WorldWideScience

Sample records for water constituent concentrations

  1. Temporal trends in water-quality constituent concentrations and annual loads of chemical constituents in Michigan watersheds, 1998–2013

    Science.gov (United States)

    Hoard, Christopher J.; Fogarty, Lisa R.; Duris, Joseph W.

    2018-02-21

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began the Water Chemistry Monitoring Program for select streams in the State of Michigan. Objectives of this program were to provide assistance with (1) statewide water-quality assessments, (2) the National Pollutant Discharge Elimination System permitting process, and (3) water-resource management decisions. As part of this program, water-quality data collected from 1998 to 2013 were analyzed to identify potential trends for select constituents that were sampled. Sixteen water-quality constituents were analyzed at 32 stations throughout Michigan. Trend analysis on the various water-quality data was done using either the uncensored Seasonal Kendall test or through Tobit regression. In total, 79 trends were detected in the constituents analyzed for 32 river stations sampled for the study period—53 downward trends and 26 upward trends were detected. The most prevalent trend detected throughout the State was for ammonia, with 11 downward trends and 1 upward trend estimated.In addition to trends, constituent loads were estimated for 31 stations from 2002 to 2013 for stations that were sampled 12 times per year. Loads were computed using the Autobeale load computation program, which used the Beale ratio estimator approach to estimate an annual load. Constituent loads were the largest in large watershed streams with the highest annual flows such as the Saginaw and Grand Rivers. Likewise, constituent loads were the smallest in smaller tributaries that were sampled as part of this program such as the Boardman and Thunder Bay Rivers.

  2. Relations of water-quality constituent concentrations to surrogate measurements in the lower Platte River corridor, Nebraska, 2007 through 2011

    Science.gov (United States)

    Schaepe, Nathaniel J.; Soenksen, Philip J.; Rus, David L.

    2014-01-01

    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The U.S. Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebr. [USGS site 06800500]; Salt Creek near Ashland, Nebr. [USGS site 06805000]; and Platte River at Louisville, Nebr. [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions. Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models. Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus

  3. Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

    Science.gov (United States)

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics. Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended

  4. Concentrations, loads, and yields of select constituents from major tributaries of the Mississippi and Missouri Rivers in Iowa, water years 2004-2008

    Science.gov (United States)

    Garrett, Jessica D.

    2012-01-01

    Excess nutrients, suspended-sediment loads, and the presence of pesticides in Iowa rivers can have deleterious effects on water quality in State streams, downstream major rivers, and the Gulf of Mexico. Fertilizer and pesticides are used to support crop growth on Iowa's highly productive agricultural landscape and for household and commercial lawns and gardens. Water quality was characterized near the mouths of 10 major Iowa tributaries to the Mississippi and Missouri Rivers from March 2004 through September 2008. Stream loads were calculated for select ions, nutrients, and sediment using approximately monthly samples, and samples from storm and snowmelt events. Water-quality samples collected using standard streamflow-integrated protocols were analyzed for major ions, nutrients, carbon, pesticides, and suspended sediment. Statistical data summaries of sample data used parametric and nonparametric techniques to address potential bias related to censored data and multiple levels of censoring of data below analytical detection limits. Constituent stream loads were computed using standard pre-defined models in S-LOADEST that include streamflow and time terms plus additional terms for streamflow variability and streamflow anomalies. Streamflow variability terms describe the difference in streamflow from recent average conditions, whereas streamflow anomaly terms account for deviations from average conditions from long- to short-term sequentially. Streamflow variability or anomaly terms were included in 44 of 80 site/constituent individual models, demonstrating the usefulness of these terms in increasing accuracy of the load estimates. Constituent concentrations in Iowa streams exhibit streamflow, seasonal, and spatial patterns related to the landform and climate gradients across the studied basins. The streamflow-concentration relation indicated dilution for ions such as chloride and sulfate. Other constituent concentrations, such as dissolved organic carbon and

  5. Determination of the Toxicity to Aquatic Organisms of HMX and Related Wastewater Constituents. Part 1. The Effects of Food Concentration, Animal Interactions and Water Volume on Survival Growth and Reproduction of Daphnia magna under Flow-through Conditions.

    Science.gov (United States)

    1983-01-01

    Effects of polychlorinated biphenyl’s (PCB’s) on survival and reproduction of Daphnia, Gammarus , and Tanytarsus. Trans. Amer. Fish. Soc. 103(4) : 722-728...WASTEWATER CONSTITUENTS Ruff 1: * THE EFFECTS OF FOOD CONCENTRATION, ANIMAL INTERACTIONS AND WATER VOLUME ON SURVIVAL, GROWTH AND REPRODUCTION OF Daphnia...OF FOOD CONCENTRATION, ANIMAL INTERACTIONS AND WATER VOLUME ON SURVIVAL, GROWTH AND REPRODUCTION OF Daphnia magna UNDER FLOW-THROUGH CONDITIONS

  6. Water Vapor Corrosion in EBC Constituent Materials

    Science.gov (United States)

    Kowalski, Benjamin; Fox, Dennis; Jacobson, Nathan S.

    2017-01-01

    Environmental Barrier Coating (EBC) materials are sought after to protect ceramic matrix composites (CMC) in high temperature turbine engines. CMCs are particularly susceptible to degradation from oxidation, Ca-Al-Mg-Silicate (CMAS), and water vapor during high temperature operation which necessitates the use of EBCs. However, the work presented here focuses on water vapor induced recession in EBC constituent materials. For example, in the presence of water vapor, silica will react to form Si(OH)4 (g) which will eventually corrode the material away. To investigate the recession rate in EBC constituent materials under high temperature water vapor conditions, thermal gravimetric analysis (TGA) is employed. The degradation process can then be modeled through a simple boundary layer expression. Ultimately, comparisons are made between various single- and poly-crystalline materials (e.g. TiO2, SiO2) against those found in literature.

  7. German studies on health effects of inorganic drinking water constituents.

    Science.gov (United States)

    Sonneborn, M; Mandelkow, J

    1981-04-01

    The influence of drinking water quality on mortality and morbidity of various diseases has been studied for more than 20 years. From these diseases, those of the cardiovascular system have been playing a special role. Better and more specified information on the differences in the composition of drinking water may essentially contribute to a solution of the problem of association between water quality and the incidence of diseases. In more than 600 water supply areas in the Federal Republic of Germany the composition of the drinking water has been analyzed. From these data, areas of different water quality are to be selected for additional investigations of the problem of health relevance of drinking water quality. So far, the following constituents of drinking water have been measured: Na, Ca, Mg, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, SO4, PO4, NO3, NO2, Cl, F, I, etc. The methods of analysis used were atomic absorption spectrometry, plasma emission spectrometry, and ion chromatography. Additionally, more than 19 000 data on drinking water in accordance with standard analytic procedures under the Drinking Water Regulations are available in a comprehensive data bank (BIBIDAT). There have been studies establishing associations between water hardness and cardiovascular diseases but also studies which do not confirm this association or even present converse results. Also water constituents like magnesium, cadmium, etc. have been associated with cardiovascular diseases. Some investigations have shown correlations between e.g. the concentration of fluoride in drinking water and caries or iodide and goitre.

  8. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    Science.gov (United States)

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110

  9. Concentrations of selected constituents in surface-water and streambed-sediment samples collected from streams in and near an area of oil and natural-gas development, south-central Texas, 2011-13

    Science.gov (United States)

    Opsahl, Stephen P.; Crow, Cassi L.

    2014-01-01

    During 2011–13, the U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Guadalupe-Blanco River Authority, analyzed surface-water and streambed-sediment samples collected from 10 sites in the San Antonio River Basin to provide data for a broad range of constituents that might be associated with hydraulic fracturing and the produced waters that are a consequence of hydraulic fracturing. Among surface-water samples, all sulfide concentrations were less than the method detection limit of 0.79 milligrams per liter. Four glycols—diethylene glycol, ethylene glycol, propylene glycol, and triethylene glycol—were analyzed for in surface-water samples collected for this study, and none were detected. Of the 91 semivolatile organic compounds analyzed for this study, there were six detections, all but one of which were in storm-runoff samples. The base-flow sample collected at the San Antonio River at Goliad, Tex. (SAR Goliad), site contained bis(2-ethylhexyl) phthalate, a plasticizer in polyvinyl chloride and a constituent in hydraulic fracturing fluids. The storm-runoff samples collected at the San Antonio River near Elmendorf, Tex. (SAR Elmendorf), and Ecleto Creek at County Road 326 near Runge, Tex. (Ecleto 2), sites also contained bis(2-ethylhexyl) phthalate. The storm-runoff sample collected at the SAR Elmendorf site contained the plasticizer diethyl phthalate. Both storm-runoff samples collected at the Ecleto Creek near Runge, Tex. (Ecleto 1), and Ecleto 2 sites contained benzyl alcohol, a solvent commonly used in paints. Of the 67 volatile organic compounds analyzed in this study, there were a total of six detections, all of which were in base-flow samples. The surface-water sample collected at the SAR Elmendorf site contained bromodichloromethane, dibromochloromethane, and trichloromethane, all of which are disinfection byproducts associated with the chlorination of municipal water supplies and of treated municipal wastewater. The

  10. Continuous real-time water-quality monitoring and regression analysis to compute constituent concentrations and loads in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999–2012

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is the primary water supply for the city of Wichita. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River, the main source of inflow to Cheney Reservoir. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on data collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for four new constituents, including additional nutrient species and indicator bacteria. In addition, a conversion factor of 0.68 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI model 6136 sensor at the North Ninnescah River upstream from Cheney Reservoir site. Newly developed models and 14 years of hourly continuously measured data were used to calculate selected constituent concentrations and loads during January 1999 through December 2012. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest to Cheney Reservoir, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that

  11. 40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Maximum Concentration of Constituents... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium... satisfied by a concentration of 0.044 milligrams per liter (0.044 mg/l). For conditions of other than...

  12. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations

    Science.gov (United States)

    Cravotta, C.A.

    2008-01-01

    Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn

  13. Underwater light field determined by water constituents in highly turbid water: the case of Taihu lake

    Directory of Open Access Journals (Sweden)

    Chang-Chun Huang

    2013-02-01

    Full Text Available The relationships between optical properties and water constituents in highly turbid productivewater were studied on the basis of the multiple bio-optical measurements and samplings of water constituents made during five cruises from 2006 to 2008 in Taihu lake. Taihu lake is a high dynamic ratio [(square root of area/depth] inland shallow lake. The spatial and temporal variation of water constituents and optical properties is significant. The inorganic suspended matter (ISMhas become the primary constituent in Taihu lake: its average percentage can reach 65.21%. The concentration of ISM is highly correlated to the optical properties in Taihu lake due to the sediment resuspension. Consequently, the ISM can be taken into account as an important optically-active constituent in Taihu lake. Resuspended sediments also lead to a poor correlation between scattering optical property and chlorophyll-a concentration (CChl-a. However, empirical relationship between the CChl-a and phytoplankton absorption coefficient at 675 nm is still valid when the package effect is removed. The parameters of linear equation in the present study have slight temporal variation, especially for the relationship between inherent optical properties (IOPs and concentration of total suspended matter (TSM. The relationship between apparent optical property (AOP (diffuse attenuation coefficient of particle, Kdbio and ISM has been examined as well. The Kdbio is strongly affected by ISM, and correlates to it with linear function. Thedifference between specific diffuse attenuation coefficients of organic [K*dOSM(λ] and inorganic [K*dISM(λ] particles is significant. K*dOSM(λ includes the absorption property of chlorophyll-a (chl-a at 675 nm, which is much higher than that of K*dISM(λ. This indicates that the attenuation ability of OSM is stronger than that of ISM although the Kdbio induced by large concentration of ISM is bigger than the Kdbio induced by small concentration of OSM

  14. Anticancer Constituents and Cytotoxic Activity of Methanol-Water ...

    African Journals Online (AJOL)

    This study was specifically designed to identify anticancer constituents in methanol-water extract of Polygonum bistorta L. and evaluate its cytotoxicity. For this purpose methanol-water (40:60 v/v) extract was subjected to conventional preparative high pressure liquid chromatography and 13 fractions were obtained.

  15. Characterization of Formation Water Constituents and the Effect of ...

    African Journals Online (AJOL)

    Michael Horsfall

    2, 3Pollution Control and Environmental Management Limited, Port Harcourt, Nigeria. ABSTRACT: The research work examined the constituents of formation water and fresh water dilution effects from a land location in the Niger Delta Area of Nigeria. Some selected physicochemical and microbiological analyses were.

  16. Characterization of Formation Water Constituents and the Effect of ...

    African Journals Online (AJOL)

    Characterization of Formation Water Constituents and the Effect of Fresh Water Dilution from Land Rig Location of the Niger Delta, Nigeria. ... The oil & grease values for 90/10 ratio at both ambient and formation temperature were 0.32(mg/l) and 0.2(mg/l) respectively. While the 50/50 ratio at both ambient and formation ...

  17. Improving riverine constituent concentration and flux estimation by accounting for antecedent discharge conditions

    Science.gov (United States)

    Zhang, Qian; Ball, William P.

    2017-04-01

    by the ADF model. By contrast, no such achievement was achieved for SRP by any proposed model. In terms of sampling strategy, performance of all models (including the original) was generally best using strategy C and worst using strategy A, and especially so for SS, TP, and SRP, confirming the value of routinely collecting stormflow samples. Overall, this work provides a comprehensive set of statistical evidence for supporting the incorporation of antecedent discharge conditions into the WRTDS model for estimation of constituent concentration and flux, thereby combining the advantages of two recent developments in water quality modeling.

  18. Indicator bacteria and associated water quality constituents in stormwater and snowmelt from four urban catchments

    Science.gov (United States)

    Galfi, H.; Österlund, H.; Marsalek, J.; Viklander, M.

    2016-08-01

    Four indicator bacteria were measured in association with physico-chemical constituents and selected inorganics during rainfall, baseflow and snowmelt periods in storm sewers of four urban catchments in a northern Swedish city. The variation patterns of coliforms, Escherichia coli, enterococci and Clostridium perfringens concentrations were assessed in manually collected grab samples together with those of phosphorus, nitrogen, solids, and readings of pH, turbidity, water conductivity, temperature and flow rates to examine whether these constituents could serve as potential indicators of bacteria sources. A similar analysis was applied to variation patterns of eight selected inorganics typical for baseflow and stormwater runoff to test the feasibility of using these inorganics to distinguish between natural and anthropogenic sources of inflow into storm sewers. The monitored catchments varied in size, the degree of development, and land use. Catchment and season (i.e., rainy or snowmelt periods) specific variations were investigated for sets of individual stormwater samples by the principal component analysis (PCA) to identify the constituents with variation patterns similar to those of indicator bacteria, and to exclude the constituents with less similarity. In the reduced data set, the similarities were quantified by the clustering correlation analysis. Finally, the positive/negative relationships found between indicator bacteria and the identified associated constituent groups were described by multilinear regressions. In the order of decreasing concentrations, coliforms, E. coli and enterococci were found in the highest mean concentrations during both rainfall and snowmelt generated runoff. Compared to dry weather baseflow, concentrations of these three indicators in stormwater were 10 (snowmelt runoff) to 102 (rain runoff) times higher. C. perfringens mean concentrations were practically constant regardless of the season and catchment. The type and number of

  19. Water resources of Monroe County, New York, water years 2003-08: Streamflow, constituent loads, and trends in water quality

    Science.gov (United States)

    Hayhurst, Brett A.; Coon, William F.; Eckhardt, David A.V.

    2010-01-01

    This report, the sixth in a series published since 1994, presents analyses of hydrologic data in Monroe County for the period October 2002 through September 2008. Streamflows and water quality were monitored at nine sites by the Monroe County Department of Health and the U.S. Geological Survey. Streamflow yields (flow per unit area) were highest in Northrup Creek, which had sustained flows from year-round inflow from the village of Spencerport wastewater-treatment plant and seasonal releases from the New York State Erie (Barge) Canal. Genesee River streamflow yields also were high, at least in part, as a result of higher rainfall and lower evapotranspiration rates in the upper part of the Genesee River Basin than in the other study basins. The lowest streamflow yields were measured in Honeoye Creek, which reflected a decrease in flows due to the withdrawals from Hemlock and Canadice Lakes for the city of Rochester water supply. Water samples collected at nine monitoring sites were analyzed for nutrients, chloride, sulfate, and total suspended solids. The loads of constituents, which were computed from the concentration data and the daily flows recorded at each of the monitoring sites, are estimates of the mass of the constituents that was transported in the streamflow. Annual yields (loads per unit area) also were computed to assess differences in constituent transport among the study basins. All urban sites - Allen Creek and the two downstream sites on Irondequoit Creek - had seasonally high concentrations and annual yields of chloride. Chloride loads are attributed to the application of road-deicing salts to the county's roadways and are related to population and road densities. The less-urbanized sites in the study - Genesee River, Honeoye Creek, and Oatka Creek - had relatively low concentrations and yields of chloride. The highest concentrations and yields of sulfate were measured in Black Creek, Oatka Creek, and Irondequoit Creek at Railroad Mills and are

  20. Effect of coffee reduction on constituent concentration in an energy-efficient process of ultrasonic extraction

    Directory of Open Access Journals (Sweden)

    Wang Cheng-Chi

    2015-01-01

    Full Text Available Coffee is one of the popular beverage; its constituents include caffeine, oxidation resistant aromatic constituents, protein, tannin, and fat. It is indicated in literatures that a proper amount of coffee stimulates the brain and enhances memory, but excessive coffee causes negative results, such as coronary artery disease, high blood pressure, heart disease and kidney disease. This study used high-performance ultrasonic process to discuss the effect of pulverized coffee reduction on the constituent concentration. It further compared the constituent concentrations obtained in different extraction periods. The experimental results show that the coffee aroma constituents can be extracted effectively by ultrasonic process without any organic solvent, and the constituent concentration does not decrease with the addition of pulverized coffee. Therefore, the consumption of pulverized coffee can be reduced greatly by using the proposed. The time of extraction process can be shortened, so as to save energy. The most important point is to reduce the enterprises manufacturing cost and to increase the profit.

  1. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  2. [Effects of doubled CO2 concentration on Erigeron breviscapus growth and its active constituent accumulation].

    Science.gov (United States)

    Li, Xiu-Hua; Su, Wen-Hua; Zhou, Hong; Zhang, Guang-Fei

    2009-08-01

    With medicinal plant Erigeron breviscapus as test material, its biomass and the contents and yields of scutellarin and caffeate were monitored under doubled (800 +/- 100) micromol x mol(-1) and natural (400 +/- 25) micromol x mol(-1) CO2 concentration. Comparing with those under natural CO2 concentration, the biomass of E. breviscapus under doubled CO2 concentration increased by 22%, the contents of scutellarin and caffeate increased by 23% and 26%, and the yields of these two constituents increased by 37.6% and 45.3%, respectively. Different organs had different responses in their biomass and active constituent contents to the elevated CO2 concentration. Under doubled CO2 concentration, the plant N content decreased by 47.2% and was negatively correlated with active constituent contents, being accorded well to the C/N balance hypothesis, and the biomass was positively correlated with the active constituent contents while no trade-off was observed between plant growth and secondary metabolism, suggesting that rational application of CO2 could improve the yield and quality of E. breviscapus.

  3. Optical remote sensing of properties and concentrations of atmospheric trace constituents

    Science.gov (United States)

    Vladutescu, Daniela Viviana

    application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared

  4. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation.

    Science.gov (United States)

    Garrabrants, A C; Sanchez, F; Kosson, D S

    2004-01-01

    Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.

  5. Regression models to estimate real-time concentrations of selected constituents in two tributaries to Lake Houston near Houston, Texas, 2005-07

    Science.gov (United States)

    Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.

    2009-01-01

    In December 2005, the U.S. Geological Survey in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (total coliform and Escherichia coli), atrazine, and suspended sediment at two U.S. Geological Survey streamflow-gaging stations upstream from Lake Houston near Houston (08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas). The data from the discrete water-quality samples collected during 2005-07, in conjunction with monitored real-time data already being collected - physical properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), streamflow, and rainfall - were used to develop regression models for predicting water-quality constituent concentrations for inflows to Lake Houston. Rainfall data were obtained from a rain gage monitored by Harris County Homeland Security and Emergency Management and colocated with the Spring Creek station. The leaps and bounds algorithm was used to find the best subsets of possible regression models (minimum residual sum of squares for a given number of variables). The potential explanatory or predictive variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, rainfall, and time (to account for seasonal variations inherent in some water-quality data). The response variables at each site were nitrite plus nitrate nitrogen, total phosphorus, organic carbon, Escherichia coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities as a means to estimate concentrations of the various constituents under investigation, with accompanying estimates of measurement uncertainty. Each regression equation can be used to estimate concentrations of a given constituent in real time. In conjunction with estimated concentrations, constituent loads were estimated by multiplying the

  6. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  7. Influence from sea water constituents on the efficiency of water electrolysis by PEM-cells

    DEFF Research Database (Denmark)

    Agersted, Karsten; Bentzen, Janet Jonna; Yde-Andersen, S.

    Among the sea-water specific impurities tested, magnesium has the most profound effect on PEM-cell degradation. Significant amounts of the cation was retrieved in the NAFION®-membrane structure after testing. Degradation was seen from a magnesium concentration as low as 3 10-7 mol/l, and increasing...... to purify the feed water to ~1 μS/cm or even further while particularly focusing on the concentrations of polyvalent cations. e.g. magnesium....

  8. Microcystin concentration in fishpond waters

    Directory of Open Access Journals (Sweden)

    Tokodi Nada J.

    2014-01-01

    Full Text Available Cyanobacterial blooming is a worldwide problem which sometimes results in cyanotoxin production. Most commonly produced cyanotoxins are microcystins (MCs, potent inhibitors of protein phosphatases. Protein phosphatase 1 (PP1 is known to be involved in the regulation of a variety of cellular processes. In this study, MC concentration was assessed via inhibition of protein phosphatase 1 (PP1 assay in water samples taken from 14 lakes of Mužlja fishpond, Vojvodina, Serbia. During the summer of 2011, cyanobacterial growth occured in the fishpond lakes and small, planktonic crustacean Daphnia sp. was used to control or/and prevent further development of cyanobacteria. Different MC concentrations (calculated as microcystin-LR equivalents were detected, mostly depending on the occurrence and grazing of Daphnia sp. More thorough monitoring of fishponds should be conducted, both in Serbia and around the world, in order to gain more precise estimation of cyanotoxin concentrations and their accumulation in organisms used for human consumption and thus prevent possible negative health effects. [Projekat Ministarstva nauke Republike Srbije, br.176020

  9. Water storage and evaporation as constituents of rainfall interception

    NARCIS (Netherlands)

    Klaassen, W; Bosveld, F; de Water, E

    1998-01-01

    Intercepted rainfall may be evaporated during or after the rain event. Intercepted rain is generally determined as the difference between rainfall measurements outside and inside the forest. Such measurements are often used to discriminate between water storage and evaporation during rain as well.

  10. Analysis of nutrients, selected inorganic constituents, and trace elements in water from Illinois community-supply wells, 1984-91

    Science.gov (United States)

    Warner, Kelly L.

    2000-01-01

    The lower Illinois River Basin (LIRB) study unit is part of the National Water-Quality Assessment program that includes studies of most major aquifer systems in the United States. Retrospective water-quality data from community-supply wells in the LIRB and in the rest of Illinois are grouped by aquifer and depth interval. Concentrations of selected chemical constituents in water samples from community-supply wells within the LIRB vary with aquifer and depth of well. Ranked data for 16 selected trace elements and nutrients are compared by aquifer, depth interval, and between the LIRB and the rest of Illinois using nonparametric statistical analyses. For all wells, median concentrations of nitrate and nitrite (as Nitrogen) are highest in water samples from the Quaternary aquifer at well depths less than 100 ft; ammonia concentrations (as Nitrogen), however, are highest in samples from well depths greater than 200 ft. Chloride and sulfate concentrations are higher in samples from the older bedrock aquifers. Arsenic, lead, sulfate, and zinc concentrations are appreciably different between samples from the LIRB and samples from the rest of Illinois for ground water from the Quaternary aquifer. Arsenic concentration is highest in the deep Quaternary aquifer. Chromium, cyanide, lead, and mercury are not frequently detected in water samples from community-supply wells in Illinois.

  11. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake

    Directory of Open Access Journals (Sweden)

    Katja Dörnhöfer

    2016-11-01

    Full Text Available Satellite remote sensing may assist in meeting the needs of lake monitoring. In this study, we aim to evaluate the potential of Sentinel-2 to assess and monitor water constituents and bottom characteristics of lakes at spatio-temporal synoptic scales. In a field campaign at Lake Starnberg, Germany, we collected validation data concurrently to a Sentinel-2A (S2-A overpass. We compared the results of three different atmospheric corrections, i.e., Sen2Cor, ACOLITE and MIP, with in situ reflectance measurements, whereof MIP performed best (r = 0.987, RMSE = 0.002 sr−1. Using the bio-optical modelling tool WASI-2D, we retrieved absorption by coloured dissolved organic matter (aCDOM(440, backscattering and concentration of suspended particulate matter (SPM in optically deep water; water depths, bottom substrates and aCDOM(440 were modelled in optically shallow water. In deep water, SPM and aCDOM(440 showed reasonable spatial patterns. Comparisons with in situ data (mean: 0.43 m−1 showed an underestimation of S2-A derived aCDOM(440 (mean: 0.14 m−1; S2-A backscattering of SPM was slightly higher than backscattering from in situ data (mean: 0.027 m−1 vs. 0.019 m−1. Chlorophyll-a concentrations (~1 mg·m−3 of the lake were too low for a retrieval. In shallow water, retrieved water depths exhibited a high correlation with echo sounding data (r = 0.95, residual standard deviation = 0.12 m up to 2.5 m (Secchi disk depth: 4.2 m, though water depths were slightly underestimated (RMSE = 0.56 m. In deeper water, Sentinel-2A bands were incapable of allowing a WASI-2D based separation of macrophytes and sediment which led to erroneous water depths. Overall, the results encourage further research on lakes with varying optical properties and trophic states with Sentinel-2A.

  12. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Williams, L.M. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [Idaho Dept. of Water Resources, Boise, ID (United States)

    1997-06-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  13. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, B.J.; Knobel, L.L.; Bartholomay, R.C.

    1995-11-01

    The US Geological Survey, in response to a request from the US Department of Energy`s Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not.

  14. Relations between continuous real-time physical properties and discrete water-quality constituents in the Little Arkansas River, south-central Kansas, 1998-2014

    Science.gov (United States)

    Rasmussen, Patrick P.; Eslick, Patrick J.; Ziegler, Andrew C.

    2016-08-11

    Water from the Little Arkansas River is used as source water for artificial recharge of the Equus Beds aquifer, one of the primary water-supply sources for the city of Wichita, Kansas. The U.S. Geological Survey has operated two continuous real-time water-quality monitoring stations since 1995 on the Little Arkansas River in Kansas. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest. Site-specific regression models were originally published in 2000 for the near Halstead and near Sedgwick U.S. Geological Survey streamgaging stations and the site-specific regression models were then updated in 2003. This report updates those regression models using discrete and continuous data collected during May 1998 through August 2014. In addition to the constituents listed in the 2003 update, new regression models were developed for total organic carbon. The real-time computations of water-quality concentrations and loads are available at http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita because water-quality information allows for real-time quantification and characterization of chemicals of concern (including chloride), in addition to nutrients, sediment, bacteria, and atrazine transported in the Little Arkansas River. The water-quality information in this report aids in the decision making for water treatment before artificial recharge.

  15. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  16. Heavy Metal Concentrations in Maltese Potable Water

    Directory of Open Access Journals (Sweden)

    Roberta Bugeja

    2015-05-01

    Full Text Available This study evaluates the levels of aluminum (Al, cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, lead (Pb, nickel (Ni and zinc (Zn in tap water samples of forty localities from around the Maltese Islands together with their corresponding service supply reservoirs. The heavy metal concentrations obtained indicated that concentrations of the elements were generally below the maximum allowed concentration established by the Maltese legislation. In terms of the Maltese and EU water quality regulations, 17.5% of the localities sampled yielded water that failed the acceptance criteria for a single metal in drinking water. Higher concentrations of some metals were observed in samples obtained at the end of the distribution network, when compared to the concentrations at the source. The observed changes in metal concentrations between the localities’ samples and the corresponding supply reservoirs were significant. The higher metal concentrations obtained in the samples from the localities can be attributed to leaching in the distribution network.

  17. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; B. V. Twining (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of the reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.

  18. Improved pre-concentration and detection methods for volatile sulphur breath constituents.

    Science.gov (United States)

    Mochalski, Paweł; Wzorek, Beata; Sliwka, Ireneusz; Amann, Anton

    2009-07-01

    Suitability of different types of pre-concentration (solid phase microextraction and sorbent trapping) and detection (flame photometric detector (FPD) and mass selective detector (MSD)) for gas chromatographic determination of sulphur-containing compounds (H2S, MeSH, EtSH, DMS, COS and CS2) in breath-gas was assessed in this study. Several factors like influence of humidity, influence of oxygen, or stability of target compounds in extraction vessels (SPME vials and sorbent tubes) were investigated. Despite poor stability of VSCs in SPME vials and matrix effects (unfavorable influence of humidity), SPME was found to be a fast and reliable enrichment method, which coupled with mass selective detector provided satisfactory LODs of target compounds at the ppt level (from 0.15 ppb for CS2 to 2.3 ppb for H2S). Application of sorbent trapping with two-bed sorbent tubes containing Tenax TA and Carboxen 1000 gave excellent LODs (0.03-0.3 ppb for 200 ml sample and MSD). Stability of investigated VSCs in sorbents was found to be very poor (30-40% losses after 2 h). FPD showed satisfactory sensitivity only when it was coupled with sorbent trapping. Breath samples were collected into Tedlar bags in a CO2-controlled manner. Humidity was removed during sampling (permeation dryer--Nafion) to avoid unfavorable water dependent effects during analysis.

  19. [Nitrate concentrations in tap water in Spain].

    Science.gov (United States)

    Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco

    2015-01-01

    To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  20. Metal concentrations in water column, benthic macroinvertebrates ...

    African Journals Online (AJOL)

    Concentrations of some metals in the water, benthic macroinvertebrates and the muscle tissue of the Nile tilapia from river Delimi, Nigeria were investigated from January 1998 to June 1998. Samplings were done monthly at 3 different sites. The concentrations of the metals were determined using the atomic absorption ...

  1. 7746 CONCENTRATIONS OF FORMALDEHYDE IN RAIN WATERS ...

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... populace of the area of study. The chromotropic acid method described by the. National Institute for Occupational Safety and Health (NIOSH) was adopted for the determination of formaldehyde in the rain waters. Results indicated that the concentration range of the formaldehyde in the rain waters varied ...

  2. Model documentation for relations between continuous real-time and discrete water-quality constituents in Indian Creek, Johnson County, Kansas, June 2004 through May 2013

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.

    2014-01-01

    Johnson County is the fastest growing county in Kansas, with a population of about 560,000 people in 2012. Urban growth and development can have substantial effects on water quality, and streams in Johnson County are affected by nonpoint-source pollutants from stormwater runoff and point-source discharges such as municipal wastewater effluent. Understanding of current (2014) water-quality conditions and the effects of urbanization is critical for the protection and remediation of aquatic resources in Johnson County, Kansas and downstream reaches located elsewhere. The Indian Creek Basin is 194 square kilometers and includes parts of Johnson County, Kansas and Jackson County, Missouri. Approximately 86 percent of the Indian Creek Basin is located in Johnson County, Kansas. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, operated a series of six continuous real-time water-quality monitoring stations in the Indian Creek Basin during June 2011 through May 2013; one of these sites has been operating since February 2004. Five monitoring sites were located on Indian Creek and one site was located on Tomahawk Creek. The purpose of this report is to document regression models that establish relations between continuously measured water-quality properties and discretely collected water-quality constituents. Continuously measured water-quality properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, turbidity, and nitrate. Discrete water-quality samples were collected during June 2011 through May 2013 at five new sites and June 2004 through May 2013 at a long-term site and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time

  3. Water-quality conditions, and constituent loads and yields in the Cambridge drinking-water source area, Massachusetts, water years 2005–07

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    ), caffeine, and a suite of 59 polar pesticides. Values of physical properties and constituent concentrations varied widely, particularly in samples from tributaries. Median concentrations of Ca, Cl, Na, and SO4 in samples collected in the Hobbs Brook Basin (39.8, 392, 207, and 21.7 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Basin (17.8, 87.7, 49.7, and 14.7 mg/L, respectively). These differences in major ion concentrations are likely related to the low percentages of developed land and impervious area in the Stony Brook Basin. Concentrations of dissolved Cl and Na in samples, and those estimated from continuous records of specific conductance (particularly during base flow), often were greater than the U.S. Environmental Protection Agency (USEPA) secondary drinking-water guideline for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs drinking-water guideline for Na (20 mg/L). Mean annual flow-weighted concentrations of Ca, Cl, and Na were generally positively correlated with the area of roadway land use in the subbasins. Correlations between mean annual concentrations of Ca and SO4 in base flow and total roadway, total impervious, and commercial-industrial land uses were statistically significant. Concentrations of TN (range of 0.42 to 5.13 mg/L in all subbasins) and TP (range of 0.006 to 0.80 mg/L in all subbasins) in tributary samples did not differ substantially between the Hobbs Brook and Stony Brook Basins. Concentrations of TN and TP in samples collected during water years 2004–07 exceeded proposed reference concentrations of 0.57 and 0.024 mg/L, in 94 and 56 percent of the samples, respectively. Correlations between annual flow-weighted concentrations of TN and percentages of recreational land use and water-body area were statistically significant; however, no significant relation was found between TP and available

  4. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  5. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Williams, L.M. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [Idaho Dept. of Water Resources, Boise, ID (United States)

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.

  6. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Williams, L.M. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [Idaho Dept. of Water Resources, Boise, ID (United States)

    1995-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.

  7. Influence of cultivar and concentration of selected phenolic constituents on the in vitro chemiopreventive potential of olive oil extracts.

    Science.gov (United States)

    Fabiani, Roberto; Sepporta, Maria V; Mazza, Teresa; Rosignoli, Patrizia; Fuccelli, Raffaela; De Bartolomeo, Angelo; Crescimanno, Marilena; Taticchi, Agnese; Esposto, Sonia; Servili, Maurizio; Morozzi, Guido

    2011-08-10

    One of the main olive oil phenolic compounds, hydroxytyrosol (3,4-DHPEA), exerts in vitro chemopreventive activities (antiproliferative and pro-apoptotic) on tumor cells through the accumulation of H(2)O(2) in the culture medium. However, the phenol composition of virgin olive oil is complex, and 3,4-DHPEA is present at low concentrations when compared to other secoiridoids. In this study, the in vitro chemopreventive activities of complex virgin olive oil phenolic extracts (VOO-PE, derived from the four Italian cultivars Nocellara del Belice, Coratina, Ogliarola, and Taggiasca) were compared to each other and related to the amount of the single phenolic constituents. A great chemopreventive potential among the different VOO-PE was found following this order: Ogliarola > Coratina > Nocellara > Taggiasca. The antiproliferative and pro-apoptotic activities of VOO-PE were positively correlated to the secoiridoid content and negatively correlated to the concentration of both phenyl alcohols and lignans. All extracts induced H(2)O(2) accumulation in the culture medium, but this phenomenon was not responsible for their pro-apoptotic activity. When tested in a complex mixture, the olive oil phenols exerted a more potent chemopreventive effect compared to the isolated compounds, and this effect could be due either to a synergistic action of components or to any other unidentified extract constituent.

  8. Light-induced formation of hydroxyl radicals in fog waters determined by an authentic fog constituent, hydroxymethanesulfonate.

    Science.gov (United States)

    Zuo, Yuegang

    2003-04-01

    The determination of the photo-production rate of hydroxyl radical (OH) in atmospheric liquids is of fundamental importance to an understanding of atmospheric aquatic chemistry. Recently, several studies have been performed to examine the photo-chemical formation rate of OH in cloud and fog waters using a free radical quenching technique with addition of a relatively large concentration of organic compounds as an OH scavenger. The addition of free-radical scavenger chemicals may significantly alter the nature of the sample water and its OH production rate. In this paper, an authentic constituent, hydroxymethanesulfonate, is proposed as a free radical probe for the measurement of photo-chemical generation rate of OH in fog water. At 313 nm, an apparent quantum yield for the production of OH in a fog water was found to be 0.012+/-0.001, indicating that aqueous-phase photo-chemical processes could represent a significant and may be a dominant source of OH in atmospheric liquids.

  9. Large scale water lens for solar concentration.

    Science.gov (United States)

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  10. Concentrations of Trace Metals and other Constituents in Springs on the Double O Unit, Malheur National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This water quality investigation describes sampling to determine if one or more trace elements are present at concentrations high enough to limit productivity in...

  11. Retrieval of marine water constituents from AVIRIS data in the Hudson/Raritan Estuary

    NARCIS (Netherlands)

    Bagheri, S.; Peters, S.W.M.; Yu, T.

    2005-01-01

    This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New Jersey-New York to retrieve accurate water leaving radiance spectra and chlorophyll concentration from the NASA Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data complemented with

  12. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  13. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Edwards, D.D. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [State of Idaho, Dept. of Water Resources (United States)

    1993-11-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from six irrigation wells, seven domestic wells, two springs, one stock well, one dairy well, and one observation well. Quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All the samples analyzed for dissolved organic carbon had concentrations that exceeded their reporting level. Concentrations of 1,1,1 -trichloroethane exceeded the reporting level in two water samples. Two samples and a quality assurance replicate contained reportable concentrations of 2, 4-D. One sample contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.

  14. Use of Continuous Monitors and Autosamplers to Predict Unmeasured Water-Quality Constituents in Tributaries of the Tualatin River, Oregon

    Science.gov (United States)

    Anderson, Chauncey W.; Rounds, Stewart A.

    2010-01-01

    Management of water quality in streams of the United States is becoming increasingly complex as regulators seek to control aquatic pollution and ecological problems through Total Maximum Daily Load programs that target reductions in the concentrations of certain constituents. Sediment, nutrients, and bacteria, for example, are constituents that regulators target for reduction nationally and in the Tualatin River basin, Oregon. These constituents require laboratory analysis of discrete samples for definitive determinations of concentrations in streams. Recent technological advances in the nearly continuous, in situ monitoring of related water-quality parameters has fostered the use of these parameters as surrogates for the labor intensive, laboratory-analyzed constituents. Although these correlative techniques have been successful in large rivers, it was unclear whether they could be applied successfully in tributaries of the Tualatin River, primarily because these streams tend to be small, have rapid hydrologic response to rainfall and high streamflow variability, and may contain unique sources of sediment, nutrients, and bacteria. This report evaluates the feasibility of developing correlative regression models for predicting dependent variables (concentrations of total suspended solids, total phosphorus, and Escherichia coli bacteria) in two Tualatin River basin streams: one draining highly urbanized land (Fanno Creek near Durham, Oregon) and one draining rural agricultural land (Dairy Creek at Highway 8 near Hillsboro, Oregon), during 2002-04. An important difference between these two streams is their response to storm runoff; Fanno Creek has a relatively rapid response due to extensive upstream impervious areas and Dairy Creek has a relatively slow response because of the large amount of undeveloped upstream land. Four other stream sites also were evaluated, but in less detail. Potential explanatory variables included continuously monitored streamflow

  15. Optical monitor for water vapor concentration

    Science.gov (United States)

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  16. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 2002

    Science.gov (United States)

    Rattray, Gordon W.; Campbell, Linford J.

    2004-01-01

    The U.S. Geological Survey, Idaho Department of Water Resources, and the State of Idaho INEEL Oversight Program, in cooperation with the U.S. Department of Energy, sampled water from 17 sites as part of the sixth round of a long-term project to monitor water quality of the eastern Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were collected from eight irrigation wells, three domestic wells, one stock well, one dairy well, one commercial well, one observation well, and two springs and analyzed for selected radiochemical and chemical constituents. One quality-assurance sample, a sequential replicate, also was collected and analyzed. Many of the radionuclide and inorganic-constituent concentrations were greater than the reporting levels and most of the organic-constituent concentrations were less than the reporting levels. However, none of the reported radiochemical- or chemical-constituent concentrations exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Statistical evaluation of the replicate sample pair indicated that, with 95 percent confidence, 132 of the 135 constituent concentrations of the replicate pair were equivalent.

  17. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  18. Drinking water quality and fluoride concentration.

    Science.gov (United States)

    Frazão, Paulo; Peres, Marco A; Cury, Jaime A

    2011-10-01

    This paper aimed to analyze the fluoride concentration in drinking water, taking into account the balance between the benefits and risks to health, in order to produce scientific backing for the updating of the Brazilian legislation. Systematic reviews studies, official documents and meteorological data were examined. The temperatures in Brazilian state capitals indicate that fluoride levels should be between 0.6 and 0.9 mg F/l in order to prevent dental caries. Natural fluoride concentration of 1.5 mg F/l is tolerated for consumption in Brazil if there is no technology with an acceptable cost-benefit ratio for adjusting/removing the excess. Daily intake of water with a fluoride concentration > 0.9 mg F/l presents a risk to the dentition among children under the age of eight years, and consumers should be explicitly informed of this risk. In view of the expansion of the Brazilian water fluoridation program to regions with a typically tropical climate, Ordinance 635/75 relating to fluoride added to the public water supply should be revised.

  19. Properties and chemical constituents in ground water from the middle Wilcox aquifer, south-central United States

    Science.gov (United States)

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Middle Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System and the Texas Coastal Uplands Aquifer System is presented by a series of maps. These maps show the area1 distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Middle Wilcox Aquifer ranges from 26 mg/L in the northern part of the Mississippi Embayment Aquifer System to 125,500 mg/L in a down-dip area in southeastern Texas. The primary water types, which are based on the most frequently observed type in each 100-sq-mi area, are calcium bicarbonate in the outcrop in Missouri, Kentucky, Mississippi, and southern Texas; sodium bicarbonate in the remaining outcrop areas and all areas from outcrop to mid-dip; and sodium chloride in all down-dip areas. The concentrations of major ions in water from the Middle Wilcox Aquifer generally increase from the outcrop area to the down-dip limit of the data. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.01 to 158 and generally decreases from outcrop to mid-dip and increases from mid-dip to the down-dip limit of the data. From the Sabine Uplift eastward to southwestern Alabama the ratio of bicarbonate to chloride generally decreases from outcrop to down-dip in the area west of

  20. Water content and glycosaminoglycan disaccharide concentration of the canine meniscus.

    Science.gov (United States)

    Stephan, J S; McLaughlin, R M; Griffith, G

    1998-02-01

    To determine the regional composition of water and glycosaminoglycan (GAG) disaccharides of the canine meniscus. 52 menisci from the stifle of dogs. Regional sections of each meniscus were weighed, dried, and reweighed to determine water content. Dried tissue specimens were subjected to enzymatic digestion. Analysis and quantification of disaccharide degradation products were performed, using high-performance liquid chromatography. Water content was approximately 65% in polar and central regions of the canine meniscus. Water content of the central region of the lateral meniscus was significantly higher than that of the medial meniscus (P = 0.0090). Chondroitinase digestion of canine meniscal tissue yielded detectable delta Di-HA, delta Di-4S, and delta Di-6S GAG disaccharides. Disaccharides specific to dermatan sulfate and chondroitin D or E sulfate were not detected. Concentrations of delta Di-4S and delta Di-6S were significantly greater in the lateral central region, compared with the medial central region (P = 0.0005 and 0.0002, respectively). Water content and delta Di-4S and delta Di-6S concentrations were significantly lower in the central region of the medial meniscus, compared with the central region of the lateral meniscus. Reduced tissue hydration of the medial central region may have been a direct result of its overall decrease in total GAG content. The ability to evaluate subtle differences in tissue GAG composition by analytical measurement of their constituent disaccharides may aid in the understanding of the complex material properties of the normal and diseased meniscus, which may be applied to the study of meniscal healing and biomechanics.

  1. The Characteristics of Chemical Constituents of Rain Water Collected by the Sequential Constant Volumetric Sampling Method in an Urban Area

    Science.gov (United States)

    Kobayashi, Ken; Yamashita, Eiji; Hiraki, Takatoshi; Ishida, Hiroshi

    In order to unveil the chemical characteristics of rain water from 1 to 8 mm, rain water measurements were conducted in downtown Okayama for one year from March, 2004 to March 2005. Analytical parameters were pH, EC and the ion concentrations, F-, Cl-, NO2-, NO3-, SO42-, PO43-, Na+, NH4+, K+, Mg2+ and Ca2+. The mean pH and EC values of the precipitations from 1 to 4 mm, which would be affected largely by the washout effect in the observational area, were 4.46 and 32.7μS/cm, respectively. And, the mean ion concentrations of NO3- and nss-SO42-, which were main acid rain constituents, were 1.1mg/l and 0.9 mg/l, respectively. The mean pH and EC values of the precipitations from 5 to 8 mm, which would be affected largely by the rainout effect, were 4.60 and 20.4μS/cm, respectively. The mean ion concentrations of NO3- and nss-SO42- were 1.6mg/l and 1.4mg/l, respectively. The air mass back trajectory analysis was conducted for 5 days until the day of the rain event. The analyzed trajectories were classified into 4 typical routes advected from the Eurasian Continent, the central part of the North Pacific Ocean, Southeast Asia and the East Asian coast. And, the different chemical characteristics depending on the route were recognized. In the case of the Southeast Asia route, the ion concentrations of NO3- and nss-SO42- were highest, 2.4mg/l and 2.1mg/l, respectively. Then, in the case of the Eurasian Continent route, the concentrations were 1.5mg/l and 1.5mg/l. In the case of the East Asian coast route, the concentrations were 1.3mg/l and 1.1mg/l. In the case of the central part of the Pacific Ocean route, the concentrations were lowest, 0.7mg/l and 1.1mg/l, respectively.

  2. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Edwards, D.D. [Geological Survey, Idaho Falls, ID (United States); Campbell, L.J. [State of Idaho, Dept. of Water Resources (United States)

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.

  3. Model documentation for relations between continuous real-time and discrete water-quality constituents in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999--2009

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir in south-central Kansas is one of the primary sources of water for the city of Wichita. The North Fork Ninnescah River is the largest contributing tributary to Cheney Reservoir. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on a different dataset collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for five new constituents, including additional nutrient species and indicator bacteria. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise.

  4. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay (USGS); L. M. Williams (USGS); L. J. Campbell (Idaho Department of Water Resources)

    1998-12-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected and analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  5. Model documentation for relations between continuous real-time and discrete water-quality constituents in Cheney Reservoir near Cheney, Kansas, 2001--2009

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir, located in south-central Kansas, is one of the primary water supplies for the city of Wichita, Kansas. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station in Cheney Reservoir since 2001; continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and analyzed for sediment, nutrients, taste-and-odor compounds, cyanotoxins, phytoplankton community composition, actinomycetes bacteria, and other water-quality measures. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to compute concentrations of constituents that are not easily measured in real time. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir. This report updates linear regression models published in 2006 that were based on data collected during 2001 through 2003. The update uses discrete and continuous data collected during May 2001 through December 2009. Updated models to compute dissolved solids, sodium, chloride, and suspended solids were similar to previously published models. However, several other updated models changed substantially from previously published models. In addition to updating relations that were previously developed, models also were developed for four new constituents, including magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. In addition, a conversion factor of 0.74 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI

  6. Stochastic empirical loading and dilution model for analysis of flows, concentrations, and loads of highway runoff constituents

    Science.gov (United States)

    Granato, Gregory E.; Jones, Susan C.

    2014-01-01

    In cooperation with FHWA, the U.S. Geological Survey developed the stochastic empirical loading and dilution model (SELDM) to supersede the 1990 FHWA runoff quality model. The SELDM tool is designed to transform disparate and complex scientific data into meaningful information about the adverse risks of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such measures for reducing such risks. The SELDM tool is easy to use because much of the information and data needed to run it are embedded in the model and obtained by defining the site location and five simple basin properties. Information and data from thousands of sites across the country were compiled to facilitate the use of the SELDM tool. A case study illustrates how to use the SELDM tool for conducting the types of sensitivity analyses needed to properly assess water quality risks. For example, the use of deterministic values to model upstream stormflows instead of representative variations in prestorm flow and runoff may substantially overestimate the proportion of highway runoff in downstream flows. Also, the risks for total phosphorus excursions are substantially affected by the selected criteria and the modeling methods used. For example, if a single deterministic concentration is used rather than a stochastic population of values to model upstream concentrations, then the percentage of water quality excursions in the downstream receiving waters may depend entirely on the selected upstream concentration.

  7. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems.

    Science.gov (United States)

    Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C

    2013-06-15

    Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic

  8. Long-term behavior of the concentration of the minor constituents in the mesosphere – a model study

    Directory of Open Access Journals (Sweden)

    M. Grygalashvyly

    2009-04-01

    Full Text Available We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-α flux (needed for the water vapor dissociation rate, methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increases the hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling

  9. Age-Dependent Variation in Hormonal Concentration and Biochemical Constituents in Blood Plasma of Indian Native Fowl

    Directory of Open Access Journals (Sweden)

    Avishek Biswas

    2010-01-01

    Full Text Available This experiment was to investigate the age-related changes in hormonal concentration and biochemical constituents of blood plasma in Indian native desi fowl. One hundred and sixty two (54 from each breed, i.e., Kadaknath (KN, Aseel peela (AP, and White leghorn (WLH day-old female chicks were randomly divided into nine groups each of 18 chicks (3 groups × 3 replicates. WLH was taken in this study to compare the characteristics of Indian native desi fowl. The highest level of estrogen hormone in WLH and desi fowl in blood plasma was occurred at 18 and 24 wks of age, respectively. Whereas, the peak of progesterone hormone in WLH hens noticed around 24 wks, in case of desi fowls, it was at 30 wks of age. Irrespective of the breed, the hormonal profile of Triiodothyronine (T3 and Thyroxine (T4 in blood plasma was found highest around 6 to 12 wks of age. Activities of acid phosphatase (ACP increased with the reduction of alkaline phosphate (ALP activities at different time intervals. Irrespective of the breed, transaminases (glutamic oxaloacetic transaminase (GOT and glutamic pyruvic transaminase (GPT activities of blood plasma increased linearly with the advancement of the age. From this study, it may be concluded that sexual maturity of the Indian native desi fowl occurred nearly 6 wk later (24 wk than WLH.

  10. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    Science.gov (United States)

    Krempa, Heather M.

    2015-10-29

    The U.S. Geological Survey, in cooperation with the City of Independence, Missouri, Water Department, has historically collected water-quality samples using the purge and pump method (hereafter referred to as pump method) to identify potential contamination in groundwater supply wells within the Independence well field. If grab sample results are comparable to the pump method, grab samplers may reduce time, labor, and overall cost. This study was designed to compare constituent concentrations between samples collected within the Independence well field using the pump method and the grab method.

  11. Fate of estrogens in biological treatment of concentrated black water

    NARCIS (Netherlands)

    Mes, de T.Z.D.

    2007-01-01

    Feminisation of male fish is for a large part due to compounds entering surface waters via wastewater. For domestic wastewater, two natural estrogens, estrone and 17-estradiol and the synthetic estrogen, constituent of the contraceptive pill, are mainly responsible for this effect. These compounds

  12. Physicochemical properties of concentrated Martian surface waters

    Science.gov (United States)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  13. Transport of Cryptosporidium, Giardia, Source-specific Indicator Organisms, and Standard Water Quality Constituents During Storm Events

    Science.gov (United States)

    Sturdevant-Rees, P. L.; Bourdeau, D.; Baker, R.; Long, S. C.; Barten, P. K.

    2004-05-01

    Microbial and water-quality measurements are collected during storm events under a variety of meteorological and land-use conditions in order to 1) identify risk of Cryptosporidium oocysts, Giardia cysts and other constituents, including microbial indicator organisms, entering surface waters from various land uses during periods of surface runoff; 2) optimize storm sampling procedures for these parameters; and 3) optimize strategies for accurate determination of constituent loads. The investigation is focused on four isolated land uses: forested with free ranging wildlife, beaver influenced forested with free ranging wildlife, residential/commercial, and dairy farm grazing/pastureland using an upstream and downstream sampling strategy. Traditional water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, and ammonia nitrogen, Giardia cysts and Cryptosporidium oocysts. Total coliforms and fecal coliforms are measured as industry standard microbial analyses. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. Upon completion of the project, the final database will consist of wet weather transport data for a set of parameters during twenty-four distinct storm-events in addition to monthly baseline data. A subset of the results to date will be presented, with focus placed on demonstrating the impact of beaver on constituent loadings over a variety of hydrologic and meteorological conditions.

  14. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that equaled or exceeded their reporting levels. The ethylbenzene concentration in one water sample exceeded the reporting level.

  15. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    Science.gov (United States)

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes

  16. Freeze concentration for enrichment of nutrients in yellow water from no-mix toilets.

    Science.gov (United States)

    Gulyas, H; Bruhn, P; Furmanska, M; Hartrampf, K; Kot, K; Lüttenberg, B; Mahmood, Z; Stelmaszewska, K; Otterpohl, R

    2004-01-01

    Separately collected urine ("yellow water") can be utilized as fertilizer. In order to decrease storage volumes and energy consumption for yellow water transport to fields, enrichment of nutrients in yellow water has to be considered. Laboratory-scale batch freeze concentration of yellow water has been tested in ice-front freezing apparatus: a stirred vessel and a falling film freeze concentrator (coolant temperatures: -6 to -16 degrees C). With progressing enrichment of the liquid concentrate, the frozen ice was increasingly contaminated with yellow water constituents (ammonia, total nitrogen, total phosphorus, TOC, and salts determined as conductivity). The higher the initial salinity of the yellow water and the lower the mechanical agitation of the liquid phase contacting the growing ice front, the more the frozen ice was contaminated. The results indicate, that in ice-front freezing devices multistage processes are necessary, i.e. the melted ice phase has to be purified (and the concentrates must be further enriched) in a second or even in a third stage. Energy consumption of this process is very high. However, technical scale suspension freeze concentration is reasonable in centralized ecological sanitation schemes if the population exceeds 0.5 million and distance of yellow water transportation to fields is more than 80 km.

  17. Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products.

    Science.gov (United States)

    Fan, Chihhao; Wang, Shin-Chih

    2017-07-01

    The enhanced removal of organic material from municipal waste water containing 50 mg/L of chemical oxygen demand and a given amount of alkyl paraben using a biofilm system was investigated. The parabens used were methyl, ethyl, and propyl paraben. The experiments were conducted at influent paraben concentrations of 10 and 50 mg/L. The influent pH was measured around 4.6 because of paraben hydrolysis. The effluent pH increased due to hydrogen consumption and small molecular acid generation. The higher removal rates were observed for the paraben with longer alkyl chains, which were more hydrophobic and capable of penetrating into microbial cells. The co-existing organic constituents in municipal waste water were found to be competitive with paraben molecules for microbial degradation at low paraben loading (i.e., 10 mg/L). Instead, the co-metabolic effect was observed at a higher paraben loading (i.e., 50 mg/L) due to more active enzymatic catalysis, implying the possible enhancement or organic removal in the presence of high levels of parabens. The difference in BOD and TOC removing ratios for parabens decreased with increasing HRT, implying their better mineralization than that of municipal organic constituents. This was because the microbial organism became more adapted to the reacting system with longer HRT, and more oxygenase was produced to facilitate the catechol formation and ring-opening reactions, causing apparent enhancement in mineralization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described.

  19. Extraction and concentration of phenolic compounds from water and sediment

    Science.gov (United States)

    Goldberg, Marvin C.; Weiner, Eugene R.

    1980-01-01

    Continuous liquid-liquid extractors are used to concentrate phenols at the ??g l-1 level from water into dichloromethane; this is followed by Kuderna-Danish evaporative concentration and gas chromatography. The procedure requires 5 h for 18 l of sample water. Overall concentration factors around 1000 are obtained. Overall concentration efficiencies vary from 23.1 to 87.1%. Concentration efficiencies determined by a batch method suitable for sediments range from 18.9 to 73.8%. ?? 1980.

  20. Influence of carbon and metal oxide nanomaterials on aqueous concentrations of the munition constituents cyclotrimethylenetrinitramine (RDX) and tungsten.

    Science.gov (United States)

    Brame, Jonathon A; Kennedy, Alan J; Lounds, Christopher D; Bednar, Anthony J; Alvarez, Pedro J J; Scott, Andrea M; Stanley, Jacob K

    2014-05-01

    There is an increasing likelihood of interactions between nanomaterials and munitions constituents in the environment resulting from the use of nanomaterials as additives to energetic formulations and potential contact in waste streams from production facilities and runoff from training ranges. The purpose of the present research was to determine the ability of nano-aluminum oxide (Al(2)O(3)) and multiwalled carbon nanotubes (MWCNTs) to adsorb the munitions constituents cyclotrimethylenetrinitramine (RDX) and tungsten (W) from aqueous solution as a first step in determining the long-term exposure, transport, and bioavailability implications of such interactions. The results indicate significant adsorption of RDX by MWCNTs and of W by nano-Al(2)O(3) (but not between W and MWCNT or RDX and nano-Al(2)O(3)). Kinetic sorption and desorption investigations indicated that the most sorption occurs nearly instantaneously (nanomaterials following environmental release are likely. Time-dependent binding has implications for the bioavailability, migration, transport, and fate of munitions constituents in the environment. © 2014 SETAC.

  1. assessment of heavy metals concentrations in the surface water of ...

    African Journals Online (AJOL)

    User

    This work aimed at assessing the concentrations of heavy metals in the surface water of Bompai-. Jakara drainage basin. The points of ... Keywords: Heavy metals, surface water, drainage basin, standard limit. INTRODUCTION. Water pollution in .... discrepancies in values obtained. Pb concentrations recorded in this study ...

  2. Particulate organic constituents of surface waters of east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Bhat, K.L.; Parulekar, A.H.

    protein (PP) and particulate lipid (PL) fractions. High values of chlorophyll a (chl-a) characterized the coastal waters. In coastal waters, POC was dominatEd. by PCHO containing detrital matter, whereas actively growing phytoplankton significantly...

  3. Larvicidal activity of ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils and blends of their constituents against mosquito, Aedes aegypti , acute toxicity on water flea, Daphnia magna , and aqueous residue.

    Science.gov (United States)

    Seo, Seon-Mi; Park, Hye-Mi; Park, Il-Kwon

    2012-06-13

    This study evaluated the larvicidal activity of 20 plant essential oils and components from ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils against the mosquito, Aedes aegypti . Of the 20 plant essential oils, ajowan and Peru balsam oils at 0.1 mg/mL exhibited 100 and 97.5% larval mortality, respectively. At this same concentration, the individual constituents, (+)-camphene, benzoic acid, thymol, carvacrol, benzyl benzonate, and benzyl trans-cinnamate, caused 100% mortality. The toxicity of blends of constituents identified in two active oils indicated that thymol and benzyl benzoate were major contributors to the larvicidal activity of the artificial blend. This study also tested the acute toxicity of these two active oils and their major constituents against the water flea, Daphnia magna . Peru balsam oil and benzyl trans-cinnamate were the most toxic to D. magna. Two days after the treatment, residues of ajowan and Peru balsalm oils in water were 36.2 and 85.1%, respectively. Less than 50% of benzyl trans-cinnamate and thymol were detected in the water at 2 days after treatment. The results show that the essential oils of ajowan and Peru balsam and some of their constituents have potential as botanical insecticides against Ae. aegypti mosquito larvae.

  4. Heavy metal concentrations in water, sediment and periwinkle ...

    African Journals Online (AJOL)

    Heavy metal concentration in water, sediment and Periwinkle samples from three locations (Itu-River, Abuloma River and Oron River) in the Niger Delta Region of Nigeria were evaluated using atomic absorption flame photometry. Result showed that cadmium (Cd) concentration was highest in water samples from Abuloma ...

  5. Influence of salt concentration and topographical position on water ...

    African Journals Online (AJOL)

    Water resource quality (WRQ) is affected by salt concentration and topographical position. Indeed, an increase in salt concentration, which decreases water availability for animal and plant nutrition, and lower altitude, which diminishes the potential for production of hydropower, negatively affects WRQ. Therefore, it is useful ...

  6. Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters.

    Science.gov (United States)

    Guart, Albert; Bono-Blay, Francisco; Borrell, Antonio; Lacorte, Silvia

    2014-08-01

    Bottled water is packaged in either glass or, to a large extent, in plastic bottles with metallic or plastic caps of different material, shape and colour. Plastic materials are made of one or more monomers and several additives that can eventually migrate into water, either during bottle manufacturing, water filling or storage. The main objective of the present study was to carry out a comprehensive assessment of the quality of the Spanish bottled water market in terms of (i) migration of plastic components or additives during bottling and during storage and (ii) evaluation of the effect of the packaging material and bottle format on the migration potential. The compounds investigated were 5 phthalates, diethylhexyl adipate, alkylphenols and bisphenol A. A set of 362 bottled water samples corresponding to 131 natural mineral waters and spring waters sources and 3 treated waters of several commercial brands were analysed immediately after bottling and after one-year storage (a total of 724 samples). Target compounds were detected in 5.6% of the data values, with diethyl hexyl phthalate and bisphenol A being the most ubiquitous compounds detected. The total daily intake was estimated and a comparison with reference values was indicated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Analysis of uranium concentration in drinking water samples using ICPMS.

    Science.gov (United States)

    Rani, Asha; Mehra, Rohit; Duggal, Vikas; Balaram, V

    2013-03-01

    Uranium concentration in drinking water samples collected from some areas of Northern Rajasthan has been measured using inductively coupled plasma mass spectrometry. The water samples were taken from hand pumps. The uranium concentration in water samples varies from 2.54-133.0 μg L with a mean value of 38.48 μg L. The uranium concentration in most of the drinking water samples exceeds the safe limit (30 μg L) recommended by the World Health Organization. The annual effective dose associated with drinking water due to uranium concentration is estimated from its annual intake using dosimetric information based on ICRP 72. The resulting value of the annual effective dose from drinking water sources is in the range of 2.11-110.45 μSv. The annual effective dose in one of the samples was found to be greater than WHO-recommended level of 100 μSv y.

  8. Water-quality variability and constituent transport and processes in streams of Johnson County, Kansas, using continuous monitoring and regression models, 2003-11

    Science.gov (United States)

    Rasmussen, Teresa; Gatotho, Jackline

    2014-01-01

    The population of Johnson County, Kansas increased by about 24 percent between 2000 and 2012, making it one of the most rapidly developing areas of Kansas. The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, began a comprehensive study of Johnson County streams in 2002 to evaluate and monitor changes in stream quality. The purpose of this report is to describe water-quality variability and constituent transport for streams representing the five largest watersheds in Johnson County, Kansas during 2003 through 2011. The watersheds ranged in urban development from 98.3 percent urban (Indian Creek) to 16.7 percent urban (Kill Creek). Water-quality conditions are quantified among the watersheds of similar size (50.1 square miles to 65.7 square miles) using continuous, in-stream measurements, and using regression models developed from continuous and discrete data. These data are used to quantify variability in concentrations and loads during changing streamflow and seasonal conditions, describe differences among sites, and assess water quality relative to water-quality standards and stream management goals. Water quality varied relative to streamflow conditions, urbanization in the upstream watershed, and contributions from wastewater treatment facilities and storm runoff. Generally, as percent impervious surface (a measure of urbanization) increased, streamflow yield increased. Water temperature of Indian Creek, the most urban site which is also downstream from wastewater facility discharges, was higher than the other sites about 50 percent of the time, particularly during winter months. Dissolved oxygen concentrations were less than the Kansas Department of Health and Environment minimum criterion of 5 milligrams per liter about 15 percent of the time at the Indian Creek site. Dissolved oxygen concentrations were less than the criterion about 10 percent of the time at the rural Blue River and Kill Creek sites, and less than

  9. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products.

    Science.gov (United States)

    Feng, Mingbao; Wang, Xinghao; Chen, Jing; Qu, Ruijuan; Sui, Yunxia; Cizmas, Leslie; Wang, Zunyao; Sharma, Virender K

    2016-10-15

    The degradation of five fluoroquinolone (FQ) antibiotics (flumequine (FLU), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL) and marbofloxacin (MAR)) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was examined to demonstrate the potential of this iron-based chemical oxidant to treat antibiotics in water. Experiments were conducted at different molar ratios of Fe(VI) to FQs at pH 7.0. All FQs, except FLU, were degraded within 2 min at [Fe(VI)]:[FQ] ≤ 20.0. Multiple additions of Fe(VI) improved the degradation efficiency, and provided greater degradation than a single addition of Fe(VI). The effects of anions, cations, and humic acid (HA), usually present in source waters and wastewaters, on the removal of FLU were investigated. Anions (Cl(-), SO4(2-), NO3(-), and HCO3(-)) and monovalent cations (Na(+) and K(+)) had no influence on the removal of FLU. However, multivalent cations (Ca(2+), Mg(2+), Cu(2+), and Fe(3+)) in water decreased the efficiency of FLU removal by Fe(VI). An increase in the ionic strength of the solution, and the presence of HA in the water, also decreased the percentage of FLU removed by Fe(VI). Experiments on the removal of selected FQs, present as co-existing antibiotics in pure water, river water, synthetic water and wastewater, were also conducted to demonstrate the practical application of Fe(VI) to remove the antibiotics during water treatment. The seventeen oxidized products (OPs) of FLU were identified using solid phase extraction-liquid chromatography-high-resolution mass spectrometry. The reaction pathways are proposed, and are theoretically confirmed by molecular orbital calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Survey on Chemical Constituents and Indications of Aromatic Waters Soft Drinks (Hydrosols) Used in Persian Nutrition Culture and Folk Medicine for Neurological Disorders and Mental Health.

    Science.gov (United States)

    Hamedi, Azadeh; Pasdaran, Ardalan; Zebarjad, Zahra; Moein, Mahmoodreza

    2017-01-01

    In Persian nutrition culture, drinking aromatic waters (hydrosols, distillate) has a long history as functional beverages or therapeutic remedies. The co-distilled water with essential oils, which contains partial amounts of more water-soluble volatile compounds are diluted and used as beverages. Since the solubility of volatile components is different in water, the overall composition, and thus the biological activities of aromatic waters seem to be different from the essential oils they were co-distilled with. Despite the essential oils, chemical constituents of many aromatic waters have not been evaluated scientifically. This research investigated hydrosols used for mental and neurological health maintenance in Persian nutrition culture and their chemical constituents. Constitutions of these hydrosols were extracted by liquid/liquid extraction method and identified by gas chromatography-mass spectrometry. Furthermore, cluster analysis was used to evaluate the relevance of these hydrosols chemical constituents. About 93 compounds were identified from 20 aromatic waters. the major or second major constituents were thymol (azarol howthorn, frankincense, lemon balm, valerian, shadab), phenethyl alcohol (damask rose, dog-rose, starflower), carvacrol (basil, creeping buttercup, lemon balm); eugenol (shadab, dog-rose, starflower, basil), camphor (yarrow and wormwood), carvone (oriental plane), caryophyllene (cuminum), cinnamaldehyde (Chinese cinnamon), p-cymen-7-ol (musk willow), limonene (lemon verbena), linalool and α-terpineol (bitter orange), menthol (date palm) and methyl 5-vinylnicotinate (olive). Although, these hydrosols prepared from plants belong to different genus and families, but cluster analysis showed obvious similarities between their chemical constituents. Results of this investigation showed in many cases that the constituents of aromatic waters are different from the pure essential oil.

  11. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases

    DEFF Research Database (Denmark)

    Piyatheerawong, W.; Iwasaki, Y; Xu, Xuebing

    2004-01-01

    ) exhibited both the highest product yield and the reaction rate at very low (less than 1 wt.%) free water concentration. Its catalytic activity did not drop even in dry state, i.e. in the system of dry CALB in dry ethanol (water concentration was ca. 0.1 wt.%). In contrast, other three immobilized lipases......The effects of water concentration on ethanolysis of trioleoylglycerol catalyzed by four different lipases were studied. The target product of the ethanolysis was 2-monooleoylglycerol (2-MO). Novozym 435 (a commercially available preparation of immobilized Candida antarctica lipase B, CALB...... tested (Rhizomucor miehei lipase, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase) required larger amounts of free water (ca. 7-9 wt.%) for their best performance and exhibited no ethanolysis reaction at low free water concentrations. The CALB's anomalous behavior was also observed...

  12. Predicting ground water nitrate concentration from land use.

    Science.gov (United States)

    Gardner, Kristin K; Vogel, Richard M

    2005-01-01

    Ground water nitrate concentrations on Nantucket Island, Massachusetts, were analyzed to assess the effects of land use on ground water quality. Exploratory data analysis was applied to historic ground water nitrate concentrations to determine spatial and temporal trends. Maximum likelihood Tobit and logistic regression analyses of explanatory variables that characterize land use within a 1000-foot radius of each well were used to develop predictive equations for nitrate concentration at 69 wells. The results demonstrate that historic nitrate concentrations downgradient from agricultural land are significantly higher than nitrate concentrations elsewhere. Tobit regression results demonstrate that the number of septic tanks and the percentages of forest, undeveloped, and high-density residential land within a 1000-foot radius of a well are reliable predictors of nitrate concentration in ground water. Similarly, logistic regression revealed that the percentages of forest, undeveloped, and low-density residential land are good indicators of ground water nitrate concentration > 2 mg/L. The methodology and results outlined here provide a useful tool for land managers in communities with shallow water tables overlain with highly permeable materials to evaluate potential effects of development on ground water quality.

  13. Fluoride Concentration in Drinking Water Resources; North of Iran

    Directory of Open Access Journals (Sweden)

    Amouei A.I. PhD,

    2016-03-01

    Full Text Available Aims Fluoride is one of the anions present in soil and water, and determining its level in drinking water is vital for preventing dental and bone diseases in societies. This research aimed to determine fluoride concentrations in drinking water sources of rural and urban areas of Babol City, Iran. Instrument & Methods This descriptive cross-sectional study was conducted in Babol City, Iran, in 2014. 384 water samples were taken from 43 wells and 3 springs in the rural areas, and from 20 wells, 3 water reservoirs, and the water distribution system in the urban areas. Fluoride concentrations of water samples were measured with a model DR2000 spectrophotometer using the standard SPADNS method. Data were entered to SPSS 16 software and were analyzed by ANOVA test. Findings The mean fluoride concentrations in the water samples of the deep wells were higher compared to those of the springs (p=0.01. The mean fluoride concentrations in the plains areas were higher compared to the mountainous regions (p=0.02. The mean fluoride concentrations in the wells of the urban areas, in the urban reservoirs, and in the urban water distribution system were 0.40±0.14, 0.39±0.15, and 0.40±0.15mg/l, respectively (p=0.07. Fluoride concentrations in water in urban areas during various seasons varied from 0.31 to 0.45mg/l (p=0.06. Conclusion Fluoride concentrations in all drinking water sources in urban and rural areas of Babol are less than the ranges recommended by WHO and Iranian national standards.

  14. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  15. Scientific substantination of maximum allowable concentration of fluopicolide in water

    Directory of Open Access Journals (Sweden)

    Pelo I.М.

    2014-03-01

    Full Text Available In order to substantiate fluopicolide maximum allowable concentration in the water of water reservoirs the research was carried out. Methods of study: laboratory hygienic experiment using organoleptic and sanitary-chemical, sanitary-toxicological, sanitary-microbiological and mathematical methods. The results of fluopicolide influence on organoleptic properties of water, sanitary regimen of reservoirs for household purposes were given and its subthreshold concentration in water by sanitary and toxicological hazard index was calculated. The threshold concentration of the substance by the main hazard criteria was established, the maximum allowable concentration in water was substantiated. The studies led to the following conclusions: fluopicolide threshold concentration in water by organoleptic hazard index (limiting criterion – the smell – 0.15 mg/dm3, general sanitary hazard index (limiting criteria – impact on the number of saprophytic microflora, biochemical oxygen demand and nitrification – 0.015 mg/dm3, the maximum noneffective concentration – 0.14 mg/dm3, the maximum allowable concentration - 0.015 mg/dm3.

  16. Provenance and Concentration of Water in the Shergottite Mantle

    Science.gov (United States)

    Jones, J. H.; Usui, T.; Alexander, C. M. O'D.; Simon, J. I.; Wang, J.

    2012-01-01

    The water content of the martian mantle is controversial. In particular, the role of water in the petrogenesis of the shergottites has been much debated. Although the shergottites, collectively, contain very little water [e.g., 1,2], some experiments have been interpreted to show that percent levels of water are required for the petrogenesis of shergottites such as Shergotty and Zagami [3]. In this latter interpretation, the general paucity of water in the shergottites and their constituent minerals is attributed to late-stage degassing. Y980459 (Y98) is a very primitive, perhaps even parental, martian basalt, with a one-bar liquidus temperature of approx.1400 C. Olivine is the liquidus phase, and olivine core compositions are in equilibrium with the bulk rock [e.g., 4]. Petrogenetically, therefore, Y98 has had a rather simple history and can potentially help constrain the role of water in martian igneous processes. In particular, once trapped, melt inclusions should not be affected by subsequent degassing.

  17. Diel Sampling of Groundwater and Surface Water for Trace Elements and Select Water-Quality Constituents at a Former Zinc Smelter Site near Hegeler, Illinois, August 1-3, 2007

    Science.gov (United States)

    Kay, Robert T.; Groschen, George E.; Dupre, David H.; Drexler, Timothy D.; Thingvold, Karen L.; Rosenfeld, Heather J.

    2009-01-01

    Surface water can exhibit substantial diel variations in the concentration of a number of constituents. Sampling regimens that do not characterize diel variations in water quality can result in an inaccurate understanding of site conditions and of the threat posed by the site to human health and the environment. Surface- and groundwater affected by acid drainage were sampled every 60 to 90 minutes over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, in Hegeler, Ill. Groundwater-quality data from a well at the site indicate stable, low pH, weakly oxidizing geochemical conditions in the aquifer. With the exceptions of temperature and pH, no constituents exhibited diel variations in groundwater. Variations in temperature and pH likely were not representative of conditions in the aquifer. Surface water was sampled at a site on Grape Creek. Diel variations were observed in temperature, dissolved oxygen, pH, and specific conductance, and in the concentrations of nitrite, barium, iron, lead, vanadium, and possibly uranium. Concentrations during the diel cycles varied by about an order of magnitude for nitrite and varied by about a factor of two for barium, iron, lead, vanadium, and uranium. Temperature, dissolved oxygen, specific conductance, nitrite, barium, lead, and uranium generally reached maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally reached minimum values during the afternoon and maximum values during the night. These variations would need to be accounted for during sampling of surface-water quality in similar hydrologic settings. The temperature variations in surface water were affected by variations in air temperature. Concentrations of dissolved oxygen were affected by variations in the intensity of photosynthetic activity and respiration. Nitrite likely was formed by the oxidation of ammonium by dissolved oxygen and degraded by its anaerobic oxidation by ammonium or

  18. Water Quality in the Arthur R. Marshall Loxahatchee National Wildlife Refuge - Trends and Spatial Characteristics of Selected Constituents, 1974-2004

    Science.gov (United States)

    Miller, Ronald L.; McPherson, Benjamin F.

    2008-01-01

    primarily using an uncensored seasonal Kendall test with a water-level adjustment to reduce the effects of long wet or dry periods. Significant long-term trends (1974-2003) for specific conductance, chloride, total phosphorus, and total nitrogen at canal sites S-5A and S-6 were generally downward. Of the five sites, S-5A had the most pronounced decline for specific conductance at about -340 microsiemens per centimeter (?S/cm), followed by S-6 with a decline of about -280 ?S/cm. The two internal marsh sites, LOX8 and LOX13, had significant long-term trends in specific conductance of about +37 and -36 ?S/cm, respectively. Long-term trends for other constituents at the two internal marsh sites were generally small in magnitude or not measurable between 1978 and 2003. Marsh site LOX15 near the Hillsboro Canal showed no long-term trends, although specific conductance and sulfate concentration increased about 560 ?S/cm and 30 milligrams per liter, respectively, from 1998 to 2002. Site LOX15 is influenced strongly by intrusions of canal water, and increases in specific conductance and sulfate at this site coincided with increased canal-water inflows from STA-1W between 2001 and 2003. Median concentrations at LOX13 and S-5A were used to represent background and canal concentrations, respectively. Based on these values, the median chloride concentration at LOX15 indicates that the water is typically about 31 percent canal water and 69 percent ?natural? background water. Using median sulfate concentrations, similarly to chloride, the fraction of water at LOX15 was estimated to be 17 percent from canals and 83 percent from ?natural? background water. This finding suggests that in the low sulfate environment of the Refuge, sulfate is not conservative and only about half of the sulfate from canal water typically reaches LOX15; the rest presumably is removed by marsh plants, algae, and bottom sediments. Concentrations of pesticides and other organic compounds were measured

  19. Analysis of fluoride concentration in commercial bottled waters

    OpenAIRE

    BIZERRIL,Davi Oliveira; ALMEIDA, Janaína Rocha de Sousa; SALDANHA, Kátia de Góis Holanda; CABRAL FILHO,Ronaldo Emilio; Almeida, Maria Eneide Leitão de

    2015-01-01

    Objective: Evaluate fluoride concentration in 500ml commercial brands of bottled water and compare it to the amount printed on the label. Methods: A descriptive, cross-sectional epidemiological study was conducted. Samples of nine different commercial brands of 500ml bottled water were collected at authorized distribution points in the city of Fortaleza, CE, Brazil, in 2013. Fluoride concentration was determined in duplicate using a fluoride ion-selective electrode. The results were obtain...

  20. Properties and chemical constituents in ground water from the lower Wilcox Aquifer, Mississippi Embayment Aquifer System, south-central United States

    Science.gov (United States)

    Pettijohn, Robert A.; Busby, John F.; Beckman, Jeffery D.

    1993-01-01

    The Gulf Coast Regional Aquifer-System Analysis is a study of regional aquifers composed of sediments of mostly Cenozoic age that underlie about 230,000 sq mi of the Gulf Coastal Plain. These regional aquifers are part of three aquifer systems: (1) the Mississippi Embayment Aquifer System, (2) the Texas Coastal Uplands Aquifer System, and (3) the Coastal Lowlands Aquifer System. The water chemistry of the Lower Wilcox Aquifer, which is part of the Mississippi Embayment Aquifer System is presented by a series of maps. These maps show the areal distribution of (1) the concentration of dissolved solids and temperature, (2) the primary water types and pH, (3) the concentration of major ions and silica, and (4) the milliequivalent ratios of selected ions. Dissolved constituents, pH, temperature, and ratios are based on the median values of all samples in each 100-sq-mi area. The concentration of dissolved solids in water from the Lower Wilcox Aquifer ranges from 18 mg/L near the outcrop in western Tennessee to 122,000 mg/L in a down-dip area in southern Mississippi. The primary water type is calcium bicarbonate in the outcrop area and sodium bicarbonate in all other areas of the aquifer within the limits of available data. The concentrations of major ions generally increase from the outcrop area to the down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio maps of selected ions in water from the Lower Wilcox Aquifer indicate some trends. The milliequivalent ratio of magnesium plus calcium to bicarbonate ranges from less than 0.1 to 40.4 and generally decreases from outcrop to down-dip limit of the data in the southern part of the aquifer area east of the Mississippi River. The milliequivalent ratio of bicarbonate to chloride ranges from 0.01 in southern Mississippi to 52.3 in northwestern Mississippi. This ratio increases from the outcrop toward the Mississippi River and from north to south in the

  1. Chemical and Radiochemical Constituents in Water from Wells in the Vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1996

    Energy Technology Data Exchange (ETDEWEB)

    L. L. Knobel; R. C. Bartholomay; B. J. Tucker; L. M. Williams (USGS)

    1999-10-01

    The U.S. Geological Survey, in response to a request from the U.S. Department of Energy's Pittsburgh Naval Reactors Office, Idaho Branch Office (IBO), samples water from 13 wells during 1996 as part of a long-term project to monitor water quality to the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility (NRF), Idaho National Engineering and Environmental Laboratory, Idaho. The IBO requires information about the mobility of radionuclide- and chemical-waste constituents in the Snake River Plain aquifer. Waste-constituent mobility is determined principally by (1) the rate and direction of ground-water flow; (2) the locations, quantities, and methods of waste disposal; (3) waste-constituents chemistry; and (4) the geochemical processes taking place in the aquifer. The purpose of the data-collection program is to provide IBO with water-chemistry data to evaluate the effect of NRF activities on the water quality of the Snake River Plain aquifer. Water samples were analyzed for naturally occurring constituents and man-made contaminants.

  2. Freeze concentration of proteins in Antarctic krill wash water

    Science.gov (United States)

    Qi, Xiangming; Xu, Jing; Zhao, Kuo; Guo, Hui; Ma, Lei

    2017-12-01

    Water-washing removes fluoride from Antarctic krill but produces large volumes of wash water containing water- soluble proteins and fluoride. The freeze concentration method was tested to determine if it could be used to recover water-soluble proteins while leaving the fluoride in solution. After freezing and thawing the wash water, protein and fluoride contents of the thawed fractions were determined to explore the melting regularity of components in the wash water. The highest concentration factors of protein and fluoride were obtained after 80 min of thawing, such as 1.48 ± 0.06 and 1.35 ± 0.04 times, respectively. The free amino-nitrogen (FAN) content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern results revealed that the highest concentrations of all ingredients were obtained after 80 min of the process. The degree of hydrolysis of all fractions from the thawing process fluctuated in a narrow range around 12% during the entire process, indicating that the thawing order did not change with various proteins or time during the entire thawing course. These results demonstrate that the freeze concentration method can be used to concentrate protein solutions, even those with fluoride. It was concluded that condensation was achieved and no ingredient could be separated, regardless of fluoride, amino acids, or different proteins in the water.

  3. assessment of heavy metal concentration in water around the ...

    African Journals Online (AJOL)

    nb

    lead, nickel and zinc (EU 1998, TBS 2005,. WHO 2008).When heavy metal concentrations in water exceed ... that the dependency of heavy metal concentration on rainfall variations can be complex (Meybeck ..... IAEA 2009 Nuclear energy series establishment of uranium mining and processing operations in the context of ...

  4. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    Science.gov (United States)

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  5. Assessment of heavy metal concentration in water around the ...

    African Journals Online (AJOL)

    Effective verification for compliance with water quality standards in uranium mining in Tanzania requires data sensitive to monitor heavy metal concentration in water around the Mkuju River Uranium Project before mining commences. The area susceptible for pollution by the project was estimated using AERMOD ...

  6. Assessment of Heavy Metals Concentrations in the Surface Water of ...

    African Journals Online (AJOL)

    This work aimed at assessing the concentrations of heavy metals in the surface water of Bompai-Jakara drainage basin. The points of sampling were designated as A, B, C, D, E, and F. Acid-washed (1L) plastic bottles were used in collecting the water samples, which were then digested using nitric acid (HNO3).

  7. Influence of salt concentration and topographical position on water ...

    African Journals Online (AJOL)

    2005-04-02

    Apr 2, 2005 ... 2 Departamento de Silvopascicultura, ETSI Montes, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain. Abstract. Water resource quality (WRQ) is affected by salt concentration and topographical position. Indeed, an increase in salt concen- tration, which decreases water ...

  8. Concentration and size of asbestos in water supplies.

    OpenAIRE

    Millette, J R; Clark, P J; Pansing, M F; Twyman, J D

    1980-01-01

    A review of the results of over 1500 asbestos analyses from U.S. water supplies suggests that the majority of water consumers are not exposed to asbestos concentrations in their drinking water over 1 x 10(6) fibers per liter. There are, however, some populations that are exposed to waterborne asbestos concentrations over 10 x 10(6) fibers per liter caused by natural erosion, mine processing wastes, waste pile erosion, corrosion of asbestos cement pipe, or disintegration of asbestos tile roofs...

  9. Daytime Raman lidar for water vapor and ozone concentration measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Duk Hyeon; Cha, Hyung Ki; Lee, Jong Min [Laboratory for QuantumOptics, Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Veselovskii, I. [Physcis Instrumentation Center of General Physcis Institute, Moscow (Russian Federation)

    1996-11-15

    A Raman lidar system based on a quadrupled Nd : Yagi laser monitors the Raman signals from N{sub 2}, O{sub 2} and H{sub 2}O molecules. To suppress the elastic backscatter, a specially designed liquid absorption edge filter is used. The water vapor concentration is calculated from the radio of water and nitrogen Raman signals. Ozone concentration is evaluated from nitrogen and oxygen Raman returns by applying Dial technique. The obtained ozone profiles can be used for water vapor data correction.

  10. Watering regime influences Cd concentrations in cultivated spinach.

    Science.gov (United States)

    Tack, Filip M G

    2017-01-15

    In washed spinach, a maximum Cd concentration of 0.20 mg/kg fresh weight (FW) is allowed according to European regulations. Producers experience that this concentration can sometimes be exceeded even on soils with baseline Cd concentrations. There is a growing need to quantify the factors determining Cd uptake in the crop in order to anticipate the risk of exceedance when selecting a field for cultivation. Interseasonal variation in precipitation may be one of the factors influencing Cd uptake by crops. A pot experiment was set up where spinach plants were subject to different watering regimes. Treatment with more limited water supply during periods of high demand resulted in significantly higher accumulated Cd concentrations (0.25-0.31 versus 0.17-0.23 mg/kg FW). Concentrations at or above the maximum allowed limit were of concern, considering that the soil used in the experiment originated from a typical field in an agricultural region without any specific contamination. Probabilities to exceed maximum concentrations in the different watering regimes were estimated using Monte Carlo simulation. Results suggested that the watering regimes significantly determine the effective risk of exceeding the maximum concentrations. Their effects may be of high practical importance in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of level of brackish water on feed intake, digestion, heat energy, and blood constituents of growing Boer and Spanish goat wethers 1

    National Research Council Canada - National Science Library

    Y Tsukahara; R Puchala; T Sahlu; A L Goetsch

    2016-01-01

      Twenty Boer (6.1 mo old and 21.3 kg) and 20 Spanish (6.6 mo old and 19.7 kg) goat wethers were used to determine effects of brackish water on feed intake, digestion, heat energy, and blood constituents...

  12. Heterogeneity of Water Concentrations in the Mantle Lithosphere Beneath Hawaii

    Science.gov (United States)

    Bizimis, M.; Peslier, A. H.; Clague, D.

    2017-01-01

    The amount and distribution of water in the oceanic mantle lithosphere has implications on its strength and of the role of volatiles during plume/lithosphere interaction. The latter plays a role in the Earth's deep water cycle as water-rich plume lavas could re-enrich an oceanic lithosphere depleted in water at the ridge, and when this heterogeneous lithosphere gets recycled back into the deep mantle. The main host of water in mantle lithologies are nominally anhydrous minerals like olivine, pyroxene and garnet, where hydrogen (H) is incorporated in mineral defects by bonding to structural oxygen. Here, we report water concentrations by Fourier transform infrared spectrometry (FTIR) on olivine, clino- and orthopyroxenes (Cpx & Opx) from spinel peridotites from the Pali vent and garnet pyroxenite xenoliths from Aliamanu vent, both part of the rejuvenated volcanism at Oahu (Hawaii). Pyroxenes from the Aliamanu pyroxenites have high water concentrations, similar to the adjacent Salt Lake Crater (SLC) pyroxenites (Cpx 400-500 ppm H2O, Opx 200 ppm H2O). This confirms that pyroxenite cumulates form water-rich lithologies within the oceanic lithosphere. In contrast, the Pali peridotites have much lower water concentrations than the SLC ones (10% modal Cpx and low spinel Cr# (0.09-0.10). The contrast between the two peridotite suites is also evident in their trace elements and radiogenic isotopes. The Pali Cpx are depleted in light REE, consistent with minimal metasomatism. Those of SLC have enriched light REE patterns and Nd and Hf isotopes consistent with metasomatism by alkaline melts. These observations are consistent with heterogeneous water distribution in the oceanic lithosphere that may be related to metasomatism, as well as relatively dry peridotites cross-cut by narrow (?) water-rich melt reaction zones.

  13. Fluoride concentration in community water and bottled drinking water: a dilemma today.

    Science.gov (United States)

    Dhingra, S; Marya, C M; Jnaneswar, A; Kumar, H

    2013-01-01

    Because of the potential for contamination of municipal water supplies, people appear to be turning to alternative sources for their pure drinking water. The present study analyzed the fluoride concentration in community water and bottled drinking water sold in Faridabad city. A comparative evaluation of fluoride content in community water supply and bottled drinking water was done using ion-selective electrode method. The community water samples were collected from six different areas (i.e. north zone, south zone, east zone, west zone and central zone) in the city from public health water supply taps while bottled drinking water samples were randomly picked from grocery shops or supermarkets. The fluoride concentration in the community water supply in this study ranges from 0.11 to 0.26 mg/L with mean fluoride concentration of 0.17 mg/L. The mean concentration of fluoride in bottled drinking water was 0.06 mg/L. The differences observed between mean of two water samples was statistically significant. The results obtained from the present study clearly state that the fluoride concentration was insufficient in community water supply from all the areas and also was deficient in bottled drinking water sold in Faridabad city. So, Alternative sources of fluorides should be supplemented for optimal dental benefits from the use of fluoride.

  14. Caffeoylquinic Acids Are Major Constituents with Potent Anti-Influenza Effects in Brazilian Green Propolis Water Extract

    Directory of Open Access Journals (Sweden)

    Tomohiko Urushisaki

    2011-01-01

    Full Text Available Influenza A viral infections reached pandemic levels in 1918, 1957, 1968, and, most recently, in 2009 with the emergence of the swine-origin H1N1 influenza virus. The development of novel therapeutics or prophylactics for influenza virus infection is urgently needed. We examined the evaluation of the anti-influenza virus (A/WSN/33 (H1N1 activity of Brazilian green propolis water extract (PWE and its constituents by cell viability and real-time PCR assays. Our findings showed strong evidence that PWE has an anti-influenza effect and demonstrate that caffeoylquinic acids are the active anti-influenza components of PWE. Furthermore, we have found that the amount of viral RNA per cell remained unchanged even in the presence of PWE, suggesting that PWE has no direct impact on the influenza virus but may have a cytoprotective activity by affecting internal cellular process. These findings indicate that caffeoylquinic acids are the active anti-influenza components of PWE. Above findings might facilitate the prophylactic application of natural products and the realization of novel anti-influenza drugs based on caffeoylquinic acids, as well as further the understanding of cytoprotective intracellular mechanisms in influenza virus-infected cells.

  15. Changing of Cations Concentrations in Waters of Polluted Urban River

    Directory of Open Access Journals (Sweden)

    Andrianova Maria

    2016-01-01

    Full Text Available Water from urban river Okhta polluted with domestic and industrial wastewaters was investigated. Specific electric conductivity (k, molar concentrations of ions Na+, K+, Mg++ and Ca++, concentration of total nitrogen (TN were measured in water samples. Increasing of k happened together with increasing of molar fraction of sodium-ion (RNa among all studied cations (and correspondingly decreasing of molar fractions of other cations. Good correlations were found between RNa and TN (r = 0.67, k and TN (r = 0.84. The results support the idea of the leading role of wastewaters in changing of k and cations concentrations. Electric conductivity and RNa could be used to distinguish between polluted and not polluted waters in the Okhta.

  16. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...... uncertainty is investigated for three parameters: the well distance, the water production rate, and the permeability of the aquifer. One possible way of estimating statistical uncertainties and providing probabilities is performing numerical Monte Carlo (MC) simulations. The MC approach is computationally...

  17. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  18. Water-quality characteristics for selected sites on the Cape Fear River, North Carolina, 1955-80; variability, loads, and trends of selected constituents

    Science.gov (United States)

    Crawford, J. Kent

    1983-01-01

    . Nuisance algal growths have not been identified as a problem in the river. Comparisons of water-quality data for baseline (natural) and present conditions indicate that more than 50 percent of most dissolved substances and over 80 percent of certain forms of nitrogen and phosph6rus result from development. Over the past 25 years, increases in concentrations of specific conductance, dissolved magnesium, dissolved sodium, dissolved potassium, dissolved sulfate, dissolved solids, and total nitrite plus nitrate nitrogen were detected in the Cape Fear River at Lock 1. Values for pH and dissolved silica are decreasing. Concentrations of most dissolved constituents at Lock 1 are increasing. These increases are statistically related to increases in population and manufacturing employment in the basin but are unrelated to agricultural activity.

  19. Background nitrogen concentrations in fresh waters in Denmark

    Science.gov (United States)

    Windolf, Jørgen; Bøgestrand, Jens; Blicher-Mathiesen, Gitte; Kronvang, Brian

    2013-04-01

    Quantitative information on the background loading of nitrogen is important when establishing the pressure-impact pathway for Danish springs, streams, lakes and estuaries The background nitrogen loading thus determines present day lowest nitrogen loadings without influence from point sources and agriculture but includes present day atmospheric deposition of nitrogen compounds. We have mapped the background concentration of nitrogen in Danish soil water, springs and streams based on monitoring in one soil water station (1990-2010), 11 springs, 7 small streams draining undisturbed catchments (1990-2010) and 19 streams draining small undisturbed catchments (2004-11). The concentration of ammonium-N (NH4+) and organic N was found to be nearly constant within six major landscape types in Denmark, respectively, 0.05 mg ± 0.06 mg N L-1 and 0.53 mg ± 0.29 mg N L-1. On contrary, the concentration of nitrate-nitrite-N (NO3- + NO2-) was found to vary between 0.06-0.83 mg N L-1 within the six landscape types. We have also time series of background total nitrogen concentrations from 7 small undisturbed catchments covering the period 1990-2010. No significant trends have been observed for total nitrogen concentrations from these streams during the period 1990-2010. The measured average nitrate-N concentrations in streams has been modelled against dominant landscape geology and a 5x5 km grid map of Denmark showing background concentrations of nitrate-N and total N has been produced. This map has been used during the implementation of the EU Water Framework Directive as a baseline for estimating background nitrogen losses to surface waters in Denmark. Thus, the average annual background loss of total nitrogen amounts to 13,000 tonnes N or 20% of the total loading of nitrogen from the Danish land to sea during the period 2005-2009.

  20. Plasma concentrations of water-soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    2012-01-21

    Jan 21, 2012 ... levels of water-soluble vitamins with metabolic syndrome and its various components. Aims: This study aims to determine the plasma concentrations of vitamins B1, B3, B6, and C in Nigerians with metabolic syndrome and in healthy controls. Settings and Design: One-hundred subjects with metabolic ...

  1. Method for treatment of water containing low concentrations of mercury

    Science.gov (United States)

    Flood, D. J.; Kraynik, G. J.

    1973-01-01

    A process employing magnetic filtering techniques has been devised for treating water containing concentrations on the order of 1 microgram/cubic centimeter of atomic or ionic mercury. A laboratory-scale system has been operated and can reduce the mercury content of test solutions by as much as 90 percent.

  2. Nitrate concentration in drinking water supplies in selected ...

    African Journals Online (AJOL)

    Elevated levels of nitrate in drinking water have been associated with adverse health effects. Most susceptible to nitrate toxicity are infants under six months of age and pregnant women. This study assesses the nitrate concentration of 48 randomly selected wells in an urban-slum setting in Ibadan South East Local ...

  3. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water : Surface Effects

    NARCIS (Netherlands)

    Mohd Amin, M.F.; Heijman, S.G.J.; Lopes, S.I.C.; Rietveld, L.C.

    2014-01-01

    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with

  4. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  5. Determination of the Concentration of Total Cyanide in Waste Water ...

    African Journals Online (AJOL)

    Cyanide has been listed as one of the toxic pollutants that is usually released into the environment. Cyanide is said to be released during the processing of cyanogenic plant parts which tobacco plant is one of them. This work determines the concentration of total cyanide in waste water collected in and around a tobacco ...

  6. Concentration and second-gas effects in the water analogue.

    Science.gov (United States)

    Mapleson, W W; Korman, B

    1998-12-01

    The water analogue provides a visual model of the process of anaesthetic exchange. In the standard version, a single pipe connects the mouth container to the lung container and the conductance of this mouth-lung pipe is proportional to alveolar ventilation. This implies that inspired and expired ventilations are equal. In fact, with high inspired concentrations of nitrous oxide, early rapid uptake of gas by solution leads to a substantial difference between inspired and expired ventilation which in turn leads to concentration and second-gas effects. It is shown that by representing inspired and expired ventilations separately, and keeping one of them constant while varying the other to compensate for rapid uptake, concentration and second-gas effects are reproduced in the water analogue. Other means of reproducing the effects are reported but we believe that the first method is the most realistic and the most appropriate for teaching.

  7. Dynamics in surface water solute concentrations and consequences for water quality monitoring

    Science.gov (United States)

    Rozemeijer, J.; Van der Velde, Y.; Broers, H. P.; van Geer, F.

    2012-04-01

    For the evaluation of action programs to reduce surface water pollution, water authorities invest heavily in water quality monitoring. However, sampling frequencies are generally insufficient to capture the dynamical behavior of solute concentrations. This results in large uncertainties in the estimates of loads and average concentrations, which complicates water quality assessments. The main causes of dynamics in groundwater and surface water quality are variations in human land management, biochemical processes, and meteorological conditions. In this study, we focused on the short-term variations in water quality that are normally not captured with common monthly measurement intervals. Our multi-scale experimental research setup in The Netherlands revealed that weather induced variations are the major cause of short-term variations in water quality. During rainfall events, the relative contribution of different flow routes (groundwater, tile drain, overland flow) to the total surface water discharge changes. These different flow routes have different residence times in the subsurface and therefore different chemical compositions. For example, our continuous nitrate concentration measurements repetitively showed a lowering in stream water nitrate concentrations in response to rainfall events. This lowering was caused by a temporal dilution of nitrate-rich tile drain effluent with nitrate-poor rainwater. On the other hand, the continuously measured phosphorus concentrations peaked during rainfall events due to the resuspension of phosphorus-rich sediments. We will also present the following options to deal with the highly dynamic behavior of solute concentrations in surface water quality monitoring practice: (1) use modern equipment for continuous concentration measurements, (2) measure average concentrations using passive samplers, and (3) use the explanatory strength of generally available high-frequency data (e.g. precipitation and discharge records) to

  8. Trace-metal and organic constituent concentrations in bed sediment at Big Base and Little Base Lakes, Little Rock Air Force Base, Arkansas—Comparisons to sediment-quality guidelines and indications for timing of exposure

    Science.gov (United States)

    Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.

    2015-09-16

    This report compares concentrations for a wide range of inorganic and organic constituents in bed sediment from Big Base Lake and Little Base Lake, which are located on Little Rock Air Force Base, Arkansas, to sediment-quality guidelines. This report also compares trace-metal concentrations in a bed-sediment core sample to sediment age to determine when the highest concentrations of trace metals were deposited in Big Base Lake.

  9. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  10. Polychlorinated biphenyl concentrations in Hudson River water and treated drinking water at Waterford, New York

    Science.gov (United States)

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Past discharge of PCBs into the Hudson River has resulted in contaminant concentrations of a few tenths of a microgram per liter in the water. Waterford is one of two large municipal users of the Hudson River for drinking-water supply. The treatment scheme at the Waterford plant, which processes approximately 1 million gallons per day, is similar to that of most conventional treatment plants except for the addition of powdered activated carbon during flocculation. Comparison of PCB concentrations in river water and intake water at the plant to concentrations in treated drinking-water samples indicates that purification processes remove 80 to 90 percent of the PCBs and that final concentrations seldom exceed 0.1 microgram per liter. No significant difference was noted between the removal efficiencies during periods of high river discharge, when PCBs are associated with suspended sediment, and low discharge, when PCBs are generally dissolved. (USGS)

  11. Effects of shampoo and water washing on hair cortisol concentrations.

    Science.gov (United States)

    Hamel, Amanda F; Meyer, Jerrold S; Henchey, Elizabeth; Dettmer, Amanda M; Suomi, Stephen J; Novak, Melinda A

    2011-01-30

    Measurement of cortisol in hair is an emerging biomarker for chronic stress in human and nonhuman primates. Currently unknown, however, is the extent of potential cortisol loss from hair that has been repeatedly exposed to shampoo and/or water. Pooled hair samples from 20 rhesus monkeys were subjected to five treatment conditions: 10, 20, or 30 shampoo washes, 20 water-only washes, or a no-wash control. For each wash, hair was exposed to a dilute shampoo solution or tap water for 45 s, rinsed 4 times with tap water, and rapidly dried. Samples were then processed for cortisol extraction and analysis using previously published methods. Hair cortisol levels were significantly reduced by washing, with an inverse relationship between number of shampoo washes and the cortisol concentration. This effect was mainly due to water exposure, as cortisol levels following 20 water-only washes were similar to those following 20 shampoo treatments. Repeated exposure to water with or without shampoo appears to leach cortisol from hair, yielding values that underestimate the amount of chronic hormone deposition within the shaft. Collecting samples proximal to the scalp and obtaining hair washing frequency data may be valuable when conducting human hair cortisol studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Possible health effects of high manganese concentration in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kondakis, X.G.; Makris, N.; Leotsinidis, M.; Prinou, M.; Papapetropoulos, T.

    1989-05-01

    Three areas in the same region of northwest Peloponnesos, Greece, that had varying concentrations of manganese (Mn) in drinking water were selected for study. The Mn concentrations in areas A, B, and C were 3.6-14.6 micrograms/l, 81.6-252.6 micrograms/l, and 1 800-2 300 micrograms/l, respectively. A random sample (62 in area A, 49 in area B, and 77 in area C) of males and females who were at least 50 y of age were submitted to a thorough neurological examination and their whole-blood Mn and hair Mn concentrations were determined. Although all areas were similar with respect to social and dietary characteristics, significant differences were observed for prevalence of chronic manganese poisoning (CMnP) symptoms and hair Mn concentration. The means (both sexes) of neurological scores were 2.7, 3.9, and 5.2, respectively, for areas A, B, and C (Kruskal-Wallis, chi 2 = 6.44, 2 df, p less than .05 for males; chi 2 = 7.8, 2 df, p less than .05 for females). Hair Mn concentrations were also significantly different, the means for which were 3.51, 4.49, and 10.99 micrograms/g dry weight, respectively (both sexes (p less than .001 for each sex separately)). These results indicate that progressive increases of Mn concentration in drinking water are associated with progressively higher prevalences of neurological signs of CMnP and Mn concentration in hair of older persons.

  13. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.

    Science.gov (United States)

    Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K

    2012-01-01

    Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (pland use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with land use. This highlights the need for more single land use water quality data

  14. Occurrence and concentration of caffeine in Oregon coastal waters.

    Science.gov (United States)

    Rodriguez del Rey, Zoe; Granek, Elise F; Sylvester, Steve

    2012-07-01

    Caffeine, a biologically active drug, is recognized as a contaminant of freshwater and marine systems. We quantified caffeine concentrations in Oregon's coastal ocean to determine whether levels correlated with proximity to caffeine pollution sources. Caffeine was analyzed at 14 coastal locations, stratified between populated areas with sources of caffeine pollution and sparsely populated areas with no major caffeine pollution sources. Caffeine concentrations were measured in major water bodies discharging near sampling locations. Caffeine in seawater ranged from below the reporting limit (8.5 ng/L) to 44.7 ng/L. Caffeine occurrence and concentrations in seawater did not correspond with pollution threats from population density and point and non-point sources, but did correspond with storm event occurrence. Caffeine concentrations in rivers and estuaries draining to the coast ranged from below the reporting limit to 152.2 ng/L. This study establishes the occurrence of caffeine in Oregon's coastal waters, yet relative importance of sources, seasonal variability, and processes affecting caffeine transport into the coastal ocean require further research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Importance of Vanadium Concentration in Ground and Deep Ground Water for Spring Water Quality

    National Research Council Canada - National Science Library

    MARCZEWSKI, Krzysztof; MARCZEWSKA, Barbara; KUZIOŁA, RAFA

    2015-01-01

      Vanadium, depending on the consumed dose may be toxic or health-promoting. Therefore, the knowledge of its concentration in the drinking therapeutic water, in particular in the medicinal mineral sources seems to be very important...

  16. Chloraminated Concentrated Drinking Water for Disinfection Byproduct Mixtures Research: Evaluating Free Chlorine Contact Times

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) present in the source water. Since 1974, over 600 DBPs have been identified in drinking water, yet a large portio...

  17. Chloramination of Concentrated Drinking Water: Evaluation of Disinfection Byproduct Formation and Dosing Scenarios - Portland

    Science.gov (United States)

    Complex mixtures of disinfection by-products (DBPs) are formed when the disinfectant oxidizes constituents (e.g., natural organic matter (NOM) and organic pollutants) found in the source water. Since 1974, over 600 DBPs have been identified in drinking water. Despite intense iden...

  18. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    Science.gov (United States)

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  19. Trihalomethane concentrations in tap water as determinant of bottled water use in the city of Barcelona.

    Science.gov (United States)

    Font-Ribera, Laia; Cotta, Jordi Colomer; Gómez-Gutiérrez, Anna; Villanueva, Cristina M

    2017-08-01

    Bottled water consumption is increasing worldwide, despite its huge economic and environmental cost. We aim to describe personal and tap water quality determinants of bottled water use in the city of Barcelona. This cross-sectional study used data from the Health Survey of Barcelona in 2006 (N=5417 adults). The use of bottled water to drink and to cook was evaluated in relation to age, gender, educational level, district and levels of trihalomethanes (THMs), free chlorine, conductivity, chloride, sodium, pH, nitrate and aluminium in municipal tap water using Robust Poisson Regression. The prevalence of bottled water use to drink and cook was 53.9% and 6.7%, respectively. Chemical parameters in water had a large variability (interquartile range of THMs concentrations: 83.2-200.8μg/L) and were correlated between them, except aluminium. Drinking bottled water increased with educational level, while cooking with bottled water was higher among men than among women and decreased with age. After adjusting by these personal determinants, a dose-response relationship was found between concentrations of all chemicals except aluminium in tap water and bottled water use. The highest association was found for THMs, with a Prevalence Ratio of 2.00 (95%CI=1.86, 2.15) for drinking bottled water and 2.80 (95%CI=1.72, 4.58) for cooking with bottled water, among those with >150μg/L vs. water. More than half of Barcelona residents regularly drank bottled water, and the main determinant was the chemical composition of tap water, particularly THM level. Copyright © 2017. Published by Elsevier B.V.

  20. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice.

    Science.gov (United States)

    Seki, Taiichiro; Nagase, Ryohei; Torimitsu, Mariko; Yanagi, Megumi; Ito, Yukihiko; Kise, Mitsuo; Mizukuchi, Aya; Fujimura, Naoko; Hayamizu, Kohusuke; Ariga, Toyohiko

    2005-08-01

    The intake of pre-germinated brown rice (PR) instead of white rice (WR) ameliorates the hyperglycemia. To clarify the mechanism(s) to decrease the post-prandial blood glucose concentration, the effect of water-soluble/oil-soluble fraction-depleted PR bran (termed as "DB"; which is destarched and defatted PR bran) on post-prandial blood glucose was compared with that of full-fat PR bran (PB) or WR. The test diets, WR diet, PB diet and DB diet which are containing identical amount of available carbohydrate (1.5 g) were fed to Wistar strain rats. Post-prandial blood glucose concentration and incremental area under the curve (IAUC) for DB diet were lower than those for WR diet, and there was no difference between the DB diet and PB diet. Changes in plasma insulin concentration and the IAUC obtained also revealed the same tendency as those observed in blood glucose concentration. These results indicate that the blood glucose-lowering effect of PB diet may be derived from the properties of PB involving substantially higher content of dietary fiber than WR, and that the potential benefit of intake of PR instead of WR in the prevention of diabetic vascular complications.

  1. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  2. Effects of low urea concentrations on protein-water interactions.

    Science.gov (United States)

    Ferreira, Luisa A; Povarova, Olga I; Stepanenko, Olga V; Sulatskaya, Anna I; Madeira, Pedro P; Kuznetsova, Irina M; Turoverov, Konstantin K; Uversky, Vladimir N; Zaslavsky, Boris Y

    2017-01-01

    Solvent properties of aqueous media (dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were measured in the coexisting phases of Dextran-PEG aqueous two-phase systems (ATPSs) containing .5 and 2.0 M urea. The differences between the electrostatic and hydrophobic properties of the phases in the ATPSs were quantified by analysis of partitioning of the homologous series of sodium salts of dinitrophenylated amino acids with aliphatic alkyl side chains. Furthermore, partitioning of eleven different proteins in the ATPSs was studied. The analysis of protein partition behavior in a set of ATPSs with protective osmolytes (sorbitol, sucrose, trehalose, and TMAO) at the concentration of .5 M, in osmolyte-free ATPS, and in ATPSs with .5 or 2.0 M urea in terms of the solvent properties of the phases was performed. The results show unambiguously that even at the urea concentration of .5 M, this denaturant affects partitioning of all proteins (except concanavalin A) through direct urea-protein interactions and via its effect on the solvent properties of the media. The direct urea-protein interactions seem to prevail over the urea effects on the solvent properties of water at the concentration of .5 M urea and appear to be completely dominant at 2.0 M urea concentration.

  3. The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs.

    Science.gov (United States)

    Lipok, Jacek; Studnik, Hanna; Gruyaert, Steven

    2010-10-01

    The toxicity of commercial formulation of Roundup® 360 SL, widely used, nonselective herbicide and its main constituents, glyphosate (PMG), equimolar (1:1) isopropylamine salt of glyphosate (GIPA) and isopropylamine (IPA) was examined towards eight aquatic microphotoautotrophs; seven cyanobacterial strains representing either saline or freshwater communities, and common eukaryotic algae Chlorella vulgaris Beijerinck. Autotrophs were cultured 21 days in their appropriate standard media supplemented with various amounts of Roundup®, glyphosate, GIPA and IPA. The determination of the growth of examined photoautotrophs was performed by time-course measurements of total chlorophyll content in experimental cultures. The growth rates related to corresponding concentrations of chemicals, the EC(50) values and generation doubling time were determined in order to present the toxicity Roundup® 360 SL formulation and its main constituents. Market available formulation of Roundup® was found to possess toxicity significantly higher than this, attributed to its main constituents; however both these compounds, isopropylamine and glyphosate, also inhibited the growth of examined strains in a dose-dependent manner. Notably, the interpretation of toxicity of the examined substances was found to be significantly dependent on the method of EC(50) calculation. The choice of molar or weight concentration of substances tested separately and in specific formulation was found to be essential in this matter. Due to these findings the EC(50) values were calculated based either on molar or on weight concentrations. Considering Roundup® 360 SL formulation, these values ranged from 10(-3) up to 10(-1) mM and they were one order of magnitude lower than those found for isopropylamine. Quite surprisingly the minimum EC(50) values found for glyphosate did not reach micromolar concentrations, whereas most of the EC(50) values revealed to IPA did not exceed this range. Notably, in all the cases

  4. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  5. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    Science.gov (United States)

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for

  6. Assessment of nutritional quality of water hyacinth leaf protein concentrate

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adeyemi

    2016-09-01

    Full Text Available This study was embarked upon to convert water hyacinth, an environmental nuisance, to a natural resource for economic development. Water hyacinth leaf protein concentrate (WHLPC was extracted in edible form and determination of its physicochemical characteristics, total alkaloids and phenolic compounds was done. Analysis of proximate composition and amino acid profile of the WHLPC was also done. The level of heavy metals (mg/kg in WHLPC was found to be Cd (0.02 ± 0.001, Cr (0.13 ± 0.001, Pd (0.003 ± 0.001 and Hg (0.02 ± 0.001 while concentrations of Pb, Pt, Sn, Fe, Cu, Zn, Ni and Co were found to be 0.001 ± 0.00. Level of all heavy metals was found to be within safe limit. Proximate analysis revealed that protein in WHLPC accounted for 50% of its nutrients, carbohydrate accounted for 33% of its nutrients while fat, ash and fibre made up the remaining nutrients. Amino acid analysis showed that WHLPC contained 17 out of 20 common amino acids, particularly, Phe (3.67%, Leu (5.01%. Level of total alkaloids and phenolic compounds was 16.6 mg/kg and 6.0 mg/kg respectively. Evidence from this study suggests that WHLPC is a good source of leaf protein concentrate (LPC; it is nutritious and acutely non toxic.

  7. Distribution of methyl tert-butyl ether (MTBE) and selected water-quality constituents in the surficial aquifer at the Dover National Test Site, Dover Air Force Base, Delaware, 2001

    Science.gov (United States)

    Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.

    2004-01-01

    A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert

  8. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    Directory of Open Access Journals (Sweden)

    Mohamad Faiz Mohd Amin

    2014-01-01

    Full Text Available This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles’ classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.

  9. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    Science.gov (United States)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices

  10. Major element concentrations in Mangrove Pore Water, Sepetiba Bay, Brazil

    Directory of Open Access Journals (Sweden)

    Christian J. Sanders

    2012-03-01

    Full Text Available Concentrations of cations and anions of major elements (Na+, Ca2+, Mg2+, K+, Cl-, SO4 2- were analyzed in the pore water of a mangrove habitat. Site specific major element concentrations were identified along a four piezometric well transect, which were placed in distinct geobotanic facies. Evapotranspiration was evident in the apicum station, given the high salinity and major element concentrations. The station landward of an apicum was where major element/Cl- ratios standard deviations are greatest, suggesting intense in situ diagenesis. Molar ratios in the most continental station (4 are significantly lower than the nearby freshwater source, indicating a strong influence of sea water flux into the outer reaches of the mangrove ecosystem and encroaching on the Atlantic rain forest. Indeed, the SO4 2-/Cl- and Ca2+/Cl- ratios suggest limited SO4 2- reduction and relatively high Ca2+/Cl- ratios indicate a region of recent saltwater contact.As concentrações dos elementos maiores (Na+, Ca2+, Mg2+, K+, Cl-, SO4(2- foram analisadas na água intersticial de poços piezométricos localizados em diferentes fácies geobotânicas ao longo de um transecto num ecossistema de manguezal na Baía de Sepetiba - Rio de Janeiro. Maiores salinidades e concentrações dos íons maiores são evidencias de evapotranspiração no fácies apicum. Ainda no apicum foram observados os maiores desvios padrão da razão elemento/Cl− durante o período do estudo, indicando intensa diagênese in situ. Razões molares no piezômetro, localizado na borda do manguezal foram consideravelmente menores do que a fonte de água doce, indicando forte influência do fluxo de água marinha. Os resultados das razões molares, SO4(2-/Cl− e Ca2+/Cl− na borda do manguezal adjacente ao continente sugerem limitada redução de SO4(2- enquanto os valores relativamente altos na razão Ca2+/Cl− indicam contacto recente com água marinha.

  11. 76 FR 10899 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Science.gov (United States)

    2011-02-28

    ... HUMAN SERVICES Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention... recommendations for fluoride concentration in drinking water for the prevention of dental caries has been extended.... Public Health Service Drinking Water Standards related to recommendations for fluoride concentrations in...

  12. A simple flow-concentration modelling method for integrating water ...

    African Journals Online (AJOL)

    National Water Act, 1998), flow requirements are assessed for maintenance low flow, drought low flow and flood conditions. Since water quantity and water quality are often closely linked, it is necessary to ensure that in setting the recommended ...

  13. Inorganic constituents in coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Radenovic [University of Zagreb, Sisak (Croatia). Faculty of Metallurgy

    2006-07-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More than one hundred different minerals and virtually every element in the periodic table have been found in coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates), minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the order of w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprised in coal. The fractions of trace elements usually decrease when the rank of coal increases. Fractions of the inorganic elements are different, depending on the coal bed and basin. A variety of analytical methods and techniques can be used to determine the mass fractions, mode of occurrence, and distribution of organic constituents in coal. There are many different instrumental methods for analysis of coal and coal products but atomic absorption spectroscopy (AAS) is the one most commonly used. Fraction and mode of occurrence are one of the main factors that have influence on transformation and separation of inorganic constituents during coal conversion. Coal, as an important world energy source and component for non-fuels usage, will be continuously and widely used in the future due to its relatively abundant reserves. However, there is a conflict between the requirements for increased use of coal on the one hand and less pollution on the other. It's known that the environmental impacts, due to either coal mining or coal usage, can be: air, water and land pollution. Although, minor components, inorganic constituents can exert a significant influence on the economic value, utilization, and environmental impact of the coal.

  14. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  15. Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress.

    Directory of Open Access Journals (Sweden)

    Minu Singh

    Full Text Available Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud., grown under different water stress regimes [(100% field capacity (FC, 80% FC and 60% FC], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA. Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC, irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP, respectively, as compared to the deionized-water (DW spray treatment (80% FC+ DW. Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment.

  16. Removal of NOM-constituents as characterized by LC-OCD and F-EEM during drinking water treatment

    KAUST Repository

    Baghoth, S. A.

    2011-11-01

    Natural organic matter (NOM) is of concern in drinking water because it causes adverse aesthetic qualities such as taste, odour, and colour; impedes the performance of treatment processes; and decreases the effectiveness of oxidants and disinfectants while contributing to undesirable disinfection by-products. The effective removal of NOM during drinking water treatment requires a good understanding of its character. Because of its heterogeneity, NOM characterization necessitates the use of multiple analytical techniques. In this study, NOM in water samples from two drinking water treatment trains was characterized using liquid chromatography with organic carbon detection (LC-OCD), and fluorescence excitation-emission matrices (F-EEMs) with parallel factor analysis (PARAFAC). These characterization methods indicate that the raw and treated waters are dominated by humic substances. The results show that whereas the coagulation process for both plants may be optimized for the removal of bulk DOC, it is not likewise optimized for the removal of specific NOM fractions. A five component PARAFAC model was developed for the F-EEMs, three of which are humic-like, while two are protein-like. These PARAFAC components and the LC-OCD fractions represented effective tools for the performance evaluation of the two water treatment plants in terms of the removal of NOM fractions. © IWA Publishing 2011.

  17. Effects of level of brackish water on feed intake, digestion, heat energy, and blood constituents of growing Boer and Spanish goat wethers.

    Science.gov (United States)

    Tsukahara, Y; Puchala, R; Sahlu, T; Goetsch, A L

    2016-09-01

    Twenty Boer (6.1 mo old and 21.3 kg) and 20 Spanish (6.6 mo old and 19.7 kg) goat wethers were used to determine effects of brackish water on feed intake, digestion, heat energy, and blood constituents. Brackish water had 6,900 mg/L total dissolved salts, 1,885 mg/L Na, 75 mg/L Mg, 1,854 mg/L chloride, 2,478 mg/L sulfate, and 9 mg/L boron. Water treatments were 100% tap water (control), 100% of a brackish water source (100-BR), 33% control and 67% brackish water (67-BR), and 67% control and 33% brackish water (33-BR). Water and a moderate-quality grass hay (8.5% CP and 68% NDF) were offered free choice. The experiment consisted of 14 d of adaptation, 5 d for metabolizability measures, and 2 d for determining gas exchange and heat energy. There were no interactions ( > 0.05) between breed and water treatment. Water intake (931, 942, 949, and 886 g/d [SE 59.1] for the control, 33-BR, 67-BR, and 100-BR, respectively) and DM intake (525, 556, 571, and 527 g/d [SE 31.0] for the control, 33-BR, 67-BR, and 100-BR, respectively) were similar among treatments ( = 0.876 and = 0.667, respectively). Urinary water was greater for brackish water treatments than for the control ( = 0.003; 211, 317, 319, and 285 g/d [SE 25.6] for the control, 33-BR, 67-BR, and 100-BR, respectively) and fecal water content was similar among treatments ( = 0.530; 247, 251, 276, and 257 g/d [SE 19.0] for the control, 33-BR, 67-BR, and 100-BR, respectively), implying less water loss by other means such as evaporation when brackish water was consumed. Total tract OM digestibility was lower ( = 0.049) for treatments with brackish water than for treatments without brackish water (64.2, 61.5, 58.6, and 59.3% [SE 1.86] for the control, 33-BR, 67-BR, and 100-BR, respectively), although ME intake was similar among treatments ( = 0.940; 4.61, 4.57, 4.60, and 4.31 MJ/d [SE 0.394] for the control, 33-BR, 67-BR, and 100-BR, respectively). Daily heat energy in kilojoules per kilogram BW was less with brackish

  18. Trends in major-ion constituents and properties for selected sampling sites in the Tongue and Powder River watersheds, Montana and Wyoming, based on data collected during water years 1980-2010

    Science.gov (United States)

    Sando, Steven K.; Vecchia, Aldo V.; Barnhart, Elliott P.; Sando, Thomas R.; Clark, Melanie L.; Lorenz, David L.

    2014-01-01

    The primary purpose of this report is to present information relating to flow-adjusted temporal trends in major-ion constituents and properties for 16 sampling sites in the Tongue and Powder River watersheds based on data collected during 1980–2010. In association with this primary purpose, the report presents background information on major-ion characteristics (including specific conductance, calcium, magnesium, potassium, sodium adsorption ratio, sodium, alkalinity, chloride, fluoride, dissolved sulfate, and dissolved solids) of the sampling sites and coal-bed methane (CBM) produced water (groundwater pumped from coal seams) in the site watersheds, trend analysis methods, streamflow conditions, and factors that affect trend results. The Tongue and Powder River watersheds overlie the Powder River structural basin (PRB) in northeastern Wyoming and southeastern Montana. Limited extraction of coal-bed methane (CBM) from the PRB began in the early 1990’s, and increased dramatically during the late 1990’s and early 2000’s. CBM-extraction activities produce discharges of water with high concentrations of dissolved solids (particularly sodium and bicarbonate ions) relative to most stream water in the Tongue and Powder River watersheds. Water-quality of CBM produced water is of concern because of potential effects of sodium on agricultural soils and potential effects of bicarbonate on aquatic biota. Two parametric trend-analysis methods were used in this study: the time-series model (TSM) and ordinary least squares regression (OLS) on time, streamflow, and season. The TSM was used to analyze trends for 11 of the 16 study sites. For five sites, data requirements of the TSM were not met and OLS was used to analyze trends. Two primary 10-year trend-analysis periods were selected. Trend-analysis period 1 (water years 1986–95; hereinafter referred to as period 1) was selected to represent variability in major-ion concentrations in the Tongue and Powder River

  19. Evaluation of Chemical Constituents and Antioxidant Activity of Coconut Water (Cocus nucifera L. and Caffeic Acid in Cell Culture

    Directory of Open Access Journals (Sweden)

    JOAO L.A. SANTOS

    2013-09-01

    Full Text Available Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 µg/mL and 1.078 ± 0.013 µg/mL and 99.7 µg/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 µg and 39.8 mg for units of coconut consumed, 500 ± 50 mL. The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC50=73 µL and oxide nitric (0.1 mL with an IP of 29.9% as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%, highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide.

  20. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  1. Study on variation of indoor radon concentration and its concentration in ground water in granite regions of Karnataka State, India

    Energy Technology Data Exchange (ETDEWEB)

    J, D.S.; DR, R. [Kuvempu University (India); Nagaraj, S. [Department of Physics, Govt. First grade college, Malleswaram, Bangalore (India); C, D.N. [Department of Physics, Vidya Vikas Institute of Engineering and Technology Mysore (India); E, S. [I D S G Govt. College Chickmagalore (India)

    2014-07-01

    Environmental pollution and management of water is a national and international priority today. Our environment is continuously irradiated by naturally occurring radioactive elements and their decay products found in the earth's crust. {sup 222}Rn, a noble radioactive gas produced by decay of {sup 226}Ra, is a member of the {sup 238}U series. Radon concentration measurements in water and atmosphere are necessary to understand the effect of {sup 222}Rn on human health. Epidemiological studies reveal that the exposure to radon and its progeny is the one of the main causes of lung cancer after smoking. The high concentration of radon in ground water poses a potential health risks in two ways by inhalation and ingestion. In the present study, the radon concentration in indoor air atmosphere and in drinking water have been determined by collecting various drinking water samples from bore well, tank, tap and river water from different locations in granite regions of Karnataka state and were estimated by using Solid State Nuclear Track Detector (SSNTD) technique and Emanometry technique. The radon concentration in indoor atmosphere is depends mainly on radon emanation from ground water used for domestic purposes, ventilation condition, type of building materials used for construction. The present study highlights the variation of indoor radon concentration with water used for different purposes and estimates the dose to the publics of this study area. The estimated total equivalent effective dose is higher than the global average. According to US EPA and WHO report majority of the drinking water samples and their radon concentration exceeds the reference levels. Document available in abstract form only. (authors)

  2. Semi-empirical Algorithm for the Retrieval of Ecology-Relevant Water Constituents in Various Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Robert Shuchman

    2009-03-01

    Full Text Available An advanced operational semi-empirical algorithm for processing satellite remote sensing data in the visible region is described. Based on the Levenberg-Marquardt multivariate optimization procedure, the algorithm is developed for retrieving major water colour producing agents: chlorophyll-a, suspended minerals and dissolved organics. Two assurance units incorporated by the algorithm are intended to flag pixels with inaccurate atmospheric correction and specific hydro-optical properties not covered by the applied hydro-optical model. The hydro-optical model is a set of spectral cross-sections of absorption and backscattering of the colour producing agents. The combination of the optimization procedure and a replaceable hydro-optical model makes the developed algorithm not specific to a particular satellite sensor or a water body. The algorithm performance efficiency is amply illustrated for SeaWiFS, MODIS and MERIS images over a variety of water bodies.

  3. Steroid hormone concentrations and physiological toxicity of water ...

    African Journals Online (AJOL)

    The results suggest that water from Goreangab and Swakoppoort dams may have the potential to modulate endocrine systems, and shows physiological toxicity. Keywords: cytokines, cytotoxicity, endocrine disrupting chemicals, ephemeral rivers, inflammatory response, neurotoxicity, steroid hormones, water quality

  4. Effect of nitrogen concentration of the nutrient solution on the volatile constituents of leaves of Salvia fruticosa Mill. in solution culture.

    Science.gov (United States)

    Karioti, A; Skaltsa, H; Demetzos, C; Perdetzoglou, D; Economakis, C D; Salem, A B

    2003-10-22

    Essential oils from hydroponically cultivated Salvia fruticosa were analyzed by GC-MS techniques. Three different levels of nitrogen (100, 150, and 200 mg/L) were used in the nutrient solution for the cultivation, using the nutrient film technique. A total of 79 compounds were identified, and qualitative and quantitative differences have been observed between the samples collected at full bloom (flowering stage) and at the end of the seed formation stage. 1,8-Cineole, beta-caryophyllene, and viridiflorol were the predominant constituents in most cases. 13-epi-Manool was identified by using GC parameters and mass spectrum fragmentation pattern, whereas labd-7,13-dien-15-ol, a labdane type diterpene, was identified for the first time in the genus Salvia, using GC parameters and an authentic sample. The results obtained from GC-MS analyses were submitted to chemometric analysis.

  5. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills.

    Science.gov (United States)

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit; Singh, Anand; Yadav, Ajai Kumar

    2011-10-01

    Rosa damascena Mill. is an important aromatic plant for commercial production of rose oil, water, concrete and absolute. The rose water and rose oil produced under the mountainous conditions of Uttarakhand were investigated for their chemical composition. The major components of rose water volatiles obtained from the bud, half bloom and full bloom stages of cultivar 'Ranisahiba' were phenyl ethyl alcohol (66.2-79.0%), geraniol (3.3-6.6%) and citronellol (1.8-5.5%). The rose water volatiles of cultivar 'Noorjahan' and 'Kannouj' also possessed phenyl ethyl alcohol (80.7% and 76.7%, respectively) as a major component at full bloom stage. The essential oil of cultivar 'Noorjahan' obtained from two different growing sites was also compared. The major components of these oils were citronellol (15.9-35.3%), geraniol (8.3-30.2%), nerol (4.0-9.6%), nonadecane (4.5-16.0%), heneicosane (2.6-7.9%) and linalool (0.7-2.8%). This study clearly showed that the flower ontogeny and growing site affect the composition of rose volatiles. The rose oil produced in this region was comparable with ISO standards. Thus, it was concluded that the climatic conditions of Uttarakhand are suitable for the production of rose oil of international standards.

  6. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast

  7. Organic mutagens and drinking water in The Netherlands : a study on mutagenicity of organic constituents in drinking water in The Netherlands and their possible carcinogenic effects

    NARCIS (Netherlands)

    Kool, H.J.

    1983-01-01

    Several mutagenic and carcinogenic organic compounds have been detected in Dutch surface waters and in drinking water prepared from these surface waters. Although the levels of these compounds in drinking- and surface water are relatively low, in general below μg per litre, it appeared that organic

  8. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    Science.gov (United States)

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  9. CONCENTRATION OF NATURAL RADIONUCLIDES IN PRIVATE DRINKING WATER WELLS.

    Science.gov (United States)

    Cerny, R; Otahal, P; Merta, J; Burian, I

    2017-11-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/EUROATOM, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Influence of water concentrations on the phase transformation of a model surfactant/co-surfactant/water system

    Science.gov (United States)

    Lunkad, Raju; Srivastava, Arpita; Debnath, Ananya

    2017-02-01

    The influence of water concentrations on phase transformations of a surfactant/co-surfactant/water system is investigated by using all atom molecular dynamics simulations. At higher water concentrations, where surfactant (behenyl trimethyl ammonium chloride, BTMAC) to co-surfactant (stearyl alcohol, SA) ratio is fixed, BTMAC and SA self-assemble into spherical micelles, which transform into strongly interdigitated one dimensional rippled lamellar phases upon decreasing water concentrations. Fragmentation or fusions of spherical micelles of different sizes are evident from the radial distribution functions at different temperatures. However, at lower water concentrations rippled lamellar phase transforms into an LβI phase upon heating. Our simulations reveal that the concentrations of water can influence available space around the head groups which couple with critical thickness to accommodate the packing fraction required for respective phases. This directs towards obtaining a controlling factor to design desired phases important for industrial and medical applications in the future.

  11. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    Metal concentrations in the fish species and aquatic plants in this study are good indicators for environmental monitoring in Nigerian rivers. Oil explorations, industries and anthropogenic wastes were traceable to the elevated metal concentrations in the Ase-creek. KEYWORDS: Ase-creek, heavy metal pollution, metal ...

  12. Reconnaissance Survey of Arsenic Concentration in Ground-water ...

    African Journals Online (AJOL)

    . The measurements were carried out in the field using the Wagtech Arsenator field test kit (Wag-We 100500) equipment, which gives direct readout of arsenic concentration in the critical range 2-100 mg l-1. Arsenic concentrations were in the ...

  13. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Metal concentrations in the fish species and aquatic plants in this study are good indicators for environmental monitoring in Nigerian rivers. Oil explorations, industries and anthropogenic wastes were traceable to the elevated metal concentrations in the Ase-creek. @JASEM. KEYWORDS: Ase-creek, heavy metal pollution, ...

  14. Spatial analysis of fluoride concentrations in drinking water and ...

    African Journals Online (AJOL)

    Namibia, the driest country in sub-Saharan Africa, is largely reliant on groundwater for its potable water demand and groundwater is a major source of naturally-occurring fluoride. This study assessed the spatial distribution of fluoride in potable water and appraised the population at risk for high fluoride intake. Analysis of ...

  15. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    chemical industries and dissolved gases (Jimoh and Umar 2015). Water contaminated by sewage is estimated to kill about two million children every year (Harrison, 1992). The availability of good quality water is an indispensable feature for preventing diseases and improving quality of life (Adefemi and. Awokunmi 2007).

  16. Influence of salt concentration and topographical position on water ...

    African Journals Online (AJOL)

    2005-04-02

    Apr 2, 2005 ... tribute to classifying the different basins according to their potential power. Exploitation of this innate water power has been realised through temporal regulation of water flow by placing hydroelectric power plants in dams located in the most favourable areas. In Spain, operational hydroelectric power plants.

  17. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    implications. This study, therefore, recommends the government and other responsible authorities to take appropriate corrective measures. Key words: Drinking water quality, Heavy metals, Maximum admissible limit, World health organization, Tigray. 1. INTRODUCTION. Safe drinking water is a human birthright – as much ...

  18. Heavy metals concentrations in water bodies around aquamarine ...

    African Journals Online (AJOL)

    Water samples from three streams in the mining area of Eggon Hill were analysed. The Physicochemical values obtained were compared with WHO permissible standards in drinking water. Except for Cu and Zn with levels within permissible limits, other heavy metals determined were found to have levels above the WHO ...

  19. Evaluating the Impact of Ambient Benzene Vapor Concentrations on Product Water of Condensation Water from Air Technology

    Science.gov (United States)

    2016-03-07

    benzene vapor concentrations representing average outdoor polluted (50 µg/m3) and indoor industrial (640 µg/m3) settings as well as two temperatures...Henry Law calculations estimate. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water...Agency for Toxic Substances and Diseases Registry ATM Atmosphere C Celsius CWFA Condensation Water From Air ECBC Edgewood Chemical

  20. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  1. EPA Technology Available for Licensing: Portable Device to Concentrate Water Samples for Microorganism Analysis

    Science.gov (United States)

    Using a computer controlled system, this ultrafiltration device automates the process of concentrating a water sample and can be operated in the field. The system was also designed to reduce human exposure to potentially contaminated water.

  2. Concentrations of inorganic elements in bottled waters on the Swedish market.

    Science.gov (United States)

    Rosborg, I; Nihlgård, B; Gerhardsson, L; Gernersson, M-L; Ohlin, R; Olsson, T

    2005-09-01

    This study presents the concentrations of about 50 metals and ions in 33 different brands of bottled waters on the Swedish market. Ten of the brands showed calcium (Ca) concentrations waters. Three of these waters had in addition low concentrations of sodium (Na; waters were supplemented with Na(2)CO(3) and NaCl, resulting in high concentrations of Na (644 and 648 mg L(-1)) and chloride (Cl; 204 and 219 mg L(-1)). Such waters may make a substantial contribution to the daily intake of NaCl in high water consumers. The storage of carbonated drinking water in aluminum (Al) cans increased the Al-concentration to about 70 microg L(-1). Conclusion As there was a large variation in the material as regards concentrations of macro-elements such as Ca, Mg, Na, K and Cl. Supplementation with salts, e.g., Na(2)CO(3), K(2) CO(3) and NaCl, can lead to increased concentrations of Na, K and Cl, as well as decreased ratios of Ca/Na and larger ratios of Na/K. Water with high concentrations of e.g., Ca and Mg, may make a substantial contribution to the daily intake of these elements in high water consumers. Al cans are less suited for storage of carbonated waters, as the lowered pH-values may dissolve Al. The levels of potentially toxic metals in the studied brands were generally low.

  3. Methylmercury and other chemical constituents in Pacific coastal fog water from seven sites in Central/Northern California (FogNet) during the summer of 2014

    Science.gov (United States)

    Weiss-Penzias, P. S.; Heim, W. A.; Fernandez, D.; Coale, K. H.; Oliphant, A. J.; Dann, D.; Porter, M.; Hoskins, D.; Dodge, C.

    2014-12-01

    This project investigates the mercury content in summertime Pacific coastal fog in California and whether fog could be an important vector for ocean emissions of mercury to be deposited via fog drip to upland coastal ecosystems. Efforts began in early 2014 with the building of 7 active-strand fog collectors based on the Colorado State University Caltech CASCC design. The new UCSC CASCC includes doors sealing the collector which open under microcomputer control based on environmental sensing (relative humidity). Seven sites spanning from Trinidad in the north to Marina in the south have collected samples June-August 2014 under a project called FogNet. Fog conditions were favorable for collecting large water volumes (> 250 mL) at many sites. Fog samplers were cleaned with soap and deionized water daily and field blanks taken immediately following cleaning. Fog water samples were collected overnight, split into an aliquot for anion and DOC/DIC analysis and the remaining sample was acidified. Monomethyl mercury (MMHg) concentrations in samples and field blanks for 3 sites in FogNet are shown in the accompanying figure. The range of MMHg concentrations from 10 fog water samples > 100 mL in volume was 0.9-9.3 ng/L (4.5-46.4 pM). Elevated MMHg concentrations (> 5 ng/L, 25 pM) were observed at 2 sites: UC Santa Cruz and Bodega Bay. The field blanks produced MMHg concentrations of 0.08-0.4 ng/L (0.4-2.0 pM), which was on average < 10% of the sample concentration and suggests the artifact due to sampling was small. The observed MMHg concentrations in fog water observed is this study are 1-2 orders of magnitude greater than MMHg concentrations seen previously in rain water samples from the California coast suggesting an additional source of MMHg to fog. Shipboard measurements of dimethyl mercury (DMHg) in coastal California seawater during the time period of FogNet operations (summer 2014) reveal surface waters that were supersaturated in DMHg which represents a potential

  4. Assessment of heavy metals concentration in water, soil sediment ...

    African Journals Online (AJOL)

    The term heavy metal refers to any metallic chemical element that has a relatively high density and is toxic at low concentrations. This study was conducted in four eastern Rift Valley lakes which included Lakes Oloidien, Crater, Elementaita and Nakuru, to determine the presence and levels of lead, arsenic, cadmium and ...

  5. Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water.

    Science.gov (United States)

    Shelton, D R; Pachepsky, Y A; Kiefer, L A; Blaustein, R A; McCarty, G W; Dao, T H

    2014-08-01

    As sediments increasingly become recognized as reservoirs of indicator and pathogen microorganisms, an understanding of the persistence of indicator organisms becomes important for assessment and predictions of microbial water quality. The objective of this work was to observe the response of water column and sediment coliform populations to the change in nutrient concentrations in the water column. Survival experiments were conducted in flow-through chambers containing sandy sediments. Bovine feces were collected fresh and introduced into sediment. Sixteen days later, the same fecal material was autoclaved and diluted to provide three levels - 1×, 0.5×, and 0.1× of nutrient concentrations - spike in water column. Total coliforms, Escherichia coli, and total aerobic heterotrophic bacterial concentrations were monitored in water and sediment. Bacteria responded to the nutrient spike with initial growth both in the water column and in sediment. The response of bacterial concentrations in water column was nonlinear, with no significant changes at 0.1 and .5× spikes, but a substantial change at 1× spike. Bacteria in sediment responded to the spikes at all added nutrient levels. Coliform inactivation rates both in sediment and in water after the initial growth occurred, were not significantly different from the inactivation rates before spike. These results indicate that introduction of nutrients into the water column results in nonlinear response of E. coli concentrations both in water and in sediments, followed by the inactivation with the same rate as before introduction of nutrients. Published by Elsevier Ltd.

  6. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  7. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Local Government Area, Delta State of the Niger. Delta region. All pollution load arising from the oil exploration and other human activities empties into the River Niger which is eventually received by the. Atlantic Ocean. Surface water, fishes and plants samples in Ase creek from Asaba-Ase were collected for the period.

  8. Nutrient and Bacteria Concentrations in the Coastal Waters off ...

    African Journals Online (AJOL)

    ammonium, nitrate, nitrite, soluble reactive phosphorous) and bacteria (total and faecal coliforms) in the waters off Zanzibar Town. The study covered both the SE and NE monsoon and the two transition periods for a total of one year. Nutrient ...

  9. Concentrations of formaldehyde in rain waters harvested at the ...

    African Journals Online (AJOL)

    Formaldehyde has been recognized as one of the most important pollutants and a carcinogen that is present in the air, water, foods, soils, fabrics, cosmetics, cigarette smoke and treated wood. Related health effects and hazards are linked to formaldehyde, depending on mode of exposure which includes: weakness, ...

  10. Concentrations of heavy metals in untreated produced water from a ...

    African Journals Online (AJOL)

    product, residue or waste. One of such is an effluent from the mining of crude oil and gas, known as produced water, which contains varying quantities of hydrocarbons and heavy metals, thereby making it to require proper treatment in order to ...

  11. Reconnaissance Survey of Arsenic Concentration in Ground-water ...

    African Journals Online (AJOL)

    komla

    Traditionally, most communities in rural Ghana obtained their drinking water from surface sources (ponds or rivers) ... environment – young alluvial and deltaic deposits, where arsenic have been found in thousands of ... equatorial climate while in the tropical continental climate, the mean annual rainfall is in the range 1150–.

  12. 40 CFR 264.94 - Concentration limits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Concentration limits. 264.94 Section... From Solid Waste Management Units § 264.94 Concentration limits. (a) The Regional Administrator will specify in the facility permit concentration limits in the ground water for hazardous constituents...

  13. Use of real-time monitoring to predict concentrations of select constituents in the Menomonee River drainage basin, Southeast Wisconsin, 2008-9

    Science.gov (United States)

    Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2012-01-01

    The Menomonee River drainage basin in southeast Wisconsin is undergoing changes that may affect water quality. Several rehabilitation and flood-management projects are underway, including removal of concrete channels and the construction of floodwater retention basins. The city of Waukesha may begin discharging treated wastewater into Underwood Creek, thus approximately doubling the current base-flow discharge. In addition, the headwater basins, historically dominated by agriculture and natural areas, are becoming increasingly urbanized.

  14. Is Gippsland environmentally iodine deficient? Water iodine concentrations in the Gippsland region of Victoria, Australia.

    Science.gov (United States)

    Rahman, Ashequr; Deacon, Nicholas; Panther, Barbara; Chesters, Janice; Savige, Gayle

    2010-12-01

      This paper provides evidence of environmental iodine deficiency in the Gippsland region.   Quantitative study; water samples were collected from 18 water treatment plants and four rain water tanks across Gippsland and water iodine concentrations were measured.   Gippsland region of Victoria, Australia.   This paper reports on the iodine concentration of drinking water from sources across Gippsland and examines the contribution of iodine from water to the Gippsland diet. This study also briefly examines the relationship between the concentration of iodine in water and distance from the sea. The cut-off value for water iodine concentrations considered to be indicative of environmental iodine deficiency is water from 18 Gippsland water treatment plants was 0.38 µg L(-1) and would therefore make negligible difference to the dietary intake of iodine. This finding also falls well below the suggested dietary intake of iodine from water estimated by the 22nd Australian Total Diet Study. Our study found no linear relationship between the water iodine concentration and distance from the sea.   As Gippsland has environmental iodine deficiency there is a greater probability that people living in this region are at higher risk of dietary iodine deficiency than those living in environmentally iodine sufficient regions. Populations living in areas known to have environmental iodine deficiency should be monitored regularly to ensure that problems of iodine deficiency, especially amongst the most vulnerable, are addressed promptly. © 2010 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.

  15. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    Science.gov (United States)

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011

  16. Suitable Types and Constituent Ratios for Clay-Pot Water Filters to Improve the Physical and Bacteriological Quality of Drinking Water

    Directory of Open Access Journals (Sweden)

    Watcharaporn Wongsakoonkan

    2014-06-01

    Full Text Available This study aimed to investigate suitable types and ratios of materials for making clay-pots, and their performance to improve the physical and bacteriological quality of drinking water. Synthetic water was prepared and used to select suitable types and ratios for clay-pot water filters. The clay-pots were prepared by combining clay with sand, coconut-shell charcoal, and rice-husk charcoal, at various ratios. The results indicated that all types and ratios could remove 100% of coliform bacteria and Escherichia coli, and were thus suitable for treating drinking water. However, for practical use, the system should have real-world application. Therefore, filtration rate/inner surface area/time was used as a criterion to determine suitable types and ratios. Different types of clay-plot water filter yielded significantly different filtration rates (p 0.01. A ratio with a maximal filtration rate of 60:40(0.38 ± 0.28 mL/cm2/hr was found to be suitable. The quality of filtered water was acceptable in terms of turbidity, coliform bacteria level, and Escherichia coli, according to WHO drinking-water quality guidelines.

  17. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease.

    Science.gov (United States)

    Finley, John W; Gao, Song

    2017-02-08

    Alzheimer's disease (AD) is the most common form of dementia, in which the death of brain cells causes memory loss and cognitive decline. Several factors are thought to play roles in the development and course of AD. Existing medical therapies only modestly alleviate and delay cognitive symptoms. Current research has been focused on developing antibodies to remove the aggregates of amyloid-β (Aβ) and tau protein. This approach has achieved removal of Aβ; however, no cognitive improvement in AD patients has been reported. The biological properties of saffron, the dry stigma of the plant Crocus sativus L., and particularly its main constituent crocin, have been studied extensively for many conditions including dementia and traumatic brain injury. Crocin is a unique antioxidant because it is a water-soluble carotenoid. Crocin has shown potential to improve learning and memory as well as protect brain cells. A search of the studies on saffron and crocin that have been published in recent years for their impact on AD as well as crocin's effects on Aβ and tau protein has been conducted. This review demonstrates that crocin exhibits multifunctional protective activities in the brain and could be a promising agent applied as a supplement or drug for prevention or treatment of AD.

  18. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Colmenero Sujo, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Instituto Tecnologico de Chihuahua II, Ave. de las Industrias 11101, Chihuahua, Chih. (Mexico); Montero Cabrera, M.E. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)]. E-mail: elena.montero@cimav.edu.mx; Cano Jimenez, A. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Renteria Villalobos, M. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Delgado Mendoza, C.J. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Jurado Tenorio, L.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Davila Rangel, I. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 20, Zacatecas, Zac. (Mexico); Herrera Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)

    2005-07-01

    This paper reports {sup 222}Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited {sup 222}Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of {sup 222}Rn found may be entirely attributed to the nature of aquifer rocks.

  19. [Safety concentration of genotoxic carcinogens in water pollution accident based on human health risk].

    Science.gov (United States)

    Luo, Jin-Hong; Zheng, Bing-Hui; Fu, Qing; Hung, Min-Sheng

    2012-02-01

    It was an urgent problem to determine short-term exposure safety concentration of genetic carcinogens in water pollution accident in China. Based on the hypothesis that the relationship between exposure dosage and carcinogenic risk was linear, the calculation process of genetic carcinogens safety concentration was put forwarded, and the method using life-time exposed safety concentration to calculate short-term exposure safety concentration was set up. Based on the statistical result of water pollution accident occurred in china during 2000-2010, arsenic was a major characteristic contaminate in water pollution accident. According to the method of short-term exposure safety concentration of genotoxic carcinogens, the safety concentration of arsenic was 0.5 mg x L(-1), it showed that the method was feasible in emergence management of water pollution accident.

  20. The effects of molybdenum water concentration on feedlot performance, tissue mineral concentrations, and carcass quality of feedlot steers,.

    Science.gov (United States)

    Kistner, M J; Wagner, J J; Evans, J; Chalberg, S; Jalali, S; Sellins, K; Kesel, M L; Holt, T; Engle, T E

    2017-06-01

    Thirty cross-bred steers (initial BW 452.0 ± 12.1 kg) were used to investigate the effects of Mo water concentration on performance, carcass characteristics, and mineral status of feedlot steers. The experimental design was a randomized complete block design. Steers were blocked by weight and then divided into 2 weight blocks each consisting of 15 steers. Steers were randomly assigned within block to one of 5 treatments (3 steers/treatment per block). Water treatments consisted of: 1) 0.0 µg/L, 2) 160 µg/L, 3) 320 µg/L, 4) 480 µg/L, and 5) 960 µg/L of supplemental Mo added as Na2MoO4 to the drinking water. Steers were housed in individual pens (steer = experimental unit) that contained individual 265 L water tanks for monitoring water intake. Steers were fed a growing diet for 28 d and then transitioned to a finishing diet. Block 1 steers were fed for a total of 151 d and block 2 steers were fed for a total of 112 d. Daily water intake was recorded for each steer. Steers were individually weighed on 2 consecutive days at the beginning and end of the experiment and interim weights and jugular blood samples were obtained every 28 d. Liver biopsies were obtained on d 0 and 84 from each steer within each block. Steers were transported to a commercial abattoir, slaughtered, and individual carcass data and liver samples were collected. Initial BW was used as a covariate for statistical analysis of data and significance was determined at P ≤ 0.05. No differences were observed for final BW (P > 0.98). Overall ADG (P > 0.91), DMI (P > 0.92), feed efficiency (P > 0.94), water intake (P > 0.40), hot carcass weight (P > 0.98), dressing percentage (P > 0.98), yield grade (P > 0.91), and marbling score (P > 0.29) did not differ across treatments. Lastly, no treatment differences were observed for liver concentrations of Cu (P > 0.93), Mo (P > 0.90) and Zn (P > 0.86) or plasma concentrations of Cu (P > 0.42), Mo (P > 0.43) and Zn (P > 0.62). These data indicate that water

  1. Using Automated On-Site Monitoring to Calibrate Empirical Models of Trihalomethanes Concentrations in Drinking Water

    OpenAIRE

    Thomas E. Watts III; Robyn A. Snow; Brown, Aaron W.; J. C. York; Greg Fantom; Paul S. Simone Jr.; Emmert, Gary L.

    2015-01-01

    An automated, on-site trihalomethanes concentration data set from a conventional water treatment plant was used to optimize powdered activated carbon and pre-chlorination doses. The trihalomethanes concentration data set was used with commonly monitored water quality parameters to improve an empirical model of trihalomethanes formation. A calibrated model was used to predict trihalomethanes concentrations the following year. The agreement between the models and measurements was evaluated. The...

  2. Temporal Stability of Escherichia coli Concentrations in Waters of Two Irrigation Ponds in Maryland.

    Science.gov (United States)

    Pachepsky, Yakov; Kierzewski, Rachel; Stocker, Matthew; Sellner, Kevin; Mulbry, Walter; Lee, Hoonsoo; Kim, Moon

    2018-02-01

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli concentrations are commonly used to evaluate recreational and irrigation water quality. We hypothesized that there may exist temporally stable spatial patterns of E. coli concentrations across ponds, meaning that some areas mostly have higher and other areas mostly lower than average concentrations of E. coli To test this hypothesis, we sampled two irrigation ponds in Maryland at nodes of spatial grids biweekly during the summer of 2016. Environmental covariates-temperature, turbidity, conductivity, pH, dissolved oxygen, chlorophyll a , and nutrients-were measured in conjunction with E. coli concentrations. Temporal stability was assessed using mean relative differences between measurements in each location and averaged measurements across ponds. Temporally stable spatial patterns of E. coli concentrations and the majority of environmental covariates were expressed for both ponds. In the pond interior, larger relative mean differences in chlorophyll a corresponded to smaller mean relative differences in E. coli concentrations, with a Spearman's rank correlation coefficient of 0.819. Turbidity and ammonium concentrations were the two other environmental covariates with the largest positive correlations between their location ranks and the E. coli concentration location ranks. Tenfold differences were found between geometric mean E. coli concentrations in locations that were consistently high or consistently low. The existence of temporally stable patterns of E. coli concentrations can affect the results of microbial water quality assessment in ponds and should be accounted for in microbial water quality monitoring design. IMPORTANCE The microbial quality of water in irrigation water sources must be assessed to prevent the spread of microbes that can cause disease in humans because of produce consumption. The microbial quality of irrigation

  3. Hydrochemistry and 222Rn Concentrations in Spring Waters in the Arid Zone El Granero, Chihuahua, Mexico

    Directory of Open Access Journals (Sweden)

    Marusia Rentería-Villalobos

    2017-03-01

    Full Text Available Water in arid and semi-arid environments is characterized by the presentation of complex interactions, where dissolved chemical species in high concentrations have negative effects on the water quality. Radon is present in areas with a high uranium and radium content, and it is the main contributor of the annual effective dose received by humans. The objective of this study was to evaluate concentrations of 222Rn and the water quality of spring waters. Water was classified as calcium sulfated and sodium sulfated. Most of the water samples with high radon concentrations presented higher concentrations of sulfates, fluorides, and total dissolved solids. 222Rn concentrations may be attributed to possible enhancement of 226Ra due to temperature and salinity of water, as well as evaporation rate. In 100% of the sampled spring waters the 222Rn levels exceeded the maximum acceptable limit which is proposed by international institutions. Aridity increases radiological risk related to 222Rn dose because spring waters are the main supply source for local populations. The implementation of environmental education, strategies, and technologies to remove the contaminants from the water are essential in order to reduce the health risk for local inhabitants.

  4. Interparticle interactions in concentrate water-oil emulsions.

    Science.gov (United States)

    Mishchuk, N A; Sanfeld, A; Steinchen, A

    2004-12-31

    The present investigation is based on the description of electrostatic interaction in concentrated disperse systems proposed 45 years ago by Albers and Overbeek. Starting from their model, we developed a stability theory of concentrated Brownian W/O emulsions in which nondeformed droplets undergo electrostatic and Van der Waals interactions. While the droplets in dilute emulsion may be described by pair interaction, in dense emulsions, every droplet is closely surrounded by other droplets, and when two of them come together, not only the energy of their pair interaction, but also their interaction with surrounding droplets change. Unlike in dilute emulsion, for which the reference energy of the pair is the energy at infinity (taken equal to zero), in concentrate emulsion, the reference energy is not zero but is the energy of interaction with averaged ensemble of nearest droplets. The larger the volume fraction, the higher the reference energy and, thus, the lower the energy barrier between two coagulating droplets, which enhances the coagulation. In dense packing of drops, the energy of interaction and the reference energy coincide, therefore, the height of energy barrier vanishes. In contrast with dense emulsion, at medium volume fraction, when two coagulating droplets interact only with a few nearest neighbors, our analysis shows that the energy barrier may also increase, which extends thus the domain of stability. Because in W/O emulsion, the thickness of the electric double layer is of the same order or larger than the size of droplets, the electrostatic energy was calculated with a correction factor beta that accounts for the deviation of double layers from sphericity. A more complete van der Waals interaction with account of screening of interaction by electrolyte has been used. Both factors promote the decrease of energy barrier between coagulating droplets and enhance the coagulation. Our model introduces two critical volume fractions. The first one, phi(c1

  5. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil

    Energy Technology Data Exchange (ETDEWEB)

    Du Laing, G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000 (Belgium)]. E-mail: gijs.dulaing@ugent.be; Vanthuyne, D.R.J. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000 (Belgium); Vandecasteele, B. [Institute for Agricultural and Fisheries Research, Plant Unit, Burg. van Gansberghelaan 109, Box 1, Merelbeke 9820 (Belgium); Tack, F.M.G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000 (Belgium); Verloo, M.G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000 (Belgium)

    2007-06-15

    Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO{sub 2} pressure. - The hydrological regime is a key factor in determining the metal concentration in the pore water of a contaminated sediment-derived soil.

  6. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs.

    Science.gov (United States)

    Vitoria, Isidro; Maraver, Francisco; Ferreira-Pêgo, Cíntia; Armijo, Francisco; Moreno Aznar, Luis; Salas-Salvadó, Jordi

    2014-07-01

    A sufficient intake of calcium enables correct bone mineralization. The bioavailability of calcium in water is similar to that in milk. To determine the concentration of calcium in public drinking water and bottled mineral water. We used ion chromatography to analyse the calcium concentrations of public drinking waters in a representative sample of 108 Spanish municipalities (21,290,707 people) and of 109 natural mineral waters sold in Spain, 97 of which were produced in Spain and 12 of which were imported. The average calcium concentration of public drinking waters was 38.96 ± 32.44 mg/L (range: 0.40- 159.68 mg/L). In 27 municipalities, the water contained 50-100 mg/L of calcium and in six municipalities it contained over 100 mg/L. The average calcium concentration of the 97 Spanish natural mineral water brands was 39.6 mg/L (range: 0.6-610.1 mg/L). Of these, 34 contained 50-100 mg/L of calcium and six contained over 100 mg/L. Of the 12 imported brands, 10 contained over 50 mg/L. Assuming water consumption is as recommended, water containing 50-100 mg/L of calcium provides 5.4-12.8% of the recommended intake of calcium for children aged one to thirteen, up to 13.6% for adolescents, 5.8-17.6% for adults, and up to 20.8% for lactating mothers. Water with 100-150 mg/L of calcium provides 10-31% of the recommended dietary allowance, depending on the age of the individual. Public drinking water and natural mineral water consumption in a third of Spanish cities can be considered an important complementary source of calcium. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Study on radon and radium concentrations in drinking water in west region of Iran

    CERN Document Server

    Forozani, Ghasem

    2011-01-01

    One of the most important characterizations of social health is existence the availability of safe drinking water. Since one of the sources of water contamination is nuclear contamination from radon gas, so in this research radon 222 concentration levels in water supplies in the Toyserkan (a region located in the west of Iran) is investigated. For measuring radon gas in water wells and springs Lucas chamber method is used. Review the results of these measurements that taken from 15th place show that, only five sites have radon concentrations above the limit dose. To reduce radon concentration, it is better to keep water in open pools in contact with air before the water is delivered to users.

  8. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  9. Representation of solid and nutrient concentrations in irrigation water from tailwater recovery systems by surface water grab samples

    Science.gov (United States)

    Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...

  10. General and Localized Corrosion of Austenitic And Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J C; Rebak, R B; Fix, D V; Wong, L L

    2004-03-11

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  11. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    D. Fix; J. Estill; L. Wong; R. Rebak

    2004-05-28

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water.

  12. Investigating the Concentration of Heavy Metals in Bottled Water and Comparing with its Standard: Case Study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-09-01

    Results: Brand No. 1, the concentration of zinc ion was larger in Brand 2 while in Brand No. 2 had larger copper, nickel, and aluminum ions. The results indicated that the concentration of the measured metal ions were below the allowable limit of drinking water standard across all of the studied samples. Conclusion: Based on the obtained results from the investigated parameters, it can be concluded that the bottled water of both brands poses no health issue and is drinkable. Considering the changes in the concentration of ions and the increasing trend of consumption of bottled waters, their monitoring and qualitative control of pollutants are very crucial in terms of public health.

  13. Quantifying Spatial Changes in the Structure of Water Quality Constituents in a Large Prairie River within Two Frameworks of a Water Quality Model

    Directory of Open Access Journals (Sweden)

    Nasim Hosseini

    2016-04-01

    Full Text Available A global sensitivity analysis was carried out on a water quality model to quantify the spatial changes in parameter sensitivity of a model of a large prairie river, the South Saskatchewan River (SSR. The method is used to assess the relative impacts of major nutrient loading sources and a reservoir on the river’s water quality. The river completely freezes over during winter; hence, the sensitivity analysis was carried out seasonally, for winter and summer, to account for the influence of ice-covered conditions on nutrient transformations. Furthermore, the integrity of the river’s aquatic ecosystem was examined through the inter-relationship between variables and comparing hierarchy index values and water quality indices at four locations along the river. Sensitivities of model parameters varied slightly at different locations along the river, with the phytoplankton growth rate being the most influential parameter. Nitrogen and phosphorus transformation processes were more sensitive in winter, while chlorophyll-a and dissolved oxygen parameters showed higher sensitivity in summer. A more complicated correlation between variables was observed downstream of the junction of the Red Deer River. Our results reveal that the lower correlation between variables may suggest a more balanced and healthier system, although further analysis is needed to support this statement.

  14. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  15. Using Automated On-Site Monitoring to Calibrate Empirical Models of Trihalomethanes Concentrations in Drinking Water

    Directory of Open Access Journals (Sweden)

    Thomas E. Watts III

    2015-10-01

    Full Text Available An automated, on-site trihalomethanes concentration data set from a conventional water treatment plant was used to optimize powdered activated carbon and pre-chlorination doses. The trihalomethanes concentration data set was used with commonly monitored water quality parameters to improve an empirical model of trihalomethanes formation. A calibrated model was used to predict trihalomethanes concentrations the following year. The agreement between the models and measurements was evaluated. The original model predicted trihalomethanes concentrations within ~10 μg·L−1 of the measurement. Calibration improved model prediction by a factor of three to five times better than the literature model.

  16. Purging and other sampling variables affecting dissolved methane concentration in water supply wells.

    Science.gov (United States)

    Molofsky, L J; Richardson, Stephen D; Gorody, Anthony W; Baldassare, Fred; Connor, John A; McHugh, Thomas E; Smith, Ann P; Wylie, Albert S; Wagner, Tom

    2017-11-06

    Determining whether changes in groundwater methane concentration are naturally occurring or related to oil and gas operations can be complicated by numerous sources of variability. This study of 10 residential water supply wells in Northeastern Pennsylvania evaluates how i) sampling from different points within the water well system, ii) purging different water volumes prior to sampling, and ii) natural variation over time, affects concentrations of naturally occurring dissolved methane and other water quality parameters. Among the population of wells, all had dissolved methane concentrations >1mg/L. Regardless of the volume of water purged or the timing between events, the maximum change in methane concentration (ratio of maximum to minimum concentration) among samples from a single well was 3.2, with eight out of ten wells exhibiting a maximum change less than a factor of two (i.e., <±100%). Among water wells where methane concentration changed by ±50% or more, there was a strong correlation with changes in the concentrations of sodium, chloride, and other salinity indicators such as specific conductivity and TDS. This suggests that significant variability in methane concentration is predominantly related to changes in the relative volumes of sodium-rich fluids feeding the wellbore at any given time. Among study well locations with bladder and diaphragm pressure tanks, there was no significant difference in dissolved methane concentrations between samples collected either upstream or downstream of a pressure tank. There appears to be little benefit to purging multiple casing volumes of water from a well prior to sampling because such volumes tend to be much larger than those representative of normal residential use. We recommend purging a volume sufficient to remove standing water in the pressure tank and lines above the pump intake. This article culminates with additional recommendations for improving sample collection methods and interpreting sampling data

  17. RADON CONCENTRATIONS IN UNDERGROUND DRINKING WATER IN PARTS OF CITIES, CHINA.

    Science.gov (United States)

    Wu, Yunyun; Cui, Hongxing; Liu, Jianxiang; Shang, Bing; Su, Xu

    2017-08-31

    222Rn concentrations in underground drinking water samples in 12 cities from seven provinces (municipalities), China were determined by using a continuous radon monitor with air-water exchanger. A total of 73 underground water samples were collected. The observed radon levels were in a range of 1.0-63.8 Bq l-1, with a mean of 11.8 Bq l-1. The annual effective dose from inhalation of water-borne radon for average radon content in underground water was 72.6 μSv and for maximal observed radon concentration in underground water the corresponding dose was 393.8 μSv. The dose contribution of inhalation dose from water-borne radon should be paid attention in some granitic area. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Distribution of Elevated Nitrate Concentrations in Ground Water in Washington State

    Science.gov (United States)

    Frans, Lonna

    2008-01-01

    More than 60 percent of the population of Washington State uses ground water for their drinking and cooking needs. Nitrate concentrations in ground water are elevated in parts of the State as a result of various land-use practices, including fertilizer application, dairy operations and ranching, and septic-system use. Shallow wells generally are more vulnerable to nitrate contamination than deeper wells (Williamson and others, 1998; Ebbert and others, 2000). In order to protect public health, the Washington State Department of Health requires that public water systems regularly measure nitrate in their wells. Public water systems serving more than 25 people collect water samples at least annually; systems serving from 2 to 14 people collect water samples at least every 3 years. Private well owners serving one residence may be required to sample when the well is first drilled, but are unregulated after that. As a result, limited information is available to citizens and public health officials about potential exposure to elevated nitrate concentrations for people whose primary drinking-water sources are private wells. The U.S. Geological Survey and Washington State Department of Health collaborated to examine water-quality data from public water systems and develop models that calculate the probability of detecting elevated nitrate concentrations in ground water. Maps were then developed to estimate ground water vulnerability to nitrate in areas where limited data are available.

  19. Study on the TOC concentration in raw water and HAAs in Tehran’s water treatment plant outlet

    Science.gov (United States)

    2013-01-01

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall. PMID:24283403

  20. Water-to-air transfer of branched and linear PFOA: Influence of pH, concentration and water type

    Directory of Open Access Journals (Sweden)

    Jana H. Johansson

    2017-03-01

    Full Text Available The volatilisation of perfluorooctanoic acid (PFOA was measured experimentally at a range of pH values using a previously published laboratory method. Water-to-air transfer was studied for five structural isomers, namely: the linear isomer (n-PFOA and the four most commonly occurring branched isomers (3-, 4-, 5- and 6-PFOA. The influence of water concentration and water type on the pH-dependent water-to-air transfer was also investigated for n-PFOA. The water-to-air transfer was studied over the course of 48 h at pH values ranging from 0.2 to 5.5. Under all experimental conditions tested, the volatilisation of PFOA was negligible at pH > 2.5. In experiments performed with MilliQ water, volatilisation increased with decreasing water pH. In experiments performed with tap water and lake water, maximum volatilisation was observed at pH 1. The concentration of PFOA in water had no influence on the pH value at which water-to-air transfer was observed (i.e. at pH < 2.5 for the concentration range tested (0.1–50 μg/L PFOA in deionised water. Although the percentage of PFOA volatilised was significantly different for the four branched isomers at low pH, volatilisation was not observed above pH 2.5 for any branched isomer suggesting that all PFOA isomers have a low pKa. Overall, these laboratory results demonstrate that volatilisation of any structural isomer of PFOA from water is negligible at environmentally-relevant conditions. It is unlikely that PFOA isomers will be fractionated in the environment as a result of volatilisation because it is a process of negligible environmental relevance.

  1. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    Science.gov (United States)

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  2. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen

  3. Indicators of Coastal Water Quality: Change in Chlorophyll-a Concentration 1998-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — The Change in Chlorophyll-a Concentrations 1998-2007 component of the Indicators of Coastal Water Quality Collection represents a tabular time series of the...

  4. Indicators of Coastal Water Quality: Annual Chlorophyll-a Concentration 1998-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — The Annual Chlorophyll-a Concentrations component of the Indicators of Coastal Water Quality Collection consists of gridded satellite measurements of chlorophyll-a...

  5. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon

    Science.gov (United States)

    van Pinxteren, Dominik; Wadinga Fomba, Khanneh; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut

    2016-03-01

    differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56-0.94, 0.79-0.99, 0.71-98, and 0.67-0.92 for SO42-, NO3-, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42-, NO3-, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and "U" shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5-10) in the smallest droplets for many solutes.

  6. Development of Simple Bacterial Biosensor for Phenol Detection in Water at Medium Concentration using Glass Microelectrode

    Directory of Open Access Journals (Sweden)

    Setyawan Purnomo Sakti

    2016-01-01

    Full Text Available Water is one of the most fundamental natural resources in earth. The availability of clean water becomes a global interest. Many human activities result in water pollution. One from many pollution substances in water is phenol. Phenol is a very common residual compound in industrial activity. Extensive use of phenol in industry degrades water quality. Regulation has been set in many countries to prevent further damage to the water resource caused by phenol and limiting phenol concentration in water before released into the environment. Therefor it is importance to develop a sensor which can detect phenol concentration in water to be used as a wastewater quality control system. This paper presents a development of bacterial biosensor using Pseudomonas putida and Pseudomonas fluorescens as a biological sensitive material. The sensor was made from glass micro electrode using Ag/AgCl electrode as reference electrode, silver electrode and cellulose ester. The Pseudomonas putida was entrapped inside the nutrient solution and separated by cellulose ester membrane from water containing phenol. It was found that the Pseudomonas putida in used must be growth in 10 hours to reach its optimum growth condition. Linear relationship between biosensor output voltages to phenol concentration was measured for phenol concentration below 200 ppm. The sensitivity of the developed biosensor was 72mV/ppm for Pseudomonas putida and 68.8 mV/ppm for Pseudomonas fluorescens.

  7. Effect of Global Warming on Chlorophyll-a Concentration in the Indonesian Waters

    Directory of Open Access Journals (Sweden)

    Martono Martono

    2016-03-01

    Full Text Available Chlorophyll-a is a pigment that is contained in phytoplankton. Through the photosynthesis process, chlorophyll-a plays an important role in the global carbon cycle. The purpose of this research is to investigate the effect of global warming on chlorophyll-a concentration in Indonesian waters. The data used includes the monthly data of sea surface temperatures from 1984-2013, CO2 concentrations from 1980-2014, and chlorophyll-a concentrations from 2003-2014. The method used is linear regression. The results show that sea surface temperatures in Indonesian waters increased by about 0.51 °C from 1984-2013. The effects of global warming on chlorophyll-a concentrations varies between different areas of Indonesian waters. From the 12 research sites, 9 showed a decrease in concentration and 3 showed an increase.

  8. Nitrate-nitrogen concentrations in the perched ground water under seepage-irrigated potato cropping systems.

    Science.gov (United States)

    Munoz-Arboleda, F; Mylavarapu, R; Hutchinson, C; Portier, K

    2008-01-01

    Excessive nitrogen rates for potato production in northeast Florida have been declared as a potential source of nitrate pollution in the St. Johns River watershed. This 3-yr study examined the effect of N rates (0, 168, and 280 kg ha(-1)) split between planting and 40 d after planting on the NO(3)-N concentration in the perched ground water under potato (Solanum tuberosum cv. Atlantic) in rotation with sorghum sudan grass hybrid (Sorghum vulgare x Sorghum vulgare var. sudanese, cv. SX17), cowpea (Vigna unguiculata cv. Iron Clay), and greenbean (Phaseolus vulgare cv. Espada). Soil solution from the root zone and water from the perched ground water under potato were sampled periodically using lysimeters and wells, respectively. Fertilization at planting increased the NO(3)-N concentration in the perched ground water, but no effect of the legumes in rotation with potatoes on nitrate leaching was detected. Fertilization of green bean increased NO(3)-N concentration in the perched ground water under potato planted in the following season. The NO(3)-N concentration in the soil solution within the potato root zone followed a similar pattern to that of the perched ground water but with higher initial values. The NO(3)-N concentration in the perched ground water was proportional to the rainfall magnitude after potato planting. A significant increase in NO(3)-N concentration in the perched ground water under cowpea planted in summer after potato was detected for the side-dressing of 168 kg ha(-1) N applied to potato 40 d after planting but not at the 56 kg ha(-1) N side-dress. Elevation in NO(3)-N concentration in the perched ground water under sorghum was not significant, supporting its use as an effective N catch crop.

  9. Evaluation of factors important in modeling plasma concentrations of tetracycline hydrochloride administered in water in swine.

    Science.gov (United States)

    Mason, Sharon E; Almond, Glen W; Riviere, Jim E; Baynes, Ronald E

    2012-10-01

    To model the plasma tetracycline concentrations in swine (Sus scrofa domestica) treated with medication administered in water and determine the factors that contribute to the most accurate predictions of measured plasma drug concentrations. Plasma tetracycline concentrations measured in blood samples from 3 populations of swine. Data from previous studies provided plasma tetracycline concentrations that were measured in blood samples collected from 1 swine population at 0, 4, 8, 12, 24, 32, 48, 56, 72, 80, 96, and 104 hours and from 2 swine populations at 0, 12, 24, 48, and 72 hours hours during administration of tetracycline hydrochloride dissolved in water. A 1-compartment pharmacostatistical model was used to analyze 5 potential covariate schemes and determine factors most important in predicting the plasma concentrations of tetracycline in swine. 2 models most accurately predicted the tetracycline plasma concentrations in the 3 populations of swine. Factors of importance were body weight or age of pig, ambient temperature, concentration of tetracycline in water, and water use per unit of time. The factors found to be of importance, combined with knowledge of the individual pharmacokinetic and chemical properties of medications currently approved for administration in water, may be useful in more prudent administration of approved medications administered to swine. Factors found to be important in pharmacostatistical models may allow prediction of plasma concentrations of tetracycline or other commonly used medications administered in water. The ability to predict in vivo concentrations of medication in a population of food animals can be combined with bacterial minimum inhibitory concentrations to decrease the risk of developing antimicrobial resistance.

  10. Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water

    Science.gov (United States)

    Kulkarni, Prachi; Olson, Nathan D.; Raspanti, Greg A.; Rosenberg Goldstein, Rachel E.; Gibbs, Shawn G.; Sapkota, Amir; Sapkota, Amy R.

    2017-01-01

    Reclaimed water has emerged as a potential irrigation solution to freshwater shortages. However, limited data exist on the persistence of antibiotics in reclaimed water used for irrigation. Therefore, we examined the fate of nine commonly-used antibiotics (ampicillin, azithromycin, ciprofloxacin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, and tetracycline) in differentially treated wastewater and reclaimed water from two U.S. regions. We collected 72 samples from two Mid-Atlantic and two Midwest treatment plants, as well as one Mid-Atlantic spray irrigation site. Antibiotic concentrations were measured using liquid-chromatography- tandem mass spectrometry. Data were analyzed using Mann-Whitney-Wilcoxon tests and Kruskal Wallis tests. Overall, antibiotic concentrations in effluent samples were lower than that of influent samples. Mid-Atlantic plants had similar influent but lower effluent antibiotic concentrations compared to Midwest plants. Azithromycin was detected at the highest concentrations (of all antibiotics) in influent and effluent samples from both regions. For most antibiotics, transport from the treatment plant to the irrigation site resulted in no changes in antibiotic concentrations, and UV treatment at the irrigation site had no effect on antibiotic concentrations in reclaimed water. Our findings show that low-level antibiotic concentrations persist in reclaimed water used for irrigation; however, the public health implications are unclear at this time. PMID:28635638

  11. Experimental investigation of nucleate pool boiling characteristics of high concentrated alumina/water nanofluids

    Science.gov (United States)

    Kshirsagar, Jagdeep M.; Shrivastava, Ramakant

    2018-01-01

    In Present study, the critical heat flux (CHF) and boiling heat transfer coefficient of alumina nanoparticles with the base fluid as deionised water is measured. The selected concentrations of nanofluids for the experimentation are from 0.3, 0.6, 0.9, 1.2 and 1.5 wt%. The main objective to select higher concentration is that to study the surface morphology of heater surface at higher concentrations and its effect on critical heat flux and heat transfer coefficient. It is observed that the critical heat flux enhancement rate decreases as concentration increases and surface roughness of heater surface decreases after 1.2 wt% concentration of nanofluids.

  12. CONCENTRATION OF TRIHALOMETHANES (THM AND PRECURSORS IN DRINKING WATER WITHIN DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA ROMAN

    2012-03-01

    Full Text Available Concentration of trihalomethanes (THM and precursors in drinking water within distribution networks. Water chlorination is the disinfection method most widely used, having however the disadvantage of producing trihalomethanes (THM as secondary compounds, which are included in the list of priority hazardous substances in water. THM formation is influenced by the raw water composition and chlorine from the disinfection process. This paper intends to highlight the individual values of the chemical compounds precursors of THM in the water network in order to correlate them with the evolution of THM concentration. The cities of Targu Mures and Zalau were chosen as the study area having surface waters with different degrees of contamination as the water source. Pre-treatment with potassium permanganate is used at the water treatment plant in Targu Mures, while pre-chlorination is used at the water treatment plant in Zalau. Water sampling was performed weekly between March-May, 2011 in three sampling points of each city, maintained during the period of study. Total THM and their compounds as well as THM precursors (oxidability, ammonium content, nitrites and nitrates were measured. The water supplied in the distribution network corresponded integrally to the quality standards in terms of the analyzed indicators, including THM concentrations. The higher average THM concentrations in Zalau (52.01±14 μg/L compared to Targu Mures (36.43±9.14 μg/L were expected as a result of precursors concentration. In terms of THM compounds, they had similar proportions in the two localities, chloroform being clearly predominant, followed by dichlorobromoform and dibromochloroform, while bromoform was not identified. Statistical data analysis showed that the presence of THM precursors is correlated with the THM levels but not sufficient for their generation, even if they can be considered in general the basis of a valid prediction.

  13. Effect of water constituents on the degradation of sulfaclozine in the three systems: UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8.

    Science.gov (United States)

    Ismail, Liliane; Ferronato, Corinne; Fine, Ludovic; Jaber, Farouk; Chovelon, Jean-Marc

    2018-01-01

    Bicarbonate, phosphate, chloride ions, and humic substances are among the constituents most widely present in natural waters. These non-target constituents can greatly affect the efficiency of advanced oxidation processes used for water decontamination due to their capacity to interfere with the adsorption of the target compounds on the surface of TiO2, absorb photons, scavenge hydroxyl radicals (·OH), and generate photochemical reactive intermediates. In this work, the effect of these constituents on the degradation of sulfaclozine (SCL) was monitored in three different AOPs systems: UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8. It was shown that bicarbonate (HCO3-) and phosphate (HPO42-) ions enhanced the degradation of SCL in UV/TiO2 and UV/TiO2/K2S2O8 systems whereas the addition of humic substances influenced these rates with a much smaller extent. On the other hand, the degradation rate of SCL in the UV/K2S2O8 system was not affected by the presence of HCO3- and HPO42- but was inhibited in the presence of humic substances. In addition, the different mechanisms that can take place in the presence of these constituents were discussed and the degradation rate enhancement in presence of HCO3- and HPO42- was attributed to the formation of new reactive species such as carbonate (CO3·-) and hydroxyl (·OH) radicals activated by TiO2 holes (h+). In the presence of chloride (Cl-) and nitrate (NO3-) ions, an enhancement of SCL adsorption on the surface of TiO2 was observed. Finally, a comparative study of the degradation of SCL in river water and ultrapure water was reported.

  14. BUBBLE STRIPPING TO DETERMINE HYDROGEN CONCENTRATIONS IN GROUND WATER: A PRACTICAL APPLICATION OF HENRY'S LAW

    Science.gov (United States)

    The Bubble Stripping Method is a chemical testing method that operates on the principle of Henry's Law. It is useful for determining concentrations of hydrogen in well water, and it is capable of detecting concentrations on the order of nanomoles per liter. The method provides ...

  15. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  16. Development of a vacuum crystallizer for the concentration of industrial waste water

    NARCIS (Netherlands)

    Roos, A.C.; Verschuur, R.-J.; Schreurs, B.; Scholz, R.; Jansens, P.J.

    2002-01-01

    Freeze concentration has proven to be a viable technology for the concentration of hazardous industrial waste waters before incineration. Owing to the relatively high investment cost of the technology, its applicability has been limited until now. This paper investigates the feasibility of a vacuum

  17. Chlorophyll-A concentrations in relation to water quality and trophic ...

    African Journals Online (AJOL)

    Chlorophyll-a concentrations were measured to determine its impact on the water quality of the reservoir, assess levels of eutrophication in the reservoir, and suggest ways of mitigating pollution in the reservoir. Chlorophyll-a concentrations in the reservoir were found to be high, ranging from 1.00 – 7.46 mg/m3 in 2005, 8.75 ...

  18. Handling of membrane concentrate from reclamation of water in polyester dyeing

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik; Knudsen, Hans Henrik

    2003-01-01

    of pollutants that may disturb the treatment process or jeopardize further applications of the biodegraded residue. Total dewatering of the concentrate for zero liquid discharge is still the most expensive solution. The results obtained confirm that concentrate disposal is a major cost of industrial water...

  19. A novel method for concentrating hepatitis A virus and caliciviruses from bottled water

    DEFF Research Database (Denmark)

    Kovač, K; Gutiérrez-Aguirre, I; Banjac, M

    2009-01-01

    optimized and applied to the concentration of hepatitis A virus (HAV) and feline calicivirus (FCV), a surrogate of norovirus (NoV), from water samples. Two-step real-time RT-qPCR was used for quantitation of the virus concentration in the chromatographic fractions. Positively charged CIM QA (quaternary...

  20. Zn, Pb, Cr and Cd concentrations in fish, water and sediment from ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT:. Gills, intestine and muscle samples of O niloticus, water and surface sediments of Azuabie Creek and a central station were collected and analysed for Zn, Pb, Cr and Cd using. AAS model 210VGP Buck Scientific USA. Heavy metal concentrations in fish muscle show high concentration especially Pb which is ...

  1. Collaborative validation of a rapid method for efficient virus concentration in bottled water

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Perelle, Sylvie; Di Pasquale, Simona

    2011-01-01

    Enteric viruses, including norovirus (NoV) and hepatitis A virus (HAV), have emerged as a major cause of waterborne outbreaks worldwide. Due to their low infectious doses and low concentrations in water samples, an efficient and rapid virus concentration method is required for routine control. Th...

  2. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    Science.gov (United States)

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  3. Estimating space-time mean concentrations of nutrients in surface waters of variable depth

    NARCIS (Netherlands)

    Knotters, M.; Brus, D.J.

    2010-01-01

    A monitoring scheme has been designed to test whether the space-time mean concentration total Nitrogen (N-total) in the surface water in the Northern Frisian Woodlands (NFW, The Netherlands) complies with standards of the European Water Framework directive. Since in statistical testing for

  4. Radon concentration assessment in water sources of public drinking of Covilhã's county, Portugal

    Directory of Open Access Journals (Sweden)

    M. Inácio

    2017-04-01

    Radon concentration measurements were performed on thirty three samples collected from water wells at different depths and types of aquifers, at Covilhã's County, Portugal with the radon gas analyser DURRIDGE RAD7. Twenty three, of the total of water samples collected, gave, values over 100 Bq/L, being that 1690 Bq/L was the highest measured value.

  5. Estimating total suspended matter concentration in tropical waters of the Berau estuary, Indonesia

    NARCIS (Netherlands)

    Ambarwulan, W.; Verhoef, W.; Mannaerts, C.M.; Salama, M.S.

    2012-01-01

    This study presents the application of a semi-empirical approach, based on the Kubelka–Munk (K-M) model, to retrieve the total suspended matter (TSM) concentration of water bodies from ocean colour remote sensing. This approach is validated with in situ data sets compiled from the tropical waters of

  6. Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters?

    Science.gov (United States)

    Pachepsky, Yakov; Shelton, Daniel; Dorner, Sarah; Whelan, Gene

    2016-05-01

    An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.

  7. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  8. Assessment of the total uranium concentration in surface and underground water samples from the Caetite region, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julia Grasiela Batista; Geraldo, Luiz Paulo [Centro Universitario da Fundacao Educacional de Barretos (UNIFEB), (SP) (Brazil); Yamazaki, Ione Makiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    At the region of Caetite, BA, it is located the largest uranium mine in exploration at present days in Brazil. During the uranium extraction process, it may be having an environmental contamination by this heavy metal due to rain water and other natural transport mechanism, with potential exposition risk to the local population. The aim of this work was to investigate the total uranium concentration in surface and underground water samples collected at the Caetite region, using the nuclear track registration technique (SSNTD) in a polycarbonate plastic. A 100 mL volume of water samples were initially treated in 10 mL of HNO{sub 3} (PA) and concentrated by evaporation at a temperature around 80 deg C. The resulting residue was diluted to a total volume of 25 mL without pass it to a filter. About 10 {mu}L of this solution was deposited on the plastic detector surface (around 1.0 cm{sup 2} area) together with 5 {mu}L of a Cyastat detergent solution (5%) and evaporated under an infrared lamp. All the resulting deposits of non volatile constituents were irradiated, together with a uranium standard sample, at the IPEN-IEA-R1 (3.5 MW) nuclear reactor for approximately 3 min. After irradiations, chemical etching of the plastic detectors was carried out at 60 deg C, for 65 min. in a NaOH (6N) solution. The fission tracks were counted scanning all the deposit area of the polycarbonate plastic detector with a system consisting of an optical microscope together with a video camera and TV monitor. The average values of uranium concentrations obtained in this work ranged from (0.95{+-}0.19) {mu}g.L{sup -1} to (25.60{+-}3.3) {mu}g.L{sup -1}. These results were compared to values reported in the literature for water samples from other regions and discussed in terms of safe limits recommended by WHO -World Health Organization and CONAMA - Conselho Nacional do Meio Ambiente. (author)

  9. Copper Recovery from Roasted Chalcopyrite Concentrate by Using Hydrochloric Acid or Water Leaching Method

    OpenAIRE

    Bahar, Nurdan

    2015-01-01

    In this study, the sulphation roasting in atmospheric medium of chalcopyrite concentrate and hydrochloric acid or water leaching of roasted chalcopyrite concentrate were investigated. The effects of roasting temperature (200-700 oC) and roasting time (15-120 min.) on recovery of copper were also researched. The optimum roasting temperature and roasting time were determined to be 450 oC and 60 min., respectively. The roasted chalcopyrite concentrate is leached with hydrochloric acid solution o...

  10. Factors influencing the crystallisation of highly concentrated water-in-oil emulsions: A DSC study

    OpenAIRE

    Irina Masalova; Karina Kovalchuk

    2012-01-01

    Highly concentrated emulsions are used in a variety of applications, including the cosmetics, food and liquid explosives industries. The stability of these highly concentrated water-in-oil emulsions was studied by differential scanning calorimetry. Crystallisation of the emulsions was initiated by exposing the emulsions to a low temperature. The effects of surfactant type, electrolyte concentration and electrolyte composition in the aqueous phase on emulsion crystallisation temperature were s...

  11. Biological processes for concentrating trace elements from uranium mine waters. Technical completion report

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, C.L.; Brierley, J.A.

    1981-12-01

    Waste water from uranium mines in the Ambrosia Lake district near Grants, New Mexico, USA, contains uranium, selenium, radium and molybdenum. The Kerr-McGee Corporation has a novel treatment process for waters from two mines to reduce the concentrations of the trace contaminants. Particulates are settled by ponding, and the waters are passed through an ion exchange resin to remove uranium; barium chloride is added to precipitate sulfate and radium from the mine waters. The mine waters are subsequently passed through three consecutive algae ponds prior to discharge. Water, sediment and biological samples were collected over a 4-year period and analyzed to assess the role of biological agents in removal of inorganic trace contaminants from the mine waters. Some of the conclusions derived from this study are: (1) The concentrations of soluble uranium, selenium and molybdenum were not diminished in the mine waters by passage through the series of impoundments which constituted the mine water treatment facility. Uranium concentrations were reduced but this was due to passage of the water through an ion exchange column. (2) The particulate concentrations of the mine water were reduced at least ten-fold by passage of the waters through the impoundments. (3) The sediments were anoxic and enriched in uranium, molybdenum and selenium. The deposition of particulates and the formation of insoluble compounds were proposed as mechanisms for sediment enrichment. (4) The predominant algae of the treatment ponds were the filamentous Spirogyra and Oscillatoria, and the benthic alga, Chara. (5) Adsorptive processes resulted in the accumulation of metals in the algae cells. (6) Stimulation of sulfate reduction by the bacteria resulted in retention of molybdenum, selenium, and uranium in sediments. 1 figure, 16 tables.

  12. Strontium concentrations in corrosion products from residential drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Luxton, Todd P; Scheckel, Kirk G; Maynard, J Barry

    2013-05-21

    The United States Environmental Protection Agency (US EPA) will require some U.S. drinking water distribution systems (DWDS) to monitor nonradioactive strontium (Sr(2+)) in drinking water in 2013. Iron corrosion products from four DWDS were examined to assess the potential for Sr(2+) binding and release. Average Sr(2+) concentrations in the outermost layer of the corrosion products ranged from 3 to 54 mg kg(-1) and the Sr(2+) drinking water concentrations were all ≤0.3 mg L(-1). Micro-X-ray adsorption near edge structure spectroscopy and linear combination fitting determined that Sr(2+) was principally associated with CaCO3. Sr(2+) was also detected as a surface complex associated with α-FeOOH. Iron particulates deposited on a filter inside a home had an average Sr(2+) concentration of 40.3 mg kg(-1) and the associated drinking water at a tap was 210 μg L(-1). The data suggest that elevated Sr(2+) concentrations may be associated with iron corrosion products that, if disturbed, could increase Sr(2+) concentrations above the 0.3 μg L(-1) US EPA reporting threshold. Disassociation of very small particulates could result in drinking water Sr(2+) concentrations that exceed the US EPA health reference limit (4.20 mg kg(-1) body weight).

  13. Determination of heavy metals concentration in drinking water resources of Aleshtar in 2009

    Directory of Open Access Journals (Sweden)

    mehdi karbasi

    2010-04-01

    Materials and Methods :This cross- sectional study was carried out to determine concentration of heavy metals including As, Pb,Cd, Cr, Hg, Zn in Aleshtar drinking water resources. twenty samples from five drinking water wells were systematiclly collected and carried to water lab. By use of express standard methods,samples were 10 times concentrated, then metals concentralion determined by AAP(WFX130 and data analyzed by SPSS and EXCELL soft wares. Results: The results showed that concentration average of Hg ,Zn and Cd was zero during the sampling and concentration average of As,Pb and Cr in drinking water wells were 0.0033, 0.0788 and 0.01 mg/l respectively. Conclusion: Findings indicated that concentration average of heavy metals in all studied drinking water wells were lower than standard limit and no significant difference was observed during 4 stages of sampling , consequently ,drinking water of the mentioned wells are not polluted to the heavy metals.

  14. Concentration of Cryptosporidium, microsporidia and other water-borne pathogens by continuous separation channel centrifugation.

    Science.gov (United States)

    Borchardt, M A; Spencer, S K

    2002-01-01

    The aim of this study was to determine the effectiveness of continuous separation channel centrifugation for concentrating water-borne pathogens of various taxa and sizes. Cryptosporidium parvum oocysts, Giardia lamblia cysts, Encephalitozoon intestinalis spores and Escherichia coli were seeded into different water matrices at densities ranging from 5 to 10 000 organisms l(-1) and recovered using continuous separation channel centrifugation. All pathogens were enumerated on membrane filters using microscopy. Recovery efficiencies were usually > 90%. Oocyst recovery did not vary with source water turbidity or with centrifuge flow rate up to 250 ml min(-1). Based on excystation, this concentration method did not alter oocyst viability. Continuous separation channel centrifugation is an effective means of concentrating water-borne pathogens. Methods are needed for detecting pathogens in drinking water to ensure public health. The first step for any pathogen detection procedure is concentration. However, this step has been problematic because recovery efficiencies of conventional methods, like filtration, are often low and variable, which may lead to false negatives. Continuous separation channel centrifugation can simultaneously concentrate multiple pathogens as small as 1 microm with high and reproducible efficiency in a variety of water matrices.

  15. Crevice Repassivation Potentials for Alloy 22 in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Evans, K J; Ilevbare, G O

    2006-11-08

    The resistance of Alloy 22 (N06022) to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. However, the behavior of Alloy 22 in concentrated aqueous solutions that may simulate concentrated ground waters was not fully understood. Systematic electrochemical tests using cyclic potentiodynamic polarization as well as the Tsujikawa-Hisamatsu electrochemical method were performed to determine the crevice corrosion susceptibility of Alloy 22 in simulated concentrated water (SCW), simulated acidified water (SAW) and basic saturated water (BSW). Results show that Alloy 22 is immune to crevice corrosion in SCW and SAW but may suffer crevice corrosion initiation in BSW. Results also show that in a naturally aerated environment, the corrosion potential would never reach the critical potential for crevice corrosion initiation.

  16. Estimation of fluoride concentration in drinking water and common beverages in United Arab Emirates (UAE).

    Science.gov (United States)

    Walia, Tarun; Abu Fanas, Salem; Akbar, Madiha; Eddin, Jamal; Adnan, Mohamad

    2017-07-01

    To assess fluoride concentration in drinking water which include tap water of 4 emirates - Abu Dhabi, Dubai, Sharjah and Ajman plus bottled water, commonly available soft drinks & juices in United Arab Emirates. Five different samples of tap water collected from each of the four emirates of UAE: Ajman, Sharjah, Abu Dhabi and Dubai; twenty-two brands of bottled water and fifteen brands of popular cold beverages, purchased from different supermarkets in U.A.E were tested using ion selective electrode method and the fluoride concentration was determined. The mean fluoride content of tap water samples was 0.14 mg F/L with a range of 0.04-0.3 mg F/L; with Ajman tap water samples showing the highest mean fluoride content of 0.3 mg F/L. The mean fluoride content for both bottled drinking water and beverages was 0.07 mg F/L with a range of 0.02-0.50 mg F/L and 0.04-0.1 mg F/L respectively. Majority (68.2%) of the bottled water are produced locally within U.A.E while a few (31.8%) are imported. The tap water, bottled water and beverages available in U.A.E show varying concentrations of fluoride, however none showed the optimal level necessary to prevent dental caries. Dental professionals in U.A.E should be aware of the fluoride concentrations before prescribing fluoride supplements to children.

  17. Effects of walking in water on gut hormone concentrations and appetite: comparison with walking on land.

    Science.gov (United States)

    Ueda, Shin-Ya; Nakahara, Hidehiro; Kawai, Eriko; Usui, Tatsuya; Tsuji, Shintaro; Miyamoto, Tadayoshi

    2018-01-01

    The effects of water exercise on gut hormone concentrations and appetite currently remain unclear. The aim of the present study was to investigate the effects of treadmill walking in water on gut hormone concentrations and appetite. Thirteen men (mean ± s.d. age: 21.6 ± 2.2 years, body mass index: 22.7 ± 2.8 kg/m2, peak oxygen uptake (VO2peak): 49.8 ± 7.8 mL/kg per min) participated in the walking in water and on land challenge. During the study period, ratings of subjective feelings of hunger, fullness, satiety and motivation to eat were reported on a 100-mm visual analog scale. A test meal was presented after walking, and energy intake (EI) was calculated. Blood samples were obtained during both trials to measure glucagon-like peptide-1 (GLP-1), peptide YY (PYY) and acylated ghrelin (AG) concentrations. Hunger scores (How hungry do you feel?) were significantly lower during the water trial than during the land trial (P land trials. GLP-1 concentrations were significantly higher in the water trial than in the land trial (P land trials. AG concentrations were significantly lower in the water trial than in the land trial (P < 0.01). In conclusion, changes in gut hormone concentrations during walking in water contribute to the exercise-induced suppression of appetite and provide novel information on the influence of walking in water on the acute regulation of appetite. © 2018 The authors.

  18. Measurement of 222Rn concentration in drinking water in the environs of Thirthahalli taluk, Karnataka, India

    Directory of Open Access Journals (Sweden)

    G.M. Shilpa

    2017-07-01

    Full Text Available The dissolved radon concentration in water samples collected from various aquifers in and around Thirthahalli taluk was measured by employing active technique through Scintillation Radon Monitoring system. The measured radon concentration lies in the range of 0.37 ± 0.05 Bq/l to 87.02 ± 2.11 Bq/l. The resulting annual effective radiation dose to the public, who consume this water, lies in the range of 1.01μSvy−1 to 237.56 μSvy−1. However, no significant change in the radon concentration with respect to seasonal variation was observed in majority of the sample. Few samples show higher radon concentration during summer season and lower concentration in rainy season. All these results are presented in this paper.

  19. Greenhouse gas emissions, irrigation water use, and arsenic concentrations; a common thread in rice water management

    Science.gov (United States)

    Rice has historically been grown as a flooded crop in the United States. As competition for water resources has grown, there is interest in reducing water use in rice production so as to maintain a viable and sustainable rice industry into the future. An irrigation study was established in 2011 at ...

  20. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wu

    2014-10-01

    Full Text Available 222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration.

  1. Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose

    Science.gov (United States)

    Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu

    2014-01-01

    222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007

  2. Concentrations of some heavy metals in underground water samples from a Nigerian crude oil producing community.

    Science.gov (United States)

    Ejike, Chukwunonso E C C; Eferibe, Chinedu O; Okonkwo, Francis O

    2017-03-01

    Pollution due to oil exploration activities in the Niger Delta region of Nigeria and government under-investments in potable water infrastructure has led to the dependence of the population on personal boreholes. Yet, there are little quality or surveillance reports on such waters. The concentrations of heavy metals in underground water samples from an oil producing area, Umuebulu, in the Niger Delta were therefore investigated. Water samples were collected from three test points, each approximately 300 m from (1) wellhead area (WHA), (2) flare area (FA) and (3) effluent discharge area (EDA), and one control point located 10 km away from any oil-related activity. The concentrations of lead, arsenic and cadmium were determined in the samples using atomic absorption spectrophotometry. All three heavy metals were present in the test, and control water samples at concentrations significantly (P water samples showed that their consumption constituted significant health risks in the order EDA > FA > WHA > Control. Appropriate water treatment and surveillance is warranted and therefore recommended for underground water resources of the studied community.

  3. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects.

    Science.gov (United States)

    Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H

    2014-12-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.

  4. Dental fluorosis: concentration of fluoride in drinking water and consumption of bottled beverages in school children.

    Science.gov (United States)

    Pérez-Pérez, N; Torres-Mendoza, N; Borges-Yáñez, A; Irigoyen-Camacho, M E

    2014-01-01

    The purpose of the study was to identify dental fluorosis prevalence and to analyze its association with tap water fluoride concentration and beverage consumption in school children from the city of Oaxaca, who were receiving fluoridated salt. A cross-sectional study was performed on elementary public school children. Dean's Index was applied to assess dental fluorosis. The parents of the children who were studied completed a questionnaire about socio-demographic characteristics and type of beverages consumed by their children. A total of 917 school children participated in this study. Dental fluorosis prevalence was 80.8%. The most frequent fluorosis category was very mild (41.0%), and 16.4% of the children were in the mild category. The mean water fluoride concentration was 0.43 ppm (±0.12). No association was detected between tap water fluoride concentration and fluorosis severity. The multinomial regression model showed an association among the mild fluorosis category and age (OR = 1.25, [95% CI 1.04, 1.50]) and better socio-economic status (OR = 1.78, [95% CI 1.21, 2.60]), controlling for fluoride concentration in water. Moderate and severe fluorosis were associated with soft drink consumption (OR = 2.26, [95% IC 1.01, 5.09]), controlling for age, socio-economic status, and water fluoride concentration. The prevalence of fluorosis was high. Mild fluorosis was associated with higher socio-economic status, while higher fluorosis severity was associated with soft drink consumption.

  5. Electrical characteristics and hydrogen concentration of chemical vapor deposited silicon dioxide films: Effect of water treatment

    Science.gov (United States)

    Li, S. C.; Murarka, S. P.

    1992-11-01

    The effect of exposing chemical vapor deposited silicon dioxide directly to water has been investigated. Unlike the effect of the water-related traps in thermally grown silicon dioxide, the capacitance-voltage (C-V) shift due to diffused-in water molecules is directly observed without using the method of avalanche injection. The resonate nuclear reaction technique with 15N ion beam has been used to measure the hydrogen concentration of water-boiled, as-deposited, and rapid thermal-annealed silicon dioxide films. These depth profiles show that the hydrogen-containing species, that are most likely water molecules, diffuse in and out and redistribute in the as-deposited and rapid thermal-annealed films. These hydrogen depth profiles also indicate that the amount of diffused-in water molecules in the oxide is limited by the solubility of the water in the oxide. The solubility of water in the oxide annealed at high temperatures is found to be significantly lower than that in the as-deposited oxide. It is found that diffused-in water molecules, in order to satisfy the water solubility of the oxide, play a compensating role in controlling the oxide charges. Water molecules would continue to diffuse in, and interact with oxide charges and produce charges with reverse polarity that compensate the existing oxide charges until water solubility is satisfied.

  6. Investigation of Health Effects According to the Exposure of Low Concentration Arsenic Contaminated Ground Water

    Directory of Open Access Journals (Sweden)

    Young-seoub Hong

    2017-11-01

    Full Text Available Recent epidemiological studies have reported adverse health effects, including skin cancer, due to low concentrations of arsenic via drinking water. We conducted a study to assess whether low arsenic contaminated ground water affected health of the residents who consumed it. For precise biomonitoring results, the inorganic (trivalent arsenite (As III and pentavalent arsenate (As V and organic forms (monomethylarsonate (MMA and dimethylarsinate (DMA of arsenic were separately quantified by combining high-performance liquid chromatography and inductively coupled plasma mass spectroscopy from urine samples. In conclusion, urinary As III, As V, MMA, and hair arsenic concentrations were significantly higher in residents who consumed arsenic contaminated ground water than control participants who consumed tap water. But, most health screening results did not show a statistically significant difference between exposed and control subjects. We presume that the elevated arsenic concentrations may not be sufficient to cause detectable health effects. Consumption of arsenic contaminated ground water could result in elevated urinary organic and inorganic arsenic concentrations. We recommend immediate discontinuation of ground water supply in this area for the safety of the residents.

  7. Evaluation of Disinfection Byproducts formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  8. Evaluation of Disinfection Byproducts Formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source - Poster

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  9. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.

    Science.gov (United States)

    Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka

    2013-04-15

    Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S. [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.cy [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Department of Environmental Health, Harvard School of Public Health, Boston, MA (United States)

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L{sup −1}, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L{sup −1}. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L{sup −1}). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L{sup −1} and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system.

  11. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    Science.gov (United States)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  12. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  13. The influence of pet containers on antimony concentration in bottled drinking water

    Directory of Open Access Journals (Sweden)

    Perić-Grujić Aleksandra A.

    2010-01-01

    Full Text Available Antimony trioxide (Sb2O3 is the most frequently used catalyst in the polyethylene terephthalate (PET manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potentially toxic trace element. In this paper, the antimony content in nine brands of bottled mineral and spring water from Serbia, and seven brands of bottled mineral and spring water from EU countries was analyzed. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. In the all examined samples the antimony concentration was bellow the maximum contaminant level of 5 μg/L prescribed by the Serbian and EU regulations. Comparison of the content of antimony in PET bottled waters with the content of antimony in water bottled commercially in glass and the natural content of antimony in pristine groundwaters, provides explicit evidence of antimony leaching from PET containers. Since waters bottled in PET have much greater concentration ratio of Sb to Pb than corresponding pristine groundwaters, it can be assumed that bottled waters cannot be used as the relavant source for the study of the natural antimony content in groundwaters. There is a clear relation between the quality of water in bottles (composition, ion strength and antimony leaching rate. Moreover, while the rate of antimony leaching is slow at temperatures below 60 oC, at the temperature range of 60-80 oC antimony release occurs and reaches maximum contaminant level rapidly. As antimony can cause both acute and chronic health problems, factors that promote the increase of antimony concentration should be avoided.

  14. Effect of Pumping Strategies on Pesticide Concentrations in Water Abstraction Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Albrechtsen, Hans-Jørgen

    and pumping wells show that pesticide concentrations vary greatly in both time and space. This study aimed to use models to determine how pumping affects pesticide concentrations in drinking water wells placed in two hypothetical aquifer systems; a homogeneous layered aquifer and a layered aquifer......Pesticide use in agriculture is one of the main sources of groundwater contamination and poses an important threat to groundwater abstraction. Pesticides have been detected in 37% of Danish monitoring wells sampled, with 12 % exceeding drinking water guidelines. Field data captured in monitoring...... in a pumping well capture zone were constructed using COMSOL Multiphysics. A series of simulations were conducted to examine the effect of pumping strategies (constant versus varying pumping rate), pesticide properties and aquifer hydrogeology on the concentration in drinking water wells. The results...

  15. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    Science.gov (United States)

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. Published by Elsevier Ltd.

  16. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  17. The prevalence of fluorosis in children is associated with naturally occurring water fluoride concentration in Mexico.

    Science.gov (United States)

    Mariño, Rodrigo

    2013-09-01

    Fluorosis and dental caries in Mexican schoolchildren residing in areas with different water fluoride concentrations and receiving fluoridated salt. Garcia-Perez A, Irigoyen-Carnacho ME, Borges-Yanez A. Caries Res 2013;47(4):299-308. Rodrigo Mariño Is there an association between the presence of dental fluorosis and fluoride concentration in drinking water? and Is there an association between the severity of fluorosis and dental caries experience in schoolchildren residing in two rural towns in Mexico (with water fluoride concentrations of 0.70 and 1.50 ppm) that also receive fluoridated salt? Government: National Council of Science and Technology (Consejo Nacional de Ciencia y Tecnologia, CONACYT) Other: Autonomous University, Xochimilco (Universidad Autonoma Metropolitana, UAM-X) TYPE OF STUDY/DESIGN: Cross-sectional Level 3: Other evidence Not applicable. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    Energy Technology Data Exchange (ETDEWEB)

    Lietzke, M. H.; Haag, W. R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water.

  19. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora *

    Science.gov (United States)

    Zhao, Xing-Zheng; Wang, Gen-Xuan; Shen, Zhu-Xia; Zhang, Hao; Qiu, Mu-Qing

    2006-01-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply. PMID:16532530

  20. The inorganic constituents of echinoderms

    Science.gov (United States)

    Clarke, F.W.; Wheeler, W.C.

    1915-01-01

    In a recent paper on the composition of crinoid skeletons we showed that crinoids contain large quantities of magnesia, and that its proportion varies with the temperature of the water in which the creatures live. This result was so novel and surprising that it seemed desirable to examine other echinoderms and to ascertain whether they showed the same characteristics and regularity. A number of sea urchins and starfishes were therefore studied, their inorganic constituents being analyzed in the same manner as those of the crinoids

  1. Volatile Constituents of Zhumaria Majdae

    Directory of Open Access Journals (Sweden)

    Yazdanparst

    1993-07-01

    Full Text Available Capillary gas chromatography mass spectrometry (GC- MS analyses of a sample of essential oil of zhumaria Linalool ned by simple water distillation of the pulverized air - dired leaves and flowers of the plant indicated that Linalool and comphor are the two major constituents of the volatile oil. Sylvestrene , y -terpinene, a- Pinene, b - carene, camphene, and Epiborneol constitute the other main components of the essential oil. The GC - MS chromatogram indicated the presence of more than fifty - components in the oil, most of them were present in trace amounts. In this study, the chemical structures of twenty of these consti tuents were elucidated using GC - MS analysis.

  2. Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico.

    Science.gov (United States)

    Jonathan, M P; Roy, P D; Thangadurai, N; Srinivasalu, S; Rodríguez-Espinosa, P F; Sarkar, S K; Lakshumanan, C; Navarrete-López, M; Muñoz-Sevilla, N P

    2011-04-01

    A survey on the metal concentrations (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, Zn) in beach water and sediments is reported from the tourist destination of Acapulco city on the Pacific coast of Mexico. The concentration of dissolved trace metals (DTMs) in beach water and acid leachable trace metals (ALTMs) in sediments indicated that they are anthropogenic in nature due to the increased tourist activities in the crowded beach locations. The statistical analysis indicates Fe and Mn play a major role as metal scavengers in both the medium (water and sediment) and the higher value of other metals is site specific in the study area, indicating that they are transported from the local area. Comparison results suggest that the beach water quality has deteriorated more than the sediments and special care needs to be taken to restore the beach quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Preformed magnesium hydroxide precipitate for second-step concentration of enteroviruses from drinking and surface waters.

    Science.gov (United States)

    Vilagines, P; Sarrette, B; Vilagines, R

    1982-07-01

    A method is described for the second-step concentration of viruses from large volumes of drinking and surface waters. Seeded viruses present in the first eluate, performed with 50 mM glycine buffer, pH 11.5, were adsorbed on a preformed magnesium hydroxide precipitate. After low-speed centrifugation they were desorbed and adjusted to pH 7 with McIlvaine citrate-phosphate buffer. In these experimental conditions 90% of the viruses present in the 300-mL first eluate were reconcentrated in a final volume of 40 mL. The recovery efficiency was independent of either virus concentration or water quality.

  4. Contaminants of emerging concern in reverse osmosis brine concentrate from indirect/direct water reuse applications.

    Science.gov (United States)

    Romeyn, Travis R; Harijanto, Wesley; Sandoval, Sofia; Delagah, Saied; Sharbatmaleki, Mohamadali

    2016-01-01

    Water shortage is becoming more common due to droughts and global population increases resulting in the increasing popularity of water reuse to create new water sources. Reverse osmosis (RO) membrane systems are popular in these applications since they can produce drinking water quality effluent. Unfortunately, RO systems have the drawback of generating concentrate streams that contain contaminants rejected by the membrane including chemicals of emerging concern (CECs). CECs are chemicals such as hormones, steroids, pesticides, pharmaceuticals, and personal care products that are used for their intended purpose and then released into wastewater. CECs are believed to be detrimental to aquatic wildlife health and pose an unknown human health risk. This research gathered the existing knowledge on CEC presence in concentrate, available proven concentrate treatment methods, their CEC removal abilities, and current CEC regulations. It was found that 127 CECs have been measured in RO concentrate with 100 being detected at least once. The most potent treatment process available is UV/H2O2 as it offers the highest removal rates for the widest range of chemicals. The less expensive process of ozone/biologically activated carbon offers slightly lower removal abilities. This comprehensive report will provide the groundwork for better understanding, regulating and treating concentrate stream CECs.

  5. Fluorescence-based determination of the copper concentration in drinking water

    Science.gov (United States)

    Hötzer, Benjamin; Scheu, Timo; Jung, Gregor; Castritius, Stefan

    2013-05-01

    Copper is a heavy metal, which is used in heat and electrical conductors and in a multitude of alloys in the technical context. Moreover, it is a trace element that is essential for the life of organisms but can cause toxic effects in elevated concentrations. Maximum limits in water and beverages exist. Here, the decrease of the fluorescence lifetime of green fluorescent protein (GFP) by Förster resonance energy transfer is used to measure the copper ion concentration in drinking water. Therefore, a system is developed that is based on a GFP sample in a predefined concentration. The GFP mutant can be excited with blue light. For binding of copper ions, a His-tag is included in the GFP. After measuring the fluorescence lifetime of pure GFP, the copper determination of the sample is performed by lifetime measurement. Therefore, the lifetime can be assigned to the copper concentration of the GFP-doped drinking water sample. In summary, a method for the quantification of copper ions based on changes of the fluorescence lifetime of GFP is developed, and the measurement of the copper concentration in water samples is performed.

  6. Effects of drinking water with high iodine concentration on the intelligence of children in Tianjin, China.

    Science.gov (United States)

    Liu, Hong-Liang; Lam, Lawrence T; Zeng, Qiang; Han, Shu-qing; Fu, Gang; Hou, Chang-chun

    2009-03-01

    This study aimed to investigate the effects of drinking water with high concentrations of iodine on the intelligence of children in Tianjin, China. It was a population-based health survey utilizing a random cluster sampling design conducted in June 2005. Participants were recruited from the total population of primary school children attending years 1-4 with ages ranging from 8 to 10 years. Intelligence quotient (IQ) was assessed using the combined Raven's test, second edition. Linear regression analyses were applied to test for any association between water iodine concentration and IQ. A total of 1229 students were recruited with a mean IQ of 105.8 (95% CI: 104.2-107.3). Water analyses indicated iodine concentrations were high in one rural region and exceedingly high in another with median values of 137.5 and 234.7 microg/l, respectively. There was a significant association between residing in the very high water iodine region and a reduction of IQ by an average of about nine points (P = 0.022), after adjusting for the potential confounding factors. Exposure to high iodine concentrations in drinking water has detrimental effects on the intelligence of children.

  7. Radon and radium concentration in water from North-West of Romania and the estimated doses.

    Science.gov (United States)

    Moldovan, M; Benea, V; Niţă, D C; Papp, B; Burghele, B D; Bican-Brişan, N; Cosma, C

    2014-11-01

    In the present study, the measurements of radon were carried out using the LUK-VR system based on radon gas measurements with Lucas cells. The radium concentration in water was determined, with the same device, immediately after was established the radon equilibrium with radium. The results presented here are from a survey carried out in the N-W region of Transylvania (Romania) in which were investigated the radon concentrations in natural (spring, well and surface) and drinking (tap) waters. The results showed radon concentrations within the range of 0.4-187.3 Bq l(-1) with an average value of 15.9 Bq l(-1) whereas radium concentration varied between 0.05 and 0.825 Bq l(-1) with an average value of 0.087 Bq l(-1) for all types of water covered within this survey. The corresponding annual effective ingestion dose due to radon and radium from water was determined from drinking water used by the population inhabiting the area. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  9. Determination of uranium concentration in ground water samples of Northern Greece

    Directory of Open Access Journals (Sweden)

    Pashalidis I.

    2012-04-01

    Full Text Available The activity concentration of 238U and 234U has been determined in groundwater samples of hot springs and deep wells from the region of Northern Greece. The analysis was performed by alpha spectroscopy after pre-concentration and separation of uranium by cation exchange (Chelex 100 resin and finally its electro-deposition on stainless steel discs. The uranium concentration in deep wells and springs varies strongly between 0.15 and 7.66 μg l−1. Generally the springs present higher uranium concentration than the deep wells, except of the Apol-lonia spring, which has shown the lowest value of 0.15 mg l−1. 238U and 234U activity concentration ranged between 1.8–95.3 mBq l−1 and 1.7–160.1 mBq l−1, respectively. The obtained isotopic ratio 234U/238U varies between 0.95 and 1.74 which means that the two isotopes are not in radioactive equilibrium. The highest 234U/238U activity ratio values correspond to the Langada springs, indicating most probably old-type waters. On the other hand, ground waters from wells with relatively low uranium activity concentration and low 234U/238U isotopic ratios, point to the presence of younger waters with a stronger contribution of a local recharge component to the groundwater.

  10. Spatial analysis of land use impact on ground water nitrate concentrations.

    Science.gov (United States)

    Benson, Victoria S; VanLeeuwen, John A; Sanchez, Javier; Dohoo, Ian R; Somers, George H

    2006-01-01

    In spatial analyses of causes or health effects of environmental pollutants, small units of analyses are usually preferred for internal environmental homogeneity reasons but can only be done when fine resolution data are available for most units. Objectives of this study were to determine which land use practices were spatially associated with ground water nitrate concentrations across Prince Edward Island (PEI), Canada, and which spatial aggregation is the preferred unit of analyses. Nitrate concentrations were determined for 4855 samples from private wells. Validated field-by-field land use data were available. Average nitrate concentration and percentage of area for the 14 major land use categories in PEI were determined for each of three spatial aggregations: watersheds based on topography and hydrology; freeform polygon boundaries based on similar neighboring nitrate concentrations; and 500-m buffer zones around each well. Results showed that the percentages of potato, grain, and hay coverage were positive predictors of ground water nitrate concentrations. Percentage of blueberry was a marginally significant negative predictor in the watershed and freeform polygon models, and percentage of residential coverage was a positive predictor in the freeform polygon and buffer zone models. Spatial autocorrelation was present in the freeform polygon and buffer zone models even after land use was taken into account. In conclusion, analyses based on watersheds produced the best predictive model with the percentages of land cover of potato, hay, and grain being significantly associated with ground water nitrate concentrations, and the percentages of blueberry, clear-cut woodland, and other agriculture being marginally significant.

  11. The constant value of the total concentration of potassium and sodium in tissue water in animals.

    Science.gov (United States)

    Schillak, R

    1978-01-01

    With age, the Musculus longissimus dorsi in pigs showed an increase in the potassium content and a decrease in the sodium content. The total concentration of potassium and sodium in milimoles in one litre of tissue water, here referred to as the "Sum k", is a constant value. The same mean Sum k had been obtained earlier by Blaxter and Rook for various kinds of tissue in cattle of different age. Approximate mean Sums k were calculated from the water, potassium and sodium contents in the muscles of man and pig at different stages of development, as reported in another publication. The constant character of Sum k was shown to be due to the equal concentration of potassium and sodium ions. This allows to calculate the quantity of water in the tissue from the potassium and sodium ions it contains and the percentage of extracellular or cellular water in total water. A consideration of the relationship between Sum k and osmotic pressure in the tissues proved an absence of concentration symmetry between the cellular and extracellular fluids which Sum k had seemed to suggest. Consequently, the total potassium content was multiplied by the asymmetry coefficient, fK, and then the Sum kc = mM (FKK + Na) per litre of water. From Blaxter and Rook's equation it was calculated that fK = 0.856 and Sum kc 148.8 mM.

  12. Shallow circulation groundwater – the main type of water containing hazardous radon concentration

    Directory of Open Access Journals (Sweden)

    T. A. Przylibski

    2011-06-01

    Full Text Available The main factors affecting the value of 222Rn activity concentration in groundwater are the emanation coefficient of reservoir rocks (Kem, the content of parent 226Ra in these rocks (q, changes in the volume and flow velocity as well as the mixing of various groundwater components in the circulation system. The highest values of 222Rn activity concentration are recorded in groundwaters flowing towards an intake through strongly cracked reservoir rocks undergoing weathering processes. Because of these facts, waters with hazardous radon concentration levels, i.e. containing more than 100 Bq dm−3 222Rn, could be characterised in the way that follows. They are classified as radon waters, high-radon waters and extreme-radon waters. They belong to shallow circulation systems (at less than a few dozen metres below ground level and are contemporary infiltration waters, i.e. their underground flow time ranges from several fortnights to a few decades. Because of this, these are usually poorly mineralised waters (often below 0.2–0.5 g dm−3. Their resources are renewable, but also vulnerable to contamination.

    Waters of this type are usually drawn from private intakes, supplying water to one or at most a few households. Due to an increased risk of developing lung tumours, radon should be removed from such waters when still in the intake. To achieve this aim, appropriate legislation should be introduced in many countries.

  13. Heterogeneous radiolysis of water: effect of the concentration of water in the adsorbed phase on the hydrogen yield

    Energy Technology Data Exchange (ETDEWEB)

    Garibov, A.A.; Gezalov, K.B.; Velibekova, G.Z.; Khudiev, A.T.; Ramazanova, M.K.; Kasumov, R.D.; Agaev, T.N.; Gasanov, A.M.

    1988-05-01

    A study was carried out on the effect of the water concentration on the molecular hydrogen yield during the heterogeneous radiolysis of water in the presence of KSK silica gel and NaX zeolite. The molecular hydrogen yield was found to rise with an increase in the degree of filling in the range /theta/ = 0-1, while the limiting values of G/sub total/(H/sub 2/) are reached in the region of unimolecular filling of the active centers. In order to clarify the mechanism of the heterogeneous radiolysis of water in the presence of zeolite systems, the ESR method was used to investigate the rate of accumulation of radiation defects in zeolite HLaY and also the water radiolysis process in its presence.

  14. Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control.

    Science.gov (United States)

    Joss, Adriano; Baenninger, Claudia; Foa, Paolo; Koepke, Stephan; Krauss, Martin; McArdell, Christa S; Rottermann, Karin; Wei, Yuansong; Zapata, Ana; Siegrist, Hansruedi

    2011-11-15

    Over 1.5 years continuous piloting of a municipal wastewater plant upgraded with a double membrane system (ca. 0.6 m(3) d(-1) of product water produced) have demonstrated the feasibility of achieving high water quality with a water yield of 90% by combining a membrane bioreactor (MBR) with a submerged ultrafiltration membrane followed by a reverse osmosis membrane (RO). The novelty of the proposed treatment scheme consists of the appropriate conditioning of MBR effluent prior to the RO and in recycling the RO concentrates back to the biological unit. All the 15 pharmaceuticals measured in the influent municipal sewage were retained below 100 ng L(-1), a proposed quality parameter, and mostly below detection limits of 10 ng L(-1). The mass balance of the micropollutants shows that these are either degraded or discharged with the excess concentrate, while only minor quantities were found in the excess sludge. The micropollutant load in the concentrate can be significantly reduced by ozonation. A low treated water salinity (recycled to the biological unit where CO(2) is stripped by aeration. This causes precipitation to occur in the bioreactor bulk, where it is much less of a process issue. SiO(2) is the sole exception. Equilibrium modeling of precipitation reactions confirms the effectiveness of this scaling-mitigation approach for CaCO(3) precipitation, calcium phosphate and sulfate minerals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Shallow circulation groundwater - the main type of water containing hazardous radon concentration

    Science.gov (United States)

    Przylibski, Tadeusz

    2010-05-01

    Radon dissolves in water very good. As an effect this gas is present in surface and groundwater, which are used in households. The range of Rn-222 concentration in water is very wide, it changes from below 1 Bq/dm3 up to several hundreds of thousands Bq/dm3. Inhabitants may be exposed to an important additional dose from ionizing radiation if they use in household radon water (concentration of Rn-222 between 100 and 999.9(9) Bq/dm3), high-radon water (1000 - 9999.9(9) Bq/dm3) or extreme-radon water (10 000 Bq/dm3 and more). Value of the dose depends on the amount of radon released from water during cooking, washing, taking bath or shower, and it not depends on the amount of radon dissolved in drinked water or water used for making a meal. Radon released from water to the air in a house may be inhaled by inhabitants and increase the risk of lung cancer. Knowing the risk, international organizations, i.e. WHO, publish the recommendations concerning admissible levels of radon concentration in water in the intake (before supplying households). In a few countries these recommendations became a law (i.e. USA, England, Finland, Sweden, Russia, Czech Rep., Slowak Rep.). Law regulations force to measuring concentrations of radon dissolved in water in all the intakes of water supplying hauseholds. Knowing radon behaviour in the environment it is possible to select certain types of water, which may contain the highest radon concentration. As a result one may select these intakes of water, which should be particularly controled with regard to possible hazardous radon cencentration. Radon concentration in surface water depends on partial pressure of this gas over the water table - in the atmosphere. Partial pressure of radon in the atmosphere is very low, so the radon concentration in surface water is usually low and as a rule it is not higher than several, rarely several tens of Bq/dm3. In the spring, where the groundwater flows out on the surface, and groundwater become a

  16. State of the art and review on the treatment technologies of water reverse osmosis concentrates.

    Science.gov (United States)

    Pérez-González, A; Urtiaga, A M; Ibáñez, R; Ortiz, I

    2012-02-01

    The growing demand for fresh water is partially satisfied by desalination plants that increasingly use membrane technologies and among them reverse osmosis to produce purified water. Operating with water recoveries from 35% to 85% RO plants generate huge volumes of concentrates containing all the retained compounds that are commonly discharged to water bodies and constitute a potentially serious threat to marine ecosystems; therefore there is an urgent need for environmentally friendly management options of RO brines. This paper gives an overview on the potential treatments to overcome the environmental problems associated to the direct discharge of RO concentrates. The treatment options have been classified according to the source of RO concentrates and the maturity of the technologies. For the sake of clarity three different sources of RO concentrates are differentiated i) desalination plants, ii) tertiary processes in WWTP, and iii) mining industries. Starting with traditional treatments such as evaporation and crystallization other technologies that have emerged in last years to reduce the volume of the concentrate before disposal and with the objective of achieving zero liquid discharge and recovery of valuable compounds from these effluents are also reviewed. Most of these emerging technologies have been developed at laboratory or pilot plant scale (see Table 1). With regard to RO concentrates from WWTP, the manuscript addresses recent studies that are mainly focused on reducing the organic pollutant load through the application of innovative advanced oxidation technologies. Finally, works that report the treatment of RO concentrates from industrial sources are analyzed as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Use of drinking water treatment solids for arsenate removal from desalination concentrate.

    Science.gov (United States)

    Xu, Xuesong; Lin, Lu; Papelis, Charalambos; Myint, Maung; Cath, Tzahi Y; Xu, Pei

    2015-05-01

    Desalination of impaired water can be hindered by the limited options for concentrate disposal. Selective removal of specific contaminants using inexpensive adsorbents is an attractive option to address the challenges of concentrate management. In this study, two types of ferric-based drinking water treatment solids (DWTS) were examined for arsenate removal from reverse osmosis concentrate during continuous-flow once-through column experiments. Arsenate sorption was investigated under different operating conditions including pH, arsenate concentration, hydraulic retention time, loading rate, temperature, and moisture content of the DWTS. Arsenate removal by the DWTS was affected primarily by surface complexation, electrostatic interactions, and arsenate speciation. Results indicated that arsenate sorption was highly dependent on initial pH and initial arsenate concentration. Acidic conditions enhanced arsenate sorption as a result of weaker electrostatic repulsion between predominantly monovalent H2AsO4(-) and negatively charged particles in the DWTS. High initial arsenate concentration increased the driving force for arsenate sorption to the DWTS surface. Tests revealed that the potential risks associated with the use of DWTS include the leaching of organic contaminants and ammonia, which can be alleviated by using wet DWTS or discarding the initially treated effluent that contains high organic concentration. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.

    Science.gov (United States)

    Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges

    2014-10-01

    We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2012-11-01

    Full Text Available Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known.

    In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.

  20. Fiber Bragg Grating Sensor for Detection of Nitrate Concentration in Water

    Directory of Open Access Journals (Sweden)

    A. S. LALASANGI

    2011-02-01

    Full Text Available The concentrations of chemical species in drinking water are of great interest. We demonstrated etched fiber Bragg grating (FBG as a concentration sensor for nitrate by analyzing the Bragg wavelength shift with concentration of chemical solution. The FBG is fabricated by phase mask technique on single mode Ge-B co-doped photosensitive fiber. Sensitivity of FBGs to the surrounding solution concentration can be enhanced by reducing diameter of the cladding with 40 % HF solution. The maximum sensitivity achieved is 1.322 ´ 10-3 nm/ppm. The overall shift of Bragg wavelength is of the order of 6.611 ´ 10-2 nm for 10 to 50 ppm concentration.

  1. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  2. Effect of water source on intake and urine concentration in healthy cats.

    Science.gov (United States)

    Grant, David C

    2010-06-01

    Increasing water intake and decreasing urine concentration are recommended for cats with urolithiasis and with idiopathic cystitis. Fountains are advocated to encourage drinking; however, effects on drinking of fountains have not been reported in cats living in pet owners homes. Thirteen healthy cats were assigned to have 24-h water intake and urine osmolality and specific gravity measured when water was offered from a bowl or fountain. One cat developed excessive barbering, vomiting, and refusal to drink water offered from the fountain. For the remaining 12 cats, intake was slightly greater from the fountain. However, urine osmolality was not significantly different. In this study, a fountain failed to substantially increase water intake and dilute urine in cats. A similar study including a greater period of time and additional cats may clarify the results of this study. Copyright 2009 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  3. Effect of ’Streptococcus Pneumoniae’ Infection in Rats on Hepatic Water Content, Electrolyte Concentration, and Chemical Composition

    Science.gov (United States)

    1981-01-01

    these constituents decreases in the extracted by the method of Folch et al. "! Carbohydrate was assayed by the method of Dubois et al," using sucrose as...bioelectrical balance and osmosis . The Protein (g) 1.26t ±0.03 1.60 ± 0.08 ɘ.001 significant increases in total liver Na + and Cl- concentration (i.6

  4. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  5. Differences in antioxidant activity between two rice protein concentrates in an oil-in-water emulsion

    Science.gov (United States)

    Two formulations of rice protein concentrates (RPC) derived from brown rice were evaluated for their antioxidant activity in bulk oil and in oil-in-water emulsions. Bulk oils were mixed with RPC and heated to 180°C, and total polar compounds and triacylglycerol polymerization were measured. Minimal ...

  6. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos

    2000-01-01

    In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some

  7. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  8. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Fernandes, T.; Wiryawan, Y.; Tafwik, A.; Visser, de M.; Zeeman, G.

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of

  9. THE MAIN NUTRIENTS CONCENTRATION FROM INTRA TISSUE WATER OF BENTHOS ORAGANISMS FROM MURES BASIN

    Directory of Open Access Journals (Sweden)

    DANA POPA

    2008-05-01

    Full Text Available In the hydrographic basin of Mures river, aboard an altitude gradient, were taken samples of intra tissue waters from benthonic organisms for research the nutrients concentrations. The reference point was represented by a dairy caw farm where the agricultural fields of this is applied the organic fertilization with manure. The intra tissue water samples from benthonic organisms were prelevated in spring and autumn and the prelevate dates are the same with spread manure dates. At the intra tissue water level, concentrations value of N and P are bigger at the second data prelevations than first data prelevations and we can conclude that the benthonic oligochetas activity increase, more than, they density increase in Mures basin. The high concentrations of NH4 show as that Mures basin is a zone characterized by high degree of anoxia and this fact is supported by significant differences between seasonal prelevations. The explication is the manifestation to the cumulated and at distance effects of introduction in water to some organic products, very probably washed from neighborhoods agricultural field. Were calculated values of Student test for seasonal comparisons and were founded significant differences between nutrients concentration values at first and second prelevations.

  10. Concentration and toxicity of some metals in zooplankton from nearshore waters of Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Nair, V.R.; Narvekar, P.V.; Desai, B.N.

    Zooplankton samples collected from 4 stations located in the nearshore waters of Bombay were analysed for Cu, Co, Mn, Ni and Cd. Concentrations of Co, Mn and Ni were more in copepods and gelatinous organisms than in mysids and decapods. High...

  11. Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation

    NARCIS (Netherlands)

    Krol, J.J.; Wessling, Matthias; Strathmann, H.

    1999-01-01

    Concentration polarization is studied using a commercial anion and cation exchange membrane. Current¿voltage curves show the occurrence of an overlimiting current. The nature of this overlimiting current is investigated in more detail, especially with respect to the contribution of water

  12. Leaf-litter leachate concentration promotes heterotrophy in freshwater biofilms: Understanding consequences of water scarcity.

    Science.gov (United States)

    Martínez, Aingeru; Kominoski, John Stephen; Larrañaga, Aitor

    2017-12-01

    Climate change is increasing overall temporal variability in precipitation resulting in a seasonal water availability, both increasing periods of flooding and water scarcity. During low water availability periods, the concentration of leachates from riparian vegetation increases, subsequently increasing dissolved organic matter (DOM). Moreover, shifts in riparian vegetation by land use changes impact the quantity and quality of DOM. Our objective was to test effects of increasing DOM concentrations from Eucalyptus grandis (one of the most cultivated tree species in the world) leachates on the metabolism (respiration, R; gross primary productivity, GPP) and extracellular enzyme activities (EEAs) of freshwater biofilms. To test effects of DOM concentrations on freshwater biofilm functions, we incubated commercial cellulose sponges in a freshwater pond to allow biofilm colonization, and then exposed biofilms to five different concentrations of leaf-litter leachates of E. grandis for five days. To test if responses to DOM concentrations varied with colonization stage of biofilms, we measured treatment effects on biofilms colonizing standard substrates after one, two, three and four weeks of colonization. Increases in leachates concentrations enhanced biofilm heterotrophy, increasing R rates and decreasing GPP. Leachate concentrations did not affect biofilm EEAs, and changes in biofilm metabolism were not explained by treatment-induced changes in biofilm biomass or stoichiometry. We detected the lowest production:respiration ratios, i.e. more heterotrophic assemblages, with the most concentrated leachate solution and the most advanced biofilm colonization stages. Shifts in quantity of dissolved organic matter in freshwaters may further influence ecosystem metabolism and carbon processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An analysis of chemicals and other constituents found in produced water from hydraulically fractured wells in California and the challenges for wastewater management.

    Science.gov (United States)

    Chittick, Emily A; Srebotnjak, Tanja

    2017-12-15

    As high-volume hydraulic fracturing (HF) has grown substantially in the United States over the past decade, so has the volume of produced water (PW), i.e., briny water brought to the surface as a byproduct of oil and gas production. According to a recent study (Groundwater Protection Council, 2015), more than 21 billion barrels of PW were generated in 2012. In addition to being high in TDS, PW may contain hydrocarbons, PAH, alkylphenols, naturally occurring radioactive material (NORM), metals, and other organic and inorganic substances. PW from hydraulically fractured wells includes flowback water, i.e., injection fluids containing chemicals and additives used in the fracturing process such as friction reducers, scale inhibitors, and biocides - many of which are known to cause serious health effects. It is hence important to gain a better understanding of the chemical composition of PW and how it is managed. This case study of PW from hydraulically fractured wells in California provides a first aggregate chemical analysis since data collection began in accordance with California's 2013 oil and gas well stimulation law (SB4, Pavley). The results of analyzing one-time wastewater analyses of 630 wells hydraulically stimulated between April 1, 2014 and June 30, 2015 show that 95% of wells contained measurable and in some cases elevated concentrations of BTEX and PAH compounds. PW from nearly 500 wells contained lead, uranium, and/or other metals. The majority of hazardous chemicals known to be used in HF operations, including formaldehyde and acetone, are not reported in the published reports. The prevalent methods for dealing with PW in California - underground injection and open evaporation ponds - are inadequate for this waste stream due to risks from induced seismicity, well integrity failure, well upsets, accidents and spills. Beneficial reuse of PW, such as for crop irrigation, is as of yet insufficiently safety tested for consumers and agricultural workers as

  14. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks.

    Science.gov (United States)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources.

    Science.gov (United States)

    Fallahzadeh, Reza Ali; Ghaneian, Mohammad Taghi; Miri, Mohammad; Dashti, Mohamad Mehdi

    2017-11-01

    The heavy metals available in drinking water can be considered as a threat to human health. Oncogenic risk of such metals is proven in several studies. Present study aimed to investigate concentration of the heavy metals including As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn in 39 water supply wells and 5 water reservoirs within the cities Ardakan, Meibod, Abarkouh, Bafgh, and Bahabad. The spatial distribution of the concentration was carried out by the software ArcGIS. Such simulations as non-carcinogenic hazard and lifetime cancer risk were conducted for lead and nickel using Monte Carlo technique. The sensitivity analysis was carried out to find the most important and effective parameters on risk assessment. The results indicated that concentration of all metals in 39 wells (except iron in 3 cases) reached the levels mentioned in EPA, World Health Organization, and Pollution Control Department standards. Based on the spatial distribution results at all studied regions, the highest concentrations of metals were derived, respectively, for iron and zinc. Calculated HQ values for non-carcinogenic hazard indicated a reasonable risk. Average lifetime cancer risks for the lead in Ardakan and nickel in Meibod and Bahabad were shown to be 1.09 × 10-3, 1.67 × 10-1, and 2 × 10-1, respectively, demonstrating high carcinogenic risk compared to similar standards and studies. The sensitivity analysis suggests high impact of concentration and BW in carcinogenic risk.

  16. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept.

    Science.gov (United States)

    Kujawa-Roeleveld, K; Fernandes, T; Wiryawan, Y; Tawfik, A; Visser, M; Zeeman, G

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of organic matter and nutrients from all waste(water)streams generated from different human activities. Anaerobic digestion of concentrated black water is a core technology in the DESAR concept. The applicability of the UASB septic tank for treatment of concentrated black water was investigated under two different temperatures, 15 and 25 degrees C. The removal of total COD was dependent on the operational temperature and attained 61 and 74% respectively. A high removal of the suspended COD of 88 and 94% respectively was measured. Effluent nutrients were mainly in the soluble form. Precipitation of phosphate was observed. Effective sludge/water separation, long HRT and higher operational temperature contributed to a reduction of E. coli. Based on standards there is little risk of contamination with heavy metals when treated effluent is to be applied in agriculture as fertiliser.

  17. Concentration measurements of bubbles in a water column using an optical tomography system.

    Science.gov (United States)

    Ibrahim, S; Yunus, Mohd Amri Md; Green, R G; Dutton, K

    2012-11-01

    Optical tomography provides a means for the determination of the spatial distribution of materials with different optical density in a volume by non-intrusive means. This paper presents results of concentration measurements of gas bubbles in a water column using an optical tomography system. A hydraulic flow rig is used to generate vertical air-water two-phase flows with controllable bubble flow rate. Two approaches are investigated. The first aims to obtain an average gas concentration at the measurement section, the second aims to obtain a gas distribution profile by using tomographic imaging. A hybrid back-projection algorithm is used to calculate concentration profiles from measured sensor values to provide a tomographic image of the measurement cross-section. The algorithm combines the characteristic of an optical sensor as a hard field sensor and the linear back projection algorithm. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Anaerobic Treatment of Concentrated Black Water in a UASB Reactor at a Short HRT

    Directory of Open Access Journals (Sweden)

    Cees J. N. Buisman

    2010-02-01

    Full Text Available This research describes the feasibility of applying a UASB reactor for the treatment of concentrated black (toilet water at 25 °C. On average 78% of the influent load of COD at an HRT of 8.7 days was removed. Produced methane can be converted to 56 MJ/p/y as electricity and 84 MJ/p/y as heat by combined heat and power (CHP. Minimum reactor volume at full scale was calculated to be 63L per person (for black water containing 16 gCOD/L produced at 5 L/p/d and this is more than two times smaller than other type of reactors for anaerobic treatment of concentrated black water.

  19. Plasma concentrations resulting from florfenicol preparations given to pigs in their drinking water.

    Science.gov (United States)

    Gutiérrez, L; Vargas, D; Ocampo, L; Sumano, H; Martinez, R; Tapia, G

    2011-09-01

    Florfenicol administered through the drinking water has been recommended as a metaphylactic antibacterial drug to control outbreaks of respiratory diseases in pigs caused by strains of Actinobacillus pleuropneumoniae and Pasteurella multocida, yet it is difficult to pinpoint in practice when the drug is given metaphylactically or therapeutically. Further, pigs are likely to reject florfenicol-medicated water, and plasma concentrations of the drug are likely to be marginal for diseases caused by Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The reported minimal inhibitory concentration (MIC) values for these organisms show a breakpoint of 2 to 3 μg/mL. An experiment was conducted during September and October 2009. One hundred twenty healthy crossbred pigs (Landrace-Yorkshire), weighing 23 ± 6.2 kg, were used in this trial. They were randomly assigned to 5 groups, with 3 replicates of 8 animals/group. Two commercial preparations of florfenicol were administered through the drinking water at 2 concentrations (0.01 and 0.015%). Water intake was measured before and after medication, and plasma concentrations of florfenicol were determined by HPLC. Considerable rejection of florfenicol-medicated water was observed. However, plasma florfenicol concentrations were of a range sufficient for a methaphylaxis approach to preventing disease by bacteria, with MIC breakpoints of ≤ 0.25 μg/mL. Decreased efficacy as a metaphylactic medication should be expected for bacteria with MIC >0.25 μg/mL, considering the reported existence of bacteria resistant to florfenicol and the natural resistance of Streptococcus suis or E. coli to this drug.

  20. Impact of the invasive mussel Limnoperna fortunei on glyphosate concentration in water.

    Science.gov (United States)

    Di Fiori, Eugenia; Pizarro, Haydée; dos Santos Afonso, María; Cataldo, Daniel

    2012-07-01

    The use of glyphosate has increased dramatically during the past years around the world. Microbial communities are altered when glyphosate reaches water bodies. The freshwater golden mussel Limnoperna fortunei is an invasive species that has rapidly dispersed since it was introduced in Argentina two decades ago. Mussels alter aquatic conditions through their filtrating activity by increasing water clarity and nutrient recycling. We aim to evaluate the potential capacity of the golden mussel to reduce glyphosate concentration in water, in laboratory conditions. Firstly, the evasive response of mussels to glyphosate (10, 20, and 40 mg l⁻¹) was evaluated and a toxicity test was carried out for these concentrations. A three-week experiment was then performed to assess glyphosate variation under mussel presence for two mussel sizes. Finally, mussels' role on glyphosate concentration was evaluated considering different mussel parts (living organisms and empty shells) through another three-week experiment. Laboratory experiments were performed in triplicate using 2-l microcosms. An initial glyphosate concentration between 16 and 19 mg l⁻¹ was used, and when mussels or valvae were added, 20 organisms per aquaria were used. Samples were obtained at days 0, 1, 2, 4, 8, 14, and 21. Glyphosate decreased by 40% under large mussel presence in both experiments, and was reduced by 25% in empty shell treatments. We believe that part of the herbicide that disappears from the water column is adsorbed in valvae surface, while another proportion is being mineralized by microbial communities in shells' biofilm. The mechanisms by which living mussels increase glyphosate dissipation would be degradation, possibly mediated by bacteria associated to mussel's metabolism. Glyphosate half-life depended on mussel and valvae presence and varied with mussel size. L. fortunei presence (either alive or as empty valvae) alters glyphosate concentration in water. We provide preliminary

  1. [Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water].

    Science.gov (United States)

    Xiao, Qi-Tao; Hu, Zheng-Hu; James, Deng; Xiao, Wei; Liu, Shou-Dong; Li, Xu-Hui

    2014-01-01

    To gain insight into antiseptic effects on the concentrations of CO2, CH4, and N2O in lake water, antisepetic (CuSO4 and HgCl2) were added into water sample, and concentrations of greenhouse gases were measured by the gas chromatography based on water equilibrium method. Experiments were conducted as following: the control group without antisepetic (CK), the treatment group with 1 mL CuSO4 solution (T1), the treatment group with 5 mL CuSO4 solution (T2), and the treatment group with 0.5 mL HgCl2 solution (T3). All groups were divided into two batches: immediately analysis (I), and after 2 days analysis (II). Results showed that CuSO4 and HgCl2 significantly increased CO2 concentration, the mean CO2 concentration (Mco2) of CK (I) and CK (II) were (11.5 +/- 1.47) micromol x L(-1) and (14.38 +/- 1.59) micromol x L(-1), respectively; the Mco2 of T1 (I) and T1 (II) were (376 +/- 70) micromol x L(-1) and (448 +/- 246.83) micromol x L(-1), respectively; the Mco2 of T2 (I) and T2 (II) were (885 +/- 51.53) micromol x L(-1) and (988.83 +/- 101.96) micromol x L(-1), respectively; the Mco2 of T3 (I) and T3 (II) were (287.19 +/- 30.01) micromol x L(-1) and (331.33 +/- 22.06) micromol x L(-1), respectively. The results also showed that there was no difference in CH4 and N2O concentrations among treatments. Water samples should be analyzed as soon as possible after pretreatment. Our findings suggest that adding antiseptic may lead an increase in CO2 concentration.

  2. Evaluation of analytical techniques to determine AQUI-S(R) 20E (eugenol) concentrations in water

    Science.gov (United States)

    Meinertz, Jeffery R.; Hess, Karina R.

    2013-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The spectrophotometric method's accuracy was negatively affected when analyzing water containing fish feed. The SPE–LC method was also accurate and precise (accuracy > 86%; precision eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  3. Measuring low radium activity concentration in water with RAD7 by means of evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, Jaqueline; Marussig, Camila G.T.; Paschuk, Sergei; Zambianchi Junior, Pedro; Correa, Janine N.; Perna, Allan Felipe Nunes; Martin, Aline, E-mail: jaquelinekappke@gmail.com, E-mail: mila_garciatb@hotmail.com, E-mail: spaschuk@gmail.com, E-mail: zambianchi@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com, E-mail: allan_perna@hotmail.com, E-mail: nocamartin@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2015-07-01

    Preliminary activity measurements of low radium concentration in mineral water by using RAD7 equipment showed high values of statistical errors. Therefore, the need to develop a new protocol for measuring and proofing the evaporation test for radium measurements in water is in place. This study evaluates the possibility of using RAD7 equipment to measure Ra-226 activity in equilibrium with Rn-222 present in water samples. The technique involves evaporation process so as to increase the Ra-226 concentration in the sample in a controlled manner and thus reduce statistical errors. Two samples were compared, 10 L sample of distilled water and a 7.75 L sample of known concentration (0.1 Bq/L). The evaporation was carried out starting with different initial volumes for both samples: 500 mL, 1000 mL, 2000 mL, 4000 mL and a 250 mL sample not subject to evaporation. All samples reached a final volume of approximately 250 mL. After evaporation, the samples were stored for 30 days until secular equilibrium was achieved between Ra-226 and Rn-222. The values obtained, by using RAD7 detector, for distilled water, as expected, are near zero averaging 0.021 ± 0.016 Bq/L. The average value found in the water of known concentration was 0.099 ± 0.011 Bq/L, also close to the expected 0.1 Bq/L. The conclusion is that the application of an evaporation process is efficient and the proposed methodology is a proven alternative to decrease the statistical errors. (author)

  4. How or when samples are collected affects measured arsenic concentration in new drinking water wells.

    Science.gov (United States)

    Erickson, Melinda L; Malenda, Helen F; Berquist, Emily C

    2018-02-08

    Naturally occurring arsenic can adversely affect water quality in geologically diverse aquifers throughout the world. Chronic exposure to arsenic via drinking water is a human health concern due to risks for certain cancers, skin abnormalities, peripheral neuropathy, and other negative health effects. Statewide in Minnesota, USA, 11% of samples from new drinking water wells have arsenic concentrations exceeding 10 μg/L; in certain counties more than 35% of tested samples exceed 10 μg/L arsenic. Since 2008 Minnesota well code has required testing water from new wells for arsenic. Sample collection protocols are not specified in the well code, so among 180 well drillers there is variability in sampling methods, including sample collection point and sample collection timing. This study examines the effect of arsenic sample collection protocols on the variability of measured arsenic concentrations in water from new domestic water supply wells. Study wells were drilled between 2014-16 in three regions of Minnesota that commonly have elevated arsenic concentrations in groundwater. Variability in measured arsenic concentration at a well was reduced when samples were 1) filtered, 2) collected from household plumbing instead of from the drill rig pump, or 3) collected several months after well construction (instead of within 4 weeks of well installation). Particulates and fine aquifer sediments entrained in groundwater samples, or other artifacts of drilling disturbance, can cause undesirable variability in measurements. Establishing regulatory protocols requiring sample filtration and/or collection from household plumbing could improve the reliability of information provided to well owners and to secondary data users. This article is protected by copyright. All rights reserved.

  5. Caution needed in altering the 'optimum' fluoride concentration in drinking water.

    Science.gov (United States)

    Spencer, A John; Do, Loc G

    2016-04-01

    The US Public Health Service has finalized its recommendation relating to community water fluoridation (Federal Panel on Community Water Fluoridation, US Department of Health and Human Services, 2015). It recommends an optimal concentration of 0.7 mg/l F based on their argument that this concentration provides the best balance of protection from dental caries while limiting the risk of dental fluorosis. The rationale for this recommendation can be questioned, particularly given the contrasting etiologies and impact on the community. Uncertainty surrounds the key evidence considered by the panel. This study argues that the panel should have exercised more caution and called for further research before reducing the 'optimal' concentration of fluoride in water supplies. Up-to-date data on caries and fluorosis trend by age group or birth cohort, analyses on attributable risk for fluorosis, data on individual and population impact of caries and fluorosis, water intake over an extended period across the seasons, and the curvilinear relationship of fluoride concentration in water supplies and caries protection would have all been desirable to inform the panel, given the foreshadowing of the recommendation in late 2011. Further, a wider range of policy directions to achieve the best balance of protection from dental caries while limiting the risk of dental fluorosis are available from the international literature. Assessment of these should have been more evident. There is a public health policy responsibility to monitor water fluoridation programs so as to achieve a near maximum reduction in dental caries without unacceptable levels of dental fluorosis. However, recommendations to alter existing policy need to be cognizant of the balancing of risk and protective exposures across the entire population and potentially all ages and to be based on recent data that are purposefully collected, critically analyzed and carefully interpreted. © 2015 John Wiley & Sons A

  6. Concentration and determination of trace organic pollutants in water. [Phenols; organics; halomethanes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.C.Y.

    1976-10-01

    A method was developed for determining phenols in natural water, treated drinking water, and wastewater. They are determined by selective sorption on a macroreticular anion-exchange resin, elution with acetone-water, concentration by evaporation after extraction with methylene chloride, and measurement by gas chromatography. Techniques are given for preventing phenol loss. Common inorganic ions and many organic substances cause no interference; neutral organics that are retained by the resin can be removed by a methanol wash. The method gives accurate results for phenol, alkyl- and chloro-substituted phenols in the ppB to ppM range. Volatile compounds, as well as less volatile gas chromatographable compounds can also be determined. Resin purification, sorption columns preparation, thermal desorptions, the mini-sampler, method for analysis of real water for organics and development of analytical method are presented. Finally, a rapid method was developed for concentrating and determining halomethanes in drinking water. The halomethanes are determined by sorption on mini-samplers of macroreticular resin. The halomethanes sorbed on resin are eluted with two milliliters of methanol. Halomethanes are separated on a Tenax-GC column and determined by electron capture gas chromatography. Storage of halomethanes on the mini-sampler was studied. Real water samples were analyzed. (DLC)

  7. Application of a partial least-squares regression model to retrieve chlorophyll- a concentrations in coastal waters using hyper-spectral data

    Science.gov (United States)

    Ryan, Kimberly; Ali, Khalid

    2016-03-01

    Coastal and inland waters represent a diverse set of resources that support natural habitats and provide valuable ecosystem services to the human population. Monitoring the quality of these waters is essential to maintaining the resources they provide, and long-term monitoring may offer a better understanding of the relationship between human development and the health of these resource producers. The implementation of conventional monitoring is typically time-intensive and limited in geographic scale. Alternatively, the use of airborne and spaceborne remote sensors provides a synoptic view of water quality with better spatial coverage to more accurately identify dynamic and unique parameters. Concentrations of optically active constituents (OACs) such as suspended sediments and the phytoplankton pigment chlorophylla (CHL a), act as proxies for water quality and can be detected by optical sensors. Traditional remote sensing techniques were developed using multispectral sensors, and employ band ratio algorithms that seek to predict the concentrations of OACs in relation to water quality. In complex coastal waters, overlapping spectral signatures of OACs often confound these algorithms and reduce their predictive capacity. The objective of this study was to develop a dataset to test the predictive capabilities of partial least-squares regression, a multivariate statistical method, for hyperspectral remote sensing and in situ CHL a concentrations. This paper presents the model performance for a dataset developed in Long Bay, a ~160 km arcuate bay that spans the border between North and South Carolina. The model uses multivariate-based statistical modeling to capitalize on the spectral advantage gained by hyperspectral sensors when observing such waters. Following this approach, a multivariate-based monitoring tool for the prediction of CHL a concentrations is presented with a partial least-squares regression (PLSR) method using hyperspectral and laboratory

  8. Capillary rise simulation of saline waters of different concentrations in sandy soils

    Directory of Open Access Journals (Sweden)

    Natthawit Jitrapinate

    2016-06-01

    Full Text Available Soil salinity causes corrosion of engineering structures worldwide. The main cause of soil salinization is capillary rise of saline groundwater. Soil salinity can be mitigated once the capillary rise of saline groundwater in soils is understood. The objective of this paper is to present experimental results of capillary rising rates of different salt concentration waters in three sandy soils. Each sample comprised of a soil column 300-mm height and 50-mm in diameter steeped in a 25-mm deep saline water pool for a time period to allow for the capillary action to develop. The salinity strength varied from fresh water, EC = 2 dS/m, to medium saline (50, 100, and 150 dS/m, and to high saline water (200 dS/m. It was found that the highest rate of capillary rise occurred in medium saline waters, while the lowest is the fresh water. The very saline water has lower rate than the medium ones but higher than fresh water.

  9. Optimization of an enhanced ceramic micro-filter for concentrating E.coli in water

    Science.gov (United States)

    Zhang, Yushan; Guo, Tianyi; Xu, Changqing; Hong, Lingcheng

    2017-02-01

    Recently lower limit of detection (LOD) is necessary for rapid bacteria detection and analysis applications in clinical practices and daily life. A critical pre-conditioning step for these applications is bacterial concentration, especially for low level of pathogens. Sample volume can be largely reduced with an efficient pre-concentration process. Some approaches such as hollow-fiber ultra-filtration and electrokinetic technique have been applied to bacterial concentration. Since none of these methods can provide a concentrating method with a stable recovery efficiency, bacterial concentration still remains challenging Ceramic micro- filter can be used to concentrate the bacteria but the cross flow system keeps the bacteria in suspension. Similar harvesting bacteria using ultra-filtration showed an average recovery efficiency of 43% [1] and other studies achieved recovery rates greater than 50% [2]. In this study, an enhanced ceramic micro-filter with 0.14 μm pore size was proposed and demonstrated to optimize the concentration of E.coli. A high recovery rate (mean value >90%) and a high volumetric concentration ratio (>100) were achieved. Known quantities (104 to 106 CFU/ml) of E.coli cells were spiked to different amounts of phosphate buffered saline (0.1 to 1 L), and then concentrated to a final retentate of 5 ml to 10 ml. An average recovery efficiency of 95.3% with a standard deviation of 5.6% was achieved when the volumetric con- centration ratio was 10. No significant recovery rate loss was indicated when the volumetric concentration ratio reached up to 100. The effects of multiple parameters on E.coli recovery rate were also studied. The obtained results indicated that the optimized ceramic micro- filtration system can successfully concentrate E.coli cells in water with an average recovery rate of 90.8%.

  10. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    Science.gov (United States)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  11. Study on the Unfrozen Water Quantity of Maximally Freeze-Concentrated Solutions for Multicomponent Lyoprotectants.

    Science.gov (United States)

    Xu, Mengjie; Chen, Guangming; Zhang, Cunhai; Zhang, Shaozhi

    2017-01-01

    The concentration of maximally freeze-concentrated solutions [Formula: see text] and the corresponding glass transition temperature [Formula: see text] and ante-melting temperature [Formula: see text] of lyoprotectant solutions, are critical parameters for developing lyophilization process. Usually, the lyoprotectant solutions are multicomponent solutions composed of electrolytes, sugars, proteins, polymers, and other chemicals. In this article, the Wg(') values of several multicomponent solutions including trehalose/NaCl, bovine serum albumin/NaCl, and hydroxyethyl starch/NaCl with water were determined by differential scanning calorimetry. A linear relationship between the unfrozen water fraction Wun and the initial solute concentrations Wi was found: Wun = ∑(ai·Wi), which suggested that in the multicomponent solutions each solute could hydrate a certain amount of water ai (g water/g solute) that could not be frozen. The hypothesis was compared with more literature data. For the same solute in different solutions, variation in the fitted coefficient ai is noticed and discussed. If a "universal" value ai for each solute is adopted, both [Formula: see text] and [Formula: see text] for a multicomponent solution could be predicted if Couchman-Karasz equation is adopted for calculating glass transition temperature at the same time. The prediction discrepancies for [Formula: see text] with experimental data were less than 2°C. The finding is discussed about its molecular basis and applicability. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Distribution of biochemical constituents in the surface sediments of western coastal Bay of Bengal: Influence of river discharge and water column properties

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, B.S.K.; Sarma, V.V.S.S.; Krishna, M.S.

    of discharged water and associated biogeochemical processes in the water column. The northwest (NW) region of coastal Bay of Bengal was influenced by discharges from Ganges river while peninsular (monsoonal) rivers influenced the southwest (SW) region. The NW...

  13. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.

    Science.gov (United States)

    Cáceres-Mella, Alejandro; Talaverano, M Inmaculada; Villalobos-González, Luis; Ribalta-Pizarro, Camila; Pastenes, Claudio

    2017-08-01

    The influence of controlled water deficit on the phenolic composition and gene expression of VvLAR2, VvMYBPA1, VvMYBPA2 and VvMYB4a in Cabernet Sauvignon grape skins throughout ripening was investigated. The assay was carried out on own-rooted Vitis vinifera plants cv. Cabernet Sauvignon in a commercial vineyard from veraison until commercial harvest. Three irrigation regimes were used from veraison until harvest with the following treatments: T1: 3.6 mm day -1 ; T2: 1.8 mm day -1 and T3: 0.3 mm day -1 . The content of total phenols and total anthocyanins in grape skins increased during ripening, but water deficit did not produce differences among treatments in the total anthocyanin concentration. Proanthocyanidins (PAs) decreased throughout ripening, although approximately 25 days after veraison (DAV), their content slightly increased. This effect was more pronounced in the most restrictive treatment (T3). A similar pattern was observed in the transcript abundance of VvLAR2, VvMYBPA1 and VvMYB4a. PAs separation revealed differences in concentration but not in the proportion among fractions among the irrigation treatments. Additionally, controlled water deficit increased the mean degree of polymerization and the flavan-3-ol polymeric concentration in grape skins throughout ripening but with no effects on the extent of PAs galloylation. Our results suggest that the water status of Cabernet Sauvignon grapevines affects the gene expression for proteins involved in the synthesis of PAs, increasing their concentration and also their composition, with further evidence for the efficacy of a convenient, controlled water deficit strategy for grapevine cultivation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. INNOVATION CONSTITUENT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    O. Zhylinska

    2014-06-01

    Full Text Available The paper substantiates an innovation constituent of sustainable development along with environmental, social and economic pillars of the concept. Determining of implementation details of innovation activity by J. Schumpeter is a theoretical prerequisite to understanding of innovation constituent. An innovator-entrepreneur provides a customer with an information image of 'new combinations.' The image is created by identifying customer's future needs, which outline business aims, subject and appropriate means for creating the innovation products. However, consumer choice is largely motivated by values and specific rules of behavior. The rules of consumer society that in the industrial age become the motive, morality and institution, did not consider the reproductive capabilities of the environment. This disagreement was previously presented in The Limits to Growth by the Club of Rome and was reflected in the concept of sustainable development, which gained immense significance after the report of the World Commission on Environment and Development in 1987 (Our Common Future. The study highlights importance for establishment of new social values that motivate innovators to change their thinking, comprehend their responsibility not only to consumers but also to the environment and future generations. The Rio+20 Corporate Sustainability Forum: Innovation and Collaboration for the Future We want, organized by the UN Global Compact, demonstrates the interest of entrepreneurs in practical implementation of the concept of sustainable development, through an effective innovation activity. The paper summarizes management tools for implementing business commitments to action in priority areas of ensuring sustainable development: Energy & Climate, Water & Ecosystems, Agriculture & Food, Economics & Finance of Sustainable Development, Social Development, and Urbanization & Cities. Main stages of changes in companies are outlined for making responsible

  15. Reducing surface water total and methyl mercury concentrations and bioavailability using a coagulation-wetland system

    Science.gov (United States)

    Kraus, T. E.; Fleck, J.; Henneberry, Y. K.; Stumpner, E. B.; Krabbenhoft, D. P.; Bachand, P.; Randall, P.

    2013-12-01

    With the recent passage of laws regulating concentrations and loads of mercury (Hg) in surface waters, there is a need to develop management practices that will reduce the export of Hg from both point and non-point sources. Coagulation with metal based salts to remove particles and dissolved organic matter (DOM) from solution is a practice commonly employed by drinking water utilities. Because dissolved Hg is associated with particles and DOM, it follows that Hg should also be removed during the coagulation process and end up associated with the organo-metal precipitate, termed flocculate (floc). The effectiveness of iron- and aluminum-based coagulants for removing both inorganic and methyl mercury (IHg and MeHg, respectively) from solution was demonstrated in laboratory studies conducted on agricultural drainage waters of the Sacramento-San Joaquin Delta: dissolved concentrations of MeHg decreased by 80% while IHg decreased by 97% following coagulation. To test the field application of this technology, samples were collected from the inflows and outflows of wetland treatment cells constructed in the central Delta of California. This replicated field experiment includes three replicates each of three inflow waters treatments: (1) iron sulfate addition, (2) polyaluminum chloride addition, and (3) untreated controls. Water entering and exiting the nine treatment cells was sampled approximately monthly over a 1-year period for total Hg and MeHg in both the dissolved and particulate aqueous phases. Initial results confirm that coagulant addition is removing Hg (total and methyl, particulate and dissolved) from solution and sequestering it in the floc. Seasonal effects on DOM concentration and other factors appear to effect whether passage through the wetland cells alters surface water dissolved organic carbon (DOC) and Hg concentrations. Related studies will examine whether the presence of the floc affects the production and fate of MeHg within the wetland cells. If

  16. Serum concentrations of haptoglobin and serum amyloid A in water buffaloes (Bubalus bubalis with abomasal ulcer

    Directory of Open Access Journals (Sweden)

    Javad Tajik

    2012-09-01

    Full Text Available To evaluate the serum concentrations of haptoglobin (Hp and serum amyloid A (SAA in water buffaloes with abomasal ulcers, the abomasums of 100 randomly selected water buffaloes were examined after slaughter. Type I abomasal ulcers were found in 56 out of 100 buffaloes. Serum concentrations of Hp and SAA were measured. There was no significant difference between affected and non-affected buffaloes in the serum concentrations of Hp and SAA. The serum concentrations of Hp and SAA had no significant correlation with age and the serum SAA revealed no significant correlation with the number of abomasal ulcers. A significant correlation was found between the serum Hp and the number of abomasal ulcers (r =0.29, p = 0.04. There was no significant difference in the serum concentrations of Hp and SAA between buffaloes with different ulcer locations in the abomasums. Although more work on a larger number of animals is required in this area, it seems that the measurement of the serum Hp can be used to predict the abundance of type I abomasal ulcers.

  17. Elevated manganese concentrations in drinking water may be beneficial for fetal survival.

    Directory of Open Access Journals (Sweden)

    Syed Moshfiqur Rahman

    Full Text Available BACKGROUND: Elevated exposure to the essential element manganese (Mn can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. METHODS: In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women's drinking water. RESULTS: A total of 1,875 women were included in the analysis of spontaneous abortions (n=158 and 1,887 women in the perinatal mortality analysis (n=70. Water Mn ranged from 3.0-6,550 µg/L (median=217 µg/L. The adjusted odds ratio (OR for spontaneous abortion was 0.65 (95% CI 0.43-0.99 in the highest water Mn tertile (median=1,292 µg/L as compared to the lowest tertile (median=56 µg/L. The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28-1.71, which increased to 0.78 (95% CI 0.29-2.08 after adjustment for BMI and place of delivery (home/health facility; n=1,648. CONCLUSIONS: Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element's role in antioxidant defense.

  18. Statistical summary of selected physical, chemical, and microbial characteristics, and estimates of constituent loads in urban stormwater, Maricopa County, Arizona

    Science.gov (United States)

    Lopes, T.J.; Fossum, K.D.; Phillips, J.V.; Monical, J.E.

    1995-01-01

    Stormwater and streamflow in the Phoenix, Arizona, area were monitored to determine the physical, chemical, and microbial characteristics of storm- water from areas having different land uses; to describe the characteristics of streamflow in a river that receives urban stormwater; and to estimate constituent loads in stormwater from unmonitored areas in Maricopa County, Arizona. Land use affects urban stormwater chemistry mostly because the percentage of impervious area controls the suspended-solids concentrations and varies with the type of land use. Urban activities also seem to concentrate cadmium, lead, and zinc in sediments. Urban stormwater had larger concentrations of chemical oxygen demand and biological oxygen demand, oil and grease, and higher counts of fecal bacteria than streamflow and could degrade the quality of the Salt River. Most regression equations for estimating constituent loads require three explanatory variables (total rainfall, drainage area, and per- centage of impervious area) and had standard errors that were from 65 to 266 percent. Localized areas that appear to contribute a large proportion of the constituent loads typically have 40 percent or more impervious area and are associated with industrial, commercial, and high-density residential land uses. The use of the mean value of the event-mean constituent concentrations measured in stormwater may be the best way of estimating constituent concentrations.

  19. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  20. Two-step recrystallization of water in concentrated aqueous solution of poly(ethylene glycol).

    Science.gov (United States)

    Gemmei-Ide, Makoto; Motonaga, Tetsuya; Kasai, Ryosuke; Kitano, Hiromi

    2013-02-21

    Crystallization behavior of water in a concentrated aqueous solution of poly(ethylene glycol) (PEG) with a water content of 37.5 wt % was investigated by temperature variable mid-infrared (mid-IR) spectroscopy in a temperature range of 298-170 K. The mid-IR spectrum of water at 298 K showed that a large water cluster was not formed and that most of the water molecules were associated with the PEG chain. Ice formation, however, occurred as found in previous studies by differential scanning calorimetory. Ice formations were grouped into three types: crystallization at 231 K during cooling, that at 198 K during heating, and that at 210 K during heating. The latter two were just recrystallization. These ice formations were the direct transition from hydration species to ice without condensation regardless of crystallization or recrystallization. This means that the recrystallized water in the present system was not generated from low-density amorphous solid water. At a low cooling rate, nearly complete crystallization at 231 K during cooling and no recrystallization were observed. At a high cooling rate, no crystallization and two-step recrystallization at 198 and 210 K were observed. The former and latter recrystallizations were found to be generated from water associated with the PEG chains with ttg (the sequence -O-CH(2)-CH(2)-O- having a trans (t) conformation about the -C-O- bond and a gauche (g) conformation about the -C-C- bond) and random conformations, respectively. These results indicate that recrystallizable water does not have a single specific water structure.

  1. Water stress and soil compaction impacts on clover growth and nutrient concentration

    Directory of Open Access Journals (Sweden)

    Abdolrahman Barzegar

    2016-04-01

    Full Text Available Soil compaction and insufficient water supply generally decrease crop performance. The effects of varying compaction and water availability levels on the growth of Berseem or Egyptian clover (Trifolium alexandrimum L., water use efficiency and nutrient concentration were investigated under greenhouse conditions. Treatments consisted of three soil compaction levels (bulk density of 1.2, 1.4 and 1.6 Mg m-3, and four water availability treatments (40%, 60%, 80% and 100% of soil field capacity in a factorial combination. Soil compaction had a significant effect on water use efficiency with the highest (0.32 g l-1 at bulk density of 1.4 Mg m-3 and the lowest at the other bulk densities. Soil compaction had no significant effects on leaf area, shoot, root and total dry masses. Water stress resulted in lower leaf area (from 231 to 153 mm2 pot-1, and the stem lengths were 7.6 cm and 4.3 cm for 80% and 60% of field capacity, respectively. Likewise, the highest (0.47 g pot-1 and lowest (0.33 g pot-1 total dry masses were observed at 80% and 60% field capacities. Water use efficiencies were 0.32 and 0.20 g l-1 for 100% and 60% field capacities, respectively. The accumulation of N, P and K per unit length of roots increased with soil compaction. As the water supply increased, the root and shoot dry weight and water use efficiency increased. Treatment of 100% field capacity resulted in the highest accumulation of N, P and K. Results indicated that the treatment of 80% field capacity and bulk density of 1.4 Mg m-3 provided the best conditions for clover performance, among the applied treatments. This study suggests that sufficient water supply can moderate the adverse effects of soil compaction on clover performance.

  2. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  3. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Lanthanide Complexes that Respond to Changes in Cyanide Concentration in Water.

    Science.gov (United States)

    Routledge, Jack D; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A; Kenwright, Alan M; Beer, Paul D; Aldridge, Simon; Faulkner, Stephen

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Heavy metal concentrations in water, sediment and fish from Izmit Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Yigit, V.; Ozbal, H.; Ceritoglu, A.; Mueftuegil, N.

    1984-01-01

    Mercury, cadmium and lead levels in water, sediment and fish samples from Izmit Bay, Turkey have been determined. Sampling and analysis methods are described. Variations of heavy metal concentrations from different sampling stations are discussed. Results indicate that the levels of mercury and cadmium were highest in the vicinity of a chlor-alkali plant while the highest concentration of lead was near a metallic pipe factory. The amounts of heavy metals found in the shoreline sediment samples were similar to those found in fish species from the bay.

  6. Development of Model for the Prediction of Ions Concentration in Soil Water

    Directory of Open Access Journals (Sweden)

    O. D. ADENIYI

    2005-01-01

    Full Text Available This paper proposes a mathematical model for the prediction of different ion concentration in soil water used for irrigational purposes in Niger State of Nigeria. The various ions considered are sodium (Na+, potassium (K+, calcium (Ca2+, nitrogen in form of nitrate (NO3-, and phosphorus in form of phosphate (PO43-. The model was simulated for different concentration readings using different adsorption fractions. The results obtained compared favourably with that of the experimental, though with slight variations which were attributed to some of the basic assumptions used during the process of model development.

  7. Heavy Metal Concentration in Drinking Water Sources Affected by Dredge Mine Operations of a Gold Mining Company in Ghana

    OpenAIRE

    Apori Ntiforo; Maxwell Anim-Gyampo; Frank K. Nyame

    2012-01-01

    The study assesses concentration of certain heavy metals in water sources affected by the operations of defunct dredged gold mine operations more than a decade to evaluate its quality as a source of drinking water. The concentration of heavy metals were determined from nine (9) surface water sampling points and three (3) boreholes in the Awusu-River basin in comparison with their maximum contaminant levels to assess their suitability as drinking water sources. Results obtained from the analys...

  8. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  9. The Nutrient Concentration in Drainage Water in Fertilizer Experiments in Skriveri

    OpenAIRE

    Vigovskis, Janis; Jermuss, Aivars; Sarkanbarde, Daina; Svarta, Agrita

    2015-01-01

    The paper describes the influence of long term (more than 30 years) fertilizer application to nitrogen, phosphorus, potassium, calcium and magnesium leaching through subsurface drainage in small experimental catchment. The effect of crop and cultivation practice on nutrient concentrations in drainage water is analyzed. This paper presents leaching data during 2011-2013 when spring oilseed rape (OSR), spring barley (SB) and perennial grasses (GC) were grown.The research has been carried out at...

  10. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration.

    OpenAIRE

    Heerklotz, H; Seelig, J.

    2000-01-01

    The membrane/water partition coefficients, K, of 15 electrically neutral (non-charged or zwitterionic) detergents were measured with phospholipid vesicles by using isothermal titration calorimetry, and were compared to the corresponding critical micellar concentrations, cmc. The detergents measured were oligo(ethylene oxide) alkyl ethers (C(m)EO(n) with m = 10/n = 3, 7 and m = 12/n = 3.8); alkylglucosides (octyl, decyl); alkylmaltosides (octyl, decyl, dodecyl); diheptanoylphosphatidylcholine;...

  11. Simulation of high concentration of iron in dense shelf water in the Okhotsk Sea

    OpenAIRE

    Uchimoto, Keisuke; Nakamura, Tomohiro; Nishioka, Jun; MITSUDERA, Humio; MISUMI, Kazuhiro; Tsumune, Daisuke; WAKATSUCHI, Masaaki

    2014-01-01

    An ocean general circulation model coupled with a simple biogeochemical model was developed to simulate iron circulation in and around the Sea of Okhotsk. The model has two external sources of iron: dust iron at the sea surface and sedimentary iron at the seabed shallower than 300 m. The model represented characteristic features reasonably well, such as high iron concentration in the dense shelf water (DSW) and its mixing, which extends southward in the intermediate layer from the northwester...

  12. Threat-Sensitive Behavioral Responses to Concentrations of Water-Borne Cues from Predation

    Science.gov (United States)

    Kesavaraju, Banugopan; Damal, Kavitha; Juliano, Steven A.

    2007-01-01

    Aquatic organisms often detect predators via water-borne chemical cues, and respond by showing reduced activity. Prey responses may be correlated with the concentration of predation cues, which would result in graded antipredator behavioral responses that adjust potentially costly behavioral changes to levels that are commensurate with the risk of predation. Larvae of the predatory mosquito Toxorhynchites rutilus prey upon other container-dwelling insects, including larvae of the mosquito Ochlerotatus triseriatus. Previous work has established that O. triseriatus reduce movement, foraging, and time below the surface, and increase the frequency of resting at the surface, in the presence of water-borne cues from predation by T. rutilus. We tested whether these responses by O. triseriatus are threat sensitive by recording behavior of fourth instar larvae in two runs of an experiment in which we created a series of concentrations (100, 10, 1, 0.1, and 0.01% and 100, 70, 40, 20, and 10%) of water that had held either O. triseriatus larvae alone (control) or a T. rutilus larva feeding on O. triseriatus (predation). We also tested whether associated effects on time spent feeding are threat sensitive by determining whether frequencies of filtering or browsing are also related to concentration of cues. The frequencies of resting and surface declined, whereas frequency of filtering (but not browsing) increased more rapidly with a decrease in concentration of predation cues compared with control cues. Thus, O. triseriatus shows a threat sensitive behavioral response to water-borne cues from this predator, adjusting its degree of behavioral response to the apparent risk of predation. PMID:17440601

  13. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Emergency Do Not Consume/do Not Use concentrations for potassium permanganate in drinking water.

    Science.gov (United States)

    Willhite, C C; Bhat, V S; Ball, G L; McLellan, C J

    2013-03-01

    Over the past decade, regulatory authorities and water purveyors have become increasingly concerned with accidental or intentional adulteration of municipal drinking water. Emergency response guidelines, such as the 'Do Not Consume' or use concentration limits derived herein, can be used to notify the public in such cases. Potassium permanganate (KMnO(4)) is used to control iron concentrations and to reduce the levels of nuisance materials that affect odor or taste of finished drinking water. Manganese (Mn) is recognized an essential nutrient, permanganate (MnO4 (-)) and manganous (Mn(+2)) ions are caustic, and the acute toxicity of KMnO(4) is defined by its oxidant/irritant properties and by the toxicity of Mn. Ingestion of small amounts (4-20 mg/kg) of aqueous KMnO(4) solutions that are above 200 mg/L causes gastrointestinal distress, while bolus ingestion has caused respiratory arrest following coagulative necrosis and hemorrhage in the esophagus, stomach, or liver. Dilute KMnO(4) solutions (1-100 mg/L) are used as a topical antiseptics and astringents, but >1:5000 (200 mg/L) dilutions can irritate or discolor sensitive mucous membranes and direct skin or ocular contact with concentrated KMnO(4) can perforate tissues. Based on clinical experience with 200 mg/L KMnO(4), a Do Not Consume concentration of 7 mg/L KMnO(4) (equivalent to 2 mg Mn/L) is recommended. Recognizing limited empirical data from which to calculate an ocular reference value, a skin contact 'Do Not Use' concentration of 30 mg Mn/L is recommended based on the skin irritation in some patients after a 10-min contact with 100 mg KMnO4/L.

  15. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential

    KAUST Repository

    Naidu, Gayathri

    2016-11-29

    Membrane distillation (MD) was evaluated as a treatment option of wastewater reverse osmosis concentrate (WWROC) discharged from wastewater reclamation plants (WRPs). A direct contact MD (DCMD), at obtaining 85% water recovery of WWROC showed only 13–15% flux decline and produced good quality permeate (10–15 µS/cm, 99% ion rejection) at moderate feed temperature of 55 °C. Prevalent calcium carbonate (CaCO3) deposition on the MD membrane occurred in treating WWROC at elevated concentrations. The combination of low salinity and loose CaCO3 adhesion on the membrane did not significantly contribute to DCMD flux decline. Meanwhile, high organic content in WWROC (58–60 mg/L) resulted in a significant membrane hydrophobicity reduction (70% lower water contact angle than virgin membrane) attributed to low molecular weight organic adhesion onto the MD membrane. Granular activated carbon (GAC) pretreatment helped in reducing organic contents of WWROC by 46–50%, and adsorbed a range of hydrophobic and hydrophilic micropollutants. This ensured high quality water production by MD (micropollutants-free) and enhanced its reuse potential. The MD concentrated WWROC was suitable for selective ion precipitation, promising a near zero liquid discharge in WRPs.

  16. [Standardization of a method for concentration and detection of enteric viruses from drinking water].

    Science.gov (United States)

    Peláez, Dioselina; Rodríguez, Johanna Alexandra; Rocha, Elva Lucía; Rey, Gloria Janeth

    2010-01-01

    Enteric viruses have been implicated in acute diarrheal disease, food-borne disease, hepatitis A and meningitis outbreaks, in which water was the vehicle of transmission. A concentration method was standardized for the detection of enteric viruses in drinking water. Twenty liters of water were concentrated to 6 ml by filtration and tangential ultrafiltration. Viral solutions of 20 L each were prepared at 1, 10, 50 and 100 TCID50 of Sabin poliovirus type 1 as positive controls. Viral particles were recovered by tissue culture and detected by conventional polymerase chain reaction (PCR), according to the international standards recommended by the Enterovirus Laboratory at the Centers for Disease Control and Prevention, Atlanta, GA. All positive controls showed cytopathic effect on L20B and RD cells and were amplified by conventional PCR directly from samples. Negative controls did not show any amplification or viral cytopathic effect. Tangential ultrafiltration for concentrating viruses proved to be a fast, efficient recovery and reproducible. It has the advantage of allowing the detection (at the 1 TCID50 level) and identification of viruses by RT-PCR and the demonstration of viral infectivity by tissue culture.

  17. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    Science.gov (United States)

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  18. Evaluation of analytical techniques to determine AQUI-S® 20E (eugenol) concentrations in water

    Science.gov (United States)

    Meinertz, Jeffery R.; Hess, Karina R.

    2014-01-01

    There is a critical need in U.S. public aquaculture and fishery management programs for an immediate-release sedative, i.e. a compound that can be safely and effectively used to sedate fish and subsequently, allow for their immediate release. AQUI-S® 20E (10% active ingredient, eugenol; any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government) is being pursued for U.S. approval as an immediate-release sedative. As part of the approval process, data describing animal safety and efficacy are needed. Essential to conducting studies that generate those data, is a method to accurately and precisely determine AQUI-S® 20E concentrations in exposure baths. Spectrophotometric and solid phase extraction (SPE)–high pressure liquid chromatography (LC) methods were developed and evaluated as methods to determine AQUI-S® 20E (eugenol) concentrations in water, methods that could be applied to any situation where eugenol was being evaluated as a fish sedative. The spectrophotometric method was accurate and precise (accuracy, > 87%; precision, 86%; precision eugenol concentrations in solutions of 50 to 1000 mg/L AQUI-S® 20E made with LC grade water and water with varying pH and hardness. The SPE–LC method was influenced to a lesser degree by the presence of fish feed indicating greater specificity for eugenol.

  19. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    isolate contamination in the sample bottle, the automatic sampler and splitter, and the filtration system. Significant contamination caused excessive concentrations of dissolved chloride, alkalinity, and biochemical oxygen demand. The level of contamination may be large enough to affect data for water samples in which these analytes are present at low concentration. Further investigation is being done to determine the source of contamination and take measures to minimize its effect on the sampling. A preliminary regression analysis was done for the rural sites using data collected during water years 1989-93. Loads of suspended solids and total phosphorus in stormflow were regressed against various precipitation-related measures. The results indicate that, for most sites, changes in constituent load on the order of 40 to 50 percent could be detected with a statistical test. For two sites, the change would have to be 60 to 70 percent to be detected. A detailed comparison of snowmelt runoff and rainfall stormflow in urban and rural areas was done using data collected during water years 1985-93. For the rural sites where statistically significant differences were found between constituent loads in snowmelt and storm runoff, the loads of suspended solids and total phosphorus in snowmelt runoff were greater than those in storm runoff. For the urban sites where statistically significant differences were found between snowmelt and storm runoff, the loads of suspended solids and total phosphorus in storm runoff were greater than those in snowmelt runoff. The importance of including snowmelt runoff in designing and analyzing the effects of BMP's on streamwater quality, particularly in rural areas, is emphasized by these results.

  20. Point source pollution and variability of nitrate concentrations in water from shallow aquifers

    Science.gov (United States)

    Nemčić-Jurec, Jasna; Jazbec, Anamarija

    2017-06-01

    Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from nitrate concentrations ( F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of 20 m ( F = 10.6; p nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant ( F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.

  1. Cloud optical thickness and liquid water path – does the k coefficient vary with droplet concentration?

    Directory of Open Access Journals (Sweden)

    O. Geoffroy

    2011-09-01

    Full Text Available Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models.

  2. Timescales of spherulite crystallization in obsidian inferred from water concentration profiles

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Jonathan M.; Beck, Pierre; Tuffen, Hugh; Nichols, Alexander R.L.; Dingwell, Donald B.; Martin, Michael C

    2008-06-25

    We determined the kinetics of spherulite growth in obsidians from Krafla volcano, Iceland. We measured water concentration profiles around spherulites in obsidian by synchrotron Fourier transform infrared spectroscopy. The distribution of OH? groups surrounding spherulites decreases exponentially away from the spherulite-glass border, reflecting expulsion of water during crystallization of an anhydrous paragenesis (plagioclase + SiO2 + clinopyroxene + magnetite). This pattern is controlled by a balance between the growth rate of the spherulites and the diffusivity of hydrous solute in the rhyolitic melt. We modeled advective and diffusive transport of the water away from the growing spherulites by numerically solving the diffusion equation with a moving boundary. Numerical models fit the natural data best when a small amount of post-growth diffusion is incorporated in the model. Comparisons between models and data constrain the average spherulite growth rates for different temperatures and highlight size-dependent growth among a small population of spherulites.

  3. A Study of the Concentration Dependent Water Diffusivity in Polymer using Magnetic Resonance Imaging

    Science.gov (United States)

    Lee, Howon; Lu, Jiaxi; Georgiadis, John; Fang, Nicholas

    2013-03-01

    Hydrogel allows solvent molecules to migrate in and out of the polymer network, often in response to various environmental stimuli such as temperature and pH, resulting in significant volumetric change. Kinetics of penetrants in polymeric network determines time dependent behavior of hydrogel. However, swelling deformation resulting from the solvent uptake in turn significantly changes diffusivity of solvent, and this strong coupling makes it challenging to study dynamic behavior of hydrogels. Here we study concentration dependent diffusivity of water in poly(ethylene glycol) diacrylate (PEGDA) hydrogel using magnetic resonance imaging (MRI). Projection micro-stereolithography is used to fabricate gel samples in which a gradient of water volume fraction occurs. In situ measurement using MRI provides quantitative relationship between diffusivity and volume fraction of water in the gel. This result will help better understand interstitial diffusion behavior of solvent in polymers, which has great implication in board areas such as soft matter mechanics, drug delivery, and tissue engineering.

  4. Determination of radon concentration in water using RAD7 with RAD H{sub 2}O accessories

    Energy Technology Data Exchange (ETDEWEB)

    Malik, M. F. I. [Science and Engineering Research Centre (SERC), Universiti Sains Malaysia, Seri Ampangan Nibong Tebal 14300 Penang (Malaysia); Rabaiee, N. A.; Jaafar, M. S. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    In the last decade, the radon issue has become one of the major problems of radiation protection. Radon exposure occurs when using water for showering, washing dishes, cooking and drinking water. RAD7 and Rad H20 accessories were used in order to measure radon concentration in water sample. In this study, four types of water were concerns which are reverse osmosis (drinking water), mineral water, tap water and well water. Reverse osmosis (drinking water) and mineral water were bought from the nearest supermarket while tap water and well water were taken from selected areas of Pulau Pinang and Kedah. Total 20 samples were taken with 5 samples for each type of water. The measured radon concentration ranged from 2.9±2.9 to 79.5±17 pCi/L, 2.9±2.9 to 67.8±16 pCi/L, 15.97±7 to 144.25±24 pCi/L and 374.89±37 to 6409.03±130 pCi/L in reverse osmosis (drinking water), mineral water, tap water and well water. Well water has the highest radon compared to others. It was due to their geological element such as granite. Results for all types of water are presented and compared with maximum contamination limit (MCL) recommended by United State Environmental Protection Agency (USEPA) which is 300pCi/L. Reverse osmosis water, mineral water and tap water were fall below MCL. However, well water was exceeded maximum level that was recommended. Thus, these findings were suggested that an action should be taken to reduce radon concentration level in well water as well as reduce a health risk towards the public.

  5. Uranium concentration in drinking water from small-scale water supplies in Schleswig-Holstein, Germany; Urankonzentration im Trinkwasser aus Hausbrunnen in Schleswig-Holstein

    Energy Technology Data Exchange (ETDEWEB)

    Ostendorp, G. [Landesamt fuer soziale Dienste, Kiel (Germany). Dezernat Umweltbezogener Gesundheitsschutz

    2015-07-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 μg/lL, the 95th percentile was 2.5 μg/L. The maximum level was 14 μg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur.

  6. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Variation in glyphosate and AMPA concentrations of surface water and groundwater

    Science.gov (United States)

    Caprile, Ana Clara; Aparicio, Virginia; Sasal, Carolina; Andriulo, Enrique

    2017-04-01

    The presence of pesticides in various environmental matrices indicate that the soil's ability to function as a bio-physical-chemical reactor is declining. As it operates as an interface between air and water, it causes a negative impact on these two vital resources. Currently, the pampa agriculture is simplified with a marked tendency towards spring-summer crops, where the main crops are RR soybean and corn. Herbicides are neither retained nor degraded in the soil, which results in polluted groundwater and surface waters. The objectives of this study were: a) to verify the presence of glyphosate and aminomethylphosphonic acid (AMPA) in Pergamino stream (a typical representative of the most productive agricultural region of Argentina) under different land use and to detect if in the detections there was a space-time pattern, and b) to verify the detection of these molecules in groundwater of the upper same basin under exclusively rural land use. Surface stream was sampling in six sites (five under rural land use and one under urban-industrial land use) at a rate of one sample by spring, summer and winter seasons (2010-2013, 54 total samples). Groundwater glyphosate and AMPA concentrations were determined in 24 piezometers constructed at two positions of the landscape, across the groundwater flow direction, sampled at two sampling dates (2010 and 2012, 45 total samples). In surface water, glyphosate and AMPA were detected in 54 and 69% of the samples analyzed, respectively. The median concentrations were 0.9 and 0.8 µg L-1 for glyphosate and AMPA and maximal concentrations 258 and 5865 µg L-1, respectively. The sampling site under urban-industrial land use had abnormally high concentrations of glyphosate in the spring (attributed to point pollution), a fact that not allowed to see differences in the remaining sampling times under different land uses. AMPA concentrations under urban-industrial land use were high and higher than rural land use in 3 studied seasons

  8. Effects of magnetic treated water on serum concentration parameters and fat thickness

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-02-01

    Full Text Available The goal of this study was to evaluate the effect of magnetic water on blood cells counts, biochemical profile, blood gas level and subcutaneous fat thickness of Jersey cows. This research was carried out at Agência Paulista de Tecnologia dos Agronegócios - APTA, SP. Twenty six Jersey cows from the APTA were allotted into two groups: control (n=13, drinking regular water and the group consuming magnetic water (n=13. The animals were lactating around 150 days and pregnant around 60 days. Blood samples were collected from caudal auricular artery and jugular vein. The water treatment had no effect on hemogram (p>0.05. Higher pH (7.448 vs 7.407 mmHg, p<0.05 and lower PaCO2 (37.97 vs 42.47 mmHg, p<0.05 levels were detected in arterial blood of the group drinking magnetic water. The concentration of Na ion (138.8 vs 145.5 mmol/l, p<0.05 and serum triglycerides (10.4 vs 22.6 mg/dL, p<0.05 were significantly lower, resulting in smaller osmolality (273.30 vs 280.99 mOsm/kg, p<0.05 and subcutaneous fat thickness (0.2 vs 1.3 mm, p<0.05. In summary, the water treatment, evaluated in this study, may have decreased the risk of some metabolic disorders, such as acidosis and high serum concentration of Na and carbon dioxide.

  9. Farmer driven national monitoring of nitrogen concentrations in drainage water in Denmark

    Science.gov (United States)

    Piil, Kristoffer; Lemming, Camilla; Kolind Hvid, Søren; Knudsen, Leif

    2014-05-01

    Field drains are often considered to short circuit the hydrological cycle in agricultural catchments and lead to an increased risk of nitrogen loss to the environment. Because of increased regulation of agricultural practices due to catchment management plans, resulting from the implementation of the water frame directive, Danish farmers pushed for a large scale monitoring of nitrogen loss from field drains. Therefore, the knowledge centre for agriculture, Denmark, organized a three year campaign where farmers and local agricultural advisory centres collected water samples from field drains three to five times during the winter season. Samples were analysed for nitrate and total nitrogen. Combined, more than 600 drains were monitored over the three years. During the first two years of monitoring, average winter concentrations of total nitrogen ranged from 0.1 mg N L-1 to 31.1 mg N L-1, and the fraction of total nitrogen present as nitrate ranged from 0% to 100%. This variation is much larger than what is observed in the Danish national monitoring and assessment programme, which monitors only a few drains in selected catchments. Statistical analysis revealed that drainage water nitrogen concentrations were significantly correlated to the cropping system and the landscape type (high ground/lowlands/raised seabed) in which the monitored fields were situated. The average total nitrogen concentration was more than 2 mg N L-1 lower on raised seabed than on high ground, and the average fraction of total nitrogen present as nitrate was more than 20% lower. This indicates that substantial nitrate reduction occurs at or above the drain depth on raised sea flats, in particular in the north of Denmark. This inherent nitrogen retention on raised seabed is not taken into account in the current environmental regulation, nor in the first generation catchment management plans. The monitoring program demonstrated large variation in nitrogen concentrations in drainage water, in

  10. Pre-concentration of Pb, Cd, and Ni in river water using back extraction method

    Science.gov (United States)

    Koesmawati, T. A.; Moelyo, M.; Rizqiani, A.; Tanuwidjaja, S.

    2017-03-01

    Dissolved heavy metals such as Pb, Cd and Ni in natural water can be the source of harmful contaminant for human health and aquatic life in aquatic systems. Particular treatment is needed for low concentration of metals in water samples using Flame Atomic Absorption Spectrophotometer (FAAS) measurement. The sample was collected from Cikapundung River in Siliwangi and Dayeuhkolot, Bandung. Back-extraction procedure was used as an alternative method for pre-concentration in trace metal analysis. Ammonium Pyrrolidine Dithiocarbamate (APDC) and Diethylammonium Diethyldithiocarbamate (DDDC) in Methyl Isobuthyl Ketone (MIBK) were used as chelating agent. In this study, the application of back-extraction procedure using APDC/DDDC chelating agent in MIBK resulted the detection limit of 2.2 μg/L for Pb; 1.6 μg/L for Cd; and 1.0 μg/L for Ni. The result showed that sensitivity was increased 4 times for Pb, 6 times for Ni, and none for Cd. The highest concentration of Pb in Cikapundung River was found 8.0 μg/L. All Ni concentration in water samples were under limit of detection. Method validation was conducted in this study and found that the value of correlation coefficient (r) for Pb, Cd and Ni was 0.9995, 0.9960 and 0.9994, respectively. The recovery value for Pb, Cd and Ni were 112.0, 81.5 and 85.9%, respectively in Cikapundung River, and 119.0, 83.5 and 85.9 %, respectively, in groundwater samples. The value of Relative Standard Deviation (RSD) for Pb, Cd and Ni in Cikapundung River were 2.01, 2.15 and 6.40%, respectively. On the other hand, the value of RSD of Pb, Cd and Ni in groundwater were 2.70, 3.30 and 7.69%, respectively. In conclusion, back-extraction method can be applied as pre-concentration for low concentration of Pb and Ni in river water samples.

  11. Mercury concentrations in water, and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in Boise and Snake Rivers, Idaho and Oregon, 2013

    Science.gov (United States)

    MacCoy, Dorene E.

    2014-01-01

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to

  12. New method for the direct determination of dissolved Fe(III) concentration in acid mine waters

    Science.gov (United States)

    To, T.B.; Nordstrom, D.K.; Cunningham, K.M.; Ball, J.W.; McCleskey, R.B.

    1999-01-01

    A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II) >> Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes in Fe reduction-oxidation distribution. Complexed Fe(II) is cleanly removed using a silica-based, reversed-phase adsorbent, yielding excellent isolation of the Fe(III) complex. Iron(III) concentration is measured colorimetrically or by graphite furnace atomic absorption spectrometry (GFAAS). The method requires inexpensive commercial reagents and simple procedures that can be used in the field. Calcium(II), Ni(II), Pb(II), AI(III), Zn(II), and Cd(II) cause insignificant colorimetric interferences for most acid mine waters. Waters containing >20 mg of Cu/L could cause a colorimetric interference and should be measured by GFAAS. Cobalt(II) and Cr(III) interfere if their molar ratios to Fe(III) exceed 24 and 5, respectively. Iron(II) interferes when its concentration exceeds the capacity of the complexing ligand (14 mg/L). Because of the GFAAS elemental specificity, only Fe(II) is a potential interferent in the GFAAS technique. The method detection limit is 2 ??g/L (40 nM) using GFAAS and 20 ??g/L (0.4 ??M) by colorimetry.A new method for direct determination of dissolved Fe(III) in acid mine water has been developed. In most present methods, Fe(III) is determined by computing the difference between total dissolved Fe and dissolved Fe(II). For acid mine waters, frequently Fe(II)???Fe(III); thus, accuracy and precision are considerably improved by determining Fe(III) concentration directly. The new method utilizes two selective ligands to stabilize Fe(III) and Fe(II), thereby preventing changes

  13. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    Science.gov (United States)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.

    2017-01-01

    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  14. Influence of Typha domingensis in the removal of high P concentrations from water.

    Science.gov (United States)

    Di Luca, G A; Maine, M A; Mufarrege, M M; Hadad, H R; Bonetto, C A

    2015-11-01

    A greenhouse experiment was conducted to evaluate the removal of high P concentration from water by vegetated and unvegetated wetlands. Reactors containing 4 kg of sediment and two plants of Typha domingensis (vegetated treatments) and reactors containing only sediment (unvegetated treatments) were arranged. Reactors were dosed with 100 and 500 mg L(-1) of P-PO4. The studied concentrations tried to simulate an accidental dump. Controls without P addition were also disposed. Water samples were collected periodically and analyzed for phosphorus. Sediment (0-3 (surface), 3-7 (medium) and 7-10 cm (deep)) and plant samples (roots, rhizomes, submerged leaves and aerial leaves) were collected at the beginning and at end of the experiment and were analyzed for total phosphorus. P fractionation was performed in the surface sediment layer. Relative growth rate (RGR) was calculated in each treatment considering initial and final plant height. P was efficiently removed from water in both, vegetated and unvegetated treatments. However, the major P removal was achieved in vegetated treatments. T. domingensis has a high capacity to tolerate and accumulate high P concentrations, especially in leaves, causing P accumulation in sediment to be significantly low in vegetated treatments. P accumulation was produced in the surface sediment layer (0-3 cm) in all treatments, mainly retained as iron-bound P. Present results point the large removal capacity of phosphate of systems planted with T. domingensis. Therefore T. domingensis is suitable for phytoremediation practice, being capable to tolerate high P concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. DESIGN COMPARISON OF EXPERIMENTAL STORM WATER DETENTION SYSTEMS TREATING CONCENTRATED ROAD RUNOFF

    Directory of Open Access Journals (Sweden)

    H. Nanbakhsh

    2005-07-01

    Full Text Available Urban drainage systems are vital infrastructure assets, which protect our cities from flooding and transmission of waterborne diseases. The objective of this research was to assess the treatment efficiencies of experimental stormwater detention (extended storage systems receiving concentrated runoff that had been primary treated by filtration with different aggregates. Five detention systems with different packing order arrangements of aggregates and plant roots were used in the system to test the effects of gravel, sand, ecosoil, block paving and turf on the water treatment performance. Inflow water, polluted by road runoff, was collected by manual abstraction with a 2 litter beaker from randomly selected gully pots the near by main roads. Several parameters such as BOD5, NO3, PO4, NH4, SS, TS, DO, pH, EC, NTU and temperature were examined based on standard method book. Results showed that concentrations of biochemical oxygen demand (BOD5 in contrast to suspended solids (SS were frequently reduced to below international secondary wastewater treatment standards. The BOD and SS concentrations within the outflow from the planted system compared to the unplanted gravel and sand systems were similar. However, BOD in the outflow of system 5 was lower than other systems. The denitrification process was not completed. This resulted in higher outflow than inflow nitrate-nitrogen concentrations. An analysis of variance indicated that some systems were similar in terms of most of their treatment performance variables including BOD and SS. It follows that there is no need to use additional aggregates with high adsorption capacities in the primary treatment stage from the water quality point of view.

  16. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  17. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  18. Measuring and predicting environmental concentrations of pesticides in air after application to paddy water systems.

    Science.gov (United States)

    Ferrari, Federico; Karpouzas, Dimitrios G; Trevisan, Marco; Capri, Ettore

    2005-05-01

    In this study, the volatilization of five pesticides applied to an artificial flooded paddy field was assessed using the theoretical profile shape (TPS) and the integrate horizontal flux (IHF) techniques. The dataset derived was utilized to improve the volatilization routine of the rice water quality (RICEWQ) model. The masses of pesticides ethoprophos, procymidone, metalaxyl, chlorpyrifos, and chlorpyrifos methyl volatilized from paddy water and their concentrations in paddy water were determined for a period of 6 d after application. The highest and lowest volatilization losses were observed for chlorpyrifos and metalaxyl, respectively, accounting for 3.3% and 0.03% of their initially applied amount. A rapid pesticide dissipation was evident in paddy water during the study period. The RICEWQ model was used to simulate the fate of pesticides in the artificial paddy system. The Kvolat, an empiric coefficient used by the model as an input parameter, was calculated for all pesticides through model calibration. RICEWQ simulated well the fate of pesticides in paddy water. A significant regression correlation between Henry's law constant (Hk) and Kvolat of the studied compounds was established which could facilitate the parametrization of the model for describing pesticide volatilization.

  19. Seasonal variations of metals and other mineral constituents of ...

    African Journals Online (AJOL)

    Seasonal variations of metals and other mineral constituents of River Yobe. AA Audu, SM Rabi'u. Abstract. Water samples were collected from River Yobe during the rainy and dry seasons at Nguru, Gashua,Azbak, Dumsai and Wachakal. The samples were analyzed for their mineral constituents including Zn, Pb, Fe, Mn ...

  20. [Assessment of human health exposure connected with consumption of water characterized with elevated concentration level of silver released from jug water filter systems].

    Science.gov (United States)

    Swiecicka, Dorota; Garboś, Sławomir

    2010-01-01

    Silver usually exists in tap water at concentrations which are not connected with human health risk and therefore maximum admissible concentration level of this element was not established in Directive 98/83/EC concerning quality of water intended for human consumption. Disinfection of water based on generation of silver or silver compounds by electrochemical process could led to the increase of concentration of this metal in disinfected water up to level of 0.050 mg/l or higher although it should be underlined that this type of technology is not used in Poland. However in the case of application of bacteriostatic agents based on silver salts, e.g., in jug water filter systems consist of cartridges with activated carbon modified by silver compounds, this element may migrate into purified and further consumed water (applied also for preparation of coffee, tea, soup and dilution of concentrated juices) in amounts which provide essential part of daily dose of silver taken orally by human. In this work the results showing the concentration levels of silver released into purified water in the case of application of jug water filter systems with cartridges consist of activated carbon modified with silver compounds and ion exchanger were presented. Study was performed according to British Standard BS 8427:2004 which describes requirements in respect to the performance of jug water filter systems used for the domestic treatment of drinking water The concentrations of silver in challenge water purified by jug water filter systems were determined using validated method of determination of silver by inductively coupled plasma optical emission spectrometry technique (ICP-OES). In accordance to type of jug water filter systems applied grand mean of silver concentrations achieved during whole cycle of exploitations of product (including possibility of filtrations of 100 l of water) were in the range 0.0022 mg/l-0.0175 mg/l, which is not provided essential human health risk.

  1. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2017-11-29

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  2. Structure stability and water retention near saturation characteristics as affected by soil texture, and polyacrylamide concentration

    Science.gov (United States)

    Mamedov, Amrakh I.; Ekberli, Imanverdi A.; Ozturk, Hasan S.; Wagner, Larry E.; Norton, Darrell L.; Levy, Guy J.

    2017-04-01

    Studying the effects of soil properties and amendment application on soil structure stability is important for the development of effective soil management and conservation practices for sustaining semi-arid soil and water quality under climate change scenarios. Two sets of experiments were conducted to evaluate the effects of soil texture and soil amendment polyacrylamide (PAM) rate on soil structural stability expressed in terms of near saturation soil water retention and aggregate stability using the high energy (0-5 J kg-1) moisture characteristic (HEMC) method. Contribution of (i) soil type were assessed using 30 soil samples varying in texture from sandy to clay taken from long term cultivated lands, covering a range of crop and land management practices, and (ii) anionic PAM concentration (0, 10, 25, 50, 100 & 200 mg l-1) were tested on selected loam and clay soils. The water retention curves of slow and fast wetted soil samples were characterized by a modified van Genuchten (1980) model that provides (i) model parameters α and n, which represent the location of the inflection point and the steepness of the S-shaped water retention curves, and (ii) a composite soil structure index (SI =VDP/MS; VDP-volume of drainable pores, MS-modal suction). The studied treatments had, generally, considerable effects on the shape of the water retention curves (α and n). Soil type, PAM concentration and their interaction had significantly effects on the stability indices (SI, VDP and MS) and the model parameters (α and n). The SI and α increased, and ndecreased exponentially with the increase in soil clay content and PAM concentration, but the shape of curves were soil texture and management dependent, since predominant changes were observed in the various range of studied macropores (pore size > 60 μm). An exponential type of relationship existed between SI and α and n. Effect of PAM contribution and wetting condition was more pronounced in the loam soil at low PAM

  3. Spatial pattern of hormone and antibiotic concentrations in surface waters in Delaware

    Science.gov (United States)

    Vaicunas, R.; Inamdar, S. P.; Dutta, S.; Aga, D.; Zimmerman, L. R.

    2011-12-01

    Water quality surveys of the U.S. have confirmed the presence of hormones and antibiotics in some surface waters. Although the reported concentrations of these substances are extremely low, there is substantial concern about their effect on aquatic species. For example, chronic exposure to estradiol (E2β) concentrations as low as 40 ng/L have been shown to cause endocrine disruption in fish. Furthermore, there is potential for contaminants to enter our drinking supply. Significant sources of hormones and antibiotics include discharge from concentrated animal feeding operations (CAFOs) and wastewater treatment plants as well as runoff from agricultural land receiving application of animal manure. Since Sussex County, Delaware is one of the leading poultry producing counties in the nation, and many farmers in the state use poultry litter as fertilizer for their crops, it is critical to study the concentrations of contaminants in surface waters. Fifty surface water (streams, lakes, and ponds) sampling locations throughout the state of Delaware were chosen based on DNREC (Delaware Department of Natural Resources and Environmental Control) data. Locations with the highest nitrogen and phosphorus levels were assumed to be associated with agriculture and wastewater sources and therefore were likely to be contaminated with hormones and antibiotics. The first set of sampling occurred in April representing high-flow conditions, and the second set will occur in September representing low-flow conditions. Water samples will be screened through the cost-effective enzyme-linked immunosorbent assay (ELISA) method followed by more rigorous analyses of selected samples using liquid chromatography-mass spectrometry (LC/MS/MS). ELISA screening includes estradiol (E2β), sulfamethazine and triclosan, while LC/MS/MS will quantify both free and conjugated forms of estrone (E1), estradiol (E2β), estriol (E3), as well as selected sulfa and tetracycline antibiotics. Initial ELISA results

  4. A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters

    Directory of Open Access Journals (Sweden)

    José L. Stech

    2013-09-01

    Full Text Available We evaluated the accuracy and sensitivity of six previously published reflectance based algorithms to retrieve Phycocyanin (PC concentration in inland waters. We used field radiometric and pigment data obtained from two study sites located in the United States and Brazil. All the algorithms targeted the PC absorption feature observed in the water reflectance spectra between 600 and 625 nm. We evaluated the influence of chlorophyll-a (chl-a absorption on the performance of these algorithms in two contrasting environments with very low and very high cyanobacteria content. All algorithms performed well in low to moderate PC concentrations and showed signs of saturation or decreased sensitivity for high PC concentration with a nonlinear trend. MM09 was found to be the most accurate algorithm overall with a RMSE of 15.675%. We also evaluated the use of these algorithms with the simulated spectral bands of two hyperspectral space borne sensors including Hyperion and Compact High-Resolution Imaging Spectrometer (CHRIS and a hyperspectral air borne sensor, Hyperspectral Infrared Imager (HyspIRI. Results showed that the sensitivity for chl-a of PC retrieval algorithms for Hyperion simulated data were less noticable than using the spectral bands of CHRIS; HyspIRI results show that SC00 could be used for this sensor with low chl-a influence. This review of reflectance based algorithms can be used to select the optimal approach in studies involving cyanobacteria monitoring through optical remote sensing techniques.

  5. Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waters.

    Science.gov (United States)

    Borrell, A; Aguilar, A; Tornero, V; Drago, M

    2014-07-01

    The Mediterranean is a semi-enclosed sea subject to high mercury (Hg) pollution from both natural and anthropogenic sources. With the objective of discerning temporal changes in marine Hg pollution in the oceanic waters of the northwestern Mediterranean Sea, we analysed liver and kidney from striped dolphins (Stenella coeruleoalba) collected during 2007-2009 and compared them with previous results from a similar sample from 1990-1993. The effect of body length and sex on tissue Hg concentrations was investigated to ensure an unbiased comparison between the periods. The Hg concentrations did not show significant sex-related differences in any tissue or period but were correlated positively with body length. Using body length as a covariate, Hg concentrations in liver and kidney were higher in 1990-1993 than in 2007-2009. This result suggests that measures to reduce emissions in Western European countries have been effective in reducing mercury pollution in Mediterranean open waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Determining concentrations of 2-bromoallyl alcohol and dibromopropene in ground water using quantitative methods

    Science.gov (United States)

    Panshin, Sandra Y.

    1997-01-01

    A method for determining levels of 2-bromoallyl alcohol and 2,3-dibromopropene from ground-water samples using liquid/liquid extraction followed by gas chromatography/mass spectrometry is described. Analytes were extracted from the water using three aliquots of dichloromethane. The aliquots were combined and reduced in volume by rotary evaporation followed by evaporation using a nitrogen stream. The extracts were analyzed by capillary-column gas chromatography/mass spectrometry in the full-scan mode. Estimated method detection limits were 30 nanograms per liter for 2-bromoallyl alcohol and 10 nanograms per liter for 2,3-dibromopropene. Recoveries were determined by spiking three matrices at two concentration levels (0.540 and 5.40 micrograms per liter for 2-bromoallyl alcohol; and 0.534 and 5.34micro-grams per liter for dibromopropene). For seven replicates of each matrix at the high concentration level, the mean percent recoveries ranged from 43.9 to 64.9 percent for 2-bromoallyl alcohol, and from 87.5 to 99.3 percent for dibromopropene. At the low concentration level, the mean percent recoveries ranged from 43.8 to 95.2 percent for 2-bromoallyl alcohol, and from 71.3 to 84.9 percent for dibromopropene.

  7. Concentration of chlorophenols in water to dialkyated catinonic surfactant-silica gel admicelles.

    Science.gov (United States)

    Saitoh, Tohru; Kondo, Taizo; Hiraide, Masataka

    2007-09-14

    Chlorophenols including monochlorophenol, dichlorophenol, trichlorophenol, tetrachlorophenol, and pentachlorophenol in water were extracted into dialkylated cationic surfactant-silica gel admicelles. The dialkylated cationic surfactants such as didecyldimethylammonium bromide (DC10) and didodedyldimethylammonium bromide (DC12) sorbed on silica gel surfaces to form admicelles at pH 9. Approximately 200mg of DC10 was quantitatively sorbed on 1g of silica gel. The sorption further increased by further addition of DC10. This is in contrast to the fact that the maximum sorption of mono-alkylated cetyltrimethyammonium chloride (CTAC) was only ca. 100mg. Based on the fluorescent spectra of a molecular probe, N-phenyl-1-naphthylamine, DC10- and DC12-silica gel admicelles were more hydrophobic than CTAC-silica gel admicelles. The extents of the extraction of chlorophenols into DC10-silica gel admicelles were greater than those into CTAC-silica gel admicelles. However, the extractions to DC12-silica gel admicelles were insufficient due to leakage of DC12 vesicles. Consequently, DC10-silica gel admicelles were the most adequate for concentrating chlorophenols in water. An admicelle column was prepared by passing aqueous buffer solution of DC10 through a Bond Elut Jr. silica gel solid-phase extraction cartridge. It was successfully applied to the 500-fold concentration of chlorophenols including hydrophilic mono-substituted chlorophenol in water samples prior to their HPLC analysis.

  8. Comparison of filters for concentrating microbial indicators and pathogens in lake-water samples

    Science.gov (United States)

    Francy, Donna S.; Stelzer, Erin A.; Brady, Amie M.G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vincent; Lindquist, H.D. Alan

    2013-01-01

    Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.

  9. Forsterite Carbonation in Wet-scCO2: Dependence on Adsorbed Water Concentration

    Science.gov (United States)

    Loring, J.; Benezeth, P.; Qafoku, O.; Thompson, C.; Schaef, T.; Bonneville, A.; McGrail, P.; Felmy, A.; Rosso, K.

    2013-12-01

    Capturing and storing CO2 in basaltic formations is one of the most promising options for mitigating atmospheric CO2 emissions resulting from the burning of fossil fuels. These geologic reservoirs have high reactive potential for CO2-mineral trapping due to an abundance of divalent-cation containing silicates, such as forsterite (Mg2SiO4). Recent studies have shown that carbonation of these silicates under wet scCO2 conditions, e. g. encountered near a CO2 injection well, proceeds along a different pathway and is more effective than in CO2-saturated aqueous fluids. The presence of an adsorbed water film on the forsterite surface seems to be key to reactivity towards carbonation. In this study, we employed in situ high pressure IR spectroscopy to investigate the dependence of adsorbed water film thickness on forsterite carbonation chemistry. Post reaction ex situ SEM, TEM, TGA, XRD, and NMR measurements will also be discussed. Several IR titrations were performed of forsterite with water at 50 °C and 90 bar scCO2. Aliquots of water were titrated at 4-hour reaction-time increments. Once a desired total water concentration was reached, data were collected for about another 30 hours. One titration involved 10 additions, which corresponds to 6.8 monolayers of adsorbed water. Clearly, a carbonate was precipitating, and its spectral signature matched magnesite. Another titration involved 8 aliquots, or up to 4.4 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 4.4 monolayers showed an increase and then a plateau. We are currently unsure of the identity of the carbonate that precipitated, but it could be an amorphous anhydrous phase or magnesite crystals with dimensions of only several nanometers. A third titration only involved 3 additions, or up to 1.6 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 1.6 monolayers

  10. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  11. Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker.

    Science.gov (United States)

    Oliveira, V F; Silva, E A; Zaidan, L B P; Carvalho, M A M

    2013-05-01

    Elevated [CO2 ] is suggested to mitigate the negative effects of water stress in plants; however responses vary among species. Fructans are recognised as protective compounds against drought and other stresses, as well as having a role as reserve carbohydrates. We analysed the combined effects of elevated [CO2 ] and water deficit on fructan metabolism in the Cerrado species Viguiera discolor Baker. Plants were cultivated for 18 days in open-top chambers (OTC) under ambient (∼380 ppm), and high (∼760 ppm) [CO2 ]. In each OTC, plants were submitted to three treatments: (i) daily watering (control), (ii) withholding water (WS) for 18 days and (iii) re-watering (RW) on day 11. Analyses were performed at time 0 and days 5, 8, 11, 15 and 18. High [CO2 ] increased photosynthesis in control plants and increased water use efficiency in WS plants. The decline in soil water content was more distinct in WS 760 (WS under 760 ppm), although the leaf and tuberous root water status was similar to WS 380 plants (WS under 380 ppm). Regarding fructan active enzymes, 1-SST activity decreased in WS plants in both CO2 concentrations, a result consistent with the decline in photosynthesis and, consequently, in substrate availability. Under WS and both [CO2 ] treatments, 1-FFT and 1-FEH seemed to act in combination to generate osmotically active compounds and thus overcome water deficit. The proportion of hexoses to sucrose, 1-kestose and nystose (SKN) was higher in WS plants. In WS 760, this increase was higher than in WS 380, and was not accompanied by decreases in SKN at the beginning of the treatment, as observed in WS 380 plants. These results suggest that the higher [CO2 ] in the atmosphere contributed to maintain, for a longer period, the pool of hexoses and of low DP fructans, favouring the maintenance of the water status and plant survival under drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Phase 1 summaries of radionuclide concentration data for vegetation, river water, drinking water, and fish. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Denham, D.H.; Dirkes, R.L.; Hanf, R.W.; Poston, T.M.; Thiede, M.E.; Woodruff, R.K.

    1993-06-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at the Hanford Site since 1944. As part of the HEDR Project, the Environmental Monitoring Data Task (Task 05) staff assemble, evaluate, and summarize key historical measurements of radionuclide concentrations in the environment as a result of Hanford operations. The scope of work performed during Phase I included initiating the search, recovery, and inventory of environmental reports. Summaries of the environmental monitoring data that were recovered and evaluated are presented for specific periods of interest. These periods include vegetation monitoring data (primarily sagebrush) for the years 1945 through 1947, Columbia River water and drinking water monitoring data for the years 1963 through 1966, and fish monitoring data for the years 1964 through 1966. Concern was limited to those radionuclides identified as the most likely major contributors to the dose potentially received by the public during the times of interest: phosphorous-32, copper-64, zinc-65, arsenic-76, and neptunium-239 in Columbia River fish and drinking water taken from the river, and iodine-131 in vegetation. This report documents the achievement of the Phase I objectives of the Environmental Monitoring Data Task.

  13. PRELIMINARY PHYTOCHEMICAL CONSTITUENTS AND ...

    African Journals Online (AJOL)

    userpc

    extract show the presence of amino acids, protein and glycosides while methanol and water extracts ... forests for fuel wood production and in front of .... Phytochemical Screening of Albizia lebbeck Aqueous Leaf Extract. Extracts. Phytochemicals. Petroleum ether. Methanol. Water. Alkaloids. _. +. _. Glycosides. +. _. _.

  14. Pregnancy Outcome in a Multi-Generational Rat Bioassay of Drinking Water Concentrates in the Four Lab Study

    Science.gov (United States)

    To address concerns raised by epidemiological studies, we conducted a multigenerational reproductive toxicity study in rats using a “whole” mixture of drinking water disinfection by-products (DBPs). Raw water was concentrated ~130 fold, chlorinated, and provided as drinking water...

  15. Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, van der Y.; Geer, van F.C.; Rooij, de G.H.; Torfs, P.J.J.F.; Broers, H.P.

    2010-01-01

    For the evaluation of action programs to reduce surface water pollution, water authorities invest heavily in water quality monitoring. However, sampling frequencies are generally insufficient to capture the dynamical behavior of solute concentrations. For this study, we used on-site equipment that

  16. Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Geer, F.C. van; Rooij, G.H. de; Torfs, P.; Broers, H.P.

    2010-01-01

    For the evaluation of action programs to reduce surface water pollution, water authorities invest heavily in water quality monitoring. However, sampling frequencies are generally insufficient to capture the dynamical behavior of solute concentrations. For this study, we used on-site

  17. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  18. Substrate turnover at low carbon concentrations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    utilisation and bacterial growth at low nutrient conditions in a model distribution system. The model system consisted of two loops in series, where flow rate and retention time were controlled independently. Spiking the drinking water of the model system with two different environmentally realistic......Water quality changes caused by microbial activity in the distribution network can cause serious problems. Reducing the amount of microbial available substrate may be an effective way to control bacterial aftergrowth. The purpose of the present study was to study the kinetics of substrate...... concentrations of carbon allowed for a close monitoring of the kinetics of substrate turnover (less than 10 μg C/L 14C-benzoic acid was added). The mineralisation of benzoic acid was rapid and could be modelled by a no-growth Monod expression using a maximum degradation rate of 0.59 μg C/L/h and a half...

  19. Preliminary assessment of arsenic concentration in a spring water area, iron quadrangle, Minas Gerais Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Magalhaes, Camila Lucia M.R., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Laboratorio de Ativacao Neutronica; Uemura, George, E-mail: george@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Meio Ambiente; Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute, Department of Environmental Sciences, Group for Radiochemistry and Radioecology, Ljubljana (Slovenia); Deschamps, Maria Eleonora, E-mail: leonora.deschamps@meioambiente.mg.gov.br [FEAM, Fundacao Estadual do Meio Ambiente. Universidade FUMEC, Belo Horizonte, MG (Brazil); Isaias, Rosy Mary; Salino, Alexandre, E-mail: rosy@icb.ufmg.br, E-mail: salino@icb.ufmg.br [Universidade Federal de Minas Gerais, Departamento de Botanica, UFMG, Belo Horizonte, MG (Brazil); Magalhaes, Fernando, E-mail: camila@bonsaimorrovelho.com.br [Instituto Superior de Ciencias da Saude, Curso Superior de Ciencias Biologicas, Belo Horizonte, MG (Brazil)

    2011-07-01

    The attention to environmental exposure to arsenic is increasing in the worldwide. In this scenario, a project is being developed in Santana do Morro, Iron Quadrangle, Minas Gerais, region well known due to natural and anthropogenic occurrence of arsenic. This proposal has several objectives; one of them is to start a procedure of phyto remediation in laboratory aiming at future riparian forests restoration. The main concern is the preservation of water resource and consequently the health of the inhabitants. The study place is close to a water spring. One sampling was carried out, collecting plants, soil and sediment. The Neutron Activation Analysis, k{sub 0}-method, was applied to determine the elemental concentration, using the TRIGA Mark I IPR-R1 reactor, located at CDTN/CNEN. In this paper, the results are discussed. (author)

  20. Counting at low concentrations: the statistical challenges of verifying ballast water discharge standards

    Science.gov (United States)

    Frazier, Melanie; Miller, A. Whitman; Lee, Henry; Reusser, Deborah A.

    2013-01-01

    Discharge from the ballast tanks of ships is one of the primary vectors of nonindigenous species in marine environments. To mitigate this environmental and economic threat, international, national, and state entities are establishing regulations to limit the concentration of living organisms that may be discharged from the ballast tanks of ships. The proposed discharge standards have ranged from zero detectable organisms to 3. If standard sampling methods are used, verifying whether ballast discharge complies with these stringent standards will be challenging due to the inherent stochasticity of sampling. Furthermore, at low concentrations, very large volumes of water must be sampled to find enough organisms to accurately estimate concentration. Despite these challenges, adequate sampling protocols comprise a critical aspect of establishing standards because they help define the actual risk level associated with a standard. A standard that appears very stringent may be effectively lax if it is paired with an inadequate sampling protocol. We describe some of the statistical issues associated with sampling at low concentrations to help regulators understand the uncertainties of sampling as well as to inform the development of sampling protocols that ensure discharge standards are adequately implemented.

  1. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    Science.gov (United States)

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  2. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    Science.gov (United States)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P0.05), and the quadratic effects of copper ion concentration were significant ( P0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  3. Technical note: Water vapour concentration and flux measurements with PTR-MS

    Directory of Open Access Journals (Sweden)

    C. Ammann

    2006-01-01

    Full Text Available The most direct approach for measuring the exchange of biogenic volatile organic compounds between terrestrial ecosystems and the atmosphere is the eddy covariance technique. It has been applied several times in the last few years using fast response proton-transfer-reaction mass spectrometry (PTR-MS. We present an independent validation of this technique by applying it to measure the water vapour flux in comparison to a common reference system comprising an infra-red gas analyser (IRGA. Water vapour was detected in the PTR-MS at mass 37 (atomic mass units corresponding to the cluster ion H3O+·H2O. During a five-week field campaign at a grassland site, we obtained a non-linear but stable calibration function between the mass 37 signal and the reference water vapour concentration. With a correction of the high-frequency damping loss based on empirical ogive analysis, the eddy covariance water vapour flux obtained with the PTR-MS showed a very good agreement with the flux of the reference system. The application of the empirical ogive method for high-frequency correction led to significantly better results than using a correction based on theoretical spectral transfer functions. This finding is attributed to adsorption effects on the tube walls that are presently not included in the theoretical correction approach. The proposed high-frequency correction method can also be used for other trace gases with different adsorption characteristics.

  4. Measurement of the tritium concentration in the fractionated distillate from environmental water samples.

    Science.gov (United States)

    Atkinson, Robert; Eddy, Teresa; Kuhne, Wendy; Jannik, Tim; Brandl, Alexander

    2014-09-01

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The current study investigates the relative change in vapor pressure isotope effect in the course of the distillation process, distinguishing it from and extending previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.04 ± 0.036, 1.05 ± 0.026, and 1.07 ± 0.038, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples where the first 5 mL are discarded, the tritium concentration could be underestimated by 4-7%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  6. Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters.

    Science.gov (United States)

    Hylander, L D; Pinto, F N; Guimarães, J R; Meili, M; Oliveira, L J; de Castro e Silva, E

    2000-10-16

    The tropical flood plain Pantanal is one of the world's largest wetlands and a wildlife sanctuary. Mercury (Hg) emissions from some upstream gold mining areas and recent findings of high natural Hg levels in tropical oxisols motivated studies on the Hg cycle in the Pantanal. A survey was made on total Hg in the most consumed piscivorous fish species from rivers and floodplain lakes in the north (Cáceres and Barão de Melgaço) and in the south part of Alto Pantanal (around the confluence of the Cuiabá and Paraguai rivers). Samples were collected in both the rainy and dry seasons (March and August 1998) and included piranha (Serrasalmus spp.), and catfish (Pseudoplatystoma coruscans, pintado, and Pseudoplatystoma fasciatum, cachara or surubim). There was only a small spatial variation in Hg concentration of the 185 analyzed fish samples from the 200 x 200 km large investigation area, and 90% contained total Hg concentration below the safety limit for regular fish consumption (500 ng g(-1)). Concentration above this limit was found in both Pseudoplatystoma and Serrasalmus samples from the Baia Siá Mariana, the only acid soft-water lake included in this study, during both the rainy and dry seasons. Concentration above this limit was also found in fish outside Baia Siá Mariana during the dry season, especially in Rio Cuiabá in the region of Barão de Melgaço. The seasonal effect may be connected with decreasing water volumes and changing habitat during the dry season. The results indicate that fertile women should restrict their consumption of piscivorous fishes from the Rio Cuiabá basin during the dry season. Measures should be implanted to avoid a further deterioration of fish Hg levels.

  7. Interrelationships between Fish Tissue Mercury Concentrations and Water Quality for South Dakota Natural Lakes and Impoundments

    Science.gov (United States)

    Chipps, Steven R.; Stetler, Larry; Stone, James J.; McCutcheon, Cindy M.

    2011-01-01

    The purpose of this study was to determine whether water quality parameters commonly associated with primary productivity may be used to predict the susceptibility of a specific water body to exceed proposed fish consumption advisory limitation of 0.3 mg kg−1. South Dakota currently has nine lakes and impoundments that exceed fish tissue mercury advisory limits of 1.0 mg kg−1 total mercury, far exceeding US Environmental Protection Agency and Food and Drug Administration 0.3 mg kg−1 consumption criteria. Previous studies suggest that increased aquatic productivity may mitigate the effects of biological production and subsequent uptake of methyl mercury through bio-dilution; however, it is uncertain whether these trends may exist within highly alkaline and highly productive aquatic conditions common to South Dakota lakes and impoundments. Water quality parameters and fish tissue mercury data for northern pike and walleye were collected and assessed using existing South Dakota Department of Environment and Natural Resources and Game Fish and Parks data. The data was initially screened using both parametric linear regression and non-parametric Mann–Whitney rank sum comparisons and further assessed using binary logistic regression and stepwise logistic regression methodology. Three separate phosphorus measurements (total, total dissolved, and Trophic State Index) and pH were determined to significantly correlate with increased mercury concentrations for the northern pike-in-impoundments model. However, phosphorus surprisingly was not a strong predictor for the remaining scenarios modeled. For the northern pike-in-natural lakes models, alkalinity was the most significant water quality parameter predicting increased mercury concentrations. Mercury concentrations for the walleye-in-natural lakes models were further influenced by pH and alkalinity. The water quality and fish tissue mercury interrelationships determined within this study suggest aquatic

  8. [Variation of nitrogen and phosphorus concentration in water-sediment system and influence of overlying water on the algae growth].

    Science.gov (United States)

    Lu, Shao-yong; Jin, Xiang-can; Guo, Jian-ning; Sheng, Li

    2007-10-01

    The effect of biosidal treatment of initial sediment, addition of inhibitor and addition of phosphorus on the transform of nitrogen and phosphorus in the sediment-water simulative system were studied. S. quadricaudain was cultured in overlying waters took from the above experiment sets when the above experiment completed. The result indicated that, biosidal treatment enhanced the concentration of TP while there was no obvious effect on N. The TP, DTP and TN concentrations were closely between inhibitor addition set and the control set in the sediment-water simulative system but the content of NO3(-)-N of the set with inhibitor addition reached 19.2 mg x L(-1), which was much higher than that of the control set. The sediment significantly adsorbed the P added to the system, and the content of TP decreased when the system reached balance. Algae biomass of the biosidal treatment set was higher than that of the control set, and the main cause was sterilizer leaded to higher concentration of TP of the biosidal treatment set. The highest Algae biomass of the group with inhibitor (224.5 x 10(4) unit x L(-1)) was much higher than that of the control set (26 x 10(4) unit x L(-1)), and that was 5-10 times than that of other sets (sterilized set 22.5 x 10(4) unit x L(-1), set with P added 38.5 x 10(4) uni x L(-1)). Inhibitor restrained the microorganism from using some nutrition which was important to alga's growth. At the beginning, the addition of P had no remarkable effect on the alga growth, but along with the experiment, the alga of the P addition set adapted to the environment and algae biomass exceed that of the control set. The increase of biological bioavailable phosphorus of sediment in biosidal treatment set and addition of inhibitor sets were caused by the increase of algae biomass and thus the increase of liable organic phosphorus.

  9. PHOTOCHEMICAL PRODUCTION OF REACTIVE OXYGEN SPECIES BY CONSTITUENTS OF COLORED DISSOLVED ORGANIC MATTER AND COASTAL RIVER WATERS IN THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    Using a previously developed method to measure OH production, formation rates were obtained for several water systems. Employing an amino-nitroxide probe and DMSO, an actionspectrum for the product consistent with the production of OH by quinone moieties within humic material...

  10. Evaluation of Military Field-Water Quality. Volume 2. Constituents of Military Concern from Natural and Anthropogenic Sources. Part 1. Organic Chemical Contaminants

    Science.gov (United States)

    1988-01-01

    2, Pt. 1 20. Cordero, A., B. Chacon, and A. Rodriguez, " Contaminacion del Rio Bermudez, Alajuela," Anron. CostaLT. 3, 109-113 (1979). 21. Krasner, S... Mexico ," Mar. Chem. 7, 1-16 (1978). SAUE8O Sauer, T. C., Jr., "Volatile Liquid Hydrocarbons in Waters of the Gulf of Mexico and Caribbean Sea," Limnol

  11. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  12. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    Full Text Available Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv. Crop geometry and management emulated field conditions. In two wet (WS and two dry (DS seasons, final aboveground dry weight (agdw was measured. At 390 ppmv [CO2] (current ambient level, agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE, increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv, 719 mm (390 ppmv, 928 mm (780 ppmv and 803 mm (1560 ppmv. With increasing [CO2], crop water use efficiency (WUE gradually increased from 1.59 g kg-1 (195 ppmv to 2.88 g kg-1 (1560 ppmv. Transpiration efficiency (TE measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  13. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.

    Science.gov (United States)

    Pressman, Jonathan G; McCurry, Daniel L; Parvez, Shahid; Rice, Glenn E; Teuschler, Linda K; Miltner, Richard J; Speth, Thomas F

    2012-10-15

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking water research has been limited because the selected NOM sources are atypical of most drinking water sources. The purpose of this research was to demonstrate that reconstituted NOM from a lyophilized reverse-osmosis (RO) concentrate of a typical drinking water source closely represents DBP formation in the original NOM. A preliminary experiment assessed DBP formation kinetics and yields in concentrated NOM, which demonstrated that chlorine decays faster in concentrate, in some cases leading to altered DBP speciation. Potential changes in NOM reactivity caused by lyophilization were evaluated by chlorination of lyophilized and reconstituted NOM, its parent RO concentrate, and the source water. Bromide lost during RO concentration was replaced by adding potassium bromide prior to chlorination. Although total measured DBP formation tended to decrease slightly and unidentified halogenated organic formation tended to increase slightly as a result of RO concentration, the changes associated with lyophilization were minor. In lyophilized NOM reconstituted back to source water TOC levels and then chlorinated, the concentrations of 19 of 21 measured DBPs, constituting 96% of the total identified DBP mass, were statistically indistinguishable from those in the chlorinated source water. Furthermore, the concentrations of 16 of 21 DBPs in lyophilized NOM reconstituted back to the RO concentrate TOC levels, constituting 86% DBP mass, were statistically indistinguishable from those in the RO concentrate. This study suggests that lyophilization can be used to preserve concentrated NOM without substantially altering the precursors to DBP formation. Published by Elsevier Ltd.

  14. Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    Science.gov (United States)

    Bahn, G. S.

    1978-01-01

    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.

  15. Evaluation of Military Field-Water Quality. Volume 2. Constituents of Military Concern from Natural and Anthropogenic Sources. Part 3. Inorganic Chemicals and Physical Properties

    Science.gov (United States)

    1988-01-01

    district of New Mexico , concentrations exceeding 10 mg/L have been measured. 39 Uranium also forms so!uble complexes with many inorganic substances...to the onset of rickets , a crippling disease that is characterized by an excessive proliferation of bone tissue. 4 8 It is unlikely that military...Environmental Protection Agency, Washington, DC, 170 35-61-OPA (1985). 39. Longmire, P., New Mexico Department of Environmental Improvement, private

  16. Marine Plastic Pollution in Waters around Australia: Characteristics, Concentrations, and Pathways

    Science.gov (United States)

    Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments (“microplastics”, median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km−2, and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km−2. These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton. PMID:24312224

  17. The Effect of Water Pressure and Chlorine Concentration on Microbiological Characteristics of Spray Washed Broiler Carcasses

    Directory of Open Access Journals (Sweden)

    Pissol AD

    2013-08-01

    Full Text Available The objective of this study was to evaluate the efficiency of water pressure and concentration of dichloromethane after the evisceration system under the fecal decontamination of chicken carcasse  surfaces with and without apparent contamination. From a total of  322 carcasses, 50% were intentionally added chicken droppings in an area of more  than 2 cm2 and the rest of carcasses were kept without fecal inoculation. Escherichia coli and Enterobacteriaceae counting was carried out in samples immediately after the inoculation (initial counting and after different treatments. Treatments consisted of water with different pressures (1.5,  3.5 and  5.5 Kgf/cm2, and the addition of a echnological adjuvant (dichloride at the concentrations of 0, 5 and 10 ppm. The results were validated using  40 chicken carcasses for each treatment by means of a  22  factorial statistical design. The results showed no significant differences (P

  18. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.

    Science.gov (United States)

    Hussain, Mir Zaman; Vanloocke, Andy; Siebers, Matthew H; Ruiz-Vera, Ursula M; Cody Markelz, R J; Leakey, Andrew D B; Ort, Donald R; Bernacchi, Carl J

    2013-05-01

    Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere-atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2 -saturated at current CO2 concentrations ([CO2 ]) and the primary response of maize to elevated [CO2 ] is decreased stomatal conductance (gs ). If maize photosynthesis is not stimulated in elevated [CO2 ], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative to that previously reported in soybean, a C3 species. The objective of this study is to quantify the impact of elevated [CO2 ] on canopy energy and water fluxes of maize (Zea mays). Maize was grown under ambient and elevated [CO2 ] (550 μmol mol(-1) during 2004 and 2006 and 585 μmol mol(-1) during 2010) using Free Air Concentration Enrichment (FACE) technology at the SoyFACE facility in Urbana, Illinois. Maize ET was determined using a residual energy balance approach based on measurements of sensible (H) and soil heat fluxes, and net radiation. Relative to control, elevated [CO2 ] decreased maize ET (7-11%; P climate of the region that is extensively cropped with these species. © 2013 Blackwell Publishing Ltd.

  19. Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways.

    Directory of Open Access Journals (Sweden)

    Julia Reisser

    Full Text Available Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median length = 2.8 mm, mean length = 4.9 mm resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items. Mean sea surface plastic concentration was 4256.4 pieces km(-2, and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km(-2. These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton.

  20. Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways.

    Science.gov (United States)

    Reisser, Julia; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maira; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median length = 2.8 mm, mean length = 4.9 mm) resulting from the breakdown of larger objects made of polyethylene and polypropylene (e.g. packaging and fishing items). Mean sea surface plastic concentration was 4256.4 pieces km(-2), and after incorporating the effect of vertical wind mixing, this value increased to 8966.3 pieces km(-2). These plastics appear to be associated with a wide range of ocean currents that connect the sampled sites to their international and domestic sources, including populated areas of Australia's east coast. This study shows that plastic contamination levels in surface waters of Australia are similar to those in the Caribbean Sea and Gulf of Maine, but considerably lower than those found in the subtropical gyres and Mediterranean Sea. Microplastics such as the ones described here have the potential to affect organisms ranging from megafauna to small fish and zooplankton.

  1. A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air

    Science.gov (United States)

    Gong, Ping; Xie, Liang; Qi, Xiao-Qiong; Wang, Rui; Wang, Hui; Chang, Ming-Chao; Yang, Hui-Xia; Sun, Fei; Li, Guan-Peng

    2015-01-01

    A compact and highly linear quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for the measurement of water vapor concentration in the air is demonstrated. A cost-effective quartz tuning fork (QTF) is used as the sharp transducer to convert light energy into an electrical signal based on the piezoelectric effect, thereby removing the need for a photodetector. The short optical path featured by the proposed sensing system leads to a decreased size. Furthermore, a pair of microresonators is applied in the absorbance detection module (ADM) for QTF signal enhancement. Compared with the system without microresonators, the detected QTF signal is increased to approximately 7-fold. Using this optimized QEPAS sensor with the proper modulation frequency and depth, we measure the water vapor concentration in the air at atmospheric pressure and room temperature. The experimental result shows that the sensor has a high sensitivity of 1.058 parts-per-million. Project supported by the National Natural Science Foundation of China (Grant Nos. 61107070, 61127018, and 61377071).

  2. Concentrating Solar Power and Water Issues in the U.S. Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Nathan [Western States Water Council, Murray, UT (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tovar-Hastings, Angelica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Komor, Paul [Univ. of Colorado, Boulder, CO (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Mehta, Shweta [Stanford Univ., CA (United States)

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  3. Antifungal activity of tuberose absolute and some of its constituents.

    Science.gov (United States)

    Nidiry, Eugene Sebastian J; Babu, C S Bujji

    2005-05-01

    The antifungal activity of the absolute of tuberose (Polianthes tuberosa ) and some of its constituents were evaluated against the mycelial growth of Colletotrichum gloeosporioides on potato-dextrose-agar medium. Tuberose absolute showed only mild activity at a concentration of 500 mg/L. However, three constituents present in the absolute, namely geraniol, indole and methyl anthranilate exhibited significant activity showing total inhibition of the mycelial growth at this concentration. Copyright (c) 2005 John Wiley & Sons, Ltd.

  4. Atlas of pesticide concentrations in Dutch surface waters: a pilot study.

    Science.gov (United States)

    van 't Zelfde, M; De Snoo, G R

    2003-01-01

    A pilot study was conducted to explore the potential for geographically mapping concentrations of individual pesticides in Dutch surface waters and compiling these maps into a National Pesticide Atlas. This atlas could be used for various purposes: 1) To see where specific pesticides are monitored, observed and find out whether these are problematical. 2) To explore the relationship between environmental pesticide levels and land use, using the results as feedback to improve national pesticide admission procedures (post-registration review) 3) To review the quality of the present Dutch pesticide monitoring system. For the study we used measured data for the years 1997 and 1998, preparing maps for six illustrative pesticides. The data are presented on a grid scale of 5x5 km2. Pesticide concentrations are compared with three standards: the EU drinking water standard, the maximum tolerable risk (MTR) level and the admission standard set by the Dutch Pesticide Admission Board (CTB). The results show that all these pesticides can be satisfactorily mapped at the national level and that for most of the compounds investigated a useful relationship can be established between environmental concentration and land use. The maps also serve to show up gaps in the present pesticide monitoring system. The study yielded several new insights, among them that standards were found to be exceeded in areas and at times of the year not anticipated on the basis of land use and pesticide use statistics. As a follow-up to this pilot study a new project has been started to develop an internet version of the pesticide atlas for all measured pesticides in The Netherlands.

  5. Innovative framework to simulate the fate and transport of nonconservative constituents in urban combined sewer catchments

    Science.gov (United States)

    Morales, V. M.; Quijano, J. C.; Schmidt, A.; Garcia, M. H.

    2016-11-01

    We have developed a probabilistic model to simulate the fate and transport of nonconservative constituents in urban watersheds. The approach implemented here extends previous studies that rely on the geomorphological instantaneous unit hydrograph concept to include nonconservative constituents. This is implemented with a factor χ that affects the transfer functions and therefore accounts for the loss (gain) of mass associated with the constituent as it travels through the watershed. Using this framework, we developed an analytical solution for the dynamics of dissolved oxygen (DO) and biochemical oxygen demand (BOD) in urban networks based on the Streeter and Phelps model. This model breaks down the catchment into a discreet number of possible flow paths through the system, requiring less data and implementation effort than well-established deterministic models. Application of the model to one sewer catchment in the Chicago area with available BOD information proved its ability to predict the BOD concentration observed in the measurements. In addition, comparison of the model with a calibrated Storm Water Management Model (SWMM) of another sewer catchment from the Chicago area showed that the model predicted the BOD concentration as well as the widely accepted SWMM. The developed model proved to be a suitable alternative to simulate the fate and transport of constituents in urban catchments with limited and uncertain input data.

  6. Investigation of whey protein concentration by ultrafiltration elements designed for water treatment

    Directory of Open Access Journals (Sweden)

    Kukučka Miroslav Đ.

    2013-01-01

    Full Text Available Suitability of polysulfone ultrafiltration membranes (UFM commercial designed for water treatment have been investigated for separation of protein (PR from sweet whey. Ultrafiltration (UF of whey originated from dairy has been realized by self-made pilot plant which has been in service about one year. Influence of two whey temperatures (9 oC and 30 oC on efficiency of protein concentration has been examined. Application of investigated UF elements has given whey protein concentrate (WPC with 5 to 6 times excess amount of protein content in regard to starting one. In the same time the prevalent content of lactose has been removed to permeate. Better results have been occurred during the cold whey filtration. Besides the fact that molecular weight cut-off (MWCO of investigated membranes were 50-100 kDa, results showed very successful concentrating of whey proteins of dominantly lower molar weights than 50-100 kDa. Investigated membranes are beneficial for design and construction of UF plants for exploitation in small dairies.

  7. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials.

    Science.gov (United States)

    Pasanen, A L; Rautiala, S; Kasanen, J P; Raunio, P; Rantamäki, J; Kalliokoski, P

    2000-06-01

    We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.

  8. Factors influencing the crystallisation of highly concentrated water-in-oil emulsions: A DSC study

    Directory of Open Access Journals (Sweden)

    Irina Masalova

    2012-03-01

    Full Text Available Highly concentrated emulsions are used in a variety of applications, including the cosmetics, food and liquid explosives industries. The stability of these highly concentrated water-in-oil emulsions was studied by differential scanning calorimetry. Crystallisation of the emulsions was initiated by exposing the emulsions to a low temperature. The effects of surfactant type, electrolyte concentration and electrolyte composition in the aqueous phase on emulsion crystallisation temperature were studied. Surfactant type affected the emulsion crystallisation temperature in the following order: PIBSA-MEA=PIBSA-UREA < PIBSA-MEA/SMO < PIBSA-IMIDE < SMO. These results are in the same sequence as results obtained for the stability of these emulsions in aging studies, that is, PIBSA-MEA was the most stable with age and SMO was the least. The effect of the surfactant type on emulsion crystallisation can probably be attributed to the differing strengths of the surfactant–electrolyte interactions, which result in different molecular packing geometry and differing mobility of the surfactant lipophilic portion at the interface. These results enhance our understanding of the factors that affect the stability of explosive emulsions.

  9. Byproduct recovery from reclaimed water reverse osmosis concentrate using lime and soda-ash treatment.

    Science.gov (United States)

    Mohammadesmaeili, Farah; Badr, Mostafa Kabiri; Abbaszadegan, Morteza; Fox, Peter

    2010-04-01

    Lime and soda-ash softening of reclaimed water reverse osmosis concentrates as a pretreatment step for concentration by seawater reverse osmosis was the focus of this study. The objectives were removal of the potential fouling minerals of calcium, magnesium, and silica by selective precipitation, while producing byproducts with potential resale value. Three different bench-scale lime-soda processes were evaluated. The traditional method produced low-quality magnesium hydroxide [Mg(OH)2] and calcium carbonate (CaCO3) byproducts. A modified process with pre-acidification to eliminate carbonate removed 98 to 99% of calcium and magnesium and produced CaCO3 that was > 94% pure. To prevent the contamination of byproducts with calcium sulfate (CaSO4) in high-sulfate concentrates, a CaSO4 crystallization step was added successfully to the modified process to precipitate CaSO4 before Mg(OH)2 precipitation and produce gypsum that was 92% pure. The modified lime-soda process also removed 94 to 97% silica, 72 to 77% barium, and 95 to 96% strontium, which are known as reverse osmosis membrane foulants.

  10. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress

    Science.gov (United States)

    Galmés, Jeroni; Ribas-Carbó, Miquel; Medrano, Hipólito; Flexas, Jaume

    2011-01-01

    Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO2. In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering. The results confirmed species-specific patterns in the decrease in the initial activity and activation state of Rubisco as drought stress and leaf dehydration intensified. Nevertheless, all species followed roughly the same trend when Rubisco activity was related to stomatal conductance (gs) and chloroplastic CO2 concentration (Cc), suggesting that deactivation of Rubisco sites could be induced by low Cc, as a result of water stress. The threshold level of Cc that triggered Rubisco deactivation was dependent on leaf characteristics and was related to the maximum attained for each species under non-stressing conditions. Those species adapted to low Cc were more capable of maintaining active Rubisco as drought stress intensified. PMID:21115663

  11. Heavy metals concentration in water and sediments of the Prut River lower sector

    Directory of Open Access Journals (Sweden)

    Matache M. L.

    2013-04-01

    Full Text Available A 120 km sector of the Prut River, Eastern Romania, was surveyed for the concentration of four heavy metals (Cd, Cu, Pb and Zn in water and sediments samples. The analysed sector is located on the border between Romania and Moldova and it is part of the Lower Prut Floodplain Natural Park. The most important steel-producing factory in Romania is located in the park vicinity. Four campaigns have been performed for water collection during different river regimes (both flooding and drought. The water quality is an essential condition for the wetland ecosystems within the park area and the aquatic biota they support, as trace elements bioaccumulation along the food webs might appear (David et al., 2012. Sediments can provide useful information regarding mid- and long-term pollution of the aquatic bodies, being capable of sequestering and releasing important amounts of heavy metals depending on the river regime and extreme situations (van Gestel, 2008; Verhoeven, 2009. For the sediments samples, there is an ascendant trend from upstream to the junction with the Danube River, as the distance to the main urban pole approaches, consequence of a strong human insertion. Romanian standards were used for comparison (MEWM, 2006.

  12. Blood Lead Concentrations in Children and Method of Water Fluoridation in the United States, 1988–1994

    Science.gov (United States)

    Macek, Mark D.; Matte, Thomas D.; Sinks, Thomas; Malvitz, Dolores M.

    2006-01-01

    Some have hypothesized that community water containing sodium silicofluoride and hydrofluosilicic acid may increase blood lead (PbB) concentrations in children by leaching of lead from water conduits and by increasing absorption of lead from water. Our analysis aimed to evaluate the relation between water fluoridation method and PbB concentrations in children. We used PbB concentration data (n = 9,477) from the Third National Health and Nutrition Examination Survey (1988–1994) for children 1–16 years of age, merged with water fluoridation data from the 1992 Fluoridation Census. The main outcome measure was geometric mean PbB concentration, and covariates included age, sex, race/ethnicity, poverty status, urbanicity, and length of time living in residence. Geometric mean PbB concentrations for each water fluoridation method were 2.40 μg/dL (sodium silicofluoride), 2.34 μg/dL (hydrofluosilicic acid), 1.78 μg/dL (sodium fluoride), 2.24 μg/dL (natural fluoride and no fluoride), and 2.14 μg/dL (unknown/mixed status). In multiple linear and logistic regression, there was a statistical interaction between water fluoridation method and year in which dwelling was built. Controlling for covariates, water fluoridation method was significant only in the models that included dwellings built before 1946 and dwellings of unknown age. Across stratum-specific models for dwellings of known age, neither hydrofluosilicic acid nor sodium silicofluoride were associated with higher geometric mean PbB concentrations or prevalence values. Given these findings, our analyses, though not definitive, do not support concerns that silicofluorides in community water systems cause higher PbB concentrations in children. Current evidence does not provide a basis for changing water fluoridation practices, which have a clear public health benefit. PMID:16393670

  13. Trout density and health in a stream with variable water temperatures and trace element concentrations: does a cold-water source attract trout to increased metal exposure?

    Science.gov (United States)

    Harper, D.D.; Farag, A.M.; Hogstr, C.; MacConnell, Elizabeth

    2009-01-01

    A history of hard-rock mining has resulted in elevated concentrations of heavy metals in Prickly Pear Creek (MT. USA). Remediation has improved water quality; however, dissolved zinc and cadmium concentrations still exceed U.S. Environmental Protection Agency water-quality criteria. Physical habitat, salmonid density, fish health, and water quality were assessed, and metal concentrations in fish tissues, biofilm, and macroinvertebrates were determined to evaluate the existing condition in the watershed. Cadmium, zinc, and lead concentrations in fish tissues, biofilm, and invertebrates were significantly greater than those at the upstream reference site and an experimental site farther downstream of the confluence. Fish densities were greatest, and habitat quality for trout was better, downstream of the confluence, where water temperatures were relatively cool (16??C). Measures of fish health (tissue metal residues, histology, metallothionein concentrations, and necropsies), however, indicate that the health of trout at this site was negatively affected. Trout were in colder but more contaminated water and were subjected to increased trace element exposures and associated health effects. Maximum water temperatures in Prickly Pear Creek were significantly lower directly below Spring Creek (16??C) compared to those at an experimental site 10 km downstream (26??C). Trout will avoid dissolved metals at concentrations below those measured in Prickly Pear Creek; however, our results suggest that the preference of trout to use cool water temperatures may supersede behaviors to avoid heavy metals. ?? 2009 SETAC.

  14. Fertilisation and hatching success of Atlantic cod (Gadus morhua) eggs when exposed to various concentrations of produced water

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.; Lyons, M.; Burridge, L.; Lee, K. [Fisheries and Oceans Canada, Ottawa, ON (Canada)

    2010-07-01

    This study investigated the fertilization and hatching success of Atlantic cod (Gadus morhua) eggs that were exposed to various dilutions of produced water from a natural gas production platform. A control group of eggs was fertilized in sea water without any produced water. Another set of eggs were fertilized in sea water with 4 different concentrations of produced water and held their respective concentrations for 24 hours to evaluate the success of the fertilization. Viable fertilized eggs were transferred to 96 well plates containing fresh sea water and incubated in the dark at approximately 6 degrees C until hatch. Eggs began hatching about 14 days after fertilization (DPF), peaked at about 17 DPF, then finished hatching by 21 DPF. Analysis of PAH content in the diluted produced water showed that at 0.32 percent, 1.08 percent and 3.6 percent concentrations, the fertilization success was greater than or equal to that of the control group. However, for the 12 percent concentration, there were no viable fertilized eggs present after the 24 hour period. Survivability of eggs during sea water incubation was similar for the 0 percent, 0.32 percent and 1.08 percent treatment groups, but egg mortality increased for the 3.60 percent concentration group, to about 61.5 percent mean cumulative mortality at 6 DPF, then remained constant. The mean hatching success for all dilutions was presented.

  15. Properties and chemical constituents in ground water from the middle Claiborne Aquifer, Gulf Coast regional aquifer systems, south-central United States

    Science.gov (United States)

    Pettijohn, Robert A.; Busby, John F.; Cervantes, Michael A.

    1993-01-01

    The U.S. Geological Survey used four programs in 1990 to provide external data quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Results of the intersite- comparison program indicate that 80 and 74 percent of the site operators met the NADP/NTN goals for pH determination and 98 and 95 percent of the site operators met the NADP/NTN goals for specific- conductance determination during the two studies in 1990. The effects of routine sample handling, processing, and shipping determined in the blind-audit program indicated significant positive bias for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias was determined for hydrogen ion and specific conductance. A Kruskal-Wallis test indicated that there were no significant (a=0.01) differences in analytical results from the three laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler study indicate the median relative error for potassium and ammonium concentration and deposition exceeded 15 percent at most sites while the median relative error for sulfate and nitrate at all sites was less than 6 percent for concentration and was less than 15 percent for deposition.

  16. Heat transfer of alumina-deionized water nanofluids in concentric tube heat exchanger

    Science.gov (United States)

    Alias, Hajar; Ani, Muhamad Fahmi Che; Sa'ad, Siti Fatimah; Ngadi, Norzita

    2017-12-01

    This research studied the characteristics of nanofluids in a concentric tube heat exchanger. The objectives of this research are to prepare the stable nanofluids with addition of surfactant and to investigate the stability, properties, and heat transfer of nanofluids in concentric tube heat exchanger. Aluminium oxide (Al2O3) was added to base fluid deionized water (DW) with addition of polyvinylpyrrolidone (PVP) as surfactant by two-step method. First, the best stability ratio of nanofluids to surfactant PVP was determined by preparing several samples of 0.50 wt% nanofluids with addition of different weight fraction of surfactant. Thus, each sample has different ratio and being observed for one week by visual observation. Then, nanofluids samples (0.25, 0.50, 0.75 and 1.00 wt%) were prepared based on the best stability ratio. The properties and heat transfer of nanofluids were analyzed at different concentration of nanofluids and at different temperatures (room temperature, 40 °C, 50 °C, 60 °C and 70 °C). From the observation, the alumina nanofluids was stable with the addition of surfactant at ratio 1:2. The thermal conductivity of nanofluids are higher than base fluid and increased as the temperature and concentration increased. Viscosity of nanofluids was highest at 1.00 wt% and at room temperature. The heat transfer performance of heat exchanger increased by using nanofluids. Nanofluids absorbed more heat than base fluid and the highest percentage drop of hot stream is 120% at 70 °C by using 1.00 wt% nanofluids.

  17. Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration

    Directory of Open Access Journals (Sweden)

    Johann Martínez-Lüscher

    2016-07-01

    Full Text Available In recent decades, mean global temperatures have increased in parallel with a sharp rise in atmospheric carbon dioxide (CO2 levels, with apparent implications for precipitation patterns. The aim of the present work is to assess the sensitivity of different phenological stages of grapevine to temperature and to study the influence of other factors related to climate change (water availability and CO2 concentration on this relationship. Grapevine phenological records from 9 plantings between 42.75°N and 46.03°N consisting of dates for budburst, flowering and fruit maturity were used. In addition, we used phenological data collected from two years of experiments with grapevine fruit-bearing cuttings with two grapevine varieties under two levels of water availability, two temperature regimes and two levels of CO2. Dormancy breaking and flowering were strongly dependent on spring temperature, while neither variation in temperature during the chilling period nor precipitation significantly affected budburst date. The time needed to reach fruit maturity diminished with increasing temperature and decreasing precipitation. Experiments under semi-controlled conditions revealed great sensitivity of berry development to both temperature and CO2. Water availability had significant interactions with both temperature and CO2; however, in general, water deficit delayed maturity when combined with other factors. Sensitivities to temperature and CO2 varied widely, but higher sensitivities appeared in the coolest year, particularly for the late ripening variety, ‘White Tempranillo’. The knowledge gained in whole plant physiology and multi stress approaches is crucial to predict the effects of climate change and to design mitigation and adaptation strategies allowing viticulture to cope with climate change.

  18. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water...

  19. Miniaturized, High Flow, Low Dead Volume Pre-Concentrator for Trace Contaminants in Water under Microgravity Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high flow, low dead-volume pre-concentrator for monitoring trace levels of contaminants in water under...

  20. Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations.

    Science.gov (United States)

    Jayaweera, Mahesh W; Dilhani, Jayakodi A T; Kularatne, Ranil K A; Wijeyekoon, Suren L J

    2007-06-01

    This paper reports the biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations of 1-fold [28 mg/L of total nitrogen (TN)], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold and plants harvested from a polluted water body. This study was carried out for a period of 4 months at ambient mesophilic temperatures of 30.3-31.3 degrees C using six 3-barreled batch-fed reactors with the innermost barrel (45 L) being used as the digester. There was no marked variation in the C/N ratios of the plants cultured under different nitrogen concentrations. The addition of fresh cow dung having a low C/N of 8 resulted in a significant reduction in the C/N ratios of the water hyacinth substrates. However, gas production commenced 3 days after charging the reactors and gas production rates peaked in 4-7 days. The volatile solids (VS) degradation and gas production patterns manifested that in conventional single-stage batch digesters acidogenesis and methanogenesis of water hyacinth requires a retention time of around 27-30 days and 27-51 days, respectively. Substrates in the f-1 digester (i.e., the digester containing plants grown under 28 TN mg/L) having the lowest VS content of 45.3 g/L with a highest C/N ratio of 16 showed fairly higher gas production rates consistently (10-27 days) with higher gas yields containing around 50-65% of CH4 (27-51 days). Moreover the highest overall VS (81.7%) removal efficiencies were reported from the f-1 digester. Fairly higher gas production rates and gas yields with fairly higher CH4 contents were also noticed from the f-2 digester containing substrates having a C/N of 14 and f-out digester (containing the plants harvested from the polluted water body) having the lowest C/N ratio of 9.7 with a fairly high VS content of 56 g/L. CH4 production was comparatively low in the f-1/8, f-1/4 and f-1/2 digesters having VS rich substrates with varying C/N ratios. We conclude that water hyacinth could be

  1. Regulation of stream water dissolved organic carbon (DOC concentrations during snowmelt; the role of discharge, winter climate and memory effects

    Directory of Open Access Journals (Sweden)

    A. Ågren

    2010-09-01

    Full Text Available Using a 15 year stream record from a northern boreal catchment, we demonstrate that the inter-annual variation in dissolved organic carbon (DOC concentrations during snowmelt was related to discharge, winter climate and previous DOC export. A short and intense snowmelt gave higher stream water DOC concentrations, as did long winters, while a high previous DOC export during the antecedent summer and autumn resulted in lower concentrations during the following spring. By removing the effect of discharge we could detect that the length of winter affected the modeled soil water DOC concentrations during the following snowmelt period, which in turn affected the concentrations in the stream. Winter climate explained more of the stream water DOC variations than previous DOC export during the antecedent summer and autumn.

  2. Relation between Enterococcus concentrations and turbidity in fresh and saline recreational waters, coastal Horry County, South Carolina, 2003–04

    Science.gov (United States)

    Landmeyer, James E.; Garigen, Thomas J.

    2016-06-24

    Bacteria related to the intestinal tract of humans and other warm-blooded animals have been detected in fresh and saline surface waters used for recreational purposes in coastal areas of Horry County, South Carolina, since the early 2000s. Specifically, concentrations of the facultative anaerobic organism, Enterococcus, have been observed to exceed the single-sample regulatory limit of 104 colony forming units per 100 milliliters of water. Water bodies characterized by these concentrations are identified on the 303(d) list for impaired water in South Carolina; moreover, because current analytical methods used to monitor Enterococcus concentrations take up to 1 day for results to become available, water-quality advisories are not reflective of the actual health risk.

  3. An Investigation of Fluoride Concentration in Drinking Water of Sanganer Tehsil, Jaipur District, Rajasthan, India and Defluoridation from Plant Material

    Directory of Open Access Journals (Sweden)

    Mohammed Arif

    2014-01-01

    Full Text Available Forty water samples of 20 villages of Sanganer tehsil, Jaipur district were analyzed for determining fluoride ion concentrations. High fluoride containing regions were identified on the basis of fluoride levels of the water samples and also on the prevalence rate of dental and skeletal fluorosis of the study area. Fluoride maps, which distinguish the regions containing the water sources of different ranges of fluoride ion concentrations, were also prepared by isopleth’s technique, a statistical method. Water samples containing high fluoride levels were defluoridated with low-cost materials prepared from plant byproducts. These materials successfully decrease the fluoride ions concentration to an acceptable limit (from 0.5 to 1.5 mg/L without disturbing drinking water quality standards.

  4. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    OpenAIRE

    Glòria Carrasco-Turigas; Villanueva, Cristina M.; Fernando Goñi; Panu Rantakokko; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-conta...

  5. antibacterial constituents of calliandra haematocephala

    African Journals Online (AJOL)

    ANTIBACTERIAL CONSTITUENTS OF CALLIANDRA HAEMATOCEPHALA. R Nia, SA Adesanya, IN Okeke, HC Illoh, SJ Adesina. Abstract. The EtOAC extractable constituents of the bark of C. haematocephala were active against selected bacteria. Fractionation by chromatographic methods, gave known compounds ...

  6. Methods of analysis in terms of effects and their application to toxic organic constituents of industrial waste water; Methoden und Anwendung der wirkungsbezogenen Analytik auf toxische organische Inhaltsstoffe in industriellen Abwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Reemtsma, T.; Putschew, A.; Jekel, M. [Technische Univ. Berlin (Germany). Fachgebiet Wasserreinhaltung

    1999-07-01

    Coupling biological action detection with chemical sewage analysis opens up a broad spectrum of methods involving diverse amounts of effort, whose results can range from hints to ways of eliminating a toxic effect to the identification and quantification of individual toxic constituents even in complex waste water. These methods help recognizing problems with effluent quality and enhancing treatment concepts. As possible biological effects of sewage discharges into receiving bodies of water (including sublethal effects) are meeting with increasing attention, the importance of sewage analysis in terms of effects will acquire even greater weight. Automated and miniaturized processes can cut down the involved effort substantially in the future. (orig.) [German] Die Kopplung der biologischen Wirkungsdetektion mit chemischer Abwasseranalytik eroeffnet ein breites Spektrum unterschiedlich aufwendiger Methoden, deren Ergebnisse von Hinweisen auf Methoden zur Entfernung einer toxischen Wirkung bis zur Identifizierung und Quantifizierung einzelner toxischer Inhaltsstoffe auch in komplexer Abwaessern reichten koennen. Diese Methoden helfen beim Erkennen von Problemen in der Ablaufqualitaet und unterstuetzen bei der Verbesserung von Behandlungskonzepten. Mit steigender Beachtung moeglicher biologischer Wirkungen von Abwassereinleitungen im Vorfluter (unter Einbeziehung sublethaler Effekte) wird die Bedeutung der wirkungsbezogenen Abwasseranalytik noch zunehmen. Automatisierte und miniaturisierte Verfahren koennen zukuenftig den dabei zu treibenden Aufwand wesentlich vermindern. (orig.)

  7. Use of a macroinvertebrate based biotic index to estimate critical metal concentrations for good ecological water quality.

    Science.gov (United States)

    Van Ael, Evy; De Cooman, Ward; Blust, Ronny; Bervoets, Lieven

    2015-01-01

    Large datasets from total and dissolved metal concentrations in Flemish (Belgium) fresh water systems and the associated macroinvertebrate-based biotic index MMIF (Multimetric Macroinvertebrate Index Flanders) were used to estimate critical metal concentrations for good ecological water quality, as imposed by the European Water Framework Directive (2000). The contribution of different stressors (metals and water characteristics) to the MMIF were studied by constructing generalized linear mixed effect models. Comparison between estimated critical concentrations and the European and Flemish EQS, shows that the EQS for As, Cd, Cu and Zn seem to be sufficient to reach a good ecological quality status as expressed by the invertebrate-based biotic index. In contrast, the EQS for Cr, Hg and Pb are higher than the estimated critical concentrations, which suggests that when environmental concentrations are at the same level as the EQS a good quality status might not be reached. The construction of mixed models that included metal concentrations in their structure did not lead to a significant outcome. However, mixed models showed the primary importance of water characteristics (oxygen level, temperature, ammonium concentration and conductivity) for the MMIF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Quality of Dory Fillets based on Water Soluble Protein, Color, and Myoglobin Concentration

    Directory of Open Access Journals (Sweden)

    Nurfajrin Nisa

    2016-04-01

    Full Text Available Fillet of dory is very easy to be find in Indonesian market with various brand and produsen.Imported dory fillet is preferred by consumer so far because it has a white color compare than localfillets. Color is the important parameter that used by consumers to determine the quality of filet. Thisstudy was aimed to determine the quality of local and imported fillets, including protein profile usingSDS PAGE, color measurement, and myoglobin extractability. The results of water soluble protein profilesshowed dory fillet contained 13-15 bands. The redness value (a* of local fillet (DN, DL, DM was highercompared others. However, imported fillet (DI had the highest if redness index (a/b. Imported fillet (DIshowed the lowest concentration of myoglobin compared other samples.

  9. The Quality of Dory Fillets based on Water Soluble Protein, Color, and Myoglobin Concentration

    Directory of Open Access Journals (Sweden)

    Nurfajrin Nisa

    2016-04-01

    Full Text Available Fillet of dory is very easy to be find in Indonesian market with various brand and produsen. Imported dory fillet is preferred by consumer so far because it has a white color compare than local fillets. Color is the important parameter that used by consumers to determine the quality of filet. This study was aimed to determine the quality of local and imported fillets, including protein profile using SDS PAGE, color measurement, and myoglobin extractability. The results of water soluble protein profiles showed dory fillet contained 13-15 bands. The redness value (a* of local fillet (DN, DL, DM was higher compared others. However, imported fillet (DI had the highest if redness index (a/b. Imported fillet (DI showed the lowest concentration of myoglobin compared other samples.

  10. Aerosol-OT micelles in Sephadex gels for concentrating metal-dithizone chelates from water

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Tohru [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)]. E-mail: saitoh@numse.nagoya-u.ac.jp; Hattori, Kazuki [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2005-07-06

    Anionic surfactants, sodium dodecyl sulfate (SDS), and di-2-ethylhexyl sodium sulfosuccinate (Aerosol-OT, AOT), were incorporated into a hydrated macroreticular anion-exchanger such as a DEAE- or QAE-Sephadex A-25 gel. The observation of fluorescence spectra of N-phenyl-1-naphthlamine indicated the formation of the surfactant micelles in gels. The hydrophobicity of the micelles corresponded to octanol, tetrahydrofuran, or ethyl acetate. A hydrophobic chelating agent, dithizone (1,5-diphenylthiocarbazone), and its metal chelates were incorporated into the Sephadex gels. The complex formation with dithizone and the subsequent adsorption on Sephadex gels required 10 min. The metals collected in gels were desorbed with 8 M nitric acid. As a result of 300-fold concentrations, traces of heavy metal ions at ng l{sup -1} levels in river water were successfully determined by graphite-furnace atomic absorption spectrometry.

  11. Effects of different water storage procedures on the dissolved Fe concentration and isotopic composition of chemically contrasted waters from the Amazon River Basin.

    Science.gov (United States)

    Mulholland, Daniel S; Poitrasson, Franck; Boaventura, Geraldo R

    2015-11-15

    Although recent studies have investigated the Fe isotopic composition of dissolved, colloidal and particulate phases from continental and oceanic natural waters, few efforts have been made to evaluate whether water sample storage and the separation of different pore-size fractions through filtration can cause any change to the Fe isotopic compositions. The present study investigates the possible biases introduced by different water storage conditions on the dissolved Fe concentration and isotopic composition of chemically different waters. Water samples were collected from an organic-rich river and from mineral particulate-rich rivers. Filtered and unfiltered water samples were stored either at room temperature or frozen at -18°C in order to assess possible biases due to (i) different water storage temperature, and (ii) storage of bulk (unfiltered) vs filtered water. Iron isotope measurements were performed by Multicollector Inductively Coupled Plasma Mass Spectrometry with a Thermo Electron Neptune instrument, after Fe purification using anion-exchange resins. Our data reveal that bulk water storage at room temperature without filtration produces minor changes in the dissolved Fe isotopic composition of mineral particulate-rich waters, but significant isotopic composition changes in organic-rich waters. In both cases, however, the impact of the different procedures on the Fe concentrations was strong. On the other hand, the bulk water stored frozen without filtration produced more limited changes in the dissolved Fe concentrations, and also on isotopic compositions, relative to the samples filtered in the field. The largest effect was again observed for the organic-rich waters. These findings suggest that a time lag between water collection and filtration may cause isotopic exchanges between the dissolved and particulate Fe fractions. When it is not possible to filter the samples in the field immediately after collection, the less detrimental approach is to

  12. Infrared Measurements of Atmospheric Constituents

    Science.gov (United States)

    Murcray, Frank J.

    1998-01-01

    This research program studies atmospheric trace gas concentrations and altitude distributions, particularly for those gases that are important in stratospheric chemistry and radiative balance. Measurements are made with infrared remote sensing instruments, either ground based or balloon-borne. Most of the ground based instruments are part of the Network for Detection of Stratospheric Change (NDSC), including a very high spectral resolution solar absorption spectrometer at Mauna Loa Observatory and similar system at McMurdo Station, Antarctica (operated in collaboration with the New Zealand NIWA). Additionally, we are deriving stratospheric constituent data from the spectra obtained at the DOE Atmospheric Radiation Measurements (ARM) program's site in north-central Oklahoma. We have an atmospheric emission spectrometer system at the South Pole (with additional support from NSF), and an identical NSF support instrument at Eureka, NWT, Canada. Our balloon-borne instruments include a very high resolution solar absorption spectrometer system, a smaller, slightly lower resolution solar spectrometer system, a high resolution atmospheric emission spectrometer, and several medium resolution emission spectrometers (CAESRs) that are usually flown piggyback. During the past year, we participated in the MANTRA balloon flight from Saskatoon, Saskatchewan, with the high resolution solar spectrometer system. Several of our instruments were extensively compared to (UARS) Upper Atmosphere Research Satellite observations, and so provide a data set with known connections to UARS. In the longer term, the data can be used to relate UARS data to (EOS) Earth Observing System and (ADEOS) Advanced Airborne Earth Observing System.

  13. The impact of elevated water nitrate concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822)

    NARCIS (Netherlands)

    Schram, E.; Roques, J.A.C.; Abbink, W.; Vries, de P.; Bierman, S.M.; Vis, van de J.W.

    2014-01-01

    The nitrate threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. Female African catfish with an initial mean (SD) weight of 154.3 (7.5) g were exposed to 0.4 (Control), 1.5, 4.2, 9.7 and 27.0 mM nitrate for 42 days. Mean (SD) plasma concentrations of nitrate

  14. The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822)

    NARCIS (Netherlands)

    Roques, J.A.C.; Schram, E.; Spanings, T.; Schaik, van T.; Abbink, W.; Boerrigter, J.; Vries, de P.; Vis, van de J.W.; Flik, G.

    2015-01-01

    The nitrite threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. African catfish with an initial mean (SD) weight of 219.7 (57.8) g were exposed to an increasing range of water nitrite from 6 (Control) to 928 µM nitrite for 28 days. Mean (SD) plasma nitrite

  15. Inventory of tritium concentration of waters in the Manche department; Inventaire des concentrations en tritium des eaux du Departement de La Manche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    For the inventory of water tritium concentration in the Manche department, it is the complementarity that animated the work opened during year 2001. To answer to a commune sensitivity such water quality, particularly drinking water at tap, the A.C.R.O. laboratory brought its know how to make and its technical means in the area of tritium analysis and the general council brought its know how to make and its logistics means in matter of sanitary control. This collaboration has allowed to supply an indication on the tritium content of the distribution waters of thirty of the most important cities of the department. Then, it allowed to inform on the radiological situation (in relation with the tritium presence) of coast waters and principal rivers waters. More than 160 controls have been realised between the months of march 2001 and february 2002. Only the tritium under the shape of tritiated water has been measured. The measures have been made by liquid scintillation according to the regulatory agreement. (N.C.)

  16. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water

    NARCIS (Netherlands)

    Besemer, M.; Bloemenkamp, R.; Ariese, F.; van Manen, H.J.

    2016-01-01

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable

  17. The influence of concentration on specific ion effects at the silica/water interface.

    Science.gov (United States)

    Azam, Md Shafiul; Darlington, Akemi; Gibbs-Davis, Julianne M

    2014-06-18

    Second harmonic generation spectroscopy is a useful tool for monitoring changes in interfacial potential at buried insulator/liquid interfaces. Here we apply this technique to the silica/aqueous interface and monitor the changes in interfacial potential while varying the pH in the presence of different alkali halides at 0.1M concentration. Within the pH range explored, the bimodal distribution of acidic sites on planar silica is clearly observed, corresponding to two types of acidic SiOH groups. Comparing these data with previous work at 0.5M sheds light on whether the presence of the ions stabilizes the charged or neutral state of the surface sites. For the alkali chlorides, with the exception of NaCl, we observe that the presence of the alkali chlorides stabilize the less acidic site in the protonated (SiOH) rather than deprotonated (SiO(-)) form. This unusual influence of the cation is attributed to the combination of interactions at the interface between water, surface sites and the electrolyte. Overall, we observe that the influence of the alkali ion on the ratio of the two types of sites and their effective acid dissociation constants is minor at 0.1M, unlike that observed at 0.5M. In contrast, the influence of the anion on the cooperative dissociation of surface sites and their relative distribution is little affected upon decreasing the concentration, which indicates that these specific anion effects are prevalent in nature.

  18. {sup 241}Pu concentrations in water, plankton and fish from the southern Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Struminska-Parulska, D.I.; Skwarzec, B. [Gdansk, Univ. (Poland). Facuty of Chemistry

    2013-08-01

    The aim of the work was to determine {sup 241}Pu activities in different components (water, plankton and fish) of the southern Baltic Sea ecosystem. Measurement of {sup 241}Pu in the samples was done indirectly by determining the increment in {sup 241}Am from the decay of the {beta}-emitting {sup 241}Pu in samples collected 10-15 years after the Chernobyl accident. Enhanced levels of {sup 241}Pu were observed in all analyzed Baltic samples. The highest {sup 241}Pu concentrations in fish were found in Perciformes: benthic round goby (0.863 {+-} 0.066 mBq/g ww) and pelagic perch (0.666 {+-} 0.001 mBq/g ww). Plutonium is also non-uniformly distributed in the organs and tissues of the analyzed fish; especially pelagic herring and cod as well as benthic flounder. Most of {sup 241}Pu in flounder, herring and cod is located in soft tissues, especially digestive organs (stomach, intestine, liver). The annual individual effective doses calculated on the basis of {sup 241}Pu concentrations in fish indicated that the impact of the consumption of {sup 241}Pu containing Baltic fish on the annual effective dose for a statistical inhabitant of Poland was very small. (orig.)

  19. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water.

    Science.gov (United States)

    Estahbanati, Shirin; Fahrenfeld, N L

    2016-11-01

    The abundance of microplastic particles in the marine environment is well documented, but less is known about microplastics in the freshwater environment. Wastewater treatment plants (WWTPs) may not effectively remove microplastics allowing for their release to the freshwater environment. To investigate concentration of microplastic in fresh water and the impact of WWTP effluent, samples were collected upstream and downstream of four major municipal WWTPs on the Raritan River, NJ. Microplastics were categorized into three quantitative categories (500-2000 μm, 250-500 μm, 125-250 μm), and one semi-quantitative category (63-125 μm). Then, microplastics were classified as primary (manufactured in small size) or secondary (derived from larger plastics) based on morphology. The concentration of microplastics in the 125-250 and 250-500 μm size categories significantly increased downstream of WWTP. The smaller size classes, often not quantified in microplastic studies, were in high relative abundance across sampling sites. While primary microplastics significantly increased downstream of WWTP, secondary microplastic was the dominant type in the quantitative size categories (66-88%). A moderate correlation between microplastic and distance downstream was observed. These results have implications for understanding the fate and transport of microplastics in the freshwater environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Essential and non-essential element concentrations in two sleeper shark species collected in arctic waters

    Energy Technology Data Exchange (ETDEWEB)

    McMeans, Bailey C. [Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 (Canada); Borga, Katrine [Norwegian Institute for Water Research, P.O. Box 173, Kjelsas, N-0411 Oslo (Norway); Bechtol, William R. [Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage, AK 99518-1599 (United States); Higginbotham, David [Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152 (United States); Fisk, Aaron T. [Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 (Canada)]. E-mail: afisk@uwindsor.ca

    2007-07-15

    A number of elements/metals have increased in arctic biota and are of concern due to their potential toxicity. Most studies on elements in the Arctic have focused on marine mammals and seabirds, but concentrations in the Greenland shark (Somniosus microcephalus) and Pacific sleeper shark (Somniosus pacificus), the only two shark species known to regularly inhabit arctic waters, have never been reported. To address this data gap, concentrations and patterns of 25 elements were analyzed in liver of Greenland sharks collected about Cumberland Sound (n = 24) and Pacific sleeper sharks collected about Prince William Sound (n = 14). Several non-essential elements differed between species/locations, which could suggest geographical exposure differences or ecological (e.g., diet) differences between the species. Certain essential elements also differed between the two sleeper sharks, which may indicate different physiological requirements between these closely related shark species, although information on such relationships are lacking for sharks and fish. - Patterns of essential and non-essential elements provide insight into sleeper shark biology and physiology.

  1. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    Energy Technology Data Exchange (ETDEWEB)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  2. Oxidation of PCEA nuclear graphite by low water concentrations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL; Mee, Robert [University of Tennessee (UT); Wang, Peng [ORNL; Romanova, Anna V [University of Tennessee, Knoxville (UTK); Burchell, Timothy D [ORNL

    2014-10-01

    Accelerated oxidation tests were performed to determine kinetic parameters of the chronic oxidation reaction of PCEA graphite in contact with helium coolant containing low moisture concentrations in high temperature gas-cooled reactors. To the authors best knowledge such a study has not been done since the detailed analysis of reaction of H-451 graphite with steam [Velasquez, Hightower, Burnette, 1978]. Since that H-451 graphite is now unavailable, it is urgently needed to characterize chronic oxidation behavior of new graphite grades under qualification for gas-cooled reactors. The Langmuir-Hinshelwood mechanism of carbon oxidation by water results in a non-linear reaction rate expression, with at least six different parameters. They were determined in accelerated oxidation experiments that covered a large range of temperatures (800 to 1100 oC), and partial pressures of water (15 to 850 Pa) and hydrogen (30 to 150 Pa) and used graphite specimens thin enough (4 mm) in order to avoid diffusion effects. Data analysis employed a statistical method based on multiple likelihood estimation of parameters and simultaneous fitting of non-linear equations. The results show significant material-specific differences between graphite grades PCEA and H-451 which were attributed to microstructural dissimilarity of the two materials. It is concluded that kinetic data cannot be transferred from one graphite grade to another.

  3. Oxidation of PCEA nuclear graphite by low water concentrations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I., E-mail: ContescuCI@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087 (United States); Mee, Robert W. [Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996-0525 (United States); Wang, Peng [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087 (United States); Romanova, Anna V.; Burchell, Timothy D. [Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996-0525 (United States)

    2014-10-15

    Accelerated oxidation tests were performed to determine kinetic parameters of the chronic oxidation reaction (i.e. slow, continuous, and persistent) of PCEA graphite in contact with helium coolant containing low moisture concentrations in high temperature gas-cooled reactors. To the authors’ knowledge such a study has not been done since the detailed analysis of reaction of H-451 graphite with steam (Velasquez, Hightower, Burnette, 1978). Since that H-451 graphite is now unavailable, it is urgently needed to characterize chronic oxidation behavior of new graphite grades that are being considered for use in gas-cooled reactors. The Langmuir–Hinshelwood mechanism of carbon oxidation by water results in a non-linear reaction rate expression, with at least six different parameters. They were determined in accelerated oxidation experiments that covered a large range of temperatures (800–1100 °C), and partial pressures of water (15–850 Pa) and hydrogen (30–150 Pa) and used graphite specimens thin enough (4 mm) in order to avoid diffusion effects. Data analysis employed a statistical method based on multiple likelihood estimation of parameters and simultaneous fitting of non-linear equations. The results show significant material-specific differences between graphite grades PCEA and H-451 which were attributed to microstructural dissimilarity between the two materials. It is concluded that kinetic data cannot be transferred from one graphite grade to another.

  4. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  5. Concentrating solar collector system for the evaporation of low-level radioactive waste water

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, S.C.; Cappiello, C.C.

    1981-01-01

    The Los Alamos National Laboratory has recently been awarded a grant under the Solar Federal Buildings Program to design, construct, and operate a high-temperature solar energy system for the processing of low-level radioactive waste water. Conceptual design studies have been completed, and detailed design work is under way for a solar system to produce process heat to evaporate 38,000 gal (143,830 L) of waste water per month. The system will use approximately 11,000 ft/sup 2/ (1022 m/sup 2/) of concentrating parabolic trough collectors operating at about 500/sup 0/F (262/sup 0/C). Construction of the system is anticipated to begin in 1981. Performance optimization of collector array size and configuration, storage medium and capacity, system operation, and control schemes are done using the active solar system simulator in the DOE-2 building energy analysis computer program. Results of this optimization are reported. This project represents a unique application of solar energy to an increasingly significant problem area in the energy field.

  6. Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions.

    Science.gov (United States)

    Rahman, S M E; Ding, Tian; Oh, Deog-Hwan

    2010-05-15

    Strong acid electrolyzed water (SAEW) has a very limited application due to its low pH value (4.0, 5.0, 6.0 and 9.0) and temperatures (4, 15, 23, 35 and 50 degrees C) were determined. Reductions of bacterial populations of 1.7 to 6.6 log(10) CFU/mL in various treated conditions in cell suspensions were observed after treatment with LcEW and SAEW, compared to the untreated control. Dip washing (1 min at 35 degrees C) of lettuce leaves in both electrolyzed water resulted in 2.5 to 4.0 log(10) CFU/g compared to the unwashed control. Strong inactivation effects were observed in LcEW, and no significant difference (p>0.05) was observed between LcEW and SAEW. The effective form of chlorine compounds in LcEW was almost exclusively hypochlorous acid (HOCl), which has strong antimicrobial activity and leaves no residuals due to the low concentration of residual chlorine. Thus, LcEW could be widely applied as a new sanitizer in the food industry. 2010 Elsevier B.V. All rights reserved.

  7. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    Science.gov (United States)

    de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.

    2017-10-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  8. An on-line pre-concentration system for determination of cadmium in drinking water using FAAS

    OpenAIRE

    Santos, Walter Nei Lopes dos; Costa, Jorge L. O.; Araujo, Rennan Geovanny Oliveira; Jesus, Djane S. de; Costa, Antonio Celso Spinola

    2006-01-01

    RESTRITO In the present paper, a minicolumn of polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol (PAR) is proposed as pre-concentration system for cadmium determination in drinking water samples by flame atomic absorption spectrometry. The optimization step was performed using two-level full factorial design and Doehlert matrix, involving the variables: sampling flow rate, elution concentration, buffer concentration and pH. Using the established experimental conditions in t...

  9. An Improved Method for Interpretation of Concentration-Discharge Relationships in Riverine Water-Quality Data

    Science.gov (United States)

    Zhang, Q.; Harman, C. J.; Ball, W. P.

    2016-12-01

    Riverine concentration-discharge (C-Q) relationships are powerful indicators that can provide important clues toward understanding nutrient and sediment export dynamics from river systems, and the analysis of such relations has been a long-standing topic of importance in hydrologic literature. Proper interpretation of such relationships can be made complex, however, if the relationships of ln(C) ln(Q) are nonlinear or if the relationships change over time, season, or discharge. Methods of addressing these issues by "binning" data or smoothing trends can introduce artifacts and ambiguities that obscure underlying interactions among time, discharge, and season. Here we illustrate these issues with examples and propose an alternative method that uses the regression coefficients of the recently-developed WRTDS ("Weighted Regressions on Time, Discharge, and Season") model for examining riverine C-Q relationships, including their uncertainty. The method is applied to sediment concentration data from Susquehanna River at Conowingo Dam (Maryland, USA) to illustrate how the WRTDS coefficients can be accessed and presented in ways that provide additional insights toward the interpretation of river water-quality data. For this case, the results clearly reveal that sediment concentration in the reservoir effluent has become more sensitive to discharge at moderate and high flows (but not very low flows) as it approaches sediment storage capacity, reaffirming the recently-documented decadal-scale decline in reservoir trapping performance. The study also highlights an additional benefit of the method, which is the ability to perform uncertainty analyses. The proposed approach can be implemented by running additional R codes within the WRTDS software - such codes are made available to users through a DOI-referenced archive site (http://dx.doi.org/10.7281/T18G8HM0) that will be maintained for at least five years after publication.

  10. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    Science.gov (United States)

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  11. Stibonium ions for the fluorescence turn-on sensing of F- in drinking water at parts per million concentrations.

    Science.gov (United States)

    Ke, Iou-Sheng; Myahkostupov, Mykhaylo; Castellano, Felix N; Gabbaï, François P

    2012-09-19

    The 9-anthryltriphenylstibonium cation, [1](+), has been synthesized and used as a sensor for the toxic fluoride anion in water. This stibonium cation complexes fluoride ions to afford the corresponding fluorostiborane 1-F. This reaction, which occurs at fluoride concentrations in the parts per million range, is accompanied by a drastic fluorescence turn-on response. It is also highly selective and can be used in plain tap water or bottled water to test fluoridation levels.

  12. Sensitivity analysis using a diffuse pollution hydrologic model to assess factors affecting pesticide concentrations in river water.

    Science.gov (United States)

    Tani, Koji; Matsui, Yoshihiko; Narita, Kentaro; Ohno, Koichi; Matsushita, Taku

    2010-01-01

    We quantitatively evaluated the factors that affect the concentrations of rice-farming pesticides (an herbicide and a fungicide) in river water by a sensitivity analysis using a diffuse pollution hydrologic model. Pesticide degradation and adsorption in paddy soil affected concentrations of the herbicide pretilachlor but did not affect concentrations of the fungicide isoprothiolane. We attributed this difference to the timing of pesticide application in relation to irrigation and drainage of the rice paddy fields. The herbicide was applied more than a month before water drainage of the fields and runoff was gradual over a long period of time, whereas the fungicide was applied shortly before drainage and runoff was rapid. However, the effects of degradability-in-water on the herbicide and fungicide concentrations were similar, with concentrations decreasing only when the rate constant of degradation in water was large. We also evaluated the effects of intermittent irrigation methods (irrigation/artificial drainage or irrigation/percolation) on pesticide concentrations in river water. The runoff of the fungicide, which is applied near or in the period of intermittent irrigation, notably decreased when the method of irrigation/artificial drainage was changed to irrigation/percolation. In a sensitivity analysis evaluating the synergy effect of degradation and adsorbability in soil, the degradation rate constant in soil greatly affected pesticide concentration when the adsorption coefficient was small but did not affect pesticide concentration when the adsorption coefficient was large. The pesticide concentration in the river water substantially decreased when either or both the degradation rate constant in soil and adsorption coefficient was large.

  13. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water.

    Science.gov (United States)

    Lohmann, Rainer; Booij, Kees; Smedes, Foppe; Vrana, Branislav

    2012-07-01

    The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent organic pollutants (POPs) targeted by the Stockholm Convention are nonpolar or weakly polar, hydrophobic substances, making them ideal targets for sampling in water using PSDs. Widely used nonpolar PSDs include semi-permeable membrane devices, low-density polyethylene and silicone rubber. The inter-laboratory variation of equilibrium partition constants between PSD and water is mostly 0.2-0.5 log units, depending on the exact matrix used. The sampling rate of PSDs is best determined by using performance reference compounds during field deployment. The major advantage of PSDs over alternative matrices applicable in trend monitoring (e.g. sediments or biota) is that the various sources of variance including analytical variance and natural environmental variance can be much better controlled, which in turn results in a reduction of the number of analysed samples required to obtain results with comparable statistical power. Compliance checking with regulatory limits and analysis of temporal and spatial contaminant trends are two possible fields of application. In contrast to the established use of nonpolar PSDs, polar samplers are insufficiently understood, but research is in progress to develop PSDs for the quantitative assessment of polar waterborne contaminants. In summary, PSD-based monitoring is a mature technique for the measurement of aqueous concentrations of apolar POPs, with a well-defined accuracy and precision.

  14. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    Science.gov (United States)

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  16. Dose evaluation and measurement of radon concentration in some drinking water sources of the Ramsar region in Iran.

    Science.gov (United States)

    Mowlavi, Ali Asghar; Shahbahrami, Amrolah; Binesh, Alireza

    2009-09-01

    Ramsar is one of the highest background radiation areas in the world, whose natural radioactivity is due to (238)U natural series and its decay products, especially (226)Ra and (220)Rn, which have been brought to the surface by water of hot springs. In this study, radon concentration in 14 drinking