basins are the two strong entreaties in the new water governance paradigm. Transitional countries facing rapid institutional adjustment, restructuring of regulations, and political-economic changes are encountering these demands internally and externally in their policy formulations. In this context, this study critically examines the case of Georgia, a transitional country. In particular, the focus is on how local governance entities can be empowered and what obstacles water quality governance encounters in Georgia. Qualitative research design is the main research method implemented in this study. The key findings from the research analysis are as follows: the existing regulations and governance system do not facilitate the active engagement of local entities in water quality governance. The application of new water polices may fail again if a top-down governance model is put in place that only creates a narrow space for local governance entities to effectively govern water quality.

  20. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  1. A screwing device for handling and assembly of micro screws

    DEFF Research Database (Denmark)

    Gegeckaite, Asta; Hansen, Hans Nørgaard; Eriksson, Torbjörn Gerhard

    2007-01-01

    specific requirements for the torque and displacement regarding precision and repeatability. Micro screws are used as critical mechanical components in micro assemblies such as watches, dials, computers and hearing aids. These miniature parts normally require manual assembly processes under magnification...

  2. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  3. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  4. Computation Results from a Parametric Study to Determine Bounding Critical Systems of Homogeneously Water-Moderated Mixed Plutonium--Uranium Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.

    2001-01-11

    This report provides computational results of an extensive study to examine the following: (1) infinite media neutron-multiplication factors; (2) material bucklings; (3) bounding infinite media critical concentrations; (4) bounding finite critical dimensions of water-reflected and homogeneously water-moderated one-dimensional systems (i.e., spheres, cylinders of infinite length, and slabs that are infinite in two dimensions) that were comprised of various proportions and densities of plutonium oxides and uranium oxides, each having various isotopic compositions; and (5) sensitivity coefficients of delta k-eff with respect to critical geometry delta dimensions were determined for each of the three geometries that were studied. The study was undertaken to support the development of a standard that is sponsored by the International Standards Organization (ISO) under Technical Committee 85, Nuclear Energy (TC 85)--Subcommittee 5, Nuclear Fuel Technology (SC 5)--Working Group 8, Standardization of Calculations, Procedures and Practices Related to Criticality Safety (WG 8). The designation and title of the ISO TC 85/SC 5/WG 8 standard working draft is WD 14941, ''Nuclear energy--Fissile materials--Nuclear criticality control and safety of plutonium-uranium oxide fuel mixtures outside of reactors.'' Various ISO member participants performed similar computational studies using their indigenous computational codes to provide comparative results for analysis in the development of the standard.

  5. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.

    Science.gov (United States)

    Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel; Darrah, Thomas H; Kondash, Andrew

    2014-01-01

    The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.

  6. Efficient folding/assembly in Chinese hamster ovary cells is critical for high quality (low aggregate content) of secreted trastuzumab as well as for high production: stepwise multivariate regression analyses.

    Science.gov (United States)

    Ishii, Yoichi; Murakami, Junko; Sasaki, Kazue; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2014-08-01

    When developing cell culture processes for therapeutic antibodies, the low content of aggregated proteins is the most critical because administering aggregated antibody molecules might result in adverse effects such as immunogenicity. To characterize cells with high productivity and quality, we determined factors that are closely related to antibody titer, which is a productivity indicator, and the area percentage of high molecular weight species in cultivated media, which is equivalent to aggregate content and is used as a quality indicator. We examined the factors influencing antibody titer and aggregate content using various data from 28 cell lines throughout their culture periods from growth to death phases. Our study using correlation analysis revealed that statistically significant correlations between factors and indicators changes with sampling points, hence we thought that various factors would influence each indicator simultaneously. To understand the relationship between these factors and titer/aggregates contents, we performed stepwise multiple linear regression analyses and deduced a multiple linear model for each indicator. The titer was found to positively associate with specific growth rate and specific production rate and negatively with intracellular heavy chain content. The aggregate content was found to positively associate with protein disulfide isomerase mRNA level and negatively with light chain secreted into culture media, specific production rate, intracellular light chain content, and specific growth rate. Our observations suggest that correct and efficient assembling and/or folding of an antibody molecule in an endoplasmic reticulum are important for high titer and low aggregates contents. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  8. Interfacial structure in thin water layers formed by forced dewetting on self-assembled monolayers of omega-terminated alkanethiols on Ag.

    Science.gov (United States)

    Tiani, Domenic J; Yoo, Heemin; Mudalige, Anoma; Pemberton, Jeanne E

    2008-12-02

    A method for the spectroscopic characterization of interfacial fluid molecular structure near solid substrates is reported. The thickness and interfacial molecular structure of residual ultrathin D20 films remaining after forced dewetting on alkanethiolate self-assembled monolayers (SAMs) of 11 1-mercaptoundecanoic acid (11-MUA), 11-mercaptoundecanol (11-MUD), and undecanethiol (UDT) on Ag are investigated using ellipsometry and surface Raman spectroscopy. The residual film thickness left after withdrawal is greater on hydrophilic SAMs than on hydrophobic SAMs. This behavior is rationalized on the basis of differing degrees of fluid slip within the interfacial region due to different interfacial molecular structure. The v(O-D) regions of surface Raman spectra clearly indicate unique interfacial molecular properties within these films that differ from bulk D20. Although the residual films are created by shear forces and Marangoni flow at the three-phase line during the forced dewetting process, the nature of the films sampled optically must also be considered from the standpoint of thin film stability after dewetting. Thus, the resulting D20 films exist in vastly different morphologies depending on the nature of the water-SAM interactions. Residual D20 is proposed to exist as small nanodroplets on UDT surfaces due tospontaneous rupture of the film after dewetting. In contrast, on 11-MUD and 11-MUA surfaces, these films exist in a metastable state that retains their conformal nature on the underlying modified surface. Analysis of the peak intensity ratios of the so-called "ice-like" to "liquid-like" v(O-D) modes suggests more ice-like D20 character near 11-MUD surfaces, but more liquid-like character near 11-MUA and UDT surfaces. The creation of residual ultrathin films by forced dewetting is thus demonstrated to be a powerful method for characterizing interfacial molecular structure of fluids near a solid substrate under ambient conditions of temperature and

  9. Critical behavior of 2,6-dimethylpyridine-water: Measurements of specific heat, dynamic light scattering, and shear viscosity

    DEFF Research Database (Denmark)

    Mirzaev, S. Z.; Behrends, R.; Heimburg, Thomas Rainer

    2006-01-01

    2,6-dimethylpyridine-water, specific heat, dynamic light scattering, shear viscosity Udgivelsesdato: 14 April......2,6-dimethylpyridine-water, specific heat, dynamic light scattering, shear viscosity Udgivelsesdato: 14 April...

  10. A critical review on iodine presence in drinking water access at the Saharawi refugee camps (Tindouf, Algeria).

    Science.gov (United States)

    Pichel, N; Vivar, M

    2017-07-01

    Iodine content in drinking water at the Saharawi refugee camps was analysed to assess the controversy in the origin of the prevalence of goitre among this population. A review on the iodine presence in drinking water reported in the literature was conducted, along with international standards and guidelines for iodine intake and iodine concentration in drinking water were also consulted. Chinese legislation was taken as the reference standard to evaluate the iodine concentration in water as adequate (10-150μg/L) or not (high iodine >150μg/L and iodine excess goitre >300μg/L). Water sampling was conducted in 2015 and 2016 at the Saharawi camps (El Aiun, Awserd, Smara, Boujador and Dakhla) and at the institutional capital of Rabouni. The water supply in the camps is organized in three zones: El Aiun and Awserd where each 'wilaya' receives treated water 20days and raw water another 20days; Smara, Rabouni and Boujador receiving treated water continuously and Dakhla receiving raw water continuously. Results show that Smara, Rabouni and Boujador have access to drinking water with adequate iodine levels, as it occurs in Dakhla where raw water meets the Chinese standard, however in El Aiun and Awserd all population should have access to treated water given the current quality of the raw water supply. External supplies of water and animal milk could be also contributing to the high iodine intake. In conclusion, the contribution of drinking water as the main source of iodine to the urinary iodine concentration (UIC) and goitre prevalence among the Saharawi refugee population is not clear. Further studies should be conducted to assess the iodine content among all the nutritional sources of the population with a detailed study on the daily intake of these foods and drinks, including UIC and goitre prevalence studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  12. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  13. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  14. General Assembly

    CERN Multimedia

    Staff Association

    2017-01-01

    Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 avril 2016. Présentation et approbation du rapport d’activités 2016. Présentation et approbation du rapport financier 2016. Présentation et approbation du rapport des vérificateurs aux comptes pour 2016. Programme de travail 2017. Présentation et approbation du projet de budget 2017 Approbation du taux de cotisation pour 2018. Modifications aux Statuts de l'Association du personnel proposées. Élections des membres de la Commission électorale. Élections des vérifica...

  15. ASSESSING COASTAL WATERS OF AMERICAN SAMOA: TERRITORY-WIDE WATER QUALITY DATA PROVIDE A CRITICAL 'BIG-PICTURE' VIEW FOR THIS TROPICAL ARCHIPELAGO

    Science.gov (United States)

    The coastal waters of American Samoa’s 5 high islands (Tutuila, Aunu’u, Ofu, Olosega,and Ta’u) were surveyed in 2004 using a probabilistic design. Water quality data were collected from the near-shore coastal habitat, defined as all near-shore coastal waters including embayments,...

  16. A short review of critical experiments performed at the Kurchatov Institute

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinski, A.Yu.; Glushkov, Y.S.; Ponomarev-Stepnoi, N.N. [Kurchatov Institute (Russian Federation)

    1997-06-01

    Since the 1950s, the Institute of Atomic Energy (now the Russian Research Center Kurchatov Institute) has investigated nuclear reactors intended for various purposes. A summary of the present state of these assemblies is given in an attachment to the paper. A second attachment provides a brief description of critical experiments for small nuclear power systems intended for decentralized power generation. The critical assemblies for these experiments were moderated by water and zirconium hydride, and fuel elements ranged in enrichment from 5% to 95% uranium 235. 7 refs.

  17. Research on the Construction of Project Critical Chain Model in South-to-North Water Diversion Project with Multi-Resource Constraints Based on Portfolio Technology

    Directory of Open Access Journals (Sweden)

    Jing-chun FENG

    2011-06-01

    Full Text Available Recently, the critical chain study has become the hot spot within the project management research field, so as the construction of it with multi-resource constraints become the new research subject. Referring to System Analysis Theory and Project Portfolio Theory, this paper discusses the creation of project portfolio based on project similarity, and definition of priority in multi-resource allocation based on quantitative analysis. Then according to the theory on critical chain construction, the author made relevant research and proposed the construction model with the multi-resource constraints, which to be applied to the critical chain construction of A-bid section in South-to-North Water Diversion Project. And necessary contrast analysis with the Comprehensive Treatment Construction Method and Aggressive Treatment Construction Method also has been made within this paper.

  18. A descriptive study of skeletal muscle metabolism in critically ill patients: free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes.

    Science.gov (United States)

    Gamrin, L; Essén, P; Forsberg, A M; Hultman, E; Wernerman, J

    1996-04-01

    To characterize biochemical changes in skeletal muscle in critically ill patients. Survey of critically ill patients. Intensive care unit (ICU) at a university hospital. Critically ill patients (n = 20) subjected to trauma, surgical complications, and/or bacteremia who were treated in the ICU and showed no risk of bleeding complications were included. Reference groups of metabolically healthy volunteers and patients served as the control/reference groups. Percutaneous muscle biopsy was obtained from both patients and healthy volunteers. Total free amino acids in skeletal muscle decreased 59% (p < .001) and skeletal muscle glutamine concentration decreased 72% (p < .001) in the critically ill patients. Basic amino acids decreased 49% (p < .001). Branch-chain amino acids increased 39% (p < .01), and aromatic amino acids increased 88% (p < .001) in the patients. Adenosine triphosphate (ATP) was reduced by 12% (p < .01). Total creatine concentration increased by 26% (p < .001) due to an 80% increase in free creatine (p < .001). The phosphorylated creatine fraction of total creatine decreased 22% (p < .001) in the patients. Alkali-soluble protein/DNA decreased 24% (p < .01) and fat free solid/DNA decreased 21% (P <.01) in patients sampled on or after ICU day 5 compared with the reference group. Muscle water increased 10% due to a doubling of the extracellular water fraction. Although critically ill patients are a very heterogeneous group from a clinical point of view, there is a remarkable homogeneity in many of the biochemical parameters regardless of the severity of illness and the length of the ICU admission. The three most consistent differences were the skeletal muscle low glutamine concentration, the decrease in protein content, and the increase in extracellular water in the patients.

  19. On the activation energy for the formation of a critical size water cluster in structure I and structure II gas hydrates

    OpenAIRE

    Høvring, Eirik

    2012-01-01

    Master's thesis in Petroleum engineering In the present thesis, experiments have been performed in order to study the activation energy for the formation of a stable, critical size water cluster in structure I and structure II gas hydrates. This activation energy represents an energy barrier for the nucleation process forming the required particle (nuclei) size to trigger macroscopic hydrate growth. The experiments were carried out in different laboratory high pressure cells, but of eq...

  20. On the activation energy for the formation of a critical size water cluster in structure I and structure II gas hydrates

    OpenAIRE

    Høvring, Eirik

    2012-01-01

    In the present thesis, experiments have been performed in order to study the activation energy for the formation of a stable, critical size water cluster in structure I and structure II gas hydrates. This activation energy represents an energy barrier for the nucleation process forming the required particle (nuclei) size to trigger macroscopic hydrate growth. The experiments were carried out in different laboratory high pressure cells, but of equal size and geometry. Studies were conducte...

  1. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

    Directory of Open Access Journals (Sweden)

    A. Shitu

    2015-07-01

    Full Text Available Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.

  2. Critical Assessment of Metagenome Interpretation

    DEFF Research Database (Denmark)

    Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter

    2017-01-01

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark...

  3. Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler.

    Science.gov (United States)

    Bankar, Kiran Gopinath; Todur, Vivek Nagaraj; Shukla, Rohit Nandan; Vasudevan, Madavan

    2015-09-01

    Advent of Next Generation Sequencing has led to possibilities of de novo transcriptome assembly of organisms without availability of complete genome sequence. Among various sequencing platforms available, Illumina is the most widely used platform based on data quality, quantity and cost. Various de novo transcriptome assemblers are also available today for construction of de novo transcriptome. In this study, we aimed at obtaining an ameliorated de novo transcriptome assembly with sequence reads obtained from Illumina platform and assembled using Trinity Assembler. We found that, primary transcriptome assembly obtained as a result of Trinity can be ameliorated on the basis of transcript length, coverage, and depth and protein homology. Our approach to ameliorate is reproducible and could enhance the sensitivity and specificity of the assembled transcriptome which could be critical for validation of the assembled transcripts and for planning various downstream biological assays.

  4. Criticisms of chlorination: social determinants of drinking water beliefs and practices among the Tz'utujil Maya.

    Science.gov (United States)

    Nagata, Jason M; Valeggia, Claudia R; Smith, Nathaniel W; Barg, Frances K; Guidera, Mamie; Bream, Kent D W

    2011-01-01

    To explore social determinants of drinking water beliefs and practices among the Tz'utujil Maya of Santiago Atitlán, Guatemala, through analysis of demographics, socioeconomic status, memory of historical events, sensory experience, and water attitudes. Parallel mixed (qualitative and quantitative) methods, including participant observation, in-depth interviews based on a purposive sample, and 201 semi-structured interviews based on a regional quota sample, were used to collect data from March 2007 to August 2008. Data analysis included the use of grounded theory methodology and Pearson's chi-square test for independence. Qualitative results based on grounded theory highlighted how memory of the Guatemalan Civil War and Hurricane Stan, attitudes about Lake Atitlán water, and the taste and smell of chlorine influenced Tz'utujil Maya drinking water beliefs. Quantitative survey results revealed that differences in ethnicity, literacy, years of schooling, distrust of the water supply during the Civil War and Hurricane Stan, and current beliefs about Lake Atitlán and tap water quality were associated with significantly different water self-treatment practices. In accordance with social determinants of health paradigms, demographic, socioeconomic, social, cultural, political, and historical factors continue to be significant determinants of water-related health. Public health water interventions must address inequalities related to these underlying factors in order to achieve maximum effectiveness.

  5. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  6. A CRITICAL EVALUATION OF A FLOW CYTOMETER USED FOR DETECTING ENTEROCOCCUS FAECIUM AND ENTEROCOCCUS FAECALIS IN RECREATIONAL WATERS

    Science.gov (United States)

    The current U. S. Environmental Protection Agency-approved method for Enterococci (Method 1600) in recreational water is a membrane filter (MF) method that takes 24 hours to obtain results. If the recreational water is not in compliance with the standard, the risk of exposure to...

  7. Property, legal pluralism, and water rights: the critical analysis of water governance and the politics of recognizing “local” rights

    NARCIS (Netherlands)

    Roth, D.; Boelens, R.A.; Zwarteveen, M.Z.

    2015-01-01

    In this paper we assess the impact of Franz von Benda-Beckmann's work in the field of water rights. We argue that his contributions to understanding water, a field dominated by engineers and economists, cannot be overestimated. Over the years, Franz's nuanced and empathic anthropological attitude,

  8. EXPERIMENTAL STUDY OF CRITICAL HEAT FLUX WITH ALUMINA-WATER NANOFLUIDS IN DOWNWARD-FACING CHANNELS FOR IN-VESSEL RETENTION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. DEWITT

    2013-06-01

    Full Text Available The Critical Heat Flux (CHF of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR situation which can occur during core melting sequences in certain advanced Light Water Reactors (LWRs. CHF measurements were conducted in a flow boiling loop featuring a test section designed to be thermal-hydraulically similar to the vessel/insulation gap in the Westinghouse AP1000 plant. The effects of orientation angle, pressure, mass flux, fluid type, boiling time, surface material, and surface state were investigated. Results for water-based nanofluids with alumina nanoparticles (0.001% by volume on stainless steel surface indicate an average 70% CHF enhancement with a range of 17% to 108% depending on the specific flow conditions expected for IVR. Experiments also indicate that only about thirty minutes of boiling time (which drives nanoparticle deposition are needed to obtain substantial CHF enhancement with nanofluids.

  9. Analysis of the rotation accident of assemblies in boiling water reactors; Analisis del accidente de rotacion de ensambles en reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Becerril-Gonzalez M, J. J. [Universidad Autonoma de Yucatan, Av. Industrias no contaminantes por Anillo Periferico Norte s/n, Apdo. Postal 150 Cordemex, Merida, Yucatan (Mexico); Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia de Cueto, R., E-mail: juanjosebecerril_1@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    For this work was analyzed the impact that would cause the load of a rotated fuel assembly in the behaviour of the core in the Cycle 14 of the Unit 1 of the nuclear power plant of Laguna Verde. To carry out this analysis the code Simulate-3 was used, with which was possible to analyze the behavior of the effective multiplication factor and the thermal limits (MAPRAT, MFLPD and MFLCPR). The rotation of fuel assemblies to 90, 180 and 270 grades was analyzed with regard to the design position, with 0, 1, 2 and 3 burnt cycles for these assemblies. The results show that the thermal limits remain inside the allowed values, therefore if this accident type happened the reactor could continue operating in a sure way. (Author)

  10. Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO Hybrids: A Critical Review

    Directory of Open Access Journals (Sweden)

    Gaetan Blandin

    2016-07-01

    Full Text Available Forward osmosis (FO is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application and water management challenges (proximity of wastewater and desalination plants, FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

  11. Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO) Hybrids: A Critical Review

    Science.gov (United States)

    Blandin, Gaetan; Verliefde, Arne R.D.; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-01-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling. PMID:27376337

  12. Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review.

    Science.gov (United States)

    Blandin, Gaetan; Verliefde, Arne R D; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre

    2016-07-01

    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.

  13. Molecular-dynamics study of anomalous volumetric behavior of water-benzene mixtures in the vicinity of the critical region

    OpenAIRE

    Ikawa, Shun-ichi

    2005-01-01

    Molecular-dynamics simulations of water-benzene mixtures at 573 K and pressures in the 85–140 bars range have been performed to examine local structure and dynamics of the mixtures, which exhibit anomalously large volume expansion on mixing as recently found by in situ near-infrared measurements. Fractional charges for a simple-point-charge-type potential of water were adjusted so as to reproduce liquid densities and the gas-to-liquid transition pressure of neat water at 573 K. A Lennard-Jone...

  14. Long-Term Managed Aquifer Recharge in a Saline-Water Aquifer as a Critical Component of an Integrated Water Scheme in Southwestern Florida, USA

    Directory of Open Access Journals (Sweden)

    Thomas M. Missimer

    2017-10-01

    Full Text Available Managed Aquifer Recharge (MAR systems can be used within the context of integrated water management to create solutions to multiple objectives. Southwestern Florida is faced with severe environmental problems associated with the wet season discharge of excessive quantities of surface water containing high concentrations of nutrients into the Caloosahatchee River Estuary and a future water supply shortage. A 150,000 m3/day MAR system is proposed as an economic solution to solve part of the environmental and water supply issues. Groundwater modeling has demonstrated that the injection of about 150,000 m3/day into the Avon Park High Permeable Zone will result in the creation of a 1000 m wide plume of fresh and brackish-water (due to mixing extending across the water short area over a 10-year period. The operational cost of the MAR injection system would be less than $0.106/m3 and the environmental benefits would alone more than cover this cost in the long term. In addition, the future unit water supply cost to the consumer would be reduced from $1 to $1.25/m3 to $0.45 to $0.65/m3.

  15. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  16. Literature survey of heat transfer and hydraulic resistance of water, carbon dioxide, helium and other fluids at supercritical and near-critical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Pioro, I.L.; Duffey, R.B

    2003-04-01

    This survey consists of 430 references, including 269 Russian publications and 161 Western publications devoted to the problems of heat transfer and hydraulic resistance of a fluid at near-critical and supercritical pressures. The objective of the literature survey is to compile and summarize findings in the area of heat transfer and hydraulic resistance at supercritical pressures for various fluids for the last fifty years published in the open Russian and Western literature. The analysis of the publications showed that the majority of the papers were devoted to the heat transfer of fluids at near-critical and supercritical pressures flowing inside a circular tube. Three major working fluids are involved: water, carbon dioxide, and helium. The main objective of these studies was the development and design of supercritical steam generators for power stations (utilizing water as a working fluid) in the 1950s, 1960s, and 1970s. Carbon dioxide was usually used as the modeling fluid due to lower values of the critical parameters. Helium, and sometimes carbon dioxide, were considered as possible working fluids in some special designs of nuclear reactors. (author)

  17. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Science.gov (United States)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  18. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, A., E-mail: afavalli@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schwalbach, P. [European Commission, DG Energy, Euratom Safeguards Luxemburg, Luxemburg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Tobin, S.J.; Trellue, H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Vaccaro, S. [European Commission, DG Energy, Euratom Safeguards Luxemburg, Luxemburg (Luxembourg)

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute {sup 137}Cs count rate and the {sup 154}Eu/{sup 137}Cs, {sup 134}Cs/{sup 137}Cs, {sup 106}Ru/{sup 137}Cs, and {sup 144}Ce/{sup 137}Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  19. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration.

    Science.gov (United States)

    Shi, Hang; Xagoraraki, Irene; Parent, Kristin N; Bruening, Merlin L; Tarabara, Volodymyr V

    2016-08-15

    This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rpre (PEM) = 74.8% ± 9.7%) than with CS-blocked membranes (rpre (CS) = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpost (PEM) = 99.5% ± 6.6% and rpost (CS) = 98.8% ± 7.7%) and tap water (rpost (PEM) = 89% ± 15% and rpost (CS) = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpost (CS) = 88.6% ± 4.3% and rpost (PEM) = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and

  20. Navigating dangerous waters: the utility of critical incident stress management for college- and university-based counseling centers.

    Science.gov (United States)

    Ginebaugh, Kathryn J Lewis; Klingensmith, Eric; Palombi, Barbara

    2009-01-01

    University and college counseling center personnel are called upon to provide routine and emergency mental health services for individuals and groups within the campus community. While highly trained and skilled in individual and small group therapy consultation, and outreach, most higher-education based clinicians do not have specialized training to respond to larger-scale traumatic or critical incidents. Such training is necessary to provide responsible and effective intervention. An approach to these incidents that is research-based, comprehensive, and flexible is Critical Incident Stress Management (CISM). The strengths of the CISM approach for use in higher educational settings are detailed with descriptions of existing ways CISM has been used and a call for more wide-spread utilization of CISM in higher education.

  1. Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry.

    Science.gov (United States)

    Kettlitz, Beate; Kemendi, Gabriella; Thorgrimsson, Nigel; Cattoor, Nele; Verzegnassi, Ludovica; Le Bail-Collet, Yves; Maphosa, Farai; Perrichet, Aurélie; Christall, Birgit; Stadler, Richard H

    2016-06-01

    Recently, reports have been published on the occurrence of chlorate mainly in fruits and vegetables. Chlorate is a by-product of chlorinating agents used to disinfect water, and can be expected to be found in varying concentrations in drinking water. Data on potable water taken at 39 sampling points across Europe showed chlorate to range from foods of 0.01 mg kg(-1). This default MRL has now led to significant problems in the EU, where routinely disinfected water, used in the preparation of food products such as vegetables or fruits, leaves chlorate residues in excess of the default MRL, and in strict legal terms renders the food unmarketable. Due to the paucity of data on the chlorate content of prepared foods in general, we collated chlorate data on more than 3400 samples of mainly prepared foods, including dairy products, meats, fruits, vegetables and different food ingredients/additives. In total, 50.5% of the food samples contained chlorate above 0.01 mg kg(-1), albeit not due to the use of chlorate as a pesticide but mainly due to the occurrence of chlorate as an unavoidable disinfectant by-product. A further entry point of chlorate into foods may be via additives/ingredients that may contain chlorate as a by-product of the manufacturing process (e.g. electrolysis). Of the positive samples in this study, 22.4% revealed chlorate above 0.1 mg kg(-1). In the absence of EU levels for chlorate in water, any future EU regulations must consider the already available WHO guideline value of 0.7 mg l(-1) in potable water, and the continued importance of the usage of oxyhalides for disinfection purposes.

  2. ANALISIS KADAR AIR DAN AKTIFITAS AIR KRITIKAL PRODUK SATA DARI MALAYSIA DAN IMPLIKASINYA PADA SIFAT-SIFAT PRODUK DAN UMUR SIMPANNYA [Analysis of Critical Moisture and Water Activity of Malaysian Sata and Its Implication to Product Characteristics and Shelf Life

    Directory of Open Access Journals (Sweden)

    Rita Hayati1

    2005-12-01

    Full Text Available Critical moisture and water activity of Sata. a Malaysian traditional food made of fish and young coconut meats, were analyzed for the first and second critical points of transition among the primary, secondary and tertiary bound water fractions in the Sata. It was found out that the first critical points of moisture content and water activity were M, of 5.09 % db (4.73 % wb and ar of 0.44 respectively. The second critical points were water content M5 of 19.38 % db(15.2 % wb and water activity as of 79 % respectively. The upper limit of he tertiary bound water (Mt was 75.3 % db (43.0 % wb. Sate sample in the primary bound water fraction (represented by moisture content at 5.0 % rib / 4.73 % wb, was stable in color and appearance, but slightly rancid due to molecular mobility of the liquid oil content The sample in the secondary bound water fraction (represented by moisture content of 15.0% db / 13.0% wb, has a color change to darker brown: and in the tertiary bound water fraction (represented by moisture of 30.5 % db / 23.4 % wb, mold growth appeared on the 10th day storage. The characteristics of the Malaysian Sate indicated an intermediate moisture food (IMF with water content of 37.5% wb, water activity of 0.9 and limited shelf tile to, few days at room temperature.

  3. The proton momentum distribution in strongly H-bonded phases of water; a critical test of electrostatic models

    CERN Document Server

    Burnham, C J; Hayashi, T; Mukamel, S; Napoleon, R L; Keyes, T

    2011-01-01

    Water is often viewed as a collection of monomers interacting electrostatically with each other. We compare the water proton momentum distributions from recent neutron scattering data with those calculated from two electronic structure based models. We find that below 500 K the electrostatic models are not able to even qualitatively account for the sizable vibrational zero-point contribution to the enthalpy of vaporization. This discrepancy is evidence that the change in the proton well upon solvation cannot be entirely explained by electrostatic effects alone.

  4. Critical loads of acid deposition for wilderness lakes in the sierra nevada (california) estimated by the steady-state water chemistry model

    OpenAIRE

    Shaw, GD; Cisneros, R; Schweizer, D; Sickman, JO; Fenn, ME

    2014-01-01

    Major ion chemistry (2000-2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (mean specific conductance=8.0 ?S cm?1) and characterized by low acid neutralizing capacity (ANC; mean= 56.8 ?eq L?1). Two variant...

  5. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2008-01-01

    The decreased solubility of salts in supercritical water is of great interest for industrial applications and scientific work. Several methods to quantify this decreased solubility are described and reviewed by applying them on experimental solubility data. The salts used for comparison are NaCl,

  6. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  7. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    Science.gov (United States)

    Pan, Z.; Chou, I.-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water. ?? 2009 The Royal Society of Chemistry.

  8. Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention.

    Science.gov (United States)

    Peckham, Stephen; Awofeso, Niyi

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed.

  9. Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention

    Science.gov (United States)

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570

  10. Oil-in-Water Self-Assembled Synthesis of Ag@AgCl Nano-Particles on Flower-like Bi2O2CO3 with Enhanced Visible-Light-Driven Photocatalytic Activity

    OpenAIRE

    Shuanglong Lin; Li Liu; Yinghua Liang; Wenquan Cui; Zisheng Zhang

    2016-01-01

    In this work, a series of novel flower-like Ag@AgCl/Bi2O2CO3 were prepared by simple and feasible oil-in-water self-assembly processes. The phase structures of as-prepared samples were examined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), X-ray fluorescence spectrometer (XRF), etc. The characterization results indicated that the presence of Ag@AgCl did not affect the crystal structure, bu...

  11. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    DEFF Research Database (Denmark)

    Schougaard, Steen B.; Reitzel, Niels; Bjørnholm, Thomas

    2007-01-01

    A self-assembled monolayer of CF3(CF2)(3)(CH2)(11)NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 angstrom square root 2 x root 2R45 degrees unit...... was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed....

  12. Bos taurus genome assembly.

    Science.gov (United States)

    Liu, Yue; Qin, Xiang; Song, Xing-Zhi Henry; Jiang, Huaiyang; Shen, Yufeng; Durbin, K James; Lien, Sigbjørn; Kent, Matthew Peter; Sodeland, Marte; Ren, Yanru; Zhang, Lan; Sodergren, Erica; Havlak, Paul; Worley, Kim C; Weinstock, George M; Gibbs, Richard A

    2009-04-24

    We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  13. Bos taurus genome assembly

    Directory of Open Access Journals (Sweden)

    Sodergren Erica

    2009-04-01

    Full Text Available Abstract Background We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS only assembly used for many other animal genomes including the rhesus macaque. Results The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information. Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5% of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. Conclusion The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  14. CriticalEd

    DEFF Research Database (Denmark)

    Kjellberg, Caspar Mølholt; Meredith, David

    2014-01-01

    The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made...... such as Sibelius or Finale. It was hypothesized that it would be possible to develop a Sibelius plug-in, written in Manuscript 6, that would improve the critical editing work flow, but it was found that the capabilities of this scripting language were insufficient. Instead, a 3-part system was designed and built...

  15. Coupling of MCNPX with a sub-channel code for analysis of a HPLWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Waata, C.; Schulenberg, T.; Cheng Xu [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, (Germany)

    2005-07-01

    Full text of publication follows: The High Performance Light Water Reactor (HPLWR) project was launched in 2000 under the 5. Framework Program of the European Commission. The main objective of this project was to study the technical and economic feasibility of light water reactors operating at supercritical pressure conditions. This study aims to achieve high thermal efficiency of the nuclear power plant with operating conditions of pressure at 25 MPa, coolant temperature of about 510?C and an efficiency of up to 45%. The utilization of supercritical water as coolant and moderator in the HPLWR core introduces some challenges in the design of the HPLWR core due to the special behavior of the thermal-physical properties of water under super-critical pressure conditions. At supercritical pressure conditions, water does not exhibit a phase change. Therefore no boiling phenomenon occurs in the reactor core. However, there exist a strong variation in the water density in the core as the temperature changes across the pseudo-critical value. The strong variation in the water density affects strongly to the neutron-physical behavior in the core. Therefore, for an accurate and detailed design analysis of a HPLWR core, coupled analysis of neutron-physics with thermal-hydraulics is mandatory. Although extensive activities have been carried worldwide on the design of super-critical pressure light water reactors, accurate design analysis with neutron-physical/thermal-hydraulic coupling is still very limited. In the present study, the Monte-Carlo code, MCNPX, is coupled with the sub-channel analysis code, STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions), which was developed specifically for fuel assemblies of supercritical water cooled reactors and is also flexible for complex fuel assembly designs. In this paper, a short description about both codes is given. The coupling methodology and procedure is presented and assessed. A

  16. A preliminary evaluation on criticality safety for spent fuel disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D. K.; Choi, J. W.; Lee, J. Y.; Kim, S. K.; Han, P. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Criticality analysis was performed under assumption that spent fuel assemblies were placed in boreholes of underground repository. The PWR fuel assemblies studied were assumed to have discharged burnup of 45,000MWD/MTU and 55,000MWD/MTU in response to initial fuel enrichment of 4.0wt% and 4.5wt% {sup 235}U, respectively. The discharged burnup of CANDU reactor fuel was assumed to be 7,500MWD/MTU with initial enrichment of 0.711wt% {sup 235}U. HELIOS and MCNP codes were used for burnup calculation and criticality analysis, respectively. In case the canister void space was filled with water for PWR reference spent fuel, infinitive multiplication factor was maintained below {approx}0.78 after operation of repository. For the repository with CANDU fuel assemblies, criticality was assured within 0.5 in the water-flooded condition, although fresh fuel was placed in a disposal canister. Therefore, if the fuel assemblies are intact and fissile nuclide is confined in a fuel rod, the criticality in a repository is impossible under current design.

  17. An assessment of The Effects of Elevation and Aspect on Deposition of Airborne Pollution and Water Quality in an Alpine Critical Zone: San Juan Mountains, Colorado, USA

    Science.gov (United States)

    Price, A.; Giardino, J. R.; Marcantonio, F.

    2015-12-01

    The alpine critical zone is affected by various inputs, storages, pathways, and outputs. Unfortunately, many of these processes distribute the pollutants beyond the immediate area and into the surrounding biological and anthropogenic communities. Years of mining and improper disposal of the tailings and acid-mine drainage have degraded the quality of surface water within the San Juan Mountains. However, mining may not be the only factor significantly affecting the surface water quality in this high-elevation environment. As a high elevation system, this area is a fragile ecosystem with inputs ranging from local mining to atmospheric transport and deposition. Studies from around the world have shown atmospheric transport and deposition affect high-elevation systems. Thus, a significant question arises: does elevation or aspect affect the volume and rate of atmospheric deposition of pollutants? We assume atmospheric deposition occurs on the slopes in addition to in streams, lakes, and ponds. Deposition on slopes can be transported to nearby surface waters and increase the impact of the atmospheric pollutants along with residence time. Atmospheric deposition data were collected for aluminum, iron, manganese, nitrate, phosphate, and sulfate. Water chemistry data were collected for the same constituents as the atmospheric deposition with the addition of temperature, dissolved oxygen, pH, and specific conductance. Deposition samples were collected on a five-day sampling regime during two summers. Water quality samples were collected in-stream adjacent to the deposition-ample collectors. Collection sites were located on opposite sides of Red Mountain at five equal elevations providing two different aspects. The north side is drained by Red Mountain Creek and the south side is drained by Mineral Creek. Differences in atmospheric deposition and water quality at different elevations and aspects suggest there is a relationship between aspect and elevation on atmospheric

  18. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  19. Understanding Critical Socio-political and Hydro-climatic drivers behind Water Management and Increasing Dengue Disease Burden in Arid Regions of Mexico

    Science.gov (United States)

    Akanda, A. S.; Johnson, K.; Frost, M.; Serman, E. A.

    2016-12-01

    Dengue is a significant public health problem in Mexico, with distribution of dengue throughout the country. Mexico is characterized by a number of attributes likely to contribute to the spread of dengue, including population growth, poor water management, urbanization, significant seasonal migration, and concentrated poverty. Understanding the socio-political and hydro-climatic drivers behind the increasing dengue disease burden in the central arid regions of Mexico is a vital component for modeling the distribution and spread of Aedes aegypti vector borne infections such as Dengue and Zika as more parts of the Americas is affected. Here, we focus on the critical socio-economic and environmental drivers behind water management, urbanization, and population migration in the arid Oaxaca region, situated in the rain shadow of the Sierra Madre Mountains at an altitude of 5000 feet. In contrast to the Pacific Coastal region which hosts climactic conditions conducive to the survival of Aedes aegypti mosquitoes with a moist tropical environment, Oaxaca is arid and exists in a constant state of water insecurity. Within Oaxaca City, water is trucked in and stored in large roof tanks; many of which are failing, allowing for leaks or mosquito infestation. Alternate sources range from existing cisterns, sophisticated collection systems, to open-air rock pits. Few resources exist to improve water security, particularly in poor neighborhoods creating a disincentive to invite surveillance for disease or to move to safer and improved water systems. Meanwhile, the region has experienced significant socio-political and demographic shift including migration, economic reorganization and urbanization over the last decade. The rise in dengue incidence during the dry season suggests human intervention (through migration, water management, sanitation, cultural practices) as a potentially important predictive factor. In this study, we analyze associations of regional hydroclimatic

  20. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.

    Science.gov (United States)

    Zhu, Han; Du, MingLiang; Zhang, Ming; Wang, Pan; Bao, ShiYong; Zou, Meiling; Fu, YaQin; Yao, JuMing

    2014-04-15

    We have demonstrated a facile approach for the fabrication of flexible and reliable sulfydryl functionalized PVA/PEI nanofibers with excellent water stability for the self-assembly of Au nanocrystals, such as Au nanoparticles (AuNPs), Au nanoflowers (AuNFs) and Au nanorods (AuNRs), used as the highly efficient surface-enhanced Raman scattering (SERS) substrates for the detection of rhodamine B (RhB). Various methods were employed to cross-link the PVA nanofibers with better morphology and porous structures after immersing in water for desired times. Various SERS-active Au nanocrystals, such as AuNPs, AuNFs, and AuNRs have been successfully synthesized. After the grafting of MPTES on the cross-linked PVA/PEI nanofibers, the Au nanocrystals can easily be self-assembled on the surfaces of the nanofibers because of the strong interactions of the Au-S chemical bondings. The Au nanocrystals self-assembled throughout the PVA/PEI nanofibers used as SERS substrates all exhibit enhanced SERS signals of RhB compared with their individual nanocrystals. It is mainly due to the close interparticle distance, mutual orientation and high density of "hot" spots, that can strongly affect the overall optical response and the SERS enhancement. By changing the amounts of the self-assembled AuNFs on the nanofibers, we can control the density of the "hot" spots. With the increased amounts of the AuNFs throughout the nanofibers, the SERS substrates show enhanced Raman signals of the RhB, indicating that the increased density of "hot" spots can directly lead to the SERS enhancement. The AuNFs/(PVA/PEI) SERS substrates show good sensitivity, reliability and low detection limit (10(-9) M). The presented approach can be broadly applicable to the assembly of different types of plasmonic nanostructures and these novel materials with strong SERS enhancement can be applied in bioanalysis and biosensors. © 2013 Published by Elsevier B.V.

  1. Spontaneous self-coating of a water drop by flaky copper powders: critical role of the particle shape.

    Science.gov (United States)

    Chang, Cheng-Chung; Wu, Cyuan-Jhang; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-06-14

    The self-coating process of solid particles over a liquid drop is important for the formation of a liquid marble. Generally, some external forces such as rolling or flipping are used to cover a drop by small particles. In this work, it is observed that flaky copper powders can spontaneously spread over the planar water surface and form a dense flat cluster with a fractal dimension of 2. Moreover, flaky copper powders can cover the water pendant and sessile drops spontaneously and rapidly. This powder-coated drop can roll on an inclined plane at a relatively high speed. However, spontaneous self-coating disappears for spheroidal copper powders. To explain our observations, the shape factors of particles are introduced into the spreading coefficient S for powders on the liquid surface. The flaky powders have the lowest shape factors and therefore spontaneous self-coating formation, with S > 0.

  2. Critical Values of Porosity in Rice Cultures of Isaria fumosorosea by Adding Water Hyacinth: Effect on Conidial Yields and Quality.

    Science.gov (United States)

    Angel-Cuapio, Alejandro; Figueroa-Montero, Arturo; Favela-Torres, Ernesto; Viniegra-González, Gustavo; Perraud-Gaime, Isabelle; Loera, Octavio

    2015-09-01

    Conidia of the entomopathogenic fungus Isaria fumosorosea are used to control insect pests in crops. Commercially available mycoinsecticides manufactured with this fungus are produced on a large scale via solid-state cultures (SSC). In order to favour gaseous exchange in SCC, texturizers can be added to increase porosity fraction (ε). This work presents results of water hyacinth (Eichhornia crassipes) as a novel texturizer. A mixture of parboiled rice (PR), with a ε = 0.23, was used as a substrate, which was then mixed with water hyacinth (WH amendment) as a texturizer at different proportions affecting ε. Strains CNRCB1 and ARSEF3302 of I. fumosorosea yielded 1.6 (1.49-1.71) × 10(9) and 7.3 (7.02-7.58) × 10(9) conidia per gram of initial dry rice after 8 days, at ε values of 0.34 and 0.36, respectively. Improvement of conidial yields corresponded to 1.33 and 1.55 times, respectively, compared to rice alone using WH amendment in the mixtures PR:WH (%) at 90-10 and 80-20. In addition, infectivity against Galleria mellonella larvae was maintained. This is the first report of the use of water hyacinth as a texturizer in SSC, affecting ε, which is proposed a key parameter in conidia production by I. fumosorosea, without affecting conidial infectivity.

  3. The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment

    Science.gov (United States)

    Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.

    2018-01-01

    Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.

  4. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    Science.gov (United States)

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. In vitro collagen fibril assembly: thermodynamic studies.

    Science.gov (United States)

    Na, G C; Phillips, L J; Freire, E I

    1989-09-05

    The in vitro fibril assembly of calf skin collagen was examined as a function of ionic strength and temperature. In a 0.03 M NaPi, pH 7.0, buffer, fibril assembly required a minimum critical concentration of collagen. At nearly physiological ionic strengths and temperatures, the critical concentration was less than 1 microgram/mL and required a very sensitive method for measurement. Raising the ionic strength of the buffer resulted first in higher and then lower critical concentrations. Raising the temperature led to lower critical concentrations. A van't Hoff plot of the fibril growth constant calculated from the critical concentration gave positive enthalpy changes and positive heat capacity changes which indicate that the fibril growth is driven by both hydrophobic and ionic inter-collagen interactions. Sedimentation equilibrium studies showed the collagen to be monomeric at subcritical concentrations. Differential scanning microcalorimetric studies showed only one very sharp heat absorption peak for the fibril assembly which coincided with the appearance of solution turbidity. Within experimental error, the enthalpy changes of the fibril assembly measured with the microcalorimeter were of the same magnitude as the van't Hoff enthalpy changes. These results are discussed in light of a cooperative nucleation-growth mechanism of collagen fibril assembly proposed earlier.

  6. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2000-03-16

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the United States, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

  7. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2000-03-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

  8. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  9. Tilt assembly for tracking solar collector assembly

    Science.gov (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  10. Design of advanced fibrous based material systems to meet the critical challenges in water quality and carbon dioxide mitigation

    Science.gov (United States)

    Nangmenyi, Gordon

    Water purification and global warming mitigation represent two of the major challenges in the 21st century. The research presented in this dissertation will describe the development of advanced fibrous systems that exhibit excellent performance in addressing the issues of water disinfection, carbon dioxide capture, and natural organic matter (NOM) removal from water. Total eradication of E. coli was achieved with fiberglass impregnated with either silver (FG-Ag), iron oxide (Fe2O3 ) modified with Ag (FG-F2O3/Ag) or copper oxide (CuO) modified with Ag (FG-CuO/Ag). The Ag modified oligodynamic nanoparticle impregnated fiberglass displayed excellent kinetic inactivation performance with extended capacity at a much lower amount of nanoparticle loading. The results support their immediate applicability in the field from a utility and cost perspective. The polyethyleneimine coated glass fibers (PEFA) for CO2 removal displayed high capacity for CO2 adsorption, up to 440 mg-CO 2/g while providing a mechanically durable and recyclable system for CO2 capture. The system offers the potential for CO2 utilization from the adsorbed CO2 from a power plant or closed environment (submarine, space shuttles or control rooms). Aminated polyacrylonitrile activated carbon fibers (N-ACF) coated on a non-woven fiberglass mat, displayed the ability to remove NOM more efficiently than granulated activated carbon or ion exchange beads at concentrations below 50 mg/L. Electrostatic attraction was found to be the dominant mechanism of NOM adsorption for the N-ACF.

  11. A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations

    Science.gov (United States)

    Guinot, Vincent

    2017-11-01

    The validity of flux and source term formulae used in shallow water models with porosity for urban flood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 different geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are defined. This results in a set of 96 fine grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP flux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous flux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance confirms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all flow configurations to be accounted for(vi) future laboratory experiments aiming at the validation of flux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and flow velocity fields.

  12. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    Science.gov (United States)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  13. Long-term risks of metal contaminants in drinking water: a critical appraisal of guideline values for arsenic and vanadium

    Directory of Open Access Journals (Sweden)

    Riccardo Crebelli

    Full Text Available Metal contaminants in drinking water represent a relevant health issue in several areas of the world. In Italy, because of the geological features of the territory, high arsenic and vanadium are frequently reported in ground waters in concentrations above current guideline values. The implications for public health of the presence of contaminants above their legal limit are directly related to the biological basis of the guideline value. In the case of arsenic there are still major uncertainties in the mechanism of carcinogenesis which prevent a precise evaluation of long-term risks. Thus, the guideline value endorsed in the European Community (10 µg/L has to be considered as a pragmatic tool rather than a quality objective, bearing in mind that "every effort should be made to keep concentrations as low as reasonably possible" (WHO, 2011. A reverse situation holds for vanadium, for which a strict national limit (50 µg/L was previously proposed in consideration of data gaps, and for which new evidence indicated a less stringent health-based limit.

  14. COMBINATION OF COLD PACK, WATER SPRAY, AND FAN COOLING ON BODY TEMPERATURE REDUCTION AND LEVEL OF SUCCESS TO REACH NORMAL TEMPERATURE IN CRITICALLY ILL PATIENTS WITH HYPERTHERMIA

    Directory of Open Access Journals (Sweden)

    Nur Eka Dzulfaijah

    2017-12-01

    Full Text Available Objective: To examine the effect of the combination of cold pack, water spray, and fan cooling on body temperature reduction and level of success to reach normal temperature in critically ill patients with hyperthermia. Methods: This was a randomized control trial (RCT with pretest postest control group design and repeated measurement, conducted on December 2016 – January 2017. There were 32 respondents selected using total sampling, with 16 respondents randomly assigned in the experiment and control group. A digital thermometer was used to measure hyperthermia. Paired t-test, Repeated Anova with post hoc, and Mann Whitney were used for data analysis. Results: Findings showed that the mean of body temperature in the experiment group in pretest was 38.762oC and decreased to 37.3oC after given intervention for 60 minutes. The mean difference of body temperature was 1.4625, with p-value 0.000 (<0.05. In control group, the mean of body temperature in pretest was 38.669oC and decreased to 38.188oC given intervention for 60 minutes. The mean difference of body temperature was 0.4812, with p-value 0.000 (<0.05. Conclusion: There was a significant effect of the combination of cold pack, water spray, and fan cooling on body temperature reduction and level of success to reach normal temperature in critically ill patients with hyperthermia. This combination is more effective than water compress alone.

  15. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    Science.gov (United States)

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  16. Polystyrene-b-poly(tert-butyl acrylate) and polystyrene-b-poly(acrylic acid) dendrimer-like copolymers: two-dimensional self-assembly at the air-water interface.

    Science.gov (United States)

    Joncheray, Thomas J; Bernard, Sophie A; Matmour, Rachid; Lepoittevin, Bénédicte; El-Khouri, Rita J; Taton, Daniel; Gnanou, Yves; Duran, Randolph S

    2007-02-27

    The two-dimensional self-assembly at the air/water (A/W) interface of two dendrimer-like copolymers based on polystyrene and poly(tert-butyl acrylate) (PS-b-PtBA) or poly(acrylic acid) (PS-b-PAA) was investigated through surface pressure measurements (isotherms, isochores, and compression-expansion hysteresis experiments) and atomic force microscopy (AFM) imaging. The two dendrimer-like block copolymers have an 8-arm PS core (Mn = 10 000 g/mol, approximately 12 styrene repeat units per arm) with a 16-arm PtBA (Mn = 230 000 g/mol, approximately 112 tert-butyl acrylate repeat units per arm) or PAA (Mn = 129 000 g/mol, approximately 112 acrylic acid repeat units per arm) corona. The PS-b-PtBA sample forms stable Langmuir monolayers and aggregates into circular surface micelles up to a plateau observed in the corresponding isotherm around 24 mN/m. Beyond this threshold, the monolayers collapse above the interface, resulting in the formation of large and irregular desorbed aggregates. The PS-b-PAA sample has ionizable carboxylic acid groups, and its A/W interfacial self-assembly was therefore investigated for various subphase pH values. Under basic conditions (pH = 11), the carboxylic acid groups are deprotonated, and the PS-b-PAA sample is therefore highly water-soluble and does not form stable monolayers, instead irreversibly dissolving in the aqueous subphase. Under acidic conditions (pH = 2.5), the PS-b-PAA sample is less water-soluble and becomes surface-active. The pseudoplateau observed in the isotherm around 5 mN/m corresponds to a pancake-to-brush transition with the PAA chains dissolving in the water subphase and stretching underneath the anchoring PS cores. AFM imaging revealed the presence of circular surface micelles for low surface pressures, whereas the biphasic nature of the pseudoplateau region was confirmed with the gradual aggregation of the micellar PS cores above the PAA chains. The aggregation numbers for both samples were estimated around 3

  17. A proposal for a new U-D2O criticality benchmark: RB reactor core 39/1978

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2012-01-01

    Full Text Available In 1958, the experimental RB reactor was designed as a heavy water critical assembly with natural uranium metal rods. It was the first nuclear fission critical facility at the Boris Kidrič (now Vinča Institute of Nuclear Sciences in the former Yugoslavia. The first non-reflected, unshielded core was assembled in an aluminium tank, at a distance of around 4 m from all adjacent surfaces, so as to achieve as low as possible neutron back reflection to the core. The 2% enriched uranium metal and 80% enriched uranium dioxide (dispersed in aluminum fuel elements (known as slugs were obtained from the USSR in 1960 and 1976, respectively. The so-called “clean” cores of the RB reactor were assembled from a single type of fuel elements. The “mixed” cores of the RB reactor, assembled from two or three types of different fuel elements, were also positioned in heavy water. Both types of cores can be composed as square lattices with different pitches, covering a range of 7 cm to 24 cm. A radial heavy water reflector of various thicknesses usually surrounds the cores. Up to 2006, four sets of clean cores (44 core configurations have been accepted as criticality benchmarks and included into the OECD ICSBEP Handbook. The RB mixed core 39/1978 was made of 31 natural uranium metal rods positioned in heavy water, in a lattice with a pitch of 8√2 cm and 78

  18. Water

    Science.gov (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  19. Autonomous electrochromic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  20. Firearm trigger assembly

    Science.gov (United States)

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  1. A porous medium approach for the fluid structure interaction modelling of a water pressurized nuclear reactor core fuel assemblies: simulation and experimentation; Une approche milieu poreux pour la modeisation de l'interaction fluide-structure des assemblages combustibles dans un coeur de reacteur a eau pressurisee: simulation et experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, G.

    2008-10-15

    The designing of a pressurized water reactor core subjected to seismic loading, is a major concern of the nuclear industry. We propose, in this PhD report, to establish the global behaviour equations of the core, in term of a porous medium. Local equations of fluid and structure are space averaged on a control volume, thus we define an equivalent fluid and an equivalent structure, of which unknowns are defined on the whole space. The non-linear fuel assemblies behaviour is modelled by a visco-elastic constitutive law. The fluid-structure coupling is accounted for by a body force, the expression of that force is based on empirical formula of fluid forces acting on a tube subject to an axial flow. The resulting equations are solved using a finite element method. A validation of the model, on three experimental device, is proposed. The first one presents two fuel assemblies subjected to axial flow. One of the two fuel assemblies is deviated from its position of equilibrium and released, while the other is at rest. The second one presents a six assemblies row, immersed in water, placed on a shaking table that can simulate seismic loading. Finally, the last one presents nine fuel assemblies network, arranged in a three by three, subject to an axial flow. The displacement of the central fuel assembly is imposed. The simulations are in agreement with the experiments, the model reproduces the influence of the flow of fluid on the dynamics and coupling of the fuel assemblies. (author)

  2. Food for Thought: A Critical Overview of Current Practical and Conceptual Challenges in Trace Element Analysis in Natural Waters

    Directory of Open Access Journals (Sweden)

    Montserrat Filella

    2013-07-01

    Full Text Available The practical and conceptual challenges faced by the analysis of trace elements present in natural waters are not merely, as is often thought, an endless race towards lower detection limits or to the development of techniques allowing the determination of any possible chemical species formed by all chemical elements. Rather, as discussed in this paper, they include the development of (i robust, cheap, and reliable methods that could also be used by laypeople (the experience gained in the development of field kits for As is discussed as an example from which similar developments for other elements may be drawn; (ii more environmentally-friendly methods (the current guiding criteria probably being too simplistic; and (iii methods making it possible to follow diel concentration changes and sharp concentration variations caused by the probable increase of heavy rainfall events. This paper also claims that neither the measurement of total concentrations (reliable methods are lacking for many elements of the periodic table of trace elements, as illustrated through the cases of Bi, Te, and Sb, nor chemical speciation analysis, are as mature as often thought. In particular, chemical speciation studies demand the development of a better, comprehensive conceptual framework. A trial is carried out to lay the basis of such a framework.

  3. Prediction of forced convective heat transfer and critical heat flux for subcooled water flowing in miniature tubes

    Science.gov (United States)

    Shibahara, Makoto; Fukuda, Katsuya; Liu, Qiusheng; Hata, Koichi

    2018-02-01

    The heat transfer characteristics of forced convection for subcooled water in small tubes were clarified using the commercial computational fluid dynamic (CFD) code, PHENICS ver. 2013. The analytical model consists of a platinum tube (the heated section) and a stainless tube (the non-heated section). Since the platinum tube was heated by direct current in the authors' previous experiments, a uniform heat flux with the exponential function was given as a boundary condition in the numerical simulation. Two inner diameters of the tubes were considered: 1.0 and 2.0 mm. The upward flow velocities ranged from 2 to 16 m/s and the inlet temperature ranged from 298 to 343 K. The numerical results showed that the difference between the surface temperature and the bulk temperature was in good agreement with the experimental data at each heat flux. The numerical model was extended to the liquid sublayer analysis for the CHF prediction and was evaluated by comparing its results with the experimental data. It was postulated that the CHF occurs when the fluid temperature near the heated wall exceeds the saturated temperature, based on Celata et al.'s superheated layer vapor replenishment (SLVR) model. The suggested prediction method was in good agreement with the experimental data and with other CHF data in literature within ±25%.

  4. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  5. Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation

    OpenAIRE

    Holub, Peter; Lalakova, Jana; Cerna, Hana; Pasulka, Josef; Sarazova, Marie; Hrazdilova, Kristyna; Arce, Maria Sanudo; Hobor, Fruzsina; Stefl, Richard; Vanacova, Stepanka

    2012-01-01

    Trf4/5p-Air1/2p-Mtr4p polyadenylation complex (TRAMP) is an essential component of nuclear RNA surveillance in yeast. It recognizes a variety of nuclear transcripts produced by all three RNA polymerases, adds short poly(A) tails to aberrant or unstable RNAs and activates the exosome for their degradation. Despite the advances in understanding the structural features of the isolated complex subunits or their fragments, the details of complex assembly, RNA recognition and exosome activation rem...

  6. Assessment Of The Physicochemical And Microbial Quality Of Water In Ke-Nya Stream At Babato-Kuma Community In The Kintampo North Municipal Assembly Of Brong Ahafo Region Of Ghana

    Directory of Open Access Journals (Sweden)

    Frimpong

    2015-06-01

    Full Text Available ABSTRACT The study was carried out to evaluate the physicochemical and microbiological quality of the Ke-enya stream which is relied on by the inhabitants of Babato-kuma and its surrounding villages for their domestic and Agricultural activities. A total of twenty eight 28 water samples were collected at upstream midstream and downstream from November 2012 to January 2013 for analysis. Most of the physicochemical parameters were within WHO guidelines recommended for potable water with the exception of Turbidity and Colour which exceeded the WHO standard of 5 NTU and 15 Hz respectively. Colour ranged from 100 to 130 Hz with a mean of 1179.45 Hz whiles Turbidity ranged from 9 to 36 NTU with a mean of 20.7810.5 NTU. However Total Coliform 420-1188 CFU100ml 757261 Faecal Coliform 140-623 CFU100ml 305145 E.coli 46-391 CFU100ml 135102 and Total Heterotrophic bacteria 444-3129 CFUml 1341778 were higher than WHO standards. Bacterial contamination could be traced to settlements along the stream livestock production poor or non-existence sewage system coupled with poor sanitary conditions among others. Alternative sources of water supplies in the form of hand-dug wells or boreholes if possible by the Municipal assembly NGOs and other philanthropies to the inhabitants whose traditional sources of drinking water is directly from this stream will be beneficial in reducing the health implications associated with this pollution.

  7. Critical experiments analysis by ABBN-90 constant system

    Energy Technology Data Exchange (ETDEWEB)

    Tsiboulia, A.; Nikolaev, M.N.; Golubev, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)] [and others

    1997-06-01

    The ABBN-90 is a new version of the well-known Russian group-constant system ABBN. Included constants were calculated based on files of evaluated nuclear data from the BROND-2, ENDF/B-VI, and JENDL-3 libraries. The ABBN-90 is intended for the calculation of different types of nuclear reactors and radiation shielding. Calculations of criticality safety and reactivity accidents are also provided by using this constant set. Validation of the ABBN-90 set was made by using a computerized bank of evaluated critical experiments. This bank includes the results of experiments conducted in Russia and abroad of compact spherical assemblies with different reflectors, fast critical assemblies, and fuel/water-solution criticalities. This report presents the results of the calculational analysis of the whole collection of critical experiments. All calculations were produced with the ABBN-90 group-constant system. Revealed discrepancies between experimental and calculational results and their possible reasons are discussed. The codes and archives INDECS system is also described. This system includes three computerized banks: LEMEX, which consists of evaluated experiments and their calculational results; LSENS, which consists of sensitivity coefficients; and LUND, which consists of group-constant covariance matrices. The INDECS system permits us to estimate the accuracy of neutronics calculations. A discussion of the reliability of such estimations is finally presented. 16 figs.

  8. Electrical Conductivity along Phase Diagram of the Critical Mixture Isobutyric Acid – Water with Added (K+, Cl- Ions

    Directory of Open Access Journals (Sweden)

    Moncef Bouanz

    2003-05-01

    Full Text Available Abstract: Three systems, isobutyric acid – water (I–W, “(I-W + 5 10-4 M (KCl” and “(IW + 5 10-3 M (KCl”, have been studied by measuring the electrical conductivity σ (Ω-1cm-1 along the coexistence curve in a single phase, as a function of the variations temperature T and composition X in acid. The coefficient σ is a temperature dependent parameter for ions, increasing as temperature is elevated. Contrary to the visconty, the electrical conductivity does not show any anomaly in the critical region.

  9. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells.

    Science.gov (United States)

    Li, Chien-Hung; Li, Min-Chih; Liu, Si-Ping; Jamison, Andrew C; Lee, Dahye; Lee, T Randall; Lee, Tai-Chou

    2016-04-13

    Gold-silver nanoshells (GS-NSs) having a tunable surface plasmon resonance (SPR) were employed to facilitate charge separation of photoexcited carriers in the photocalytic production of hydrogen from water. Zinc indium sulfide (ZnIn2S4; ZIS), a visible-light-active photocatalyst, where the band gap varies with the [Zn]/[In] ratio, was used as a model ZIS system (E(g) = 2.25 eV) to investigate the mechanisms of plasmonic enhancement associated with the nanoshells. Three types of GS-NS cores with intense absorptions centered roughly at 500, 700, and 900 nm were used as seeds for preparing GS-NS@ZIS core-shell structures via a microwave-assisted hydrothermal reaction, yielding core-shell particles with composite diameters of ∼200 nm. Notably, an interlayer of dielectric silica (SiO2) between the GS-NSs and the ZIS photocatalyst provided another parameter to enhance the production of hydrogen and to distinguish the charge-transfer mechanisms. In particular, the direct transfer of hot electrons from the GS-NSs to the ZIS photocatalyst was blocked by this layer. Of the 10 particle samples examined in this study, the greatest hydrogen gas evolution rate was observed for GS-NSs having a SiO2 interlayer thickness of ∼17 nm and an SPR absorption centered at ∼700 nm, yielding a rate 2.6 times higher than that of the ZIS without GS-NSs. The apparent quantum efficiencies for these core-shell particles were recorded and compared to the absorption spectra. Analyses of the charge-transfer mechanisms were evaluated and are discussed based on the experimental findings.

  10. Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation

    Science.gov (United States)

    Holub, Peter; Lalakova, Jana; Cerna, Hana; Pasulka, Josef; Sarazova, Marie; Hrazdilova, Kristyna; Arce, Maria Sanudo; Hobor, Fruzsina; Stefl, Richard; Vanacova, Stepanka

    2012-01-01

    Trf4/5p-Air1/2p-Mtr4p polyadenylation complex (TRAMP) is an essential component of nuclear RNA surveillance in yeast. It recognizes a variety of nuclear transcripts produced by all three RNA polymerases, adds short poly(A) tails to aberrant or unstable RNAs and activates the exosome for their degradation. Despite the advances in understanding the structural features of the isolated complex subunits or their fragments, the details of complex assembly, RNA recognition and exosome activation remain poorly understood. Here we provide the first understanding of the RNA binding mode of the complex. We show that Air2p is an RNA-binding subunit of TRAMP. We identify the zinc knuckles (ZnK) 2, 3 and 4 as the RNA-binding domains, and reveal the essentiality of ZnK4 for TRAMP4 polyadenylation activity. Furthermore, we identify Air2p as the key component of TRAMP4 assembly providing bridging between Mtr4p and Trf4p. The former is bound via the N-terminus of Air2p, while the latter is bound via ZnK5, the linker between ZnK4 and 5 and the C-terminus of the protein. Finally, we uncover the RNA binding part of the Mtr4p arch, the KOW domain, as the essential component for TRAMP-mediated exosome activation. PMID:22402490

  11. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.

    Science.gov (United States)

    Heeb, Michèle B; Criquet, Justine; Zimmermann-Steffens, Saskia G; von Gunten, Urs

    2014-01-01

    Bromide (Br(-)) is present in all water sources at concentrations ranging from ≈ 10 to >1000 μg L(-1) in fresh waters and about 67 mg L(-1) in seawater. During oxidative water treatment bromide is oxidized to hypobromous acid/hypobromite (HOBr/OBr(-)) and other bromine species. A systematic and critical literature review has been conducted on the reactivity of HOBr/OBr(-) and other bromine species with inorganic and organic compounds, including micropollutants. The speciation of bromine in the absence and presence of chloride and chlorine has been calculated and it could be shown that HOBr/OBr(-) are the dominant species in fresh waters. In ocean waters, other bromine species such as Br2, BrCl, and Br2O gain importance and may have to be considered under certain conditions. HOBr reacts fast with many inorganic compounds such as ammonia, iodide, sulfite, nitrite, cyanide and thiocyanide with apparent second-order rate constants in the order of 10(4)-10(9)M(-1)s(-1) at pH 7. No rate constants for the reactions with Fe(II) and As(III) are available. Mn(II) oxidation by bromine is controlled by a Mn(III,IV) oxide-catalyzed process involving Br2O and BrCl. Bromine shows a very high reactivity toward phenolic groups (apparent second-order rate constants kapp ≈ 10(3)-10(5)M(-1)s(-1) at pH 7), amines and sulfamides (kapp ≈ 10(5)-10(6)M(-1)s(-1) at pH 7) and S-containing compounds (kapp ≈ 10(5)-10(7)M(-1)s(-1) at pH 7). For phenolic moieties, it is possible to derive second-order rate constants with a Hammett-σ-based QSAR approach with [Formula in text]. A negative slope is typical for electrophilic substitution reactions. In general, kapp of bromine reactions at pH 7 are up to three orders of magnitude greater than for chlorine. In the case of amines, these rate constants are even higher than for ozone. Model calculations show that depending on the bromide concentration and the pH, the high reactivity of bromine may outweigh the reactions of chlorine during

  12. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  13. Passive Layer Stability of 2205 Duplex Stainless Steel in Oilfield-Produced Water: Potentiostatic Critical Pitting Temperature Test and Wavelet Analysis

    Science.gov (United States)

    Sabouri, M.; Hoseiny, H.

    2017-08-01

    In this article, the potentiostatic passivation behavior of 2205 duplex stainless steel was investigated in oilfield-produced water with a focus on the variation of the passive layer stability with temperature. The obtained current-time transients were analyzed using wavelet transform to evaluate the passive layer deterioration at different time domains corresponding to the temperatures of 303 K, 313 K, 323 K, and 333 K (30 °C, 40 °C, 50 °C, and 60 °C). The results showed that the critical pitting temperature (CPT) of the 2205 alloy in the studied produced water was 333.2 K (60.2 °C). In addition, the optimum passivation of the material surface was obtained between 303 K and 313 K (30 °C and 40 °C). The passive layer deteriorated at about 323 K (50 °C) by penetration of chloride and subsequently entered into the transpassive region. Moreover, at 333 K (60 °C), the metastable pits converted to permanent or overlapped pits. Corrosion morphology confirmed the results obtained by wavelet analyses. In addition, microscopical studies of the alloy microstructure showed that both phases, i.e., austenite and ferrite, were attacked by corrosion, although it was more severe in ferrite.

  14. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  15. History of critical experiments at Pajarito Site

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, H.C.

    1983-03-01

    This account describes critical and subcritical assemblies operated remotely at the Pajarito Canyon Site at the Los Alamos National Laboratory. Earliest assemblies, directed exclusively toward the nuclear weapons program, were for safety tests. Other weapon-related assemblies provided neutronic information to check detailed weapon calculations. Topsy, the first of these critical assemblies, was followed by Lady Godiva, Jezebel, Flattop, and ultimately Big Ten. As reactor programs came to Los Alamos, design studies and mockups were tested at Pajarito Site. For example, nearly all 16 Rover reactors intended for Nevada tests were preceded by zero-power mockups and proof tests at Pajarito Site. Expanded interest and capability led to fast-pulse assemblies, culminating in Godiva IV and Skua, and to the Kinglet and Sheba solution assemblies.

  16. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    Science.gov (United States)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Lodi, Lorenzo; Mizus, Irina I.

    2013-03-01

    This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system

  17. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  18. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  19. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    Science.gov (United States)

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and

  20. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    Science.gov (United States)

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  2. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water; Estudio de un ensamble de combustible para el reactor nuclear de generacion IV enfriado con agua supercritica

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (MX)

    2011-11-15

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  3. Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Krass, A.W.

    2005-12-19

    This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. The material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.

  4. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  5. Water

    Science.gov (United States)

    ... the tap as described). 3. In all situations, drink or cook only with water that comes out of the tap cold. Water that comes out of the tap warm or hot can contain much higher levels of lead. Boiling ...

  6. The critical soil water content and its relation to soil water dynamics A umidade crítica e sua relação com a dinâmica da água no solo

    Directory of Open Access Journals (Sweden)

    Q. de Jong Van Uer

    1997-06-01

    Full Text Available Using an edaphic model that describes the extraction of soil water by plant roots, the occurrence of depletion zones dose to plant roots is demonstrated. These depletion zones affect the root water potential that is needed to maintain a certain transpiration rate. The results show how the critical soil water content depends on soil's hydraulic properties, transpiration rate and root density.Através de am modelo edáfico que descreve a extração de água do solo por raízes, é comprovada a ocorrência de zonas de esgotamento de água próximo as raízes, influenciando no potencial necessário nas raízes para manter uma determinada taxa de transpiração. Em função dos resultados demonstra-se como a umidade crítica de um solo é função de suas propriedades hídricas, da taxa de transpiração e da densidade do sistema radicular.

  7. Mauve assembly metrics.

    Science.gov (United States)

    Darling, Aaron E; Tritt, Andrew; Eisen, Jonathan A; Facciotti, Marc T

    2011-10-01

    High-throughput DNA sequencing technologies have spurred the development of numerous novel methods for genome assembly. With few exceptions, these algorithms are heuristic and require one or more parameters to be manually set by the user. One approach to parameter tuning involves assembling data from an organism with an available high-quality reference genome, and measuring assembly accuracy using some metrics. We developed a system to measure assembly quality under several scoring metrics, and to compare assembly quality across a variety of assemblers, sequence data types, and parameter choices. When used in conjunction with training data such as a high-quality reference genome and sequence reads from the same organism, our program can be used to manually identify an optimal sequencing and assembly strategy for de novo sequencing of related organisms. GPL source code and a usage tutorial is at http://ngopt.googlecode.com aarondarling@ucdavis.edu Supplementary data is available at Bioinformatics online.

  8. Uncertainty analysis on reactivity and discharged inventory for a pressurized water reactor fuel assembly due to {sup 235,238}U nuclear data uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Da Cruz, D. F.; Rochman, D.; Koning, A. J. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01

    This paper discusses the uncertainty analysis on reactivity and inventory for a typical PWR fuel element as a result of uncertainties in {sup 235,238}U nuclear data. A typical Westinghouse 3-loop fuel assembly fuelled with UO{sub 2} fuel with 4.8% enrichment has been selected. The Total Monte-Carlo method has been applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study is from the JEFF3.1 evaluation, and the nuclear data files for {sup 238}U and {sup 235}U (randomized for the generation of the various DRAGON libraries) are taken from the nuclear data library TENDL. The total uncertainty (obtained by randomizing all {sup 238}U and {sup 235}U nuclear data in the ENDF files) on the reactor parameters has been split into different components (different nuclear reaction channels). Results show that the TMC method in combination with a deterministic transport code constitutes a powerful tool for performing uncertainty and sensitivity analysis of reactor physics parameters. (authors)

  9. An ultrasonic atomization assisted synthesis of self-assembled manganese oxide octahedral molecular sieve nanostructures and their application in catalysis and water treatment.

    Science.gov (United States)

    Iyer, Aparna; Kuo, Chung-Hao; Dharmarathna, Saminda; Luo, Zhu; Rathnayake, Dinithi; He, Junkai; Suib, Steven L

    2017-04-13

    Manganese oxides of octahedral molecular sieve (OMS-2) type have important applications in oxidation catalysis, adsorption, and as battery materials. The synthesis methods employed determine their morphology and textural properties which markedly affect their catalytic activity. In this work, a room temperature ultrasonic atomization assisted synthesis of OMS-2 type materials is demonstrated. This synthesis differs from previously reported methods in that it is a simple, no-heat application that leads to a striking morphological characteristic of uniformly sized OMS-2 fibers and their self-assembly into dense as well as hollow spheres. Control of various parameters in the ultrasonic atomization assisted synthesis led to OMS-2 with high surface areas (between 136-160 m(2) g(-1)) and mesoporosity. Catalytically these materials have higher activities in the oxidation of hydroxymethylfurfural (HMF), a bio-based chemical, (65% conversion of HMF vs. 14% with conventional OMS-2 catalyst) and a higher adsorption of lead from aqueous solutions (70% vs. 12% in conventional OMS-2 materials).

  10. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism.

    Science.gov (United States)

    Velazquez-Jimenez, Litza Halla; Hurt, Robert H; Matos, Juan; Rangel-Mendez, Jose Rene

    2014-01-21

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbents by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L(-1). The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS, and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve -OH(-) exchange from zirconyl oxalate complexes.

  11. Availability of Drinking Water in California Public Schools. Testimony Presented before the California State Assembly Subcommittee on Education on April 2, 2008

    Science.gov (United States)

    Schuster, Mark A.

    2008-01-01

    A senior researcher and hospital Chief of General Pediatrics, testifies about his work with a California school district to prevent obesity by developing a middle school program to promote healthy eating and physical activity. A two-year study has found that students have limited access to drinking water, especially at meals. In the schools being…

  12. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    compartments and lipid-bilayer lattices. Another kind of media is represented by self-assembled phases in the reaction medium, e.g., in water-ice matrices that are formed by two co-existing aqueous phases (a solid phase and a concentrated liquid phase) when an aqueous solution is cooled below its freezing...... point, but above the eutectic point. These media have the capacity to assemble chemical molecules or complex catalytic assemblies into unique configurations that are unstable or unavailable in bulk aqueous phases. Reactions can then proceed which do not readily occur in homogeneous solutions. To gauge...

  13. Living photolytic ring-opening polymerization of amino-functionalized [1]ferrocenophanes: synthesis and layer-by-layer self-assembly of well-defined water-soluble polyferrocenylsilane polyelectrolytes.

    Science.gov (United States)

    Wang, Zhuo; Masson, Georgeta; Peiris, Frank C; Ozin, Geoffrey A; Manners, Ian

    2007-01-01

    Facile synthetic routes have been developed that provide access to cationic and anionic water-soluble polyferrocenylsilane (PFS) polyelectrolytes with controlled molecular weight and narrow polydispersity. Living photolytic ring-opening polymerization of amino-functionalized [1]ferrocenophane (fc) monomers [fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}] (3), [fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2)] (10), [fcSiMe(C[triple chemical bond]CCH(2)NMe(2))] (14), and [fcSiMe(p-C(6)H(4)CH(2)NMe(2))] (20) yielded the corresponding polyferrocenylsilanes [(fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)})(n)](5), [(fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2))(n)] (11), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(2))}(n)] (15), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(2))}(n)] (21) with controlled architectures. Further derivatization of 5, 15, and 21 generated water-soluble polyelectrolytes [(fcSiMe{C[triple chemical bond]CCH(2)N(CH(2)CH(2)CH(2)SO(3)Na)(2)})(n)] (6), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(3)OSO(3)Me)}(n)] (7), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(3)OSO(3)Me)}(n)] (22), respectively. The polyelectrolytes were readily soluble in water and NaCl aqueous solutions, with 6 and 22 exhibiting long-term stability in aqueous media. The PFS materials 6 and 22, have been utilized in the layer-by-layer (LbL) self-assembly of electrostatic superlattices. Our preliminary studies have indicated that films made from controlled low molecular-weight PFSs possess a considerably thinner bilayer thickness and higher refractive index than those made from PFSs that have an uncontrolled high molecular-weight. These results suggest that the structure and optical properties of LbL ultra-thin films can be tuned by varying polyelectrolyte chain length. The water-soluble low molecular weight PFSs are also useful materials for a range of applications including LbL self-assembly in highly confined spaces.

  14. Thinking Critically about Critical Thinking

    Science.gov (United States)

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  15. Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

    Directory of Open Access Journals (Sweden)

    Pavel L. Padnya

    2017-09-01

    Full Text Available New water-soluble tetra-substituted derivatives of p-tert-butylthiacalix[4]arene containing fragments of L-tryptophan in cone and 1,3-alternate conformations were obtained. It was shown that the resulting compounds form stable, positively charged aggregates of 86–134 nm in diameter in water at a concentration of 1 × 10−4 M as confirmed by dynamic light scattering, scanning electron microscopy and transmission electron microscopy. It was established that these aggregates are fluorescently active and chiral. A distinctive feature of the compounds is the pronounced dependence of their spectral (emission and chiroptical properties on the polarity of the solvent and the length of the linker between the macrocyclic and fluorophore parts of the molecule.

  16. Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene.

    Science.gov (United States)

    Padnya, Pavel L; Khripunova, Irina A; Mostovaya, Olga A; Mukhametzyanov, Timur A; Evtugyn, Vladimir G; Vorobev, Vyacheslav V; Osin, Yuri N; Stoikov, Ivan I

    2017-01-01

    New water-soluble tetra-substituted derivatives of p-tert-butylthiacalix[4]arene containing fragments of L-tryptophan in cone and 1,3-alternate conformations were obtained. It was shown that the resulting compounds form stable, positively charged aggregates of 86-134 nm in diameter in water at a concentration of 1 × 10-4 M as confirmed by dynamic light scattering, scanning electron microscopy and transmission electron microscopy. It was established that these aggregates are fluorescently active and chiral. A distinctive feature of the compounds is the pronounced dependence of their spectral (emission and chiroptical) properties on the polarity of the solvent and the length of the linker between the macrocyclic and fluorophore parts of the molecule.

  17. Hierarchical Fullerene Assembly: Seeded Coprecipitation and Electric Field Directed Assembly.

    Science.gov (United States)

    Stelson, Angela C; Penterman, Sonny J; Watson, Chekesha M Liddell

    2017-05-01

    Hierarchical C60 colloidal films are assembled from nanoscale to macroscale. Fullerene molecular crystals are grown via seeded cosolvent precipitation with mixed solvent [tetrahydronaphthalene (THN)/trimethylpyridine (TMP)] and antisolvent 2-propanol. The fullerene solutions are aged under illumination, which due to the presence of TMP reduces the free monomer concentration through fullerene aggregation into nanoparticles. The nanoparticles seed the growth of monodisperse fullerene colloids on injection into the antisolvent. Diverse colloidal morphologies are prepared as a function of injection volume and fullerene solution concentration. The high fullerene solubility of THN enables C60 colloids to be prepared in quantities sufficient for assembly (5 × 10(8) ). Electric fields are applied to colloidal C60 platelets confined to two dimensions. The particles assemble under dipolar forces, dielectrophoretic forces, and electrohydrodynamic flows. Frequency-dependent phase transitions occur at the critical Maxwell-Wagner crossover frequency, where the effective polarizability of the particles in the medium is substantially reduced. Structures form as a function of field strength, frequency, and confinement including hexagonal, oblique, string fluid, coexistent hexagonal-rhombic, and tetratic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a heat transfer correlation for the HPLWR fuel assembly by means of CFD analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lycklama a Nijeholt, J.A.; Visser, D.C. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Laurien, E. [Univ. of Stuttgart, Stuttgart (Germany); Anglart, H. [Royal Inst. of Tech., Stockholm (Sweden); Chandra, L. [Indian Inst. of Tech., Rajasthan (India)

    2011-07-01

    The High Performance Light Water Reactor (HPLWR) has been under development in the HPLWR phase-2 project funded by the European Union. The HPLWR project started September 2006 and ended February 2010. Work package 5 within this project involves the improved understanding of heat transfer, CFD model development and validation, and the prediction of the heat transfer rate in a HPLWR fuel assembly. USTUTT, KTH, NRG and FZK contributed to this work package. The overall objective of work package 5 was the development of a heat transfer correlation for the prediction of the heat transfer rate in the HPLWR fuel assembly by means of CFD analyses. In the HPLWR fuel assembly, a helical wire has been selected as spacer and mixing device. This wire-wrap imposed a significant challenge in the development of the geometrical models for the CFD analyses. Due to the wire-wrap it was not possible to model a full fuel assembly consisting of 40 rods. Therefore, an alternative procedure has been adopted to develop a heat transfer correlation for the HPLWR fuel assembly. This procedure involved the definition of correction factors accounting for the effect of the rod bundle geometry and the wire-wrap spacer with respect to a smooth circular tube with super-critical water. The present paper describes the procedure followed in work package 5 of the HPLWR phase-2 project for the development of a heat transfer correlation for the HPLWR fuel assembly design and presents the derivation of the applied correction factors from a large set of CFD analyses for different representative geometries like an annulus, a single sub-channel and a 4 rod-bundle, all with and without inclusion of the wire wrap. (author)

  19. Critical Care

    Science.gov (United States)

    Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...

  20. Long-read sequence assembly of the gorilla genome

    Science.gov (United States)

    Gordon, David; Huddleston, John; Chaisson, Mark J. P.; Hill, Christopher M.; Kronenberg, Zev N.; Munson, Katherine M.; Malig, Maika; Raja, Archana; Fiddes, Ian; Hillier, LaDeana W.; Dunn, Christopher; Baker, Carl; Armstrong, Joel; Diekhans, Mark; Paten, Benedict; Shendure, Jay; Wilson, Richard K.; Haussler, David; Chin, Chen-Shan; Eichler, Evan E.

    2016-01-01

    Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome. PMID:27034376

  1. Critical thinking: Not all that critical

    Directory of Open Access Journals (Sweden)

    Bruce Dietrick Price

    2016-09-01

    Full Text Available Critical Thinking basically says to be suspicious of everything, except the fad known as Critical Thinking. It is perhaps best understood as a new and watered-down version of an earlier fad called Deconstruction. That was just a fancy word for debunking. After you strip away all the high-minded rhetoric, Critical Thinking is typically used to tell students that they should not trust conventional wisdom, tradition, religion, parents, and all that irrelevant, old-fashioned stuff. Critical Thinking, somewhat surprisingly, also turns out to be highly contemptuous of facts and knowledge. The formulation in public schools goes like this: children must learn how to think, not what to think. WHAT is, of course, all the academic content and scholarly knowledge that schools used to teach.

  2. Critical-fluid extraction of organics from water. Volume I. Engineering analysis. Final report, 1 October 1979-30 November 1983

    Energy Technology Data Exchange (ETDEWEB)

    Moses, J.M.; de Filippi, R.P.

    1984-06-01

    Critical-fluid extraction of several organic solutes from water was investigated analytically and experimentally to determine the energy conservation potential of the technology relative to distillation. This Volume gives the results of an engineering analysis. The process uses condensed or supercritical carbon dioxide as an extracting solvent to separate aqueous solutions of common organics such as ethanol, isopropanol and sec-butanol. Energy input to the systems is electric power to drive compressors. A detailed process analysis included evaluation and correlation of thermophysical properties and phase equilibria for the two- and three-component systems involved. The analysis showed that a plant fed with 10 weight percent ethanol feed would consume 0.65 kilowatt-hours (kwh) of power for compression energy per gallon of alcohol. This energy consumption would be 5300 Btu of steam-equivalent, or 6500 Btu of fossil-fuel-equivalent energy. The extraction product, however, would require additional energy to produce high-purity alcohol. Doubling the ethanol feed concentration to 20 weight percent would reduce the energy required to about 0.30 kwh per gallon. Halving the ethanol feed concentration to 5 weight percent would increase the energy required to about 1.35 kwh per gallon. For the same feed composition, isopropanol can be separated with 48% of the energy required for ethanol. The same separation of sec-butanol can be done with 25% of the ethanol energy requirement.

  3. Structural performance of light-frame roof assemblies. I, Truss assemblies designed for high variability and wood failure

    Science.gov (United States)

    R.W. Wolfe; Monica McCarthy

    1989-01-01

    The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...

  4. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  5. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  6. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  7. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.

    Science.gov (United States)

    Amin, Shorash; Prentis, Peter J; Gilding, Edward K; Pavasovic, Ana

    2014-08-01

    The sequencing, de novo assembly and annotation of transcriptome datasets generated with next generation sequencing (NGS) has enabled biologists to answer genomic questions in non-model species with unprecedented ease. Reliable and accurate de novo assembly and annotation of transcriptomes, however, is a critically important step for transcriptome assemblies generated from short read sequences. Typical benchmarks for assembly and annotation reliability have been performed with model species. To address the reliability and accuracy of de novo transcriptome assembly in non-model species, we generated an RNAseq dataset for an intertidal gastropod mollusc species, Nerita melanotragus, and compared the assembly produced by four different de novo transcriptome assemblers; Velvet, Oases, Geneious and Trinity, for a number of quality metrics and redundancy. Transcriptome sequencing on the Ion Torrent PGM™ produced 1,883,624 raw reads with a mean length of 133 base pairs (bp). Both the Trinity and Oases de novo assemblers produced the best assemblies based on all quality metrics including fewer contigs, increased N50 and average contig length and contigs of greater length. Overall the BLAST and annotation success of our assemblies was not high with only 15-19% of contigs assigned a putative function. We believe that any improvement in annotation success of gastropod species will require more gastropod genome sequences, but in particular an increase in mollusc protein sequences in public databases. Overall, this paper demonstrates that reliable and accurate de novo transcriptome assemblies can be generated from short read sequencers with the right assembly algorithms.

  8. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  9. The influence of operational and water chemistry parameters on the deposits of corrosion products on fuel assemblies at nuclear power plants with VVER reactors

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Rodionov, Yu. A.; Gavrilov, A. V.

    2011-07-01

    The phenomenon involving a growth of pressure drop in the reactor core and redistribution of deposits in the reactor core and primary coolant circuit of a nuclear power station equipped with VVER-440 reactors is considered. A model is developed, the physicochemical foundation of which is based on the dependence of corrosion product transfer on the temperature and pH t value of coolant and on the correlation between the formation rate of corrosion products (Fe) (after subjecting the steam generators to decontamination) and rate with which they are removed from the circuit. The purpose of the simulation carried on the model is to predict the growth of pressure drop on the basis of field data obtained from nuclear power installations and correct the water chemistry (by adjusting the concentrations of KOH, H2, and NH3) so as to keep the pressure drop in the reactor at a stable level.

  10. How Critical Is Critical Thinking?

    Science.gov (United States)

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  11. Geophysical investigations of underplating at the Middle American Trench, weathering in the critical zone, and snow water equivalent in seasonal snow

    Science.gov (United States)

    St. Clair, James

    This dissertation consists of four chapters that are broadly related through the use of geophysical methods to investigate Earth processes. In Chapter 1, an along-strike seismic reflection/refraction data set is used to investigate the plate boundary beneath the forearc offshore Costa Rica. The convergent margin offshore Costa Rica is representative of the 19,000 km of subduction zones that are considered to be erosive, or that experience a net mass loss over time. At these margins, sediments along with material that is tectonically eroded from the overlying plate are presumably carried down the subduction zones and recycled into the mantle. In addition to the mass that they represent, sediments, eroded upper-plate material, and subducted oceanic crust carry fluids into the subduction zone, which influence both magma generating processes and the chemical composition of arc lavas. Thus, understanding the ultimate fate of subducted material along these margins is critical for evaluating both the chemical and mass balances. Beneath the forearc offshore Costa Rica, we observe an ˜40 km long, 1-to-3 km-thick lens of material sitting directly above the subducting Cocos plate. Directly above this lens, the forearc shows evidence for long-term uplift consistent with the steady growth of this lens. Our results suggest that the convergent margin at Costa Rica experience simultaneous outer-forearc erosion and underplating beneath the inner forearc. In Chapter 2, a combination of three-dimensional stress modeling and landscape scale geophysical imaging is used to test the hypothesis that topographic perturbations to regional stress fields control lateral variations in bedrock permeability. The permeability of bedrock fractures influences groundwater flow, water and nutrient availability for biota, chemical weathering rates, and the long-term evolution of life-sustaining layer at Earth's surface commonly referred to as the "critical zone" (CZ). The results of this study

  12. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available , and of the remaining 2,5 percent, some 70 percent is frozen in the polar caps and around 30 percent is present as soil moisture or in underground aquifers. Less than 1 percent is thus accessible for direct use by humans, animals and plants. Consequently... be serviced with harvested water and/or grey water. Conserve and reuse cooling tower water by using efficient systems and strategies. Avoid ?once-through systems? commonly used for evaporation coolers, ice makers, hydraulic equipment, and air compressors...

  13. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...... and updated data reporting formats are also required....

  14. MOX fuel assembly and reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Motoo; Shimada, Hidemitsu; Kaneto, Kunikazu; Koyama, Jun-ichi; Uchikawa, Sadao [Hitachi Ltd., Tokyo (Japan); Izutsu, Sadayuki; Fujita, Satoshi

    1998-03-10

    MOX fuel assemblies containing fuel rods of mixed oxide (MOX) of uranium and plutonium are loaded to a reactor core of a BWR type reactor. The fuel assembly comprises lattice like arranged fuel rods, one large diameter water rod disposed at the central portion and a channel box surrounding them. An average enrichment degree A of fission plutonium of fuel rods arranged at the outermost layer region and an average enrichment degree B of fission plutonium of fuel rods arranged at the inner layer region satisfy the relation of B/A {>=} 2.2. It is preferable that the average enrichment degree C of fission plutonium of fuel rods arranged at the outermost corner portions and the enrichment degree A satisfy the relation: C/A {<=} 0.5. With such a constitution, even in a case where the MOX fuel assemblies and uranium fuel assemblies are disposed together, thermal margin can be improved. (I.N.)

  15. Self-assembled nanostructures