WorldWideScience

Sample records for water constituent concentrations

  1. Constituent concentrations, loads, and yields to Beaver Lake, Arkansas, water years 1999-2008

    Science.gov (United States)

    Bolyard, Susan E.; De Lanois, Jeanne L.; Green, W. Reed

    2010-01-01

    Beaver Lake is a large, deep-storage reservoir used as a drinking-water supply and considered a primary watershed of concern in the State of Arkansas. As such, information is needed to assess water quality, especially nutrient enrichment, nutrient-algal relations, turbidity, and sediment issues within the reservoir system. Water-quality samples were collected at three main inflows to Beaver Lake: the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Water-quality samples collected over the period represented different flow conditions (from low to high). Constituent concentrations, flow-weighted concentrations, loads, and yields from White River, Richland Creek, and War Eagle Creek to Beaver Lake for water years 1999-2008 were documented for this report. Constituents include total ammonia plus organic nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved orthophosphorus (soluble reactive phosphorus), total phosphorus, total nitrogen, dissolved organic carbon, total organic carbon, and suspended sediment. Linear regression models developed by computer program S-LOADEST were used to estimate loads for each constituent for the 10-year period at each station. Constituent yields and flow-weighted concentrations for each of the three stations were calculated for the study. Constituent concentrations and loads and yields varied with time and varied among the three tributaries contributing to Beaver Lake. These differences can result from differences in precipitation, land use, contributions of nutrients from point sources, and variations in basin size. Load and yield estimates varied yearly during the study period, water years 1999-2008, with the least nutrient and sediment load and yields generally occurring in water year 2006, and the greatest occurring in water year 2008, during a year with record amounts of precipitation. Flow-weighted concentrations of most constituents were greatest at War Eagle Creek near Hindsville

  2. Temporal trends in water-quality constituent concentrations and annual loads of chemical constituents in Michigan watersheds, 1998–2013

    Science.gov (United States)

    Hoard, Christopher J.; Fogarty, Lisa R.; Duris, Joseph W.

    2018-02-21

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began the Water Chemistry Monitoring Program for select streams in the State of Michigan. Objectives of this program were to provide assistance with (1) statewide water-quality assessments, (2) the National Pollutant Discharge Elimination System permitting process, and (3) water-resource management decisions. As part of this program, water-quality data collected from 1998 to 2013 were analyzed to identify potential trends for select constituents that were sampled. Sixteen water-quality constituents were analyzed at 32 stations throughout Michigan. Trend analysis on the various water-quality data was done using either the uncensored Seasonal Kendall test or through Tobit regression. In total, 79 trends were detected in the constituents analyzed for 32 river stations sampled for the study period—53 downward trends and 26 upward trends were detected. The most prevalent trend detected throughout the State was for ammonia, with 11 downward trends and 1 upward trend estimated.In addition to trends, constituent loads were estimated for 31 stations from 2002 to 2013 for stations that were sampled 12 times per year. Loads were computed using the Autobeale load computation program, which used the Beale ratio estimator approach to estimate an annual load. Constituent loads were the largest in large watershed streams with the highest annual flows such as the Saginaw and Grand Rivers. Likewise, constituent loads were the smallest in smaller tributaries that were sampled as part of this program such as the Boardman and Thunder Bay Rivers.

  3. STUDY OF ESTIMATE CONCENTRATION OF WATER CONSTITUENTS AT BADUNG STRAIT BALI USING INVERSE MODEL

    Directory of Open Access Journals (Sweden)

    I Ketut Swardika

    2012-11-01

    Full Text Available An algorithm was employed to retrieve the concentrations of three water constituents, chlorophyll-a,suspended matter and colored dissolved organic matter (CDOM from MODIS (Moderate-ResolutionImaging Spectrometer in wide range covering from oligotrophic case-1 to turbid case-2 waters at theBadung Strait Bali. The algorithm is a neural network (NN which is used to parameterize the inverse of aradiative transfer model. It’s used in this study as a multiple nonlinear regression technique. The NN is a feedforward back propagation model with two hidden layers. The NN was trained with computed radiancecovering the range of chlorophyll-a from 0.001 to 64.0 ?g/l, inorganic suspended matter from 0.01 to 50.0mg/l, and CDOM absorption at 440nm from 0.001 to 5.0 m-1. Inputs to the NN are the radiance of the fivespectral channels which were under discussion for MODIS. The outputs are the three water constituentconcentrations. The NN algorithm was tested using in-situ data set on May, September, November 2005 atthe Badung Strait Bali and the north sea of Sumbawa Island and applied to MODIS. The coefficient ofdetermination (R2 between chlorophyll-a concentrations derived from simulation and in-situ data is 0.327,for suspended matter R2 is 0.408. No in-situ measurements of CDOM available for validation. Also, in-situdata were compared with the corresponding distribution obtained by the NASA standard OC4 (OC3M forMODIS chlorophyll-a algorithm and giving R2 0.188. This study gives better accuracy compare withstandard algorithm. How ever both studies are giving over estimate chlorophyll-a concentration. Since thereare no standard MODIS products available for suspended matter and CDOM, the result of the retrieval by theNN for these two variables could only be assessed by a general knowledge of their concentrations anddistribution patterns

  4. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  5. Relations of water-quality constituent concentrations to surrogate measurements in the lower Platte River corridor, Nebraska, 2007 through 2011

    Science.gov (United States)

    Schaepe, Nathaniel J.; Soenksen, Philip J.; Rus, David L.

    2014-01-01

    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The U.S. Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebr. [USGS site 06800500]; Salt Creek near Ashland, Nebr. [USGS site 06805000]; and Platte River at Louisville, Nebr. [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions. Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models. Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus

  6. Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

    Science.gov (United States)

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics. Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended

  7. Background concentrations of selected radionuclides, organic compounds, and chemical constituents in ground water in the vicinity of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Orr, B.R.; Cecil, L.D.; Knobel, L.L.

    1991-01-01

    Background concentrations of radionuclides, organic compounds, and other chemical constituents in water in the Snake River Plain aquifer in Idaho were estimated from groundwater sample analyses. Detectable concentrations of transuranic elements should not be present in water from the Snake River Plain aquifer. Background concentrations of tritium generally range from 75 to 150 pCi/L. Strontium-90 and iodine-129 concentrations generally are 0 and from 0.05 pCi/L, respectively. At the INEL, comparison of the mean and median concentrations of tritium, strontium-90, and iodine-129 indicates that operations locally have affected concentrations in groundwater. Gross alpha-particle and beta-particle radioactivity in water from the Snake River Plain aquifer ranges from 0 to 5 pCi/L and 0 to 8 pCi/L, respectively. Background gamma radiation in groundwater is attributed to cesium-137, cobalt-60, and potassium-40. Cesium-137 and cobalt-60 concentrations generally are zero in groundwater at the INEL. Naturally occurring concentrations of potassium-40 probably are about 300 pCi/L. Background concentrations of organic compounds in water from the Snake River Plain aquifer generally are less than 0.2 microg/L. Background arsenic and chromium concentrations both are about 2 to 3 microg/L. Barium concentrations are from about 50 to about 70 microg/L. Lead and mercury concentrations generally are less than 5 microg/L and 0.1 microg/L, respectively. Cadmium, selenium, and silver concentrations generally are less than 1 microg/L. Nitrate concentrations range from 0 to about 1.4 mg/L

  8. Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008

    Science.gov (United States)

    Garrett, Jessica D.

    2012-01-01

    Excess nutrients, suspended-sediment loads, and the presence of pesticides in Iowa rivers can have deleterious effects on water quality in State streams, downstream major rivers, and the Gulf of Mexico. Fertilizer and pesticides are used to support crop growth on Iowa's highly productive agricultural landscape and for household and commercial lawns and gardens. Water quality was characterized near the mouths of 10 major Iowa tributaries to the Mississippi and Missouri Rivers from March 2004 through September 2008. Stream loads were calculated for select ions, nutrients, and sediment using approximately monthly samples, and samples from storm and snowmelt events. Water-quality samples collected using standard streamflow-integrated protocols were analyzed for major ions, nutrients, carbon, pesticides, and suspended sediment. Statistical data summaries of sample data used parametric and nonparametric techniques to address potential bias related to censored data and multiple levels of censoring of data below analytical detection limits. Constituent stream loads were computed using standard pre-defined models in S-LOADEST that include streamflow and time terms plus additional terms for streamflow variability and streamflow anomalies. Streamflow variability terms describe the difference in streamflow from recent average conditions, whereas streamflow anomaly terms account for deviations from average conditions from long- to short-term sequentially. Streamflow variability or anomaly terms were included in 44 of 80 site/constituent individual models, demonstrating the usefulness of these terms in increasing accuracy of the load estimates. Constituent concentrations in Iowa streams exhibit streamflow, seasonal, and spatial patterns related to the landform and climate gradients across the studied basins. The streamflow-concentration relation indicated dilution for ions such as chloride and sulfate. Other constituent concentrations, such as dissolved organic carbon and

  9. Distribution of radioactive constituents in river waters

    International Nuclear Information System (INIS)

    Herranz, M.; Elejalde, C.; Legarda, F.; Romero, F.

    1994-01-01

    For a research project on the distribution and evaluation of natural and artificial radioactive constituents in ecological segments of Biscay (northeast spain), the amounts of nuclides present in the main river waters were measured. Radioactive procedures include i) total alpha and beta indexes with a gas flow detector, dry residues near to 2 and 10 mg/ cm sup 2, respectively and counting periods of 1000 mn, ii) gamma emitters with a low level gamma spectrometer (Ge-HP detector + 8000 channels analyser) using the dry residue from 8 litres and a counting period of 4 days and iii) statistical treatment of data at 95% confidence.In this paper, ten water samples from the nervion river basin are included. Physical and chemical parameters of samples were also determined by standard procedures, because there is a sharp change in the composition of this river in the first part of the course. Radioactive constituents were identified as follows: a sample has a detectable alpha index, all samples contains beta emitters with a high variability, natural nuclides from uranium and thorium families were detected in some cases. A parallel behaviour is found between samples where K-40 and Cs-137 were found. The paper tries at last to find relations among chemical and radioactive constituents by the application of multivariate statistical methods, specially for the case of Cs-137, the only artificial nuclide identified in this work. 1 tab., 2 figs., 5 refs. (author)

  10. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    Science.gov (United States)

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110

  11. Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999–2012

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is the primary water supply for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River, the main source of inflow to Cheney Reservoir. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on data collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for four new constituents, including additional nutrient species and indicator bacteria. In addition, a conversion factor of 0.68 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the North Ninnescah River upstream from Cheney Reservoir site. Newly developed models and 14 years of hourly continuously measured data were used to calculate selected constituent concentrations and loads during January 1999 through December 2012. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest to Cheney Reservoir, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that

  12. Estimating Concentrations of Road-Salt Constituents in Highway-Runoff from Measurements of Specific Conductance

    Science.gov (United States)

    Granato, Gregory E.; Smith, Kirk P.

    1999-01-01

    Discrete or composite samples of highway runoff may not adequately represent in-storm water-quality fluctuations because continuous records of water stage, specific conductance, pH, and temperature of the runoff indicate that these properties fluctuate substantially during a storm. Continuous records of water-quality properties can be used to maximize the information obtained about the stormwater runoff system being studied and can provide the context needed to interpret analyses of water samples. Concentrations of the road-salt constituents calcium, sodium, and chloride in highway runoff were estimated from theoretical and empirical relations between specific conductance and the concentrations of these ions. These relations were examined using the analysis of 233 highwayrunoff samples collected from August 1988 through March 1995 at four highway-drainage monitoring stations along State Route 25 in southeastern Massachusetts. Theoretically, the specific conductance of a water sample is the sum of the individual conductances attributed to each ionic species in solution-the product of the concentrations of each ion in milliequivalents per liter (meq/L) multiplied by the equivalent ionic conductance at infinite dilution-thereby establishing the principle of superposition. Superposition provides an estimate of actual specific conductance that is within measurement error throughout the conductance range of many natural waters, with errors of less than ?5 percent below 1,000 microsiemens per centimeter (?S/cm) and ?10 percent between 1,000 and 4,000 ?S/cm if all major ionic constituents are accounted for. A semi-empirical method (adjusted superposition) was used to adjust for concentration effects-superposition-method prediction errors at high and low concentrations-and to relate measured specific conductance to that calculated using superposition. The adjusted superposition method, which was developed to interpret the State Route 25 highway-runoff records, accounts for

  13. Characterization of Formation Water Constituents and the Effect of ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The research work examined the constituents of formation water and fresh water dilution effects from a land location in the Niger Delta Area of Nigeria. Some selected physicochemical and microbiological analyses were determined at ambient temperature (82oF) and formation temperature (185oF). Analysis of ...

  14. A simple flow-concentration modelling method for integrating water ...

    African Journals Online (AJOL)

    A simple flow-concentration modelling method for integrating water quality and ... flow requirements are assessed for maintenance low flow, drought low flow ... the instream concentrations of chemical constituents that will arise from different ...

  15. Aquatic photochemistry of sulfamethazine: multivariate effects of main water constituents and mechanisms.

    Science.gov (United States)

    Li, Yingjie; Liu, Xiangliang; Zhang, Biaojun; Zhao, Qun; Ning, Ping; Tian, Senlin

    2018-03-01

    The ubiquity of sulfonamides (SAs) in natural waters requires insight into their environmental fate for ecological risk assessment. Extensive studies focused on the effect of univariate water constituents on the photochemical fate of SAs, yet the multivariate effects of water constituents in environmentally relevant concentrations on SA photodegradation are poorly understood. Here, response surface methodology was employed to explore the integrative effects of main water constituents (dissolved organic matter (DOM), NO 3 - , HCO 3 - , Cu 2+ ) on the photodegradation of a representative SA (sulfamethazine). Results showed that besides single factors, interaction of factors also significantly impacted the photodegradation. Radical scavenging experiments indicated that triplet-excited DOM ( 3 DOM*) was responsible for the enhancing effect of DOM on the photodegradation. Additionally, DOM may also quench the 3 DOM*-mediated oxidation intermediate of sulfamethazine causing the inhibiting effect of DOM-DOM interaction. We also found that HCO 3 - was oxidized by triplet-excited sulfamethazine producing CO 3 ˙ - , and the high reactivity of CO 3 ˙ - with sulfamethazine (second-order rate constant 2.2 × 10 8 M -1 s -1 ) determined by laser flash photolysis revealed the enhancing photodegradation mechanism of HCO 3 - . This study is among the first attempts to probe the photodegradation of SAs considering the integrative effects of water constituents, which is important in accurate ecological risk assessment of organic pollutants in the aquatic environment.

  16. Seasonality of selected surface water constituents in the Indian River Lagoon, Florida.

    Science.gov (United States)

    Qian, Y; Migliaccio, K W; Wan, Y; Li, Y C; Chin, D

    2007-01-01

    Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends.

  17. Effect of coffee reduction on constituent concentration in an energy-efficient process of ultrasonic extraction

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Chi

    2015-01-01

    Full Text Available Coffee is one of the popular beverage; its constituents include caffeine, oxidation resistant aromatic constituents, protein, tannin, and fat. It is indicated in literatures that a proper amount of coffee stimulates the brain and enhances memory, but excessive coffee causes negative results, such as coronary artery disease, high blood pressure, heart disease and kidney disease. This study used high-performance ultrasonic process to discuss the effect of pulverized coffee reduction on the constituent concentration. It further compared the constituent concentrations obtained in different extraction periods. The experimental results show that the coffee aroma constituents can be extracted effectively by ultrasonic process without any organic solvent, and the constituent concentration does not decrease with the addition of pulverized coffee. Therefore, the consumption of pulverized coffee can be reduced greatly by using the proposed. The time of extraction process can be shortened, so as to save energy. The most important point is to reduce the enterprises manufacturing cost and to increase the profit.

  18. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    Science.gov (United States)

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time

  19. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  20. Methods for estimating concentrations and loads of selected constituents in tributaries to Lake Houston near Houston, Texas

    Science.gov (United States)

    Lee, Michael T.

    2012-01-01

    Since December 2005, the U.S. Geological Survey, in cooperation with the City of Houston, Texas, has been assessing the quality of the water flowing into Lake Houston. Continuous in-stream water-quality monitors measured streamflow and other physical water quality properties at stations in Spring Creek near Spring, Tex., and East Fork San Jacinto River near New Caney, Tex. Additionally, discrete water-quality samples were periodically collected on these tributaries and analyzed for selected constituents of concern. Data from the discrete water-quality samples collected during 2005-9, in conjunction with the real-time streamflow data and data from the continuous in-stream water-quality monitors, provided the basis for developing regression equations for the estimation of concentrations of water-quality constituents of these source watersheds to Lake Houston. The output of the regression equations are available through the interactive National Real-Time Water Quality Web site (http://nrtwq.usgs.gov).

  1. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    Science.gov (United States)

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  2. Interlaboratory quality assurance studies: Their use in certifying natural waters for major constituents and trace elements

    International Nuclear Information System (INIS)

    Alkema, H.; Simser, J.; Hjelm, L.

    1998-01-01

    Environmental programs throughout North America have demonstrated a strong awareness of the usefulness of interlaboratory studies for disclosing the quality of analytical results. The Ecosystem Interlaboratory Quality Assurance Program offered by the National Water Research Institute has a wide participation base of laboratories. Many of these laboratories are accredited and employ a number of recognized analytical methods. The interlaboratory study data archives contain a wealth of data for natural surface and rain waters from across the continent. These archives have proven to be a reliable means of characterizing a variety of constituents. Data assessments from these studies accurately identify the variability of data and the presence of any outliers. Repeated use of selected samples in a regular QA program confirms their stability. Time charts and statistical techniques are used to illustrate this stability and yield the precision of pooled analyses. The availability of archived data from interlaboratory studies has enabled the Institute to develop and certify natural water and trace element standards. The natural water CRM, ION-911, has been available for several years. Its historical aspects are discussed as well as the processes leading to the certification of TMRain-95, a soft water standard certifying 22 trace elements. This paper focuses on the use of select laboratories in round-robin evaluations to provide accurate values for constituent concentrations. Natural water and fortified trace element CRMs meet a recognized need in the generation of accurate data for environmental programs. (orig.)

  3. A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use.

    Science.gov (United States)

    Horner, Jennifer E; Castle, James W; Rodgers, John H

    2011-05-01

    A risk assessment approach incorporating exposure pathways and calculated risk quotients was applied to identifying constituents requiring treatment prior to beneficial use of oilfield produced water (OPW). In this study, risk quotients are ratios of constituent concentrations in soil or water to guideline concentrations for no adverse effects to receptors. The risk assessment approach is illustrated by an example of an oilfield water produced from non-marine geologic strata of a rift basin in sub-Saharan Africa. The OPW studied has the following characteristics: 704-1370 mg L(-1) total dissolved solids (TDS), 45-48 mg L(-1) chloride, and 103.8 mg L(-1) oil and grease. Exposure pathways of constituents in OPW used for irrigation include: ingestion of plant tissue, ingestion and direct contact of irrigated soil by livestock, inhalation of aerosols or volatilized constituents, and ingestion of OPW directly by livestock. Applying risk quotient methods for constituents in soil and water, constituents of concern (COCs) identified for irrigation and livestock watering using the OPW studied include: iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn), and oil and grease. Approximately 165,000 barrels d(-1) (26,233 m(3) d(-1)) of OPW from the study site are available for use. Identification of COCs and consideration of water quantity allows for development of reliable treatment design criteria to ensure effective and consistent treatment is achieved to meet guideline levels required for irrigation, livestock watering, or other uses. This study illustrates the utility of risk assessment for identifying the COCs in OPW for treatment, the level of treatment required, and viable options for use of the treated water. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Inversion of In Situ Light Absorption and Attenuation Measurements to Estimate Constituent Concentrations in Optically Complex Shelf Seas

    Science.gov (United States)

    Ramírez-Pérez, M.; Twardowski, M.; Trees, C.; Piera, J.; McKee, D.

    2018-01-01

    A deconvolution approach is presented to use spectral light absorption and attenuation data to estimate the concentration of the major nonwater compounds in complex shelf sea waters. The inversion procedure requires knowledge of local material-specific inherent optical properties (SIOPs) which are determined from natural samples using a bio-optical model that differentiates between Case I and Case II waters and uses least squares linear regression analysis to provide optimal SIOP values. A synthetic data set is used to demonstrate that the approach is fundamentally consistent and to test the sensitivity to injection of controlled levels of artificial noise into the input data. Self-consistency of the approach is further demonstrated by application to field data collected in the Ligurian Sea, with chlorophyll (Chl), the nonbiogenic component of total suspended solids (TSSnd), and colored dissolved organic material (CDOM) retrieved with RMSE of 0.61 mg m-3, 0.35 g m-3, and 0.02 m-1, respectively. The utility of the approach is finally demonstrated by application to depth profiles of in situ absorption and attenuation data resulting in profiles of optically significant constituents with associated error bar estimates. The advantages of this procedure lie in the simple input requirements, the avoidance of error amplification, full exploitation of the available spectral information from both absorption and attenuation channels, and the reasonably successful retrieval of constituent concentrations in an optically complex shelf sea.

  5. Optical remote sensing of properties and concentrations of atmospheric trace constituents

    Science.gov (United States)

    Vladutescu, Daniela Viviana

    application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared

  6. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  7. Water-Soluble Constituents of Cudrania tricuspidata (Carr.) Bur.

    Institute of Scientific and Technical Information of China (English)

    Zong-Ping Zheng; Jing-Yu Liang; Li-Hong Hu

    2006-01-01

    In order to find new structural and biologically active compounds, the constituents of the bark of Cudrania tricuspidata (Carr.) Bur. were investigated and a new 6-p-hydroxybenzyltaxifolin glucoside, named tricusposide (compound 1), together with 16 known compounds, was isolated by solvent partition,macroporous adsorption resin AB-8, silica gel, Sephadex LH-20 chromatography. Using spectroscopic methods, the structures of the compounds were elucidated as 6-p-hydroxybenzyl taxifolin-7-O-β-D-glucoside (compound 1), dihydroquerctin-7-O-β-D-glucoside (compound 2), dihydrokaempferol-3-O-β-D-glucoside (compound 3), dihydroquercetin (compound 4), peonoside (compound 5), sphaerobioside (compound 6), quercimeritrin (compound 7), genistein (compound 8), aromadendrin (compound 9), kaempferol (compound 10), genistin (compound 11), 3,4-dihydroxystyryl alcohol (compound 12), sucrose (compound 13), 1,3,5,6-tetrahydroxyxanthone (compound 14), gericudranin E (compound 15), gericudranin C (compound 16),and orobol (compound 17). Compounds 2-6, 8, 9, 12-14, and 17 were isolated from this genus for the first time.

  8. Regression models to estimate real-time concentrations of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-07

    Science.gov (United States)

    Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.

    2009-01-01

    In December 2005, the U.S. Geological Survey in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (total coliform and Escherichia coli), atrazine, and suspended sediment at two U.S. Geological Survey streamflow-gaging stations upstream from Lake Houston near Houston (08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas). The data from the discrete water-quality samples collected during 2005-07, in conjunction with monitored real-time data already being collected - physical properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), streamflow, and rainfall - were used to develop regression models for predicting water-quality constituent concentrations for inflows to Lake Houston. Rainfall data were obtained from a rain gage monitored by Harris County Homeland Security and Emergency Management and colocated with the Spring Creek station. The leaps and bounds algorithm was used to find the best subsets of possible regression models (minimum residual sum of squares for a given number of variables). The potential explanatory or predictive variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, rainfall, and time (to account for seasonal variations inherent in some water-quality data). The response variables at each site were nitrite plus nitrate nitrogen, total phosphorus, organic carbon, Escherichia coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities as a means to estimate concentrations of the various constituents under investigation, with accompanying estimates of measurement uncertainty. Each regression equation can be used to estimate concentrations of a given constituent in real time. In conjunction with estimated concentrations, constituent loads were estimated by multiplying the

  9. Water storage and evaporation as constituents of rainfall interception

    NARCIS (Netherlands)

    Klaassen, W; Bosveld, F; de Water, E

    1998-01-01

    Intercepted rainfall may be evaporated during or after the rain event. Intercepted rain is generally determined as the difference between rainfall measurements outside and inside the forest. Such measurements are often used to discriminate between water storage and evaporation during rain as well.

  10. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    Science.gov (United States)

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  11. Distribution of exposure concentrations and doses for constituents of environmental tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    LaKind, J.S. [LaKind Associates (United States); Ginevan, M.E. [M.E. Ginevan and Associates (United States); Naiman, D.Q. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mathematical Sciences; James, A.C. [A.C. James and Associates (United States); Jenkins, R.A. [Oak Ridge National Lab., TN (United States); Dourson, M.L.; Felter, S.P. [TERA (United States); Graves, C.G.; Tardiff, R.G. [Sapphire Group, Inc., Bethesda, MD (United States)

    1999-06-01

    The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, the authors describe distributions of ETS chemical concentrations and the characteristics of those distributions for the workplace exposure. Next, they present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, they derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).

  12. Influence from sea water constituents on the efficiency of water electrolysis by PEM-cells

    DEFF Research Database (Denmark)

    Agersted, Karsten; Bentzen, Janet Jonna; Yde-Andersen, S.

    Among the sea-water specific impurities tested, magnesium has the most profound effect on PEM-cell degradation. Significant amounts of the cation was retrieved in the NAFION®-membrane structure after testing. Degradation was seen from a magnesium concentration as low as 3 10-7 mol/l, and increasing...... with concentration it led to a 86% increase of the area specific resistance at a concentration of 3 10-5 mol/l; equivalent to a conductivity of ~5 μS/cm. Other species (Cl-, Na+, SO4 2- ) seems to affect, though slowly, the performance negatively. If PEM will be used for electrolysis it seems therefore necessary...... to purify the feed water to ~1 μS/cm or even further while particularly focusing on the concentrations of polyvalent cations. e.g. magnesium....

  13. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    Science.gov (United States)

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  14. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  15. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  16. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-01-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  17. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  18. The effects of flow-path modification on water-quality constituent retention in an urban stormwater detention pond and wetland system, Orlando, Florida

    Science.gov (United States)

    Gain, W.S.

    1996-01-01

    Changes in constituent retention in a wet stormwater-detention pond and wetland system in Orlando, Florida, were evaluated following the 1988 installation of a flow barrier which approximately doubled the flow path and increased detention time in the pond. The pond and wetland were arranged in series so that stormwater first enters the pond and overflows into the wetland before spilling over to the regional stream system. Several principal factors that contribute to constituent retention were examined, including changes in pond-water quality between storms, stormwater quality, and pond-water flushing during storms. A simple, analytical pond-water mixing model was used as the basis for interpreting changes in retention efficiencies caused by pond modification. Retention efficiencies were calculated by a modified event-mean concentration efficiency method using a minimum variance unbiased estimator approach. The results of this study generally support the hypothesis that changes in the geometry of stormwater treatment systems can significantly affect the constituent retention efficiency of the pond and wetland system. However, the results also indicate that these changes in efficiency are caused not only by changes in residence time, but also by changes in stormwater mixing and pond water flushing during storms. Additionally, the use of average efficiencies as indications of treatment effectiveness may fail to account for biases associated with sample distribution and independent physical properties of the system, such as the range and concentrations of constituents in stormwater inflows and stormwater volume. Changes in retention efficiencies varied among chemical constituents and were significantly different in the pond and wetland. Retention efficiency was related to inflow concentration for most constituents. Increased flushing of the pond after modification caused decreases in retention efficiencies for constituents that concentrate in the pond between storms

  19. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  20. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  1. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  2. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  3. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    Science.gov (United States)

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  4. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  5. Multi-Scale Analysis for Characterizing Near-Field Constituent Concentrations in the Context of a Macro-Scale Semi-Lagrangian Numerical Model

    Science.gov (United States)

    Yearsley, J. R.

    2017-12-01

    The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.

  6. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    Science.gov (United States)

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  7. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    Science.gov (United States)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  8. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    Science.gov (United States)

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  9. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; B. V. Twining (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of the reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.

  10. Water Quality in Big Cypress National Preserve and Everglades National Park - Trends and Spatial Characteristics of Selected Constituents

    Science.gov (United States)

    Miller, Ronald L.; McPherson, Benjamin F.; Sobczak, Robert; Clark, Christine

    2004-01-01

    Seasonal changes in water levels and flows in Big Cypress National Preserve (BICY) and Everglades National Park (EVER) affect water quality. As water levels and flows decline during the dry season, physical, geochemical and biological processes increase the breakdown of organic materials and the build-up of organic waste, nutrients, and other constituents in the remaining surface water. For example, concentrations of total phosphorus in the marsh are less than 0.01 milligram per liter (mg/L) during much of the year. Concentrations can rise briefly above this value during the dry season and occasionally exceed 0.1 mg/L under drought conditions. Long-term changes in water levels, flows, water management, and upstream land use also affect water quality in BICY and EVER, based on analysis of available data (1959-2000). During the 1980's and early 1990's, specific conductance and concentrations of chloride increased in the Taylor Slough and Shark River Slough. Chloride concentrations more than doubled from 1960 to 1990, primarily due to greater canal transport of high dissolved solids into the sloughs. Some apparent long-term trends in sulfate and total phosphorus were likely attributable, at least in part, to high percentages of less-than and zero values and to changes in reporting levels over the period of record. High values in nutrient concentrations were evident during dry periods of the 1980's and were attributable either to increased canal inflows of nutrient-rich water, increased nutrient releases from breakdown of organic bottom sediment, or increased build-up of nutrient waste from concentrations of aquatic biota and wildlife in remaining ponds. Long-term changes in water quality over the period of record are less pronounced in the western Everglades and the Big Cypress Swamp; however, short-term seasonal and drought-related changes are evident. Water quality varies spatially across the region because of natural variations in geology, hydrology, and vegetation

  11. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  12. [Nitrate concentrations in tap water in Spain].

    Science.gov (United States)

    Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco

    2015-01-01

    To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  13. 7746 CONCENTRATIONS OF FORMALDEHYDE IN RAIN WATERS ...

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... The chromotropic acid method described by the. National Institute for ... concentration range of the formaldehyde in the rain waters varied from month to month throughout the six ... vicinity of vegetation [3]. Formaldehyde is the ...

  14. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level

  15. Effect of irradiation and storage on patulin disappearance and some chemical constituents of apple juice concentrate.

    Science.gov (United States)

    Zegota, H; Zegota, A; Bachmann, S

    1988-10-01

    The effect of irradiation on the patulin content and on the chemical composition of apple juice concentrate during storage at 4 degrees C over a period of several weeks was investigated. The radiation-induced disappearance of the mycotoxin in relation to the absorbed dose followed an exponential relationship. The radiation dose (D50), i.e., the dose which reduced the patulin content to 50% of its initial value was equal to 0.35 kGy. Storage of the irradiated concentrate had no effect on the patulin content; however, storage did lead to a slight increase in the titratable acidity and a decrease in the amounts of the carbonyl compounds and the ascorbic acid concentration. The development of non-enzymatic browning during storage of the irradiated samples followed the same kinetics as that of the non-irradiated samples.

  16. Evacuation of performance and significant chemical constituents and by products in drinking water treatment

    International Nuclear Information System (INIS)

    Jamrah, I. A.

    1999-01-01

    Drinking water treatment is a task that comprises of several processes that eventually lead to the addition of chemicals to achieve the objectives of treatment. This study was conducted to assess treatment performance, explain the presence of significant chemical species in water, and investigate the interactions and chemical by-products that are formed during the course of treatment. Grab water samples were collected on a regular basis from the influent and effluent of Zai water treatment plant. Chemical analysis were conducted to determine the concentrations of various chemical species of interest. Turbidity, temperature, and pH of the samples were also measured. The study concluded that Zai Water Treatment Plant produces potable drinking water in accordance with Jordanian Standards. The use of treatment chemical resulted in an increase in the concentrations of certain materials, such as manganese, aluminum, and sulfate. The turbidity of the raw water and the TOC of the samples were positively correlated, and the treatment results in approximately 20% TOC reduction, which demonstrates that the measures used for the control of TOC (carbon adsorption and permanganate pre-oxidation), are not very effective. The study also showed that the TOC content of our raw water samples and the concentration of tribalomethanes resulting after disinfection were positively correlated, and that bromoform was the dominant component. Also chloroform was the minor component of tribalomethanes formed during treatment. Positive correlation between the total concentration of tribalomethanes in water and the chlorine dose used for disinfection was also observed, and the total concentration of tribalomethanes increased with temperature. The formation of tribalomethanes was enhanced as the pH of water increased and as the concentration of bromide ion in raw water became significant. (author). 25 refs., 14 figs.1 table

  17. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    Science.gov (United States)

    Clark, Gregory M.; Williams, Robert S.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic and mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Between one day and 90 days after initial contact, specific conductance in the sample mixtures had a median increase of 306 percent. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of the lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden (a coal, a sandstone, and a shale) probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the over-burden probably contribute smaller quantities of dissolved solids to the spring water.

  18. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    International Nuclear Information System (INIS)

    Clark, G.M.; Williams, R.S. Jr.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the overburden probably contribute smaller quantities of dissolved solids to the spring water

  19. Measurement of concentration of heavy water

    International Nuclear Information System (INIS)

    Tsukamoto, Yuichi; Kondo, Mitsuo; Sakurai, Naoyuki

    1979-01-01

    The concentration of heavy water is measured as one of the technical management in the Fugen plant. The heavy water is used as the moderator in the reactor. The measuring method depends on the theory of light absorption. The light absorption range of heavy water spreads from near infrared to infrared zone. The near infrared absorption was adopted for the purpose, as the absorption is much larger in infrared zone, and the measurement has to be conducted, limiting the apparent absorption. This measuring method is available to determine the concentration of heavy water in the broad range exactly. The preparation of heavy water sample and the measurement of the absorption spectra of near infrared ray are explained, as the experimental procedure. The sample cell was made of quartz, and the spectroscope was the Hitachi 323 type. The resolving power is 100 nm and 27 nm for the wave length of 1000 nm and 2500 nm, respectively. Concerning the measured results, the absorption was recorded in the wave length range from 600 nm to 2600 nm, and for the heavy water concentration range from 0 to 99.77 wt. %. The peaks of absorption were located at the wave length of 1450, 1660, 1920, 1970, 2020 and 2600 nm. The three kinds of fundamental vibration mode of the molecules of both light and heavy water are shown, and the peaks belong to H 2 O, HDO and D 2 O, respectively. The relation between the absorption and the heavy water concentration, and that between the transmissivity and the wave length are shown, when the cell thickness was varied to 5 mm and 20 mm, and the heavy water concentration to 21%, 62% and 99.85%. (Nakai, Y.)

  20. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  1. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    Science.gov (United States)

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  2. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices

  3. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 2002

    Science.gov (United States)

    Rattray, Gordon W.; Campbell, Linford J.

    2004-01-01

    The U.S. Geological Survey, Idaho Department of Water Resources, and the State of Idaho INEEL Oversight Program, in cooperation with the U.S. Department of Energy, sampled water from 17 sites as part of the sixth round of a long-term project to monitor water quality of the eastern Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were collected from eight irrigation wells, three domestic wells, one stock well, one dairy well, one commercial well, one observation well, and two springs and analyzed for selected radiochemical and chemical constituents. One quality-assurance sample, a sequential replicate, also was collected and analyzed. Many of the radionuclide and inorganic-constituent concentrations were greater than the reporting levels and most of the organic-constituent concentrations were less than the reporting levels. However, none of the reported radiochemical- or chemical-constituent concentrations exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Statistical evaluation of the replicate sample pair indicated that, with 95 percent confidence, 132 of the 135 constituent concentrations of the replicate pair were equivalent.

  4. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  5. Regression model development and computational procedures to support estimation of real-time concentrations and loads of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-9

    Science.gov (United States)

    Lee, Michael T.; Asquith, William H.; Oden, Timothy D.

    2012-01-01

    In December 2005, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (Escherichia coli and total coliform), atrazine, and suspended sediment at two USGS streamflow-gaging stations that represent watersheds contributing to Lake Houston (08068500 Spring Creek near Spring, Tex., and 08070200 East Fork San Jacinto River near New Caney, Tex.). Data from the discrete water-quality samples collected during 2005–9, in conjunction with continuously monitored real-time data that included streamflow and other physical water-quality properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), were used to develop regression models for the estimation of concentrations of water-quality constituents of substantial source watersheds to Lake Houston. The potential explanatory variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, and time (to account for seasonal variations inherent in some water-quality data). The response variables (the selected constituents) at each site were nitrite plus nitrate nitrogen, total phosphorus, total organic carbon, E. coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities to serve as potential surrogate variables to estimate concentrations of the selected constituents through statistical regression. Statistical regression also facilitates accompanying estimates of uncertainty in the form of prediction intervals. Each regression model potentially can be used to estimate concentrations of a given constituent in real time. Among other regression diagnostics, the diagnostics used as indicators of general model reliability and reported herein include the adjusted R-squared, the residual standard error, residual plots, and p-values. Adjusted R-squared values for the Spring Creek models ranged

  6. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; L. L. Knobel; B. J. Tucker; B. V. Twining (USGS)

    2000-06-01

    The US Geological Survey, in response to a request from the U.S Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled water from 13 wells during 1997-98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A total of 91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen quality-assurance samples were also collected and analyzed; seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  7. Review of tritiated water concentration technology

    International Nuclear Information System (INIS)

    Ma Hongbin

    2014-01-01

    In order to cooperate with the construction of the spent fuel reprocessing plant in China, the research and application status of tritiated water concentration technology at home and abroad were summarized. Some suggestions for the technology research route in China were put forward. (author)

  8. Airborne remote sensing of water constituents at Lake Constance; Flugzeuggestuetzte Fernerkundung von Wasserinhaltsstoffen im Bodensee

    Energy Technology Data Exchange (ETDEWEB)

    Heege, T.

    2000-12-01

    An inversion scheme for the retrieval of water constituents in case II waters from airborne multispectral scanner data is presented. This method includes modules for the calculation of aerosol types and contents, for the correction of sun glitter radiances and for the atmospheric correction of the image data. In 1996 extensive measurements were performed to determine the optical properties in Lake Constance. In combination with data collected through many years within a project of the German Research Foundation (SFB 248), for the first time a data set of inherent optical parameters being specific for typical substances in the Lake could be established. By means of the inversions scheme and the specific optical properties, geo-coded maps of suspended matter and chlorophyll were calculated from the multispectral airborne measurements above Lake Constance. (orig.) [German] Zur Berechnung von Wasserinhaltsstoffen aus Daten flugzeuggetragener Multispektralscanner wird ein Inversionsverfahren vorgestellt. Es beinhaltet die Bestimmung von Aerosoltypen und -konzentrationen, die bildpunktweise Korrektur von Oberflaechenreflexionen des Sonnenlichtes und die Atmosphaerenkorrektur von Fernerkundungsdaten. Zur Erfassung der optischen Groessen im Wasser wurden umfangreiche Messkampagnen am Bodensee durchgefuehrt. Zusammen mit vieljaehrigen Datensaetzen des DFG-Sonderforschungsbereichs 248 wird damit erstmalig ein vollstaendiger Satz der inhaerenten optischen stoffspezifischen Groessen fuer den Bodensee bestimmt. Zur Validation werden diese anhand von verschiedenen Modellen zur Verknuepfung der inhaerenten Streu- und Absorptionskoeffizienten mit den messbaren Groessen Extinktion und diffuse Reflexion auf Konsistenz geprueft. Aus Befliegungen mit dem Multispektralscanner Daedalus werden mit den vorgestellten Verfahren und optischen Groessen georeferenzierte Verteilungskarten von Schwebstoff und Phytoplankton-Pigmenten berechnet. (orig.)

  9. Social Position Influencing the Water Perception Gap Between Local Leaders and Constituents in a Socio-Hydrological System

    Science.gov (United States)

    Haeffner, Melissa; Jackson-Smith, Douglas; Flint, Courtney G.

    2018-02-01

    How well city leaders represent their constituents and meet their needs are key concerns in transitioning to local sustainable water governance. To date, however, there is little research documenting the influence of social position between elected leaders who make policy, career staff water managers who design and operate systems and implement policies, and the members of the public whose individual water use behaviors are important drivers of water sustainability outcomes. In this study, we ask: "How does social position explain variation in water perceptions and concerns between different actors in a socio-hydrological system?" Using a mixed method approach with survey and interview data, we explore the ways that positioning within the governance system, geographic context, and citizen engagement in local government mediate perceptions of the urban water system. Regardless of local biophysical water supply conditions, residents showed most concern about future water shortages and high water costs, while their leaders were consistently most concerned about deteriorating local water infrastructure. Further, constituents who received water-related information directly from public utility mailings or served on community committees and boards had perceptions that were more aligned with leaders' concerns. The importance of social structure over natural and built environments in shaping water issue perceptions underscores the value of social analysis in socio-hydrology studies. Further, practitioners looking to increase consensus for a transition to sustainable water governance might work to develop institutional mechanisms to increase opportunities for water user involvement in local water system governance.

  10. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water

  11. Use of Reflectance Ratios as a Proxy for Coastal Water Constituent Monitoring in the Pearl River Estuary

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    2009-01-01

    Full Text Available Spectra, salinity, total suspended solids (TSS, in mg/L and colored dissolved organic matter (CDOM, ag(400 at 400 nm sampled in stations in 44 different locations on December 18, 19 and 21, in 2006 were measured and analyzed. The studied field covered a large variety of optically different waters, the absorption coefficient of CDOM ([ag(400] in m-1 varied between 0.488 and 1.41 m-1, and the TSS concentrations (mg/L varied between 7.0 and 241.1 mg/L. In order to detect salinity of the Pearl River Estuary, we analyzed the spectral properties of TSS and CDOM, and the relationships between field water reflectance spectra and water constituents’ concentrations based on the synchronous in-situ and satellite hyper-spectral image analysis. A good correlation was discovered (the positive correlation by linear fit, between in-situ reflectance ratio R680/R527 and TSS concentrations (R2 = 0.65 for the salinity range of 1.74-22.12. However, the result also showed that the absorption coefficient of CDOM was not tightly correlated with reflectance. In addition, we also observed two significant relationships (R2 > 0.77, one between TSS concentrations and surface salinity and the other between the absorption coefficient of CDOM and surface salinity. Finally, we develop a novel method to understand surface salinity distribution of estuarine waters from the calibrated EO-1 Hyperion reflectance data in the Pearl River Estuary, i.e. channels with high salinity and shoals with low salinity. The EO-1 Hyperion derived surface salinity and TSSconcentrations were validated using in-situ data that were collected on December 21, 2006, synchronous with EO-1 Hyperion satellite imagery acquisition. The results showed that the semi-empirical relationships are capable of predicting salinity from EO-1 Hyperion imagery in the Pearl River Estuary (RMSE < 2‰.

  12. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay (USGS); L. M. Williams (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1998-12-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected and analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  13. Distinction of water-soluble constituents between natural and cultured Cordyceps by capillary electrophoresis.

    Science.gov (United States)

    Li, S P; Song, Z H; Dong, T T X; Ji, Z N; Lo, C K; Zhu, S Q; Tsim, K W K

    2004-11-01

    Cordyceps is an expensive traditional Chinese medicine, which has anti-tumor activity and significant effects on the immune system. In Southeast Asia, Cordyceps is commonly sold in capsule form as a health food product. Most of these products are derived from cultured Cordyceps mycelia. Because of the price difference, some manufacturers claim their products are from natural Cordyceps. In order to distinguish among various types of Cordyceps in the market, the profiles of water-soluble constituents derived from different sources of Cordyceps were determined by capillary electrophoresis (CE). Both natural and cultured Cordyceps showed three peak clusters migrated at 5-7, 9-11 and 12-13 min, and the height and resolution of these peak clusters were rather distinct. Peak cluster at 9-11 min was identified as adenosine, guanosine and uridine, and shared a similarity between natural and cultured products. In contrast, the peak cluster at 5-7 min was characteristic of natural Cordyceps, regardless of hosts and sources. By using the peak characteristics of CE profiles of different Cordyceps samples, hierarchical clustering analysis was performed. The result shows that those samples of natural Cordyceps were grouped together distinct from the cultured and commercial products. Thus, the CE profiles could serve as fingerprints for the quality control of Cordyceps.

  14. Model documentation for relations between continuous real-time and discrete water-quality constituents in Cheney Reservoir near Cheney, Kansas, 2001--2009

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is one of the primary water supplies for the city of Wichita, Kansas. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station in Cheney Reservoir since 2001; continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and analyzed for sediment, nutrients, taste-and-odor compounds, cyanotoxins, phytoplankton community composition, actinomycetes bacteria, and other water-quality measures. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to compute concentrations of constituents that are not easily measured in real time. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir. This report updates linear regression models published in 2006 that were based on data collected during 2001 through 2003. The update uses discrete and continuous data collected during May 2001 through December 2009. Updated models to compute dissolved solids, sodium, chloride, and suspended solids were similar to previously published models. However, several other updated models changed substantially from previously published models. In addition to updating relations that were previously developed, models also were developed for four new constituents, including magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. In addition, a conversion factor of 0.74 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI

  15. Long-term behavior of the concentration of the minor constituents in the mesosphere – a model study

    Directory of Open Access Journals (Sweden)

    M. Grygalashvyly

    2009-04-01

    Full Text Available We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-α flux (needed for the water vapor dissociation rate, methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increases the hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling

  16. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    Science.gov (United States)

    Krempa, Heather M.

    2015-10-29

    The U.S. Geological Survey, in cooperation with the City of Independence, Missouri, Water Department, has historically collected water-quality samples using the purge and pump method (hereafter referred to as pump method) to identify potential contamination in groundwater supply wells within the Independence well field. If grab sample results are comparable to the pump method, grab samplers may reduce time, labor, and overall cost. This study was designed to compare constituent concentrations between samples collected within the Independence well field using the pump method and the grab method.

  17. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    Science.gov (United States)

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained

  18. Radon concentration measurements in therapeutic spring water

    International Nuclear Information System (INIS)

    Deak, N.; Horvath, A.; Sajo B, L.; Marx, G.

    1996-01-01

    It is believed that people undergoing a curative cycle in a given spa, may receive a dose in the range of 400 mSv/year which is many times the average annual dose so that their risk of lung cancer may increase by 3% or more. To determine the risk due to the natural radioactivity, of the most frequented spas in Budapest (H), we selected four and some others located on the country side being of particular interest. Results of the radon concentration in spring water are presented, with the evidence that some spas have a high radon concentration. We conclude that patients receiving treatment may be exposed to an additional dose in the range of 29-76 mSv/year that at the bronchia could be between 445-1182 mSv/year. (authors). 6 refs., 2 figs., 2 tabs

  19. Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover—A Case Study at Lake Stechlin (Germany

    Directory of Open Access Journals (Sweden)

    Anna Göritz

    2018-01-01

    Full Text Available Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a concentration and colored dissolved organic matter (CDOM absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM, Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring.

  20. Antioxidant Capacity, Phenolic Constituents and Toxicity of Hot Water Extract from Red Maple Buds.

    Science.gov (United States)

    Meda, Naamwin R; Poubelle, Patrice E; Stevanovic, Tatjana

    2017-06-01

    The present study reports, for the first time, the results of the antioxidant capacity and the phenolic composition of a hot water extract from red maple buds (RMB), as well as its safety. In this regard and comparatively to antioxidant standards, this extract exhibits a significant antiradical capacity when tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) and anion superoxide trapping assays. High-resolution mass spectrometric and nuclear magnetic resonance analyses permitted to determine for the first time, in red maple species, cyanidin-3-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-arabinoside, and quercetin. Also, the quantification of individual phenolics by high-performance liquid chromatography method revealed that ginnalin A at 117.0 mg/g is the major compound of RMB hot water extract. Finally, using flow cytometry evaluation, the extract of RMB was determined to have no toxicity neither to cause significant modification of apoptosis process, up to concentration of 100 μg/ml, on human peripheral blood neutrophils. These results allow anticipating various fields of application of RMB water extract. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. An update of the distribution of selected radiochemical and chemical constituents in perched ground water, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    Science.gov (United States)

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastes generated at facilities at the Idaho National Laboratory (INL) were discharged since 1952 to infiltration ponds at the Reactor Technology Complex (RTC) (known as the Test Reactor Area [TRA] until 2005), and the Idaho Nuclear Technology and Engineering Center (INTEC) and buried at the Radioactive Waste Management Complex (RWMC). Disposal of wastewater to infiltration ponds and infiltration of surface water at waste burial sites resulted in formation of perched ground water in basalts and in sedimentary interbeds above the Snake River Plain aquifer. Perched ground water is an integral part of the pathway for waste-constituent migration to the aquifer. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to monitor the movement of radiochemical and chemical constituents in wastewater discharged from facilities to both perched ground water and the aquifer. This report presents an analysis of water-quality and water-level data collected from wells completed in perched ground water at the INL during 1999-2001, and summarizes historical disposal data and water-level-and water-quality trends. At the RTC, tritium, strontium-90, cesium-137, dissolved chromium, chloride, sodium, and sulfate were monitored in shallow and deep perched ground water. In shallow perched ground water, no tritium was detected above the reporting level. In deep perched ground water, tritium concentrations generally decreased or varied randomly during 1999-2001. During October 2001, tritium concentrations ranged from less than the reporting level to 39.4?1.4 picocuries per milliliter (pCi/mL). Reportable concentrations of tritium during July-October 2001 were smaller than the reported concentrations measured during July-December 1998. Tritium concentrations in water from wells at the RTC were likely affected by: well's distance from the

  2. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1990--91

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Knobel, L.L.; Tucker, B.J.

    1993-01-01

    The US Geological Survey, in response to a request from the US Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 12 wells as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. Sixty samples were collected from eight groundwater monitoring wells and four production wells. Ten quality-assurance samples also were collected and analyzed. Most of the samples contained concentrations of total sodium and dissolved anions that exceeded reporting levels. The predominant category of nitrogen-bearing compounds was nitrite plus nitrate as nitrogen. Concentrations of total organic carbon ranged from less than 0.1 to 2.2 milligrams per liter. Total phenols in 52 of 69 samples ranged from 1 to 8 micrograms per liter. Extractable acid and base/neutral organic compounds were detected in water from 16 of 69 samples. Concentrations of dissolved gross alpha- and gross beta-particle radioactivity in all samples exceeded the reporting level. Radium-226 concentrations were greater than the reporting level in 63 of 68 samples

  3. Radiative transfer modeling applied to sea water constituent determination. [Gulf of Mexico

    Science.gov (United States)

    Faller, K. H.

    1979-01-01

    Optical radiation from the sea is influenced by pigments dissolved in the water and contained in discrete organisms suspended in the sea, and by pigmented and unpigmented inorganic and organic particles. The problem of extracting the information concerning these pigments and particulates from the optical properties of the sea is addressed and the properties which determine characteristics of the radiation that a remote sensor will detect and measure are considered. The results of the application of the volume scattering function model to the data collected in the Gulf of Mexico and its environs indicate that the size distribution of the concentrations of particles found in the sea can be predicted from measurements of the volume scattering function. Furthermore, with the volume scattering function model and knowledge of the absorption spectra of dissolved pigments, the radiative transfer model can compute a distribution of particle sizes and indices of refraction and concentration of dissolved pigments that give an upwelling light spectrum that closely matches measurements of that spectrum at sea.

  4. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    Science.gov (United States)

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes

  5. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described

  6. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Kyung; Zoh, Kyung-Duk, E-mail: zohkd@snu.ac.kr

    2013-04-01

    Photo-decomposition of methylmercury (MeHg) in surface water is thought to be an important process that reduces the bioavailability of mercury (Hg) to aquatic organisms. In this study, photo-initiated decomposition of MeHg was investigated under UVA irradiation in the presence of natural water constituents including NO{sub 3}{sup −}, Fe{sup 3+}, and HCO{sub 3}{sup −} ions, and dissolved organic matter such as humic and fulvic acid. MeHg degradation followed the pseudo-first-order kinetics; the rate constant increased with increasing UVA intensity (0.3 to 3.0 mW cm{sup −2}). In the presence of NO{sub 3}{sup −}, Fe{sup 3+}, and fulvic acid, the decomposition rate of MeHg increased significantly due to photosensitization by reactive species such as hydroxyl radical. The presence of humic acid and HCO{sub 3}{sup −} ions lowered the degradation rate through a radical scavenging effect. Increasing the pH of the solution increased the degradation rate constant by enhancing the generation of hydroxyl radicals. Hydroxyl radicals play an important role in the photo-decomposition of MeHg in water, and natural constituents in water can affect the photo-decomposition of MeHg by changing radical production and inhibition. - Highlights: ► The abiotic photodecomposition of methylmercury (MeHg) in water was examined. ► UVA light is a primary factor inducing MeHg photodecomposition in water. ► Fulvic acid, NO{sub 3}{sup −}, and Fe{sup 3+} ion increased MeHg photo-decomposition rate significantly. ► Humic acid and HCO{sub 3}{sup −} ions inhibited photodecomposition through radical scavenging. ► OH radical is an important compound affecting photodecomposition of MeHg in water.

  7. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin; cross-sectional and depth variation of water-quality constituents and properties in the Upper Illinois River basin, 1987-88

    Science.gov (United States)

    Marron, Donna C.; Blanchard, Stephen F.

    1995-01-01

    Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.

  8. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    Science.gov (United States)

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  9. Drinking water quality from the aspect of element concentrations

    International Nuclear Information System (INIS)

    Chiba, M.; Shinohara, A.; Sekine, M.; Hiraishi, S.

    2006-01-01

    Drinking water in developed countries is usually treated by the water-purification system, while in developing countries untreated natural water such as well water, river water, rain water, or pond water are used. On the other hand, many kinds of mineral water bottled in plastic containers are sold as drinking water with or without gas in urban areas in many countries. Seawater under hundreds meters from the surface is also bottled and sold as drinking water with advertising good mineral balance. Various element concentrations in water samples for drinking were analyzed, and then it was considered the effects of elements on human health. (author)

  10. Particulate organic constituents of surface waters of east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Bhat, K.L.; Parulekar, A.H.

    protein (PP) and particulate lipid (PL) fractions. High values of chlorophyll a (chl-a) characterized the coastal waters. In coastal waters, POC was dominatEd. by PCHO containing detrital matter, whereas actively growing phytoplankton significantly...

  11. Concentration of tritium in precipitation and river water

    International Nuclear Information System (INIS)

    Chatani, Kunio

    1983-01-01

    The concentration of tritium in precipitation and river water has been measured sice 1973 in Aichi, Japan. The tritium in water samples was enriched by electrolysis, and measured by liquid scintillation counting. The concentration of tritium in precipitation decreased from 27 TU in 1973 to 17 TU in 1979, and showed seasonal variation. During this period, there was a rise of concentration because of Chinese nuclear detonation. The concentration of tritium in river water gradually decreased from 44 TU in 1973 to 24 TU in 1979, and the seasonal variation was not observed. Based on the observed values, the relation among precipitation, river water and ground water was analyzed. (J.P.N.)

  12. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    Science.gov (United States)

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  13. Beneficial reuse of FGD material in the construction of low permeability liners: Impacts on inorganic water quality constituents

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.M.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H. [Ohio State University, Columbus, OH (United States)

    2007-05-15

    In this paper, we examine the water quality impacts associated with the reuse of fixated flue gas desulfurization (FGD) material as a low permeability liner for agricultural applications. A 0.457-m-thick layer of fixated FGD material from a coal-fired power plant was utilized to create a 708 m{sup 2} swine manure pond at the Ohio Agricultural Research and Development Center Western Branch in South Charleston, Ohio. To assess the effects of the fixated FGD material liner, water quality samples were collected over a period of 5 years from the pond surface water and a sump collection system beneath the liner. Water samples collected from the sump and pond surface water met all Ohio nontoxic criteria, and in fact, generally met all national primary and secondary drinking water standards. Furthermore it was found that hazardous constituents (i.e., As, B, Cr, Cu, and Zn) and agricultural pollutants (i.e., phosphate and ammonia) were effectively retained by the FGD liner system. The retention of As, B, Cr, Cu, Zn, and ammonia was likely due to sorption to mineral components of the FGD liner, while Ca, Fe, and P retention were a result of both sorption and precipitation of Fe- and Ca-containing phosphate solids.

  14. The effects of boron supplementation of layer diets varying in calcium and phosphorus concentrations on performance, egg quality, bone strength and mineral constituents of serum, bone and faeces.

    Science.gov (United States)

    Küçükyilmaz, K; Erkek, R; Bozkurt, M

    2014-01-01

    1. A 2 × 3 factorial arrangement of treatments was used to investigate the effects of dietary calcium (Ca), phosphorus (P), and supplemental boron (B) (0, 75, and 150 mg/kg) on the performance, egg quality, bone strength, and mineral constituents in bone, serum and faeces. 2. A reduction by 18% in the dietary Ca-P concentration from the recommended levels for the hen strain reduced (P properties did not corroborate the hypothesis that B is a trace element playing an important role in mineral metabolism and bone strength through an interaction with Ca, P and Mg.

  15. Radon concentrations in well water in Sichuan Province, China

    International Nuclear Information System (INIS)

    Chen Yibin; Wu Qun; Zhang Bo; Chen Daifu

    1998-01-01

    There are 110 million people in Sichuan Province, China. Although most of the people in cities of Sichuan use river water, which contains low levels of radon, as potable water, people in countryside and in some communities of big cities still use well water as domestic consumption. This paper reports the radon concentrations in well water investigated in four cities, i.e. Chengdu, Chongqing, Leshan and Leijiang in Sichuan Province. Of the 80 wells investigated, the radon concentrations range from 3.5 to 181.6 KBqm -3 . Of the four cities, Chongqing has the highest well water radon concentration with the average 49.6 ± 54.1 KBqm -3 and the greatest variation. The investigation in four cities showed that the radon concentrations in well water are much higher than that in tap-water. In Chongqing where there are complex geological structures, mainly granite stratum, for example, the average radon concentration in well water is 112 times higher than that in the tap-water, and even much higher than that in river water in Yangtse River, Jialing River, Jinsha River and Mingjiang River. The population in four cities is about one sixth of the total population in Sichuan Province. Because of the common use of well water and the high radon concentrations in well water in Sichuan Province, the health effect of radon in well water to the public should be stressed. (author)

  16. Radon concentrations in drinking water in Wakasa area, Fukui Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Tokuyama, Hideki; Igarashi, Shuichi [Fukui Prefectural Environmental Radiation Research and Monitoring Center, Tsuruga (Japan)

    1997-02-01

    Radon concentration in drinking water was surveyed to make basic data for the investigation of radiation dose due to natural radioisotopes in the general public. Here, the survey data in the Wakasa region were reported. Sampling was carried out at 126 points in this region (ca. 70x50 km{sup 2}). A total of 167 samples were taken from the tap of private wells, and small and large public water supplies. The radon concentration was determined by direct measuring method. The mean concentration of ground water from the wells was 28.5 Bq/l, significantly higher than those of the tap water from small and large water supplies, 5.0 and 11.2 Bq/l, respectively. Rn concentration of ground water was dependent on geological features and it was comparatively high in the granite region. Ground water containing a high concentration of Rn was mixed into the water of some large water supply in the cities, showing that its Rn concentration was higher compared to those for the small water supply. This survey was conducted only in the winter seasons from 1989 to 1993. Therefore, there are no data concerning seasonal changes in Rn concentration to drinking water. (M.N.)

  17. Tritium concentrations of environmental waters in Aichi Prefecture

    International Nuclear Information System (INIS)

    Ohnuma, Shoko; Chaya, Kunio

    1992-01-01

    Tritium concentrations of environmental waters in Aichi Prefecture were determined from 1973 to 1989. They are rain water, river waters and sea waters. In 1970's, tritium concentrations of environmental waters were more than the natural levels under the influence of the atmospheric nuclear tests. However, atmospheric nuclear tests have not been carried out after Oct. 1980 and the tritium concentrations are going to return to the natural levels. Annual means of tritium concentration in 1989 were as follows: 0.67 Bq/l for rain water, 1.1 Bq/l for Kiso river and Shonai river, 0.85 Bq/l for Yahagi river, 0.70 Bq/l for Toyo river, and 0.41 Bq/l for surface sea water. Also tritium concentration of sea bottom water was 0.50±0.28 Bq/l and rather constant yearly. Among environmental waters, only rain water was previously having seasonal variation of tritium concentration and it was showing 'spring peak' when the troposphere and the stratosphere were mixed actively. At present, tritium concentration of rain water has a little seasonal variation, and is slightly lower in summer under the influence of the atmosphere coming over from the ocean. With regard to the direct influence of rain water to river waters, it was found by means of time series analysis that Kiso river was the least affected of river waters and Yahagi river was the most. The apparent residence time, in which rain water stayed in the underground before it flowed out as river water, was presumed to be 4.9 years for Kiso river, 3.6 years for Yahagi river, 2.0 years for Toyo river, respectively. (author)

  18. Tritium concentrations of environmental waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Chaya, Kunio (Aichi Prefectural Inst. of Public Health, Nagoya (Japan))

    1992-09-01

    Tritium concentrations of environmental waters in Aichi Prefecture were determined from 1973 to 1989. They are rain water, river waters and sea waters. In 1970's, tritium concentrations of environmental waters were more than the natural levels under the influence of the atmospheric nuclear tests. However, atmospheric nuclear tests have not been carried out after Oct. 1980 and the tritium concentrations are going to return to the natural levels. Annual means of tritium concentration in 1989 were as follows: 0.67 Bq/l for rain water, 1.1 Bq/l for Kiso river and Shonai river, 0.85 Bq/l for Yahagi river, 0.70 Bq/l for Toyo river, and 0.41 Bq/l for surface sea water. Also tritium concentration of sea bottom water was 0.50[+-]0.28 Bq/l and rather constant yearly. Among environmental waters, only rain water was previously having seasonal variation of tritium concentration and it was showing 'spring peak' when the troposphere and the stratosphere were mixed actively. At present, tritium concentration of rain water has a little seasonal variation, and is slightly lower in summer under the influence of the atmosphere coming over from the ocean. With regard to the direct influence of rain water to river waters, it was found by means of time series analysis that Kiso river was the least affected of river waters and Yahagi river was the most. The apparent residence time, in which rain water stayed in the underground before it flowed out as river water, was presumed to be 4.9 years for Kiso river, 3.6 years for Yahagi river, 2.0 years for Toyo river, respectively. (author).

  19. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  20. Influence of salt concentration and topographical position on water ...

    African Journals Online (AJOL)

    Water resource quality (WRQ) is affected by salt concentration and topographical position. Indeed, an increase in salt concentration, which decreases water availability for animal and plant nutrition, and lower altitude, which diminishes the potential for production of hydropower, negatively affects WRQ. Therefore, it is useful ...

  1. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, George

    2003-01-01

    To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.

  2. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  3. Tritium concentration in the heavy water upgrading plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Pop, F.; Titescu, Gh.; Dumitrescu, M.; Ciortea, C.; Stefanescu, I.; Peculea, M.; Pitigoi, Gh.; Trancota, D. . E-mail of corresponding author: croitoru@icsi.ro; Croitoru, C.)

    2005-01-01

    In the course of time heavy water used in CANDU nuclear power plants, as moderator or coolant, degrades, as a result of its impurification with light water and tritium. Concentration diminution below 99.8% mol for moderator and 99.75% mol for coolant causes an inefficient functioning of CANDU reactor. By isotopic distillation, light water is removed. Simultaneously tritium concentration takes place. The heavy water upgrading plant from Cernavoda is an isotopic separation cascade with two stages. The paper presents, for this plant, a theoretical study of the tritium concentration. (author)

  4. Solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1981-01-01

    The purposes of this study were: (1) to provide information on the solid phases which are in apparent equilibrium with ground waters of basalt aquifers, and (2) to further develop the capability of geochemical modeling to support solute transport studies and performance assessments of nuclear waste repositories. The basalt aquifers of the Columbia Plateau in eastern Washington were chosen as the study area because: (1) regional ground-water analyses are readily available, (2) these basalts are a potential medium for a nuclear-waste repository, and (3) mineralogical analyses from local site studies are available

  5. Concentration of Nitrate in Bottled Drinking Water in Qom, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Saberi Bidgoli

    2013-11-01

    Full Text Available Background & Aims of the Study: The global consumption of bottled water is growing with substantial growth in sales volumes on every continent. The highest growth rates are occurring in Asia and South America. Biological and chemical monitoring of these waters is necessary. The aim of current study was determination of nitrate concentration in bottled drinking water in Qom, Iran in 2012. Materials & Methods: A cross-sectional study carried out in Qom, Iran. First of all, 18 most frequent brands of bottled drinking waters were purchased in June 2012 randomly. Then concentration of nitrate was measured according to the spectrophotometric method. In next step, experiment data were analyzed by Excel Software and P value was obtained by statistical calculations. Finally data were comprised with written nitrate concentration on labels and recommended permissible values . Results: The median nitrate concentration was 2.1 mg/L with the minimum 0.8 mg/L and maximum 8.1 mg/L. In 66.7 % of the samples, the measured nitrate concentrations were less than the written nitrate concentrations and in 33.3% of samples, the nitrate concentration was higher. The statistical calculation proved the significant difference between the median of written nitrate concentration on the label and investigated nitrate concentration (P value > 0.05. Conclusions: It be concluded that the measured nitrate concentration in all of the water samples is below the recommended permissible level.

  6. Tritium concentration and variation of environmental water in China

    International Nuclear Information System (INIS)

    Ren Tianshan; Zhao Qiufen; Liu Yan; Chen Bingru; Chen Jiashen; Deng Guolun; Gao Pingying; Kuan Yungu

    2004-01-01

    To estimate the baseline level of tritium concentrations of environmental waters before the operation of the first Chinese nuclear power plant, 1547 water samples of eight categories all over China were sampled in the early 1990s for tritium measurement. The measurements were performed with low background liquid scintillation technology. The average tritium radioactive concentrations were 8.96±4.30, 5.42±0.33, 4.77±1.15, 4.55±0.35, 4.04±0.10, 4.04±0.94, 2.38±0.30, 1.34±0.40 Bq/L for air vapor water, precipitation, river water, lake water, tap water, well water, spring water and sea water, respectively, as listed in Table 1. The results show that the tritium concentations in the early 1990s were significantly lower than that in the 1960s and almost reached to the nature tritium concentrations levels. The index of annual reduction rate of tritium concentrations for most water categories were in the range between -3.1%∼-6.3% in the period of 1978 to 1992, and -4.1%∼-5.7% in the 1990s, however, the averages for air vapor water, precipitation and spring water show slow increase with time in recent years. The regional distribution of tritium concentrations show a tendency being of higher in the north and northwest and lower in the south and southeast, indicating latitude and longitude distribution tendencies. The slopes of tritium concentration-latitude line were in the range of 0.33 - 0.18 (Bq/L)/ degree N for air vapor water, precipitation, river water and spring water, while in the range of 0.012-0.068 (Bq/L)/ degree N. The slopes of tritium concentration-longitude line were in the range of 0.15-0.071 (Bq/L)/ degree E for air vapor water, lake water, tap water and well water, however, the change of tritium concentrations with longitude are not significant. (authors)

  7. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    combustion-derived compounds; (10) personal care and domestic use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and propellants; and (13) solvents. Source and finished water samples were collected during phase 2 and analyzed for constituents that were detected frequently during phase 1. This report presents concentration data for AOCs in ground water, surface water, and finished water of CWSs sampled for SWQA studies during 2002-05. Specifically, this report presents the analytical results of samples collected during phase 1 including (1) samples from 221 wells that were analyzed for 258 AOCs; (2) monthly samples from 9 surface-water sites that were analyzed for 258 AOCs during phase 1; and (3) samples from a subset of the wells and surface-water sites located in areas with substantial agricultural production that were analyzed for 3 additional pesticides and 16 pesticide degradates. Samples collected during phase 2 were analyzed for selected AOCs that were detected most frequently in source water during phase 1 sampling; analytical results for phase 2 are presented for (1) samples of source water and finished water from 94 wells; and (2) samples of source water and finished water samples that were collected monthly and during selected flow conditions at 8 surface-water sites. Results of quality-assurance/quality-control samples collected for SWQA studies during 2002-05 also are presented.

  8. Effect of phosphorus concentration of the nutrient solution on the volatile constituents of leaves and bracts of Origanum dictamnus.

    Science.gov (United States)

    Economakis, C; Skaltsa, Helen; Demetzos, Costas; Soković, M; Thanos, Costas A

    2002-10-23

    The chemical composition of the essential oils obtained from the leaves and bracts of hydroponically cultivated Origanum dictamnus were analyzed by GC-MS techniques. Three different concentrations of phosphorus (5, 30, and 60 mg/L) in the nutrient solution were used for the cultivation, using the nutrient film technique (NFT). A total of 46 different compounds were identified and significant differences (qualitative and quantitative) were observed between the samples. Carvacrol and p-cymene were identified as the main compounds in all samples analyzed, whereas thymoquinone was found in higher percentage in the leaves than in bracts. The essential oils were tested for their antibacterial activity against Gram-positive and Gram-negative bacteria. The oils obtained from the bracts were found to be more active. The results obtained from GC-MS analyses were submitted to chemometric analysis.

  9. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  10. Measurement of fog and cloud water constituents - results of the Stuttgart-Hohenheim campaign

    International Nuclear Information System (INIS)

    Lammel, G.; Metzig, G.; Ziereis, H.; Klumpp, J.

    1993-01-01

    A radiation fog event in a highly polluted environment was characterized physically and chemically. Various sampling techniques, including size resolved, and an almost complete set of chemical-analytical methods were applied. Methods for conservation and sensitive determination of reduced nitrogen and sulfur compounds in the liquid phase are presented for the first time. Besides other pollutants, the air mass was heavily loaded by carbonaceous material (carbon accounted for more than one third of the particulate mass). The most prominent trace species in the fog droplets were sulfate, nitrate and ammonium ions. Concentrations as high as 130 mg/I and 50 mg/I, each, were achieved prior to dissolution of the fog in the small and large droplet fraction, respectively. The acidity was negligible, however. The fraction of reduced sulfur compounds was 7% by average, up to 79%, however, at the onset of the fog event. As found in the context of earlier field campaigns, large droplets were less pollutant loaded than small droplets. Besides gas scavenging and - in the case of SO 2 - succeeding oxidation, the scavenging of particulate matter night have contributed to the liquid phase chemical composition. (orig.) [de

  11. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls.

    Science.gov (United States)

    Erşan, Sevcan; Güçlü Üstündağ, Özlem; Carle, Reinhold; Schweiggert, Ralf M

    2018-07-01

    Pistachio hulls, important by-products of pistachio processing, were extracted using an environmentally friendly process with subcritical water (SCW) at a pressure of 6.9 MPa in the range of 110 and 190 °C, and a flow rate of 4 ml/min. Detailed HPLC-DAD-ESI/MS n analyses allowed the identification of 49 phenolic compounds in the SCW extracts. Total gallotannin yields up to 33 g/kg were reached at 150-170 °C, where gallic acid (22.2 g/kg) and penta-O-galloyl-β-d-glucose (9.77 g/kg) levels were 13.2- and 10.6-fold higher than those in the aqueous methanol extracts. Flavonols were also effectively extracted at 110-150 °C (4.37-5.65 g/kg), while anacardic acid recovery was poor (1.13-2.77 g/kg). Accordingly, high amounts of anacardic acids (up to 50.7 g/kg) were retained in the extraction residue, revealing that SCW extraction allowed selective extraction of gallotannins and flavonols. Antioxidant capacities ranged from 0.68 to 1.20 mmol Trolox equivalents (TE)/g for SCW extracts increasing with temperature up 190 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    Science.gov (United States)

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  13. Scientific substantination of maximum allowable concentration of fluopicolide in water

    Directory of Open Access Journals (Sweden)

    Pelo I.М.

    2014-03-01

    Full Text Available In order to substantiate fluopicolide maximum allowable concentration in the water of water reservoirs the research was carried out. Methods of study: laboratory hygienic experiment using organoleptic and sanitary-chemical, sanitary-toxicological, sanitary-microbiological and mathematical methods. The results of fluopicolide influence on organoleptic properties of water, sanitary regimen of reservoirs for household purposes were given and its subthreshold concentration in water by sanitary and toxicological hazard index was calculated. The threshold concentration of the substance by the main hazard criteria was established, the maximum allowable concentration in water was substantiated. The studies led to the following conclusions: fluopicolide threshold concentration in water by organoleptic hazard index (limiting criterion – the smell – 0.15 mg/dm3, general sanitary hazard index (limiting criteria – impact on the number of saprophytic microflora, biochemical oxygen demand and nitrification – 0.015 mg/dm3, the maximum noneffective concentration – 0.14 mg/dm3, the maximum allowable concentration - 0.015 mg/dm3.

  14. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    A total of 35 measurements in Greece and 15 in Cyprus were performed. Radon concentrations in drinking water in Greece were from (1.1±0.5) to (410±50) Bq/L. The corresponding concentrations in underground potable waters in Cyprus ranged between (0.4±0.3) Bq/L and (15±4) Bq/L. High concentrations, viz. (120±20), (320±40) and (410±50) Bq/L, were observed in three samples collected from the city of Arnea Chalkidekis in northern Greece. One water sample from Lesvos Island (north-eastern part of Greece) exhibited a radon concentration of (140±20) Bq/L. Six samples of hot spring water from the city of Loutraki (Attica prefecture), characterized as 'medicinal drinking water', contained concentrations of radon between (220±10) and (340±20) Bq/L. Radon concentrations in potable and non-potable underground water in Greece and Cyprus ranged between (0.4±0.3) and (15±4) Bq/L, whereas in surface water the range was from (2.7±0.8) to (24±6) Bq/L. (P.A.)

  15. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    Trace Elements Concentrations in Water and Aquatic Biota from Ase Creek in Niger ... arsenic, chromium, lead, molybdenum, bismuth and cadmium using atomic ... metal pollution, metal variation, environmental monitoring, bioaccumulation.

  16. Concentration of ions in selected bottled water samples sold in Malaysia

    Science.gov (United States)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  17. Reflective measurement of water concentration using millimeter wave illumination

    Science.gov (United States)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  18. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    The radon content of drinking water samples was determined with Alpha Guard Pro equipped with an appropriate unit (Aqua Kit). The samples were collected from water taps in dwellings located at various cities in Greece and Cyprus. In addition, surface water samples from rivers, lakes and seas as well as potable underground and hot spring water samples from Greece and Cyprus were also collected. For a precise determination of radon concentration in water samples, special procedures were followed both for sampling and transportation, as well as for measurement. Intercomparison experiments were designed and implemented before and during the study. Radon concentrations in drinking water samples in Greece ranged between 1.1 ± 0.5 Bq/L and 410±50 Bq/L. The corresponding concentrations in Cyprus ranged between 1.3 ± 0.8 Bq/L and 15±4 Bq/L. Three samples collected from the city of Arnea Chalkidikis (Northern Greece) exhibited high concentrations of 120±20 Bq/L, 320±40 Bq/L and 410±50 Bq/L. This city is identified as a high radon potential area. One water sample located in Lesvos Island (North-East part of Greece) exhibited radon concentration 140±20 Bq/L. Additional six samples displayed high concentrations in potable hot spring water samples. These samples which were collected from the city of Loutraki (Peloponnesus) ranged between 220-230 Bq/L. In addition, two samples characterized as 'medicinal drinking water' gave concentrations between 320 Bq/L and 340 Bq/L. For underground water samples the radon concentrations ranged between 1.2±0.7 Bq/L and 15±4 Bq/L, while for surface water samples the range was 2.7±0.8 Bq/L to 24±6 Bq/L. The observed concentrations of radon gas in potable water samples in Greece were found to be largely low. In Cyprus, they were all well below 15 Bq/L

  19. 226Ra concentrations in some Illinois well waters

    International Nuclear Information System (INIS)

    Holtzman, R.B.; Gilkeson, R.H.

    1982-01-01

    226 Ra concentrations are reported for the waters from deep wells in 43 communities in Illinois. The concentrations range from 0.08 to 20.6 pCi/L. The effectiveness of additives (nitric acid or EDTA) in keeping the 226 Ra in solution in the samples is discussed

  20. Steroid hormone concentrations and physiological toxicity of water ...

    African Journals Online (AJOL)

    Seven bioassays were used to determine oestradiol (E2), oestrone (E1) and testosterone (T) concentrations, as well as neurotoxicity, cytotoxicity and immunotoxicity, in water sampled during 2010 and 2011. Oestradiol and E1 concentrations of up to 7.2 pg ml–1 and 7.6 pg ml–1, respectively, were recorded. Testosterone ...

  1. Determination of the radioactive concentration of 137Cs in water

    International Nuclear Information System (INIS)

    1986-01-01

    The recently accepted standard method to determine the radioactive concentration of 137 Cs in water is based on the selective retention of cesium ions on ammonium-phosphorous-molybdate followed by the dissolution of the sorbent and the selective precipitation of cesium-hexa-chloro-platinate. The radioactive concentration is determined by the measurement of β disintegration rate of the preparate. (V.N.)

  2. An Update of Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer and Perched-Water Zones, Idaho National Laboratory, Idaho, Emphasis 2002-05

    Science.gov (United States)

    Davis, Linda C.

    2008-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal

  3. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  4. Ranking filter methods for concentrating pathogens in lake water

    Science.gov (United States)

    Accurately comparing filtration methods for concentrating waterborne pathogens is difficult because of two important water matrix effects on recovery measurements, the effect on PCR quantification and the effect on filter performance. Regarding the first effect, we show how to create a control water...

  5. Pollutant Concentrations in the Rime and Fog Water

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Tesař, Miroslav; Fottová, D.

    2008-01-01

    Roč. 3, č. 1 (2008), S68-S73 ISSN 1801-5395 R&D Projects: GA AV ČR IAA3042301; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z20600510 Keywords : fog water * rime water * pollutant concentration Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases

    DEFF Research Database (Denmark)

    Piyatheerawong, W.; Iwasaki, Y; Xu, Xuebing

    2004-01-01

    tested (Rhizomucor miehei lipase, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase) required larger amounts of free water (ca. 7-9 wt.%) for their best performance and exhibited no ethanolysis reaction at low free water concentrations. The CALB's anomalous behavior was also observed...

  7. Ion exchange separation of low boric acid concentrations from water

    International Nuclear Information System (INIS)

    Kysela, J.; Brabec, J.; Peterka, F.

    1975-01-01

    Boric acid poisoning of the moderator of the TR-O experimental heavy water reactor was studied. The possibility is discussed of removing boric acid from heavy water by means of a strong basic anion exchanger, below the residual concentration of 0.01 mg B/l. Measurements of the usable capacities of the strong basic anion exchanger Zerollit FF showed that the penetration of boric acid during the sorption period does not exceed the value of 0.015 mg B/l. The dependence was found of capacity on the boric acid concentration in the solution. Analytical methods used to determine B in water are also described. (author)

  8. A model for oxidizing species concentrations in boiling water reactors

    International Nuclear Information System (INIS)

    Sun, B.; Chexal, B.; Pathania, R.; Chun, J.; Ballinger, R.; Abdollahian, D.

    1993-01-01

    To evaluate and control the intergranular stress corrosion cracking of boiling water reactor (BWR) vessel internal components requires knowledge of the concentration of oxidizing species that affects the electrochemical potentials in various regions of a BWR. In a BWR flow circuit, as water flows through the radiation field, the radiolysis process and chemical reactions lead to the production of species such as oxygen, hydrogen, and hydrogen peroxide. Since chemistry measurements are difficult inside BWRs, analytical tools have been developed by Ruiz and Lin, Ibe and Uchida and Chun and Ballinger for estimating the concentration of species that provide the necessary input for water chemistry control and material protection

  9. Spatial and temporal variations of manganese concentrations in drinking water.

    Science.gov (United States)

    Barbeau, Benoit; Carrière, Annie; Bouchard, Maryse F

    2011-01-01

    The objective of this study was to assess the variability of manganese concentrations in drinking water (daily, seasonal, spatial) for eight communities who participated in an epidemiological study on neurotoxic effects associated with exposure to manganese in drinking water. We also assessed the performance of residential point-of-use and point-of-entry devices (POE) for reducing manganese concentrations in water. While the total Mn concentrations measured during this study were highly variable depending on the location (manganese concentration for 4 out of 5 sampling locations. The efficiency of reverse osmosis and ion exchange for total Mn removal was consistently high while activated carbon provided variable results. The four POE greensand filters investigated all increased (29 to 199%) manganese concentration, indicating deficient operation and/or maintenance practices. Manganese concentrations in the distribution system were equal or lower than at the inlet, indicating that sampling at the inlet of the distribution system is conservative. The decline in total Mn concentration was linked to higher water residence time in the distribution system.

  10. Water-quality characteristics for selected sites on the Cape Fear River, North Carolina, 1955-80; variability, loads, and trends of selected constituents

    Science.gov (United States)

    Crawford, J. Kent

    1983-01-01

    . Nuisance algal growths have not been identified as a problem in the river. Comparisons of water-quality data for baseline (natural) and present conditions indicate that more than 50 percent of most dissolved substances and over 80 percent of certain forms of nitrogen and phosph6rus result from development. Over the past 25 years, increases in concentrations of specific conductance, dissolved magnesium, dissolved sodium, dissolved potassium, dissolved sulfate, dissolved solids, and total nitrite plus nitrate nitrogen were detected in the Cape Fear River at Lock 1. Values for pH and dissolved silica are decreasing. Concentrations of most dissolved constituents at Lock 1 are increasing. These increases are statistically related to increases in population and manufacturing employment in the basin but are unrelated to agricultural activity.

  11. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  12. Ameliorative Effects of Neutral Electrolyzed Water on Growth Performance, Biochemical Constituents, and Histopathological Changes in Turkey Poults during Aflatoxicosis

    Directory of Open Access Journals (Sweden)

    Denise Gómez-Espinosa

    2017-03-01

    Full Text Available Different in vitro and in silico approaches from our research group have demonstrated that neutral electrolyzed water (NEW can be used to detoxify aflatoxins. The objective of this investigation was to evaluate the ability of NEW to detoxify B-aflatoxins (AFB1 and AFB2 in contaminated maize and to confirm detoxification in an in vivo experimental model. Batches of aflatoxin-contaminated maize were detoxified with NEW and mixed in commercial feed. A total of 240 6-day-old female large white Nicholas-700 turkey poults were randomly divided into four treatments of six replicates each (10 turkeys per replicate, which were fed ad libitum for two weeks with the following dietary treatments: (1 control feed containing aflatoxin-free maize (CONTROL; (2 feed containing the aflatoxin-contaminated maize (AF; (3 feed containing the aflatoxin-contaminated maize detoxified with NEW (AF + NEW; and (4 control feed containing aflatoxin-free maize treated with NEW (NEW. Compared to the control groups, turkey poults of the AF group significantly reduced body weight gain and increased feed conversion ratio and mortality rate; whereas turkey poults of the AF + NEW group did not present significant differences on productive parameters. In addition, alterations in serum biochemical constituents, enzyme activities, relative organ weight, gross morphological changes and histopathological studies were significantly mitigated by the aflatoxin-detoxification procedure. From these results, it is concluded that the treatment of aflatoxin-contaminated maize with NEW provided reasonable protection against the effects caused by aflatoxins in young turkey poults.

  13. Radon concentration in drinking water and water for living use and their study status

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    Low quality water is the chief reason for resulting in decrease of human group's physique, and in early appearance of nutrition and supersession diseases. The assimilation of radon released from water by human body may cause radioactive impact to those organs such as stomach and lungs. The monitoring determination for chemical quality of drinking water in developed countries comprises as many as 350 items, and the maximum contamination level of international standards is adopted for checking the radon concentration in drinking water, However, at present, only 35 items of the chemical quality of drinking water are determined in China. The monitoring determination of radon concentration in running water of cities, in distillation water, mineral water, pure water, deep well water in country side, as well as natural surface water is of great market potential in the future. (authors)

  14. Radon concentration of waters in Greece and Cyprus

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  15. Determination and statistical analysis of trace element and active constituent concentrations in the medicinal plant Eucalyptus camaldulensis Dehnh (E. rostratus Schlecht)

    International Nuclear Information System (INIS)

    Kanias, G.D.; Kilikoglou, V.; Tsitsa, E.; Loukis, A.

    1993-01-01

    In the leaves of the medicinal plant Eucalyptus camaldulensis Dehnh (E. rostratus Schlecht) collected from different sampling areas of Greece the trace elements antimony, cesium, chromium, cobalt, iron, europium, rubidium scandium, strontium, thorium and zinc were determined by Instrumental Neutron Activation Analysis. In the same samples, the essential oil was determined by steam distillation and the percent relative composition of the essential oil in 1,8-cineole, p-cymene, α-pinene by gas liquid chromatography. Also the refractive index of the essential oil was determined by a refractometer. Statistical analysis included the calculation of the correlation coefficient. Multiple correlation and cluster analysis was applied to all analytical data. The results showed that the trace elements iron, chromium, cobalt and zinc are correlated with the variation of the concentration of essential oil in the examined plant. These four elements along with rubidium and essential oil content could be used for the separation of the samples into groups related to the sampling areas. Statistically significant correlation between active constituents and some trace elements and a linear negative correlation between 1,8-cineole and refractive index were found. (author) 13 refs.; 2 figs.; 2 tabs

  16. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  17. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    International Nuclear Information System (INIS)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung

    2013-01-01

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon

  18. Calculation of radon concentration in water by toluene extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masaaki [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-02-01

    Noguchi method and Horiuchi method have been used as the calculation method of radon concentration in water. Both methods have two problems in the original, that is, the concentration calculated is changed by the extraction temperature depend on the incorrect solubility data and the concentration calculated are smaller than the correct values, because the radon calculation equation does not true to the gas-liquid equilibrium theory. However, the two problems are solved by improving the radon equation. I presented the Noguchi-Saito equation and the constant B of Horiuchi-Saito equation. The calculating results by the improved method showed about 10% of error. (S.Y.)

  19. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  20. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  1. Fluoride Concentration of Drinking-Water of Qom, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2016-03-01

    Full Text Available Background and Purpose: Fluoride is a natural element essential for human nutrition due to its benefits for dental enamel. It is well-documented that standard amounts of fluoride in drinkingwater can decrease the rate of dental caries. This study was conducted with the aim of measuring fluoride concentration of drinking-water supplies and urban distribution system in Qom, Iran. Materials and Methods: Results were subsequently compared against national and international standards. All sources of drinking-water of rural and urban areas were examined. To measure fluoride, the standard SPADNS method and a DR/4000s spectrophotometer were used. Results: Results showed that the mean of fluoride concentration in rural areas, mainly supplied with groundwater sources, was 0.41 mg/L, that of the urban distribution system 0.82 mg/L, that of Ali-Abad station 0.11 mg/L, and that of the private water desalination system 0.24 mg/L. Due to the hot climate of Qom, fluoride concentration means of all sources were lower than the permissible standards set by Iranian Standards and the WHO guidelines (except those of some of the groundwater sources and urban distribution systems. Conclusion: It seems that in most of the drinking-water sources the average fluoride concentration is not enough to prevent dental caries or strengthen dental enamel. It is concluded that Qom’s drinkingwater would require at least 0.4 mg/L to reach the minimum desirable standard.

  2. Concentration of viruses from water on bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Lakhe, S.B.; Parhad, N.M.

    1988-05-01

    The potential of bituminous coal for adsorption of viruses, using poliovirus as a model, was investigated. Influence of pH of water on the adsorption of viruses on a coal bed with and without addition of cation (Al/sup 3 +/) indicated that poliovirus could be adsorbed efficiently at pH 5 in presence of AlCl/sub 3/ at a concentration of 0.0005 M. studies on the effect of different concentrations of monovalent, divalent and trivalent cations showed that the trivalent cation was more effective and was required at a lower concentration than other cations tested. A coal bed of 1.5 g could adsorb as high as 204,000 PFU from water based on the absence of virus in the filtrate. Total organic carbon content of the water did not interfere in virus adsorption to coal. The results obtained indicated that a bituminous coal bed could be used as one of the methods for efficient concentration of viruses from water. 31 refs., 8 tabs.

  3. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  4. Metal concentrations in intertidal water and surface sediment along ...

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... The higher metal concentrations reported in sediment suggested that both ... the condition of the water column and health of benthic marine ... and fish processing facilities are situated on the western side of ... ated approximately 20 km north of Cape Town. .... caused such levels of metal input to the system.

  5. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  6. Measurement of radon concentration in water with Lucas cell detector

    International Nuclear Information System (INIS)

    Machaj, B.; Pienkos, J.P.

    2003-01-01

    A method for the measurement of radon concentration in water is presented based on flushing a water sample with air in a closed loop with the Lucas cell as alpha radiation detector. The main feature of the method is washing radon away from the larger sample of water (0.75 l) to a small volume of air, approximately 0.5 l, thanks to which a high radon concentration in air and a considerable sensitivity of measurement is achieved. Basic relations and results of measurements of a model of a gauge is given. The estimated measuring sensitivity (S) is 8.5 (cpm)/(Bq/l). The random error due to the statistical fluctuations of count rate at radon concentrations 1,10, 100, 1000, 10000 Bq/l is 11, 3.6, 1.1, 0.4, 0.1% correspondingly at a counting (measuring) time of 10 min. The minimum detectable radon concentration in water is 0.11 Bq/l. (author)

  7. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    pollution of the Ase-creek. Metal concentrations in the fish species and aquatic plants in this study .... analysis of water, fishes and aquatic plants samples from Ase-Creek in the Niger .... Speciation in the Environment. Blackie A and P, New.

  8. Recent Advances in Understanding Flow Dynamics and Transport of Water-Quality Constituents in the Sacramento–San Joaquin River Delta

    Directory of Open Access Journals (Sweden)

    David H. Schoellhamer

    2016-12-01

    Full Text Available doi: https://doi.org/10.15447/sfews.2016v14iss4art1This paper, part of the collection of research comprising the State of Bay–Delta Science 2016, describes advances during the past decade in understanding flow dynamics and how water-quality constituents move within California’s Sacramento–San Joaquin River Delta (Delta. Water-quality constituents include salinity, heat, oxygen, nutrients, contaminants, organic particles, and inorganic particles. These constituents are affected by water diversions and other human manipulations of flow, and they greatly affect the quantity and quality of benthic, pelagic, and intertidal habitat in the Delta. The Pacific Ocean, the Central Valley watershed, human intervention, the atmosphere, and internal biogeochemical processes are all drivers of flow and transport in the Delta. These drivers provide a conceptual framework for presenting recent findings. The tremendous expansion of acoustic and optical instruments deployed in the Delta over the past decade has greatly improved our understanding of how tidal variability affects flow and transport. Sediment is increasingly viewed as a diminishing resource needed to sustain pelagic habitat and tidal marsh, especially as sea level rises. Connections among the watershed, Delta, and San Francisco Bay that have been quantified recently highlight that a landscape view of this system is needed, rather than consideration of each region in isolation. We discuss interactions of multiple drivers and information gaps.

  9. Investigation of metal concentration in water using PIXE

    International Nuclear Information System (INIS)

    Prajapati, P.K.; Chakraborty, S.; Tiwary, S.S.; Majumder, C.; Sharma, H.P.; Kumar, A.; Singh, K.P.; Shivcharan; Mohanty, B.P.

    2017-01-01

    Availability of clean drinking water is an essential requirement for human health. The Ganga water is being widely used for drinking and irrigation purposes in many cities situated near the bank of the river, which effect the human health. Hence investigation of toxic elements of Ganga water is very important. PIXE (Particle Induce X-ray Emission) is well known and useful technique for finding out qualitative and quantitative analysis of various samples (taken from environment) and may contains about 30-50 elements together with concentration of about 1ppb. The elemental analysis depends on the inner-shell ionization process and measurement of the X-ray yield of the samples. For the present investigation, samples of Ganga water were collected from Varanasi and Allahabad

  10. Radon concentrations in the water of Misasa area (Tottori Pref.)

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko; Inagaki, Masayo [Kinki Univ., Higashi-Osaka, Osaka (Japan); Mifune, Masaaki

    1997-02-01

    UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Report (1988, 1993) indicated that the internal exposure dose of absorption of radon (Rn-222) and the short-lived decay product nucleus occupied about half of 2.4 m Sv of the global average of annual dose of natural radiation source. It is said to be the largest factor of radiation dose of natural radiation. Sample collection and the method, the elution properties by the concentration of Rn-222 in water and the comparison of characteristics among the different methods are explained. The detection limit of concentration of radon in water by OPTI-FLUOR direct method using the liquid scintillator spectrometer was 1.5 Bq/l for 20 mins counting. The maximum radon concentrations determined by this method showed 1700 Bq/l of the spring water in Misasa area, 400 Bq/l of the small water supply system and well and 18 Bq/l of Mitoku river. (S.Y.)

  11. Justification for Selecting Level A vs. Level B Personal Protective Equipment to Remediate a Room Containing Concentrated Acids, Bases and Radiological Constituents

    International Nuclear Information System (INIS)

    Hylko, J. M.; Thompson, A. L.; Walter, J. F.; Deecke, T. A.

    2002-01-01

    Selecting the appropriate personal protective equipment (PPE) is based on providing an adequate level of employee protection relative to the task-specific conditions and hazards. PPE is categorized into four ensembles, based on the degree of protection afforded; e.g., Levels A (most restrictive), B, C, and D (least restrictive). What is often overlooked in preparing an ensemble is that the PPE itself can create significant worker hazards; i.e., the greater the level of PPE, the greater the associated risks. Furthermore, there is confusion as to whether a more ''conservative approach'' should always be taken since Level B provides the same level of respiratory protection as Level A but less skin protection. This paper summarizes the Occupational Safety and Health Administration regulations addressing Level A versus Level B, and provides justification for selecting Level B over Level A without under-protecting the employee during a particular remediation scenario. The scenario consisted of an entry team performing (1) an initial entry into a room containing concentrated acids (e.g., hydrofluoric acid), bases, and radiological constituents; (2) sampling and characterizing container contents; and (3) retrieving characterized containers. The invasive nature of the hydrofluoric acid sampling and characterization scenario created a high potential for splash, immersion, and exposure to hazardous vapors, requiring additional skin protection. The hazards associated with this scenario and the chemical nature of hydrofluoric acid provided qualitative evidence to justify Level A. Once the hydrofluoric acid was removed from the room, PPE performance was evaluated against the remaining chemical inventory. If chemical breakthrough from direct contact was not expected to occur and instrument readings confirmed the absence of any hazardous vapors, additional skin protection afforded by wearing a vapor-tight, totally-encapsulated suit was not required. Therefore, PPE performance and

  12. Radon concentrations of ground waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Kawamura, Norihisa [Aichi Prefectural Inst. of Public Health, Nagoya (Japan)

    1997-02-01

    Aichi Prefectural Institute of Public Health has been collecting the data concerning the spacial distribution of Rn concentration of groundwater in Aichi Prefecture and its time course changes. In this report, the data was described chiefly from 1991 and the availability of newly developed polyethylene vessel was discussed. Determination of Rn concentration was performed at a total of 104 sites within the range from the horizon to the depth of 1800 m. The measurement has been repeatedly conducted for ca. 20 years. The maximum level of Rn was 896 Bq/l and the minimum was 0.3 Bq/l for the groundwater samples collected from different springs. Correlation of Rn concentration with other chemical and physical factors for ground water was investigated and a significant correlation was found only between Rn concentration and pH ({gamma}=0.304, p<0.01). No time course changes in Rn concentration was observed except for the water sample from the site affected by some newly dug wells. In addition, the newly developed extraction vessel was shown to be available for the determination and its operability in the field was superior to the conventional glass ware. (M.N.)

  13. Preliminary study of radioactive concentration in treated sewage water

    Energy Technology Data Exchange (ETDEWEB)

    Elassaly, F M; Beal, A D.R. [Ministry of Health P.O. Box 1853 Dubai, (United Arab Emirates)

    1995-10-01

    Water from sewage treatment plant is used after processing for irrigation. Two water samples and one consolidated sludge (waste treatment products) were taken each day for period of months. Medical applications and research are the main sources of radioactivity such as Cr-51, Co-57, Ga-67, Se-75, Tc-99 m, In-111, Au-198 and Tl-201. Measurements were carried out using Hp Ge spectrometer with one liter Marinelli breaker. The maximum detected activity was 5.7 Bq.liter with a daily average of 2.4 Bq/liter for water. In the second period maximum activity was found to be 5 Bq/liter with an average daily activity 1.8 Bq/liter. The maximum activity recorded in the sludge during this period was 352 Bq/liter of which 343 Bq/liter was from I-131. The average daily activity was 162 Bq/liter. From these studies the levels of radioactivity concentration were 5 Bq/liter with an average 2 Bq/1 compared level 10 Bq/1 set for drinking water for Gcc countries. Although the sludge show higher activity of 353 Bq/liter it is kept for about year before being disposed. The maximum level for animal fodder is 300 Bq/kg for Gcc countries. These results indicate that radioactive concentration (2 Bq/liter) in the treated waste water present hazard to the public and environment. 6 figs., 4 tabs.

  14. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  15. Effects of shampoo and water washing on hair cortisol concentrations.

    Science.gov (United States)

    Hamel, Amanda F; Meyer, Jerrold S; Henchey, Elizabeth; Dettmer, Amanda M; Suomi, Stephen J; Novak, Melinda A

    2011-01-30

    Measurement of cortisol in hair is an emerging biomarker for chronic stress in human and nonhuman primates. Currently unknown, however, is the extent of potential cortisol loss from hair that has been repeatedly exposed to shampoo and/or water. Pooled hair samples from 20 rhesus monkeys were subjected to five treatment conditions: 10, 20, or 30 shampoo washes, 20 water-only washes, or a no-wash control. For each wash, hair was exposed to a dilute shampoo solution or tap water for 45 s, rinsed 4 times with tap water, and rapidly dried. Samples were then processed for cortisol extraction and analysis using previously published methods. Hair cortisol levels were significantly reduced by washing, with an inverse relationship between number of shampoo washes and the cortisol concentration. This effect was mainly due to water exposure, as cortisol levels following 20 water-only washes were similar to those following 20 shampoo treatments. Repeated exposure to water with or without shampoo appears to leach cortisol from hair, yielding values that underestimate the amount of chronic hormone deposition within the shaft. Collecting samples proximal to the scalp and obtaining hair washing frequency data may be valuable when conducting human hair cortisol studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Measuring Low Concentrations of Liquid Water in Soil

    Science.gov (United States)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  17. Criteria for Radionuclide Activity Concentrations for Food and Drinking Water

    International Nuclear Information System (INIS)

    2016-04-01

    Requirements for the protection of people from the harmful consequences of exposure to ionizing radiation, for the safety of radiation sources and for the protection of the environment are established in IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. GSR Part 3 requires that the regulatory body or other relevant authority establish specific reference levels for exposure due to radionuclides in commodities, including food and drinking water. The reference level is based on an annual effective dose to the representative person that generally does not exceed a value of about 1 mSv. International standards have been developed by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) Codex Alimentarius Commission for levels of radionuclides contained in food traded internationally that contains, or could potentially contain, radioactive substances as a consequence of a nuclear or radiological emergency. International standards have also been developed by the WHO for radionuclides contained in drinking water, other than in a nuclear or radiological emergency. These international standards provide guidance and criteria in terms of levels of individual radiation dose, levels of activity concentration of specific radionuclides, or both. The criteria derived in terms of levels of activity concentration in the various international standards differ owing to a number of factors and assumptions underlying the common objective of protecting public health in different circumstances. This publication considers the various international standards to be applied at the national level for the assessment of levels of radionuclides in food and in drinking water in different circumstances for the purposes of control, other than in a nuclear or radiological emergency. It collates and provides an overview of the different criteria used in assessing and

  18. Chloraminated Concentrated Drinking Water for Disinfection Byproduct Mixtures Research: Evaluating Free Chlorine Contact Times

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) present in the source water. Since 1974, over 600 DBPs have been identified in drinking water, yet a large portio...

  19. Chloramination of Concentrated Drinking Water for Disinfection Byproduct Mixtures Creation- Indianapolis

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  20. Chloramination of Concentrated Drinking Water: Evaluation of Disinfection Byproduct Formation and Dosing Scenarios - Portland

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  1. Radionuclide concentrations in underground waters of Mururoa and Fangataufa Atolls.

    Science.gov (United States)

    Mulsow, S; Coquery, M; Dovlete, C; Gastaud, J; Ikeuchi, Y; Pham, M K; Povinec, P P

    1999-09-30

    In 1997 an expedition to Mururoa and Fangataufa Atolls was carried out to sample underground waters from cavity-chimneys and carbonate monitoring wells. The aim of this study was to determine the prevailing concentration and distribution status of radionuclides. Elemental analysis of interstitial waters was carried out in the water fraction as well as in particles collected at 11 underground monitoring wells. 238Pu, 239,240Pu, 241Am, 137Cs, 90Sr, 3H, 125Sb, 155Eu and 60Co were analyzed in both fractions by alpha-, beta- and gamma-spectrometry. Measurements showed that at 60% of the sites, pH and Eh seemed to be related to tidal cycles; in contrast HTO was constant during the sampling time. Interstitial waters from carbonates and transition zones shared similar chemical composition that were not different from that of the surrounding seawater. Waters collected from basalt cavities left after nuclear tests, (Aristee and Ceto) have a different chemical signature characterized by a deficiency in Mg, K and SO4 as well as enrichment in Sr, Si, Al and Cl compared to the rest of the stations. Radionuclide concentrations present in both, water and particulate fractions, were significantly higher at Ceto and Aristee than at any other monitoring wells, except for Fuseau and Mitre monitoring wells (Fangataufa) where values similar to Ceto were found (e.g. 239,240Pu: > 20 mBq g-1). Considering that Pu isotopes showed high Kd values compared to non-sorbing radionuclides such as 3H, 90Sr and 137Cs it is very unlikely that migration from cavities to monitoring wells accounts for the concentration of Pu isotopes and Am at Fuseau 30 and Mitre 27. Perhaps the contact of lagoon waters with the well before sealing could be a possible source of the transuranics found at these sites. The 238Pu/239,240Pu ratios measured in the particles were similar to that of the lagoon (0.38), thus supporting this hypothesis. The fact that transuranics were found only in the particle fraction, in the

  2. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  3. User's manual for the Graphical Constituent Loading Analysis System (GCLAS)

    Science.gov (United States)

    Koltun, G.F.; Eberle, Michael; Gray, J.R.; Glysson, G.D.

    2006-01-01

    This manual describes the Graphical Constituent Loading Analysis System (GCLAS), an interactive cross-platform program for computing the mass (load) and average concentration of a constituent that is transported in stream water over a period of time. GCLAS computes loads as a function of an equal-interval streamflow time series and an equal- or unequal-interval time series of constituent concentrations. The constituent-concentration time series may be composed of measured concentrations or a combination of measured and estimated concentrations. GCLAS is not intended for use in situations where concentration data (or an appropriate surrogate) are collected infrequently or where an appreciable amount of the concentration values are censored. It is assumed that the constituent-concentration time series used by GCLAS adequately represents the true time-varying concentration. Commonly, measured constituent concentrations are collected at a frequency that is less than ideal (from a load-computation standpoint), so estimated concentrations must be inserted in the time series to better approximate the expected chemograph. GCLAS provides tools to facilitate estimation and entry of instantaneous concentrations for that purpose. Water-quality samples collected for load computation frequently are collected in a single vertical or at single point in a stream cross section. Several factors, some of which may vary as a function of time and (or) streamflow, can affect whether the sample concentrations are representative of the mean concentration in the cross section. GCLAS provides tools to aid the analyst in assessing whether concentrations in samples collected in a single vertical or at single point in a stream cross section exhibit systematic bias with respect to the mean concentrations. In cases where bias is evident, the analyst can construct coefficient relations in GCLAS to reduce or eliminate the observed bias. GCLAS can export load and concentration data in formats

  4. [Chemical constituents of Swertia macrosperma].

    Science.gov (United States)

    Wang, Hongling; Geng, Changan; Zhang, Xuemei; Ma, Yunbao; Jiang, Zhiyong; Chen, Jijun

    2010-12-01

    To study the chemical constituents of Swertia macrosperma. The air-dried whole plants of Swertia macrosperma were extracted with boiling water. The extract was concentrated to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR). Thirteen compounds were isolated from S. macrosperma, and were characterized as norbellidifolin (1), 1-hydroxy-3,7, 8-trimethoxy-xanthone (2), norswertianolin (3), swertianolin (4), 1,3,7,8-tetrahydroxyxanthone-8-O-beta-D-glucopyranoside (5), swertiamatin (6), decentapicrin (7), coniferl aldehyde (8), sinapaldehyde (9), balanophonin (10), together with beta-sitosterol, daucosterol, and oleanolic acid . Compounds 2, 4-10 were obtained from Swertia macrosperma for the first time.

  5. Rapid determination of radionuclide activity concentrations in contaminated drinking water

    International Nuclear Information System (INIS)

    Medley, P.; Ryan, B.; Bollhofer, A.; Martin, P.; International Atomic Energy Agency, Vienna

    2007-01-01

    As a result of an incident at the Ranger Uranium mine in which drinking water was contaminated with process water, it was necessary to perform quick analysis for naturally occurring uranium and thorium series radionuclide activity concentrations, including 226Ra, 210Pb, 210Po, U and Th isotopes. The methods which were subsequently used are presented here. The techniques used were high-resolution gamma spectrometry, Inductively Coupled Plasma Mass Spectrometry (ICPMS) and high-resolution alpha spectrometry. Routine methods were modified to allow for rapid analyses on priority samples in 1-2 days, with some results for highest priority samples available in less than 1 day. Comparison of initial results obtained through standard procedures, is discussed. An emphasis is placed on high-resolution alpha spectrometry of major alpha-emitting nuclides, specifically 226Ra, 230Th and 238U. The range of uranium concentrations in the samples investigated was from background levels to 6.6ppm. Implications for radiological dose assessment in contamination incidents involving process water are presented. The worst-case scenario for the incident at Ranger Uranium Mine indicates that the maximum committed effective dose to workers was well below the ICRP limit for worker-related dose and below the dose limit for a member of the public, with 230Th being the highest contributor

  6. Determination of arsenic concentration in drinking water from tubewell

    International Nuclear Information System (INIS)

    Molla, N.I.; Basunia, S.; Zaman, Laila; Hossain, S.M.; Miah, R.U.; Rahman, M.

    1998-01-01

    Arsenic contamination in drinking water from tubewells in the north-western and south-western region of Bangladesh has posed a great risk to public health. Most of the affected districts are primarily reported to have arsenic concentration in drinking water more than the permissible level, set by WHO, of 0.01 mg/L. Therefore, use of a reliable analytical technique like instrumental neutron activation analysis (INAA) for bulk sample analysis, covering a wide sampling area, has become an essential task. In this work the analytical results of forty tubewell water samples from two districts, namely Chapainawabganj and Faridpur, are reported. The concentration level of arsenic are found to be 28 to 378 μg/L. The detection limit is 3 μg/L. Tubewell samples, collected from different locations of Chapainawabganj and Faridpur municipal areas, and standard reference material NIST 1643d (water) together with primary standard of arsenic (100 μg/L) were irradiated at the TRIGA Mark-II research reactor, AERE, Savar with a nominal neutron flux about 10 12 cm -2 s -1 for one hour using the Lazy Susan facility. After irradiation, allowing a cooling time of 50-70 hours, radioactivity of the 76 As radionuclide was measured with a high resolution HPGe detector in combination with a PC based S-100 MCA master board packages. The detector was previously calibrated with a set of standard gamma ray sources. The gamma ray spectra were analyzed using gamma-software Peakgr-10 and GANAAS and manually. It has been possible to minimize the contribution of interfering 82 Br and 122 Sb radionuclides and the background of 24Na by optimizing irradiation time, cooling period and counting time. The quality of the analysis has been crossed-checked by analyzing the NIST SRM-1643b with respect to the primary standard of arsenic (100 μg/L). It is concluded that that arsenic concentration level is much higher in underground water of some areas posing serious threat to public health. However, hundred

  7. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    Science.gov (United States)

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for

  8. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  9. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  10. Assessment of nutritional quality of water hyacinth leaf protein concentrate

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adeyemi

    2016-09-01

    Full Text Available This study was embarked upon to convert water hyacinth, an environmental nuisance, to a natural resource for economic development. Water hyacinth leaf protein concentrate (WHLPC was extracted in edible form and determination of its physicochemical characteristics, total alkaloids and phenolic compounds was done. Analysis of proximate composition and amino acid profile of the WHLPC was also done. The level of heavy metals (mg/kg in WHLPC was found to be Cd (0.02 ± 0.001, Cr (0.13 ± 0.001, Pd (0.003 ± 0.001 and Hg (0.02 ± 0.001 while concentrations of Pb, Pt, Sn, Fe, Cu, Zn, Ni and Co were found to be 0.001 ± 0.00. Level of all heavy metals was found to be within safe limit. Proximate analysis revealed that protein in WHLPC accounted for 50% of its nutrients, carbohydrate accounted for 33% of its nutrients while fat, ash and fibre made up the remaining nutrients. Amino acid analysis showed that WHLPC contained 17 out of 20 common amino acids, particularly, Phe (3.67%, Leu (5.01%. Level of total alkaloids and phenolic compounds was 16.6 mg/kg and 6.0 mg/kg respectively. Evidence from this study suggests that WHLPC is a good source of leaf protein concentrate (LPC; it is nutritious and acutely non toxic.

  11. Comparing predicted estrogen concentrations with measurements in US waters

    International Nuclear Information System (INIS)

    Kostich, Mitch; Flick, Robert; Martinson, John

    2013-01-01

    The range of exposure rates to the steroidal estrogens estrone (E1), beta-estradiol (E2), estriol (E3), and ethinyl estradiol (EE2) in the aquatic environment was investigated by modeling estrogen introduction via municipal wastewater from sewage plants across the US. Model predictions were compared to published measured concentrations. Predictions were congruent with most of the measurements, but a few measurements of E2 and EE2 exceed those that would be expected from the model, despite very conservative model assumptions of no degradation or in-stream dilution. Although some extreme measurements for EE2 may reflect analytical artifacts, remaining data suggest concentrations of E2 and EE2 may reach twice the 99th percentile predicted from the model. The model and bulk of the measurement data both suggest that cumulative exposure rates to humans are consistently low relative to effect levels, but also suggest that fish exposures to E1, E2, and EE2 sometimes substantially exceed chronic no-effect levels. -- Highlights: •Conservatively modeled steroidal estrogen concentrations in ambient water. •Found reasonable agreement between model and published measurements. •Model and measurements agree that risks to humans are remote. •Model and measurements agree significant questions remain about risk to fish. •Need better understanding of temporal variations and their impact on fish. -- Our model and published measurements for estrogens suggest aquatic exposure rates for humans are below potential effect levels, but fish exposure sometimes exceeds published no-effect levels

  12. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  13. Rn-222 concentrations in private well water and in river water around Ningyo Toge area

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Eiji [Okayama, Prefectural Inst. for Environmental Science and Public Health (Japan)

    1997-02-01

    The Ningyo-Toge Works of Power Reactor and Nuclear Fuel Development Corporation have started the pilot plant for uranium refining and conversion in 1984 and thereafter been producing 6-uranium fluoride, which is a raw material for an uranium concentration plant. The operation of prototype reactor has started since 1989. In this study, radioactive contamination around the works under these circumstances has been monitored in the respects of Rn concentrations in well water and river one for more than 10 years. The radioactivities of well water sampled at 4 points in this area were in a range of 0.6-82.9 Bq/l. The differences in the activities seemed to be depending on petrological properties. For the river water, the Rn concentration was determined at 13 points in the area. Seasonal changes in the Rn concentrations were not significant (p<0.05) but there were significant changes among years during 1985-1995. Further, the radioactive levels of soils collected from riverbed at 5 points were significantly different both for {sup 238}U and {sup 226}Ra, but the ratios of {sup 238}U/{sup 226}Ra were consistent. Furthermore, there was no correlation between {sup 226}Ra and {sup 222}Rn concentrations in the river water. (M.N.)

  14. Measurement of PCB concentrations in waters using a biomonitoring programme

    International Nuclear Information System (INIS)

    Mast, P.G.

    1993-01-01

    The book describes a PCB biomonitoring programme which was developed for measuring instantaneous PCB concentrations and permits the compilation of PCB action cadastres for different types of waters and subsequent derivation of current trends. Six representative congeners were selected as a basis for the quantitative routine analysis. The fish species bream (abramis brama) and roach (rutilus rutilus) were used as indicators in the PCB biomonitoring programme on account of their distribution and ecological demands. The age and growth rate of each fish destined for analysis was determined so as to ensure that only healthy fish would be used. In both fish species the dorsal musulature with its low scatter of test results and consistent PCB pattern (internal quantification) proved a representative body region. (orig.) [de

  15. Concentration and characterization of dissolved organic matter in the surface microlayer and subsurface water of the Bohai Sea, China

    Science.gov (United States)

    Chen, Yan; Yang, Gui-Peng; Wu, Guan-Wei; Gao, Xian-Chi; Xia, Qing-Yan

    2013-01-01

    A total of 19 sea-surface microlayer and corresponding subsurface samples collected from the Bohai Sea, China in April 2010 were analyzed for chlorophyll a, dissolved organic carbon (DOC) and its major compound classes including total dissolved carbohydrates (TDCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) and total hydrolysable amino acids (THAA, including dissolved free, DFAA, and combined fraction, DCAA). The concentrations of DOC in the subsurface water ranged from 130.2 to 407.7 μM C, with an average of 225.9±75.4 μM C, while those in the surface microlayer varied between 140.1 and 330.9 μM C, with an average of 217.8±56.8 μM C. The concentrations of chlorophyll a, DOC, TDCHO and THAA in the microlayer were, respectively correlated with their subsurface water concentrations, implying that there was a strong exchange effect between the microlayer and subsurface water. The concentrations of DOC and TDCHO were negatively correlated with salinity, respectively, indicating that water mixing might play an important role in controlling the distribution of DOC and TDCHO in the water column. Major constituents of DCAA and DFAA present in the study area were glycine, alanine, glutamic acid, serine and histidine. Principal component analysis (PCA) was applied to examine the complex compositional differences that existed among the sampling sites. Our results showed that DFAA had higher mole percentages of glycine, valine and serine in the microlayer than in the subsurface water, while DCAA tended to have higher mole percentages of glutamic acid, aspartic acid, threonine, arginine, alanine, tyrosine, phenylalanine and leucine in the microlayer. The yields of TDCHO and THAA exhibited similar trends between the microlayer and subsurface water. Carbohydrate species displayed significant enrichment in the microlayer, whereas the DFAA and DCAA exhibited non-uniform enrichment in the microlayer.

  16. An estimation on the derived limits of effluent water concentration

    International Nuclear Information System (INIS)

    Okamura, Yasuharu; Kobayashi, Katuhiko; Kusama, Tomoko; Yoshizawa, Yasuo

    1984-01-01

    The values of Derived Limits of Effluent Water Concentration, (DLEC)sub(w), have been estimated in accordance with the principles of the recent recommendations of the International Commission on Radiological Protection. The (DLEC)sub(w)'s were derived from the Annual Limits on Intake for individual members of the public (ALIsub(p)), considering realistic models of exposure pathways and annual intake rates of foods. The ALIsub(p)'s were decided after consideration of body organ mass and other age dependent parameters. We assumed that the materials which brought exposure to the public were drinking water, fish, seaweed, invertebrate and seashore. The age dependence of annual intake rate of food might be proportional to a person's energy expenditure rate. The following results were obtained. Infants were the critical group of the public at the time of derivation of (DLEC)sub(w). The ALIsub(p)'s for the infants were about one-hundredth of those for workers and their (DLEC)sub(w)'s were about one-third of those for the adult members of the public. (author)

  17. Major element concentrations in Mangrove Pore Water, Sepetiba Bay, Brazil

    Directory of Open Access Journals (Sweden)

    Christian J. Sanders

    2012-03-01

    Full Text Available Concentrations of cations and anions of major elements (Na+, Ca2+, Mg2+, K+, Cl-, SO4 2- were analyzed in the pore water of a mangrove habitat. Site specific major element concentrations were identified along a four piezometric well transect, which were placed in distinct geobotanic facies. Evapotranspiration was evident in the apicum station, given the high salinity and major element concentrations. The station landward of an apicum was where major element/Cl- ratios standard deviations are greatest, suggesting intense in situ diagenesis. Molar ratios in the most continental station (4 are significantly lower than the nearby freshwater source, indicating a strong influence of sea water flux into the outer reaches of the mangrove ecosystem and encroaching on the Atlantic rain forest. Indeed, the SO4 2-/Cl- and Ca2+/Cl- ratios suggest limited SO4 2- reduction and relatively high Ca2+/Cl- ratios indicate a region of recent saltwater contact.As concentrações dos elementos maiores (Na+, Ca2+, Mg2+, K+, Cl-, SO4(2- foram analisadas na água intersticial de poços piezométricos localizados em diferentes fácies geobotânicas ao longo de um transecto num ecossistema de manguezal na Baía de Sepetiba - Rio de Janeiro. Maiores salinidades e concentrações dos íons maiores são evidencias de evapotranspiração no fácies apicum. Ainda no apicum foram observados os maiores desvios padrão da razão elemento/Cl− durante o período do estudo, indicando intensa diagênese in situ. Razões molares no piezômetro, localizado na borda do manguezal foram consideravelmente menores do que a fonte de água doce, indicando forte influência do fluxo de água marinha. Os resultados das razões molares, SO4(2-/Cl− e Ca2+/Cl− na borda do manguezal adjacente ao continente sugerem limitada redução de SO4(2- enquanto os valores relativamente altos na razão Ca2+/Cl− indicam contacto recente com água marinha.

  18. Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress.

    Science.gov (United States)

    Singh, Minu; Khan, M Masroor A; Uddin, Moin; Naeem, M; Qureshi, M Irfan

    2017-01-01

    Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud.), grown under different water stress regimes [(100% field capacity (FC), 80% FC and 60% FC)], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA). Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol) of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC), irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO) content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP), respectively, as compared to the deionized-water (DW) spray treatment (80% FC+ DW). Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment).

  19. Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress.

    Directory of Open Access Journals (Sweden)

    Minu Singh

    Full Text Available Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud., grown under different water stress regimes [(100% field capacity (FC, 80% FC and 60% FC], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA. Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC, irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP, respectively, as compared to the deionized-water (DW spray treatment (80% FC+ DW. Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment.

  20. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  1. Removal of NOM-constituents as characterized by LC-OCD and F-EEM during drinking water treatment

    KAUST Repository

    Baghoth, S. A.; Sharma, Saroj K.; Guitard, Marjorie; Heim, Vé ronique; Croue, Jean-Philippe; Amy, Gary L.

    2011-01-01

    Natural organic matter (NOM) is of concern in drinking water because it causes adverse aesthetic qualities such as taste, odour, and colour; impedes the performance of treatment processes; and decreases the effectiveness of oxidants

  2. Removal of NOM-constituents as characterized by LC-OCD and F-EEM during drinking water treatment

    KAUST Repository

    Baghoth, S. A.

    2011-11-01

    Natural organic matter (NOM) is of concern in drinking water because it causes adverse aesthetic qualities such as taste, odour, and colour; impedes the performance of treatment processes; and decreases the effectiveness of oxidants and disinfectants while contributing to undesirable disinfection by-products. The effective removal of NOM during drinking water treatment requires a good understanding of its character. Because of its heterogeneity, NOM characterization necessitates the use of multiple analytical techniques. In this study, NOM in water samples from two drinking water treatment trains was characterized using liquid chromatography with organic carbon detection (LC-OCD), and fluorescence excitation-emission matrices (F-EEMs) with parallel factor analysis (PARAFAC). These characterization methods indicate that the raw and treated waters are dominated by humic substances. The results show that whereas the coagulation process for both plants may be optimized for the removal of bulk DOC, it is not likewise optimized for the removal of specific NOM fractions. A five component PARAFAC model was developed for the F-EEMs, three of which are humic-like, while two are protein-like. These PARAFAC components and the LC-OCD fractions represented effective tools for the performance evaluation of the two water treatment plants in terms of the removal of NOM fractions. © IWA Publishing 2011.

  3. Evaluation of Chemical Constituents and Antioxidant Activity of Coconut Water (Cocus nucifera L. and Caffeic Acid in Cell Culture

    Directory of Open Access Journals (Sweden)

    JOAO L.A. SANTOS

    2013-09-01

    Full Text Available Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 µg/mL and 1.078 ± 0.013 µg/mL and 99.7 µg/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 µg and 39.8 mg for units of coconut consumed, 500 ± 50 mL. The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC50=73 µL and oxide nitric (0.1 mL with an IP of 29.9% as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%, highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide.

  4. Trends in major-ion constituents and properties for selected sampling sites in the Tongue and Powder River watersheds, Montana and Wyoming, based on data collected during water years 1980-2010

    Science.gov (United States)

    Sando, Steven K.; Vecchia, Aldo V.; Barnhart, Elliott P.; Sando, Thomas R.; Clark, Melanie L.; Lorenz, David L.

    2014-01-01

    The primary purpose of this report is to present information relating to flow-adjusted temporal trends in major-ion constituents and properties for 16 sampling sites in the Tongue and Powder River watersheds based on data collected during 1980–2010. In association with this primary purpose, the report presents background information on major-ion characteristics (including specific conductance, calcium, magnesium, potassium, sodium adsorption ratio, sodium, alkalinity, chloride, fluoride, dissolved sulfate, and dissolved solids) of the sampling sites and coal-bed methane (CBM) produced water (groundwater pumped from coal seams) in the site watersheds, trend analysis methods, streamflow conditions, and factors that affect trend results. The Tongue and Powder River watersheds overlie the Powder River structural basin (PRB) in northeastern Wyoming and southeastern Montana. Limited extraction of coal-bed methane (CBM) from the PRB began in the early 1990’s, and increased dramatically during the late 1990’s and early 2000’s. CBM-extraction activities produce discharges of water with high concentrations of dissolved solids (particularly sodium and bicarbonate ions) relative to most stream water in the Tongue and Powder River watersheds. Water-quality of CBM produced water is of concern because of potential effects of sodium on agricultural soils and potential effects of bicarbonate on aquatic biota. Two parametric trend-analysis methods were used in this study: the time-series model (TSM) and ordinary least squares regression (OLS) on time, streamflow, and season. The TSM was used to analyze trends for 11 of the 16 study sites. For five sites, data requirements of the TSM were not met and OLS was used to analyze trends. Two primary 10-year trend-analysis periods were selected. Trend-analysis period 1 (water years 1986–95; hereinafter referred to as period 1) was selected to represent variability in major-ion concentrations in the Tongue and Powder River

  5. Semi-empirical Algorithm for the Retrieval of Ecology-Relevant Water Constituents in Various Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Robert Shuchman

    2009-03-01

    Full Text Available An advanced operational semi-empirical algorithm for processing satellite remote sensing data in the visible region is described. Based on the Levenberg-Marquardt multivariate optimization procedure, the algorithm is developed for retrieving major water colour producing agents: chlorophyll-a, suspended minerals and dissolved organics. Two assurance units incorporated by the algorithm are intended to flag pixels with inaccurate atmospheric correction and specific hydro-optical properties not covered by the applied hydro-optical model. The hydro-optical model is a set of spectral cross-sections of absorption and backscattering of the colour producing agents. The combination of the optimization procedure and a replaceable hydro-optical model makes the developed algorithm not specific to a particular satellite sensor or a water body. The algorithm performance efficiency is amply illustrated for SeaWiFS, MODIS and MERIS images over a variety of water bodies.

  6. The effect of heat stress and other factors on total body water and some blood constituents in lactating goats

    International Nuclear Information System (INIS)

    Haggag, A.M.A.

    1988-01-01

    Goats mostly live in the desert or semidesert areas in egypt. Such areas are under adverse environmental conditions. They represent indispensable source of meat and milk for the natives of these areas . Few studies are carried out on goats in connection with their biochemical and physiological response to the high environmental temperature. The present investigation carried out was constructed to study the state of heat stress(35 C and 25% ) in nine Baladi lactating goats as compared with the reactions under mild conditions (15 C and 50% RH). Animals were Kept under each of these controlled conditions for 7 days - eight hours / day. The study included blood haemoglobin level, erythrocyte count, haematocrit value, serum activity of alkaline and acid phosphatases, creatinine, urea and prolactin. The effect of heat stress on body water content and water turnover rate using tritiated water diulation technique was studied

  7. Toxic metals' concentration in water of Kriveljska Reka and its tributaries and influence of water there

    International Nuclear Information System (INIS)

    Lukic, D.; Zlatkovic, S.; Vuckovic, M.; Jovanovic, R.

    2002-01-01

    Kriveljska reka is near Bor, a big mining basin in East Serbia. This river is formed from two not so big rivers: Cerova reka and Valja Mare. Kriveljska reka flow past village Veliki Krivelj. Veliki Krivelj is one of the most important mining strip in Bor area. Therefore, Kriveljska reka is the reception for waste waters of some sections of Mining Basin Bor, situated on its banks. We will present to you concentrations of 7 toxic metals, pH-value and chemical oxygen demand in 8 points at Kriveljska reka and waste waters' influence on quality of this river's water. Based on our results, we can conclude that waste waters from Mining Basin Bor contaminate Kriveljska reka and at last we have a dead river. (author)

  8. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M. C.; Ellis-Gibbings, L. [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Brunger, M. J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Muñoz, A. [Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Avenida Complutense 22, 28040 Madrid (Spain); Limão-Vieira, P. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); García, G., E-mail: g.garcia@csic.es [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-06-07

    Water is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium to describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared.

  10. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills.

    Science.gov (United States)

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit; Singh, Anand; Yadav, Ajai Kumar

    2011-10-01

    Rosa damascena Mill. is an important aromatic plant for commercial production of rose oil, water, concrete and absolute. The rose water and rose oil produced under the mountainous conditions of Uttarakhand were investigated for their chemical composition. The major components of rose water volatiles obtained from the bud, half bloom and full bloom stages of cultivar 'Ranisahiba' were phenyl ethyl alcohol (66.2-79.0%), geraniol (3.3-6.6%) and citronellol (1.8-5.5%). The rose water volatiles of cultivar 'Noorjahan' and 'Kannouj' also possessed phenyl ethyl alcohol (80.7% and 76.7%, respectively) as a major component at full bloom stage. The essential oil of cultivar 'Noorjahan' obtained from two different growing sites was also compared. The major components of these oils were citronellol (15.9-35.3%), geraniol (8.3-30.2%), nerol (4.0-9.6%), nonadecane (4.5-16.0%), heneicosane (2.6-7.9%) and linalool (0.7-2.8%). This study clearly showed that the flower ontogeny and growing site affect the composition of rose volatiles. The rose oil produced in this region was comparable with ISO standards. Thus, it was concluded that the climatic conditions of Uttarakhand are suitable for the production of rose oil of international standards.

  11. Nitrate concentrations in drainage water in marine clay areas : exploratory research of the causes of increased nitrate concentrations

    NARCIS (Netherlands)

    Boekel, van E.M.P.M.; Roelsma, J.; Massop, H.T.L.; Hendriks, R.F.A.; Goedhart, P.W.; Jansen, P.C.

    2013-01-01

    The nitrate concentrations measured in drainage water and groundwater at LMM farms (farms participating in the National Manure Policy Effects Measurement Network (LLM)) in marine clay areas have decreased with 50% since the mid-nineties. The nitrate concentrations in marine clay areas are on average

  12. Organic mutagens and drinking water in The Netherlands : a study on mutagenicity of organic constituents in drinking water in The Netherlands and their possible carcinogenic effects

    NARCIS (Netherlands)

    Kool, H.J.

    1983-01-01

    Several mutagenic and carcinogenic organic compounds have been detected in Dutch surface waters and in drinking water prepared from these surface waters. Although the levels of these compounds in drinking- and surface water are relatively low, in general below μg per litre, it appeared that organic

  13. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  14. Concentration of natural radionuclides in private drinking water wells

    International Nuclear Information System (INIS)

    Cerny, R.; Otahal, P.; Merta, J.; Burian, I.

    2017-01-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/Euroatom, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. (authors)

  15. Cs-137 and Co-60 concentrations in water from the Savannah River and water-treatment plants downstream of SRP

    International Nuclear Information System (INIS)

    1983-01-01

    In preparation for restart of L-Reactor, a comprehensive environmental sampling and analysis program was initiated in March 1983 to determine Cs-137 concentrations in off-site water downstream from Savannah River Plant (SRP). Concentrations of Co-60 also are determined in this sampling and analysis program. This report summarizes the first three months of results. Cesium-137 concentrations are reported for finished water from the Beaufort-Jasper, Port Wentworth and North Augusta water treatment plants for weekly continuous samples during April through June 1983. The very low concentrations of cesium-137 in finished water from downstream water treatment plants showed significant changes during this time. The changes in concentration occurred smoothly and correlate with changes in river flow. No changes in concentration during April through June can be attributed to L-Reactor's only cold water test which occurred June 8 and 9. No Co-60 was observed in any samples

  16. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast

  17. Food chain model to predict westslope cutthroat trout ovary selenium concentrations from water concentrations in the Elk Valley, BC

    International Nuclear Information System (INIS)

    Orr, P.; Wiramanaden, C.; Franklin, W.; Fraser, C.

    2010-01-01

    The 5 coal mines operated by Teck Coal Ltd. in British Columbia's Elk River watershed release selenium during weathering of mine waste rock. Since 1966, several field studies have been conducted in which selenium concentrations in biota were measured. They revealed that tissue concentrations are higher in aquatic biota sampled in lentic compared to lotic habitats of the watershed with similar water selenium concentrations. Two food chain models were developed based on the available data. The models described dietary selenium accumulation in the ovaries of lotic versus lentic westslope cutthroat trout (WCT), a valued aquatic resource in the Elk River system. The following 3 trophic transfer relationships were characterized for each model: (1) water to base of the food web, (2) base of the food web to benthic invertebrates, and (3) benthic invertebrates to WCT ovaries. The lotic and lentic models combined the resulting equations for each trophic transfer relationships to predict WCT ovary concentrations from water concentrations. The models were in very good agreement with the available data, despite fish movement and the fact that composite benthic invertebrate sample data were only an approximation of the feeding preferences of individual fish. Based on the observed rates of increase in water selenium concentrations throughout the watershed, the models predicted very small/slow increases in WCT ovary concentrations with time.

  18. Constituents in oil field produced waters discharged into the Loch Katrine wetland complex, Park County, Wyoming, and their bioconcentration in the aquatic bird food chain

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1993-01-01

    Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota from the Loch Katrine wetlands at Park County, WY in 1992. This study was designed to determine if produced waters pose a risk to aquatic birds inhabiting the wetlands. The radium-226 concentration recorded at the Sidney Battery Discharge in July, 93.7 pCi/l, exceeded WY DEQ's 60 pCi/l standard for the protection of aquatic life. Water quality acute criteria were exceeded for arsenic, Custer Lake, July, and for zinc, Sidney Battery discharge, April. Radium-226 concentrations in sediments from Custer Lake and Sidney Battery Discharge exceeded the 3 pCi/g background for Oregon Basin soils. The radium-226 concentration in aquatic vegetation, Custer Lake, 29.5 pCi/g, greatly exceeded the 2.9 pCi/g average concentration found in plants growing in uranium mill tailings in South Dakota. Radium-226 in aquatic vegetation may be available to aquatic birds. Oil and grease concentrations, Sidney Battery Discharge, exceeded the 10 mg/l standard of WY DEQ. Sediment hydrocarbon concentrations were highest at Sidney Battery Discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. Benzo(a)pyrene was not detected in gadwalls from Loch Katrine but was detected in northern shovelers from Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. Benzo(a)pyrene concentrations in shovelers is indicative of exposure to petroleum hydrocarbons

  19. Activity Concentrations of radionuclides in sea water in some Coastal Egyptian Regions and Their Public Health Impacts

    International Nuclear Information System (INIS)

    Sefien, S.M.; Abdel Malik, W.E.Y.; Ibrahim, A.S.; Yousef, S.K.

    2008-01-01

    Extensive investigations have been carried out monthly for one year period in order to find out the average activity concentrations of the natural radionuclide in some Egyptian coastal aquatic environment and to assess the annual radiation doses likely to be received by population near by. The determinations were mainly for the measurement of gross α, β and γ activities in sea water samples and some of its constituents. It has been found that; the average gross α, β and γ activities in sea water samples for the different studied locations ranged from (0-52) x 10 -3 ,(3-68) x10 -3 and (13-283) x10 -3 Bq.l -1 respectively but still below the recommended permissible limits in most locations. It was found that Rashid area posses the highest concentrations of uranium and thorium. The present results have shown that the radio activities of most of the locations are mainly due to naturally occurring radionuclide. No regular tendency increase was observed in activity concentrations of any particular radionuclide in the studied period. Calculations have shown that, the average external dose from the γ- emitting radionuclide is ranged over (0.5-177)x10 -3 nGy/hr with annual exposure dose ranged from (1.04-29)x10 -3 nGy in most locations except Rashid. This exposure dose does not present radiological injuries to the population

  20. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  1. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  2. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    Science.gov (United States)

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  3. Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa

    International Nuclear Information System (INIS)

    Lai, Hung-Sheng; Lin, Yi-Feng; Tu, Chein-Hsiun

    2014-01-01

    Highlights: • We report VLE data at 101.3 kPa for mixtures of ethanol, water, and 1,3-propanediol. • The VLE data were correlated by the Wilson, NRTL, and UNIQUAC models. • The ternary VLE data were predicted from binary VLE data using the three models. • The VLE effect of 1,3-propanediol on the azeotropic ethanol + water mixture was studied. • The azeotropic point of ethanol + water disappears at 30 wt% of 1,3-propanediol. -- Abstract: Isobaric (vapor + liquid) equilibrium (VLE) at P = 101.3 kPa have been measured for the ternary system of (ethanol + water + 1,3-propanediol) and for the corresponding binary systems of (ethanol + water), (ethanol + 1,3-propanediol), and (water + 1,3-propnaediol) using a Hunsmann-type equilibrium still with circulation of both vapor and liquid phases. The ternary mixtures were prepared by mixing ethanol and pure water with three concentrations (10, 30, and 50) wt% of 1,3-propanediol in the overall liquid mixtures in order to study the effect of 1,3-propanediol on the VLE of (ethanol + water). The equilibrium compositions of mixtures were analyzed by gas–liquid chromatography. The relative volatilities of ethanol with respect to water were also determined. The results of the investigation indicate the disappearance of the binary azeotrope between ethanol and water when the concentration of 1,3-propanediol is up to 30 wt%. The liquid activity coefficients were calculated using the modified Raoult’s law. The thermodynamic consistency of the VLE data was performed for the three binary systems using Van Ness direct test. The new binary and ternary VLE data were successfully correlated using the Wilson, NRTL, and UNIQUAC models, for which the binary interaction parameters are reported

  4. Heavy metals concentrations in water bodies around aquamarine ...

    African Journals Online (AJOL)

    Water samples from three streams in the mining area of Eggon Hill were analysed. The Physicochemical values obtained were compared with WHO permissible standards in drinking water. Except for Cu and Zn with levels within permissible limits, other heavy metals determined were found to have levels above the WHO ...

  5. assessment of heavy metals concentrations in the surface water

    African Journals Online (AJOL)

    User

    (1L) plastic bottles were used in collecting the water samples, which were then digested using nitric acid (HNO3). The digested ... Water pollution in Nigeria occurs in both rural and urban areas. ... The World Bank studies (World. Bank, 1990) ...

  6. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    drinking water treatment practices in the areas, which in turn have important human health implications. This study, therefore, recommends the government and other responsible authorities to take appropriate corrective measures. Key words: Drinking water quality, Heavy metals, Maximum admissible limit, World health.

  7. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  8. Use of real-time monitoring to predict concentrations of select constituents in the Menomonee River drainage basin, Southeast Wisconsin, 2008-9

    Science.gov (United States)

    Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2012-01-01

    The Menomonee River drainage basin in southeast Wisconsin is undergoing changes that may affect water quality. Several rehabilitation and flood-management projects are underway, including removal of concrete channels and the construction of floodwater retention basins. The city of Waukesha may begin discharging treated wastewater into Underwood Creek, thus approximately doubling the current base-flow discharge. In addition, the headwater basins, historically dominated by agriculture and natural areas, are becoming increasingly urbanized.

  9. Radon and radon daughters' concentration in spring and wells waters from Presidente Prudente: preliminary results

    International Nuclear Information System (INIS)

    Osorio, Ana Maria Araya; Saenz, Carlos Alberto Tello; Pereira, Luiz Augusto Stuani

    2009-01-01

    This work presents the preliminary results about the concentration of radon and radon daughters in wells and springs water from Presidente Prudente. Six water samples were studied: three from well-water, two from springs water and one from potable water. For the determination of α-activity the samples were placed inside plastic containers where the CR-39 tracks detectors were outside the water. The track density of α-particles were measured by using optical microscopy. The results show that one sample from well-water presented higher concentration of radon and radon daughters than the other samples. (author)

  10. The impact of water concentration on the catalytic oxidation of ethanol on platinum electrode in concentrated phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, A.P.M.; Previdello, B.A.F.; Varela, H.; Gonzalez, E.R. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970 Sao Carlos, SP (Brazil)

    2010-01-15

    The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (author)

  11. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  12. Zn, Pb, Cr and Cd concentrations in fish, water and sediment from ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Zn, Pb, Cr and Cd concentrations in fish, water and sediment from the Azuabie Creek,. Port Harcourt. ... Heavy metal contamination in the aquatic ... Azuabie Creek and the associated water ..... Public in Tianjin, China via Consumption of.

  13. Measurement of Rn-222 concentration in underground water in Osaka stratum group in Sennan area

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kosuke

    1977-01-01

    The Rn-222 concentration in underground water is reported as follows, which is the result obtained when the ground inspection was carried out in the Research Reactor Institute of Kyoto University located at Kumatori area in Osaka stratum group. Underground water, at different depth, well water and rain water were taken, and the contained Rn-222 was extracted with toluene to measure by liquid scintillation technique. Rn-222 concentration in rain water was 3.5 - 8.0 pCi/l, while the concentration in well water was 130 - 250 pCi/l, and that in underground water was 240 - 313 pCi/l. The seasonal change, geographical difference and variation according to depth of Rn-222 concentration were examined. Rn-222 behavior in soil should be investigated more in detail in reference to Rn-222 dispersion, transport and equilibrium problems in soil-water system in the future. (Kobatake, H.)

  14. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    Science.gov (United States)

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (Pwater arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, Pwater, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  15. Device for regulating light water nuclear reactors by changing the boric acid concentration in the cooling water circuit

    International Nuclear Information System (INIS)

    Brown, W.W.; Van der Schoot, M.R.

    1980-01-01

    Small changes in boric acid concentration can be carried out quickly by a combination of an ion exchanger with temperature-dependent capacity and an evaporator. No boric acid need be extracted from the circuit or added to it. However, if large changes of concentration are required, boric acid has to be added. The evaporator is then used to separate distilled water and concentrated boric acid when the cooling water is diluted. (DG) [de

  16. Phase 1 summaries of radionuclide concentration data for vegetation, river water, drinking water, and fish

    International Nuclear Information System (INIS)

    Denham, D.H.; Dirkes, R.L.; Hanf, R.W.; Poston, T.M.; Thiede, M.E.; Woodruff, R.K.

    1993-06-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at the Hanford Site since 1944. As part of the HEDR Project, the Environmental Monitoring Data Task (Task 05) staff assemble, evaluate, and summarize key historical measurements of radionuclide concentrations in the environment as a result of Hanford operations. The scope of work performed during Phase I included initiating the search, recovery, and inventory of environmental reports. Summaries of the environmental monitoring data that were recovered and evaluated are presented for specific periods of interest. These periods include vegetation monitoring data (primarily sagebrush) for the years 1945 through 1947, Columbia River water and drinking water monitoring data for the years 1963 through 1966, and fish monitoring data for the years 1964 through 1966. Concern was limited to those radionuclides identified as the most likely major contributors to the dose potentially received by the public during the times of interest: phosphorous-32, copper-64, zinc-65, arsenic-76, and neptunium-239 in Columbia River fish and drinking water taken from the river, and iodine-131 in vegetation. This report documents the achievement of the Phase I objectives of the Environmental Monitoring Data Task

  17. Chromatographic method of measurement of helium concentration in underground waters for dating in hydrological questions

    International Nuclear Information System (INIS)

    Najman, J.

    2008-04-01

    Research methods which use natural environmental indicators are widely applied in hydrology. Different concentrations of indicators and their isotopic components in ground waters allow to determine the genesis of waters and are valuable source of information about the water flow dynamics. One of the significant indicator is helium. The concentration of 4 He (helium) in ground water is a fine indicator in water dating in a range from a hundreds to millions of years (Aeschbach-Hertig i in., 1999; Andrews i in., 1989; Castro i in., 2000; Zuber i in., 2007). 4 He is also used for dating young waters of age about 10 years (Solomon i in., 1996). Thesis consist the description of elaborated in IFJ PAN in Krakow chromatographic measurement method of helium concentration in ground waters in aim of dating. Chapter 1 contain short introduction about ground water dating and chapter 2 description of helium property and chosen applications of helium for example in technology and earthquake predictions. Helium sources in ground waters are described in chapter 3. Helium concentration in water after infiltration (originated from atmosphere) to the ground water system depends mainly on the helium concentration coming from the equilibration with the atmosphere increased by additional concentration from '' excess air ''. With the increasing resistance time of ground water during the flow, radiogenic, non-atmospheric component of helium dissolves also in water. In chapter 4 two measurement methods of helium concentration in ground waters were introduced: mass spectrometric and gas chromatographic method. Detailed description of elaborated chromatographic measurement method of helium concentration in ground water contain chapter 5. To verify developed method the concentration of helium in ground waters from the regions of Krakow and Busko Zdroj were measured. For this waters the concentrations of helium are known from the earlier mass spectrometric measurements. The results of

  18. Assessment of heavy metals concentration in water, soil sediment ...

    African Journals Online (AJOL)

    22.81 ppb) and rivers to Lake Nakuru (1129±107 ppb) had the highest mean ± SD lead concentration. Arsenic, cadmium, chromium and lead were also observed in bird tissues. Metals in the Lesser Flamingo tissues were below the toxicological ...

  19. Determination of radon concentration in water using RAD7 with RAD H2O accessories

    International Nuclear Information System (INIS)

    Malik, M. F. I.; Rabaiee, N. A.; Jaafar, M. S.

    2015-01-01

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20 samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public

  20. assessment of heavy metals concentrations in the surface water

    African Journals Online (AJOL)

    User

    socio-economic potentialities the basin has on the populace utilizing it and the nation in general. ... Water contamination place other resources such as fisheries ..... System. Techno Science Journal. 2 (1): 83-. 88. Osae-Addo, A. (1992): Nigeria: Industrial Pollution. Control. Sector Report Draft. (cited in World. Bank, 1995:5).

  1. Concentrations of formaldehyde in rain waters harvested at the ...

    African Journals Online (AJOL)

    Formaldehyde has been recognized as one of the most important pollutants and a carcinogen that is present in the air, water, foods, soils, fabrics, cosmetics, cigarette smoke and treated wood. Related health effects and hazards are linked to formaldehyde, depending on mode of exposure which includes: weakness, ...

  2. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  3. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    guideline is set by WHO (2008) for Zinc level in drinking water, of the samples analyzed,. 94.02% comply the New Zealand standard and 97.01% comply all the maximum admissible limits referred in the present study. In general, the results of the present study have shown that some of the physico-chemical parameters have ...

  4. Heavy metal concentrations in water, sediment and periwinkle ...

    African Journals Online (AJOL)

    User

    2013-05-08

    May 8, 2013 ... Sci. pp: 92-98. Wiener JG (2002). Evolution of a contaminant problem: Mercury in fresh water fish. Proceedings and summary report, USEPA/625/R-02/005. World Health Organisation (WHO) (1994). Assessing human health risk of chemicals, derivation of guidance values for health based exposure limits.

  5. Nutrient and Bacteria Concentrations in the Coastal Waters off ...

    African Journals Online (AJOL)

    ammonium, nitrate, nitrite, soluble reactive phosphorous) and bacteria (total and faecal coliforms) in the waters off Zanzibar Town. The study covered both the SE and NE monsoon and the two transition periods for a total of one year. Nutrient ...

  6. Radionuclide concentrations and dose assessment of cistern water and groundwater at the Marshall Islands

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Wong, K.M.; Jokela, T.A.; Robison, W.L.

    1981-01-01

    A radiological survey was conducted from September through November of 1978 to determine the concentrations of radionuclides in the terrestrial and marine environments of 11 atolls and 2 islands in the Northern Marshall Islands. More than 70 cistern and groundwater samples were collected at the atolls; the volume of each sample was between 55 and 100 l. The concentration of 90 Sr in cistern water at most atolls is that expected from world-wide fallout in wet deposition. Except for Bikini and Rongelap, 137 Cs concentrations in cistern water are in agreement with the average predicted concentrations from wet deposition. The 239+240 Pu concentrations are everywhere less than the predicted fallout concentrations except at Rongelap, Ailinginae, and Bikini where the measured and predicted concentrations are in general agreement. During the period sampled, most groundwater concentrations of 90 Sr and 137 Cs were everywhere higher than the concentrations in cistern water. Concentrations of the transurancies in filtered groundwater solution were everywhere comparable to or less than the concentrations in cistern water. It is concluded that the concentrations of radionuclides detected during any single period may not necessarily reflect the long-term average concentrations or the concentrations that might be observed if a lined well were extended above the surface. In any case, at all atolls the 90 Sr and 137 Cs concentrations in groundwater are below the concentration guidelines for drinking water recommended by the Environmental Protection Agency. The maximum annual dose rates and the 30- and 50-y integral doses are calculated for the intake of both cistern water and groundwater for each of the atolls

  7. Concentration of vanadium in crude oil and water using inductively-coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Amin, Y.M.; Hassan, M.A.; Junkin, K.; Mahat, R.H.; Raphie, B.

    1991-01-01

    Vanadium is a trace element that is usually associated to crude oil and its products. In this study the concentration of vanadium in a few samples of local crude oil, sea and river water were determined using inductively-coupled plasma spectrometry (ICP). It is hoped that the concentration of vanadium in water can be used to indicate the possible extent of oil contamination

  8. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    Nelson, D.M.; Lovett, M.B.

    1980-01-01

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  9. Uranium concentrations in natural waters, South Park, Colorado

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration

  10. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    Science.gov (United States)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  11. Valuating report on radioactivity concentrations in surface waters in 1988

    International Nuclear Information System (INIS)

    Henrich, E.; Weisz, J.; Zapletal, M.; Friedrich, M.; Haider, W.

    1989-02-01

    Sample preparation- and measuring methods and results on river and lake water samples for 1988 are presented. This is part of the Austrian Environment Radioactivity Monitoring Network. 22 sampling sites and 9 nuclides - natural, atomic weapons tests and Chernobyl fallout - were assessed. Emphasis was on the Chernobyl fallout; iodine 131, chromium 51 and cobalt 60. Hypotheses on the origin of the radionuclides are presented. The radiation burden to the population is marginal. 15 refs., 19 figs., 15 tabs. (qui)

  12. ENVIRONMENTAL FACTORS AND CHEMICAL AND MICROBIOLOGICAL CONSTITUENTS RELATED TO THE PRESENECE OF VIRUSES IN GROUND WATER FROM SMALL PUBLIC WATER SUPPLIES IN SOUTHEASTERN MICHIGAN

    Science.gov (United States)

    Thirty-eight public ground-water-supply wells serving fewer than 3,300 people were sampled from July 1999 through July 2001 in southeastern Michigan to determine (1) the occurrence of viral pathogens and microbiological indicators, (2) the adequacy of indicators as predictors of...

  13. Determination of potassium concentration in salt water for residual beta radioactivity measurements

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, Ll.

    2004-01-01

    High interferences may arise in the determination of potassium concentration in salt water. Several analytical methods were studied to determine which method provided the most accurate measurements of potassium concentration. This study is relevant for radiation protection because the exact amount of potassium in water samples must be known for determinations of residual beta activity concentration. The fitting algorithm of the calibration curve and estimation of uncertainty in potassium determinations were also studied. The reproducibility of the proposed analytical method was tested by internal and external validation. Furthermore, the residual beta activity concentration of several Spanish seawater and brackish river water samples was determined using the proposed method

  14. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Villalba, L.; Colmenero Sujo, L.; Montero Cabrera, M.E.; Cano Jimenez, A.; Renteria Villalobos, M.; Delgado Mendoza, C.J.; Jurado Tenorio, L.A.; Davila Rangel, I.; Herrera Peraza, E.F.

    2005-01-01

    This paper reports 222 Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited 222 Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of 222 Rn found may be entirely attributed to the nature of aquifer rocks

  15. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Colmenero Sujo, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Instituto Tecnologico de Chihuahua II, Ave. de las Industrias 11101, Chihuahua, Chih. (Mexico); Montero Cabrera, M.E. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)]. E-mail: elena.montero@cimav.edu.mx; Cano Jimenez, A. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Renteria Villalobos, M. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Delgado Mendoza, C.J. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Jurado Tenorio, L.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Davila Rangel, I. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 20, Zacatecas, Zac. (Mexico); Herrera Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)

    2005-07-01

    This paper reports {sup 222}Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited {sup 222}Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of {sup 222}Rn found may be entirely attributed to the nature of aquifer rocks.

  16. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    Science.gov (United States)

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  17. Formulation and make-up of simulated concentrated water, high ionic content aqueous solution

    International Nuclear Information System (INIS)

    Gdowski, G.

    1997-01-01

    This procedure describes the formulation and make-up of Simulated Concentrated Water (SCW), a high-ionic-content water to be used for Activity E-20-50 Long-Term Corrosion Studies. This water has an ionic content which is nominally a factor of a thousand higher than that of representative waters at or near Yucca Mountain. Representative waters were chosen as J-13 well water [Harrar, 1990] and perched water at Yucca Mountain [Glassley, 1996]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock. The perched water is located in the Topopah Spring tuff, but below the repository horizon and above the water table. A nominal thousand times higher ionic content was chosen to simulate the water that would result from the wetting of salts which have been previously deposited on a container surface

  18. Estimating the relation between groundwater and river water by measuring the concentration of Rn-222

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Minoru; Morisawa, Shinsuke [Kyoto Univ. (Japan). Faculty of Engineering

    1997-02-01

    This study aimed to estimate the relationship between groundwater in shallow layer and river water by determining the concentrations of {sup 222}Rn and nitric nitrogen along with water temperature. The region around ca. 20 km along river A in a certain basin was chosen as a test area. The Rn concentration of groundwater was determined by Rn extracting with toluene and counting in liquid scintillation counter, whereas for river water, it was determined by activated charcoal passive collector method developed by the authors, by which the amount of Rn adsorbed on activated charcoal was estimated by Ge-solid state detector. In addition, water temperature and nitric nitrogen concentration were measured at various points in the test area. Thus, a distribution map of the three parameters was made on the basis of the data obtained in December, 1989. Since Rn concentration is generally higher in ground water than river water and the water temperature in December is higher in the former, it seems likely that the concentrations of Rn and nitric nitrogen would become higher in the area where ground water soaks into river water. Thus, the directions of ground water flow at the respective sites along river A were estimated from the data regarding the properties of ground water. (M.N.)

  19. Comparison of tritium concentrations in rainwater, simulated infiltrating water, and groundwater

    International Nuclear Information System (INIS)

    Ishii, Yoshiyuki; Saito, Masaaki; Imaizumi, Hiroshi; Kato, Norio; Kitaoka, Koichi

    2014-01-01

    The tritium concentration in initial groundwater(i.e., freshly infiltrating rainwater) is necessary for groundwater dating. We collected simulated infiltrating water as the initial groundwater and examined its characteristics for tritium concentration. First, in Tokyo, the tritium concentration of simulated infiltrating water was compared with that of rainwater, atmospheric moisture, groundwater, spring water, and sap water. While rainwater, atmospheric moisture, and simulated infiltrating water remarkably changed month-to-month or with every rainfall event, groundwater and spring water were nearly constant throughout the year. Second, we collected the simulated infiltrating water monthly at four sampling sites widely dispersed across Japan(i.e., Sapporo, Niigata, Tokyo, and Matsuyama) from 2004 to 2010. Sapporo and Niigata showed high tritium concentrations as compared with the relatively low concentrations in Tokyo and Matsuyama. These results indicate that we can obtain annual maximum and minimum concentrations at each site, and that we can estimate the tritium concentration in initial groundwater at each site by using a mixing model composed of these maximum and minimum concentrations. (author)

  20. Determination of dew absorption by coffee plant through deuterium concentrations in leaf water

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1975-12-01

    The effect of dew falling on leaves on the water metabolism of the coffee plant (Coffea arabica) is examined. The use of natural stable isotopes variations in plant physiological studies is demonstrated. Water extracted from leaf samples is analysed by mass spectrometry. Analyses of deuterium concentrations in water extracted from plant leaves, dew and nutrient solutions are made. Determination of changes in deuterium concentration in the water of leaves from plants exposed to dew, compared with leaves not exposed to dew, is carried out. Results show that during daytime there is an enrichment in deuterium in water contained in the leaves, while at night the opposite occurs.

  1. Determination of dew absorption by coffee plant through deuterium concentrations in leaf water

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Salati, E.; Matsui, E.

    1975-01-01

    The effect of dew falling on leaves on the water metabolism of the coffee plant (Coffea arabica) is examined. The use of natural stable isotopes variations in plant physiological studies is demonstrated. Water extracted from leaf samples is analysed by mass spectrometry. Analyses of deuterium concentrations in water extracted from plant leaves, dew and nutrient solutions are made. Determination of changes in deuterium concentration in the water of leaves from plants exposed to dew, compared with leaves not exposed to dew, is carried out. Results show that during daytime there is an enrichment in deuterium in water contained in the leaves, while at night the opposite occurs [pt

  2. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    Science.gov (United States)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  3. Water chemistry and radon concentrations of thermal springs in Bastak area, south of Persia

    International Nuclear Information System (INIS)

    Mirhosseini, S.M.; Moattar, F.; Karbassi, A.R.

    2015-01-01

    Physicochemical factors, major and some minor ions and 222 Rn concentration was measured in Todruyeh, Fotuyeh and Sanguyeh thermal balneutherapy springs in Bastak, south of Iran. Water type of these springs is Na-Cl and water-mixing phenomena seem possible in them. The average of U concentration in Fatuyeh's, Sanguyeh's and Todruyeh's water are 2.2, 1.1, 0.306 ppb, respectively, and the concentration of heavy metals such as Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn varies from 1 to 10 ppb. The concentration of 222 Rn in the water of Fotuyeh, Sanguyeh and Todruyeh Springs includes 125-253, 53-104, and 7.4-134.7 kBq/m 3 , respectively. Values of mean annual effective doses for inhalation from these waters are below the reference level recommended by WHO. (author)

  4. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil

    International Nuclear Information System (INIS)

    Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G.

    2007-01-01

    Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO 2 pressure. - The hydrological regime is a key factor in determining the metal concentration in the pore water of a contaminated sediment-derived soil

  5. Effect of hard and soft water on mineral concentration of food items

    International Nuclear Information System (INIS)

    Khan, M.H.; Hafeez, M.

    2006-01-01

    The present study was undertaken with special reference to the change occurs in concentration of essential elements present in food items on cooking in hard and soft water. Fourteen water and 08 vegetable samples were collected from various selected sites of Muzaffarabad city and around. The parameters such as pH, conductivity and TDS of water samples were determined. The concentration of Ca and Mg being major minerals in both water and vegetable samples were determined before and after cooking by employing AAS technique. It was found that Ca has increased in vegetable samples cooked in hard water type, while in most cases it decreased when soft water was used. Magnesium has decreased in vegetables samples after cooking with hard water types. The extraction of Mg was more pronounced when soft water was used for cooking purpose. The role of Ca and Mg in human body as essential elements has been discussed. (author)

  6. A survey of natural uranium concentrations in drinking water supplies in Iran

    International Nuclear Information System (INIS)

    Alirezazadeh, N.; Garshasbi, N.

    2003-01-01

    Background: Measurement of background concentration of uranium in drinking water is very important for many reasons, specially, for human health. The uranium concentration in drinking water in many countries is a matter of concern for clinical and radioactive poisoning. Materials and methods: The uranium concentration in drinking water is determined using laser fluorimetric uranium analyzer. For this purpose after sampling, sample handling and sample preserving, sample preparation and treatment for reduction of organic matter, the concentration of uranium is measured. Results: To determine the uranium concentrations in drinking water in Iran, nearly 200 water samples were collected from all sources supplying drinking water in 21 provincial centers in the country. The wells were found to be the main source for drinking water. Uranium in the samples was measured by a laser fluorimetry technique. According to results, the concentration values found in the wells ranged from 1.0 to 10.90 μgL -1 , while nearly 95 percent of the cities had uranium concentrations in the wells at less than 4.70 μgL -1 . Surface waters showed uranium concentrations in the range of 0.75 to 2.58 μgL -1 . The daily intake of uranium from drinking water was estimated to range from 2.04 to 21.80 μgd -1 , with the mean value of 5.44 μgd -1 . Conclusion: Highest uranium mean concentration of 10.9 μgL -1 was found in Ardabil area where more studies should be done in that province in the future

  7. Concentrations of 222Rn in well and tap waters of North-Eastern Attiki (Central Greece)

    International Nuclear Information System (INIS)

    Kritidis, Panaiotis; Angelou, Panaiotis.

    1984-07-01

    An alpha-scintillation system for determination of low 222 Rn concentrations in water is described. The use of vacuum sampling, the avoidance of sample transfer and the corrections applied result in low systematical errors. The method has been used for a preliminary investigation of 222 Rn concentrations in well waters of NE Attiki, where values between 4 and 345 pCi/1 have been observed. The additional annual effective dose equivalent due to the systematic domestic use of water with the highest radon concentration measured is estimated not to exceed 5 mrem. (author)

  8. Analytical performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.; Roy, M.; Tyagi, A.K.

    2011-01-01

    The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of D 2 O (heavy water) in a simulated water sample. Viability of Refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been demonstrated. Temperature of the samples was precisely controlled to eliminate effect of temperature fluctuation on refractive index measurement. Calibration performance by this technique exhibited reasonable analytical response over a wide range (1-100%) of D 2 O concentration. (author)

  9. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    International Nuclear Information System (INIS)

    Fix, D.; Estill, J.; Wong, L.; Rebak, R.

    2004-01-01

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water

  10. Investigating the Concentration of Heavy Metals in Bottled Water and Comparing with its Standard: Case Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-09-01

    Results: Brand No. 1, the concentration of zinc ion was larger in Brand 2 while in Brand No. 2 had larger copper, nickel, and aluminum ions. The results indicated that the concentration of the measured metal ions were below the allowable limit of drinking water standard across all of the studied samples. Conclusion: Based on the obtained results from the investigated parameters, it can be concluded that the bottled water of both brands poses no health issue and is drinkable. Considering the changes in the concentration of ions and the increasing trend of consumption of bottled waters, their monitoring and qualitative control of pollutants are very crucial in terms of public health.

  11. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  12. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  13. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  14. Relationship between 222Rn concentration in soil water and degree of saturation

    International Nuclear Information System (INIS)

    Hamada, Hiromasa; Komae, Takami

    1996-01-01

    The object of the researches an analyzing downward flow to groundwater using 222 Rn concentration in water as an indicator has been saturated flow. However, when groundwater table is low, downward flow from surface is unsaturated flow. In this paper, the authors represented the relationship between 222 Rn concentration in soil water and degree of saturation, and measured the vertical distributions of 222 Rn concentrations in groundwater and 222 Rn concentration in water table in the fields. As the results, it was found that 222 Rn concentrations in the vicinity of groundwater table decreased by unsaturated downward flow. Moreover, from the variation of 222 Rn concentrations in groundwater table, it was possible to show the occurrence of the unsaturated downward flow by paddy fields irrigation, i.e., the downward flow of the soil water pushed out by irrigation water, the unsaturated percolation in the irrigation period, and the redistribution of the soil water after the release of ponding water. The degree of saturation in downward flow was calculated to be about 50% from 222 Rn concentrations in the irrigation period and in the non-irrigation period. It was deduced that the value was within reasonable range considering the difference of the hydraulic conductivities between of the upper layer and of the lower layer. These results proved that the relationship between 222 Rn concentrations in soil water and degree of saturation represented by the authors was reasonable and that the analytical method using 222 Rn concentrations in groundwater table as an indicator was useful 10 analyze the actual stale of unsaturated downward flow. (author)

  15. Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects

    International Nuclear Information System (INIS)

    Xinwei, L.

    2006-01-01

    This paper presents the results of radon concentration measurements in drinking water from the municipal water supply system and private wells located in Baoji (China)). The measurements were carried out on 69 samples. The mean values of tap water and well water were found to be 12 kBq m -3 with a maximum of 18 kBq m -3 and 41 kBq m -3 with a maximum of 127 kBq m -3 , respectively. The well water samples obtained from different depth-well (water-bearing levels), i.e. shallow well (well depth under 10 m) water, middle well (well depth 10-30 m) water and deep well water, have respective mean values of 24, 34 and 56 kBq m -3 . The contributions of the observed radon concentration in drinking water to indoor radon account for 2.8-13.2% of the mean value of Shaanxi indoor radon concentration and the effective dose to the dweller owing to inhalation of radon emanating from household water is 0.03-0.14 mSv y -1 . (authors)

  16. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen

  17. Collaborative validation of a rapid method for efficient virus concentration in bottled water

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Perelle, Sylvie; Di Pasquale, Simona

    2011-01-01

    . Three newly developed methods, A, B and C, for virus concentration in bottled water were compared against the reference method D: (A) Convective Interaction Media (CIM) monolithic chromatography; filtration of viruses followed by (B) direct lysis of viruses on membrane; (C) concentration of viruses......Enteric viruses, including norovirus (NoV) and hepatitis A virus (HAV), have emerged as a major cause of waterborne outbreaks worldwide. Due to their low infectious doses and low concentrations in water samples, an efficient and rapid virus concentration method is required for routine control...... by ultracentrifugation; and (D) concentration of viruses by ultrafiltration, for each methods' (A, B and C) efficacy to recover 10-fold dilutions of HAV and feline calicivirus (FCV) spiked in bottles of 1.5L of mineral water. Within the tested characteristics, all the new methods showed better performance than method D...

  18. Concentration of uranium in the drinking and surface water around the WIPP site

    International Nuclear Information System (INIS)

    Khaing, H.; Lemons, B.G.; Thakur, P.

    2016-01-01

    Activity concentration of uranium isotopes ( 238 U, 234 U and 235 U) were analyzed in drinking and surface water samples collected in the vicinity of the WIPP site using alpha spectroscopy. The purpose of this study was to investigate the changes in uranium concentrations (if any) in the vicinity of the WIPP site and whether the February 14, 2014 radiation release event at the WIPP had any detectable impact on the water bodies around the WIPP. (author)

  19. The influence of water potassium concentration on 137Cs excretion from fish

    International Nuclear Information System (INIS)

    Nasvit, O.J.

    1996-01-01

    Results are reported of the investigation on the peculiarities of 137 Cs release from carp (Cyprinus carpio L.) acclimatized to different potassium concentrations in water. The dynamics of radiocesium release are characterized by slow and fast components. The 137 Cs release rates observed in the experiments with different water potassium concentrations were markedly different from the point of view of middle-term radioecological predictions. 5 refs., 3 figs., 3 tabs

  20. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  1. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  2. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  3. Composite measures of watershed health from a water quality perspective

    Science.gov (United States)

    Water quality data at gaging stations are typically compared with established federal, state, or local water quality standards to determine if violations (concentrations of specific constituents falling outside acceptable limits) have occurred. Based on the frequency and severity...

  4. Assessment of the total uranium concentration in surface and underground water samples from the Caetite region, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julia Grasiela Batista; Geraldo, Luiz Paulo [Centro Universitario da Fundacao Educacional de Barretos (UNIFEB), (SP) (Brazil); Yamazaki, Ione Makiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    At the region of Caetite, BA, it is located the largest uranium mine in exploration at present days in Brazil. During the uranium extraction process, it may be having an environmental contamination by this heavy metal due to rain water and other natural transport mechanism, with potential exposition risk to the local population. The aim of this work was to investigate the total uranium concentration in surface and underground water samples collected at the Caetite region, using the nuclear track registration technique (SSNTD) in a polycarbonate plastic. A 100 mL volume of water samples were initially treated in 10 mL of HNO{sub 3} (PA) and concentrated by evaporation at a temperature around 80 deg C. The resulting residue was diluted to a total volume of 25 mL without pass it to a filter. About 10 {mu}L of this solution was deposited on the plastic detector surface (around 1.0 cm{sup 2} area) together with 5 {mu}L of a Cyastat detergent solution (5%) and evaporated under an infrared lamp. All the resulting deposits of non volatile constituents were irradiated, together with a uranium standard sample, at the IPEN-IEA-R1 (3.5 MW) nuclear reactor for approximately 3 min. After irradiations, chemical etching of the plastic detectors was carried out at 60 deg C, for 65 min. in a NaOH (6N) solution. The fission tracks were counted scanning all the deposit area of the polycarbonate plastic detector with a system consisting of an optical microscope together with a video camera and TV monitor. The average values of uranium concentrations obtained in this work ranged from (0.95{+-}0.19) {mu}g.L{sup -1} to (25.60{+-}3.3) {mu}g.L{sup -1}. These results were compared to values reported in the literature for water samples from other regions and discussed in terms of safe limits recommended by WHO -World Health Organization and CONAMA - Conselho Nacional do Meio Ambiente. (author)

  5. Assessment of the total uranium concentration in surface and underground water samples from the Caetite region, Bahia, Brazil

    International Nuclear Information System (INIS)

    Silva, Julia Grasiela Batista; Geraldo, Luiz Paulo; Yamazaki, Ione Makiko

    2011-01-01

    At the region of Caetite, BA, it is located the largest uranium mine in exploration at present days in Brazil. During the uranium extraction process, it may be having an environmental contamination by this heavy metal due to rain water and other natural transport mechanism, with potential exposition risk to the local population. The aim of this work was to investigate the total uranium concentration in surface and underground water samples collected at the Caetite region, using the nuclear track registration technique (SSNTD) in a polycarbonate plastic. A 100 mL volume of water samples were initially treated in 10 mL of HNO 3 (PA) and concentrated by evaporation at a temperature around 80 deg C. The resulting residue was diluted to a total volume of 25 mL without pass it to a filter. About 10 μL of this solution was deposited on the plastic detector surface (around 1.0 cm 2 area) together with 5 μL of a Cyastat detergent solution (5%) and evaporated under an infrared lamp. All the resulting deposits of non volatile constituents were irradiated, together with a uranium standard sample, at the IPEN-IEA-R1 (3.5 MW) nuclear reactor for approximately 3 min. After irradiations, chemical etching of the plastic detectors was carried out at 60 deg C, for 65 min. in a NaOH (6N) solution. The fission tracks were counted scanning all the deposit area of the polycarbonate plastic detector with a system consisting of an optical microscope together with a video camera and TV monitor. The average values of uranium concentrations obtained in this work ranged from (0.95±0.19) μg.L -1 to (25.60±3.3) μg.L -1 . These results were compared to values reported in the literature for water samples from other regions and discussed in terms of safe limits recommended by WHO -World Health Organization and CONAMA - Conselho Nacional do Meio Ambiente. (author)

  6. Development of a vacuum crystallizer for the concentration of industrial waste water

    NARCIS (Netherlands)

    Roos, A.C.; Verschuur, R.-J.; Schreurs, B.; Scholz, R.; Jansens, P.J.

    2002-01-01

    Freeze concentration has proven to be a viable technology for the concentration of hazardous industrial waste waters before incineration. Owing to the relatively high investment cost of the technology, its applicability has been limited until now. This paper investigates the feasibility of a vacuum

  7. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  8. Estimating space-time mean concentrations of nutrients in surface waters of variable depth

    NARCIS (Netherlands)

    Knotters, M.; Brus, D.J.

    2010-01-01

    A monitoring scheme has been designed to test whether the space-time mean concentration total Nitrogen (N-total) in the surface water in the Northern Frisian Woodlands (NFW, The Netherlands) complies with standards of the European Water Framework directive. Since in statistical testing for

  9. Modelling anaerobic digestion of concentrated black water and faecal matter in accumulation system

    NARCIS (Netherlands)

    Elmitwalli, T.; Zeeman, G.; Otterpohl, R.

    2011-01-01

    A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste(water) produced from the following systems:

  10. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  11. Radon concentration assessment in water sources of public drinking of Covilhã's county, Portugal

    Directory of Open Access Journals (Sweden)

    M. Inácio

    2017-04-01

    Radon concentration measurements were performed on thirty three samples collected from water wells at different depths and types of aquifers, at Covilhã's County, Portugal with the radon gas analyser DURRIDGE RAD7. Twenty three, of the total of water samples collected, gave, values over 100 Bq/L, being that 1690 Bq/L was the highest measured value.

  12. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  13. Influence of mine waste water purification on radium concentration in desalinisation products

    International Nuclear Information System (INIS)

    Chalupnik, S.

    2005-01-01

    The effects of mine waste water treatment in the desalination process on radium concentration in final products have been shown on the example of installations working in 'Ziemowit' and 'Piast' Polish coal mines. The environmental impact and health hazard resulting deposition of waste water treatment plant by-products have been also discussed

  14. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987-2008.

    Science.gov (United States)

    Löfgren, Stefan; Zetterberg, Therese

    2011-04-15

    During the last two decades, there is a common trend of increasing concentrations of dissolved organic carbon (DOC) in streams and lakes in Europe, Canada and the US. Different processes have been proposed to explain this trend and recently a unifying hypothesis was presented, concluding that declining sulphur deposition and recovery from acidification, is the single most important factor for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the soil water DOC concentrations should increase as well. However, long-term soil water data from Sweden and Norway indicate that there are either decreasing or indifferent DOC concentrations, while positive DOC trends have been found in the Czech Republic. Based on the soil water data from two Swedish integrated monitoring sites and geochemical modelling, it has been shown that depending on changes in pH, ionic strength and soil Al pools, the DOC solubility might be positive, negative or indifferent. In this study, we test the acidification recovery hypothesis on long-term soil water data (25 and 50cm soil depth) from 68 forest covered sites in southern Sweden, showing clear signs of recovery from acidification. The main aim was to identify potential drivers for the DOC solubility in soil solution by comparing trends in DOC concentrations with observed changes in pH, ionic strength and concentrations of Al(n+). As in earlier Swedish and Norwegian studies, the DOC concentrations in soil water decreased or showed no trend. The generally small increases in pH (median <0.3 pH units) during the investigation period seem to be counterbalanced by the reduced ionic strength and diminished Al concentrations, increasing the organic matter coagulation. Hence, opposite to the conclusion for surface waters, the solubility of organic matter seems to decrease in uphill soils, as a result of the acidification recovery. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  16. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    International Nuclear Information System (INIS)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables

  17. Factors affecting water strider (Hemiptera: Gerridae) mercury concentrations in lotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, T.D.; Kidd, K.A.; Cunjak, R.A.; Arp, P.A. [University of New Brunswick, St John, NB (Canada). Canadian Rivers Institute

    2009-07-15

    Water striders (Hemiptera: Gerridae) have been considered as a potential sentinel for mercury (Hg) contamination of freshwater ecosystems, yet little is known about factors that control Hg concentrations in this invertebrate. Striders were collected from 80 streams and rivers in New Brunswick, Canada, in August and September of 2004 through 2007 to assess the influence of factors such as diet, water chemistry, and proximity to point sources on Hg concentrations in this organism. Higher than average Hg concentrations were observed in the southwest and Grand Lake regions of the province, the latter being the location of a coal-fired power plant that is a source of Hg (similar to 100 kg annually), with elevated Hg concentrations in the lichen Old Man's Beard (Usnea spp.) in its immediate vicinity. Across all streams, pH and total organic carbon of water were relatively weak predictors of strider Hg concentrations. Female striders that were larger in body size than males had significantly lower Hg concentrations within sites, suggestive of growth dilution. There was no relationship between percent aquatic carbon in the diet and Hg concentrations in striders. For those striders feeding solely on terrestrial carbon, Hg concentrations were higher in animals occupying a higher trophic level. Mercury concentrations were highly variable in striders collected monthly over two growing seasons, suggesting short-term changes in Hg availability. These measurements highlight the importance of considering both deposition and postdepositional processes in assessing Hg bioaccumulation in this species.

  18. Dependence of radiocaesium biological half-life in freshwater fish on water potassium concentration and temperature

    International Nuclear Information System (INIS)

    Carreiro, M.C.V.; Corisco, J.A.G.

    1998-01-01

    Short-term experiments (35-49 days) showed that the rate of cesium elimination from fish increases with increasing potassium concentration in water (the biological half-life decreases); this, however, is only true of the potassium concentration range of 0.35 to 3.5 ppm, whereas higher potassium concentrations do not seem to affect the elimination rate. Decrease in water temperature within the 20 degC to 5 degC range slows down the cesium elimination process. (P.A.)

  19. Effect of aquatic plants on 95Zr concentration in slightly polluted water

    International Nuclear Information System (INIS)

    Shi Jianjun; Yang Ziyin; Chen Hui

    2004-01-01

    Effect of three aquatic plants (Ceratophyllum demersum, Azolla caroliniana and Eichhornia crassipes) on 95 Zr concentration in slightly polluted water was studied by using isotope tracer techniques. The results showed that the aquatic plants had strong ability of 95 Zr concentration in water. The concentration factor (CF) were from 56.78 to 112.94, so three aquatic plants were suggested be bio-indicators for 95 Zr polluted water. The specific activity of 95 Zr in water decreased with time when the aquatic plants were put in slightly 95 Zr polluted water. The descent of specific activity of 95 Zr in water was very quick during the beginning period (0-3d). The time for the specific activity reduced to 50% was only 3 days, indicating that theres aquatic plants could be used to purge slightly 95 Zr polluted water. The effect of Eichhornia crassipes on purging 95 Zr in water was the best among the three aquatic plants. The specific activity of 95 Zr in bottom clay only decreased 5% after putting aquatic plants in water, indicating that desorption of 95 Zr from bottom clay was not easy. As the bottom clay had strong ability of adsorption and fixation to 95 Zr, the effect of aquatic plant on purging 95 Zr adsorbed by bottom clay was not visible

  20. Preliminary concentration and determination of Sr-90 in natural and waste water of Kursk region

    International Nuclear Information System (INIS)

    Basargin, N.N.; Rozovskij, Yu.G.; Grebennikova, R.V.; Salikhov, V.D.

    2001-01-01

    Synthesis and study of cheating sorbents containing functional analytical ortho-oxy-aza-ortho'-sulfonyl group are presented. Physicochemical properties of sorbents and chemisorption of Sr and Sr 90 are studied. A rapid method of preliminary concentration with subsequent atomic absorption and radiometric determination of Sr in natural and waste water is proposed. Samples of aqua-objects of Kursk region were analyzed using developed method. The results of radiometric investigations into control of strontium-90 content in cooling systems of Kursk NPP, waste waters, waters of Sejm river testifies higher values of concentration in the april - september period [ru

  1. Estimates concentrations in bottled 222Rn of the dose due to mineral waters in Iran

    International Nuclear Information System (INIS)

    Assadi, M. R.; Esmaealnejad, M.; Rahmatinejad, Z.

    2006-01-01

    Radon is a radionuclide that has the main role in exposure. Radon in water causes exposure in whole body but the largest dose being received by the stomach, as EPA (Environmental Protection Agency) estimates that radon in drinking water causes about 168 cancer deaths per year: 89 p ercent f rom lung cancer caused by breathing released to the indoor air from water and 11 p ercent f rom stomach cancer caused by consuming water containing radon. Now days the consumption of bottled mineral waters has become very popular. As is known, some kinds of mineral waters contain naturally occurring radionuclides in higher concentration than the usual drinking (tap) water. Surveys and reports on radon in most surface waters is low compared with radon level in groundwater and mineral water. In our work, the concentration of Rn(222) was determined in some bottled mineral waters available in Iran , and in next step the dose contribution ; due to ingestion ; for 1 l d -1 bottled mineral water consumption.

  2. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  3. Resinous constituent extracting process

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, W F

    1947-10-07

    The method of recovering oily constituents from coal or oil shale comprising the saturation of coal or oil shale in a sealed vessel with an organic solution having a boiling point at atmospheric pressure of not exceeding 220/sup 0/C, elevating the temperature within the vessel to a temperature below the cracking temperature of the constituents and maintaining the pressure within the vessel below 51 pounds, to extract the oily material from the coal or oil shale and subsequently separating the solvent from the oily material.

  4. Effects of water treatment processes used at waterworks on natural radionuclide concentrations

    International Nuclear Information System (INIS)

    Haemaelaeinen, K.; Vesterbacka, P.; Maekelaeinen, I.; Arvela, H.

    2004-08-01

    The occurrence of uranium and other natural radionuclides in waters of waterworks and the effects of the conventional water treatment processes on radionuclide concentrations were investigated. Water samples were collected from 17 waterworks. Radionuclide concentrations of the collected samples were compared to the currently valid concentrations according to the Finnish regulation, ST guide 12.3. Similarly the measured concentrations were compared to the values presented in the 98/83/EC directive and in the Commission recommendation, 2001/928/Euratom. The guidelines based on chemical toxicity of uranium were also considered. This report presents a summary of the radionuclide concentrations in waters distributed by waterworks. Short-term and logn-term temporal variation of radionuclide levels in raw water were also investigated. Waterworks selected to this study used different kinds of raw water sources and a variety of water treatment processes. Water samples were collected from 46 water catchments which used groundwater in soil, artificial groundwater or groundwater in bedrock as a source of raw water. The most common water treatment used in these catchments was alkalization. Other treatment processes used were various types of filtrations (sand, anthracite, slow sand and membrane filtration) and aeration. Four of the catchments distributed water without treatment. Sampling was carried out in co-operation with local health inspectors and waterworks staff in spring 2002. Later that autumn, monitoring samples were collected from eight catchments. The maximum value for radon, presented in ST guide 12.3, was exceeded in three water catchments that used groundwater in bedrock as a source of raw water. No exceedings were found in those water catchments that use groundwater in soil or artificial groundwater. The limits of uranium and radium calculated from the total indicative dose (98/83/EC) were not exceeded but the guidelines for lead and polonium, given in the

  5. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  6. [Influence of decomposition of Cladophora sp. on phosphorus concentrations and forms in the overlying water].

    Science.gov (United States)

    Hou, Jin-Zhi; Wei, Quan; Gao, Li; Sun, Wei-Ming

    2013-06-01

    Sediments were sampled in the dominated zone of Cladophora sp. in Rongcheng Swan Lake, and cultivated with algae in the laboratory to reveal the influence of Cladophora decomposition on concentrations and forms of phosphorus in the overlying water. Concentrations of total phosphorus (TP), dissolved total phosphorus (DTP), soluble reactive phosphorus (SRP), particulate phosphorus (PP) and dissolved organic phosphorus (DOP) in overlying water were investigated, and some physicochemical parameters, such as dissolved oxygen (DO), pH and conductivity were monitored during the experiment. In addition, the influence of algae decomposition on P release from sediments was analyzed. Due to the decomposition of Cladophora, DO concentration in the overlying water declined remarkably and reached the anoxic condition (0-0.17 mg x L(-1)). The pH value of different treatments also decreased, and treatments with algae reduced by about 1 unit. Concentrations of TP and different P forms all increased obviously, and the increasing extent was larger with the adding algae amount. TP concentrations of different treatments varied from 0.04 mg x L(-1) to 1.34 mg x L(-1). DOP and PP were the main P forms in the overlying water in algae without sediments treatments, but SRP concentrations became much higher in algae with sediments treatments. The result showed that P forms released from decomposing Cladophora were mainly DOP and PP, and the Cladophora decomposition could also promote the sediments to release P into the overlying water.

  7. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Concentration of Cs-137 Pollutan in Water Pumps in Several Cities of Java Island

    International Nuclear Information System (INIS)

    Nareh, M; Warsono, A; Indiyati, T; Yurfida; Buchari

    1996-01-01

    The aim of this research is to know the concentration of Cs-137 in the water pumps. The concentration of Cs-137 pollutant in the water pumps from 10 cities in Java Island had been determined. Cs-137 in big volume of water was collected in cation exchanger and eluted with 6N HCl solution. Cs-137 in the eluen was precipitated by ammoniumphosphomolybdate (AMP), soluted using NaOH solution and finally measured using Spectrometer Gamma Canberra 35 Plus with high pure germanium detector (HPGe). The results of measurement indicate that the concentration of cs-137 in the tested water pumps are in the range of under minimum detectable (BDT) to 2,06 + 0,79 mBq/I

  9. Estimation of fluoride concentration in drinking water and common beverages in United Arab Emirates (UAE).

    Science.gov (United States)

    Walia, Tarun; Abu Fanas, Salem; Akbar, Madiha; Eddin, Jamal; Adnan, Mohamad

    2017-07-01

    To assess fluoride concentration in drinking water which include tap water of 4 emirates - Abu Dhabi, Dubai, Sharjah and Ajman plus bottled water, commonly available soft drinks & juices in United Arab Emirates. Five different samples of tap water collected from each of the four emirates of UAE: Ajman, Sharjah, Abu Dhabi and Dubai; twenty-two brands of bottled water and fifteen brands of popular cold beverages, purchased from different supermarkets in U.A.E were tested using ion selective electrode method and the fluoride concentration was determined. The mean fluoride content of tap water samples was 0.14 mg F/L with a range of 0.04-0.3 mg F/L; with Ajman tap water samples showing the highest mean fluoride content of 0.3 mg F/L. The mean fluoride content for both bottled drinking water and beverages was 0.07 mg F/L with a range of 0.02-0.50 mg F/L and 0.04-0.1 mg F/L respectively. Majority (68.2%) of the bottled water are produced locally within U.A.E while a few (31.8%) are imported. The tap water, bottled water and beverages available in U.A.E show varying concentrations of fluoride, however none showed the optimal level necessary to prevent dental caries. Dental professionals in U.A.E should be aware of the fluoride concentrations before prescribing fluoride supplements to children.

  10. Results of the radon concentration survey in Sibiu county underground water

    International Nuclear Information System (INIS)

    Chicea, Dan; Cosma, Constantin

    2002-01-01

    In November 2000 a survey of radon ( 222 Rn) concentration in Sibiu county underground water was conducted. The radon concentration was measured with a A LUK 3A. The radon gas was extracted from water using the LUK VR device that works with LUK 3A. All samples were taken in 0.5 l recipients that were filled and sealed. Samples from eighteen cities and villages were taken. Special care was taken for the samples to be carefully brought to room temperature and not to be agitated or stirred before measuring the radon concentration. In measuring the radon concentration corrections like the solubility coefficient variation with temperature, the radon concentration increase in air in time and the background correction were applied. Results reveal that the underground water radon concentration is bigger in wells located in mountainous area, has an average value in wells from hilly region and is considerable lower in wells located in plain area. Another thing we noticed is that the samples taken from the city water pipe system present lower radon concentration values than the samples taken from home drilled wells. The minimum radon concentration value was found in the drinking water of Sibiu city, 1.6 Bq/l and in Sadu village, 1.965 Bq/l. The highest measured values are 28.1 Bq/l in Rasinari, a village located at the bottom of the mountains and 26.4 Bq/l, in Sibiel, a village 30 km away from the first one. These results reveal that the radon concentration values measured in Sibiu county are comparable with the measured values reported in literature and well below the maximum acceptable values. (authors)

  11. Measurements of natural uranium concentration in Caspian Sea and Persian Gulf water by laser fluorimetric method

    International Nuclear Information System (INIS)

    Garshasbi, H.; Karimi Diba, J.; Jahanbakhshian, M. H.; Asghari, S. K.; Heravi, G. H.

    2005-01-01

    Natural uranium exists in earth crust and seawater. The concentration of uranium might increase by human manipulation or geological changes. The aim of this study was to verify susceptibility of laser fluorimetry method to determine the uranium concentration in Caspian Sea and Persian Gulf water. Materials and Methods: Laser fluorimetric method was used to determine the uranium concentration in several samples prepared from Caspian Sea and Persian Gulf water. Biological and chemical substances were eliminated in samples for better evaluation of the method. Results: As the concentration of natural uranium in samples increases, the response of instrument (uranium analyzer) increases accordingly. The standard deviation also increased slightly and gradually. Conclusion: Results indicate that the laser fluorimetry method show a reliable and accurate response with uranium concentration up to 100 μg/L in samples after removal of biological and organic substances

  12. Preparation of the Hexacyanoferrate Ion Exchanger Matrix to Concentrate 137Cs from Sea Water

    International Nuclear Information System (INIS)

    Murdahayu Makmur

    2007-01-01

    Preparation of the hexacyanoferrate ion exchanger matrix to concentrate 137 Cs from large volume sea water has been done. The Pre-concentration is needed because 137 Cs concentration in sea water is too low. The hexacyanoferrate ion exchanger matrix can be prepared by performing the reaction of 10 gram silica gel with potassium hexacyanoferrate on concentration variation of 0.0025 M - 0.04 M and copper chloride on concentration variation of 0.005 M - 0.08 M. The volume of each reagent was 25 ml. The performance of the ion exchanger matrix depends on the chemical compositions both of the mixtures, it was expected that no remaining Fe ion and free Cu from the initial reagent. The final effluent will analyzed for Fe and Cu using Atomic Absorption Spectrometer. The optimal molar composition ration for potassium hexacyanoferrate and copper chloride was 0.5 for 10 gram silica gel. (author)

  13. Measurement of 222Rn concentration in drinking water in the environs of Thirthahalli taluk, Karnataka, India

    Directory of Open Access Journals (Sweden)

    G.M. Shilpa

    2017-07-01

    Full Text Available The dissolved radon concentration in water samples collected from various aquifers in and around Thirthahalli taluk was measured by employing active technique through Scintillation Radon Monitoring system. The measured radon concentration lies in the range of 0.37 ± 0.05 Bq/l to 87.02 ± 2.11 Bq/l. The resulting annual effective radiation dose to the public, who consume this water, lies in the range of 1.01μSvy−1 to 237.56 μSvy−1. However, no significant change in the radon concentration with respect to seasonal variation was observed in majority of the sample. Few samples show higher radon concentration during summer season and lower concentration in rainy season. All these results are presented in this paper.

  14. Predicting pollutant concentrations in the water column during dredging operations: Implications for sediment quality criteria

    International Nuclear Information System (INIS)

    Wasserman, Julio Cesar; Wasserman, Maria Angélica V.; Barrocas, Paulo Rubens G.; Almeida, Aline Mansur

    2016-01-01

    The development of new dredging techniques that can reduce, or at least predict, the environmental impacts, is in high demand by governments in developing countries. In the present work, a new methodology was developed, to evaluate the level of metals contamination (i.e. cadmium, lead and zinc) of the water column, during a dredging operation. This methodology was used to evaluate the impacts of the construction of a new maritime terminal in Sepetiba Bay, Brazil. The methodology quantifies the amount of resuspended sediments and calculates the expected contaminants concentrations in the water column. The results indicated that sediment quality criteria were not compatible with water quality criteria, because the dredging of contaminated sediments does not necessarily yield contaminated water. It is suggested that the use of sediment quality criteria for dredging operations might be abandoned, and the methodology presented in this study applied to assess dredging's environmental impacts, predicting water contamination levels. - Graphical abstract: A graphic model showing transference of contaminants from the sediments to the water column. The dark sediment area represents the dredged sediments and the arrows emerging from them represent the resuspended sediments affecting the water column. - Highlights: •Developing countries demand for new dredging projects. •A new model evaluates concentrations of metals in the water, caused by dredging. •The model shows that water and sediment quality criteria are not compatible. •Local hydrodynamics have a strong influence on the contamination of the water. •Management of dredging operations reduces environmental contamination.

  15. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    Science.gov (United States)

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  16. A volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  17. Water Quality and Heavy Metal Concentrations in Sediment of Sungai Kelantan, Kelantan, Malaysia: A Baseline Study

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Mushrifah, I.; Mohamad Shuhaimi Othman

    2009-01-01

    A study on water quality and heavy metal concentration in sediment at selected sites of Sungai Kelantan was carried out. Ten water samples were collected along the river for physical and chemical analysis and twenty-six water and sediment samples were collected for heavy metal analysis. Water was sampled at three different dates throughout the study period whereas sediments were collected once. In addition to heavy metal analysis, sediment samples were also analysed for texture, ph and organic content. The physical and chemical water quality analyses were carried out according to the ALPHA procedures. Result of water quality analysis (physico-chemical) indicated that Sungai Kelantan is characterised by excellent water quality and comparable to pristine ecosystems such as the National Park and Kenyir Lake. This river was classified into class I - class III based on Malaysian interim water quality standard criteria (INWQS). Heavy metals Pb, Zn, Cu and Cd was detected at low concentration in sediment samples, except for Fe and Mn. The presence of Fe and Mn in sediment samples was though to be of natural origin from the soil. Anthropogenic metal concentrations in sediment were low indicating that Sungai Kelantan has not experienced extreme pollution. (author)

  18. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wu

    2014-10-01

    Full Text Available 222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  19. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  20. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  1. Constituents of Chondria armata

    Digital Repository Service at National Institute of Oceanography (India)

    Govenkar, M.B.; Wahidullah, S.

    A novel long chain fatty ester, pentyl hentriacontanoate 1 and an orange red pigment, caulerpin 2 have been isolated and characterised from a red alga Chondria armata. The pigment caulerpin hitherto known to be a constituent of green algae of genus...

  2. Handling of membrane concentrate from reclamation of water in polyester dyeing

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik; Knudsen, Hans Henrik

    2003-01-01

    incineration, wet air oxidation, activated carbon, transport to hazardous waste treatment facility, and drying for zero-discharge. In most disposal scenarios considered it is advantageous to dewater the concentrate further from 2,5 %DS (dry solids) to 20 %DS in order to reduce its volume and thereby diminish...... recycling projects where the concentrate has low or no commercial value. In the scenarios analyzed, concentrate disposal costs represents between 10% and 70% of the total treatment costs per m3 of water recycled. It is therefore recommended to analyze in detail the available alternatives for concentrate...

  3. Handling of Membrane Concentrate from Reclamation of Water in Polyester Dyeing

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik; Knudsen, Hans Henrik

    2003-01-01

    incineration, wet air oxidation, activated carbon, transport to hazardous waste treatment facility, and drying for zero-discharge. In most disposal scenarios considered it is advantageous to dewater the concentrate further from 2,5 %DS (dry solids) to 20 %DS in order to reduce its volume and thereby diminish...... recycling projects where the concentrate has low or no commercial value. In the scenarios analyzed, concentrate disposal costs represents between 10% and 70% of the total treatment costs per m3 of water recycled. It is therefore recommended to analyze in detail the available alternatives for concentrate...

  4. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects.

    Science.gov (United States)

    Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H

    2014-12-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.

  5. Tritium concentrations in environmental water and food samples collected around the vicinity of the PNPP-1

    International Nuclear Information System (INIS)

    Garcia, T.Y.; Enriquez, S.O.; Duran, E.B.

    1986-01-01

    The natural radioactivity levels of tritium in environmental samples collected around the vicinity and more distant environment of the first Philippine Nuclear Power Plant (PNPP-1) in Bataan were assessed. The samples analyzed consisted of water samples such as seawater, freshwater, drinking water, groundwater and rainwater; and food samples such as cereals, vegetables, fruits; meat, milk fish and crustaceans. Tritium concentrations in water samples were determined by distillation and liquid scintillation counting techniques. The food samples were analyzed for tissue-free water tritium by the freezing-drying method followed by liquid scintillation counting techniques. (Auth.) 13 refs

  6. Therapeutic effects of various concentrations of lincomycin in drinking water on experimentally transmitted swine dysentery.

    Science.gov (United States)

    Hamdy, A H

    1978-07-01

    Three experimental studies were conducted in 232 growing pigs (8 to 12 weeks old) to evaluate the therapeutic effects of various concentrations of lincomycin in drinking water, against swine dysentery experimentally transmitted, by oral inoculation or by contact-commingling exposure. Four or 5 concentrations of lincomycin were used in each experiment (132, 66, 33, 16.5 or 0.0 mg/L of drinking water). Medication was initiated 7 to days after exposure and was continued for 6 to 10 days. Both methods of exposure were capable of transmitting the disease successfully. A more marked dose response was noticed in pigs inoculated orally than in pigs that were exposed by contact. All concentrations of lincomycin were effective for the treatment of swine dysentery by oral or by contact exposure. At the smaller concentration of 16.5 mg/L of drinking water, lincomycin was less effective for treating the disease than it was at greater concentrations. The suggested optimal concentration was 33 mg of lincomycin/L of drinking water for the treatment of swine dysentery.

  7. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott

    2015-09-01

    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  8. Analysis of radon concentrations in drinking water in Erbil governorate (Iraqi Kurdistan) and its health effects

    International Nuclear Information System (INIS)

    Ismail, Asaad H.; Haji, Salih O.

    2008-01-01

    Full text: This paper presents the results of radon level in drinking water in Erbil governorate and its districts. The measurements were carried out on 42 samples (tap water) of 21 major areas, and alpha track detectors (type Cr-39) were used for the estimations. The average values for radon concentration of tap water were variable from the district to another, and it was found to be (4.693±2.213 Bq/L) with a maximum of 9.61 Bq/L in Hugran region and minimum of 2.01 Bq/L in Haji-Omaran city. In addition, the average annual effective doses, and equilibrium factor between radon and its daughter were measured in each area and it was found to be (11.546±8.566 μSv/Yr) and (0.204±0.06) respectively. On the other hand, this paper presents an evaluation of the inhalation and ingestion doses from exposure to radon and also the contribution of radon concentration in drinking water to indoor radon concentration was estimated. When the results were compared with the internationally recommended reference levels (U.S Environmental Protection Agency limit 11.1 Bq/l), there were no indications of existence of radon problems in the water sources in this survey. Therefore the drinking water in Erbil governorate is safe as far as radon concentration is concerned. (author)

  9. On the substantion of permissible concentrations of plutonium isotopes in the water of fresh water and sea water NPP cooling reservoirs

    International Nuclear Information System (INIS)

    Grachev, M.I.; Gusev, D.I.; Stepanova, V.D.

    1985-01-01

    Substantiation of maximum permissible concentration (PC) of plutonium isotopes ( 238 Pu, 239 Pu, 240 Pu) in fresh and sea water cooling reservoirs of NPP with fast neutron reactors is given. The main criterion when calculating permissible plutonium content in water of surface reservoirs is the requirement not to exceed the established limits for radiation doses to persons resulted from water use. Data on coefficients of plutonium concentration in sea and fresh water hydrobionts are presented as well as on plutonium PC in water of fresh and sea water cooling reservoirs and bottom sediments of sea water cooling reservoirs. It is shown that doses to critical groups of population doesn't exceed potentially hazardous levels due to plutonium intake through food chains. But the calculation being carried out further should be corrected

  10. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    International Nuclear Information System (INIS)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S.; Makris, Konstantinos C.

    2016-01-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L"−"1, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L"−"1. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L"−"1). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L"−"1 and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system

  11. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S. [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.cy [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Department of Environmental Health, Harvard School of Public Health, Boston, MA (United States)

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L{sup −1}, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L{sup −1}. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L{sup −1}). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L{sup −1} and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system.

  12. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants.

    Science.gov (United States)

    Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G

    2013-10-01

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.

  13. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  14. Analysis of gamma irradiated pepper constituents, 1

    International Nuclear Information System (INIS)

    Takagi, Kazuko; Okuyama, Tsuneo

    1988-01-01

    A reversed phase high performance liquid chromatographic (HPLC) method was developed for the analysis of many constituents of pepper at the same time. And a extraction method of ultraviolet absorbing constituents from pepper was developed for the HPLC analysis. The Ultraviolet absorbing constituents were extracted by precooled Automatic Air-Hammer from frozen pepper with 20% acetonitrile in water. The process of extraction was achieved under cooling by liquid nitrogen from start to end. The extracted constituents were separated on a reversed phase C 8 (LiChrospher 300 RP - 8 10 μm 0.4 I.D. x 0.4 cm and LiChrosorb RP - 8 SelectB 0.4 I. D. x 25 cm) column with a concave gradient from 0.1% trifluoro acetic acid (TFA) in water to 75% acetonitrile and 0.1% TFA in water for 60 minutes. The eluted constituents were detected 210 nm and 280 nm. The present method permits the detection of about 50 peaks by 280 nm. (author)

  15. Fluoride Concentration in Water, Cow Milk and Cow Urine from Smallholder Dairy Farms in Kiambu- Kenya

    International Nuclear Information System (INIS)

    Gikunju, J.K.; Maitho, T.E.; Kyule, M.N.; Mitema, E.S.; Mugera, G.M.

    1999-01-01

    Kiambu district is situated in central part of Kenya. most of the available land is suitable for agricultural use. majority of the farmers are small scale or subsistence farmers and they are involve in a variety of livestock activities e.g. dairy production, pig production and others in combination or as separate operations. excessive fluoride ingestion can cause specific dental and skeletal lesions and in severe cases adversely influence the health and productivity performance of domestic animals.therefore a study was designed to investigate the levels of flouride in urine, milk and water samples from small scale dairy farms in Kiambu. Water, cow urine and milk samples were collected in clean plastic containers from 84 small scale farms belonging to 6 dairy farmers co-operative societies (DFCs). The DFCs in this study were Kiambaa, Lari, Nderi, Kikuyu, Chania and Limuru. The fluoride concentration in water milk and urine were analysed using the potentiometric method of fluoride ion specific electrode. overall urine contained the highest fluoride concentration while milk contained the lowest fluoride levels. Fluoride levels in water, milk and urine were significantly different, (P>0.05). The mean fluoride concentration in water from all societies was 0.29 ppm while the mean fluoride concentration in milk 0.05 ppm. urine samples had the highest fluoride concentration, (1.5 ppm). The cooperative specific mean fluoride concentrations arranged in descending order were as follow: Nderi (2.8 ppm), Kikuyu (2.4 ppm), Kiambaa(1.9 ppm), Chania (1.6 ppm), Limuru (1.3 ppm) and Lari (1.0 ppm). The maximum fluoride concentration encountered in water in this study was 3.4 ppm, however adverse productivity has been reported in dairy animals consuming as low as 2.15 ppm in drinking water. The mean milk production in in kilograms per day per cow ranged from 2.5 to 6.9 when all six dairy co-operative societies were taken into consideration. this is far below the expected production

  16. Investigation of selected water quality parameters in the Amargosa Drainage Basin

    International Nuclear Information System (INIS)

    Elliott, B.

    1982-08-01

    The purpose of this investigation was to determine whether Amargoso Desert water quality meets established federal drinking water standards. Samples were collected at selected drinking water supply sites and were analyzed for inorganic chemical constituents and radioactivity. The findings indicate that no concentrations of radioactivity in the drinking water exceeded the standards; however, some naturally occurring chemical constituent analysis indicate concentrations above federal drinking water standards. 18 references, 3 figures, 4 tables. (MF)

  17. Optimization of simultaneous ultrasonic-assisted extraction of water-soluble and fat-soluble characteristic constituents from Forsythiae Fructus Using response surface methodology and high-performance liquid chromatography.

    Science.gov (United States)

    Xia, Yong-Gang; Yang, Bing-You; Liang, Jun; Wang, Di; Yang, Qi; Kuang, Hai-Xue

    2014-07-01

    The compounds (+)-pinoresinol-β-glucoside (1) forsythiaside, (2) phillyrin (3) and phillygenin (4) were elucidated to be the characteristic constituents for quality control of Forsythiae Fructus extract by chromatographic fingerprint in 2010 edition of Chinese Pharmacopoeia due to their numerous important pharmacological actions. It is of great interest to extract these medicinally active constituents from Forsythiae Fructus simultaneously. In this study, a new ultrasound-assisted extraction (UAE) method was developed for the simultaneous extraction of biological components 1-4 in Forsythiae Fructus. The quantitative effects of extraction time, ratio of liquid to solid, extraction temperature, and methanol concentration on yield of these four important biological constituents from Forsythiae Fructus were investigated using response surface methodology with Box-Behnken design. The compounds 1-4 extracted by UAE were quantitative analysis by high-performance liquid chromatography-photodiode array detect (HPLC-PAD), and overall desirability (OD), the geometric mean of the contents of four major biological components, was used as a marker to evaluate the extraction efficiency. By solving the regression equation and analyzing 3-D plots, the optimum condition was at extraction temperature 70°C, time 60 min, ratio of liquid to solid 20, and methanol concentration 76.6%. Under these conditions, extraction yields of compounds 1-4 were 2.92 mg/g, 52.10 mg/g, 0.90 mg/g and 0.57 mg/g, respectively, which were in good agreement with the predicted OD values. In order to achieve a similar yield as UAE, soxhlet extraction required at least 6 h and maceration extraction required much longer time of 24 h. Established UAE method has been successfully applied to sample preparation for the quality control of Forsythiae Fructus. Additionally, a quadrupole time-of-flight mass spectrometry was applied to the structural confirmation of analytes from the complex matrices acquired by UAE

  18. Optimization of simultaneous ultrasonic-assisted extraction of water-soluble and fat-soluble characteristic constituents from Forsythiae Fructus Using response surface methodology and high-performance liquid chromatography

    Science.gov (United States)

    Xia, Yong-Gang; Yang, Bing-You; Liang, Jun; Wang, Di; Yang, Qi; Kuang, Hai-Xue

    2014-01-01

    Background: The compounds (+)-pinoresinol-β-glucoside (1) forsythiaside, (2) phillyrin (3) and phillygenin (4) were elucidated to be the characteristic constituents for quality control of Forsythiae Fructus extract by chromatographic fingerprint in 2010 edition of Chinese Pharmacopoeia due to their numerous important pharmacological actions. It is of great interest to extract these medicinally active constituents from Forsythiae Fructus simultaneously. Materials and Methods: In this study, a new ultrasound-assisted extraction (UAE) method was developed for the simultaneous extraction of biological components 1-4 in Forsythiae Fructus. The quantitative effects of extraction time, ratio of liquid to solid, extraction temperature, and methanol concentration on yield of these four important biological constituents from Forsythiae Fructus were investigated using response surface methodology with Box-Behnken design. The compounds 1-4 extracted by UAE were quantitative analysis by high-performance liquid chromatography-photodiode array detect (HPLC-PAD), and overall desirability (OD), the geometric mean of the contents of four major biological components, was used as a marker to evaluate the extraction efficiency. Results: By solving the regression equation and analyzing 3-D plots, the optimum condition was at extraction temperature 70°C, time 60 min, ratio of liquid to solid 20, and methanol concentration 76.6%. Under these conditions, extraction yields of compounds 1-4 were 2.92 mg/g, 52.10 mg/g, 0.90 mg/g and 0.57 mg/g, respectively, which were in good agreement with the predicted OD values. In order to achieve a similar yield as UAE, soxhlet extraction required at least 6 h and maceration extraction required much longer time of 24 h. Established UAE method has been successfully applied to sample preparation for the quality control of Forsythiae Fructus. Additionally, a quadrupole time-of-flight mass spectrometry was applied to the structural confirmation of analytes

  19. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  20. The prevalence of fluorosis in children is associated with naturally occurring water fluoride concentration in Mexico.

    Science.gov (United States)

    Mariño, Rodrigo

    2013-09-01

    Fluorosis and dental caries in Mexican schoolchildren residing in areas with different water fluoride concentrations and receiving fluoridated salt. Garcia-Perez A, Irigoyen-Carnacho ME, Borges-Yanez A. Caries Res 2013;47(4):299-308. Rodrigo Mariño Is there an association between the presence of dental fluorosis and fluoride concentration in drinking water? and Is there an association between the severity of fluorosis and dental caries experience in schoolchildren residing in two rural towns in Mexico (with water fluoride concentrations of 0.70 and 1.50 ppm) that also receive fluoridated salt? Government: National Council of Science and Technology (Consejo Nacional de Ciencia y Tecnologia, CONACYT) Other: Autonomous University, Xochimilco (Universidad Autonoma Metropolitana, UAM-X) TYPE OF STUDY/DESIGN: Cross-sectional Level 3: Other evidence Not applicable. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effect of Pumping Strategies on Pesticide Concentrations in Water Abstraction Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Albrechtsen, Hans-Jørgen

    Pesticide use in agriculture is one of the main sources of groundwater contamination and poses an important threat to groundwater abstraction. Pesticides have been detected in 37% of Danish monitoring wells sampled, with 12 % exceeding drinking water guidelines. Field data captured in monitoring...... and pumping wells show that pesticide concentrations vary greatly in both time and space. This study aimed to use models to determine how pumping affects pesticide concentrations in drinking water wells placed in two hypothetical aquifer systems; a homogeneous layered aquifer and a layered aquifer...... in a pumping well capture zone were constructed using COMSOL Multiphysics. A series of simulations were conducted to examine the effect of pumping strategies (constant versus varying pumping rate), pesticide properties and aquifer hydrogeology on the concentration in drinking water wells. The results...

  2. Determination of radon concentration in ground water in Aichi Prefecture by liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, A.; Shimizu, M.; Chaya, K.; Hamamura, N. (Aichi Prefectural Inst. of Public Health, Nagoya (Japan)); Kagami, T.

    1982-01-01

    The radon (Rn) concentration in ground water in Aichi Prefecture was determined by the liquid scintillation counter (LSC) method. The measurement of radon by LSC was made by integration counting, keeping the constant LS quantity in a vial and the constant geometry of a photomultiplier. The recovery rate of radon with 226-radium standard solution was 98.7%. The coefficient of variation in the measured values of radon concentration in ground water in Aichi Prefecture by the LSC method was 4.9%. For the same ground waters in the prefecture, the radon concentrations measured by the LSC method and by the conventional IM fontactoscope method were examined comparatively. This gave a regression formula of LSC value = 0.583 x IM value + 1.325 (n = 70, coefficient of correlation 0.966), indicating significant correlation between the two. It is thus shown that the LSC method is an effective means as the IM fontactoscope method.

  3. Determination of radon concentration in ground water in Aichi Prefecture by liquid scintillation counter

    International Nuclear Information System (INIS)

    Onuma, Akiko; Shimizu, Michihiko; Chaya, Kunio; Hamamura, Norikatsu; Kagami, Tadaaki.

    1982-01-01

    The radon (Rn) concentration in ground water in Aichi Prefecture was determined by the liquid scintillation counter (LSC) method. The measurement of radon by LSC was made by integration counting, keeping the constant LS quantity in a vial and the constant geometry of a photomultiplier. The recovery rate of radon with 226-radium standard solution was 98.7%. The coefficient of variation in the measured values of radon concentration in ground water in Aichi Prefecture by the LSC method was 4.9%. For the same ground waters in the prefecture, the radon concentrations measured by the LSC method and by the conventional IM fontactoscope method were examined comparatively. This gave a regression formula of LSC value = 0.583 x IM value + 1.325 (n = 70, coefficient of correlation 0.966), indicating significant correlation between the two. It is thus shown that the LSC method is an effective means as the IM fontactoscope method. (J.P.N.)

  4. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    Science.gov (United States)

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water

  5. An analysis of chemicals and other constituents found in produced water from hydraulically fractured wells in California and the challenges for wastewater management.

    Science.gov (United States)

    Chittick, Emily A; Srebotnjak, Tanja

    2017-12-15

    As high-volume hydraulic fracturing (HF) has grown substantially in the United States over the past decade, so has the volume of produced water (PW), i.e., briny water brought to the surface as a byproduct of oil and gas production. According to a recent study (Groundwater Protection Council, 2015), more than 21 billion barrels of PW were generated in 2012. In addition to being high in TDS, PW may contain hydrocarbons, PAH, alkylphenols, naturally occurring radioactive material (NORM), metals, and other organic and inorganic substances. PW from hydraulically fractured wells includes flowback water, i.e., injection fluids containing chemicals and additives used in the fracturing process such as friction reducers, scale inhibitors, and biocides - many of which are known to cause serious health effects. It is hence important to gain a better understanding of the chemical composition of PW and how it is managed. This case study of PW from hydraulically fractured wells in California provides a first aggregate chemical analysis since data collection began in accordance with California's 2013 oil and gas well stimulation law (SB4, Pavley). The results of analyzing one-time wastewater analyses of 630 wells hydraulically stimulated between April 1, 2014 and June 30, 2015 show that 95% of wells contained measurable and in some cases elevated concentrations of BTEX and PAH compounds. PW from nearly 500 wells contained lead, uranium, and/or other metals. The majority of hazardous chemicals known to be used in HF operations, including formaldehyde and acetone, are not reported in the published reports. The prevalent methods for dealing with PW in California - underground injection and open evaporation ponds - are inadequate for this waste stream due to risks from induced seismicity, well integrity failure, well upsets, accidents and spills. Beneficial reuse of PW, such as for crop irrigation, is as of yet insufficiently safety tested for consumers and agricultural workers as

  6. Role of natural dissolved organic compounds in determining the concentrations of americium in natural waters

    International Nuclear Information System (INIS)

    Nelson, D.M.; Orlandini, K.A.

    1985-01-01

    Concentrations of 241 Am, both in solution and bound to suspended particulate matter, have been measured in several North American lakes. Dissolved concentrations vary from 0.4 μBq/L to 85 μBq/L. The 241 Am in these lakes originated solely from global fallout and hence entered all lakes in the same physiocochemical form. The observed differences in solubility behavior must, therefore, be attributable to chemical and/or hydrological differences among the lakes. Concentrations of dissolved 241 Am are highly correlated with the corresponding concentrations of /sup 239, 240/Pu(III,IV), suggesting that a common factor is responsible for maintaining both in solution. The K/sub D/ values for 241 Am and /sup 239, 240/Pu(III,IV) are highly correlated with the concentrations of dissolved organic carbon (DOC) in the waters, suggesting that the common factor is the formation of soluble complexes with natural DOC for both elements. This hypothesis was tested in a series of laboratory experiments in which the DOC from several of the lakes was isolated by ultrafiltration. Plots of K/sub D/, as a function of DOC concentration, show K/sub D/ to be very high (approx.10 6 ) at low DOC concentrations. Above critical concentrations (a few mg/L DOC) the K/sub D/ values begin a progressive decrease with increasing DOC. We conclude that in most surface waters, the dissolved 241 Am concentration is regulated by an adsorption/desorption equilibrium with the sediments (and suspended solids) and the value of K/sub D/ that characterizes this equilibrium is largely determined by the concentration of natural DOC in the water. 11 refs., 3 figs., 2 tabs

  7. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  8. [Geographic distribution and exposure population of drinking water with high concentration of arsenic in China].

    Science.gov (United States)

    Zhang, L; Chen, C

    1997-09-01

    According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.

  9. Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Han, Chul Ho; Kim, Kyoungjin

    2012-01-01

    The power generation systems using a binary working fluid such as ammonia–water mixture are proven to be the feasible method for utilizing a low-temperature waste heat source. In this work, ammonia–water based Rankine (AWR) regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of ammonia mass concentration in the working fluid on the thermodynamic performances of systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of ammonia concentration and they might be the most important design consideration in optimizing the power systems using a binary working fluid. The analysis shows that the lower limit of workable ammonia concentration decreases with increasing turbine inlet pressure. Results also show that both the thermal and exergy efficiencies of AWRR system are generally better than those of AWR system, and can have peaks at the minimum allowable ammonia concentrations in the working range of system operation.

  10. ASSESSMENT OF INSTALLATION WATER QUALITY IN AN EDUCATIONAL BUILDING ON THE BASIS OF LEGIONELLA Sp. CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Amelia Beata Staszowska

    2017-06-01

    Full Text Available Legionella are known as one of the dangerous water-borne pathogens, causing severe respiratory tract infections. The aim of this study was to assess the installation water quality in an educational building located in Lublin on the basis of Legionella sp. concentration and physicochemical parameters of cold and hot installation water. Samples (n=60 of cold and hot water were collected for testing from the 10 tapping points during three surveys over a period of five months. The test samples were analyzed for the basic physicochemical parameters of the water quality such as pH, electrical conductivity, temperature, hardness, alkalinity, the total carbon content, the concentration of nitrates, chlorides and sulphates. Additionally, the concentration of calcium, magnesium, iron, manganese and zinc were examined. The presence of Legionella in water samples was measured according the standard methods. The quality of the analyzed water did not raise objections and met the criteria of the Ordinance of the Polish Ministry of Health (2015, pos.1989. The only parameter which did not comply with applicable regulations was the temperature of the supply water and return hot water - it was lower than required. Bacteria of the genus Legionella were detected only in the hot water samples from series 1 when the rate of colonization reached the level of 80%. Among the positive samples, 2 contained less than 1000 CFU/100 ml, 4 samples contained 1x103 to 1x104 CFU/100 ml, and 2 samples contained more than 1x104 CFU/100 ml. The maximum number of CFU in a sample was 1.8x104/100 ml. The most dangerous serogroup L. pneumophila sg 1 was not detected in any of the positive isolated samples. All Legionella - positive samples belonged to L. pneumophila sg 2-14. These findings necessitated a corrective action in the form of thermal disinfection system and its maintenance. Its effectiveness was confirmed by the results of the survey of 2 and 3.

  11. Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.

    Science.gov (United States)

    Norby, Jessica; Strawn, Daniel; Brooks, Erin

    2018-03-01

    To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Concentration of radionuclides in fresh water fish downstream of Rancho Seco Nuclear Generating Plant

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Dawson, J.M.; Brunk, J.L.; Wong, X.M.

    1984-01-01

    Fish were collected for radionuclide analysis over a 5-month period in 1984 from creeks downstream of the Rancho Seco Nuclear Generating Plant, which has been discharging quantities of some fission and activation products to the waterway since 1981. Among the fish, the bluegill was selected for intensive study because it is very territorial and the radionuclide concentrations detected should be representative of the levels in the local environment at the downstream locations sampled. Among the gamma-emitting radionuclides routinely released, only 134 Cs and 137 Cs were detected in the edible flesh of fish. Concentrations in the flesh of fish decreased with distance from the plant. The relationship between concentration and distance was determined to be exponential. Exponential equations were generated to estimate concentrations in fish at downstream locations where no site-specific information was available. Mean concentrations of 137 Cs in bluegill collected during April, May, July and August from specific downstream stations were not significantly different in spite of the release of 131 mCi to the creeks between April and August. The concentrations in fish are not responding to changes in water concentrations brought about by plant discharges. Diet appears to be a more significant factor than size or weight or water concentration in regulating body burdens of 137 Cs in these fish

  13. Modeling the distribution of colonial species to improve estimation of plankton concentration in ballast water

    Science.gov (United States)

    Rajakaruna, Harshana; VandenByllaardt, Julie; Kydd, Jocelyn; Bailey, Sarah

    2018-03-01

    The International Maritime Organization (IMO) has set limits on allowable plankton concentrations in ballast water discharge to minimize aquatic invasions globally. Previous guidance on ballast water sampling and compliance decision thresholds was based on the assumption that probability distributions of plankton are Poisson when spatially homogenous, or negative binomial when heterogeneous. We propose a hierarchical probability model, which incorporates distributions at the level of particles (i.e., discrete individuals plus colonies per unit volume) and also within particles (i.e., individuals per particle) to estimate the average plankton concentration in ballast water. We examined the performance of the models using data for plankton in the size class ≥ 10 μm and test ballast water compliance using the above models.

  14. Radon and radium concentrations in bottled waters: An estimate of ingestion doses

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Carretero, J.; Liger, E.

    1997-01-01

    Concentration levels of Ra-226 and Rn-222 have been analysed in most of the bottled waters commercially available in Spain. Concentrations up to about 600 Bq/m 3 with a geometric mean of 12 Bq/m 3 were observed for Ra-226. For Rn-222 a geometric mean of 1200 Bq/m 3 with values ranging from 52000 to 1400 Bq/m 3 were measured. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of Ra-226 present in these waters are expected to range from about 102 to 2 μSv·y -1 . Dose equivalents to the stomach due to Rn-222 intake through water consumption are estimated to reach values around 30 μSv·y -1 . (author)

  15. Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico.

    Science.gov (United States)

    Jonathan, M P; Roy, P D; Thangadurai, N; Srinivasalu, S; Rodríguez-Espinosa, P F; Sarkar, S K; Lakshumanan, C; Navarrete-López, M; Muñoz-Sevilla, N P

    2011-04-01

    A survey on the metal concentrations (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, Zn) in beach water and sediments is reported from the tourist destination of Acapulco city on the Pacific coast of Mexico. The concentration of dissolved trace metals (DTMs) in beach water and acid leachable trace metals (ALTMs) in sediments indicated that they are anthropogenic in nature due to the increased tourist activities in the crowded beach locations. The statistical analysis indicates Fe and Mn play a major role as metal scavengers in both the medium (water and sediment) and the higher value of other metals is site specific in the study area, indicating that they are transported from the local area. Comparison results suggest that the beach water quality has deteriorated more than the sediments and special care needs to be taken to restore the beach quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Comparative study of uranium concentration in water samples of SW and NE Punjab, India

    International Nuclear Information System (INIS)

    Saini, Komal; Bajwa, B.S.

    2014-01-01

    Since the commencement of the earth, radiations and natural radioactivity has always been a part of environment. Uranium is heaviest naturally occurring element which is widespread in nature, mainly occurs in granites mineral deposits. The natural weathering of rocks such as granite dissolves the natural uranium, which goes into groundwater by leaching and precipitation called illumination process. People are always exposed to certain amount of uranium from air, water, soil and food as it is usually present in these components. About 85% of ingested uranium enter into human body through drinking water which makes it very important to estimate uranium concentration in potable water. Uranium and some other heavy metals may increase the risk of kidney damage, cancer diseases where experimental evidence suggests that respiratory and reproductive system are also affected by uranium exposure. In the present study comparative study of uranium concentration in potable water samples of SW and NE Punjab has been analysed

  17. Changes in Rice Pesticide Use and Surface Water Concentrations in the Sacramento River Watershed, California

    Science.gov (United States)

    Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    Pesticides applied to rice fields in California are transported into the Sacramento River watershed by the release of rice field water. Despite monitoring and mitigation programs, concentrations of two rice pesticides, molinate and thiobencarb, continue to exceed the surface-water concentration performance goals established by the Central Valley Regional Water Quality Control Board. There have been major changes in pesticide use over the past decade, and the total amount of pesticides applied remains high. Molinate use has declined by nearly half, while thiobencarb use has more than doubled; carbofuran has been eliminated and partially replaced by the pyrethroid pesticide lambda-cyhalothrin. A study was conducted in 2002 and 2003 by the U.S. Geological Survey to determine if the changes in pesticide use on rice resulted in corresponding changes in pesticide concentrations in surface waters. During the rice growing season (May-July), water samples, collected weekly at three sites in 2002 and two sites in 2003, were analyzed for pesticides using both solid-phase and liquid-liquid extraction in combination with gas chromatography/mass spectrometry. Analytes included lambda-cyhalothrin, molinate, thiobencarb, and two degradation products of molinate: 2-keto-molinate and 4-keto-molinate. Molinate, thiobencarb, and 4-keto-molinate were detected in all samples, 2-keto-molinate was detected in less than half of the samples, and lambda-cyhalothrin was not detected in any samples. At two of the sites sampled in 2002 (Colusa Basin Drain 1 and Sacramento Slough), concentrations of molinate were similar, but thiobencarb concentrations differed by a factor of five. Although concentrations cannot be estimated directly from application amounts in different watersheds, the ratio of molinate to thiobencarb concentrations can be compared with the ratio of molinate to thiobencarb use in the basins. The higher concentration ratio in the Sacramento Slough Basin, compared with the ratio

  18. Plasma concentrations of enrofloxacin in African grey parrots treated with medicated water.

    Science.gov (United States)

    Flammer, K; Aucoin, D P; Whitt, D A; Prus, S A

    1990-01-01

    Plasma concentrations of enrofloxacin were measured four times during a 7-day treatment period in African grey parrots that were fed with enrofloxacin-medicated drinking water. Water medicated at doubling doses of 0.09, 0.19, 0.38, 0.75, 1.5, and 3.0 mg/ml achieved mean concentrations (+/- SEM) of 0.10 (+/- 0.05), 0.12 (+/- 0.05), 0.12 (+/- 0.03), 0.15 (+/- 0.05), 0.30 (+/- 0.11), and 0.20 (+/- 0.06) micrograms/ml, respectively. A portion of the administered enrofloxacin was metabolized to an equipotent metabolite, ciprofloxacin. Mean ciprofloxacin concentrations paralleled enrofloxacin concentrations but were lower, ranging from 0.04 to 0.27 micrograms/ml. Acceptance of medicated water was adequate at lower doses; however, at doses of 1.5 and 3.0 mg/ml, acceptance was unsatisfactory, and mean weight loss in these groups was significantly higher than the control group. Based on the concentrations achieved in these preliminary trials and the susceptibility patterns of gram-negative bacteria isolated from psittacine birds, drinking water medicated with enrofloxacin at 0.19-0.75 mg/ml might be effective for treating highly susceptible gram-negative bacterial infections in African grey parrots.

  19. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    Science.gov (United States)

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs.

  20. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  1. Integrated Microanalytical System for Simultaneous Voltammetric Measurements of Free Metal Ion Concentrations in Natural Waters

    OpenAIRE

    Noël, Stéphane; Tercier-Waeber, Mary-Lou; Lin, Lin; Buffle, Jacques; Guenat, Olivier; Koudelka-Hep, Milena

    2007-01-01

    A complexing gel integrated microelectrode (CGIME) for direct measurements of free metal ion concentrations in natural waters has been developed. It is prepared by the successive deposition of microlayers of a chelating resin, an antifouling agarose gel and Hg on a 100-interconnected Ir-based microelectrode array. The trace metals of interest are in a first step accumulated on the chelating resin in proportion to their free ion concentration in solution, then released in acidic solution and d...

  2. Investigation of the Radium Activity Concentration in Drinking Water of central Region Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Zovko, E.; Sirbubalo, M.; Catovic, S.

    1998-01-01

    Preliminary investigation of the 226 Ra activity concentration in drinking water in central region of Bosnia and Herzegovina have been performed. The results show that the activity concentrations of the samples vary between 33.3 - 48.8 Bq m -3 . According to the legal stipulation as given by the Official Bulletin of Bosnia and Herzegovina (2/.92), it can be concluded that the results are within given regulations. (author)

  3. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Energy Technology Data Exchange (ETDEWEB)

    Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  4. Studies on radon concentration in underground water samples in and around Kabini river basin

    International Nuclear Information System (INIS)

    Yashaswini, T.; Ningappa, C.; Niranjan, R.S.; Sannappa, J.

    2017-01-01

    Radon is a radioactive inert gas, a decay product of radium, causes environmental health problems like lung cancer. Radium present in the earth crest continuously releases radon into underground water. From the point view of health, the study of radon concentration level in underground water base line data is important. In the present study, radon concentration in underground water have been measured in 40 underground water samples collected in and around Kabini River of Karnataka State by using Emanometry technique. The radon concentration in the study area varies from 21.2 to 168.2Bq.l -1 with a geometrical mean value of 73.3 Bq.l -1 . The physicochemical parameters of water such as chloride, Fluoride, nitrite, sulphate, TDS are measured in the same samples in order to know about the impact of these parameters on radon concentration and their health risks to the general public. The experimental techniques and results obtained are discussed in the presentation. (author)

  5. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    International Nuclear Information System (INIS)

    Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.

    2011-01-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.

  6. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya

    International Nuclear Information System (INIS)

    Sahin, L.; Cetinkaya, H.; Murat Sac, M.; Ichedef, M.

    2013-01-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l -1 , while the radium concentration varies from a minimum detectable activity of -1 in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y -1 ; the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y -1 ; the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y -1 . The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y -1 , assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6μmSv y -1 . (authors)

  7. Concentration of Heavy Metals in the Territorial Sea Water of the Kingdom of Bahrain, Arabian Gulf

    International Nuclear Information System (INIS)

    Juma, H.A.; Al-Madany, I.M.

    2008-01-01

    This is the first investigation for the analysis of heavy metal covering the territorial water of Kingdom of Bahrain. For the purpose of establishing baseline, as well as the assessment of marine contamination due to heavy metals, sea water were collected from 23 different sites known as fishing areas of the territorial water of the Kingdom of Bahrain in the year 2007. The heavy metals analyzed were Arsenic, Cadmium (Cd), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb), Vanadium (V), Zinc (Zn) and Mercury (Hg), using Inductively Coupled Plasma Emission Spectroscopy (ICP-OES). The concentrations of As, Cd, Cu, Fe, Mn, Ni, Pb, V, Zn, Hg were in the range of 0.85-2.75, 0.06-5.20, 4.53-119.00, 1.03-28.62, 0.06-1.24, 0.71-20.1, 1.13-2.01, 1.13-9.93, 4.06-118.0 and 0.13-0.38 ug/1, respectively representing the baseline trace metal concentrations of sea water in the Kingdom of Bahrain. The results suggest that the Kingdom of Bahrain's marine waters seem to be of good quality as the concentrations of the metals reported the studied areas are far below the United Kingdom Water quality standards and United States Environmental Protection Agency recommended water quality criteria, with the exception of copper in all sites, and Mercury (Hg) in Msoor site. In general concentrations of the trace elements in sea water were similar to those of other areas worldwide, and were deemed not to be of any toxicological significance. (author)

  8. Proposal of limits for the concentration of radionuclides activity in drinking water for Polish population

    International Nuclear Information System (INIS)

    Filipiak, B.; Haratym, Z.

    2008-01-01

    The paper discussed the influence of the radionuclides contents in drinking water on the exposure of the population. The way of transformation of the limits of effective dose into the relevant concentration of radionuclides in drinking water is presented together with the results of these calculations. We propose to approve these limits for particular radionuclides. The suggestion for the methodology and organization of measurements are also given. (author)

  9. The Influence of the Zebra Mussel (Dreisena Polymorhpa) on Magnesium and Calcium Concentration in Water

    OpenAIRE

    Wojtal-Frankiewicz Adrianna; Frankiewicz Piotr

    2011-01-01

    In this study we examined changes in magnesium and calcium ion concentrations depending on Zebra Mussel biomass, pH values and temperature. We performed field experiments in years with different weather conditions using twelve 200 litre polycarbonate containers filled with 150 litres of non-filtered water from lowland, eutrophic reservoirs. Three treatments of the experiment were represented by: Phyto control with non-filtered water, Phyto+Dreis A with Zebra Mussel biomass of 500 g/m2, and Ph...

  10. Chemical constituents of Asparagus

    Science.gov (United States)

    Negi, J. S.; Singh, P.; Joshi, G. P.; Rawat, M. S.; Bisht, V. K.

    2010-01-01

    Asparagus species (family Liliaceae) are medicinal plants of temperate Himalayas. They possess a variety of biological properties, such as being antioxidants, immunostimulants, anti-inflammatory, antihepatotoxic, antibacterial, antioxytocic, and reproductive agents. The article briefly reviews the isolated chemical constituents and the biological activities of the plant species. The structural formula of isolated compounds and their distribution in the species studied are also given. PMID:22228964

  11. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de

    2011-01-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  12. Evaluation of radon concentration in well and tap waters in Bursa (Turkey)

    International Nuclear Information System (INIS)

    Akar Tarim, U.; Gurler, O.; Akkaya, G.; Kilic, N.; Yalcin, S.; Kaynak, G.; Gundogdu, O.

    2012-01-01

    222 Rn measurements in water samples collected from 27 wells and 19 taps that were supplied from the investigated wells were conducted using the AlphaGUARD PQ 2000PRO radon gas analyser at sites across several geologic formations within the city of Bursa (Turkey). The measured radon concentrations ranged from 1.46 to 53.64 Bq l -1 for well water and from 0.91 to 12.58 Bq l -1 for tap water. Of the 27 sites sampled, only 7 had radon levels above the safe limit of 11.1 Bq l -1 recommended by the USEPA. In general, all determined concentrations were well below the 100 Bq l -1 revised reference level proposed by the European Union. These values of radon concentrations in water samples are compared with those reported from other countries. Doses resulting from the consumption of these waters were calculated. The minimum and the maximum annual mean effective doses due to 222 Rn intake through water consumption were 0.02 μSv a -1 and 1.11 μSv a -1 , respectively. (authors)

  13. A Global Analysis of the Relationship between Concentrations of Microcystins in Water and Fish

    Directory of Open Access Journals (Sweden)

    Natalie M. Flores

    2018-02-01

    Full Text Available Cyanobacteria, the primary bloom-forming organisms in fresh water, elicit a spectrum of problems in lentic systems. The most immediate concern for people and animals are cyanobacterial toxins, which have been detected at variable concentrations in water and fish around the world. Cyanotoxins can transfer through food webs, potentially increasing the risk of exposure to people who eat fish from affected waters, yet little is known about how cyanotoxins fluctuate in wild fish tissues. We collated existing studies on cyanotoxins in fish and fresh water from lakes around the world into a global dataset to test the hypothesis that cyanotoxin concentrations in fish increase with water toxin concentrations. We limited our quantitative analysis to microcystins because data on other cyanotoxins in fish were sparse, but we provided a qualitative summary of other cyanotoxins reported in wild, freshwater fish tissues. We found a positive relationship between intracellular microcystin in water samples and microcystin in fish tissues that had been analyzed by assay methods (enzyme-linked immunosorbent assay and protein phosphatase inhibition assay. We expected microcystin to be found in increasingly higher concentrations from carnivorous to omnivorous to planktivorous fishes. We found, however, that omnivores generally had the highest tissue microcystin concentrations. Additionally, we found contrasting results for the level of microcystin in different tissue types depending on the toxin analysis method. Because microcystin and other cyanotoxins have the potential to impact public health, our results underline the current need for comprehensive and uniform detection methods for the analysis of cyanotoxins in complex matrices.

  14. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    Science.gov (United States)

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Elevated lung cancer in younger adults and low concentrations of arsenic in water.

    Science.gov (United States)

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R; Liaw, Jane; Smith, Allan H

    2014-12-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. State of the art and review on the treatment technologies of water reverse osmosis concentrates.

    Science.gov (United States)

    Pérez-González, A; Urtiaga, A M; Ibáñez, R; Ortiz, I

    2012-02-01

    The growing demand for fresh water is partially satisfied by desalination plants that increasingly use membrane technologies and among them reverse osmosis to produce purified water. Operating with water recoveries from 35% to 85% RO plants generate huge volumes of concentrates containing all the retained compounds that are commonly discharged to water bodies and constitute a potentially serious threat to marine ecosystems; therefore there is an urgent need for environmentally friendly management options of RO brines. This paper gives an overview on the potential treatments to overcome the environmental problems associated to the direct discharge of RO concentrates. The treatment options have been classified according to the source of RO concentrates and the maturity of the technologies. For the sake of clarity three different sources of RO concentrates are differentiated i) desalination plants, ii) tertiary processes in WWTP, and iii) mining industries. Starting with traditional treatments such as evaporation and crystallization other technologies that have emerged in last years to reduce the volume of the concentrate before disposal and with the objective of achieving zero liquid discharge and recovery of valuable compounds from these effluents are also reviewed. Most of these emerging technologies have been developed at laboratory or pilot plant scale (see Table 1). With regard to RO concentrates from WWTP, the manuscript addresses recent studies that are mainly focused on reducing the organic pollutant load through the application of innovative advanced oxidation technologies. Finally, works that report the treatment of RO concentrates from industrial sources are analyzed as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Fiber Bragg Grating Sensor for Detection of Nitrate Concentration in Water

    Directory of Open Access Journals (Sweden)

    A. S. LALASANGI

    2011-02-01

    Full Text Available The concentrations of chemical species in drinking water are of great interest. We demonstrated etched fiber Bragg grating (FBG as a concentration sensor for nitrate by analyzing the Bragg wavelength shift with concentration of chemical solution. The FBG is fabricated by phase mask technique on single mode Ge-B co-doped photosensitive fiber. Sensitivity of FBGs to the surrounding solution concentration can be enhanced by reducing diameter of the cladding with 40 % HF solution. The maximum sensitivity achieved is 1.322 ´ 10-3 nm/ppm. The overall shift of Bragg wavelength is of the order of 6.611 ´ 10-2 nm for 10 to 50 ppm concentration.

  18. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2012-11-01

    Full Text Available Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known.

    In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.

  19. Study of Uranium Concentrations in Water and Organic Material from Streams in Sweden

    International Nuclear Information System (INIS)

    Ek, J.

    1981-12-01

    The purpose of the investigation has been to study how uranium concentrations in stream water and organic material are related to various geological parameters such as rock types, average uranium content and radioactivity, fracturing, leachability of uranium from the bedrock, occurrence of uranium mineralisations and thickness and type of Quarternary deposits. The investigation has also taken account of the effects of environmental factors such as climate , precipitation, height above sea level and topography. The background concentration of uranium in organic stream sediment varies from 1 ppm to 45 ppm, with a background value of 10 ppm for all 14 areas considered together. The threshold value for organic stream material varies from 3 ppm U to 303 ppm U with a threshold value of 133 ppm U for all 14 areas considered together. For water, the background concentration varies between the 5 areas from 0.2 ppb U to 0.7 ppb U with a background value of 0.4 ppb U for all 5 areas together. The threshold value varies from 0.3 ppb U to 5.2 ppb U with a threshold value of 2.9 ppb U for all 5 areas together. An investigation of the correlation between uranium concentrations in water and organic stream material from one and the same sampling point shows a positive correlation for high concentrations, but the correlation becomes successively less significant with lower concentrations. Uranium concentrations in organic stream material and water are positively correlated with the following geological parameters:1) Background concentrations of uranium in the bedrock. 2) Abundance of fractures in the bedrock. 3) Leachability of uranium from the bedrock. 4) Presence of uranium mineralisations. For organic stream material, this positive correlation is obtained for both high and low uranium concentrations whereas for water it occurs only with high concentrations. In areas of broken topography and high relief, there is a more clearly defined correlation to the bedrock than in areas of

  20. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    International Nuclear Information System (INIS)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza

    2014-01-01

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal

  1. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza [GC University, Lahore (Pakistan)

    2014-10-15

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal.

  2. Statistical summary of selected physical, chemical, and microbial characteristics, and estimates of constituent loads in urban stormwater, Maricopa County, Arizona

    Science.gov (United States)

    Lopes, T.J.; Fossum, K.D.; Phillips, J.V.; Monical, J.E.

    1995-01-01

    Stormwater and streamflow in the Phoenix, Arizona, area were monitored to determine the physical, chemical, and microbial characteristics of storm- water from areas having different land uses; to describe the characteristics of streamflow in a river that receives urban stormwater; and to estimate constituent loads in stormwater from unmonitored areas in Maricopa County, Arizona. Land use affects urban stormwater chemistry mostly because the percentage of impervious area controls the suspended-solids concentrations and varies with the type of land use. Urban activities also seem to concentrate cadmium, lead, and zinc in sediments. Urban stormwater had larger concentrations of chemical oxygen demand and biological oxygen demand, oil and grease, and higher counts of fecal bacteria than streamflow and could degrade the quality of the Salt River. Most regression equations for estimating constituent loads require three explanatory variables (total rainfall, drainage area, and per- centage of impervious area) and had standard errors that were from 65 to 266 percent. Localized areas that appear to contribute a large proportion of the constituent loads typically have 40 percent or more impervious area and are associated with industrial, commercial, and high-density residential land uses. The use of the mean value of the event-mean constituent concentrations measured in stormwater may be the best way of estimating constituent concentrations.

  3. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  4. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  5. Assessment of selected inorganic constituents in streams in the Central Arizona Basins Study Area, Arizona and northern Mexico, through 1998

    Science.gov (United States)

    Anning, David W.

    2003-01-01

    Stream properties and water-chemistry constituent concentrations from data collected by the National Water-Quality Assessment and other U.S. Geological Survey water-quality programs were analyzed to (1) assess water quality, (2) determine natural and human factors affecting water quality, and (3) compute stream loads for the surface-water resources in the Central Arizona Basins study area. Stream temperature, pH, dissolved-oxygen concentration and percent saturation, and dissolved-solids, suspended-sediment, and nutrient concentration data collected at 41 stream-water quality monitoring stations through water year 1998 were used in this assessment. Water-quality standards applicable to the stream properties and water-chemistry constituent concentration data for the stations investigated in this study generally were met, although there were some exceedences. In a few samples from the White River, the Black River, and the Salt River below Stewart Mountain Dam, the pH in reaches designated as a domestic drinking water source was higher than the State of Arizona standard. More than half of the samples from the Salt River below Stewart Mountain Dam and almost all of the samples from the stations on the Central Arizona Project Canal?two of the three most important surface-water sources used for drinking water in the Central Arizona Basins study area?exceeded the U.S. Environmental Protection Agency drinking water Secondary Maximum Contaminant Level for dissolved solids. Two reach-specific standards for nutrients established by the State of Arizona were exceeded many times: (1) the annual mean concentration of total phosphorus was exceeded during several years at stations on the main stems of the Salt and Verde Rivers, and (2) the annual mean concentration of total nitrogen was exceeded during several years at the Salt River near Roosevelt and at the Salt River below Stewart Mountain Dam. Stream properties and water-chemistry constituent concentrations were related to

  6. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  7. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  8. Determination of the radon Concentration in underground water in selected areas in and around Kumasi

    International Nuclear Information System (INIS)

    Owusu, Seth Adjei

    2012-06-01

    Radon (Rn-222) is a radioactive noble gas of natural origin that may be found anywhere in soil, air and different types of water: surface, borehole, well and spring. It is worth to carry out surveys for the radon in water for radiation protection as well as for geological considerations. The research presenters here was carried out in selected towns in and around Kumasi for the determination of radon concentration in groundwater. The major towns from which samples were taken are , Mowire, Kronum, Aburaso, Medoma, Kenyase, Buokrom, Bomfa, Ayeduase, Kotei, Tikrom. All the samples are used for domestic purposes such as cooking, drinking, bathing and washing. Waters from boreholes and wells in the selected towns were sampled and the radon concentration level measured. The Roll’s method was used for the radon concentration analysis on all the 100 samples. The results shows that, the minimum radon concentration in groundwater was 13015.934 Bq/m3 and it was found at Bomfa, and the highest was found to be 964628.480 Bq/m3, recorded at Mowire. It is believed that this variation of levels is mainly due to the difference in rock type, soil type and geology of the area as well as the depth of the water samples. This information can be used to estimate the possible health hazards from radon in the selected towns in the future from environmental point of view. The data would promote public awareness related to risk of radon exposure. (au)

  9. Concentration and toxicity of some metals in zooplankton from nearshore waters of Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Nair, V.R.; Narvekar, P.V.; Desai, B.N.

    Zooplankton samples collected from 4 stations located in the nearshore waters of Bombay were analysed for Cu, Co, Mn, Ni and Cd. Concentrations of Co, Mn and Ni were more in copepods and gelatinous organisms than in mysids and decapods. High...

  10. RA-226 concentration in water samples near uranium mines and in marine fishes

    International Nuclear Information System (INIS)

    Porntepkasemsan, B.

    1987-11-01

    Radium-226 and calcium were measured in water samples from the vicinity of three uranium mines and in fish samples collected from Puget sound, Washington State. The radium content of the samples were below the maximum permissible concentration 3 pCi/L for drinking water recommended by the Public Health Service and U.S. Environmental Protection Agency. The mean value of Ra-226 in water was 0.428 pCi/L and ranged from 0.043 to 1.552 pCi/L, whereas calcium content ranged from 3.0 to 190.0 mg/L. Ra-226 concentrations and calcium content in whole fish were 0.833-20.328 pCi/kg wet wt. and 114.1-259.3 mg/g ash, respectively. Results of the study indicated that Ra-226 concentration in water was correlated with calcium concentration but that this correlation was not observed in fish sample except English sole

  11. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Krupička, Jan

    2016-01-01

    Roč. 94, č. 6 (2016), s. 1040-1047 ISSN 0008-4034 R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle-water mixture * gamma-ray radiometry * concentration distribution * horizontal conveying Subject RIV: BK - Fluid Dynamics Impact factor: 1.356, year: 2016

  12. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some

  13. Measurement of the 226Ra-concentration in bottled Austrian mineral waters and table beverages

    International Nuclear Information System (INIS)

    Friedmann, H.; Hernegger, F.

    1978-01-01

    226 Ra being regarded nowadays as a toxic trace element, a systementic examination of bottled Austrian mineral waters and table beverages has been carried out. Only in one case was the maximum allowable concentration of 3.3 pCi/l, a value set up by the WHO, clearly exceeded. (orig.) [de

  14. Study of the concentration of 7 Be in samples of rain water

    International Nuclear Information System (INIS)

    Quintero P, E.; Rojas M, V.P.

    2004-01-01

    This work shows the methodology carried out for the determination of 7 Be in samples of rain water and the obtained results of the concentration of having said radionuclide in this sampled matrix during the last five years in the Nuclear Center of Mexico. (Author)

  15. Evaluation of Chlorinated Hydrocarbon Concentrations in Tehran’s Districts Drinking Water

    Directory of Open Access Journals (Sweden)

    Alireza Pardakhti

    2012-01-01

    Full Text Available In this study Tehran’s drinking water was evaluated for the presence of chlorinated hydrocarbons during spring and summer of 2009. Chlorinated hydrocarbons are an important class of environmental pollutants that cause adverse health effects on human’s kidney, liver and central nervous systems. In this study six water districts were selected for taking drinking water samples in the city of Tehran as well as one location outside the city limits. The samples were analyzed by GC/MS using EPA method 8260. The average concentrations of 1,1-dichloroethylene, 1,2 Dichloromethane, Tetra chloromethane, Trichloroethylene and tetra chloroethylene were determined during a 7 month period and the results were 0.04ppb, 0.52ppb, 0.01ppb, 0.24ppb, 0.03ppb respectively. The highest concentration of chlorinated hydrocarbon observed in Tehran’s drinking water was Trichloroethylene and the lowest concentration was Tetra chloromethane. Districts 5 and 6 showed the highest concentrations of chlorinated hydrocarbons in the city of Tehran.

  16. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Fernandes, T.; Wiryawan, Y.; Tafwik, A.; Visser, de M.; Zeeman, G.

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of

  17. Radon Concentration And Dose Assessment In Well Water Samples From Karbala Governorate Of Iraq

    Science.gov (United States)

    Al-Alawy, I. T.; Hasan, A. A.

    2018-05-01

    There are numerous studies around the world about radon concentrations and their risks to the health of human beings. One of the most important social characteristics is the use of water wells for irrigation, which is a major source of water pollution with radon gas. In the present study, six well water samples have been collected from different locations in Karbala governorate to investigate radon concentration level using CR-39 technique. The maximum value 4.112±2.0Bq/L was in Al-Hurr (Al-Qarih Al-Easariah) region, and the lowest concentration of radon was in Hay Ramadan region which is 2.156±1.4Bq/L, with an average value 2.84±1.65Bq/L. The highest result of annual effective dose (AED) was in Al-Hurr (Al-Qarih Al-Easariah) region which is equal to 15.00±3.9μSv/y, while the minimum was recorded in Hay Ramadan 7.86±2.8μSv/y, with an average value 10.35±3.1μSv/y. The current results have shown that the radon concentrations in well water samples are lower than the recommended limit 11.1Bq/L and the annual effective dose in these samples are lower than the permissible international limit 1mSv/y.

  18. THE MAIN NUTRIENTS CONCENTRATION FROM INTRA TISSUE WATER OF BENTHOS ORAGANISMS FROM MURES BASIN

    Directory of Open Access Journals (Sweden)

    DANA POPA

    2008-05-01

    Full Text Available In the hydrographic basin of Mures river, aboard an altitude gradient, were taken samples of intra tissue waters from benthonic organisms for research the nutrients concentrations. The reference point was represented by a dairy caw farm where the agricultural fields of this is applied the organic fertilization with manure. The intra tissue water samples from benthonic organisms were prelevated in spring and autumn and the prelevate dates are the same with spread manure dates. At the intra tissue water level, concentrations value of N and P are bigger at the second data prelevations than first data prelevations and we can conclude that the benthonic oligochetas activity increase, more than, they density increase in Mures basin. The high concentrations of NH4 show as that Mures basin is a zone characterized by high degree of anoxia and this fact is supported by significant differences between seasonal prelevations. The explication is the manifestation to the cumulated and at distance effects of introduction in water to some organic products, very probably washed from neighborhoods agricultural field. Were calculated values of Student test for seasonal comparisons and were founded significant differences between nutrients concentration values at first and second prelevations.

  19. Distribution of concentration of coarse particle-water mixture in horizontal smooth pipe

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří; Krupička, Jan

    2016-01-01

    Roč. 94, č. 6 (2016), s. 1040-1047 ISSN 0008-4034 R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : coarse particle- water mixture * gamma-ray radiometry * concentration distribution * horizontal conveying Subject RIV: BK - Fluid Dynamics Impact factor: 1.356, year: 2016

  20. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks.

    Science.gov (United States)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Concentration Of 228Th, 226Ra, And 40K Radionuclides In Drinking Water In Southern Sumatera

    International Nuclear Information System (INIS)

    Sutarman; Warsono, Asep; Wahyudi

    2000-01-01

    Measurements of 228 Th, 226 Ra, and 40 K concentrations in drinking water on several places in Southern Sumatera (1997-1999) have been carried out. The sample were collected from the Province of Lampung (Kalianda, Bandar Lampung, Kotabumi, Talangpadang, Kotaagung, Liwa, Manggala, and Pakuanratu), and the Province of Southern Sumatera (Palembang-1, Palembang-2, Plaju, Lahat, and Sekayu). Measurements of 228 Th, 226 Ra, and 40 K concentrations in drinking water using the gamma spectrometer with the HP-Ge detector. The results of measurement showed that the concentration was the range of undetectable ( 228 Th concentration, the range of undetectable ( 226 Ra, radionuclide and the range of undetectable (< 128.96 mBq/l) to (880.54 n 22.75) mBq/l with average of (412.12 n 5.02) mBq/l, and the data mentioned above were still far under the maximum permissible concentration. The estimated of annual dose equivalent effective in drinking water was 0.03 mSv/year for public (5 mSv/year)

  2. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization.

    Science.gov (United States)

    Widner, Brittany; Mulholland, Margaret R; Mopper, Kenneth

    2013-07-16

    Recent studies suggest that cyanate (OCN(-)) is a potentially important source of reduced nitrogen (N) available to support the growth of aquatic microbes and, thus, may play a role in aquatic N cycling. However, aquatic OCN(-) distributions have not been previously described because of the lack of a suitable assay for measuring OCN(-) concentrations in natural waters. Previous methods were designed to quantify OCN(-) in aqueous samples with much higher reduced N concentrations (micromolar levels) than those likely to be found in natural waters (nanomolar levels). We have developed a method to quantify OCN(-) in dilute, saline environments. In the method described here, OCN(-) in aqueous solution reacts with 2-aminobenzoic acid to produce a highly fluorescent derivative, 2,4-quinazolinedione, which is then quantified using high performance liquid chromatography. Derivatization conditions were optimized to simultaneously minimize the reagent blank and maximize 2,4-quinazolinedione formation (>90% reaction yield) in estuarine and seawater matrices. A limit of detection (LOD) of 0.4 nM was achieved with only minor matrix effects. We applied this method to measure OCN(-) concentrations in estuarine and seawater samples from the Chesapeake Bay and coastal waters from the mid-Atlantic region. OCN(-) concentrations ranged from 0.9 to 41 nM. We determined that OCN(-) concentrations were stable in 0.2 μm filtered seawater samples stored at -80 °C for up to nine months.

  3. Study of temporal variation of radon concentrations in public drinking water supplies

    International Nuclear Information System (INIS)

    York, E.L.

    1995-01-01

    The Environmental Protection Agency (EPA) has proposed a Maximum Contaminant Level (MCL) for radon-222 in public drinking water supplies of 300 pCi/L. Proposed monitoring requirements include collecting quarterly grab samples for the first year, then annual samples for the remainder of the compliance cycle provided first year quarterly samples average below the MCL. The focus of this research was to study the temporal variation of groundwater radon concentrations to investigate how reliably one can predict an annual average radon concentration based on the results of grab samples. Using a open-quotes slow-flowclose quotes collection method and liquid scintillation analysis, biweekly water samples were taken from ten public water supply wells in North Carolina (6 month - 11 month sampling periods). Based on study results, temporal variations exist in groundwater radon concentrations. Statistical analysis performed on the data indicates that grab samples taken from each of the ten wells during the study period would exhibit groundwater radon concentrations within 30% of their average radon concentration

  4. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept.

    Science.gov (United States)

    Kujawa-Roeleveld, K; Fernandes, T; Wiryawan, Y; Tawfik, A; Visser, M; Zeeman, G

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of organic matter and nutrients from all waste(water)streams generated from different human activities. Anaerobic digestion of concentrated black water is a core technology in the DESAR concept. The applicability of the UASB septic tank for treatment of concentrated black water was investigated under two different temperatures, 15 and 25 degrees C. The removal of total COD was dependent on the operational temperature and attained 61 and 74% respectively. A high removal of the suspended COD of 88 and 94% respectively was measured. Effluent nutrients were mainly in the soluble form. Precipitation of phosphate was observed. Effective sludge/water separation, long HRT and higher operational temperature contributed to a reduction of E. coli. Based on standards there is little risk of contamination with heavy metals when treated effluent is to be applied in agriculture as fertiliser.

  5. The concentration of Cs, Sr and other elements in water samples collected in a paddy field

    International Nuclear Information System (INIS)

    Ban-nai, Tadaaki; Hisamatsu, Shun'ichi; Yanai-Kudo, Masumi; Hasegawa, Hidenao; Torikai, Yuji

    2000-01-01

    To research elemental concentrations in soil water in a paddy field, samples of the soil water were collected with porous Teflon resin tubes which were buried in the field. The soil water collections were made at various depth, 2.5, 12.5, 25 and 35 cm from the surface in the paddy field, located in Rokkasho, Aomori, once every two weeks during the rice cultivation period, from May to October in 1998. The paddy field was irrigated from May 7th to July 20th, dried from July 20th to August 5th, then again irrigated until September 16th. Drastic changes of the alkaline earth metal elements, Fe and Mn in soil water samples were seen at the beginning and end of the midsummer drainage. The concentrations of Cs, Fe, Mn and NH 4 in soil water samples showed a similar variation pattern to that of alkaline earth metal elements in the waterlogged period. The change of redox potential was considered a possible cause for the concentration variation for these substances. (author)

  6. Hydrodynamical model with massless constituents

    International Nuclear Information System (INIS)

    Chiu, C.B.; Wang, K.H.

    1974-01-01

    Within the constituent hydrodynamical model, it is shown that the total number of constituents is conserved, if these constituents are massless and satisfy the Fermi-Dirac distribution. A simple scheme for the transition from the constituent-phase to the hadron-phase is suggested, and the hadron inclusive momentum spectra are presented for this case. This phase transition scheme predicts the average transverse momentum of meson resonances which is compatible with the data. (U.S.)

  7. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    Science.gov (United States)

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  8. Direct quantification of rare earth element concentrations in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Lawrence, Michael G.; Greig, Alan; Collerson, Kenneth D.; Kamber, Balz S.

    2006-01-01

    A direct quadrupole ICP-MS technique has been developed for the analysis of the rare earth elements and yttrium in natural waters. The method has been validated by comparison of the results obtained for the river water reference material SLRS-4 with literature values. The detection limit of the technique was investigated by analysis of serial dilutions of SLRS-4 and revealed that single elements can be quantified at single-digit fg/g concentrations. A coherent normalised rare earth pattern was retained at concentrations two orders of magnitude below natural concentrations for SLRS-4, demonstrating the excellent inter-element accuracy and precision of the method. The technique was applied to the analysis of a diluted mid-salinity estuarine sample, which also displayed a coherent normalised rare earth element pattern, yielding the expected distinctive marine characteristics

  9. Precise determination of the concentration of radiocesium in the water of Mururoa lagoon

    International Nuclear Information System (INIS)

    Bourlat, Y.; Martin, G.

    1992-01-01

    The aim of this study was to determine with maximal precision the concentration of 137 Cs in the water of Mururoa lagoon and to verify if traces of 134 Cs as reported by the Fondation Cousteau in June 1987, were present in the lagoon. Eighteen 1000-litre samples of water were collected from stations within the lagoon during June and July of 1990. Low-level gamma-ray spectrometry was used to determine cesium radionuclides. The concentration of 137 Cs ranged between 2.6 and 3.0 Bq/m 3 (mean 2.79 Bq/m 3 ), which is in good agreement with the annual measurements made by the Service Mixte de Securite Radiologique (SMSR) during systematic monitoring of the lagoon water. No trace of 134 Cs was detected. (author)

  10. Plasma concentrations resulting from florfenicol preparations given to pigs in their drinking water.

    Science.gov (United States)

    Gutiérrez, L; Vargas, D; Ocampo, L; Sumano, H; Martinez, R; Tapia, G

    2011-09-01

    Florfenicol administered through the drinking water has been recommended as a metaphylactic antibacterial drug to control outbreaks of respiratory diseases in pigs caused by strains of Actinobacillus pleuropneumoniae and Pasteurella multocida, yet it is difficult to pinpoint in practice when the drug is given metaphylactically or therapeutically. Further, pigs are likely to reject florfenicol-medicated water, and plasma concentrations of the drug are likely to be marginal for diseases caused by Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The reported minimal inhibitory concentration (MIC) values for these organisms show a breakpoint of 2 to 3 μg/mL. An experiment was conducted during September and October 2009. One hundred twenty healthy crossbred pigs (Landrace-Yorkshire), weighing 23 ± 6.2 kg, were used in this trial. They were randomly assigned to 5 groups, with 3 replicates of 8 animals/group. Two commercial preparations of florfenicol were administered through the drinking water at 2 concentrations (0.01 and 0.015%). Water intake was measured before and after medication, and plasma concentrations of florfenicol were determined by HPLC. Considerable rejection of florfenicol-medicated water was observed. However, plasma florfenicol concentrations were of a range sufficient for a methaphylaxis approach to preventing disease by bacteria, with MIC breakpoints of ≤ 0.25 μg/mL. Decreased efficacy as a metaphylactic medication should be expected for bacteria with MIC >0.25 μg/mL, considering the reported existence of bacteria resistant to florfenicol and the natural resistance of Streptococcus suis or E. coli to this drug.

  11. Impact of water management practice scenarios on wastewater flow and contaminant concentration.

    Science.gov (United States)

    Marleni, N; Gray, S; Sharma, A; Burn, S; Muttil, N

    2015-03-15

    Due to frequent droughts and rapid population growth in urban areas, the adoption of practices to reduce the usage of fresh water is on the rise. Reduction in usage of fresh water can be achieved through various local water management practices (WMP) such as Water Demand Management (WDM) and use of alternative water sources such as Greywater Recycling (GR) and Rainwater Harvesting (RH). While the positive effects of WMPs have been widely acknowledged, the implementation of WMPs is also likely to lower the wastewater flow and increase the concentration of contaminants in sewage. These in turn can lead to increases in sewer problems such as odour and corrosion. This paper analyses impacts of various WMP scenarios on wastewater flow and contaminant load. The Urban Volume and Quality (UVQ) model was used to simulate wastewater flow and the associated wastewater contaminants from different WMP scenarios. The wastewater parameters investigated were those which influence odour and corrosion problems in sewerage networks due to the formation of hydrogen sulphide. These parameters are: chemical oxygen demand (COD), nitrate (NO3(-)), sulphate (SO4(2-)), sulphide (S(2-)) and iron (Fe) that were contributed by the households (not including the biochemical process in sewer pipe). The results will help to quantify the impact of WMP scenarios on odour and corrosion in sewerage pipe networks. Results show that the implementation of a combination of WDM and GR had highly increased the concentration of all selected contaminant that triggered the formation of hydrogen sulphide, namely COD, sulphate and sulphide. On the other hand, the RH scenario had the least increase in the concentration of the contaminants, except iron concentrations. The increase in iron concentrations is actually beneficial because it inhibits the formation of hydrogen sulphide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water].

    Science.gov (United States)

    Xiao, Qi-Tao; Hu, Zheng-Hu; James, Deng; Xiao, Wei; Liu, Shou-Dong; Li, Xu-Hui

    2014-01-01

    To gain insight into antiseptic effects on the concentrations of CO2, CH4, and N2O in lake water, antisepetic (CuSO4 and HgCl2) were added into water sample, and concentrations of greenhouse gases were measured by the gas chromatography based on water equilibrium method. Experiments were conducted as following: the control group without antisepetic (CK), the treatment group with 1 mL CuSO4 solution (T1), the treatment group with 5 mL CuSO4 solution (T2), and the treatment group with 0.5 mL HgCl2 solution (T3). All groups were divided into two batches: immediately analysis (I), and after 2 days analysis (II). Results showed that CuSO4 and HgCl2 significantly increased CO2 concentration, the mean CO2 concentration (Mco2) of CK (I) and CK (II) were (11.5 +/- 1.47) micromol x L(-1) and (14.38 +/- 1.59) micromol x L(-1), respectively; the Mco2 of T1 (I) and T1 (II) were (376 +/- 70) micromol x L(-1) and (448 +/- 246.83) micromol x L(-1), respectively; the Mco2 of T2 (I) and T2 (II) were (885 +/- 51.53) micromol x L(-1) and (988.83 +/- 101.96) micromol x L(-1), respectively; the Mco2 of T3 (I) and T3 (II) were (287.19 +/- 30.01) micromol x L(-1) and (331.33 +/- 22.06) micromol x L(-1), respectively. The results also showed that there was no difference in CH4 and N2O concentrations among treatments. Water samples should be analyzed as soon as possible after pretreatment. Our findings suggest that adding antiseptic may lead an increase in CO2 concentration.

  13. Measuring low radium activity concentration in water with RAD7 by means of evaporation

    International Nuclear Information System (INIS)

    Kappke, Jaqueline; Marussig, Camila G.T.; Paschuk, Sergei; Zambianchi Junior, Pedro; Correa, Janine N.; Perna, Allan Felipe Nunes; Martin, Aline

    2015-01-01

    Preliminary activity measurements of low radium concentration in mineral water by using RAD7 equipment showed high values of statistical errors. Therefore, the need to develop a new protocol for measuring and proofing the evaporation test for radium measurements in water is in place. This study evaluates the possibility of using RAD7 equipment to measure Ra-226 activity in equilibrium with Rn-222 present in water samples. The technique involves evaporation process so as to increase the Ra-226 concentration in the sample in a controlled manner and thus reduce statistical errors. Two samples were compared, 10 L sample of distilled water and a 7.75 L sample of known concentration (0.1 Bq/L). The evaporation was carried out starting with different initial volumes for both samples: 500 mL, 1000 mL, 2000 mL, 4000 mL and a 250 mL sample not subject to evaporation. All samples reached a final volume of approximately 250 mL. After evaporation, the samples were stored for 30 days until secular equilibrium was achieved between Ra-226 and Rn-222. The values obtained, by using RAD7 detector, for distilled water, as expected, are near zero averaging 0.021 ± 0.016 Bq/L. The average value found in the water of known concentration was 0.099 ± 0.011 Bq/L, also close to the expected 0.1 Bq/L. The conclusion is that the application of an evaporation process is efficient and the proposed methodology is a proven alternative to decrease the statistical errors. (author)

  14. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  15. Effects of thermal discharges on the seasonal patterns of nutrient concentrations in brackish water

    International Nuclear Information System (INIS)

    Nitchals, D.

    1985-05-01

    Massiv quantities of water are used in power plant cooling systems, especially nuclear power plants, and are often returned to the donor ecosystem at significantly elevated temperatures. Few studies of the environmental effects of such a situation have looked extensively at the effects on nutrients in the water. The present study examined the effects of cooling water discharges from a nuclear power plant on the seasonal nutrient patterns within and outside a brackish water, research artificial lake, the 0.9 km 2 Biotest Basin on Sweden's east coast. The lack of ice cover in winter is the most apparent effect. In a portion of the lake with a relatively long water residence time, on the order of a few days, the vernal nutrient depletion of phosphate, nitrate, and nitrite apparently began sooner than outside the lake. Benthic influence on nutrient concentrations in the free water mass may be very significant in coastal areas receiving heat inputs. This study's data apparently support the conclusion by other researchers that phosphorus may be the nutrient limiting algal growth in the spring in this area of the central Baltic Sea. Determination of a nutrient budget for the Basin was unachievable because inlet and outlet nutrient concentrations were insufficiently different to override experimental variation. Implications for management of heat inputs to coastal ecosystems include avoidance of areas with high nutrient content, rich organic sediment, or poor flushing. (author)

  16. Performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Roy, M.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.

    2013-01-01

    Highlights: ► Rapid analysis of heavy water samples, with precise temperature control. ► Entire composition range covered. ► Both variations in mole and wt.% of D 2 O in the heavy water sample studied. ► Standard error of calibration and prediction were estimated. - Abstract: The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of heavy water (D 2 O) in a simulated water sample. Feasibility of refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been amply demonstrated. Temperature of the samples has been precisely controlled to eliminate the effect of temperature fluctuation on refractive index measurement. The method is found to exhibit a reasonable analytical response to its calibration performance over the purity range of 0–100% D 2 O. An accuracy of below ±1% in the measurement of isotopic purity of heavy water for the entire range could be achieved

  17. Method of inhibiting concentration of radioactive corrosion products in cooling water or nuclear power plants

    International Nuclear Information System (INIS)

    Takabayashi, Jun-ichi; Hishida, Mamoru; Ishikura, Takeshi.

    1979-01-01

    Purpose: To suppress the increase in the concentration of the radioactive corrosion products in cooling water, which increase is accompanied by the transference of the corrosion products activated and accumulated in the core due to dissolution and exfoliation into the core water, and inhibit the flowing of said products out of the core and the diffusion thereof into the cooling system, thereby to prevent the accumulation of said products in the cooling system and prevent radioactive contaminations. Method: In a nuclear power plant of a BWR type light water reactor, when the temperature of the pile water is t 0 C, hydrogen is injected in cooling water in a period of time from immediately before starting of the drive stopping operation of the nuclear power plant to immediately after the termination of restarting operation, whereby the concentration of hydrogen in the reactor water through said period is maintained at a value more than 2exp (0.013 t) cm 3 N.T.P./kg H 2 O. (Aizawa, K.)

  18. Liquid chromatographic method for determining the concentration of bisazir in water

    Science.gov (United States)

    Scholefield, Ronald J.; Slaght, Karen S.; Allen, John L.

    1997-01-01

    Barrier dams, traps, and lampricides are the techniques currently used by the Great Lakes Fishery Commission to control sea lampreys (Petromyzon marinus) in the Great Lakes. To augment these control techniques, a sterile-male-release research program was initiated at the Lake Huron Biological Station. Male sea lampreys were sterilized by intraperitoneal injection of the chemical sterilant P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir). An analytical method was needed to quantitate the concentration of bisazir in water and to routinely verify that bisazir (>25 μg/L) does not persist in the treated effluent discharged from the sterilization facility to Lake Huron. A rapid, accurate, and sensitive liquid chromatographic (LC) method was developed for determining bisazir in water. Bisazir was dissolved in Lake Huron water; extracted and concentrated on a C18 solid-phase extraction column; eluted with methanol; and quantitated by reversed-phase LC using a C18 column, a mobile phase of 70% water and 30% methanol (v/v), and UV detection (205 nm). Bisazir retention time was 7-8 min; total run time was about 20 min. Method detection limit for bisazir dissolved in Lake Huron water was about 15 μg/L. Recovery from Lake Huron water fortified with bisazir at 100 μg/L was 94% (95% confidence interval, 90.2-98.2%).

  19. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff.

    Science.gov (United States)

    Regnery, Julia; Püttmann, Wilhelm

    2010-02-01

    To investigate seasonal fluctuations and trends of organophosphate (flame retardants, plasticizers) concentrations in rain and snow, precipitation samples were collected in 2007-2009 period at a densely populated urban sampling site and two sparsely populated rural sampling sites in middle Germany. In addition, storm water runoff was sampled from May 2008 to April 2009 at an urban storm water holding tank (SWHT). Samples were analyzed for tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP) by gas chromatography-mass spectrometry after solid phase extraction. Among the six analyzed organophosphates (OPs), TCPP dominated in all precipitation and SWHT water samples with maximum concentrations exceeding 1000ngL(-1). For all analytes, no seasonal trends were observed at the urban precipitation sampling site, although atmospheric photooxidation was expected to reduce particularly concentrations of non-chlorinated OPs during transport from urban to remote areas in summer months with higher global irradiation. In the SWHT a seasonal trend with decreasing concentrations in summer/autumn is evident for the non-chlorinated OPs due to in-lake degradation but not for the chlorinated OPs. Furthermore, an accumulation of OPs deposited in SWHTs was observed with concentrations often exceeding those observed in wet precipitation. Median concentrations of TCPP (880ngL(-1)), TDCP (13ngL(-1)) and TBEP (77ngL(-1)) at the SWHT were more than twice as high as median concentrations measured at the urban precipitation sampling site (403ngL(-1), 5ngL(-1), and 21ngL(-1) respectively).

  20. Refinement of the list of constituents for groundwater monitoring at M-area

    International Nuclear Information System (INIS)

    Wells, D.G.

    1997-11-01

    For several years Westinghouse Savannah River Company (WSRC) has been examining ways of reducing monitoring costs. Most of these efforts have been aimed at reducing the number of wells sampled or reducing sample frequency. With regards to monitoring around the M-Area Settling Basin, we are now examining a possible reduction in the number of constituents analyzed. Constituents that can be dropped entirely are nonhazardous inorganics generally referred to as water quality indicators. Monitoring for these parameters is sensible when a facility is in detection monitoring, but it is much less useful at a facility like the M-Area Basin. The water quality indicators are helpful in detecting whether or not a facility has impacted the environment. But their concentrations are not important in themselves. At M-Area, it is well documented that the facility has impacted groundwater quite seriously with a known group of hazardous constituents. So the concentrations of the nonhazardous constituents are of little interest. At M-Area there are 41 Point of Compliance (POC) wells monitoring an area of about .25 square miles and about 236 plume definition wells monitoring the surround 4 square miles. The POC wells form a picket line around the facility and are intended to detect any constituents leaching from it. They are also intended to determine whether such constituents exceed action levels. Plume definition wells are added to define the plume created a particular set or subset of contaminants. The M-Area plume definition wells were installed in several phases over a ten year time span as SRS struggled to define the extent of a large plume of TCE and PCE. These wells were not located for the purpose of monitoring the numerous inorganics and radionuclides on the unit's monitoring list. Many of the inorganics and radionuclides are relatively immobile in groundwater and cannot be expected to appear in the widely scattered TCE/PCE plume definition wells

  1. Optimization of an enhanced ceramic micro-filter for concentrating E.coli in water

    Science.gov (United States)

    Zhang, Yushan; Guo, Tianyi; Xu, Changqing; Hong, Lingcheng

    2017-02-01

    Recently lower limit of detection (LOD) is necessary for rapid bacteria detection and analysis applications in clinical practices and daily life. A critical pre-conditioning step for these applications is bacterial concentration, especially for low level of pathogens. Sample volume can be largely reduced with an efficient pre-concentration process. Some approaches such as hollow-fiber ultra-filtration and electrokinetic technique have been applied to bacterial concentration. Since none of these methods can provide a concentrating method with a stable recovery efficiency, bacterial concentration still remains challenging Ceramic micro- filter can be used to concentrate the bacteria but the cross flow system keeps the bacteria in suspension. Similar harvesting bacteria using ultra-filtration showed an average recovery efficiency of 43% [1] and other studies achieved recovery rates greater than 50% [2]. In this study, an enhanced ceramic micro-filter with 0.14 μm pore size was proposed and demonstrated to optimize the concentration of E.coli. A high recovery rate (mean value >90%) and a high volumetric concentration ratio (>100) were achieved. Known quantities (104 to 106 CFU/ml) of E.coli cells were spiked to different amounts of phosphate buffered saline (0.1 to 1 L), and then concentrated to a final retentate of 5 ml to 10 ml. An average recovery efficiency of 95.3% with a standard deviation of 5.6% was achieved when the volumetric con- centration ratio was 10. No significant recovery rate loss was indicated when the volumetric concentration ratio reached up to 100. The effects of multiple parameters on E.coli recovery rate were also studied. The obtained results indicated that the optimized ceramic micro- filtration system can successfully concentrate E.coli cells in water with an average recovery rate of 90.8%.

  2. Separation of the constituents of coal

    Energy Technology Data Exchange (ETDEWEB)

    Betrand, M F

    1938-12-06

    A process is disclosed of separating, by means of dense aqueous solutions, the constituents of coal, isolated by preliminary crushing from each other and/or from barren and carbonaceous shales, comprising the addition to the washing water before treatment or during any stage of the preparation of the coal before separation, or to the dense separating solution of agents improving the wetting of the coal by water.

  3. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    Science.gov (United States)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  4. Recrystallization of freezable bound water in aqueous solutions of medium concentrations

    Institute of Scientific and Technical Information of China (English)

    赵立山; 潘礼庆; 纪爱玲; 曹则贤; 王强

    2016-01-01

    For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings diffi-culty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentra-tion range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrys-tallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries.

  5. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  6. Water temperature and concentration measurements within the expanding blast wave of a high explosive

    International Nuclear Information System (INIS)

    Carney, J R; Lightstone, J M; Piecuch, S; Koch, J D

    2011-01-01

    We present an application of absorption spectroscopy to directly measure temperature and concentration histories of water vapor within the expansion of a high explosive detonation. While the approach of absorption spectroscopy is well established, the combination of a fast, near-infrared array, broadband light source, and rigid gauge allow the first application of time-resolved absorption measurements in an explosive environment. The instrument is demonstrated using pentaerythritol tetranitrate with a sampling rate of 20 kHz for 20 ms following detonation. Absorption by water vapor is measured between 1335 and 1380 nm. Water temperatures are determined by fitting experimental transmission spectra to a simulated database. Water mole fractions are deduced following the temperature assignment. The sources of uncertainty and their impact on the results are discussed. These measurements will aid the development of chemical-specific reaction models and the predictive capability in technical fields including combustion and detonation science

  7. Lead concentrations in fresh water, muscle, gill and liver of catla catla (hamilton) from keenjhar lake

    International Nuclear Information System (INIS)

    Korai, A.L.; Sahato, G.A.

    2008-01-01

    This study of the abundance and distribution of lead in water and freshwater fish Catla catla (Ham.) from Keenjhar Lake was conducted during January 2003 to December 2005. The lead content was determined in water and in muscle, gill and liver tissue of Catla catla (Ham.) by using a graphite furnace atomic absorption spectrometry. The lead concentrations in water samples were in the range of 0.076 and 0.225 macro g L-1 during the years of 2003, 2004 and 2005. The lead concentrations in the tissues of Catla catla (Ham.) varied, with liver > gill > muscle. The concentrations in muscle, gill and liver were in the range of 0.7-2.39 micro g g/sub -1/, 0.74-2.25 micro g g/sub -1/ and 0.89-2.68 micro g g/sub -1/ (dry weight) during 2003, 2004 and 2005. 9.87 % did not exceed the UK limit of 1.0 micro g g/sub -1/ (1979), 45.67 % were lower than the (USFDA) level of 1.3 micro g g/sub -1/ (USEPA 1997) and remaining 44.46 % were well below than 4.88 micro g g/sub -1/ (USEPA 1990). The levels in the water samples were also below the permissible level of less then 50 micro g L/sub -1/ recommended by (WHO 1984). (author)

  8. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.

  9. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.

    Science.gov (United States)

    Cáceres-Mella, Alejandro; Talaverano, M Inmaculada; Villalobos-González, Luis; Ribalta-Pizarro, Camila; Pastenes, Claudio

    2017-08-01

    The influence of controlled water deficit on the phenolic composition and gene expression of VvLAR2, VvMYBPA1, VvMYBPA2 and VvMYB4a in Cabernet Sauvignon grape skins throughout ripening was investigated. The assay was carried out on own-rooted Vitis vinifera plants cv. Cabernet Sauvignon in a commercial vineyard from veraison until commercial harvest. Three irrigation regimes were used from veraison until harvest with the following treatments: T1: 3.6 mm day -1 ; T2: 1.8 mm day -1 and T3: 0.3 mm day -1 . The content of total phenols and total anthocyanins in grape skins increased during ripening, but water deficit did not produce differences among treatments in the total anthocyanin concentration. Proanthocyanidins (PAs) decreased throughout ripening, although approximately 25 days after veraison (DAV), their content slightly increased. This effect was more pronounced in the most restrictive treatment (T3). A similar pattern was observed in the transcript abundance of VvLAR2, VvMYBPA1 and VvMYB4a. PAs separation revealed differences in concentration but not in the proportion among fractions among the irrigation treatments. Additionally, controlled water deficit increased the mean degree of polymerization and the flavan-3-ol polymeric concentration in grape skins throughout ripening but with no effects on the extent of PAs galloylation. Our results suggest that the water status of Cabernet Sauvignon grapevines affects the gene expression for proteins involved in the synthesis of PAs, increasing their concentration and also their composition, with further evidence for the efficacy of a convenient, controlled water deficit strategy for grapevine cultivation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Detection of protozoa in water samples by formalin/ether concentration method.

    Science.gov (United States)

    Lora-Suarez, Fabiana; Rivera, Raul; Triviño-Valencia, Jessica; Gomez-Marin, Jorge E

    2016-09-01

    Methods to detect protozoa in water samples are expensive and laborious. We evaluated the formalin/ether concentration method to detect Giardia sp., Cryptosporidium sp. and Toxoplasma in water. In order to test the properties of the method, we spiked water samples with different amounts of each protozoa (0, 10 and 50 cysts or oocysts) in a volume of 10 L of water. Immunofluorescence assay was used for detection of Giardia and Cryptosporidium. Toxoplasma oocysts were identified by morphology. The mean percent of recovery in 10 repetitions of the entire method, in 10 samples spiked with ten parasites and read by three different observers, were for Cryptosporidium 71.3 ± 12, for Giardia 63 ± 10 and for Toxoplasma 91.6 ± 9 and the relative standard deviation of the method was of 17.5, 17.2 and 9.8, respectively. Intraobserver variation as measured by intraclass correlation coefficient, was fair for Toxoplasma, moderate for Cryptosporidium and almost perfect for Giardia. The method was then applied in 77 samples of raw and drinkable water in three different plant of water treatment. Cryptosporidium was found in 28 of 77 samples (36%) and Giardia in 31 of 77 samples (40%). Theses results identified significant differences in treatment process to reduce the presence of Giardia and Cryptosporidium. In conclusion, the formalin ether method to concentrate protozoa in water is a new alternative for low resources countries, where is urgently need to monitor and follow the presence of theses protozoa in drinkable water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 40 CFR 264.342 - Principal organic hazardous constituents (POHCs).

    Science.gov (United States)

    2010-07-01

    ...) Principal Organic Hazardous Constituents (POHCs) in the waste feed must be treated to the extent required by... organic constituents in the waste and on their concentration or mass in the waste feed, considering the... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE...

  12. Concentrations of Mn and Fe in the Sediment Cores of Sarawak and Sabah Coastal Waters

    International Nuclear Information System (INIS)

    Zal Uyun Wan Mahmood; Zaharudin Ahmad; Che Abdul Rahim Mohamed

    2010-01-01

    Sediment cores were taken at eight stations along Sarawak and Sabah coastal waters using a gravity box corer on July 2004. The sediment cores were cut into 2 cm interval for measurement of Mn and Fe concentration using the Inductive Couple Plasma-Mass Spectrometer (ICP-MS). Overall, the sediment cores contained much mud which include a mixture of silt (46 - 67 %) and clay (18 - 53 %) compared to sand (0.4 - 16 %). The concentrations of Mn and Fe were in the range of 154 - 366 μg/ g and 0.9 - 3.4 %, respectively. The variation was studied by ANOVA, which showed a significant difference (p = 0.000) for both of Mn and Fe concentrations at all sampling stations. In those ranges, Fe concentration was higher compared to Mn. It is believed that dissolving and diluting process influenced the concentration of Mn in the water column and sediment. Fe showed a significant correlation (r > 0.5, p geo < 1 and classification 0 - 1. (author)

  13. Serum concentrations of haptoglobin and serum amyloid A in water buffaloes (Bubalus bubalis with abomasal ulcer

    Directory of Open Access Journals (Sweden)

    Javad Tajik

    2012-09-01

    Full Text Available To evaluate the serum concentrations of haptoglobin (Hp and serum amyloid A (SAA in water buffaloes with abomasal ulcers, the abomasums of 100 randomly selected water buffaloes were examined after slaughter. Type I abomasal ulcers were found in 56 out of 100 buffaloes. Serum concentrations of Hp and SAA were measured. There was no significant difference between affected and non-affected buffaloes in the serum concentrations of Hp and SAA. The serum concentrations of Hp and SAA had no significant correlation with age and the serum SAA revealed no significant correlation with the number of abomasal ulcers. A significant correlation was found between the serum Hp and the number of abomasal ulcers (r =0.29, p = 0.04. There was no significant difference in the serum concentrations of Hp and SAA between buffaloes with different ulcer locations in the abomasums. Although more work on a larger number of animals is required in this area, it seems that the measurement of the serum Hp can be used to predict the abundance of type I abomasal ulcers.

  14. An experimental study on MRI signal intensity vs concentration of water-soluble contrast media

    International Nuclear Information System (INIS)

    Lee, Ghi Jai; Han, Chang Yul; Chang, Kee Hyun; Han, Moon Hee; Han, Man Chung

    1991-01-01

    There has been only one report that water-soluble contrast media containing iodine and used in conventional X -ray radiography reduce T1-and T2-relaxation times. We evaluated the relationship between signal intensity (relative signal intensity to normal saline) and T2-relaxation time of MRI and the concentration of 3 water-soluble contrast media [meglumine ioxithalamate (Telebrix 30), iopromide (Ultravist 300), iotrolan (Isovist 300)] through the phantom study, using both 2.0T and 0.5T MR units. We found that the signal intensity increased significantly on the T1-weighted images as the concentration of contrast media increased. The degree of the increase was larger on 0.5T MR than on 2.0T MR. The signal intensity on proton density image showed no significant difference at various concentrations. However, there were significant decreases of both signal intensity on the T2-weighted images and T2-relaxation time as the concentration of contrast media increased, which was more prominent on 2.0T MR than 0.5T MR. Between the contrast media of the same concentration, there was no significant difference in signal intensity and T2-relaxation time

  15. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  16. Effects of sucrose concentration and water deprivation on Pavlovian conditioning and responding for conditioned reinforcement.

    Science.gov (United States)

    Tabbara, Rayane I; Maddux, Jean-Marie N; Beharry, Priscilla F; Iannuzzi, Jessica; Chaudhri, Nadia

    2016-04-01

    An appetitive Pavlovian conditioned stimulus (CS) can predict an unconditioned stimulus (US) and acquire incentive salience. We tested the hypothesis that US intensity and motivational state of the subject would influence Pavlovian learning and impact the attribution of incentive salience to an appetitive Pavlovian CS. To this end, we examined the effects of sucrose concentration and water deprivation on the acquisition of Pavlovian conditioning and responding for a conditioned reinforcer. Male Long-Evans rats (Harlan; 220-240 g) receiving 3% (3S) or 20% (20S) sucrose were either non-water deprived or given water for 1 hr per day. During Pavlovian conditioning sessions, half the rats in each concentration and deprivation condition received a 10-s CS paired with 0.2 ml of sucrose (16 trials/session; 3.2 ml/session). The remainder received unpaired CS and US presentations. Entries into a port where sucrose was delivered were recorded. Next, responding for conditioned reinforcement was tested, wherein pressing an active lever produced the CS and pressing an inactive lever had no consequences. CS-elicited port entries increased, and latency to the first CS-elicited port entry decreased across sessions in paired groups. Water deprivation augmented these effects, whereas sucrose concentration had no significant impact on behavior. Responding for conditioned reinforcement was observed in the 20S water-deprived, paired group. Thus, water deprivation can facilitate the acquisition of Pavlovian conditioning, potentially by enhancing motivational state, and a high-intensity US and a high motivational state can interact to heighten the attribution of incentive salience to an appetitive Pavlovian CS. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  18. Characteristics and treatment mechanism of mine water with high concentration of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Yang, J.; He, X.; Yang, J.; Tian, T. [Hebei University of Engineering, Handan (China)

    2006-12-15

    The characteristics and treatment of mine water with high concentration or iron and manganese were studied with mine water produced in Jiukuang and Siwan belonging to Hebi Coal Industry Group Co., Ltd. Analysis shows that the mine water is abundant in dissolved oxygen and has high TDS and high turbidity so the mine water does not need aeration. The effect of removal of iron and manganese by coagulation-sedimentation and the influence of filter material and influent water flow rate on effluent quality were investigated. It is shown that the removal rate of iron can reach 90% while removal of manganese can only reach about 20%. The concentration of iron and manganese in the effluent is lower than 0.1 mg/L with filter material of manganese sand which was immersed in KMnO{sub 4} solution at a filtration rate of 7 - 9 m/h. The results show that the layer of activated compound substance membrane formed on the surface of the manganese sand plays an important role in the removal of manganese. 7 refs., 2 figs., 3 tabs.

  19. Impacts of waste from concentrated animal feeding operations on water quality

    Science.gov (United States)

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  20. Nitrate concentration in spring water at the Nogawa basin and its possible source

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Ogura, Norio

    1978-01-01

    Fluctuation of nitrate concentration in spring water at the Nogawa basin was studied during 1976 - 1977, and the possible source of nitrate nitrogen was discussed. Nitrate concentration in spring water at the station N-O in Kokubunji, Tokyo ranged from 360 to 574 μg at/l with an average value of 502 μg at/l. It seemed that the effluent of spring water at N-O was influenced by rainfall within a short period. A laboratory experiment on production of nitrate in soil showed that ammonium nitrogen added to fresh soil was transformed quantitatively to nitrate nitrogen during 23 days incubation. Thd sup(delta15)N value of nitrate nitrogen in spring water (+0.89%) was similar to that of ammonium nitrogen in sewage (+0.82%) discharging into the Nogawa River. In the area near N-O, domestic wastes have been discharged into the Nogawa River by simple sewers or percolated downward through the soil. These results suggest that one of the main source of nitrate nitrogen in spring water is ammonium and organic nitrogen in domestic wastes. (author)

  1. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  2. Lanthanide complexes that respond to changes in cyanide concentration in water

    International Nuclear Information System (INIS)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen; Kenwright, Alan M.

    2017-01-01

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Estimating water stressed dwarf green bean pigment concentration through hyperspectral indices

    International Nuclear Information System (INIS)

    Koksal, E.S.; Ustrun, H.; Ozcan, H.; Gunturk, A.

    2010-01-01

    In this study, the relationship between leaf pigment concentration (analyzed in the laboratory) and four spectral indexes (measured in the field) was investigated. For this purpose, field experiments consisting of six different irrigation treatments were conducted with dwarf green beans during 2005 growing season. Based on spectral data, spectral indexes were plotted against pigment concentration. Results showed that under water stress, the chlorophyll and carotene contents of green bean leaves rose. According to linear regression analysis between spectral indexes and pigment contents, the Normalized Difference Pigment Chlorophyll Index (NPCI) and Normalized Difference Vegetation Index (NDVI) had the highest correlations with the chlorophyll (a, b and total), and carotene content of leaves. (author)

  5. Elemental concentration and chemical parameters of drinking water of Patiala City, India

    International Nuclear Information System (INIS)

    Sharma, H.K.; Singh, B.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Neutron activation analysis and energy dispersive x-ray fluorescence techniques have been used to determine 28 major and trace element concentrations in drinking water. Conductivity, pH, hardness, alkalinity, chlorides and sulphates were also measured. The majority of the concentrations are well below the ISI/WHO recommended values. However cadmium, mercury, total dissolved solids (TDS) conductivity and alkalinity were found to be higher in about half the cases compared to ISI/WHO recommended values, whereas sodium was found to be higher in almost all the cases. A linear relationship was observed between TDS and conductivity. (author)

  6. Flow injection spectrophotometric determination of low concentrations of orthosphate in natural waters employing ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1981-01-01

    A simple and fast method for the determination of low concentrations of orthophosphate in natural waters is described. Ion exchange is incorporated into a flow injection system by usina a resin column in the sample loop of a proportion injector. Effects of sample aspiration rate, sampling time, eluting agent concentration, pumping rate of the sample carrier stream and interfaces, were investigated both using 32 PO 3- 4 or 31 PO 3- 4 with columns coupled to a gerger-muller detector and incorporated in a flow system with molybdenum blue colorinetry. (M.A.C.) [pt

  7. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  8. Mercury concentration in vegetables of Pakistan irrigated by different water sources

    International Nuclear Information System (INIS)

    Shaheen, Q.; Mahmood, Z.; Imran, M.

    2011-01-01

    Mercury levels were determined in twenty samples of each vegetable i.e., Spinach (Spinacia oleracea), Lettuce (Lactuca sativa), Carrot (Daucus cariota), Capsicum (Capsicum fistulosus), Sweet pea (Lathyrus Odoratus), Potato (Solanum tuberosum) and Cabbage (Brassica oleracea), with a special reference of source of water of irrigation, i.e., tube well water, canal water and municipal sewage water. All the samples of vegetables were collected during the year 2006, 2007 and 2008 from the five districts of Pakistan viz Lahore, Kasur, Multan, Bahawalpur and R.Y. Khan. Statistical analysis such as Test of significance and multiple comparison were applied on the data obtained. The results showed that the concentration of Mercury in vegetables irrigated by canal water, sewage water and tube well water was in the range of 3.1-88.9 ppb and 9.0-130.6 ppb. It can be concluded from this study that the uptake of mercury by vegetables collected from above five districts of Pakistan was in the following order. Leafy vegetables > Root vegetables > seedy vegetables. (author)

  9. Determination of radon concentration in drinking water resources of villages nearby Lalehzar fault and evaluation the annual effective dose

    International Nuclear Information System (INIS)

    Mohammad Malakootian; Zahra Darabi Fard; Mojtaba Rahimi

    2015-01-01

    The radon concentration has been measured in 44 drinking water resources, in villages nearby Lalehzar fault in winter 2014. Some samples showed a higher concentration of radon surpassing limit set by EPA. Further, a sample was taken from water distribution networks for these sources of water. Soluble radon concentration was measured by RAD7 device. Range radon concentration was 26.88 and 0.74 BqL -1 respectively. The maximum and minimum annual effective dose for adults was estimated at 52.7 and 2.29 µSvY -1 , respectively. Reducing radon from water before use is recommended to improve public health. (author)

  10. Assessment of heavy metal concentration in water around the proposed Mkuju river uranium project in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Msaki, P.K.; Mohammed, N.K.

    2015-01-01

    Effective verification for compliance with water quality standards in uranium mining in Tanzania requires data sensitive to monitor heavy metal concentration in water around the Mkuju River Uranium Project before mining commences. The area susceptible for pollution by the project was estimated using AERMOD dispersion model and found to cover about 1300 km"2. Thirty one surface and groundwater samples were collected and analysed for heavy metals and physicochemical properties using ICP-MS and standards techniques, respectively. The physicochemical properties for water samples analysed ranges from 5.7 to 7.8 for pH, 2.8 to 80.2 mg/L for TDS and 15 to 534.5 mS/cm for EC. These values show that the water in the vicinity of the Mkuju River Uranium Project is normal. The ranges of concentration of heavy metals (µgL"-"1) determined in water ranges were: Al(2 to 9049), Cr(0.2 to 19.96), Mn (0.1 to 1452), Fe(2 to 53890), Co(0.02 to 27.63), Ni(0.2 to 9.7), Cu(2 to 17), Zn(2 to 62.94), As(0.4 to 19.17), Cd(0.02 to 0.14), Pb (0.02 to 78.68), Th (0.002 to 1.73), U(0.002 to 29.76). These values are below the tolerance levels of concentrations set by different International organisations. Therefore heavy metal toxicity in the study area is marginal. The parameters that could serve as baseline data because of their enhanced sensitivity to pollution were (i) concentration of chromium, cobalt, nickel, copper, zinc, arsenic, cadmium and lead in water (ii) pH, TDS and EC for water, (iii) TDS ratio for surface to ground water values and (iv) correlation coefficients between the heavy metals. However, since TDS values are season dependent, this indicator can serve as baseline data when measured during the dry season as was the case in the study. (author)

  11. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially...

  12. Effectiveness of a stormwater collection and detention system for reducing constituent loads from bridge runoff in Pinellas County, Florida

    Science.gov (United States)

    Stoker, Y.E.

    1996-01-01

    The quantity and quality of stormwater runoff from the Bayside Bridge were evaluated to determine the effectiveness of the stormwater collection and detention pond system of the bridge in reducing constituent loads to Old Tampa Bay. Water-quality samples of stormwater runoff from the bridge and outflow from the detention pond were collected during and after selected storms. These samples were used to compute loads for selected constituents. Stormwater on the Bayside Bridge drained rapidly during rain events. The volume of stormwater runoff from 24 storms measured during the study ranged from 4,086 to 103,705 cubic feet. Storms were most frequent during July through September and were least frequent from February through May. Concentrations of most constituents in stormwater runoff before the bridge opened to traffic were less than or equal to concentrations measured after the bridge was opened to traffic. However, concentrations of arsenic in the outflow from the detention pond generally were greater before the bridge opened than concentrations after, and concentrations of orthophosphorus in the stormwater runoff and outflow from the pond were greater before the bridge opened than during over half the sampled storms after the bridge opened. Concentrations of most constituents measured in stormwater runoff from the bridge were greatest at the beginning of the storm and decreased as the storm continued. Variations in suspended solids, nutrients, and trace element concentrations were not always concurrent with each other. The source of the measured constituent (rainfall or road debris) and the phase of the constituent (suspended or dissolved) probably affected the timing of concentration changes. The quality of stormwater runoff from the Bayside Bridge varied with total runoff volume, with the length of the dry period before the storm, and with season. Average concentrations of suspended solids, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen

  13. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95

  14. Application of fission track technique for estimation of uranium concentration in drinking waters of Punjab

    International Nuclear Information System (INIS)

    Prabhu, S.P.; Sawant, P.D.; Raj, S.S.; Kumar, A.; Sarkar, P.K.; Tripathi, R.M.

    2012-01-01

    Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. All samples were preserved, processed and analyzed by laser fluorimetry (LF). To ensure accuracy of the data obtained by LF, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. For FTA technique few μl of water sample was transferred to polythene tube, lexan detector was immersed in it and the other end of the tube was also heat-sealed. Two samples and one uranium standard were irradiated in DHRUVA reactor. Irradiated detectors were chemically etched and tracks counted using an optical microscope. Uranium concentrations in samples ranged from 3.2 to 60.5 ppb and were comparable with those observed by LF. (author)

  15. Solubilities of some hydrous REE phosphates with implications for diagenesis and sea water concentrations

    International Nuclear Information System (INIS)

    Jonasson, R.G.; Bancroft, G.M.; Nesbitt, H.W.

    1985-01-01

    Solubility product determinations suggest that the hydrous phosphates of the rare earths, REPO 4 .xH 2 O, are important in controlling the sea water REE concentrations. Two of these solids, rhabdophane, (P6 2 22) and 'hydrous xenotime', (I4 1 /amd), have been synthesized at 100 C via the acid hydrolysis of the respective REE pyrophosphate. The solubility products at infinite dilution were determined to be pK 0 = 24.5, (La at 25 C); 26.0, (Pr at 100 C); 25.7, (Nd at 100 C); and 25.5, (Er at 100 C). On the basis of calculations involving the reaction of Re 3+ with apatite to form the hydrous phosphate, the lanthanum concentration in sea water is predicted to be about 140 pmol/L. Laboratory experiments support the hypothesis that apatite is a substrate for reactions with dissolved REE. (author)

  16. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    Science.gov (United States)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  17. Program for TI programmable 59 calculator for calculation of 3H concentration of water samples

    International Nuclear Information System (INIS)

    Hussain, S.D.; Asghar, G.

    1982-09-01

    A program has been developed for TI Programmable 59 Calculator of Texas Instruments Inc. to calculate from the observed parameters such as count rate etc. the 3 H (tritium) concentration of water samples processed with/without prior electrolytic enrichment. Procedure to use the program has been described in detail. A brief description of the laboratory treatment of samples and the mathematical equations used in the calculations have been given. (orig./A.B.)

  18. Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways

    OpenAIRE

    Reisser, Julia Wiener; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maíra Carneiro; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median lengt...

  19. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  20. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  1. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Results of observations of the tritium concentration in water fractions in the disposition regions of tritium laboratories

    International Nuclear Information System (INIS)

    Koval, G.N.; Kuzmina, A.I.; Kolomiets, N.F.; Svarichevskaya, E.V.; Rogosin, V.N.; Svyatun, O.V.

    1995-01-01

    In this paper results of the long term of control of tritium concentration in the water fractions in the region close to the tritium laboratories of INR NAS of Ukraine are presented. The regular observations for the tritium concentration in the water fractions (thawed water of the snow cover, birch juice and sewer water) in the influence region of tritium laboratories shows small amount of tritium concentration in all kinds of investigated water fractions in comparison with the tritium concentration in the reper points. The proper connection of the levels of tritium concentration of the water samples with the quantity of the technology production is observed. In common, the tritium pollution on the territory of INR shows the tendency for a considerable decrease of the environmental pollution levels from year to year. It can be explained by the perfection of the production technology of tritium structures and targets as well as the rising of the qualification of the personnel. 3 refs., 4 figs

  3. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal.

    Science.gov (United States)

    Stehle, Sebastian; Knäbel, Anja; Schulz, Ralf

    2013-08-01

    Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

  4. Determination, source identification and GIS mapping for nitrate concentration in ground water from Bara aquifer

    International Nuclear Information System (INIS)

    Elfaki Taha, G. M. E.

    2010-09-01

    The study was carried-out determine the level of nitrate concentration in well water from Bara aquifer in North Kordofan State. The analysis was conducted for 69 wells from different villages within Bara basin. Physical characteristics were measured including pH, electrical conductivity and dissolved oxygen. Spectrophotometric analysis was used to determine nitrate, nitrite and ammonia. Chloride and hardness were determined telemetrically and flame photometer was used for major elements namely sodium and potassium, whereas atomic absorption spectroscopy was used for trace elements namely iron, manganese, zinc and copper. Results revealed that nitrate concentration range from 9.68 to 891 mg/1 in sampled wells with 81% exceeding the maximum permissible limits set for drinking water by WHO and SSMO. Animal waste and organic soil nitrogen were found to be the sources of nitrate in these wells as indicated by 15 N%. Majority of wells with high nitrate are located in the north and the north-east part of the study area as shown by GIS predictive map. On the average, the concentrations of sodium, potassium, calcium, magnesium, iron, manganese, zinc and copper were found to be within WHO limits for drinking water. (Author)

  5. Measurement of the deuterium concentration in water samples using a CW chemical deuterium fluoride laser

    International Nuclear Information System (INIS)

    Trautmann, M.

    1979-10-01

    In this study a new method for the determination of the deuterium content in water samples is described. The absorption of the radiation of a CW deuterium fluoride laser by the isotope HDO in the water vapor of the sample is measured by means of an optoacoustic detector (spectrophone). Thereby advantage is taken of the fact that H 2 O hardly absorbs the laser radiation and that D 2 O only exists in negligible concentrations. The isotope ratio of hydrogen can be calculated from the measured relative concentration of HDO. In the course of this investigation the relative absorption cross sections of HDO for the different laser lines were determined. It was thereby established that there exists a very good coincidence of an HDO absorption line with the 2P2 laser line. Using a very sensitive nonresonant spectrophone the relative concentration of HDO in natural water samples could be determined with an accuracy of about 10%. The experiments also demonstrated that with appropriate improvements made to the apparatus and using a second spectrophone as a reference it should be possible to increase this accuracy to 0,1%. (orig.)

  6. Determination of the Relative Sediment Concentration in Water Bodies Using Remote Sensing Methodology

    Directory of Open Access Journals (Sweden)

    Germán Vargas Cuervo

    2017-01-01

    Full Text Available Studies for the determination of the relative concentration of sediments (RCS in bodies of water such as rivers, marshes and river deltas require specialized equipment, field work and laboratory analyses of samples, all with high economic costs. Remote sensing, in regions of the optical electromagnetic spectrum, particularly in the visible range between 0.4 and 0.6 µm, shows radiometric contrasts associated with the relative concentration of sediments in water bodies. This work presents an analysis of the principal spectral, spatial and radiometric properties or characteristics of remote sensors for the determination of the relative concentration of sediments in bodies of water, a methodological process for its cartography at a given time or an established period of time. This cartography is based on digital processing of images rather than direct measurements in the field. Lastly, applications are presented for the delta coast of the southwestern area of the Colombian Caribbean between Barranquilla and Punta Piedra and in the lacustrine area of the Guajaro Reservoir and the Jobo and Capote Wetlands in the upper Canal del Dique, Colombia.

  7. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential

    KAUST Repository

    Naidu, Gayathri

    2016-11-29

    Membrane distillation (MD) was evaluated as a treatment option of wastewater reverse osmosis concentrate (WWROC) discharged from wastewater reclamation plants (WRPs). A direct contact MD (DCMD), at obtaining 85% water recovery of WWROC showed only 13–15% flux decline and produced good quality permeate (10–15 µS/cm, 99% ion rejection) at moderate feed temperature of 55 °C. Prevalent calcium carbonate (CaCO3) deposition on the MD membrane occurred in treating WWROC at elevated concentrations. The combination of low salinity and loose CaCO3 adhesion on the membrane did not significantly contribute to DCMD flux decline. Meanwhile, high organic content in WWROC (58–60 mg/L) resulted in a significant membrane hydrophobicity reduction (70% lower water contact angle than virgin membrane) attributed to low molecular weight organic adhesion onto the MD membrane. Granular activated carbon (GAC) pretreatment helped in reducing organic contents of WWROC by 46–50%, and adsorbed a range of hydrophobic and hydrophilic micropollutants. This ensured high quality water production by MD (micropollutants-free) and enhanced its reuse potential. The MD concentrated WWROC was suitable for selective ion precipitation, promising a near zero liquid discharge in WRPs.

  8. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential

    KAUST Repository

    Naidu, Gayathri; Jeong, Sanghyun; Choi, Youngkwon; Vigneswaran, Saravanamuthu

    2016-01-01

    Membrane distillation (MD) was evaluated as a treatment option of wastewater reverse osmosis concentrate (WWROC) discharged from wastewater reclamation plants (WRPs). A direct contact MD (DCMD), at obtaining 85% water recovery of WWROC showed only 13–15% flux decline and produced good quality permeate (10–15 µS/cm, 99% ion rejection) at moderate feed temperature of 55 °C. Prevalent calcium carbonate (CaCO3) deposition on the MD membrane occurred in treating WWROC at elevated concentrations. The combination of low salinity and loose CaCO3 adhesion on the membrane did not significantly contribute to DCMD flux decline. Meanwhile, high organic content in WWROC (58–60 mg/L) resulted in a significant membrane hydrophobicity reduction (70% lower water contact angle than virgin membrane) attributed to low molecular weight organic adhesion onto the MD membrane. Granular activated carbon (GAC) pretreatment helped in reducing organic contents of WWROC by 46–50%, and adsorbed a range of hydrophobic and hydrophilic micropollutants. This ensured high quality water production by MD (micropollutants-free) and enhanced its reuse potential. The MD concentrated WWROC was suitable for selective ion precipitation, promising a near zero liquid discharge in WRPs.

  9. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  10. A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects

    International Nuclear Information System (INIS)

    Tayyeb, Z.A.; Kinsara, A.R.; Farid, S.M.

    1998-01-01

    Several studies have shown that water-borne 222 Rn contributes to indoor air concentrations. A passive radon measurement method was employed to determine radon activity concentrations in the water of Jeddah city (Saudi Arabia). Tap water, flushing water and drinking water, including natural mineral water, artificial mineral water and distilled water, have been investigated for their radon concentrations. It is observed that the radon concentration in natural mineral water samples is the highest and that in flush water, it is the lowest. From these measurements, the corresponding annual effective dose for the stomach and the lung are determined. It is found that the annual effective dose resulting from direct consumption of water is far greater than that due to inhalation of radon emanated from tap water and flushing water. Moreover, it is also seen that the annual effective dose resulting from inhalation of radon emanated from tap water and flushing water is negligible compared to the total annual effective dose for indoor radon in Jeddah. (author)

  11. Measurement of radon concentration in drinking water in coastal regions of Uttara Kannada District, Karnataka, India

    International Nuclear Information System (INIS)

    Suresh, S.; Rangaswamy, D.R.; Sannappa, J.; Srinivasa, E.

    2018-01-01

    Water is absolutely needed for most life on this earth. Quality of drinking water is the need of the hour for person's health and environmental studies rather it is consumed and transported pollutant in the environment. The most commonly occurring radionuclides in natural water Rn, that cause risk to human health are 222 Rn, 226 Ra and 228 Ra. They emit alpha particles and their inhalation and ingestion may results in high radioactive dose to sensitive cells of lungs, digestive tract and other organs of the human bodies. Radon enriched drinking water poses a potential health risk in two ways: first, transfer of radon from water to indoor air and its inhalation and secondly, through ingestion. Radon monitoring has been increasingly conducted worldwide because of the hazardous effects of radon on the health of human beings. The aim of the present study is to measure radon concentration and to estimate the annual effective dose in drinking water samples in coastal regions of Uttara Kannada district

  12. Gestational exposure to high perchlorate concentrations in drinking water and neonatal thyroxine levels.

    Science.gov (United States)

    Amitai, Yona; Winston, Gary; Sack, Joseph; Wasser, Janice; Lewis, Matthew; Blount, Benjamin C; Valentin-Blasini, Liza; Fisher, Nirah; Israeli, Avi; Leventhal, Alex

    2007-09-01

    To assess the effect of gestational perchlorate exposure through drinking water on neonatal thyroxine (T(4)). T(4) values were compared among newborns in Ramat Hasharon, Israel, whose mothers resided in suburbs where drinking water contained perchlorate water exclusively (as determined by a telephone interview) were analyzed as a subset. Serum perchlorate levels in blood from donors residing in the area were used as proxy indicators of exposure. Neonatal T(4) values (mean +/- SD) in the very high, high, and low exposure groups were 13.9 +/- 3.8, 13.9 +/- 3.4, and 14.0 +/- 3.5 microg/dL, respectively (p = NS). Serum perchlorate concentrations in blood from donors residing in areas corresponding to these groups were 5.99 +/- 3.89, 1.19 +/- 1.37, and 0.44 +/- 0.55 microg/L, respectively. T(4) levels of neonates with putative gestational exposure to perchlorate in drinking water were not statistically different from controls. This study finds no change in neonatal T(4) levels despite maternal consumption of drinking water that contains perchlorate at levels in excess of the Environmental Protection Agency (EPA) drinking water equivalent level (24.5 microg/L) based on the National Research Council reference dose (RfD) [0.7 microg/(kg.day)]. Therefore the perchlorate RfD is likely to be protective of thyroid function in neonates of mothers with adequate iodide intake.

  13. Effect of water coagulation by seeds of Moringa oleifera on bacterial concentrations.

    Science.gov (United States)

    Madsen, M; Schlundt, J; Omer, E F

    1987-06-01

    The effects of a Sudanese water purification method traditionally used in Sudan to treat turbid waters were studied with respect to turbidity reduction and removal of faecal indicator bacteria as well as selected enteric bacterial pathogens. Water treatment was performed at 30 degrees C with Moringa oleifera seed material as a coagulant, and the technique employed corresponded closely to that used to clarify turbid water in Sudanese villages. A turbidity reduction of 80.0-99.5% paralleled by a primary bacterial reduction of 1-4 log units (90.00-99.99%) was obtained within the first 1 to 2 h of treatment, the bacteria being concentrated in the coagulated sediment. During the 24 h observation period a secondary bacterial increase due to regrowth in the supernatant water was consistently observed for Salmonella typhimurium and Shigella sonnei, in some cases for Escherichia coli, but not for Vibrio cholerae, Streptococcus faecalis and Clostridium perfringens. The potential of the method when compared with some alternative for the improvement of rural drinking water supplies is discussed.

  14. 210Po and 210Pb concentration in drinking water of Bangalore and its surroundings

    International Nuclear Information System (INIS)

    Shiva Prasad, N.G.; Nagaiah, N.; Ashok, G.V.

    2013-01-01

    Drinking water samples collected from different locations of Bangalore and its surrounding area were analysed for the activity concentrations of 210 Po and 210 Pb by employing radiochemical analysis. The measure concentration of 210 Po varies from 0.46 to 36.46 mBq L -1 with a mean of 6.17 mBq L -1 and that of 210 Pb ranges from 1.19 to 56.95 mBq L -1 with a mean of 13.98 mBq L -1 . The activity concentrations of these radionuclides were found to be low at the place Kambasandra and high at Kalkere. The range and the mean value obtained in the present study are well within the guidance value of 100 mBq L -1 as prescribed by World Health Organization. From the measured concentrations of these radionuclides, the annual effective dose was calculated for different age groups: for babies (age below 1 y), children (age from 2 to 7 y) and adults (age from 17 y and above) using IAEA dose conversion factors and the prescribed water consumption rates. The total dose received is very much less than the ICRP recommended value of 1000 μ Sv y -1 for all age groups. (author)

  15. Measurement of radon concentration in ground water at Saijo sake brewery by means of γ-ray spectrometry

    International Nuclear Information System (INIS)

    Takenaka, Kodai; Takatori, Hiroshi; Kojima, Yasuaki; Shizuma, Kiyoshi

    2008-01-01

    Recently, natural water such as ground water and/or spring water of various places is popular for the environmental preservation and safety of food. Measurement of the radon concentration in ground water is important for risk estimate of drinking water and whether the water can be authorized as the mineral spring (74 Bq/L). In this work, radon concentration is ground water from eight places which were utilized for Saijo sake breweries was measured by means of γ-ray spectrometry. Radon concentration in each well was measured every month for two years. The variation in the radon concentration was investigated for seasonal variation, difference between the type of well, correlations with pH, water temperature and atmospheric temperature. The results are as follows: An average value of the radon concentration was 160 Bq/L which meant most of ground water satisfies the mineral spring standard. The radon concentration of the drilling well was higher than that of the punched well. The variation in the radon concentration shows no seasonal variations, nor depends on the water temperature, the atmospheric temperature and the pH. (author)

  16. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  17. Measurements of radon concentration levels in drinking water at urban area of Curitiba, Brazil

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi; Paschuk, Sergei A.; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Current work presents the results of more than 100 measurements of 222 Rn activity in drinking water collected at artesian bores at Curitiba region during the period of 2008 - 2009. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology in cooperation with the Nuclear Technology Development Center (CDTN) of Brazilian Nuclear Energy Committee (CNEN). Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specific kit of glass vessels Aqua KIT through the air pump. The equipment was adjusted with air flow of 0.5 L/min. The 222 Rn concentration levels were detected and analyzed by the computer every 10 minutes using the software DataEXPERT by GENITRON Instruments. Collected average levels of 222 Rn concentration were processed taking into account the volume of water sample and its temperature, atmospheric pressure and the total volume of the air in the vessels. Collected samples of water presented the average 222 Rn activity about 57.70 Bq/L which is almost 5 times more than maximum level of 11.1 Bq/L recommended by the USEPA (United States Environmental Protection Agency). It has to be noted that many artesian drillings presented the radon activity in the range of 100 - 200 Bq/L. Further measurements are planned to be performed at other regions of Parana State and will involve the mineral water sources, explored artesian drillings as well as soil samples. (author)''

  18. Analysis of heavy metals concentration in water and sediment in the Hara biosphere reserve, southern Iran.

    Science.gov (United States)

    Nowrouzi, Mohsen; Mansouri, Borhan; Nabizadeh, Sahar; Pourkhabbaz, Alireza

    2014-02-01

    This study determined the concentration of heavy metals (Al, Cr, Cu, and Zn) in water and sediments at nine sites in the Hara biosphere reserve of southern Iran during the summer and winter 2010. Determination of Al, Cr, Cu, and Zn in water was carried out by graphite furnace atomic absorption spectrometer (Shimadzu, AA 610s) and in sediment by flame atomic absorption spectrometer (Perkin Elmer, AA3030). Results showed that the heavy metal concentrations in the water samples decreased in the sequence of Zn > Al > Cu > Cr, while in sediment samples were Cr > Zn > Cu > Al. Data analysis indicated that with the exception of Al, there was a Pearson's correlation coefficient between pH and Cu, Zn, and Cr at α = 0.01, 0.05, and 0.001 in sediment (in winter), respectively. There were also significant differences between heavy metals of Cr, Cu, and Zn during the two seasons (p < 0.001) in the water and sediment.

  19. Effect of concentration variation in graphene oxide (GO) membranes for water flux optimization

    Science.gov (United States)

    Kumar, Shani; Garg, Amit; Chowdhuri, Arijit

    2018-05-01

    Graphene oxide, sister material of Graphene has generated tremendous research interest in fields of energy storage, catalyst material, adsorbent material for heavy metals and dyes, green energy production, drug delivery agent, a gas sensing material as well as in membrane based water purification and desalination systems1-3 etc. In this paper, we are reporting the effect of concentration variation in GO membranes on water flux. GO has been synthesized by Hummer's method with related characterizations like XRD, Raman, SEM and FTIR carried out. GO membranes have been developed using pressure assisted filtration assembly (Water Vac-100) over Cellulose Acetate membrane support (47 mm dia. and 0.45 µm pore size), Millipore.

  20. Evaluation of NORM concentration in water treatment of Pocos de Caldas municipality, MG, Brazil: preliminary results

    International Nuclear Information System (INIS)

    Ferreira, Adriano Mota; Villegas, Raul A.S.; Fukuma, Henrique Takuji

    2014-01-01

    NORM is the acronym used to refer to naturally occurring radioactive materials. Besides being objects of study and monitoring such materials can be used as raw material or as by-products or waste of industrial activities. Oil and gas, mining and water treatment are examples of facilities that can handle NORM. In such cases, their concentration at significant levels from the perspective of environmental and occupational radiation protection may occur. This study aims to evaluate the presence of the natural radioactive 238 U and 232 Th series in the treatment of city water elements Pocos de Caldas - MG (water, materials and waste). The study can serve as an indication of the necessity of a more detailed review in the locally and in the country on this radiological issue. (author)

  1. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Determination of radon concentration in water using RAD7 with RAD H{sub 2}O accessories

    Energy Technology Data Exchange (ETDEWEB)

    Malik, M. F. I. [Science and Engineering Research Centre (SERC), Universiti Sains Malaysia, Seri Ampangan Nibong Tebal 14300 Penang (Malaysia); Rabaiee, N. A.; Jaafar, M. S. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20 samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public.

  3. Uranium concentration in drinking water from small-scale water supplies in Schleswig-Holstein, Germany; Urankonzentration im Trinkwasser aus Hausbrunnen in Schleswig-Holstein

    Energy Technology Data Exchange (ETDEWEB)

    Ostendorp, G. [Landesamt fuer soziale Dienste, Kiel (Germany). Dezernat Umweltbezogener Gesundheitsschutz

    2015-07-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 μg/lL, the 95th percentile was 2.5 μg/L. The maximum level was 14 μg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur.

  4. Concentration and characteristics of depleted uranium in biological and water samples collected in Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Jia Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2006-01-01

    During Balkan conflicts in 1994-1995, depleted uranium (DU) ordnance was employed and was left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Bosnia and Herzegovina, radiological survey of DU in biological and water samples were carried out over the period 12-24 October 2002. The uranium isotopic concentrations in biological samples collected in Bosnia and Herzegovina, mainly lichens, mosses and barks, were found to be in the range of 0.27-35.7 Bq kg -1 for 238 U, 0.24-16.8 Bq kg -1 for 234 U, and 0.02-1.11 Bq kg -1 for 235 U, showing uranium levels to be higher than in the samples collected at the control site. Moreover, the 236 U in some of the samples was detectable. The isotopic ratios of 234 U/ 238 U showed DU to be detectable in many biological samples at most sites examined, but in very low levels. The presence of DU in the biological samples was as a result of DU contamination in air. The uranium concentrations in water samples collected in Bosnia and Herzegovina were found to be in the range of 0.27-16.2 mBq l -1 for 238 U, 0.41-15.6 mBq l -1 for 234 U and 0.012-0.695 mBq l -1 for 235 U, and two water samples were observed to be DU positive; these values are much lower than those in mineral water found in central Italy and below the WHO guideline for public drinking water. From radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water and/or plants

  5. Effects of magnetic treated water on serum concentration parameters and fat thickness

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-02-01

    Full Text Available The goal of this study was to evaluate the effect of magnetic water on blood cells counts, biochemical profile, blood gas level and subcutaneous fat thickness of Jersey cows. This research was carried out at Agência Paulista de Tecnologia dos Agronegócios - APTA, SP. Twenty six Jersey cows from the APTA were allotted into two groups: control (n=13, drinking regular water and the group consuming magnetic water (n=13. The animals were lactating around 150 days and pregnant around 60 days. Blood samples were collected from caudal auricular artery and jugular vein. The water treatment had no effect on hemogram (p>0.05. Higher pH (7.448 vs 7.407 mmHg, p<0.05 and lower PaCO2 (37.97 vs 42.47 mmHg, p<0.05 levels were detected in arterial blood of the group drinking magnetic water. The concentration of Na ion (138.8 vs 145.5 mmol/l, p<0.05 and serum triglycerides (10.4 vs 22.6 mg/dL, p<0.05 were significantly lower, resulting in smaller osmolality (273.30 vs 280.99 mOsm/kg, p<0.05 and subcutaneous fat thickness (0.2 vs 1.3 mm, p<0.05. In summary, the water treatment, evaluated in this study, may have decreased the risk of some metabolic disorders, such as acidosis and high serum concentration of Na and carbon dioxide.

  6. Farmer driven national monitoring of nitrogen concentrations in drainage water in Denmark

    Science.gov (United States)

    Piil, Kristoffer; Lemming, Camilla; Kolind Hvid, Søren; Knudsen, Leif

    2014-05-01

    Field drains are often considered to short circuit the hydrological cycle in agricultural catchments and lead to an increased risk of nitrogen loss to the environment. Because of increased regulation of agricultural practices due to catchment management plans, resulting from the implementation of the water frame directive, Danish farmers pushed for a large scale monitoring of nitrogen loss from field drains. Therefore, the knowledge centre for agriculture, Denmark, organized a three year campaign where farmers and local agricultural advisory centres collected water samples from field drains three to five times during the winter season. Samples were analysed for nitrate and total nitrogen. Combined, more than 600 drains were monitored over the three years. During the first two years of monitoring, average winter concentrations of total nitrogen ranged from 0.1 mg N L-1 to 31.1 mg N L-1, and the fraction of total nitrogen present as nitrate ranged from 0% to 100%. This variation is much larger than what is observed in the Danish national monitoring and assessment programme, which monitors only a few drains in selected catchments. Statistical analysis revealed that drainage water nitrogen concentrations were significantly correlated to the cropping system and the landscape type (high ground/lowlands/raised seabed) in which the monitored fields were situated. The average total nitrogen concentration was more than 2 mg N L-1 lower on raised seabed than on high ground, and the average fraction of total nitrogen present as nitrate was more than 20% lower. This indicates that substantial nitrate reduction occurs at or above the drain depth on raised sea flats, in particular in the north of Denmark. This inherent nitrogen retention on raised seabed is not taken into account in the current environmental regulation, nor in the first generation catchment management plans. The monitoring program demonstrated large variation in nitrogen concentrations in drainage water, in

  7. Fouling-Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States)

    2014-10-14

    The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow for the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.

  8. Mercury concentrations in water, and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in Boise and Snake Rivers, Idaho and Oregon, 2013

    Science.gov (United States)

    MacCoy, Dorene E.

    2014-01-01

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to

  9. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  10. SHORT COMMUNICATION CHEMICAL CONSTITUENTS AND ...

    African Journals Online (AJOL)

    CHEMICAL CONSTITUENTS AND ANTIOXIDANT ACTIVITIES OF THE FRUITS ... alkaloids, phenols, steroids, flavonoids, saponins and terpenoids while tannin ..... Harveer, K.; Jasmeen, S. Synthesis, characterization and radical scavenging ...

  11. Radium and uranium concentrations and associated hydrogeochemistry in ground water in southwestern Pueblo County, Colorado

    Science.gov (United States)

    Felmlee, J. Karen; Cadigan, Robert Allen

    1979-01-01

    Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 microg