WorldWideScience

Sample records for water conservation

  1. Water conservation

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-02-01

    Full Text Available This chapter describes water systems used in green buildings and sets out some objectives that could be aimed for. It also outlines some calculations that can be used to design water systems in green buildings. Finally, aspects of green building...

  2. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  3. Conservation potential of agricultural water conservation subsidies

    Science.gov (United States)

    Huffaker, Ray

    2008-07-01

    A current policy subsidizes farmers to invest in improved on-farm irrigation efficiency, expecting water to be conserved off farm. Contrary to expectation, water has been increasingly depleted in some regions after such improvements. This paper investigates the policy's failure to conserve water consistently by (1) formulating an economic model of irrigated crop production to determine a profit-maximizing irrigator's range of responses to a subsidy and (2) embedding these responses into hypothetical streamflow diagrams to ascertain their potential to conserve water under various hydrologic regimes. Testable hypotheses are developed to predict the conservation potential of a subsidy in real-world application.

  4. Arizona Conserve Water Educators Guide

    Science.gov (United States)

    Project WET Foundation, 2007

    2007-01-01

    This award-winning, 350-page, full-color book provides a thorough study of Arizona water resources from a water conservation perspective. Its background section contains maps, graphs, diagrams and photos that facilitate the teaching of 15 interactive, multi-disciplinary lessons to K-12 students. In addition, 10 Arizona case studies are highlighted…

  5. Water Conservation and Economic Incentives

    Science.gov (United States)

    Narayanan, M.

    2016-12-01

    Water has played a vital role in the progress of human civilization throughout history. Both agriculture based economics as well as industry based economics totally rely upon water for survival and prosperity. Water could be a limiting factor in dictating day-to-day human activities and as such one should learn to live within the limits of available natural resources. Most of the water on this earth is either salty or undrinkable. Only one percent of world's water is available for all the needs of human civilization. This includes human personal household needs, community activities, agriculture, industry, plant and animal life sustenance. The supply of usable fresh water is finite and the per capita consumption of fresh water needs to be reduced in particularly in some selected regions of this world. The United States consumes about 450 billion gallons of water every day. The U.S. daily average of water pumped by public water supply systems is 185 gallons per person. The biggest water gobbler in a household is the lawn. Typically, at least 50% of water consumed by households is used outdoors. Even inside a house, bathroom facilities claim nearly 75% of the water used. Here is a short list of economic Incentives that may help water conservation. (1) Providing rebates, refunds or other economic incentives to those consumers that are willing to change to modern technological methods. Examples include, but not limited to energy efficient washing machines, low-flush toilets and improved shower head designs. (2) Communities should provide economic incentives to limit the type and size of landscaping. (3) Need, necessity and nature of outdoor water use could be restricted whenever possible. (4) Sprinkler ban may be deemed appropriate in extreme cases. (5) Set up hotlines that can help penalize those that ignore water conservation guidelines. (6) Incorporating water conservation monitors. References: http://www.nrdc.org/water/http://www.ecy.wa.gov/programs/wr/ws/wtrcnsv.htmlhttp://www.sscwd.org/tips.html

  6. Consequences of Not Conserving Water

    Science.gov (United States)

    Narayanan, M.; Crawford, L.

    2015-12-01

    The problem of fresh water is not only local, but also global. In certain parts of the world, much needed rain is becoming less frequent, possibly due to the effects of global warming. The resources of clean fresh water on earth are very limited and are reducing every year due to pollution like industrial waste, oil spills, untreated sewage, inefficient irrigation systems, waste and leakage, etc. This is destroying the ecosystem of the entire planet. Of course, in some parts of world there is rain almost throughout the year. Regardless, major problems are still prevalent because of a variety of reasons such as drainage, storage, evaporation, cleanliness, etc. It is all too well known that evapotranspiration contributes to a significant water loss from drainage basins. Most of the citizens of this world are still careless about water usage and are unappreciative of the need for water conservation. This is a very unpleasant fact and needs to change. Cost expenditures for the development of infrastructure to supply water to households and industries are becoming prohibitively expensive. Many parts in this world have extremely dry terrain and rainfall is not as frequent as it should be. As a result, the underground water tables are not replenished properly, thereby turning regions to arid land and deserts. Unless effective irrigation methods are used, potential evapotranspiration may be actually greater than precipitation provided by nature. The soil therefore dries out creating an arid landmass. The earth and its inhabitants can sustain only if creative methods of clean water conservation ideas are effectively implemented. (Co-author: Dr. Mysore Narayanan) References: http://www.epa.gov/oaintrnt/water/http://www.usda.gov/wps/portal/usda/usdahome?navid=conservationhttp://www.ecy.wa.gov/programs/wr/ws/wtrcnsv.htmlhttp://www.sandiego.gov/water/conservation/http://www.swcs.org/http://www.awwa.org/resources-tools/water-knowledge/water-conservation.aspxhttp://www.benefits-of-recycling.com/waterconservationmethods/

  7. 43 CFR 427.1 - Water conservation.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water conservation...

  8. Water Conservation Education with a Rainfall Simulator.

    Science.gov (United States)

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  9. SOIL AND WATER CONSERVATION MANAGEMENT THROUGH ...

    African Journals Online (AJOL)

    Osondu

    socio-cultural, economic system constraints for the implementation and maintenance of conservation .... Purpose of natural resource conservation is therefore ... the soil and water resources through traditional and ..... “Integrated Natural.

  10. Water Well Locations - Conservation Wells

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The conservation well layer identifies the permitted surface location of oil and gas conservation wells that have not been plugged. These include active, regulatory...

  11. Clean Water State Revolving Fund (CWSRF): Water Conservation

    Science.gov (United States)

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  12. Water Conservation in Schools and Institutions.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Suggests measures for New Jersey schools to take to decrease building water consumption by 25 per cent during the present state water shortage. Appended is a short list of water conservation instructional materials intended to supplement a bibliography published in the February, 1981 issue of this magazine (pp15-16). (SJL)

  13. Water and the conservation movement

    Science.gov (United States)

    Leopold, Luna Bergere

    1958-01-01

    Every age has its unique touchstone, its hallmark. The Nineties were thought gay. The Twenties had jazz and John Held, Jr. The Thirties had breadlines, dust bowls, the forgotten man. And each recent period has been studded with so many flashy gems, both paste and genuine, that no hallmark would alone be enough to label it.Of the present age, one of the nameplates will carry the word "Conservation." The first time a museum visitor walks by that label he will probably stop, push back the plexiglas globe of his space helmet and say to himself, "I never thought that conservation was a keynote of the Fifties." But I imagine he might agree as the pathetic truth of that label dawned on his tired body, accustomed to canned entertainment, synthetic flavors, and fighting the afternoon traffic of the jet lanes. I can imagine him musing: "Conservation, the hallmark of the Fifties. Somebody about that time said about something or other, 'too little and too late.'"

  14. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  16. Water conservation in semiarid dryland agriculture

    International Nuclear Information System (INIS)

    Willis, W.O.

    1980-01-01

    Factors affecting water conservation in semiarid dryland regions are discussed. Because precipitation is the only source of water for plant growth in most semiarid regions, a good understanding of precipitation patterns (quantity, distribution, and their probable frequency) is needed for each dryland area. The various dryland practices, e.g. tillage, cultivars, residue management, fertility, erosion control, and grazing, must be considered as integral parts of an entire system to develop best management practices and to gain most efficient water conservation for food and fiber production. (author)

  17. 18 CFR 806.25 - Water conservation standards.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water conservation...

  18. 75 FR 11194 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Science.gov (United States)

    2010-03-10

    ... Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San... meetings for the San Diego County Water Authority's (Water Authority/Applicant) draft Natural Communities Conservation Plan (NCCP)/Habitat Conservation Plan (HCP) prepared in application to us for an incidental take...

  19. Water conservation for semi-arid rangelands

    International Nuclear Information System (INIS)

    Willis, W.O.

    1983-01-01

    Water deficiency is most often the cause for low forage production on rangelands in semi-arid and arid regions. Water conservation methods have been developed but additional research is needed to develop the best management practices for various climatic regions. Poor management is another major cause of low rangeland production. Better management, including the application of research findings, depends on attitudes, policies, adaptability of findings, resources for implementation and a good understanding of the governing biotic and abiotic factors. (author)

  20. Soil and Water Conservation Activities for Scouts.

    Science.gov (United States)

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  1. Water Conservation and Hydrological Transitions in Cities

    Science.gov (United States)

    Hornberger, G. M.; Gilligan, J. M.; Hess, D. J.

    2014-12-01

    A 2012 report by the National Research Council, Challenges and Opportunities in the Hydrologic Sciences, called for the development of "translational hydrologic science." Translational research in this context requires knowledge about the communication of science to decision makers and to the public but also improved understanding of the public by the scientists. This kind of knowledge is inherently interdisciplinary because it requires understanding of the complex sociotechnical dimensions of water, policy, and user relations. It is axiomatic that good governance of water resources and water infrastructure requires information about water resources themselves and about the institutions that govern water use. This "socio-hydrologic" or "hydrosociological" knowledge is often characterized by complex dynamics between and among human and natural systems. Water Resources Research has provided a forum for presentation of interdisciplinary research in coupled natural-human systems since its inception 50 years ago. The evolution of ideas presented in the journal provides a basis for framing new work, an example of which is water conservation in cities. In particular, we explore the complex interactions of political, sociodemographic, economic, and hydroclimatological factors in affecting decisions that either advance or retard the development of water conservation policies.

  2. Conservation of Water and Related Land Resources

    Science.gov (United States)

    Caldwell, Lynton K.

    1984-04-01

    The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.

  3. 75 FR 9921 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Science.gov (United States)

    2010-03-04

    ... Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San... the NCCP/HCP's conservation strategy. Covered Activities would include developing new water... permit application, and notice of public meetings. SUMMARY: The San Diego County Water Authority (Water...

  4. Water conservation, recycling, and reuse: US northeast

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.

    1984-10-01

    This paper focuses upon present and future possibilities for water conservation, recycling, and reuse in New England and Middle Atlantic states. Telephone interviews and questionnaires sent to trade associations, public utility commissions, federal, state and other agencies were used to supplement information gathered in the literature. Water intake and consumptive demands in 1980 were calculated for industrial, electric utility, agricultural, and residential sectors. Corresponding information for the year 2000 were estimated using data from utilities, public utility commissions, and the US Bureau of Economic Affairs. Water supplies were estimated using the concept of safe yield. Assuming reductions in water use by industries, agriculture and by private residences in the year 2000, it was found that many users, particularly the electric utility sector, would still experience serious water supply shortfalls in several industrialized states. 20 references, 14 tables.

  5. 21st Century Water Conservation Principles

    Science.gov (United States)

    Narayanan, M.

    2013-12-01

    This is an encore presentation of what was presented at the 2012 AGU International Conference. It was entitled: 'The Importance of Water Conservation in the 21st Century.' The poster presentation, however, has been redesigned and reorganized with new, revised perspectives. The importance of water conservation principles has been emphasized. The population of United States has more than doubled over the past 50 years. The need for water however, has tripled. The EPA estimates that more than 36 states face water shortage during the forthcoming years. The EPA has prepared a plan for achieving environmental and energy performance. This will be coupled with leadership and accountability. Carbon neutrality is also of prime importance. The objective is to focus on six important, essential areas. 1. Efficient use of already available energy resources. 2. Intelligent water consumption and focusing on water conservation. 3. Expand the use of renewable energy resources. 4. Explore innovative transportation systems and methodologies. 5. Change building codes and promote high performance sustainable buildings. 6. Focus on developing creative environment management systems. Greenhouse gases such as carbon dioxide occur naturally in the atmosphere. Carbon dioxide is also emitted to the atmosphere through a variety of natural processes and also some human activities. However, fluorinated gases are emitted to the atmosphere solely through human activities, because they are created by humans. It is very important to observe that water conservation is probably the most cost-effective way to reduce our demand for water. Furthermore, it is certainly environmentally justifiable. The Environmental Protection Agency has a plan called E2PLAN. It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The

  6. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-16

    ... Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool... heating equipment and pool heaters. Table I.1--Amended Energy Conservation Standards for Residential Water... for national energy and water conservation; and 7. Other factors the Secretary of Energy (Secretary...

  7. Improving Water Quality With Conservation Buffers

    Science.gov (United States)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  8. Towards a Fully Conservative Water Balance

    Science.gov (United States)

    Rodriguez, L. B.; Vionnet, C. A.; Younger, P. L.; Parkin, G.

    2001-12-01

    Hydrological modeling is nowadays an essential tool in many aspects of water resources assessment and management. For practical purposes, hydrological models may be defined as mathematical procedures, which transform meteorological input data such as precipitation and evapotranspiration into hydrological output values such as riverflows. Conceptual water balance models are one kind of hydrological models still quite popular among engineers and scientists for three main reasons: firstly the "book-keeping" procedure they are based upon makes them computationally inexpensive, secondly, they require far less data than any physically based model, and thirdly, once calibrated and validated, they can yield the proper order of magnitude of the water cycle component on the basin under investigation. A common criticism of water balance models is their lack of sound theoretical basis. In this work a fully conservative water balance model for basin applications which takes into account physical processes is presented. The two-storage level model contains four calibration parameters: a, b, l and Umax. The saturated storage component resembles the abcd model by Thomas, corrected by the presence of the aquifer storativity coefficient s and the river-aquifer interface conductance l. The resulting model is capable of estimating monthly basin-average of actual evapotranspiration, soil moisture, effective groundwater recharge, groundwater level fluctuations, baseflows and direct runoff using an integral form of the mass conservation law in the saturated/unsaturated layers. The model was applied to a 600 Km2 catchment in the United Kingdom. An eight-year record was used for calibration, while a similar record was reserved for validation of model results. Total streamflows as well as baseflows calculated by the model were compared with observed and estimated data. A quite good agreement was obtained. Finally, simulated groundwater levels were compared with observation data collected at

  9. Some Interesting Facts about Water and Water Conservation

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  10. Conservation.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  11. Water use patterns and conservation in households of Wei River Basin, China

    NARCIS (Netherlands)

    Fan, L.; Liu, G.; Wang, F.; Geissen, V.; Ritsema, C.J.

    2013-01-01

    Fully understanding patterns of water use and water conservation among different consumer groups will help in implementing more effective water conservation programs worldwide. Consequently, we investigated water use patterns, water conservation practices, attitudes, and hindrances to water

  12. Water Conservation with Water Saving Devices, Proceedings of a Conference. Extension Bulletin 421.

    Science.gov (United States)

    Shelton, Theodore B., Ed.

    Presented are six papers on water conservation which were presented at a conference in New Jersey. The first two papers present recommendations of the New Jersey Department of Environmental Protection on water conservation and a master plan for New Jersey's water supply needs. The following four papers discuss water conservation with water-saving…

  13. Conserving Water: The Untapped Alternative. Worldwatch Paper 67.

    Science.gov (United States)

    Postel, Sandra

    This report addresses the global concern of water development and stresses the need for management of the water demand. Investments in water efficiency, recycling, and conservation are recommended over conventional water supply projects for greater cost behefits and production yield. Topic areas include: (1) water use trends in major crop…

  14. The Role of Communicative Feedback in Successful Water Conservation Programs

    Science.gov (United States)

    Tom, Gail; Tauchus, Gail; Williams, Jared; Tong, Stephanie

    2011-01-01

    The Sacramento County Water Agency has made available 2 water conservation programs to its customers. The Data Logger Program attaches the Meter Master Model 100 EL data logger to the customer's water meter for 1 week and provides a detailed report of water usage from each fixture. The Water Wise House Call Program provides findings and…

  15. Water Conservation Study, Ft. Drum, New York, Watertown, New York

    National Research Council Canada - National Science Library

    1996-01-01

    The purpose of this water conservation study is to conduct a limited site survey and evaluate energy use and savings, estimate construction costs and water savings and provide a cost to savings ratio...

  16. Water Conservation Study, Badger Army Ammunition Plant, Baraboo, Wisconsin

    National Research Council Canada - National Science Library

    1995-01-01

    The purpose of this water conservation study is to identify projects which will result in energy maintenance and cost savings in the process water distribution system at Badger Army Ammunition Plant (BAAP...

  17. Water Conservation Study. Badger Army Ammunition Plant, Baraboo, Wisconsin

    National Research Council Canada - National Science Library

    1995-01-01

    The purpose of this water conservation study is to identify projects which will result in energy maintenance and cost savings in the process water distribution system at Badger Army Ammunition Plant (BAAP...

  18. Water Conservation Study, Ft. Drum, New York, Watertown, New York

    National Research Council Canada - National Science Library

    1996-01-01

    The purpose of this water conservation study is to conduct a limited site survey and evaluate energy use and savings, estimate construction costs and water savings and provide a cost-to-savings ratio...

  19. Impacts of Personal Experience: Informing Water Conservation Extension Education

    Science.gov (United States)

    Huang, Pei-wen; Lamm, Alexa J.

    2017-01-01

    Extension educators have diligently educated the general public about water conservation. Incorporating audiences' personal experience into educational programming is recommended as an approach to effectively enhance audiences' adoption of water conservation practices. To ensure the impact on the audiences and environment, understanding the…

  20. Analytical Bibliography for Water Supply and Conservation Techniques.

    Science.gov (United States)

    1982-01-01

    American Water Works Association 67:331-35. This article describes the activities of the COMASP (water authority for Sao Paulo , Brazil ) during a...the Water Supply Act of 1958, as amiended. Flood Control Act of 1944. The Secretary of the Army was authorized to sell surplus impounded water in...each category. The issues discussed are: climate and water supply, floods and droughts, groundwater, water conservation in irrigation, water quality

  1. The Value of Forest Conservation for Water Quality Protection

    Directory of Open Access Journals (Sweden)

    Melissa M. Kreye

    2014-05-01

    Full Text Available Forests protect water quality by reducing soil erosion, sedimentation, and pollution; yet there is little information about the economic value of conserving forests for water quality protection in much of the United States. To assess this value, we conducted a meta-analysis of willingness-to-pay (WTP for protecting unimpaired waters, and econometrically determined several significant drivers of WTP: type of conservation instrument (tool, aquatic resource type, geographic context, spatial scale, time, and household income. Using a benefit transfer to two highly forested sites, we illustrate the importance of these factors on WTP for water quality protection programs, forest conservation and policy design.

  2. Drought Resilience and Water Conservation Technical Brief

    Science.gov (United States)

    In many areas of the US, the frequency, intensity, and duration of drought events are increasing, this brief highlights EPA drought and conservation activities across the nation and includes links to additional materials and reference documents.

  3. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Science.gov (United States)

    2010-12-14

    ... Corporation Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative AGENCY... Conservation Service (NRCS) through either the Agricultural Water Enhancement Program (AWEP) or the Cooperative... concerns to be addressed, and specifically what water conservation resource issues and water quality...

  4. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Science.gov (United States)

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  5. Effect of restoring soil hydrological poperties on water conservation

    NARCIS (Netherlands)

    Moore, D.; Kostka, S.J.; Boerth, T.J.; Franklin, M.A.; Ritsema, C.J.; Dekker, L.W.; Oostindie, K.; Stoof, C.R.; Park, D.M.

    2008-01-01

    Water repellency in soil is more wide spread than previously thought ¿ and has a significant impact on irrigation efficiency and water conservation. Soil water repellency has been identified in many soil types under a wide array of climatic conditions world wide. Consequences include increased

  6. Soil and Water Conservation Districts of New Mexico

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The New Mexico Soil and Water Conservation District (SWCD) shapefile includes forty-seven boudaries which cover each SWCD throughout the State.

  7. Water Conservation and Reuse. Instructor Guide. Working for Clean Water: An Information Program for Advisory Committees.

    Science.gov (United States)

    Pennsylvania State Univ., Middletown. Inst. of State and Regional Affairs.

    Described is a learning session on water conservation intended for citizen advisory groups interested in water quality planning. Topics addressed in this instructor's manual include water conservation needs, benefits, programs, technology, and problems. These materials are components of the Working for Clean Water Project. (Author/WB)

  8. Energy conservation measures adopted at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Gupta, R.V.; Venugopal, M.

    1997-01-01

    The importance of conservation of energy is well recognised all over the world as the world reserves of fossil fuels will eventually run out depending on the rate of their use. This paper deals with various energy conservation schemes adopted at Heavy Water Plant, Manuguru (HWPM). Most energy conservation measures offer large financial saving with very short pay back periods. This fact has been well recognised by the management of HWPM as well as Heavy Water Board and their wholehearted and enthusiastic approach to energy conservation and energy management yielded very good results in reducing the operating cost. The process of energy conservation is not a one time exercise. Persistent efforts are on to identify the areas like condition of heat exchangers, margins in control valves, steam and condensate leakages etc. for further reduction in energy consumption

  9. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  10. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  11. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    Science.gov (United States)

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  12. An essential step to conserve water

    International Nuclear Information System (INIS)

    Bajpai, M.K.; Gajapati, C.R.; Srivastava, D.C.; Srivastava, J.; Verma, A.N.

    2008-01-01

    Whenever a new chemical plant is designed, the designer keeps some extra margin to fulfill the future requirements and after successful operation of the plant and experience gained over a period of time, it becomes necessary to review and modify the various requirements in order to bring down the cost of the product to sustain in the market. Keeping the, same philosophy and pace, HWPK reviewed its requirements of raw water considering reuse and recycle the effluent within the plant. Heavy Water Production by GS process requires a huge quantity of de-mineralized water as a source of deuterium and after optimizing and attaining success in the operation of the plant, efforts were made to bring down the intake of raw water. Initially, the plant was designed to take 2280 m 3 /h of raw water from the lake and after modifications it has substantially come down to 700 m 3 /h. In the above modification the following benefits are observed: 1. Electrical consumption has been reduced as raw water pump of lower capacity has been installed; 2. Consumption of raw water has been reduced; 3. Concept of 'Zero effluent' is achieved, which is now a requirement for a chemical plant as directed by pollution control board; and 4. Cess being paid to pollution control board and Irrigation Department has been reduced. (author)

  13. Water conservation and allocation guideline for oilfield injection

    International Nuclear Information System (INIS)

    2006-01-01

    This paper was prepared as a guide for regulatory agencies and developers using non-saline water sources in enhanced oil recovery (EOR) schemes. A systems approach was used to achieve specific environmental outcomes that adhered to the Water Conservation and Allocation Policy for Oilfield Injection. The guide was applicable to licence renewal applications for projects operating and licensed to use non-saline water resources, as well as new licence applications for oilfield injection use. The guide provided recommended water conservation practices and application requirements, and outlined regulatory procedures and steps for obtaining a Water Act licence. The guideline was prepared to eliminate the use of non-saline water in EOR projects where feasible alternatives existed, as well as to identify areas with water shortages and reduce the use of non-saline water. The guide included monitoring and reporting requirements to improve the evaluation of water use practices and outlined current initiatives to address water conservation and research. It was concluded that outcomes from the program will include reliable quality water supplies for a sustainable economy, healthy aquatic ecosystems, and safe, secure drinking water supplies for Albertans. 3 tabs., 5 figs

  14. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  15. The development of a municipal water conservation and demand ...

    African Journals Online (AJOL)

    The implementation of water conservation and water demand management ... and the municipalities do not have the necessary financial, technical and institutional capacity to support such a ... The methodology for this study was developed as part of the ... Study' for the Vaal River system (DWAF, 2006; DWAF, 2009).

  16. Agricultural water conservation programs in the lower Colorado River Authority

    International Nuclear Information System (INIS)

    Kabir, J.

    1993-01-01

    Rice irrigation is the largest user of water within the area served by the Lower Colorado River Authority (LCRA), accounting for approximately 75 percent of total annual surface and ground water demands. In an average year, about 30 percent of surface water supplied to rice irrigation is satisfied with water released from the storage in the Highland Lakes located at the upstream reaches of the Lower Colorado River and its tributaries. During a severe drought, the demand for stored water could be as much as 70 percent of annual rice irrigation demand. LCRA owns and operates two irrigation canal systems which together supply water to irrigate 60,000 acres of rice each year. These irrigation systems are the Lakeside and Gulf Coast Irrigation Divisions. The Lakeside system is located in Colorado and Wharton Counties and the Gulf Coast system is located in Wharton and Matagorda Counties. In the 1987 and 1989, the Lower Colorado River Authority Board of Directors authorized implementation and funding for Canal Rehabilitation Project and Irrigation Water Measurement Project respectively. These two projects are key initiatives to agricultural water conservation goals established in the LCRA Water Management Plan and Water Conservation Policy. In addition LCRA participated actively in agricultural water conservation research projects and technology transfer activities

  17. Joint Venture Modes of Water Conservancy and Hydroelectric Engineering

    Directory of Open Access Journals (Sweden)

    Zhiding Chen

    2013-07-01

    Full Text Available With the long construction period, the giant scope and complex technology, water conservancy and hydroelectric engineering construction has large investment. In the fully competitive water conservancy and hydropower project construction contracting market, it is almost impossible for a company to contract with a water conservancy and hydropower project independently. Therefore, water conservancy and hydropower project construction can be contracted by several construction companies together, to play each company's strengths, lower offer, improve project quality, shorten the construction period and win the competition. In this paper, we started from the definition of Joint Venture, summed up the forms of Joint Venture in water conservancy and hydropower engineering, proposed that the JV modes can be divided into domestic and international union, tight mode, half-tight mode, loose mode, incorporation and consortium. Furthermore, we analyzed the advantages and disadvantages of Joint Venture. Put forward that the JV can relieve the owner from interfacial administrative work, reduce risk of engineering, and raise the success rate of engineering contract, improve the correctness of price and increase the opportunity of project contracting, Learn from other members, enhance technology and management and make full use of idle resources

  18. 10 CFR 430.34 - Energy and water conservation standards amendments

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation standards...

  19. PV water pumping systems for grassland and farmland conservation

    OpenAIRE

    Campana, Pietro Elia

    2013-01-01

    Grassland degradation is considered as one of the worst environmental and economic problems in China because of the negative impacts on water and food security. The application of the photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the progress of grassland desertification and to promote the conservation of farmland in remote areas. The combination of PVWP with water saving irrigation techniques and the sustainable management of th...

  20. 76 FR 6491 - San Diego County Water Authority Subregional Natural Community Conservation Program/Habitat...

    Science.gov (United States)

    2011-02-04

    ...] San Diego County Water Authority Subregional Natural Community Conservation Program/Habitat Conservation Plan, San Diego and Riverside Counties, CA; Final Environmental Impact Statement and Habitat... also announce the availability of the Water Authority's Subregional Natural Community Conservation...

  1. Salvaging and Conserving Water Damaged Photographic Materials

    Science.gov (United States)

    Suzuki, Ryuji

    Degradation of water damaged photographic materials is discussed; the most vulnerable elements are gelatin layers and silver image. A simple and inexpensive chemical treatment is proposed, consisting of a bath containing a gelatin-protecting biocide and a silver image protecting agent. These ingredients were selected among those used in manufacturing of silver halide photographic emulsions or processing chemicals. Experiments confirmed that this treatment significantly reduced oxidative attacks to silver image and bacterial degradation of gelatin layers. The treated material was also stable under intense light fading test. Method of hardening gelatin to suppress swelling is also discussed.

  2. Targeting water and energy conservation using big data

    Science.gov (United States)

    Escriva-Bou, A.; Pulido-Velazquez, M.; Lund, J. R.

    2016-12-01

    Water conservation is often the most cost effective source of additional water supply for water stressed regions to maintain supply reliability with increasing population and/or demands, or shorter-term droughts. In previous research we demonstrated how including energy savings of conserved water can increase willingness to adopt conservation measures, at the same time that increases energy and GHG emissions savings. But the capacity to save water, energy and GHG emissions depends fundamentally in the economic benefits for customers and utilities. Utilities have traditionally used rebates, subsidies or incentives to enhance water conservation. But the economic benefits originated by these rebates depend on the actual savings of the water, energy and GHG emissions. A crucial issue that is not considered in the financial analysis of these rebates is the heterogeneity in water consumption, resulting in rebating households that actually do not need improvements in certain appliances. Smart meters with end-use disaggregation allow to consider this heterogeneity and to target rebates. By using an optimization approach that minimizes water and energy residential costs—accounting for retrofit costs and individual benefits according to previous levels of consumption—we are able to assess economically optimal rebate programs both for customers and utilities. Three programs are considered: first, same economic incentives are provided to all households and then they do their optimal decisions; second, traditional appliance-focused rebates are assessed; and third, utilities provide only rebates to those households that maximize water, energy or GHG emissions savings. Results show that the most economically efficient options for households are not the best options for utilities, and that traditional appliance-focused rebates are much less optimal than targeted rebates.

  3. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  4. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the use...

  5. Water Conservation and Artificial Recharge of Aquifers in India

    Energy Technology Data Exchange (ETDEWEB)

    Chandha, D. K.

    2014-10-01

    India has proud traditions and wisdom which have evolved over thousands of years for developing technologies for water conservation and groundwater recharge using surplus monsoon precipitation runoff. This is imperative as the average rainfall/precipitation period is about 27 days/year and with uneven distribution across the country. Groundwater development is now the mainstay for sustaining agricultural production and rural water supplies. As such, groundwater development is increasing at an exponential rate and the estimated draft is now 231 000 hm{sup 3} with the result that almost 15% of the groundwater development areas are showing a continuous decline of water levels. There is an anomalous situation whereby water levels are declining in 831 blocks (assessment units) out of a total of 5 723 blocks across the country, and availability of excessive 864 000 hm{sup 3} runoff in different river basins brings floods and creates water logging in some parts of the country. This non-utilizable water can be planned for creating small surface water storage and to create additional sub-surface storage through groundwater recharge. At present, total water available is estimated at 660 000 hm{sup 3} and the minimum estimated water demand will be 843 000 hm{sup 3} in 2025 and 973 000 hm{sup 3} in 2050. Therefore, if India wants sustainable food supplies and to meet domestic/industrial water requirements, there is no other option than to implement projects for water conservation/groundwater recharge. Although a number of forward looking steps have been planned by the government and other institutions, many lacunae have been observed which need to be addressed for the successful implementation of water conservation and recharge programmes. This paper discusses various practices from the pre-historic to the present day, with case studies showing technological intervention. (Author)

  6. Managing Water Scarcity: Why Water Conservation Matters to Business

    Science.gov (United States)

    Spiwak, Stephen M.

    2013-01-01

    The issue of water scarcity has often hit the headlines in the past several years. Some states have gone to court over water rights and access even as others have agonized over scarce supplies. University presidents and their staff of directors understand that the days of unlimited, inexpensive water are almost over. While it remains inexpensive…

  7. Using Audience Segmentation to Tailor Residential Irrigation Water Conservation Programs

    Science.gov (United States)

    Warner, Laura A.; Chaudhary, Anil Kumar; Rumble, Joy N.; Lamm, Alexa J.; Momol, Esen

    2017-01-01

    Today's complex issues require technical expertise as well as the application of innovative social science techniques within Extension contexts. Researchers have suggested that a social science approach will play a critical role in water conservation, and people who use home landscape irrigation comprise a critical target audience for agriculture…

  8. Implementing the 40 Gallon Challenge to Increase Water Conservation

    Science.gov (United States)

    Sheffield, Mary Carol; Bauske, Ellen; Pugliese, Paul; Kolich, Heather; Boellstorff, Diane

    2016-01-01

    The 40 Gallon Challenge is an easy-to-use, comprehensive indoor and outdoor water conservation educational tool. It can be used nationwide and easily incorporated into existing educational programs. Promotional materials and pledge cards are available on the 40 Gallon Challenge website and can be modified by educators. The website displays data…

  9. Effects of soil and water conservation practices on selected soil ...

    African Journals Online (AJOL)

    Although different types of soil and water conservation practices (SWCPs) were introduced, the sustainable use of these practices is far below expectations, and soil erosion continues to be a severe problem in Ethiopia. Therefore, this study was conducted at Debre Yakobe Micro-Watershed (DYMW), Northwest Ethiopia ...

  10. Implications of market access on soil and water conservation ...

    African Journals Online (AJOL)

    Market access is one of the motivating mechanisms for farmers to invest in soil and water conservation (SWC). Areas of relatively high agricultural potential but remote from major markets face numerous challenges in marketing their outputs. The objective of this study was to explore the market access determinants of farmer ...

  11. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  12. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  13. Understanding Public Engagement in Water Conservation Behaviors and Knowledge of Water Policy: Promising Hints for Extension

    Science.gov (United States)

    Huang, Pei-wen; Lamm, Alexa J.

    2015-01-01

    Sustaining water resources is a primary issue facing Florida Extension. The study reported here identified how experience with water issues and familiarity with water policies affected individuals' engagement in water conservation behaviors. A public opinion survey was conducted online to capture Florida residents' responses. The findings…

  14. Public Perception of Water Consumption and Its Effects on Water Conservation Behavior

    NARCIS (Netherlands)

    Fan, L.X.; Wang, F.; Liu, G.B.; Yang, X.; Qin, W.

    2014-01-01

    The usual perception of consumers regarding water consumption is that their bills do not match their actual water consumption. However, this mismatch has been insufficiently studied; particularly for cases related to specific water-use patterns, water conservation practices, and user

  15. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    Science.gov (United States)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  16. Water demand management in times of drought: What matters for water conservation

    Science.gov (United States)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  17. Quantifying the influence of environmental and water conservation attitudes on household end use water consumption.

    Science.gov (United States)

    Willis, Rachelle M; Stewart, Rodney A; Panuwatwanich, Kriengsak; Williams, Philip R; Hollingsworth, Anna L

    2011-08-01

    Within the research field of urban water demand management, understanding the link between environmental and water conservation attitudes and observed end use water consumption has been limited. Through a mixed method research design incorporating field-based smart metering technology and questionnaire surveys, this paper reveals the relationship between environmental and water conservation attitudes and a domestic water end use break down for 132 detached households located in Gold Coast city, Australia. Using confirmatory factor analysis, attitudinal factors were developed and refined; households were then categorised based on these factors through cluster analysis technique. Results indicated that residents with very positive environmental and water conservation attitudes consumed significantly less water in total and across the behaviourally influenced end uses of shower, clothes washer, irrigation and tap, than those with moderately positive attitudinal concern. The paper concluded with implications for urban water demand management planning, policy and practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Arid Green Infrastructure for Water Control and Conservation ...

    Science.gov (United States)

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  19. Trading Water Conservation Credits: A Coordinative Approach for Enhanced Urban Water Reliability

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2016-12-01

    Water utilities in arid and semi-arid regions are increasingly relying on water use efficiency and conservation to extend the availability of supplies. Despite spatial and institutional inter-dependency of many service providers, these demand-side management initiatives have traditionally been tackled by individual utilities operating in a silo. In this study, we introduce a new approach to water conservation that addresses regional synergies—a novel system of tradable water conservation credits. Under the proposed approach, utilities have the flexibility to invest in water conservation measures that are appropriate for their specific service area. When utilities have insufficient capacity for local cost-effective measures, they may opt to purchase credits, contributing to fund subsidies for utilities that do have that capacity and can provide the credits, while the region as whole benefits from more reliable water supplies. While similar programs have been used to address water quality concerns, to our knowledge this is one of the first studies proposing tradable credits for incentivizing water conservation. Through mathematical optimization, this study estimates the potential benefits of a trading program and demonstrates the institutional and economic characteristics needed for such a policy to be viable, including a proposed web platform to facilitate transparent regional planning, data-driven decision-making, and enhanced coordination of utilities. We explore the impacts of defining conservation targets tailored to local realities of utilities, setting credit prices, and different policy configurations. We apply these models to the case study of water utility members of the Bay Area Water Supply and Conservation Agency. Preliminary work shows that the diverse characteristics of these utilities present opportunities for the region to achieve conservation goals while maximizing the benefits to individual utilities through more flexible coordinative efforts.

  20. The Effects of Water Conservation Instruction on Seventh-Grade Students.

    Science.gov (United States)

    Birch, Sandra K.; Schwaab, Karl E.

    1983-01-01

    Examined effectiveness of water conservation instructional unit in increasing students' (N=843) knowledge of water conservation practices and influencing their attitudes about efficient water use. Also examined assertion that school education programs are effective in promoting water conservation. Overall results indicate the unit was effective on…

  1. The Importance of Water Conservation in the 21st Century

    Science.gov (United States)

    Narayanan, M.

    2012-12-01

    The population of United States has more than doubled over the past 50 years. The need for water however, has tripled. The EPA estimates that more than 36 states face water shortage during the forthcoming years. The EPA has prepared a plan for achieving environmental and energy performance. This will be coupled with leadership and accountability. Carbon neutrality is also of prime importance. The objective is to focus on six important, essential areas. 1. Efficient use of already available energy resources. 2. Intelligent water consumption and focusing on water conservation. 3. Expand the use of renewable energy resources. 4. Explore innovative transportation systems and methodologies. 5. Change building codes and promote high performance sustainable buildings. 6. Focus on developing creative environment management systems. Greenhouse gases such as carbon dioxide occur naturally in the atmosphere. Carbon dioxide is also emitted to the atmosphere through a variety of natural processes and also some human activities. However, fluorinated gases are emitted to the atmosphere solely through human activities, because they are created by humans. It is very important to observe that water conservation is probably the most cost-effective way to reduce our demand for water. Furthermore, it is certainly environmentally justifiable. Water conservation also means, less use of water. This in turn, results in less strain on the city sewage treatment plants. This may also imply that one uses less energy for heating water. For example, the city of Los Angeles has grown by more than a million over the past thirty years. Regardless, the city still uses almost the same amount of water even now. The Environmental Protection Agency has a plan called E2PLAN. It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability

  2. Public Perception of Water Consumption and Its Effects on Water Conservation Behavior

    OpenAIRE

    Liangxin Fan; Fei Wang; Guobin Liu; Xiaomei Yang; Wei Qin

    2014-01-01

    The usual perception of consumers regarding water consumption is that their bills do not match their actual water consumption. However, this mismatch has been insufficiently studied; particularly for cases related to specific water-use patterns, water conservation practices, and user socio-demographics. In this study, a total of 776 households in 16 villages situated in the rural Wei River Basin are investigated to address the gap in the literature. Questionnaires and 3-day water diaries are...

  3. Funding Water Reuse and Conservation Projects with the Clean Water State Revolving Fund

    Science.gov (United States)

    This fact sheet demonstrates how the CWSRF provides assistance to eligible recipients for projects promoting water reuse and conservation. It highlights successful projects for these communities in California, Virginia and Texas.

  4. Valuing the Environmental Benefits of Urban WaterConservation

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie M.; Bolduc, Chris A.; Chan, Peter T.; Dunham-Whitehead, C.; Van Buskirk, R.D.

    2007-05-01

    This report documents a project undertaken for theCalifornia Urban Water Conservation Council (the Council) to create a newmethod of accounting for the diverse environmental benefits of raw watersavings. The environmental benefits (EB) model was designed to providewater utilities with a practical tool that they can use to assign amonetary value to the benefits that may accrue from implementing any ofthe Council-recommended Best Management Practices. The model treats onlyenvironmental services associated directly with water, and is intended tocover miscellaneous impacts that are not currently accounted for in anyother cost-benefit analysis.

  5. Community Based Educational Model on Water Conservation Program

    Science.gov (United States)

    Sudiajeng, L.; Parwita, I. G. L.; Wiraga, I. W.; Mudhina, M.

    2018-01-01

    The previous research showed that there were indicators of water crisis in the northern and eastern part of Denpasar city and most of coastal area experienced on seawater intrusion. The recommended water conservation programs were rainwater harvesting and educate the community to develop a water saving and environmentally conscious culture. This research was conducted to built the community based educational model on water conservation program through ergonomics SHIP approach which placed the human aspect as the first consideration, besides the economic and technically aspects. The stakeholders involved in the program started from the problem analyses to the implementation and the maintenance as well. The model was built through three main steps, included determination of accepted design; building the recharge wells by involving local communities; guidance and assistance in developing a water saving and environmentally conscious culture for early childhood, elementary and junior high school students, community and industry. The program was implemented based on the “TRIHITA KARANA” concept, which means the relationship between human to God, human-to-human, and human to environment. Through the development of the model, it is expected to grow a sense of belonging and awareness from the community to maintain the sustainability of the program.

  6. Conservation-reuse of water in fossil-fuel power plants including water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T.S.R.

    1984-02-01

    The various areas where the conservation-reuse of water is possible are discussed. However, water conservation, especially effluent volume reduction-treatment reuse, should be seen in the light of pollution control measures. Some of the areas indicated recover a small quantity of water but they should be viewed in the light of well yield being not adequate, or having high salinity or having an increase of well water salinity after some use. Some of the methods can only be adopted at the design stage whereas others could be incorporated at the site.

  7. Rethinking soil and water conservation in a changing society : a case study in eastern Burkina Faso

    OpenAIRE

    Mazzucato, V.; Niemeijer, D.

    2000-01-01

    Soil and water conservation is at the top of development agendas in Africa. Virtually every project related to agriculture or the environment has a soil and water conservation component to it and environmental protection plans are being drawn up by African governments in which soil and water conservation figures dominantly. This focus on soil and water conservation is due to its being perceived as a way to address both productivity and environmental sustainability questions. Land deg...

  8. Analyzing ecological restoration strategies for water and soil conservation

    Science.gov (United States)

    Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; da Rocha, Humberto Ribeiro

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration. PMID:29425214

  9. Analyzing ecological restoration strategies for water and soil conservation.

    Science.gov (United States)

    Saad, Sandra Isay; Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; Rocha, Humberto Ribeiro da

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration.

  10. Analyzing ecological restoration strategies for water and soil conservation.

    Directory of Open Access Journals (Sweden)

    Sandra Isay Saad

    Full Text Available The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil, where one of first Brazilian Payment for Ecosystem Services (PES projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion, so it will be advisable to consider the two types of restoration.

  11. Water conservation by 3 R's - case histories of Heavy Water Plants

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Hiremath, S.C.

    2005-01-01

    The basics of water conservation revolve around three R's of Reduce, Recycle, and Reuse. The Heavy Water Plants are an excellent example of water savings, and these case studies will be of interest to the chemical industry. The issues involved with water conservation and re-use in different Heavy Water Plants are of different nature. In H 2 S-H 2 O process plants the water consumption has been substantially decreased as compared to the design water needs. To quote the figures HWP (Kota) was designed to consume 2280 m 3 /hr water, which included 453 m 3 /hr water as feed for deuterium extraction. Today the plant operates with only 1250 m 3 /hr water while processing 500 m 3 /hr feed; and is headed to decrease the total water consumption to 700 m 3 /hr. Similarly at HWP (Manuguru) the design had provided 5600 m 3 /hr water consumption, which is today operating with only 1750 m 3 /hr and poised to operate with 1600 m 3 /hr. The issues of water conservation in Ammonia Hydrogen exchange plants have an additional dimension since water losses mean direct loss of heavy water production. In adjoining ammonia plants deuterium shifts to steam in the reformer and shift converter, and this excess steam is condensed as rich condensate. It becomes incumbent on the fertilizer plant to maintain a tight discipline for conserving and re-using the rich condensate so that deuterium concentration in the synthesis gas is maintained. Efforts are also underway to utilize rich condensate of GSFC in the newly developed technology of water ammonia exchange at HWP (Baroda) and we are targeting 20% production gains by implementation of this scheme and with no increase in the pollution load. These case histories will be of interest to Chemical Process Industry. (author)

  12. 75 FR 52010 - Land and Water Conservation Fund Description and Notification, Performance Reports, Agreements...

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Land and Water Conservation Fund Description and.... SUPPLEMENTARY INFORMATION: The Land and Water Conservation Fund Act of 1965 (LWCF Act) (16 U.S.C 4601-4 et seq... for this program: 1. Description and Notification Form Title: Land and Water Conservation Fund...

  13. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of soil and water conservation... (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures treated as a... of soil or water conservation in respect of land used in farming, or for the prevention of erosion of...

  14. 77 FR 2975 - Roosevelt Water Conservation District; Notice of Termination of Exemption by Implied Surrender...

    Science.gov (United States)

    2012-01-20

    .... Project No.: 11572-001. c. Date Initiated: January 9, 2012. d. Exemptee: Roosevelt Water Conservation District. e. Name and Location of Project: The Roosevelt Water Conservation District Conduit Hydropower..., Roosevelt Water Conservation District, 2344 S. Higley Road, Gilbert, AZ 82595-4794, (480) 988-9586. [[Page...

  15. 78 FR 12349 - Proposed Information Collection; Land and Water Conservation Fund State Assistance Program

    Science.gov (United States)

    2013-02-22

    ...] Proposed Information Collection; Land and Water Conservation Fund State Assistance Program AGENCY: National.... Abstract The Land and Water Conservation Fund Act of 1965 (LWCF Act) (16 U.S.C. 460l-4 et seq.) was enacted... discussed in detail in the Land and Water Conservation Fund State Assistance Program Federal Financial...

  16. Computer applications in water conservancy and hydropower engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J

    1984-09-20

    The use of computers in China's water conservancy and hydropower construction began in the 1960s for exploration surveys, planning, design, construction, operation, and scientific research. Despite the positive results, and the formation of a 1000-person computer computation contingent, computer development among different professions is not balanced. The weaknesses and disparities in computer applications include an overall low level of application relative to the rest of the world, which is partly due to inadequate hardware and programs. The report suggests five ways to improve applications and popularize microcomputers which emphasize leadership and planning.

  17. Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector; FINAL

    International Nuclear Information System (INIS)

    Parker, Graham B; McMordie-Stoughton, Katherine L; Sullivan, Gregory P; Elliott, Douglas B

    2001-01-01

    The Department of Energy's Federal Energy Management Program (FEMP) is considering the development of a technology-specific Super-Energy Saving Performance Contract (ESPC) for water conservation. Prior to the development however, FEMP requires the completion of a market assessment to better understand the water conservation opportunities and the strategies available for capturing them. Thus, this market assessment has been undertaken to evaluate the water conservation opportunities and answer the key questions necessary for FEMP to make recommendations on whether or not to proceed with strategies for water conservation primarily through the development of a water conservation technology-specific performance contract

  18. Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Mcmordie, Katherine; Sullivan, Gregory P.; Elliott, Douglas B.

    2001-08-17

    The Department of Energy's Federal Energy Management Program (FEMP) is considering the development of a technology-specific Super-Energy Saving Performance Contract (ESPC) for water conservation. Prior to the development however, FEMP requires the completion of a market assessment to better understand the water conservation opportunities and the strategies available for capturing them. Thus, this market assessment has been undertaken to evaluate the water conservation opportunities and answer the key questions necessary for FEMP to make recommendations on whether or not to proceed with strategies for water conservation primarily through the development of a water conservation technology-specific performance contract.

  19. Energy conservation and management strategies in Heavy Water Plants

    International Nuclear Information System (INIS)

    Kamath, H.S.

    2002-01-01

    In the competitive industrial environment it is essential that cost of the product is kept at the minimum possible. Energy conservation is an important aspect in achieving this as energy is one of the key recourses for growth and survival of industry. The process of heavy water production being very complex and energy intensive, Heavy Water board has given a focussed attention for initiating various measures for reducing the specific energy consumption in all the plants. The initiative resulted in substantial reduction in specific energy consumption and brought in savings in cost. The cumulative reduction of specific energy consumption has been over 30% over the last seven years and the total savings for the last three years on account of the same has been about Rs. 190 crore. The paper describes the strategies adopted in the heavy water plants for effecting the above achievements. The paper covers the details of some of the energy saving schemes carried out at different heavy water plants through case studies. The case studies of schemes implemented at HWPs are general in nature and is applicable for any other industry. The case studies cover the modifications with re-optimisation of the process parameters, improvements effected in utility units like refrigeration and cooling water systems, improvements in captive power plant cycle and improved recycle scheme for water leading to reduced consumptions. The paper also mentions the innovative ammonia absorption refrigeration with improved coefficient of performance and HWB's efforts in development of the system as an integrated unit of the ammonia water deuterium exchange process for heavy water production. HWB also has taken up R and D on various other schemes for improvements in energy consumption for future activities covering utilisation of low grade energy for generation of refrigeration. (author)

  20. Water conservation in fasting northern elephant seals (Mirounga angustirostris).

    Science.gov (United States)

    Lester, Christopher W; Costa, Daniel P

    2006-11-01

    Prolonged terrestrial fasting is a key element in the life history of elephant seals. While on land seals typically fast without access to fresh water, and thus must maintain positive water balance by reductions in water loss such that they can subsist primarily on metabolic water production (MWP). The terrestrial apnea demonstrated by seals may reduce respiratory evaporative water loss (REWL) to levels that allow seals to make a net gain of water from MWP. We empirically measured REWL in 13 fasting northern elephant seal pups and determined the effects on water conservation of a breathing mode that incorporates a regular pattern of apneas, of > or =1 min in duration, followed by eupneic recovery, compared with a breathing mode with no apneas longer than 20 s and resembling typical breathing patterns in other mammals (normative breathing). Overall REWL fell 41% from 0.075+/-0.013 g min(-1) (mean +/- s.d.) during normative breathing to 0.044+/-0.006 g min(-1) during apneic breathing. The decline in REWL is attributed to a decrease in overall ventilation rate, made possible by a decline in metabolic rate along with an increase in oxygen extraction that would occur during apneic breathing. Data on the range of ambient humidity conditions at the local breeding site were collected and used to bound the range of environmental conditions used in laboratory measurements. Our data showed that the observed variations in ambient humidity had no significant effect on REWL. A combination of apneic breathing and the complex nasal turbinates allows fasting elephant seals to reduce REWL well below the rate of MWP so that they can maintain water balance during the fast.

  1. Water conservation in agriculture -a step in combating the water crisis

    International Nuclear Information System (INIS)

    Prinz, D.; Malik, A.H.

    2005-01-01

    In Pakistan, the agricultural sector is the largest water user with 95%, leaving only marginal quantities for households and industry. On one hand, agriculture is a very important sector in Pakistan's economic development, contributing about 23 % to the national GDP -but industry contributes slightly more using only about 2 % of the available water resources. As Pakistan faces a growing problem of water shortage, significant achievements in water conservation have to be materialized, predominantly on the agricultural sector. There is scope for a higher degree of efficiency in water use, as water losses, namely in irrigation, are still rather high. There is another good reason for water conservation in agriculture: Over-irrigation results in rising water tables and increased soil salinity, which has reduced Pakistan's agricultural output during the last 2 decades by nearly 25%. Water conservation measures can be divided into (1) measures which are only applicable under rain-fed agricultural conditions, (2) measures which are relevant to save water in rain-fed agriculture as well as in irrigated agriculture and (3) measures, which are relevant in irrigated agriculture only. The first group centres around efficient rainwater management, which can be either 'in-situ moisture conservation' or 'rainwater harvesting'. The second group includes (1) improving crop selection, (2) improving crop husbandry, (3) combining cropping with animal husbandry, (4) reduction of transpiration losses, (5) reduction of evaporation losses and (6) reduction of percolation losses. Efficient irrigation can be accomplished by (1) reduction of conveying and distribution losses, (2) reduction of application losses, (3) use of efficient irrigation methods, (4) use of efficient application techniques, (5) application of supplemental and deficit irrigation and (6) improving water availability. The awareness of the problem, the knowledge of adapted and affordable techniques, the creation of suitable

  2. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida.

    Science.gov (United States)

    Lee, Mengshan; Tansel, Berrin

    2013-10-15

    During 2006-2007, Miami-Dade County, Florida, USA, provided incentives for low income and senior residents in single family homes for retrofitting with high efficiency fixtures. The participating residences were retrofitted with high-efficiency toilets, showerheads, and aerators. In 2012, a telephone survey was conducted to evaluate the satisfaction of the participants and the associated effects on water conservation practices. This study evaluates the attitudes and opinions of the participants relative to water use efficiency measures and the actual reduction in water consumption characteristics of the participating households. The participant characteristics were analyzed to identify correlations between the socio-demographic factors, program satisfaction and actual water savings. Approximately 65.5% of the survey respondents reported changes in their water use habits and 76.6% reported noticeable reduction in their water bills. The analyses showed that the satisfaction levels of the participants were closely correlated with the actual water savings. The results also showed that satisfaction level along with water saving potential (i.e., implementation of water efficiency devices) or change of water use habits has provided positive synergistic effect on actual water savings. The majority of the participants surveyed (81.3-89.1%) reported positive attitudes for water conservation incentive program and the benefits of the high efficiency fixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... Standards § 431.156 Energy and water conservation standards and effective dates. Each commercial clothes...

  4. 75 FR 52892 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2010-08-30

    ... ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' including residential water... final rule revising energy conservation standards for residential water heaters, direct heating.... EERE-2009-BT-TP-0013] RIN 1904-AB95 Energy Conservation Program for Consumer Products: Test Procedures...

  5. Turning Minds On and Faucets Off: Water Conservation Education in Jordanian Schools.

    Science.gov (United States)

    Middlestadt, Susan; Grieser, Mona; Hernandez, Orlando; Tubaishat, Khulood; Sanchack, Julie; Southwell, Brian; Schwartz, Reva

    2001-01-01

    An evaluation was conducted to measure the impact of a curriculum implemented through the Jordan Water Conservation Education Project. Examines the effect of recommending water conservation at the household level and the impact of using interactive teaching methods to promote conservation behaviors among students and their families. (Author/SAH)

  6. Soil and Water Conservation for a Better America. A Framework Plan.

    Science.gov (United States)

    Soil Conservation Service (USDA), Washington, DC.

    Through this framework plan, the Soil Conservation Service (SCS) takes a look ahead to its soil and water conservation mission, a look at its direction and thrust in helping create a desirable America in the decades ahead. The plan attempts to define the nature of soil and water conservation efforts, to put them in perspective, and to present a…

  7. Greenhouse gas and energy co-benefits of water conservation[Water Sustainability Project

    Energy Technology Data Exchange (ETDEWEB)

    Maas, C.

    2009-03-15

    Energy is needed to deliver water to, within and from communities to remove contaminants from water and wastewater, and to heat water in homes. The interconnections between water and energy are referred to as the water-energy nexus. Large volumes of water are needed to generate energy, notably to power turbines, to cool thermal or nuclear energy plants, and to extract oil from tar sands. At the same time, large amounts of energy are needed to pump, treat, heat and distribute water for urban, industrial and agricultural use and to collect and treat the resulting wastewater. The two sides of the water-energy nexus are generating new research and policy proposals to address the challenges of climate change, energy security and increasing water scarcity. This report demonstrated that a large untapped opportunity exists for water conservation to reduce energy, municipal costs and greenhouse gas (GHG) emissions. The water-energy research in this study was based on a Soft Path for Water approach that incorporated facets of water demand management while moving beyond a short-term focus on cost-benefit criteria to examine how the services currently provided by water can be delivered to meet the need for economic, social and ecological sustainability. Although the research was conducted using data for municipalities in Ontario, the report is relevant to the rest of Canada and much of North America. Water conservation strategies included water efficiency measures such as high efficiency toilets and washing machines, as well as water saving measures such as xeriscaping and rainwater harvesting. The objectives of the study were to quantify the energy use associated with each component of the urban water use cycle and to determine the potential for energy and GHG emissions reductions associated with water conservation strategies. This report provided an overview of energy inputs needed for water provision. It outlined the methodology used to achieve the project objectives and

  8. Conservation

    NARCIS (Netherlands)

    Noteboom, H.P.

    1985-01-01

    The IUCN/WWF Plants Conservation Programme 1984 — 1985. World Wildlife Fund chose plants to be the subject of their fund-raising campaign in the period 1984 — 1985. The objectives were to: 1. Use information techniques to achieve the conservation objectives of the Plants Programme – to save plants;

  9. Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria

    2011-08-01

    In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. 78 FR 59919 - Pershing County Water Conservation District; Notice of Application Accepted for Filing With the...

    Science.gov (United States)

    2013-09-30

    ... Water Conservation District; Notice of Application Accepted for Filing With the Commission, Intent to... No.: 14327-000. c. Date filed: June 26, 2013. d. Applicant: Pershing County Water Conservation... water quality certification; (2) a copy of the request for certification, including proof of the date on...

  11. Examining Thought Processes to Understand the Impact of Water Conservation Messages on Attitude

    Science.gov (United States)

    Rumble, Joy N.; Lamm, Alexa J.; Martin, Emmett T.; Warner, Laura A.

    2017-01-01

    Water availability issues have plagued many regions around the world and is viewed as the top issue facing the world. As a result, encouraging water conservation has become a priority for agricultural communicators. Previous research suggests strategically framed messages can impact attitudes about water conservation, but whether this change is a…

  12. 77 FR 12830 - Pershing County Water Conservation District; Notice of Intent To File License Application, Filing...

    Science.gov (United States)

    2012-03-02

    ... Water Conservation District; Notice of Intent To File License Application, Filing of Pre-Application.... Submitted by: Pershing County Water Conservation District (Pershing County). e. Name of Project: Humboldt... the Commission's regulations. h. Potential Applicant Contact: Bennie Hodges, Pershing County Water...

  13. Water Worries: The Hidden Costs of Water Conservation in China are not Working

    OpenAIRE

    Junlian Zhang

    2006-01-01

    One of the obstacles many conservation strategies face is the amount of time and money it actually costs for people t o be involved in their implementation - in other words, their "transaction costs" (TCs) . A new study from China has looked at how these costs have affected an innovative market-based water conservation system. The study found that TCs are a significant barrier to proper functioning of the system. It also found that these costs are linked to key social and administrative obsta...

  14. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    Science.gov (United States)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  15. [Effects of land use changes on soil water conservation in Hainan Island, China].

    Science.gov (United States)

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  16. Study of an evaluation index system of well-off water conservancy in Yunnan Province

    Directory of Open Access Journals (Sweden)

    C. Chang

    2015-05-01

    Full Text Available To achieve good water conservancy under the well-off society before 2020, the future water conservancy planning is undergoing in Yunnan Province. In this study, by analysing the research results of domestic relevant water evaluation index systems and combining this with the water conservancy construction key of Yunnan Province, an unique evaluation index system was proposed to evaluate the well-off water conservancy level of Yunnan Province. It is composed of three levels which are the target layer, criterion layer and index layer. And the criterion layer includes six systems, namely flood control and drought relief mitigation, reasonable allocation of water resources, highly effective water utilization, water source protection and river health security, water management and securing of water development. The analytic hierarchy process (AHP was used to determine the weight of each index. According to the present situation of water development and the related water conservancy planning in Yunnan Province, the target value of each index and evaluation standards are put forward for Yunnan Province in 2020. The results show that the evaluation results are consistent with the actual condition of water development in Yunnan Province and can be used to examine the effects of well-off water conservancy planning.

  17. Role of UASBs in River Water Quality Conservation in India

    Science.gov (United States)

    Gali, Veeresh; Thakur, Manisha; Gupta, Ashok Kumar; Ganguly, Rajiv

    2018-03-01

    Appropriate low-cost treatment technologies are a prerequisite for sound management of natural water resources against pollution in developing countries. Among the existing technologies available, UASB is found to be economically viable for India when considering all factors including operation and maintenance cost and treatment efficiency. However, this technology suffers setbacks in meeting the effluent guidelines prescribed by the government of India. Post treatment is supplemental to this process to meet the effluent standards in terms of removal of organic matter, suspended solids, pathogens and nutrients. Recent stringent effluent guidelines notified by the Ministry of Environment, Forests and Climate Change, Government of India has further reduced the limits of BOD by 3 times, COD and TSS by 5 times, NH4-N and total Nitrogen by 10 times as compared to the previous guidelines. Fecal Coliforms has been specified as conservation is reviewed against the backdrop of stringent effluent guidelines. The minimum removal rates of BOD, COD and TSS in these plants are around 42 - 44% and the average removal rates are reported to be 66%, 61% and 65% respectively. The enhanced removal of BOD (97%), COD (98%) and TSS has been reported in STPs in conjunction with post treatment facilities such as facultative aerated lagoons, aeration tanks and polishing ponds.

  18. Water Conservation Study. U.S. Army Alaska (USARAK) Fort Richardson, Alaska

    National Research Council Canada - National Science Library

    1995-01-01

    .... The purpose of this water conservation study is to conduct a limited site survey and evaluate energy use and savings, estimate construction costs and water savings and provide a cost-to-savings ratio...

  19. Water Conservation Study, U.S. Army Alaska (USARAK), Ft. Richardson, Alaska

    National Research Council Canada - National Science Library

    1995-01-01

    The purpose of this water conservation study is to conduct a limited site survey and evaluate energy use and savings, estimate construction costs and water savings and provide a cost-to-savings ratio...

  20. Conserved water-mediated H-bonding dynamics of catalytic Asn ...

    Indian Academy of Sciences (India)

    Prakash

    Extensive energy minimization and molecular dynamics simulation studies up to 2 ns ... Conserved water in molecular recognition; MD simulation; plant cysteine protease ..... Mustata G and Briggs J M 2004 Cluster analysis of water molecules.

  1. The Value of Recycling on Water Conservation 2nd Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Bales, Shannon Nicole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ludi-Herrera, Katlyn D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, aluminum, copper, plastic, compost, and ceiling tiles. It will discuss the use of water in the process of harvesting, manufacturing, and recycling these materials. The way that water is conserved will be reviewed. From the stand point of SNL, it will discuss the amount of material that has been accumulated from 2012 through 2013 and how much water has been saved by recycling .

  2. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  3. 78 FR 41390 - Pershing County Water Conservation District; Notice of Application Tendered for Filing with the...

    Science.gov (United States)

    2013-07-10

    ... Water Conservation District; Notice of Application Tendered for Filing with the Commission and... License. b. Project No.: 14327-000. c. Date filed: June 26, 2013. d. Applicant: Pershing County Water Conservation District. e. Name of Project: Humboldt River Hydro Power Project. f. Location: At the existing U.S...

  4. The Effects of a Water Conservation Instructional Unit on the Values Held by Sixth Grade Students

    Science.gov (United States)

    Aird, Andrew; Tomera, Audrey

    1977-01-01

    Sixth grade students were divided into two groups. Students in one group received instruction on water conservation using expository and discovery activities. The students in the control group received none. Results gave evidence that students' values could be changed by this mode of water conservation instruction. (MA)

  5. Financial efficiency of major soil and water conservation measures in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2005-01-01

    Soil and Water Conservation (SWC) measures are needed to control soil erosion and sustain agricultural production on steep slopes of West Usambara mountains. However, the adoption by farmers of the recommended soil and water conservation measures is low and soil erosion continues to be a problem. It

  6. Rethinking soil and water conservation in a changing society : a case study in eastern Burkina Faso

    NARCIS (Netherlands)

    Mazzucato, V.; Niemeijer, D.

    2000-01-01

    Soil and water conservation is at the top of development agendas in Africa. Virtually every project related to agriculture or the environment has a soil and water conservation component to it and environmental protection plans are being drawn up by African governments in which soil and

  7. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  8. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California

    Directory of Open Access Journals (Sweden)

    D. L. Marrin

    2016-11-01

    Full Text Available As a management tool for addressing water consumption issues, footprints have become increasingly utilized on scales ranging from global to personal. A question posed by this paper is whether water footprint data that are routinely compiled for particular regions may be used to assess the effectiveness of actions taken by local residents to conserve local water resources. The current California drought has affected an agriculturally productive region with large population centers that consume a portion of the locally produced food, and the state’s arid climate demands a large volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports most of its food products, enough is consumed within the state so that residents shifting their food choices and/or habits could save as much or more local blue water as their reduction of household or office water use. One of those shifts is reducing the intake of animal-based products that require the most water of any food group on both a gravimetric and caloric basis. Another shift is reducing food waste, which represents a shared responsibility among consumers and retailers, however, consumer preferences ultimately drive much of this waste.

  9. Water conservation through trade: the case of Kenya

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2014-01-01

    This study quantifies and maps the water footprint of Kenya from both production and consumption perspectives and estimates the country’s virtual water export and import. Kenya’s virtual water export related to trade in agricultural products was 4.1 km3/y; its virtual water import was 4.0 km3/y. The

  10. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  11. Predicting compliance with an information-based residential outdoor water conservation program

    Science.gov (United States)

    Landon, Adam C.; Kyle, Gerard T.; Kaiser, Ronald A.

    2016-05-01

    Residential water conservation initiatives often involve some form of education or persuasion intended to change the attitudes and behaviors of residential consumers. However, the ability of these instruments to change attitudes toward conservation and their efficacy in affecting water use remains poorly understood. In this investigation the authors examine consumer attitudes toward complying with a persuasive water conservation program, the extent to which those attitudes predict compliance, and the influence of environmental contextual factors on outdoor water use. Results indicate that the persuasive program was successful in developing positive attitudes toward compliance, and that those attitudes predict water use. However, attitudinal variables explain a relatively small proportion of the variance in objectively measured water use behavior. Recommendations for policy are made stressing the importance of understanding both the effects of attitudes and environmental contextual factors in behavior change initiatives in the municipal water sector.

  12. The conservative behaviour of fluorescein | Smith | Water SA

    African Journals Online (AJOL)

    Failure to account for fluorescein absorbance changes with pH may be responsible for some of the apparent non-conservative behaviour of this easily detectable tracer compound. While it is possible to calculate an accurate absorptivity value for fluorescein at every pH, this calculation is not necessary if the sample pH is ...

  13. Sampling procedure, receipt and conservation of water samples to determine environmental radioactivity

    International Nuclear Information System (INIS)

    Herranz, M.; Navarro, E.; Payeras, J.

    2009-01-01

    The present document informs about essential goals, processes and contents that the subgroups Sampling and Samples Preparation and Conservation believe they should be part of the procedure to obtain a correct sampling, receipt, conservation and preparation of samples of continental, marine and waste water before qualifying its radioactive content.

  14. ­­Drought, water conservation, and water demand rebound in California

    Science.gov (United States)

    Gonzales, P.; Ajami, N.

    2017-12-01

    There is growing recognition that dynamic community values, preferences, and water use behaviors are important drivers of water demand in addition to external factors such as temperature and precipitation. Water demand drivers have been extensively studied, yet they have traditionally been applied to models that assume static conditions and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Yet previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this study we explore cycles of decreased water demand during drought and subsequent water use rebound observed in California in recent decades. We have developed a novel dynamic system model for water demand in three diverse but interconnected service areas in the San Francisco Bay Area, exposing local trends of changing water use behaviors and long-term impacts on water demand since 1980 to the present. In this model, we apply the concept of social memory, defined as a community's inherited knowledge about hazardous events or degraded environmental conditions from past experiences. While this concept has been applied to further conceptual understanding of socio-hydrologic systems in response to hydrological extremes, to the best of our knowledge this the first study to incorporate social memory to model the water demand rebound phenomenon and to use such a model in the examination of changing dynamics validated by historical data. In addition, we take a closer look at water demand during the recent historic drought in California from 2012-16, and relate our

  15. 76 FR 39091 - San Luis Obispo Flood Control and Water Conservation District; Notice of Effectiveness of Surrender

    Science.gov (United States)

    2011-07-05

    ... Flood Control and Water Conservation District; Notice of Effectiveness of Surrender On October 27, 1981... \\1\\ to the San Luis Obispo Flood Control and Water Conservation District (District) for the Lopez... and Water Conservation District, 17 FERC ] 62,113 (1981). On October 24, 2005, the District filed an...

  16. 77 FR 74559 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2012-12-17

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... Energy (DOE) is amending its test procedures for residential water heaters, direct heating equipment (DHE... necessary for residential water heaters, because the existing test procedures for those products already...

  17. Using Home Irrigation Users' Perceptions to Inform Water Conservation Programs

    Science.gov (United States)

    Warner, Laura A.; Chaudhary, Anil Kumar; Lamm, Alexa J.; Rumble, Joy N.; Momol, Esen

    2017-01-01

    Targeted agricultural education programs can play a role in solving complex water issues. This article applies importance-performance analysis to examine dimensions of water resources that may inform local water conservation campaigns in the United States. The purpose of this study was to generate a deep understanding of home irrigation users'…

  18. Documentation of 50% water conservation in a single process at a beef abattoir

    Science.gov (United States)

    Beef slaughter is water intensive due to stringent food safety requirements. We conducted a study at a commercial beef processor to demonstrate water conservation by modifying the mechanical head wash. We documented the initial nozzle configuration (112 nozzles), water pressure (275 kPa), and flowra...

  19. 76 FR 56347 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters...

    Science.gov (United States)

    2011-09-13

    ... Conservation Program for Consumer Products: Test Procedures for Residential Water Heaters, Direct Heating... proposed to amend, where appropriate, its test procedures for residential water heaters, direct heating... notes that the test procedure and metric for residential water heaters currently address and incorporate...

  20. Economic impacts on irrigated agriculture of water conservation programs in drought

    Science.gov (United States)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  1. Documentation of 50% water conservation in a single process at a beef abattoir. Meat Science

    Science.gov (United States)

    Beef slaughter is water intensive due to stringent food safety requirements. We conducted a study at a commercial beef processor to demonstrate water conservation by modifying the mechanical head wash. We documented the initial nozzle configuration (112 nozzles), water pressure (275 kPa), and flowra...

  2. 78 FR 67336 - Habitat Conservation Plan for the United Water Conservation District, Santa Clara River Watershed...

    Science.gov (United States)

    2013-11-12

    ... listed fish, by significantly impairing essential behavioral patterns, including breeding, feeding, and... degradation where it actually kills or injures fish or wildlife by significantly impairing essential... biological resources, land use, air quality, water quality, water resources, socio-economics, climate, and...

  3. Will farmers save water? A theoretical analysis of groundwater conservation policies

    Science.gov (United States)

    The development of agricultural irrigation systems has generated significant increases in food production and farm income. However, unplanned and unconstrained groundwater use could also cause serious consequences. To extend the economic life of groundwater, water conservation issues have become the...

  4. SOIL AND WATER CONSERVATION POLICY APPROACHES IN NORTH AMERICA, EUROPE, AND AUSTRALIA. (R825761)

    Science.gov (United States)

    AbstractSoil and water conservation policies and programs in developed countries in North America, Europe, and Australia are examined in the context of their effectiveness for addressing environmental degradation associated with technology-intensive agricultural syste...

  5. Presentation: Human and Ecological Health Impacts Associated with Water Reuse and Conservation Practices

    Science.gov (United States)

    This presentation was given by Dr. James Johnson at the STAR Human and Ecological Health Impacts Associated with Water Reuse and Conservation Practices Kick-off Meeting and Webinar held on Oct. 26-27, 2016.

  6. Socio-economic aspects of water conservation with reference to Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    To achieve optimum water conservation and improved water use efficiency, a water conservation enabling environment is needed that includes: 1. Education and training, improvement of management systems and public incentives: these measures allow increase from 20 to 30 % water resources .2. irrigation management transfer to users, management of supply infrastructure and an optimised resource policy to arrive at 60 to 80 % of the potential; 3. further research of the public and the private sector to utilise fully the whole available potential. Pakistan's water-resources have been diminishing at an alarming rate, due to further increase of population, per capita water availability in Pakistan goes down below 1,000 m/sup 3/, that means Pakistan is nearing conditions of chronic water-stress. The quality of water is also deteriorating with time. To improve the situation, potential of socio economic factors can be mobilized like population stabilization, community involvement, fair water distribution, application of water harvesting and water conservation at the community level, application of non- structural solutions, for example pricing of water, to develop water management institutions, public education and awareness are essential. Selection of appropriate low cost technology is a pre-requisite for widespread project implementation, planner should consider both traditional and modern technologies. The price of water determines largely the investments justified to avoid water losses. (author)

  7. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  8. Understanding youth motivation for water onion (Crinum thaianum J. Schulze conservation in Thailand

    Directory of Open Access Journals (Sweden)

    Nuttasun Athihirunwong

    2018-01-01

    Full Text Available Water Onion is an aquatic plant endemic to the coastal plains of southern Thailand. The species is listed as endangered on the IUCN Red List. Despite rapidly declining stocks, the species is not protected under any Thai legislation nor under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES. At the local level, Water Onion is protected and conserved by young people and adults for various socio-economic reasons. The study explored the participation and underlying conservation motivations of 312 youths in Kapoe district, Ranong province. Using principal component analysis, the youth's motivation for Water Onion conservation was classified into four categories: pro-social, pro-nature, social image, and extrinsic. The results from a logit regression indicated that pro-nature is one of the key motivational factors enhancing actual youth participation in the protection and conservation of Water Onion. It is important for policy makers to understand the effects of various types of motivation on different policy mechanisms in order to craft more effective policies that can further enhance youth participation in conservation initiatives. Keywords: biodiversity conservation, endemic species, pro-nature motivation, water onion, youth

  9. Strategies of water conservation in southern African frogs

    African Journals Online (AJOL)

    The three approaches which anurans have adopted in response to water ... seen migrating along a path towards the dam, the weather being overcast after light rain .... (1967) has shown that Bufo regularis has an endogenous activity rhythm.

  10. Innovations in Agriculture in Oregon: Farmers Irrigation District Improves Water Quality, Maximizes Water Conservation, and Generates Clean, Renewable Energy

    Science.gov (United States)

    The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops

  11. Give Water a Hand. School Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    Science.gov (United States)

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water, and water conservation at a school site, while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  12. Give Water a Hand. Community Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    Science.gov (United States)

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water, and water conservation within a community, while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  13. Give Water a Hand. Home Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    Science.gov (United States)

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water and water conservation within the home while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  14. Determinants of Household Water Conservation Retrofit Activity: A Discrete Choice Model Using Survey Data

    Science.gov (United States)

    Cameron, T. A.; Wright, M. B.

    1990-02-01

    Economic analyses of residential water demand have typically concentrated on price and income elasticities. In the short run a substantial change in water prices might induce only small changes in consumption levels. As time passes, however, households will have the opportunity to "retrofit" existing water-using equipment to make it less water-intensive. This produces medium- to long-run demand elasticities that are higher than short-run studies suggest. We examine responses to water conservation questions appearing on the Los Angeles Department of Water and Power's 1983 residential energy survey. We find that households' decisions to install shower retrofit devices are influenced by the potential to save money on water heating bills. We attribute toilet retrofit decisions more to noneconomic factors which might be characterized as "general conservation mindedness." The endogeneity of these retrofit decisions casts some doubt on the results of studies of individual households that treat voluntary retrofits as exogenous.

  15. 77 FR 38795 - Dolores Water Conservancy District; Notice of Competing Preliminary Permit Application Accepted...

    Science.gov (United States)

    2012-06-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14426-000] Dolores Water... Comments and Motions To Intervene On May 10, 2012, Dolores Water Conservancy District, Colorado, filed an... the Plateau Creek Pumped Storage Project to be located on Plateau Creek, near the town of Dolores...

  16. 77 FR 35377 - Dolores Water Conservancy District; Notice of Completing Preliminary Permit Application Accepted...

    Science.gov (United States)

    2012-06-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14328-000] Dolores Water... Comments and Motions To Intervene On May 10, 2012, Dolores Water Conservancy District, Colorado, filed an... the Plateau Creek Pumped Storage Project to be located on Plateau Creek, near the town of Dolores...

  17. Exploring the Relationship between Critical Thinking Style and Water Conservation Behavior: Implications for Extension

    Science.gov (United States)

    Owens, Courtney T.; Lamm, Alexa J.

    2016-01-01

    In the past several years Cooperative Extension has focused on developing educational programs that address water conservation, specifically for individuals using exorbitant amounts of water, with limited success. However, few research studies have examined how the way people think, including their critical thinking styles, can be used to inform…

  18. Using the Theory of Planned Behavior to Encourage Water Conservation among Extension Clients

    Science.gov (United States)

    Kumar Chaudhary, Anil; Warner, Laura A.; Lamm, Alexa J.; Israel, Glenn D.; Rumble, Joy N.; Cantrell, Randall A.

    2017-01-01

    Extension professionals can play a role in addressing water scarcity issues by helping home landscape irrigation users to conserve water. This study used survey research to examine the relationship between several variables, including attitudes, subjective norms, perceived behavioral control, personal norms, demographic factors, and past…

  19. Empirical Evidence in Support of a Research-Informed Water Conservation Education Program

    Science.gov (United States)

    Thompson, Ruthanne; Serna, Victoria Faubion

    2016-01-01

    Based on results from a 2008 research study of regional citizen knowledge concerning watershed issues, a water conservation education program was designed and implemented. Findings from the initial study demonstrated program success as evidenced by knowledge gain and willingness to "commit" to water saving behaviors in 94% of students. A…

  20. Using Theory to Inform Water Conservation in Business Communities: Formative Research from a Chamber Initiative

    Science.gov (United States)

    Sarge, Melanie A.; Daggett, Samantha; VanDyke, Matthew S.

    2018-01-01

    This study was designed to collect formative information for the development of theoretically driven water conservation communication efforts targeting the business sector of water users. Members from a West Texas Chamber of Commerce were recruited for participation in an online survey. Questionnaire responses were collected from 176 commercial…

  1. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in general. 1.175-1 Section 1.175-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Itemized Deductions for Individuals and Corporations (continued) § 1.175-1 Soil and water conservatio...

  2. Water conservation and hydrological transitions in cities in the United States

    Science.gov (United States)

    Hornberger, George M.; Hess, David J.; Gilligan, Jonathan

    2015-06-01

    Cities across the world have had to diversify and expand their water supply systems in response to demand growth, groundwater depletion and pollution, and instability and inadequacy of regional surface freshwater sources. In the U.S., these problems plague not only the arid Western cities but increasingly also cities in the Eastern portions of the country. Although cities continue to seek out new sources of water via Promethean projects of long-distance supply systems, desalinization plants, and the recharge of aquifers with surface water, they also pursue water conservation because of its low cost and other benefits. We examine water conservation as a complex sociotechnical system comprising interactions of political, sociodemographic, economic, and hydroclimatological factors. We provide quantitative data on the factors that affect more and less advanced transitions in water conservation regimes, and we show that water stress and other hydrological data can only partially predict the transition. We also provide qualitative case studies to identify institutional and political barriers to more advanced water conservation regimes. This interdisciplinary, mixed methods approach typifies the need for knowledge that informs hydrologists about how their research may or may not be adopted by decision-makers.

  3. Economic benefits of combining soil and water conservation measures with nutrient management in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmoré, R.; Mando, A.; Stroosnijder, L.; Ouédraogo, E.

    2004-01-01

    Nutrient limitation is the main cause of per capita decline in crop production in the Sahel, where water shortage also limits an efficient use of available nutrients. Combining soil and water conservation measures with locally available nutrient inputs may optimize crop production and economic

  4. Financial viability of soil and water conservation technologies in northwestern Ethiopian highlands

    NARCIS (Netherlands)

    Teshome, Akalu; Rolker, D.; Graaff, de J.

    2013-01-01

    Soil erosion by water is a major threat to food security, environmental sustainability and prospects for rural development in Ethiopia. Successive governments have promoted various soil and water conservation (SWC) measures in order to reduce the effects of land degradation, but adoption rates vary

  5. Energy-conserving mechanisms as adaptation to undernutrition and water deprivation in the African Zebu

    International Nuclear Information System (INIS)

    Finch, V.A.; King, J.M.

    1982-01-01

    In a study designed to simulate pastoral cattle management practices on marginal and rangelands in Kenya, the physiological adaptations for energy conservation were investigated in African Zebu cattle during a period of undernutrition and water deprivation. In experimental design, the food available to cattle was restricted to 50% of maintenance, watering reduced to every 2 d and distances walked increased from 8 to 16 km/d. Restricting food for nearly 3 months resulted in a 13-14% weight loss in cattle. A 2-day watering regime did not decrease food intake. Cattle that walked the longer distances lost slightly more weight but not significantly more. There was a significant overall reduction in water requirements. Slowing water turnover is seen as adaptive in a water-limited environment. The water turnover rate was determined using the tritiated water dilution technique. Higher solar intensities increased water turnover somewhat, as did extending walking distances. The resting metabolic rate of cattle on restricted food and water was reduced to 30% below that of well-fed and daily watered cattle. This reduction in metabolic requirements would result in conserving energy in dry seasons. Cattle became more thermolabile when offered smaller quantities of food. A heat debt was incurred at night and sweating rates were regulated at low levels during the day, resulting in heat storage. It is suggested that this is a mechanism by which energy is conserved through increasing thermogenesis to maintain body temperature within the normal range

  6. Water and Agriculture in the Western U.S.: Conservation, Reallocation, and Markets

    Science.gov (United States)

    Lord, William B.

    Water conservation has long been an unqualified good in the western United States. But when westerners have said “conservation,” they have usually meant reservoir storage to prevent water from escaping downstream before it could be diverted and put to beneficial use. They took particular umbrage when the Carter Administration defined it to mean water demand management, a way of avoiding or postponing the construction of reservoirs. To oppose reservoir development in the West most certainly is to defy the conventional wisdom and to court political extinction. It is to brand oneself as daft or disloyal as well.

  7. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    Science.gov (United States)

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  8. Variable-Volume Flushing (V-VF) device for water conservation in toilets

    Science.gov (United States)

    Jasper, Louis J., Jr.

    1993-01-01

    Thirty five percent of residential indoor water used is flushed down the toilet. Five out of six flushes are for liquid waste only, which requires only a fraction of the water needed for solid waste. Designers of current low-flush toilets (3.5-gal. flush) and ultra-low-flush toilets (1.5-gal. flush) did not consider the vastly reduced amount of water needed to flush liquid waste versus solid waste. Consequently, these toilets are less practical than desired and can be improved upon for water conservation. This paper describes a variable-volume flushing (V-VF) device that is more reliable than the currently used flushing devices (it will not leak), is simple, more economical, and more water conserving (allowing one to choose the amount of water to use for flushing solid and liquid waste).

  9. Public Versus Private: Does It Matter for Water Conservation? Insights from California

    Science.gov (United States)

    Kallis, Giorgos; Ray, Isha; Fulton, Julian; McMahon, James E.

    2010-01-01

    This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California’s history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California’s public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private.

  10. Dealing with Drought: Decoupling Climatic and Management-Related Drivers of Water Conservation Behavior

    Science.gov (United States)

    Hemati, A.; Rippy, M.; Grant, S. B.

    2015-12-01

    As global populations grow, cities in drought prone regions of the world such as California and South East Australia are faced with escalating water scarcity and water security challenges. The management approaches geared towards addressing these challenges are diverse. Given the myriad of possible approaches and the tendency to apply them in combination, successful management actions can be difficult to identify. Background climactic variability further complicates the story, making transfer of management lessons from one drought stressed region to another difficult. Here we use Melbourne, a city of 4.3 million people in South East Australia that recently faced and overcame a > 10 year "Millennium" drought, as a test case for evaluating the relative importance of various management-related and climactic factors in driving reductions in municipal water consumption (~60% in 12 years). Our analysis suggests that Melbourne's declining municipal consumption cannot be explained by potable substitution alone, as reductions in municipal consumption were not matched by increased use of alternative sources (e.g., urban rain or recycled water). Thus, water conservation behavior (not source switching) may be responsible for the majority of demand reduction in Melbourne. Interestingly, while voluntary or mandatory water restrictions appear to have substantially altered the rate of change of consumption near the end of Melbourne's Millennium drought (e.g., forcing a period of intense conservation), overall conservation behavior precedes these restrictions. This suggests that other rapidly implemented (and hither too unquantified) management approaches such as advertising or newspapers may have driven water conservation behavior early in the drought. Climatic factors, particularly precipitation may also have influenced conservation behavior; changes in precipitation were significantly positively correlated with changes in water consumption at a lag of 18 months. Similar

  11. Using Personal Water Footprints to Identify Consumer Food Choices that Influence the Conservation of Local Water Resources

    Science.gov (United States)

    Marrin, D. L.

    2015-12-01

    As the global demand for water and food escalates, the emphasis is on supply side factors rather than demand side factors such as consumers, whose personal water footprints are dominated (>90%) by food. Personal footprints include the water embedded in foods that are produced locally as well as those imported, raising the question of whether local shifts in people's food choices and habits could assist in addressing local water shortages. The current situation in California is interesting in that drought has affected an agriculturally productive region where a substantial portion of its food products are consumed by the state's large population. Unlike most agricultural regions where green water is the primary source of water for crops, California's arid climate demands an enormous volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports many of its food products, enough is consumed in-state so that residents making relatively minor shifts their food choices could save as much local blue water as their implementing more drastic reductions in household water use (comprising food group on both a caloric and gravimetric basis. Another change is wasting less food, which is a shared responsibility among consumers, producers and retailers; however, consumers' actions and preferences ultimately drive much of the waste. Personal water footprints suggest a role for individuals in conserving local water resources that is neither readily obvious nor a major focus of most conservation programs.

  12. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  13. Update of Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector

    Energy Technology Data Exchange (ETDEWEB)

    Mcmordie, Katherine; Solana, Amy E.; Elliott, Douglas B.; Sullivan, Gregory P.; Parker, Graham B.

    2005-09-08

    This updated market assessment for capturing water conservation opportunities in the Federal sector is based on a new analytical approach that utilizes newly available data and technologies. The new approach fine-tunes the original assessment by using actual Federal water use, which is now tracked by DOE (as compared to using estimated water use). Federal building inventory data is also used to disseminate water use by end-use technology in the Federal sector. In addition, this analysis also examines the current issues and obstacles that face performance contracting of water efficiency projects at Federal sites.

  14. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  15. Spatial targeting of conservation tillage to improve water quality and carbon retention benefits

    International Nuclear Information System (INIS)

    Yang, W.; Sheng, C.; Voroney, P.

    2005-01-01

    Conservation tillage reduces soil erosion and improves water quality in agricultural watersheds. However, the benefits of conservation tillage in carbon sequestration are the subject of controversy. Public funds are provided to farms to encourage the adoption of conservation tillage. Given the economic costs, the targeting of areas likely to achieve the greatest environmental benefits has become an important policy-making issue. A geographic information system (GIS) based modelling framework which integrated hydrologic, soil organic matter, and farm models to evaluate the spatial targeting of conservation tillage was presented. A case study applying the framework in the Fairchild Creek watershed in Ontario indicated that targeting conservation tillage based on sediment abatement goals can achieve comparable carbon retention benefits in terms of the percentage reduction of base carbon losses. Targeted subcatchments for conservation tillage varied across the watershed based on benefit to cost ratios. Conservation tillage patterns based on carbon retention goals showed similar results to sediment abatement goals but slight differences were observed because of different carbon content in the soils. The results indicated that sediment abatement may be used as an indicator in setting up program goals. The impacts of conservation programs can then be evaluated based on calibrated and validated hydrologic models in conjunction with monitoring data. Results also showed that setting carbon retention may lead to higher costs in order to achieve corresponding sediment abatement benefits. Carbon retention may not be suitable for setting as a stand-alone environmental goal for conservation programs because of the difficulties in verifying the impacts and the discrepancies between carbon and sediment benefits. It was concluded that the modelling results have important policy implications for the design of conservation stewardship programs that aim to achieve environmental

  16. Water Use and Conservation on a Free-Stall Dairy Farm

    Directory of Open Access Journals (Sweden)

    Etienne L. Le Riche

    2017-12-01

    Full Text Available Livestock watering can represent as much as 20% of total agricultural water use in areas with intensive dairy farming. Due to an increased emphasis on water conservation for the agricultural sector, it is important to understand the current patterns of on-farm water use. This study utilized in situ water meters to measure the year-round on-farm pumped water (i.e., blue water on a ~419 lactating cow confined dairy operation in Eastern Ontario, Canada. The average total water use for the farm was 90,253 ± 15,203 L day−1 and 33,032 m3 annually. Water use was divided into nutritional water (68%, parlour cleaning and operation (14%, milk pre-cooling (15%, barn cleaning, misters and other uses (3%. There was a positive correlation between total monthly water consumption (i.e., nutritional water and average monthly temperature for lactating cows, heifers, and calves (R2 = 0.69, 0.84, and 0.85, respectively. The blue water footprint scaled by milk production was 6.19 L kg−1 milk or 6.41 L kg−1 fat-and-protein corrected milk (FPCM including contributions from all animal groups and 5.34 L kg−1 milk (5.54 L kg−1 FPCM when excluding the water consumption of non-lactating animals. By applying theoretical water conservation scenarios we show that a combination of strategies (air temperature reduction, complete recycling of milk-cooling water, and modified cow preparation protocol could achieve a savings of 6229 m3 annually, a ~19% reduction in the total annual water use.

  17. A Regional Assessment of the Effects of Conservation Practices on In-stream Water Quality

    Science.gov (United States)

    Garcia, A. M.; Alexander, R. B.; Arnold, J.; Norfleet, L.; Robertson, D. M.; White, M.

    2011-12-01

    The Conservation Effects Assessment Program (CEAP), initiated by USDA Natural Resources Conservation Service (NRCS), has the goal of quantifying the environmental benefits of agricultural conservation practices. As part of this effort, detailed farmer surveys were compiled to document the adoption of conservation practices. Survey data showed that up to 38 percent of cropland in the Upper Mississippi River basin is managed to reduce sediment, nutrient and pesticide loads from agricultural activities. The broader effects of these practices on downstream water quality are challenging to quantify. The USDA-NRCS recently reported results of a study that combined farmer surveys with process-based models to deduce the effect of conservation practices on sediment and chemical loads in farm runoff and downstream waters. As a follow-up collaboration, USGS and USDA scientists conducted a semi-empirical assessment of the same suite of practices using the USGS SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling framework. SPARROW is a hybrid statistical and mechanistic stream water quality model of annual conditions that has been used extensively in studies of nutrient sources and delivery. In this assessment, the USDA simulations of the effects of conservation practices on loads in farm runoff were used as an explanatory variable (i.e., change in farm loads per unit area) in a component of an existing a SPARROW model of the Upper Midwest. The model was then re-calibrated and tested to determine whether the USDA estimate of conservation adoption intensity explained a statistically significant proportion of the spatial variability in stream nutrient loads in the Upper Mississippi River basin. The results showed that the suite of conservation practices that NRCS has catalogued as complete nutrient and sediment management are a statistically significant feature in the Midwestern landscape associated with phosphorous runoff and delivery to downstream waters

  18. The Strategy of Water Resources Conservation in Regunung Village, Tengaran Subdistrict, Semarang District

    Directory of Open Access Journals (Sweden)

    Sri Puatin

    2014-07-01

    Full Text Available Water resource conservation is a required activity to do in in Regunung Village, Tengaran Subdistrict, Semarang District because this area is potentially dried and has often experienced the lack of clean water even though the water resource conservation is vegetatively conducted. The resecarh is conducted from June to August 2014. The purpose of this research is to analyze the strategy of water resource conservation in Regunung Village by analyze the social-economy condition and physical condition. The method used to gain data is obeservation and direct measuring including vegetation analysis, the data analysis of the citra condition of the changing of the land; the crossed tabulation analysis and Marcov Chain for the projection of the cahinging of the land use; the technique of interview using questioners to know the participation of community; the secondary data analysis, FGD to determine the strategy of water resource conservation with SWOT analysis. The population of this research is the people of Regunung Village. Respondent is purposively determined by the number of respondent based on Slovin formula, while the FGD informant is purposively determined. The result of the research shows that the condition of Regunung Village is located at discharged area CAT Salatiga with the various level of elevation and the type of soil is latosol. The changing of the use of land happening since 1991 - 2014. The vegetation condition shows that the planting method used in Regunung Village is Agroforestry. The index of diversity for three in Regunung Village is at the low level (0,8. The result of the social-economy condition research shows that the majority people's income is less than Rp. 1.000.000,00 and the level of participation is on placation level. The Water Resource Conservation Strategy suggested is the diversification strategy.

  19. Effects of terracing on soil and water conservation in China: A meta-analysis

    Science.gov (United States)

    Chen, Die; Wei, Wei

    2017-04-01

    Terracing has long been considered a powerful strategy for soil and water conservation. However, the efficiency is limited by many factors, such as climate, soil properties, topography, land use, population and socioeconomic status. The aim of this critical review was to discuss the effects of terracing on soil and water conservation in China, using a systematic approach to select peer-reviewed articles published in English and Chinese. 46 individual studies were analyzed, involving six terracing structures (level terraces, slope-separated terraces, slope terraces, reverse-slope terraces, fanya juu terraces and half-moon terraces), a wide geographical range (Northeastern China, Southeastern hilly areas, Southwestern mountain areas and Northwestern-central China), and six land use types (forest, crop trees, cropland, shrub land, grassland and bare land) as well as a series of slope gradients ranging from 3° to 35°. Statistical meta-analysis with runoff for 593 observations and sediment for 636 observations confirmed that terracing had a significant effect on water erosion control. In terms of different terrace structures, runoff and sediment reduction were uppermost on slope-separated terraces. Land use in terraces also played a crucial role in the efficiency of conservation, and tree crops and forest were detected as the most powerful land covers in soil and water conservation due to large aboveground biomass and strong root systems below the ground, which directly reduces the pressure of terraces on rainwater redistribution. In addition, a significant positive correlation between slope gradients (3° 15° and 16° 35°) and terracing efficiency on soil and water conservation was observed. This study revealed the effectiveness and variation of terracing on water erosion control on the national scale, which can serve as a scientific basis to land managers and decision-makers.

  20. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    Science.gov (United States)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  1. Influence of soil and water conservation techniques on yield of small ...

    African Journals Online (AJOL)

    The study determined the application of soil and water conservation techniques in relation to yield of small-holder swamp rice farmers in Imo State, Nigeria in 2009. Specifically, the socio-economic characteristics of the farmer were described, their influence on the application of the techniques examined and relationship of ...

  2. Every Drop Counts: Students Develop Public Service Announcements on the Importance of Water Conservation

    Science.gov (United States)

    Stokes, Nina Christiane; Hull, Mary Margaret

    2002-01-01

    In today's fast-paced, technological world, it is a constant battle for teachers to find new and exciting ways to challenge and engage their students. One success story involves a unique collaborative project that focuses on water resources and conservation in which students design public service announcements (PSAs) to be produced and aired on…

  3. Extending the economic life of the Ogallala Aquifer with water conservation policies in the Texas panhandle

    Science.gov (United States)

    The continued decline in the availability of water from the Ogallala Aquifer in the Texas Panhandle has led to an increased interest in conservation policies designed to extend the life of the aquifer and sustain rural economies. Four counties were chosen for evaluation. This study evaluates the eff...

  4. The Design and Development of a Simulation to Teach Water Conservation to Primary School Students

    Science.gov (United States)

    Campbell, Lee

    2004-01-01

    Information and Communications Technology (ICT) plays a dominant role in enhancing teaching and learning. Similar advances have been made in the use of multimedia in the classroom. These advances are coupled with newer developmental tools and techniques. This paper examines the design and development of a simulation on water conservation. Science…

  5. Design and Implementation of a Research-Informed Water Conservation Education Program

    Science.gov (United States)

    Thompson, Ruthanne; Coe, Alice; Klaver, Irene; Dickson, Kenneth

    2011-01-01

    Informed by the results of a baseline research study of regional citizen knowledge and understanding concerning watershed issues, a team of university faculty and classroom teachers designed and implemented a water conservation education program to address lacking areas of watershed knowledge. The authors developed age-appropriate, hands-on…

  6. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  7. Modeling the effect of three soil and water conservation practices in Tigray, Ethiopia

    NARCIS (Netherlands)

    Hengsdijk, H.; Meijerink, G.W.; Mosugu, M.E.

    2005-01-01

    Severe land degradation affects the livelihood of many farmers in the highlands of Tigray, northern Ethiopia. Various soil and water conservation practices have been proposed to reduce land degradation and to improve the quality of the natural resource base but quantitative information on their

  8. A pragmatic approach to modelling soil and water conservation measures with a cathment scale erosion model.

    NARCIS (Netherlands)

    Hessel, R.; Tenge, A.J.M.

    2008-01-01

    To reduce soil erosion, soil and water conservation (SWC) methods are often used. However, no method exists to model beforehand how implementing such measures will affect erosion at catchment scale. A method was developed to simulate the effects of SWC measures with catchment scale erosion models.

  9. Soil variability and effectiveness of soil and water conservation in the Sahel.

    NARCIS (Netherlands)

    Hien, F.G.; Rietkerk, M.; Stroosnijder, L.

    1997-01-01

    Sahelian sylvopastoral lands often degrade into bare and crusted areas where regeneration of soil and vegetation is impossible in the short term unless soil and water conservation measures are implemented. Five combinations of tillage with and without mulch on three crust type/soil type combinations

  10. The Effect of Strategic Message Selection on Residents' Intent to Conserve Water in the Landscape

    Science.gov (United States)

    Warner, Laura A.; Rumble, Joy; Martin, Emmett; Lamm, Alexa J.; Cantrell, Randall

    2015-01-01

    Changing individuals' behaviors is a critical challenge for Extension professionals who encourage good irrigation practices and technologies for landscape water conservation. Multiple messages were used to influence two predictors of behavioral intent informed by the theory of planned behavior, Florida residents' (N = 1,063) attitude and perceived…

  11. 75 FR 27926 - Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation...

    Science.gov (United States)

    2010-05-19

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2010-BT-NOA-0016] Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation Standards for Showerheads; Request for Comments AGENCY: Department of Energy. ACTION: Notice of availability and request for comments. SUMMARY...

  12. Factors influencing adoption of soil and water conservation measures in southern Mali

    NARCIS (Netherlands)

    Bodnar, F.; Graaff, de J.

    2003-01-01

    A soil and water conservation (SWC) extension programme, promoting erosion control measures and soil fertility measures, has been going on in southern Mali since 1986. Five factors that influence farmer adoption of SWC measures were analysed: land pressure, cotton-growing area, possession of

  13. Using Soil and Water Conservation Contests for Extension: Experiences from the Bolivian Mountain Valleys

    NARCIS (Netherlands)

    Kessler, A.; Graaff, de J.

    2007-01-01

    Soil and water conservation (SWC) contests among farmer groups were organized in five rural villages in the Bolivian mountain valleys. The contests were aimed at quickly achieving widespread sustainable results. This article analyzes the effectiveness of these contests as an extension tool. Mixed

  14. Participatory appraisal for farm-level soil and water conservation planning in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.

    2005-01-01

    Soil and water conservation (SWC) measures are needed to control soil erosion and sustain agricultural production on the steep slopes of Usambara Mountains. The need for SWC has resulted in the development and promotion of several SWC measures by both governmental and non-governmental programmes.

  15. Does land tenure security matter for investment in soil and water conservation? Evidence from Kenya

    NARCIS (Netherlands)

    Kabubo-Mariara, J.; Linderhof, V.G.M.; Kruseman, G.

    2010-01-01

    This paper investigates the impact of tenure security and other factors on investment in soil and water conservation (SWC) in Kenya. Factor analysis, step-wise regression and reduced form model approaches are used to explain the willingness, likelihood and intensity of adoption of SWC investments.

  16. Social and economic factors for adoption of soil and water conservation in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2004-01-01

    Accelerated soil erosion is one of the major constraints to agricultural production in many parts of the Tanzanian highlands. Although several soil and water conservation technologies have been developed and promoted, the adoption of many recommended measures is minimal and soil erosion continues to

  17. Contribution of the Land and Water Development Division of FAO to soil and water conservation in developing countries

    International Nuclear Information System (INIS)

    Massoud, F.I.

    1980-01-01

    The Land and Water Development Division of FAO has played an active role in promoting soil conservation measures. It has provided advice and expert assistance to many countries and is involved in more than fifty field programmes related to soil conservation. It conducts seminars, workshops, and training courses and provides fellowships for individuals. Technical and education material has been published. Maps have been developed showing the present degradation and risk of degradation in Africa and methodology used in assessment of soil degradation is outlined. (author)

  18. Joint optimization scheduling for water conservancy projects in complex river networks

    Directory of Open Access Journals (Sweden)

    Qin Liu

    2017-01-01

    Full Text Available In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.

  19. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  20. 78 FR 35951 - Proposed Low-Effect Habitat Conservation Plan for the City of Santa Cruz Graham Hill Water...

    Science.gov (United States)

    2013-06-14

    ...] Proposed Low-Effect Habitat Conservation Plan for the City of Santa Cruz Graham Hill Water Treatment Plant... grasshopper (Trimerotropis infantilis), and will address associated impacts and conservation measures for the... lawful activities associated with the operation and maintenance of the existing Graham Hill Water...

  1. Toward sustainable water use in North China Plain - Scenario analysis of water conservation strategies in a changing climate

    Science.gov (United States)

    He, X.; Qin, H.; Refsgaard, J. C.; Zheng, C.

    2016-12-01

    North China Plain (NCP), situated in the continental semi-arid climate region, is one of the most densely populated regions in the world, and contributes to over 1/10 of the Gross Domestic Product (GDP) in China. NCP is traditionally a water scarce area where precipitation equals to or less than ET. In recent years, due to rapid population and economic growth, and subsequently significantly larger water demand, the water crisis in this region has deepened. The surface water resources has run dry except for a few canals and reservoirs, and thus the water consumption of NCP is almost entirely dependent on groundwater. It is estimated that the groundwater table has declined at the rate of about 1 m/year in the past decades; therefore, sustainable water use in the NCP is of critical importance. In the present study, we explore the scale of the water scarcity problem in NCP as well as the possible water saving strategies to alleviate the crisis from a modeling approach. Water demand is extremely difficult to estimate due to the lack of actual data. To solve this problem, we use a System Dynamic model, where the resulted data are then used as groundwater pumping in a physically based, distributed and integrated hydrological model. Five scenarios are developed to analyze different water management perspectives: 1) Business as usual, 2) Agricultural water saving, 3) Domestic and industrial water saving, 4) Managed aquifer recharge using water leftover from the South-to-North Water Diversion Project, and 5) a combination of the above mentioned measures. The hydrological model will predict the overall water balance and water at different hydrological components for the period 2020-2050. Under each scenario, our study also accounts for dry, medium, and wet climate conditions. The results indicate if the current tendency continues, groundwater table will keep declining at the rate of about 1 m/year. Each single conservation measure will not be able to solve the water crisis on

  2. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  3. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    Science.gov (United States)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial

  4. Preliminary review of fisheries conservation gains within BC Hydro's water use planning process

    International Nuclear Information System (INIS)

    Orr, C.; Clayton, G.; Lewis, R.; Louie, R.; McAdam, S.; McFarlane, S.; Munro, J.; Ptolemy, R.; Werring, J.; Wightman, C.

    2004-05-01

    In 1998, the Government of British Columbia requested that BC Hydro review the water use and operating conditions of its power generation facilities. A water use plan (WUP) was to be produced for each of the facilities. As a supporter of processes that improve water management, Watershed Watch has been actively involved in British Columbia's WUP process. In the past 4 years, it has participated in the Coquitlam-Buntzen WUP consultative committee, the Coquitlam fish technical committee, the First Nations WUP committee, the fisheries advisory team on WUP, and the green hydro working group. Watershed Watch commissioned Quadra Planning Consultants to prepare this first independent assessment of the largest water restoration project undertaken in British Columbia. This report is an overview level analysis of the results thus far, of the WUP process from a fisheries conservation perspective, including First Nations expectations and interests related to fisheries. It focuses on the fish conservation gains that result from the WUP initiative. The report also examines how successfully the WUP incorporate First Nations' traditional ecological knowledge. An environmental lawyer examined whether the WUP process satisfies the expectations of the North American Free Trade Agreement (NAFTA). This report indicates that the WUP has improved the knowledge base and better defined the flow requirements for fish conservation at BC Hydro facilities. The outcomes for fish conservation have been mostly positive. The following 7 operating alternatives were recommended: reduced flows; rapid flow fluctuation; adequate flushing flows; altered water quality; entrainment of fish; flow diversion; and, reservoir drawdown. An ongoing monitoring program was also recommended. 11 refs., 16 tabs., 1 appendix

  5. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  6. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    Science.gov (United States)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  7. Water Conservation in Kalanchoe blossfeldiana in Relation to Carbon Dioxide Dark Fixation.

    Science.gov (United States)

    Zabka, G G; Chaturvedi, S N

    1975-03-01

    The succulent Kalanchoe blossfeldiana v. Poel. var Tom Thumb was treated on long and short photoperiods for 6 weeks during which short day plants developed thicker leaves, flowered prolifically, and exhibited extensive net dark fixation of carbon dioxide. In contrast, long day plants remained vegetative and did not develop thicker leaves or exhibit net carbon dioxide dark fixation. When examined after the photoperiodic state described, long day plants showed approximately three times more water loss over a 10-day period than short day plants. Water loss is similar during light and dark periods for short day plants but long day plants exhibited two times more water loss during the day than at night. The latter plants also lost three and one-half times more water during the light period than short day plants. The water conservation by short day plants is correlated with conditions of high carbon dioxide dark fixation and effects of its related Crassulacean acid metabolism on stomatal behavior.

  8. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    Science.gov (United States)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  9. New findings and setting the research agenda for soil and water conservation for sustainable land management

    Science.gov (United States)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  10. Impact of water environmental change and migration of radionuclides on hokutolite conservation in Peito (Taiwan)

    International Nuclear Information System (INIS)

    Lin, C.C.; Tsai, T.L.; Lung, C.C.

    2012-01-01

    Chemical factors (including pH, redox potential, content of total organic compound (TOC) and major ions) and U/Th-series radionuclides in the hot-spring water environment of Peito were determined to investigate the impact of environmental change and migration of radionuclides in water on conserving the precious mineral, hokutolite, in Peito (Taiwan). The activity concentrations of U/Th increased with E h and those of Cl - and SO 4 2- . 234 U/ 238 U ratios were nearly > 1 ascribed to Szilard-Chalmers effect and α-recoil. 230 Th/ 234 U ratios were 228 Ra and 226 Ra activities were governed by pH, E h and SO 4 2- concentration. Disequilibria of 228 Th/ 228 Ra and 228 Ra/ 232 Th were evident attributed to complexation of Th with major anions and co-precipitation of radium with (Ba,Pb)SO 4 . Alpha-recoil caused the enrichment of 228 Ra and apparent disequilibrium of 232 Th/ 228 Th. A mechanism illustrating the radiochemistry involving the formation of hokutolite in Peito was derived accordingly. The water environment of the studied area was found apparently changed in light of the variation of temperature, TOC and concentration ratio of Ba/Pb, which resulted from the channeling of hot spring water and the release of household waste water. The water environmental change can thus hinder the migration of radionuclides as well as the formation of hokutolite so that the performance of hokutolite conservation can be decreased. Immediate enactment of regulations for conserving hokutolite in Peito was therefore suggested in this research. (orig.)

  11. Lakefront Property Owners' Willingness to Accept Easements for Conservation of Water Quality and Habitat

    Science.gov (United States)

    Nohner, Joel K.; Lupi, Frank; Taylor, William W.

    2018-03-01

    Lakes provide valuable ecosystem services such as food, drinking water, and recreation, but shoreline development can degrade riparian habitats and lake ecosystems. Easement contracts for specific property rights can encourage conservation practices for enhanced water quality, fish habitat, and wildlife habitat, yet little is known about the easement market. We surveyed inland lake shoreline property owners in Michigan to assess supply of two conservation easements (in riparian and in littoral zones) and identified property and property owner characteristics influencing potential enrollment. Respondents were significantly less likely to enroll in littoral easements if they indicated there was social pressure for manicured lawns and more likely to enroll if they had more formal education, shoreline frontage, naturally occurring riparian plants, ecological knowledge, or if the lake shoreline was more developed. Enrollment in easements in the riparian zone was significantly less likely if property owners indicated social pressure for manicured lawns, but more likely if they had more formal education, naturally occurring riparian plants, or shoreline frontage. When payments were low (conservation outcomes for water quality and habitat.

  12. Outdoor water use and water conservation opportunities in Virginia Beach, Virginia

    Science.gov (United States)

    Eggleston, John R.

    2010-01-01

    How much water do you use to water your lawn, wash your car, or fill your swimming pool? Your answers to these questions have important implications for water supplies in the City of Virginia Beach. To help find the answers, the City cooperated with the U.S. Geological Survey (USGS) and Old Dominion University to learn more about seasonal outdoor water use. In the summer of 2008 the USGS surveyed city residents and asked detailed questions about their outdoor water use. This fact sheet describes what was learned in the survey.

  13. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  14. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW with a surface runoff model-the Soil Conservation Service (SCS were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2 m(3/m(2/h in the bare slope scenario, while the observed values were 1.54×10(-2 m(3/m(2/h and 0.12×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min, the simulated mean groundwater runoff modulus was 2.82×10(-2 m(3/m(2/h in the bare slope scenario, while the observed volumes were 3.46×10(-2 m(3/m(2/h and 4.91×10(-2 m(3/m(2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  15. Surface water ponding on clayey soils managed by conventional and conservation tillage in boreal conditions

    Directory of Open Access Journals (Sweden)

    L. ALAKUKKU

    2008-12-01

    Full Text Available Surface water ponding and crop hampering due to soil wetness was monitored in order to evaluate the effects of conservation tillage practices and perennial grass cover on soil infiltrability for five years in situ in gently sloping clayey fields. Thirteen experimental areas, each having three experimental fields, were established in southern Finland. The fields belonged to: autumn mouldboard ploughing (AP, conservation tillage (CT and perennial grass in the crop rotation (PG. In the third year, direct drilled (DD fields were established in five areas. Excluding PG, mainly spring cereals were grown in the fields. Location and surface area of ponded water (in the spring and autumn as well as hampered crop growth (during June-July were determined in each field by using GPS devices and GIS programs. Surface water ponding or crop hampering occurred when the amount of rainfall was clearly greater than the long-term average. The mean of the relative area of the ponded surface water, indicating the risk of surface runoff, and hampered crop growth was larger in the CT fields than in the AP fields. The differences between means were, however, not statistically significant. Complementary soil physical measurements are required to investigate the reasons for the repeated surface water ponding.;

  16. Using Social Marketing Principles to Understand an Extension Audience’s Landscape Water Conservation Practices

    Directory of Open Access Journals (Sweden)

    Laura A. Warner

    2015-02-01

    Full Text Available A substantial amount of water is applied to Florida landscapes, and encouraging water conservation through irrigation practices has been identified as a priority programming area where there is great opportunity to positively affect the state’s water resources. Florida Extension addresses this priority area through educational programming. Social marketing has been identified as a promising approach to changing behaviors that influence environmental issues, such as water-saving irrigation technologies and practices. This approach recognizes that there are barriers that prevent individuals from engaging in positive behavior changes. This study evaluated an irrigation seminar using a retrospective pretest-posttest design that incorporated elements of a social marketing intercept survey. Thirty-four attendees participated and primarily represented green industry professional and government sectors. Study objectives were to evaluate the workshop and describe the audience using social marketing principles for future program planning based on audience research. The audience rated their descriptive norms, a strong predictor of behavioral change, lower than their injunctive norms, a less robust predictor. The majority planned to adopt at least one water-conservation best management practice as a result of the workshop. We make recommendations for applying social marketing principles to Extension programming.

  17. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.

  18. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  19. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    Science.gov (United States)

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  20. Social and Structural Patterns of Drought-Related Water Conservation and Rebound

    Science.gov (United States)

    Gonzales, Patricia; Ajami, Newsha

    2017-12-01

    Water use practices and conservation are the result of complex sociotechnical interactions of political, economic, hydroclimatic, and social factors. While the drivers of water demand have been extensively studied, they have traditionally been applied to models that assume stationary relationships between these various factors, and usually do not account for potential societal changes in response to increased scarcity awareness. For example, following a period of sustained low demand such as during a drought, communities often increase water use during a hydrologically wet period, a phenomenon known as "rebounding" water use. Previous experiences show the extent of this rebound is not a straightforward function of policy and efficiency improvements, but may also reflect short-term or long-lasting change in community behavior, which are not easily captured by models that assume stationarity. In this work, we develop a system dynamics model to represent water demand as a function of both structural and social factors. We apply this model to the analysis of three diverse water utilities in the San Francisco Bay Area between 1980 and 2017, identifying drought response trends and drivers over time. Our model is consistent with empirical patterns and historical context of water use in California, and provides important insights on the rebound phenomenon that can be extended to other locations. This comparative assessment indicates that policies, public outreach, and better data availability have played a key role in raising public awareness of water scarcity, especially with the raise of the internet era in recent years.

  1. Engineering and economic evaluation of wet/dry cooling towers for water conservation

    International Nuclear Information System (INIS)

    Hu, M.C.

    1976-11-01

    The results are presented of a design and cost study for wet/dry tower systems used in conjunction with 1000 MWe nuclear power plants to reject waste heat while conserving water. Design and cost information for wet/dry tower systems are presented, and these cooling system alternatives are compared with wet and dry tower systems to determine whether the wet/dry tower concept is an economically viable alternative. The wet/dry cooling tower concept investigated is one which combines physically separated wet towers and dry towers into an operational unit. In designing the wet/dry tower, a dry cooling tower is sized to carry the plant heat load at low ambient temperatures, and a separate wet tower is added to augment the heat rejection of the dry tower at higher ambient temperatures. These wet/dry towers are designed to operate with a conventional low back pressure turbine commercially available today. The component wet and dry towers are state-of-the-art designs. From this study it was concluded that: wet/dry cooling systems can be designed to provide a significant economic advantage over dry cooling yet closely matching the dry tower's ability to conserve water, a wet/dry system which saves as much as 99 percent of the make-up water required by a wet tower can maintain that economic advantage, and therefore, for power plant sites where water is in short supply, wet/dry cooling is the economic choice over dry cooling

  2. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  3. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ... corresponded to the levels in the American Society of Heating, Refrigerating and Air Conditioning Engineers... provides a brief history of DOE's more recent test procedure rulemakings related to residential water... performance (e.g., such as ambient air temperature, ambient relative humidity, and inlet water temperature...

  4. 78 FR 43974 - Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act...

    Science.gov (United States)

    2013-07-23

    ... FEDERAL TRADE COMMISSION 16 CFR Part 305 [3084-AB15] Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act (Energy Labeling Rule) AGENCY: Federal Trade...'') in 1979,\\1\\ pursuant to the Energy Policy and Conservation Act of 1975 (EPCA).\\2\\ The Rule requires...

  5. Save water or save wildlife? Water use and conservation in the central Sierran foothill oak woodlands of California, USA

    Directory of Open Access Journals (Sweden)

    Lynn Huntsinger

    2017-06-01

    Full Text Available More frequent drought is projected for California. As water supplies constrict, and urban growth and out-migration spread to rural areas, trade-offs in water use for agriculture, biodiversity conservation, fire hazard reduction, residential development, and quality of life will be exacerbated. The California Black Rail (Laterallus jamaicensis coturniculus, state listed as "Threatened," depends on leaks from antiquated irrigation district irrigation systems for much of its remnant small wetland habitat in the north central Sierra Nevada foothills. Residents of the 1295 km² foothill habitat distribution of the Black Rail were surveyed about water use. Results show that the most Black Rail habitat is owned by those purchasing water to irrigate pasture, a use that commonly creates wetlands from leaks and tailwater. Promoting wildlife, agricultural production, and preventing wildfire are common resident goals that call for abundant and inexpensive water; social and economic pressures encourage reduction in water use and the repair of leaks that benefit wildlife and greenery. Broad inflexible state interventions to curtail water use are likely to create a multitude of unintended consequences, including loss of biodiversity and environmental quality, and alienation of residents as valued ecosystem services literally dry up. Adaptive and proactive policies are needed that consider the linkages in the social-ecological system, are sensitive to local conditions, prevent landscape dewatering, and recognize the beneficial use of water to support ecosystem services such as wildlife habitat. Much Black Rail habitat is anthropogenic, created at the nexus of local governance, plentiful water, agricultural practices, historical events, and changing land uses. This history should be recognized and leveraged rather than ignored in a rush to "save" water by unraveling the social-ecological system that created the landscape. Policy and governance needs to identify

  6. Some difficulties and inconsistencies when using habit strength and reasoned action variables in models of metered household water conservation.

    Science.gov (United States)

    Jorgensen, Bradley S; Martin, John F; Pearce, Meryl; Willis, Eileen

    2013-01-30

    Research employing household water consumption data has sought to test models of water demand and conservation using variables from attitude theory. A significant, albeit unrecognised, challenge has been that attitude models describe individual-level motivations while consumption data is recorded at the household level thereby creating inconsistency between units of theory and measurement. This study employs structural equation modelling and moderated regression techniques to addresses the level of analysis problem, and tests hypotheses by isolating effects on water conservation in single-person households. Furthermore, the results question the explanatory utility of habit strength, perceived behavioural control, and intentions for understanding metered water conservation in single-person households. For example, evidence that intentions predict water conservation or that they interact with habit strength in single-person households was contrary to theoretical expectations. On the other hand, habit strength, self-reports of past water conservation, and perceived behavioural control were good predictors of intentions to conserve water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry

    DEFF Research Database (Denmark)

    Overcash, Michael; Russell, Dunn; Wenzel, Henrik

    2002-01-01

    This paper addresses operational techniques for applying mass integration design in industry with special focus on water conservation and wastewater reduction. This paper presents a design technique for any number of wastewater streams containing multiple contaminants. The technique comprises...... a single non-linear optimization program to minimize the wastewater discharged (or maximize the amount of recycled wastewater). This program is developed based on general water allocation principles and uses the transshipment model theory to allow the “shipment” of wastewater (referred to as “sources......” or “warehouses”) to process water users (referred to as “sinks”, “demands” or “customers”). A detailed case study of industrial significance, highlighting land treatment technology, is included to illustrate the proposed methodology and various process scenarios are evaluated within this case study...

  8. Management and Area-wide Evaluation of Water Conservation Zones in Agricultural Catchments for Biomass Production, Water Quality and Food Security

    International Nuclear Information System (INIS)

    2016-04-01

    Global land and water resources are under threat from both the agricultural and urban development to meet increased demand for food and from the resulting degradation of the environment. Poor crop yields due to water stress is one of the main reasons for the prevailing hunger and rural poverty in parts of the world. The Green Revolution of the 1960s and 1970s particularly in Latin America and Asia resulted in increased agricultural production and depended partly on water management. In the future, most food will still need to come from rain-fed agriculture. Water conservation zones in agricultural catchments, particularly in rainfed areas, play an important role in the capture and storage of water and nutrients from farmlands and wider catchments, and help improve crop production in times of need in these areas. Water conservation zones are considered to be an important part of water resource management strategies that have been developed to prevent reservoir siltation, reduce water quality degradation, mitigate flooding, enhance groundwater recharge and provide water for farming. In addition to making crop production possible in dry areas, water conservation zones minimize soil erosion, improve soil moisture status through capillary rise and enhance soil fertility and quality. These water conservation zones include natural and constructed wetlands (including riparian wetlands), farm ponds and riparian buffer zones. The management of water conservation zones has been a challenge due to the poor understanding of the relationship between upstream land use and the functions of these zones and their internal dynamics. Knowledge of sources and sinks of water and redefining water and nutrient budgets for water conservation zones are important for optimizing the capture, storage and use of water and nutrients in agricultural landscapes. The overall objective of this coordinated research project (CRP) was to assess and enhance ecosystem services provided by wetlands, ponds

  9. Evaluation of water conservation capacity of loess plateau typical mountain ecosystems based on InVEST model simulation

    Science.gov (United States)

    Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing

    2017-06-01

    With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.

  10. Assessment of the conservation priority status of South African estuaries for use in management and water allocation

    CSIR Research Space (South Africa)

    Turpie, JK

    2002-04-01

    Full Text Available The future health and productivity of South Africa's approximately 250 estuaries is dependent on two main factors; management and freshwater inputs. Both management and water allocation decisions involve trade-offs between conservation and various...

  11. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    Science.gov (United States)

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  12. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    Science.gov (United States)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  13. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    Science.gov (United States)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  14. Assessment of Aesthetic Quality on Soil and Water Conservation Engineering Using the Scenic Beauty Estimation Method

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Peng

    2018-03-01

    Full Text Available Taiwan has rich natural landscapes, but the sensitive geology and concentrated rainfall have resulted in frequent sediment hazards. Thus, various stream control works are established in watersheds to secure midstream and downstream citizens’ lives and properties. Taking care of slope safety and natural landscapes has become a primary issue for soil and water conservation engineering. The scenic preference beauty estimation method (SBE in psychophysics, which was proposed by Daniel and Boster in 1976, is utilized herein to evaluate the scenic aesthetics of stream control engineering in watersheds. It aims to discuss various landscape factors (water body, vegetation in the aesthetic preference and differences of various artificial structures in a watershed under people’s psychology. First, pictures and images related to soil and water conservation engineering are collected, and an in-situ investigation is performed to determine the pictures and images for discussion and design of the relevant questionnaire. The scenic aesthetics evaluation results are standardized with RMRATE, a computer program for analyzing rating judgments, of the United States Department of Agriculture, and then transformed into SBE values to compare the difference of various engineering structures in scenic aesthetics. The results reveal that flowing waterscape elements and the coverage of vegetation on the surrounding artificial structure volume in images present positive effects on the public overall scenic aesthetics. This study is expected to provide engineering designers with reference for considering a design integrating engineering structure with natural landscapes.

  15. Adaptation Strategies of Soil and Water Conservation in Taiwan for Extreme Climate

    Science.gov (United States)

    Huang, Wen-Cheng; Lin, Cheng-Yu; Hsieh, Ting-Ju

    2016-04-01

    Due to global climate change, the impact caused by extreme climate has become more and more compelling. In Taiwan, the total rainfall stays in the same level, but it brings along changes to rain types. The rainfall with high recurrence interval happens frequently, leading to soil loss of slope-land, and it may further result in flooding and sediment hazards. Although Taiwan is a small island, the population density is ranked at the second highest around the world. Moreover, third-fourth of Taiwan is slope-land, so the soil and water conservation is rather important. This study is based on the international trend analysis approach to review the related researches worldwide and 264 research projects in Taiwan. It indicates that under the pressure of extreme climate and social economic changes, it has higher possibility of slope-land to face the impacts from extreme rainfall events, and meanwhile, the carrying capacity of slope-land is decreasing. The experts' brainstorming meetings were held three times, and it concluded the current problems of soil and water conservation and the goal in 2025 for sustainable resources. Also, the 20-year weather data set was adopted to screen out 3 key watersheds with the potential of flooding (Puzih River Watershed), droughts (Xindian River Watershed), and sediment hazards (Chishan River Watershed) according to the moisture index, and further, to propose countermeasures in order to realize the goal in 2025, which is "regarding to climate and socioeconomic changes, it is based on multiple use to manage watershed resources for avoiding disasters and sustaining soil and water conservation." Keyword: Extreme climate, International trend analysis, Brainstorming, Key watershed

  16. Predicting improved optical water quality in rivers resulting from soil conservation actions on land.

    Science.gov (United States)

    Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D

    2017-12-15

    Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Web-Based GIS for Reporting Water Usage in the High Plains Underground Water Conservation District

    Science.gov (United States)

    Jia, M.; Deeds, N.; Winckler, M.

    2012-12-01

    The High Plains Underground Water Conservation District (HPWD) is the largest and oldest of the Texas water conservation districts, and oversees approximately 1.7 million irrigated acres. Recent rule changes have motivated HPWD to develop a more automated system to allow owners and operators to report well locations, meter locations, meter readings, the association between meters and wells, and contiguous acres. INTERA, Inc. has developed a web-based interactive system for HPWD water users to report water usage and for the district to better manage its water resources. The HPWD web management system utilizes state-of-the-art GIS techniques, including cloud-based Amazon EC2 virtual machine, ArcGIS Server, ArcSDE and ArcGIS Viewer for Flex, to support web-based water use management. The system enables users to navigate to their area of interest using a well-established base-map and perform a variety of operations and inquiries against their spatial features. The application currently has six components: user privilege management, property management, water meter registration, area registration, meter-well association and water use report. The system is composed of two main databases: spatial database and non-spatial database. With the help of Adobe Flex application at the front end and ArcGIS Server as the middle-ware, the spatial feature geometry and attributes update will be reflected immediately in the back end. As a result, property owners, along with the HPWD staff, collaborate together to weave the fabric of the spatial database. Interactions between the spatial and non-spatial databases are established by Windows Communication Foundation (WCF) services to record water-use report, user-property associations, owner-area associations, as well as meter-well associations. Mobile capabilities will be enabled in the near future for field workers to collect data and synchronize them to the spatial database. The entire solution is built on a highly scalable cloud

  18. Water conservation implications for decarbonizing non-electric energy supply: A hybrid life-cycle analysis.

    Science.gov (United States)

    Liu, Shiyuan; Wang, Can; Shi, Lei; Cai, Wenjia; Zhang, Lixiao

    2018-08-01

    Low-carbon transition in the non-electric energy sector, which includes transport and heating energy, is necessary for achieving the 2 °C target. Meanwhile, as non-electric energy accounts for over 60% of total water consumption in the energy supply sector, it is vital to understand future water trends in the context of decarbonization. However, few studies have focused on life-cycle water impacts for non-electric energy; besides, applying conventional LCA methodology to assess non-electric energy has limitations. In this paper, a Multi-Regional Hybrid Life-Cycle Assessment (MRHLCA) model is built to assess total CO 2 emissions and water consumption of 6 non-electric energy technologies - transport energy from biofuel and gasoline, heat supply from natural gas, biogas, coal, and residual biomass, within 7 major emitting economies. We find that a shift to natural gas and residual biomass heating can help economies reduce 14-65% CO 2 and save more than 21% water. However, developed and developing economies should take differentiated technical strategies. Then we apply scenarios from IMAGE model to demonstrate that if economies take cost-effective 2 °C pathways, the water conservation synergy for the whole energy supply sector, including electricity, can also be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.

    Directory of Open Access Journals (Sweden)

    Mostafa H Ahmed

    Full Text Available There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.The water molecules were found to be involved in: a (bridging interactions with both proteins (21%, b favorable interactions with only one protein (53%, and c no interactions with either protein (26%. This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (-0.46 kcal mol(-1, but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol(-1. Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å(2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or "hydrophobic bubbles". Such water molecules may have an important biological purpose in mediating protein-protein interactions.

  20. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    International Nuclear Information System (INIS)

    Tulbure, Mirela G; Broich, Mark; Kininmonth, Stuart

    2014-01-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999–2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  1. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    Science.gov (United States)

    Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark

    2014-11-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  2. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Ecological Compensation Mechanism in Water Conservation Area: A Case Study of Dongjiang River

    Directory of Open Access Journals (Sweden)

    Kong Fanbin

    2015-07-01

    Full Text Available The appropriate economic compensation from downstream to upstream watershed is important to solve China’s social and economic imbalances between regions and can potentially enhance water resources protection and ecological security. The study analyzes the implementation of ecological compensation policy and related legal basis under ecological compensation mechanism theory and practice patterns, based on current natural environment and socio-economic development of national origin in Dongjiang water conservation areas. Under the principle of “Users pay”, the Dongjiang River is the subject of ecological compensation and recipient. By using the “cost-benefit analysis” and “cost method of industrial development opportunity”, we estimate that the total ecological compensation amounted to 513.35 million yuan. When estimated by the indicators such as water quantity, water quality and water use efficiency, we establish the “environmental and ecological protection cost sharing model” and measure the total cost of protecting downstream watershed areas, the Guangdong Province, is about 108.61 million yuan. The implementation of the Dongjiang source region that follows the principles of ecological compensation and approaches are also designed

  4. Water Conservation in Kalanchoe blossfeldiana in Relation to Carbon Dioxide Dark Fixation

    Science.gov (United States)

    Zabka, George G.; Chaturvedi, S. N.

    1975-01-01

    The succulent Kalanchoe blossfeldiana v. Poel. var Tom Thumb was treated on long and short photoperiods for 6 weeks during which short day plants developed thicker leaves, flowered prolifically, and exhibited extensive net dark fixation of carbon dioxide. In contrast, long day plants remained vegetative and did not develop thicker leaves or exhibit net carbon dioxide dark fixation. When examined after the photoperiodic state described, long day plants showed approximately three times more water loss over a 10-day period than short day plants. Water loss is similar during light and dark periods for short day plants but long day plants exhibited two times more water loss during the day than at night. The latter plants also lost three and one-half times more water during the light period than short day plants. The water conservation by short day plants is correlated with conditions of high carbon dioxide dark fixation and effects of its related Crassulacean acid metabolism on stomatal behavior. PMID:16659116

  5. U.S. Geological Survey programs and investigations related to soil and water conservation

    Science.gov (United States)

    Osterkamp, W.R.; Gray, J.R.

    2001-01-01

    The U.S. Geological Survey has a rich tradition of collecting hydrologic data, especially for fluxes of water and suspended sediment, that provide a foundation for studies of soil and water conservation. Applied and basic research has included investigations of the effects of land use on rangelands, croplands, and forests; hazards mapping; derivation of flood and drought frequency, and other statistics related to streamflow and reservoir storage; development and application of models of rainfall-runoff relations, chemical quality, and sediment movement; and studies of the interactive processes of overland and channel flow with vegetation. Networks of streamgaging stations and (or) sampling sites within numerous drainage basins are yielding information that extends databases and enhances the ability to use those data for interpretive studies.

  6. Coordinating water conservation efforts through tradable credits: A proof of concept for drought response in the San Francisco Bay area

    Science.gov (United States)

    Gonzales, Patricia; Ajami, Newsha; Sun, Yujie

    2017-09-01

    Water utilities are increasingly relying on water efficiency and conservation to extend the availability of supplies. Despite spatial and institutional interdependency of many utilities, these demand-side management initiatives have traditionally been tackled by individual utilities operating in isolation. In this study, we introduce a policy framework for water conservation credits that enables collaboration at the regional scale. Under the proposed approach, utilities have the flexibility to invest in water conservation measures that are appropriate for their specific service area. When utilities have insufficient capacity for local cost-effective measures, they may opt to purchase credits, contributing to fund subsidies for utilities that do have that capacity and can provide the credits, while the region as a whole benefits from more reliable water supplies. This work aims to provide insights on the potential impacts of a water conservation credit policy framework when utilities are given the option to collaborate in their efforts. We model utility decisions as rational cost-minimizing actors subject to different decision-making dynamics and water demand scenarios, and demonstrate the institutional characteristics needed for the proposed policy to be effective. We apply this model to a counterfactual case study of water utility members of the Bay Area Water Supply and Conservation Agency in California during the drought period of June 2015 to May 2016. Our scenario analysis indicates that when the institutional structure and incentives are appropriately defined, water agencies can achieve economic benefits from collaborating in their conservation efforts, especially if they coordinate more closely in their decision-making.

  7. The Evaluation of Water Conservation for Municipal and Industrial Water Supply: Illustrative Examples. Water Conservation and Supply Information Transfer and Analysis Program. Revision.

    Science.gov (United States)

    1981-02-01

    measures. In other words, discussion of such issues is often, indeed usually, more successful in leading to the identification and delineation of basic ...discussion of urban growth reveals a basic dichotomy of values that runs through the Atlanta sample; various groups of influence align themselves on one side...leak detection, land use policies, ratemaking policy, and tax incentives or subsidies. Available data on unaccounted-for water indicate that the

  8. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    Science.gov (United States)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  9. The Role of Conserved Waters in Conformational Transitions of Q61H K-ras

    Science.gov (United States)

    Prakash, Priyanka; Sayyed-Ahmad, Abdallah; Gorfe, Alemayehu A.

    2012-01-01

    To investigate the stability and functional role of long-residence water molecules in the Q61H variant of the signaling protein K-ras, we analyzed all available Ras crystal structures and conformers derived from a series of independent explicit solvent molecular dynamics (MD) simulations totaling 1.76 µs. We show that the protein samples a different region of phase space in the presence and absence of several crystallographically conserved and buried water molecules. The dynamics of these waters is coupled with the local as well as the global motions of the protein, in contrast to less buried waters whose exchange with bulk is only loosely coupled with the motion of loops in their vicinity. Aided by two novel reaction coordinates involving the distance (d) between the Cα atoms of G60 at switch 2 and G10 at the P-loop and the N-Cα-C-O dihedral (ξ) of G60, we further show that three water molecules located in lobe1, at the interface between the lobes and at lobe2, are involved in the relative motion of residues at the two lobes of Q61H K-ras. Moreover, a d/ξ plot classifies the available Ras x-ray structures and MD-derived K-ras conformers into active GTP-, intermediate GTP-, inactive GDP-bound, and nucleotide-free conformational states. The population of these states and the transition between them is modulated by water-mediated correlated motions involving the functionally critical switch 2, P-loop and helix 3. These results suggest that water molecules act as allosteric ligands to induce a population shift among distinct switch 2 conformations that differ in effector recognition. PMID:22359497

  10. THE SOCIALIZING OF WATER CONSERVATION THROUGH COUNSELING AND BIOPORI HOLE MAKING (LBR

    Directory of Open Access Journals (Sweden)

    puti renosori

    2017-04-01

    Full Text Available The high population density in the devotion location, causing groundwater getting a much needed, but its condition now is dwindling due to lack of land infiltration. It is caused by the high of land conversion therefore the land becomes water resistant. Many residents who buy clean water during the dry season but when in the rainy season many puddles in the yard and the street due to the capacity of the drainage is not enough anymore. Furthermore, the rainwater runoff in the area contributed to the flooding in the Rancaekek and Jatinangor area. To resolve this issue is done counseling in order to change the rainwater management paradigm that only distributes as soon as possible to maximize their absorption into the drainage channel in a way to invite people to make LRB. LRB  chosen because it is one of the appropriate technology that is easy to do, relatively cheap, environmentally friendly and is an effective way to conserve underground water can overcome the water crisis, and contribute significantly to reducing flood donations. Residents with making LRB have benefits to eliminate the puddles in the yard and the street, and further can be groundwater reserves. Because the LRB can be filled with organic waste, which can be turned into compost, then the other benefits are be able to improve the processing of organic waste into compost.

  11. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades

    Science.gov (United States)

    Qingren Wang; Yuncong Li; Ying. Ouyang

    2011-01-01

    Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCA‐3) of the Florida...

  12. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT

    Science.gov (United States)

    The Merguellil catchment (Central Tunisia) is a typical Mediterranean semi-arid basin which suffers from regular water shortage aggravated by current droughts. During the recent decades the continuous construction of small and large dams and Soil and Water Conservation Works (i.e. Contour ridges) ha...

  13. The Potential Importance of Conservation, Restoration, and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants discharge into receiving water bodies and enhance local and ...

  14. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation

    DEFF Research Database (Denmark)

    Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek

    2010-01-01

    Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...

  15. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    Science.gov (United States)

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  16. Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2018-06-01

    Full Text Available The conservation of total water is an important numerical feature for global Earth system models. Even small conservation problems in the water budget can lead to systematic errors in century-long simulations. This study quantifies and reduces various sources of water conservation error in the atmosphere component of the Energy Exascale Earth System Model. Several sources of water conservation error have been identified during the development of the version 1 (V1 model. The largest errors result from the numerical coupling between the resolved dynamics and the parameterized sub-grid physics. A hybrid coupling using different methods for fluid dynamics and tracer transport provides a reduction of water conservation error by a factor of 50 at 1° horizontal resolution as well as consistent improvements at other resolutions. The second largest error source is the use of an overly simplified relationship between the surface moisture flux and latent heat flux at the interface between the host model and the turbulence parameterization. This error can be prevented by applying the same (correct relationship throughout the entire model. Two additional types of conservation error that result from correcting the surface moisture flux and clipping negative water concentrations can be avoided by using mass-conserving fixers. With all four error sources addressed, the water conservation error in the V1 model becomes negligible and insensitive to the horizontal resolution. The associated changes in the long-term statistics of the main atmospheric features are small. A sensitivity analysis is carried out to show that the magnitudes of the conservation errors in early V1 versions decrease strongly with temporal resolution but increase with horizontal resolution. The increased vertical resolution in V1 results in a very thin model layer at the Earth's surface, which amplifies the conservation error associated with the surface moisture flux correction. We note

  17. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    Science.gov (United States)

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  18. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows

    Science.gov (United States)

    Stelling, G. S.; Duinmeijer, S. P. A.

    2003-12-01

    This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.

  19. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    Science.gov (United States)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  20. Geomorphic and Hydrological challenges in Africa: implications for soil and water conservation

    Science.gov (United States)

    Vanmaercke, Matthias; Poesen, Jean

    2017-04-01

    Expected scenarios of climate change and population growth confront Africa with various important challenges related to food, water and energy security. Many of these challenges are closely linked to the impacts of soil erosion and other geomorphic processes, such as reduced crop yields, sedimentation of reservoirs and reduced freshwater quality. Despite the urgency and extent of many of these challenges, the causes and dynamics of these processes and their impacts remain severely understudied. This becomes apparent when the availability of e.g. soil erosion and catchment sediment export measurements for Africa is compared to that of other continents. Nonetheless, a substantial amount of geomorphic research has been conducted in Africa. Many of this work dates back from several decades ago, and were often only reported in 'gray literature' (e.g. internal reports). Here we present an overview of our current state of knowledge on soil erosion and its implications in Africa. We discuss which geomorphic process rate measurements are currently available and what can be learned from these with respect to the challenged raised above. We especially focus on our current understanding about the effectiveness of soil and water conservation techniques at various spatial and temporal scales. Based on specific case-studies (e.g. in Ethiopia and Uganda) and a meta-analysis of previous work, we highlight some research gaps, research needs and research opportunities when aiming to use Africa's soil and water resources sustainably and efficiently.

  1. Chilean central valley beekeeping as socially inclusive conservation practice in a social water scarcity context

    Directory of Open Access Journals (Sweden)

    Felipe Eduardo Trujillo Bilbao

    2017-07-01

    Full Text Available Through an ethnographic approach that complements conversations, tours and surveys of productive characterization is that the present study aims to approach the domestic beekeeping in the valley of Colliguay, Quilpué, fifth region of Chile. This is an activity that emerges as a result of deep transformations detonated by the neoliberalization of nature in general and water in particular. That is why it seeks to contextualize the situation of water scarcity that displaced livestock and put in place the bees. All of this through a political ecology lens. It is discussed how to achieve an anthropological reading of the ecological scenarios that denaturalize metabolic fractures in an area with a threatened presence of native forest. It is discovered that the outsider is the material and symbolic responsible of an increase in water stress and a key element in the social relations of confrontation of the valley. It is then related how bees have diverted the attention of their human counterparts to the affection and care of the forest that allows them to live, thus reinforcing the idea of a socially inclusive conservation.

  2. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: Supporting policy making in the Green Water Credits program of Kenya

    NARCIS (Netherlands)

    Hunink, J.E.; Droogers, P.; Kauffman, J.H.; Mwaniki, B.M.; Bouma, J.

    2012-01-01

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to

  3. Give Water a Hand. Farm and Ranch Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    Science.gov (United States)

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water, and water conservation on a farm or ranch, while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  4. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    Science.gov (United States)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  5. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    Science.gov (United States)

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Social Diffusion of Water Conservation: A Study of Residential Turf Rebate Programs in Orange County, California

    Science.gov (United States)

    Duong, K.; Grant, S. B.; Rippy, M.; Feldman, D.

    2017-12-01

    From 2011 to 2017, the combination of record low precipitation and extreme warm temperatures resulted in the most severe drought in California's written history. In April 2015, Governor Jerry Brown issued an executive order mandating a statewide 25% reduction in potable urban water usage. Under such circumstances, outdoor watering is an obvious target for restriction, because it can account for a large fraction of total domestic water usage, up to 50% in the arid southwest [Syme et. al 2004, Cameron et. al 2012]. In this study we analyzed one such effort, in which the Irvine Ranch Water District (IRWD) in Orange County (California) offered a financial incentive through a turf rebate program to encourage Irvine residents to replace turf grass with drought tolerant landscaping. We focused specifically on the number of residents who applied to the turf rebate program. Our hypothesis was that the observed application rate (number of applicants per month) is influenced by a combination of (a) financial incentives issued by IRWD, (b) drought awareness, and (c) the fraction of neighbors that have already applied to the program (a phenomenon that can be described quantitatively through models of social contagion or social diffusion [Karsai et. al 2014]). Our preliminary results indicate that applications to the program occurred in geographic "hot spots", consistent with the idea that early adopters may have influenced neighbors to retrofit their lawns. We are currently evaluating the geographic, demographic, and temporal drivers that influence the rate of spontaneous adoption, the rate of adoption under influence, and the total size of the susceptible population. Overall, our goal is to identify the key factors that contribute to early rapid uptake of conservation behavior, and the rapid diffusion of that behavior through the community.

  7. Effort to Increase Oil Palm Production through Application Technique of Soil and Water Conservation

    Directory of Open Access Journals (Sweden)

    Kukuh Murtilaksono

    2009-05-01

    Full Text Available The study was carried out at block 375, 415, and 414 (block 1, 2, and 3 Afdeling III, Mangement Unit of Rejosari, PT Perkebunan Nusantara VII, Lampung from June 2005 until December 2007. Objective of the study is to examine the effect of soil and water conservation measurement, namely bund terrace and silt pit that are combined with retarded-water hole on production of oil palm. Sampled trees of each block were randomly selected as much as 36 trees. Parameters of vegetative growth (additional new frond, total of frond, number of new bunch, production (number of bunch, fresh fruit bunch (TBS, and average of bunch weigh (RBT were observed and recorded every two weeks. Production of palm oil of each block was also recorded every harvesting schedule of Afdeling. Tabular data were analyzed descriptively by logical comparison among the blocks as result of application of bund terrace and silt pit. Although the data of sampled trees were erratic, bund terrace and silt pit generally increasing number of frond, number of bunch, average of bunch weight, and fresh fruit bunch. Bund terrace gived the highest production of TBS (25.2 t ha-1 compared to silt pit application (23.6 t ha-1, and it has better effect on TBS than block control (20.8 t ha-1. Aside from that, RBT is the highest (21 kg at bund terrace block compared to silt pit block (20 kg and control block (19 kg.

  8. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Science.gov (United States)

    Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  9. Designing monitoring for conservation impact assessment in water funds in Latin America: an approach to address water-data scarcity (Invited)

    Science.gov (United States)

    Nelson, J. L.; Chaplin-Kramer, R.; Ziv, G.; Wolny, S.; Vogl, A. L.; Tallis, H.; Bremer, L.

    2013-12-01

    The risk of water scarcity is a rising threat in a rapidly changing world. Communities and investors are using the new institution of water funds to enact conservation practices in watersheds to bolster a clean, predictable water supply for multiple stakeholders. Water funds finance conservation activities to support water-related ecosystem services, and here we relate our work to develop innovative approaches to experimental design of monitoring programs to track the effectiveness of water funds throughout Latin America. We highlight two examples: the Fund for the Protection of Water (FONAG), in Quito, Ecuador, and Water for Life, Agua por la Vida, in Cali, Colombia. Our approach is meant to test whether a) water funds' restoration and protection actions result in changes in water quality and/or quantity at the site scale and the subwatershed scale, and b) the suite of investments for the whole water fund reach established goals for improving water quality and/or quantity at the basin scale or point of use. Our goal is to create monitoring standards for ecosystem-service assessment and clearly demonstrate translating those standards to field implementation in a statistically robust and cost-effective way. In the gap between data-intensive methods requiring historic, long-term water sampling and more subjective, ad hoc assessments, we have created a quantitative, land-cover-based approach to pairing conservation activity with appropriate controls in order to determine the impact of water-fund actions. To do so, we use a statistical approach in combination with open-source tools developed by the Natural Capital Project to optimize water funds' investments in nature and assess ecosystem-service provision (Resource Investment Optimization System, RIOS, and InVEST). We report on the process of identifying micro-, subwatershed or watershed matches to serve as controls for conservation 'impact' sites, based on globally-available land cover, precipitation, and soil data

  10. Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait

    International Nuclear Information System (INIS)

    Wood, Michael; Alsayegh, Osamah A.

    2014-01-01

    This paper describes the influences of oil revenue and government's policies toward economic developments and energy efficiency on the electricity and water demands. A Kuwait-specific electricity and water demand model was developed based on historic data of oil income, gross domestic product (GDP), population and electric load and water demand over the past twelve years (1998–2010). Moreover, the model took into account the future mega projects, annual new connected loads and expected application of energy conservation programs. It was run under six circumstances representing the combinations of three oil income scenarios and two government action policies toward economic diversification and energy conservation. The first government policy is the status quo with respect to economic diversification and applying energy conservation programs. The second policy scenario is the proactive strategy of raising the production of the non-oil sector revenue and enforcing legislations toward energy demand side management and conservation. In the upcoming 20 years, the average rates of change of the electric load and water demand increase are 0.13 GW and 3.0 MIGD, respectively, per US dollar oil price increase. Moreover, through proactive policy, the rates of average load and water demand decrease are 0.13 GW and 2.9 MIGD per year, respectively. - Highlights: • Kuwait-specific electricity and water demand model is presented. • Strong association between oil income and electricity and water demands. • Rate of change of electric load per US dollar oil price change is 0.13 GW. • Rate of change of water demand per US dollar oil price change is 3.0 MIGD. • By 2030, efficiency lowers electric load and water demand by 10 and 6%, respectively

  11. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2012. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2012, the standards saved an estimated 3.6 quads of primary energy, which is equivalent to 3% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $51.4 billion. The average household saved $347 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO2 emissions associated with the standards in 2012 was 198 million metric tons, which is equivalent to 3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2070 amount to 179 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,104 billion and $1,390 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.8 trillion gallons in 2012, and will achieve cumulative water savings by 2040 of 54 trillion gallons. The estimated consumer savings in 2012 from reduced water use amounted to $13 billon.

  12. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2015

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-17

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2015. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2015, the standards saved an estimated 4.49 quads of primary energy, which is equivalent to 5% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $63.4 billion. The average household saved $320 in operating costs as a result of residential appliance standards. The estimated reduction in CO2 emissions associated with the standards in 2015 was 238 million metric tons, which is equivalent to 4.3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 216.9 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a cumulative net present value (NPV) of consumer benefit of between $1,627 billion and $1,887 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2015 and estimated cumulative water savings by 2090 amount to 55 trillion gallons. The estimated consumer savings in 2015 from reduced water use amounted to $12 billon.

  13. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed

    NARCIS (Netherlands)

    Amsalu, A.; Graaff, de J.

    2007-01-01

    In the Ethiopian highlands, land degradation resulting from soil erosion and nutrient depletion is a serious environmental and socio-economic problem. Although soil and water conservation techniques have extensively been introduced over the past decades, sustained use of the measures was not as

  14. Household-Level Determinants of Soil and Water Conservation Adoption Phases: Evidence from North-Western Ethiopian Highlands

    NARCIS (Netherlands)

    Teshome, Akalu; Graaff, de J.; Kassie, M.

    2016-01-01

    Soil and water conservation (SWC) practices have been promoted in the highlands of Ethiopia during the last four decades. However, the level of adoption of SWC practices varies greatly. This paper examines the drivers of different stages of adoption of SWC technologies in the north-western highlands

  15. Right practice, right place: A conservation planning toolbox for meeting water quality goals in the Corn Belt

    Science.gov (United States)

    With increasing recognition that regional nutrient pollution problems will only be solved using edge-of-field and beyond-field practices, conservation planners now face the challenge of identifying the most appropriate practices and practice locations to deliver water quality outcomes. We have deve...

  16. Participatory soil and water conservation planning using a financial analysis tool in the west usambara highlands of tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Okoba, B.O.; Sterk, G.

    2007-01-01

    Despite decades of soil and water conservation (SWC) efforts in Tanzania, the adoption of the recommended SWC measures by farmers is minimal. In the past, SWC plans did not incorporate farmers' knowledge, and the economics of SWC was not given much attention at the planning stage. This research

  17. The development of soil and water conservation policies and practices in five selected countries from 1960 to 2010

    NARCIS (Netherlands)

    Graaff, de J.; Aklilu, A.; Ouessar, M.; Asins-Velis, S.; Kessler, A.

    2013-01-01

    Since the 1930s there has been worldwide concern about the effects and impacts of land degradation. After the problems experienced in the Dust Bowl in the USA, much attention was paid to soil and water conservation in both developed and developing countries. Initially Governments stimulated the

  18. Participatory soil and water conservation planning using an erosion mapping tool in the central highlands of kenya

    NARCIS (Netherlands)

    Okoba, B.O.; Tenge, A.J.M.; Sterk, G.; Stroosnijder, L.

    2007-01-01

    Despite several approaches that aimed at mobilising East African farmers to embrace soil and water conservation (SWC) activities, farmers hardly responded since they were seldom involved in the planning of SWC activities. Two tools that employ farmers' participation were developed and applied at

  19. FEASIBILITY OF SOIL AND WATER CONSERVATION TECHNIQUES ON OIL PALM PLANTATION

    Directory of Open Access Journals (Sweden)

    Kukuh Murtilaksono

    2011-02-01

    Full Text Available The objective of the study is to examine the effectiveness and feasibility of soil and water conservation techniques. The production of oil palm comprising the fresh fruit bunch, number of bunches, and average of bunch weight were recorded at every harvesting schedule. Tabular data were analyzed by logical comparison among the blocks as a result of application of bund terraces and silt-pit. Financial and sensi-tivity analysis of the effect of the techniques on FFB production were done. Bund terrace treatment was more effective (4.761 ton or 21.5% in increasing FFB production than the silt-pit treatment (3.046 ton or 13.4% when it is compared to that of the control block. The application of bund terraces and silt-pit also presents positive effects i.e. increases the average bunch weight and the number of bunch compared to that of the control. Furthermore, the financial analysis as well as sensitivity analysis shows that the bund terrace application is profitable and feasible (B/C = 3.06, IRR = 47% while the silt pit treatment is profitable but not feasible.

  20. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  1. Soil and Water Conservation Prioritization Using Geospatial Technology – a Case Study of Part of Subarnarekha Basin, Jharkhand, India

    Directory of Open Access Journals (Sweden)

    Firoz Ahmad

    2017-08-01

    Full Text Available Changing patterns of land use and land cover have exploited the natural resources. Soil, water and forests are degraded, both quantitatively and qualitatively. Deforestation in recent years has led to changes in the environment and more of soil erosion and loss of potable water. In order to conserve and sustainably use soil and water, a watershed management approach is necessary. It helps in restoring water by increasing the infiltration and reducing the erosion of soil. Such measures should be propagated in rainfall deficit areas. The present study has attempted to study the upper watershed part of Subarnarekha basin in Jharkhand state of India. Remote sensing satellite data (Landsat 8 OLI/TIRS 2013 was used for delineation of the land use/land cover and vegetation index maps. Several thematic layers like slope, drainage and rainfall were integrated to achieve a priority area map using spatial multicriteria decision making. It delineated high medium and low priority areas within the watershed for soil and water conservation. The high priority area was 16.63% of the total study area. Further, the causes were analysed and conservation measures proposed.

  2. Focus on CSIR research in water resources: conservation planning for river and estuarine biodiversity in the Fish to Tsitsikamma water management area

    CSIR Research Space (South Africa)

    Roux, D

    2007-08-01

    Full Text Available for river and estuarine biodiversity in the Fish- to-Tsitsikamma water management area Project Aims To put in practice and refine, through a pilot study in the Eastern Cape Province, the policy and planning tools developed for systematic conservation... engagement in developing the technical approach to river prioritization and selection, as well as the reviewing of results to facilitate buy-in and ownership of the product. Project Description The Fish to Tsitsikamma Water Management Area is one...

  3. [Estimation on value of water and soil conservation of agricultural ecosystems in Xi' an metropolitan, Northwest China].

    Science.gov (United States)

    Yang, Wen-yan; Zhou, Zhong-xue

    2014-12-01

    With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.

  4. Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry. Part 3: Experience of Industrial Application

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Dunn, Russell; Gottrup, Lene

    2002-01-01

    This paper is Part 3 in a three part series of papers addressing operational techniques for applying mass integration principles to design in industry with special focus on water conservation and wastewater reduction. The presented techniques derive from merging US and Danish experience with indu......This paper is Part 3 in a three part series of papers addressing operational techniques for applying mass integration principles to design in industry with special focus on water conservation and wastewater reduction. The presented techniques derive from merging US and Danish experience......’s experience with defining the scope of the system and with identifying water flow constraints and water quality constraints is discussed. It is shown, how physical constraints for the system design often set a limit for the sophistication of the water recycle network and thereby also a limit for how...... sophisticated the method for system design should be. Finally, pinch analysis and system designs for water recycling in a practical case study are shown, documenting large water saving potentials and achievements....

  5. Applicability evaluation on the conservative metal-water reaction(MWR) model implemented into the SPACE code

    International Nuclear Information System (INIS)

    Lee, Suk Ho; You, Sung Chang; Kim, Han Gon

    2011-01-01

    The SBLOCA (Small Break Loss-of-Coolant Accident) evaluation methodology for the APR1400 (Advanced Power Reactor 1400) is under development using the SPACE code. The goal of the development of this methodology is to set up a conservative evaluation methodology in accordance with Appendix K of 10CFR50 by the end of 2012. In order to develop the Appendix K version of the SPACE code, the code modification is considered through implementation of the code on the required evaluation models. For the conservative models required in the SPACE code, the metal-water reaction (MWR) model, the critical flow model, the Critical Heat Flux (CHF) model and the post-CHF model must be implemented in the code. At present, the integration of the model to generate the Appendix K version of SPACE is in its preliminary stage. Among them, the conservative MWR model and its code applicability are introduced in this paper

  6. Subchannel analysis program for boiling water reactor fuel bundles based on five conservation equations of two-phase flow

    International Nuclear Information System (INIS)

    Bessho, Y.; Uchikawa, S.

    1985-01-01

    A subchannel analysis program, MENUETT, is developed for evaluation of thermal-hydraulic characteristics in boiling water reactor fuel bundles. This program is based on five conservation equations of two-phase flow with the drift-flux correlation. The cross flows are calculated separately for liquid and vapor phases from the lateral momentum conservation equation. The effects of turbulent mixing and void drift are accounted for in the program. The conservation equations are implicitly differentiated with the convective terms by the donor-cell method, and are solved iteratively in the axial and lateral directions. Data of the 3 X 3 rod bundle experiments are used for program verification. The lateral distributions of equilibrium quality and mass flow rate at the bundle exit calculated by the program compare satisfactorily with the experimental results

  7. Accès Eau: Enhanced Water Access for Bio-diversity Conservation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Due to water scarcity, people living here are forced to spend much of their income buying ... researchers will assess current and future water quality and availability. ... of Water, regional and communal boards, and village water committees.

  8. A mass conservative numerical solution of vertical water flow and mass transport equations in unsaturated porous media

    International Nuclear Information System (INIS)

    Lim, S.C.; Lee, K.J.

    1993-01-01

    The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)

  9. Soil and water conservation strategies and impact on sustainable livelihood in Cape Verde - Case study of Ribeira Seca watershed

    Science.gov (United States)

    Baptista, I.; Ferreira, A. D.; Tavares, J.; Querido, A. L. E.; Reis, A. E. A.; Geissen, V.; Ritsema, C.; Varela, A.

    2012-04-01

    Cape Verde, located off the coast of Senegal in western Africa, is a volcanic archipelago where a combination of human, climatic, geomorphologic and pedologic factors has led to extensive degradation of the soils. Like other Sahelian countries, Cape Verde has suffered the effects of desertification through the years, threatening the livelihood of the islands population and its fragile environment. In fact, the steep slopes in the ore agricultural islands, together with semi-arid and arid environments, characterized by an irregular and poorly distributed rainy season, with high intensity rainfall events, make dryland production a challenge. To survive in these fragile conditions, the stabilization of the farming systems and the maintenance of sustainable yields have become absolute priorities, making the islands an erosion control laboratory. Soil and water conservation strategies have been a centerpiece of the government's agricultural policies for the last half century. Aiming to maintain the soil in place and the water inside the soil, the successive governments of Cape Verde have implemented a number of soil and water conservation techniques, the most common ones being terraces, half moons, live barriers, contour rock walls, contour furrows and microcatchments, check dams and reforestation with drought resistant species. The soil and water conservation techniques implemented have contributed to the improvement of the economical and environmental conditions of the treated landscape, making crop production possible, consequently, improving the livelihood of the people living on the islands. In this paper, we survey the existing soil and water conservation techniques, analyze their impact on the livelihood condition of the population through a thorough literature review and field monitoring using a semi-quantitative methodology and evaluate their effectiveness and impact on crop yield in the Ribeira Seca watershed. A brief discussion is given on the cost and

  10. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Stephen; Williams, Alison; Chan, Peter

    2014-06-30

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2013. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2013, the standards saved an estimated 4.05 quads of primary energy, which is equivalent to 4% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $56 billion. The average household saved $361 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO{sub 2} emissions associated with the standards in 2013 was 218 million metric tons, which is equivalent to 4% of total U.S. CO{sub 2} emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 181 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,271 billion and $1,487 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2013, and will achieve cumulative water savings by 2090 of 55 trillion gallons. The estimated consumer savings in 2013 from reduced water use amounted to $16 billon.

  11. Water Conservation Study (Water and Energy) Energy Engineering Analysis Program (EEAP) FY94S Fort Knox, Kentucky. Volume 1

    National Research Council Canada - National Science Library

    1994-01-01

    .... Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project descriptions and DDl39l forms were prepared for four Energy Conservation Investment Program...

  12. Water Conservation Study (Water and Energy), Energy Engineering Analysis Program (EEAP) FY94S, Fort Knox, Kentucky; Executive Summary

    National Research Council Canada - National Science Library

    1994-01-01

    .... Life cycle cost analyses were performed using the Life Cycle Cost in Design (LCCID) computer program. Project descriptions and DD1391 forms were prepared for four Energy Conservation Investment program...

  13. An approach to industrial water conservation--a case study involving two large manufacturing companies based in Australia.

    Science.gov (United States)

    Agana, Bernard A; Reeve, Darrell; Orbell, John D

    2013-01-15

    This study presents the application of an integrated water management strategy at two large Australian manufacturing companies that are contrasting in terms of their respective products. The integrated strategy, consisting of water audit, pinch analysis and membrane process application, was deployed in series to systematically identify water conservation opportunities. Initially, a water audit was deployed to completely characterize all water streams found at each production site. This led to the development of a water balance diagram which, together with water test results, served as a basis for subsequent enquiry. After the water audit, commercially available water pinch software was utilized to identify possible water reuse opportunities, some of which were subsequently implemented on site. Finally, utilizing a laboratory-scale test rig, membrane processes such as UF, NF and RO were evaluated for their suitability to treat the various wastewater streams. The membranes tested generally showed good contaminant rejection rates, slow flux decline rates, low energy usage and were well suited for treatment of specific wastewater streams. The synergy between the various components of this strategy has the potential to reduce substantial amounts of Citywater consumption and wastewater discharge across a diverse range of large manufacturing companies. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Household Welfare, Investment in Soil and Water Conservation and Tenure Security: Evidence from Kenya

    NARCIS (Netherlands)

    Kabubo-Mariara, J.; Linderhof, V.G.M.; Kruseman, G.; Atieno, R.; Mwabu, G.

    2006-01-01

    In Kenya, conservation and sustainable utilization of the environment and natural resources form an integral part of national planning and poverty reduction efforts. However, weak environmental management practices are a major impediment to agricultural productivity growth. This study was motivated

  15. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  16. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    Science.gov (United States)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  17. The estimated impact of California’s urban water conservation mandate on electricity consumption and greenhouse gas emissions

    Science.gov (United States)

    Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.

    2018-01-01

    In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.

  18. The Neutron-Moisture Meter in Studies of the Effect of Fallow on Water Conservation in Arid Regions

    Energy Technology Data Exchange (ETDEWEB)

    Oezbek, Nurinnisa; Aksoy, Tevfik; Celebi, Gurkan [Radiophysiology and Soil Fertility Department, Faculty of Agriculture, University of Ankara, Ankara (Turkey)

    1967-11-15

    For a long time it has been a common practice for the Central Anatolian farmers to leave half the land fallow the whole year in order to increase the amount of water conserved. The main object of these studies was to ascertain whether fallow has an effect on moisture conservation in soils of this region and if so what was its degree of efficiency on a yearly basis. In view of the intensity and distribution of rainfall Ankara, Konya and Eski$ehir were selected for moisture-measurement areas. Altogether 60 holes were dug and 60 access tubes were used for moisture measurements by a neutron- moisture meter, and they were placed at six different locations on either state farms or a dry-farming experimental station. In each location the first group of access tubes were placed in fallow soil, the second in a wheat field and the third in a wheat field after harvest. Each treatment had three replicates. In all holes the moisture measurements were made at five different depths at intervals of either 15 days or one month. At the beginning of the moisture measurements a separate calibration curve was prepared for each location and for each treatment. The measurements were begun in 1964 and are continuing, but with some variations in the sampling technique. Some physical properties of the soils that were sampled from measurement areas, such as texture, field capacity and wilting point, were determined. Some bulk-density measurements were also made by gamma-ray transmission. The results obtained are averaged and illustrated in tables and figures. Necessary calculations and comparisons were made to show the efficiency of the fallow system in the moisture conservation in this dry soil. The results can be summarized as follows: (1) The total amount of water conserved in the soil down to a depth of 1.80 cm was higher in fallow soil than in the other two cases. This was true for all locations over a period of two years. (2) The amounts of water conserved by the effect of fallow

  19. Soil and water conservation on Central American hillsides: if more technologies is the answer, what is the question?

    Directory of Open Access Journals (Sweden)

    Jon Hellin

    2016-05-01

    Full Text Available Climate change is likely to lead to increased water scarcity in the coming decades and to changes in patterns of precipitation. The result will be more short-term crop failures and long-term production declines. Improved soil management is key to climate change adaptation and mitigation efforts. There is growing interest in the promotion of climate smart agricultural practices. Many of these are the same practices that were promoted in the 1980s and 1990s under the guise of soil and water conservation. Farmer non-adoption of soil conservation technologies was rife and suggests that different approaches are needed today. Much can be learnt from these past endeavors to ensure that current efforts are better designed and implemented. We use the example of Central America to highlight some of these lessons and suggest alternative ways forward. Technology per se is not the limiting factor; many suitable technologies and practices are extant. What is required is a more nuanced approach to soil conservation efforts. There is a need to focus less on capturing soil once it has been eroded, via the use of cross-slope soil conservation practices, and more on improving soil quality of the soil that remains through improved soil cover. It is also critical to understand farming systems as a whole i.e. the full range of interlinked activities and the multiplicity of goals that farm households pursue. Furthermore, it is important to engage farmers as active players in conservation efforts rather than passive adopters of technologies, and to adopt a board value chain approach and engage a plethora of value chain actors (researchers, extension agents, equipment manufacturers, input suppliers, farmers, traders, and processors in an agricultural innovation system.

  20. Smart Water Conservation System for Irrigated Landscape. ESTCP Cost and Performance Report

    Science.gov (United States)

    2016-10-01

    irrigation practices (timer based and manual watering systems) that are no longer sustainable given the limited water supplies in many U.S. locations and...Areas that have high local water costs or limited water supply options may also benefit from water harvesting. The implementation of smart ET...in potable water use. Smart ET controllers with centralized and site-specific sensor inputs, such as ET gauge, rain, soil moisture, and leak

  1. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  2. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    Science.gov (United States)

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Impacts of Soil and Water Conservation Practices on Crop Yield, Run-off, Soil Loss and Nutrient Loss in Ethiopia: Review and Synthesis.

    Science.gov (United States)

    Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun

    2017-01-01

    Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.

  4. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    Science.gov (United States)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (pconstitute a field rainwater and soil conservation improvement strategy that enhances crop and economic productivity and reduces siltation of reservoirs, especially under changing climate. The reduction in draught power requirement would enable a reduction in oxen density and crop residue demand for livestock feed, which would encourage smallholder

  5. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods - Part 1: Derivation and properties

    Science.gov (United States)

    Eldred, Christopher; Randall, David

    2017-02-01

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar characteristics: conservation laws, inertia-gravity and Rossby waves, and a (quasi-) balanced state. In order to obtain realistic simulation results, it is desirable that numerical models have discrete analogues of these properties. Two prototypical examples of such schemes are the 1981 Arakawa and Lamb (AL81) C-grid total energy and potential enstrophy conserving scheme, and the 2007 Salmon (S07) Z-grid total energy and potential enstrophy conserving scheme. Unfortunately, the AL81 scheme is restricted to logically square, orthogonal grids, and the S07 scheme is restricted to uniform square grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids and the S07 scheme to arbitrary orthogonal spherical polygonal grids in a manner that allows for both total energy and potential enstrophy conservation, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos, and others) and discrete exterior calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp, and others). Detailed results of the schemes applied to standard test cases are deferred to part 2 of this series of papers.

  6. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    Science.gov (United States)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  7. A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation.

    Science.gov (United States)

    Zhang, Hao; Luan, Qian; Huang, Qingde; Tang, Hu; Huang, Fenghong; Li, Wenlin; Wan, Chuyun; Liu, Changsheng; Xu, Jiqu; Guo, Pingmei; Zhou, Qi

    2017-02-10

    The linseed gum/cellulose composite hydrogels were successfully fabricated by mixing cellulose and linseed gum solutions dissolved in the NaOH/urea aqueous system and cross-linked with epichlorohydrin. The morphology and structure of the composite hydrogels were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD) and thermogravimetric analysis (TGA). The swelling ratio and water retention properties were investigated. The results revealed that linseed gum mainly contributed to water adsorption, whereas the cellulose acted as a backbone to strengthen the porous structure. This work provided a simple way to prepare cellulose-based superabsorbent hydrogels, which could be potentially applied as an effective water conservation material in agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. PRIORITY AREAS FOR FOREST CONSERVATION, AIMING AT THE MAINTENANCE OF WATER RESOURCES, THROUGH THE MULTICRITERIA EVALUATION1

    Directory of Open Access Journals (Sweden)

    Victor A M Silva

    2017-11-01

    Full Text Available Abstract Replacing the original land cover by other land uses, especially when it is associated with inadequate management practices, can cause changes in runoff and rainwater infiltration. This can result in above normal levels of soil erosion and sediment-carrying to the rivers and streams. The original land cover conservation in the watersheds is, therefore, essential for the maintenance of its water resources. In this context, the main objective of this study was to prioritize areas for forest conservation in two watersheds, aiming at maintaining the water availability, in terms of quantity and quality, for the public supply. The watersheds were selected considering their regional importance and because they are similar in terms of land use / land cover. The study was developed in the Multicriteria Evaluation (MCE context, which permits the integration of different landscape characteristics (i.e. factors, in order to obtain a solution for the decision-making process. The following criteria were selected by considering the expert's opinions: slope, flow accumulation, aspect, and land use / land cover. Their relative importance (i.e. factor weight was defined through the Pairwise Comparison Method. The criteria maps units were normalized by a common scale and then aggregated through an MCE method named Weighted Linear Combination (WLC. Pearson correlation was used to evaluate the criteria contribution on the final map. The watershed 1 was classified in approximately 14% of its area as very high priority; 27% as high; 19% as medium; 21% as low; and 18% as very low. The watershed 2 obtained, respectively, 17%; 29%; 17%; 21%; e 17%. We conclude that the WLC method supports the definition of priority areas for forest conservation in the watersheds, in order to have an appropriate design of actions for forest conservation.

  9. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    Science.gov (United States)

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Facilitating Transitional Processes in Rigid Institutional Regimes for Water Management and Wetland Conservation: Experience from the Guadalquivir Estuary

    Directory of Open Access Journals (Sweden)

    Pablo F. Méndez

    2012-03-01

    Full Text Available Traditional policies for water resources management and wetland conservation are often based on command-and-control approaches. The latter tend to drive the human-wetland-water system into pathological states, characterized by more vulnerable ecosystems and rigid institutions for governance. The overcoming of these states may rest in the development of flexible and adaptive institutional regimes that rely on adaptive governance and management. Because past factors might constrain the implementation of more flexible adaptive approaches to management, it is important to understand the historical mechanisms underlying the genesis of institutional rigidity. We first present the results of a historical analysis of Doñana, which can be characterized as a pathological water socio-ecosystem governed through rigid institutional regimes for water resources management and wetland conservation. In a second step, we analyze the advances achieved during a recent, large-scale restoration program for the Doñana wetlands, which adhered explicitly to the tenets of adaptive management. Our analysis indicated that the historical persistence of command-and-control approaches has been a path-dependent process that led to the emergence of a rigid institutional regime and caused it to enter a rigidity trap. However, the achievements of the restoration program suggest that a more flexible and adaptive regime could be developed through the introduction of adaptive management at the operational levels, using specifically tailored action research programs. To conclude, we speculate that the research strategy outlined could be extended to comply with, or complement, the requirements of the EU's Water Framework Directive in other European water socio-ecosystems.

  11. Native trees show conservative water use relative to invasive trees: results from a removal experiment in a Hawaiian wet forest.

    Science.gov (United States)

    Cavaleri, Molly A; Ostertag, Rebecca; Cordell, Susan; Sack, Lawren

    2014-01-01

    While the supply of freshwater is expected to decline in many regions in the coming decades, invasive plant species, often 'high water spenders', are greatly expanding their ranges worldwide. In this study, we quantified the ecohydrological differences between native and invasive trees and also the effects of woody invasive removal on plot-level water use in a heavily invaded mono-dominant lowland wet tropical forest on the Island of Hawaii. We measured transpiration rates of co-occurring native and invasive tree species with and without woody invasive removal treatments. Twenty native Metrosideros polymorpha and 10 trees each of three invasive species, Cecropia obtusifolia, Macaranga mappa and Melastoma septemnervium, were instrumented with heat-dissipation sap-flux probes in four 100 m(2) plots (two invaded, two removal) for 10 months. In the invaded plots, where both natives and invasives were present, Metrosideros had the lowest sap-flow rates per unit sapwood, but the highest sap-flow rates per whole tree, owing to its larger mean diameter than the invasive trees. Stand-level water use within the removal plots was half that of the invaded plots, even though the removal of invasives caused a small but significant increase in compensatory water use by the remaining native trees. By investigating the effects of invasive species on ecohydrology and comparing native vs. invasive physiological traits, we not only gain understanding about the functioning of invasive species, but we also highlight potential water-conservation strategies for heavily invaded mono-dominant tropical forests worldwide. Native-dominated forests free of invasive species can be conservative in overall water use, providing a strong rationale for the control of invasive species and preservation of native-dominated stands.

  12. Methods of equipment conservation of a carboelectric

    International Nuclear Information System (INIS)

    Hurtado Higuera, Julio Cesar

    2001-01-01

    Several conservation methods are mentioned like they are those of conservation in dry, in humid, conservation of bombs of water conservation, of turbines, of generators, of transformers, of electric motors and conservation of coal piles

  13. Dewetting acrylic polymer films with water/propylene carbonate/surfactant mixtures - implications for cultural heritage conservation.

    Science.gov (United States)

    Baglioni, M; Montis, C; Brandi, F; Guaragnone, T; Meazzini, I; Baglioni, P; Berti, D

    2017-09-13

    The removal of hydrophobic polymer films from surfaces is one of the top priorities of modern conservation science. Nanostructured fluids containing water, good solvents for polymers, either immiscible or partially miscible with water, and surfactants have been used in the last decade to achieve controlled removal. The dewetting of the polymer film is often an essential step to achieve efficient removal; however, the role of the surfactant throughout the process is yet to be fully understood. We report on the dewetting of a methacrylate/acrylate copolymer film induced by a ternary mixture of water, propylene carbonate (PC) and C 9-11 E 6 , a nonionic alcohol ethoxylate surfactant. The fluid microstructure was characterised through small angle X-ray scattering and the interactions between the film and water, water/PC and water/PC/C 9-11 E 6 , were monitored through confocal laser-scanning microscopy (CLSM) and analised both from a thermodynamic and a kinetic point of view. The presence of a surfactant is a prerequisite to induce dewetting of μm-thick films at room temperature, but it is not a thermodynamic driver. The amphiphile lowers the interfacial energy between the phases and favors the loss of adhesion of the polymer on glass, decreasing, in turn, the activation energy barrier, which can be overcome by the thermal fluctuations of polymer film stability, initiating the dewetting process.

  14. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  15. Behind the Lines of Stone: The Social Impact of a Soil and Water Conservation Project in the Sahel

    OpenAIRE

    Atampugre, N.

    1993-01-01

    Metadata only record The Projet Agro-Forestier (PAF) in Burkina Faso was set up by Oxfam in 1979 and by 1982 had developed into a large-scale operation involved in helping farmers to conserve, protect and develop their natural-resource potential. The use of the water tube in the construction of stone diguettes or bunds has proved effective as a means of halting soil erosion. The project has been evaluated by means of written questionnaires, but oral histories have also been taken into acco...

  16. Post-adoption behaviour of farmers towards soil and water conservation technologies of watershed management in India

    Directory of Open Access Journals (Sweden)

    Gopal Lal Bagdi

    2015-09-01

    Full Text Available The Indian Institute of Soil and Water Conservation (IISWC and its Research Centres have developed many successful model watershed projects in India in the past and implemented many Soil and Water Conservation (SWC technologies for sustainable watershed management. While many evaluation studies were conducted on these projects in the past, there has been no assessment of the post-adoption status of the SWC technologies over a longer period. It was imperative to appraise the behaviour of the farmers with regard to the continuance or discontinuance of the technologies adopted, diffusion or infusion that took place and technological gaps that occurred in due course of time in the post watershed programme. Therefore, it was realized that the post-adoption behaviour of beneficiary farmers who have adopted different soil and water conservation technologies for watershed management projects should be studied in detail. The research study was initiated in 2012 as a core project at Vasad as the lead Centre along with IISWC headquarter Dehradun, and Centres Agra, Bellary, Chandigarh, Datia, Kota & Ooty, with the specific objectives of the study to measure the extent of post-adoption behaviour (continued-adoption, discontinuance, technological gap, diffusion and infusion of farmers towards the adopted SWC technologies of watershed management. In the present study various indices regarding continued adoption, dis-adoption (discontinuance, technological gap, diffusion, infusion regarding soil and water conservation technologies for watershed management were developed for measurement of post-adoption behaviour of farmers. It was revealed that a little less than three-fourth (73% of SWC technologies continued to be adopted and more than one-fourth (27% were discontinued by farmers. Out of the total continue adopted SWC technologies by farmers, a little less than one-fifth (19% of technologies continued to be adopted with a technological gap. More than one

  17. Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations

    International Nuclear Information System (INIS)

    Hof, Bas van’t; Veldman, Arthur E.P.

    2012-01-01

    The paper explains a method by which discretizations of the continuity and momentum equations can be designed, such that they can be combined with an equation of state into a discrete energy equation. The resulting ‘MaMEC’ discretizations conserve mass, momentum as well as energy, although no explicit conservation law for the total energy is present. Essential ingredients are (i) discrete convection that leaves the discrete energy invariant, and (ii) discrete consistency between the thermodynamic terms. Of particular relevance is the way in which finite volume fluxes are related to nodal values. The method is an extension of existing methods based on skew-symmetry of discrete operators, because it allows arbitrary equations of state and a larger class of grids than earlier methods. The method is first illustrated with a one-dimensional example on a highly stretched staggered grid, in which the MaMEC method calculates qualitatively correct results and a non-skew-symmetric finite volume method becomes unstable. A further example is a two-dimensional shallow water calculation on a rectilinear grid as well as on an unstructured grid. The conservation of mass, momentum and energy is checked, and losses are found negligible up to machine accuracy.

  18. [Conservation Units.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Each of the six instructional units deals with one aspect of conservation: forests, water, rangeland, minerals (petroleum), and soil. The area of the elementary school curriculum with which each correlates is indicated. Lists of general and specific objectives are followed by suggested teaching procedures, including ideas for introducing the…

  19. No runoff, no soil loss : soil and water conservation in hedgerow barrier systems

    NARCIS (Netherlands)

    Kiepe, P.

    1995-01-01

    Land degradation by water erosion represents a serious, and fast increasing, environmental threat. Hedgerow barriers control water erosion through the presence of the tree stem and through an increase in infiltration beneath the hedgerow. The infiltration rate beneath hedgerows is 3-8 times

  20. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification

    NARCIS (Netherlands)

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y.; Liu, Junguo; Schulin, Rainer

    2018-01-01

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We

  1. Enhancing Extension Programs by Discussing Water Conservation Technology Adoption with Growers

    Science.gov (United States)

    Lamm, Alexa J.; Warner, Laura A.; Martin, Emmett T.; White, Sarah A.; Fisher, Paul

    2017-01-01

    Nursery growers are one of the largest agricultural users of water. Researchers have been developing new water treatment techniques and technologies for nursery growers to assist in preserving this precious resource, yet adoption within the industry has been limited. Extension professionals need to work closely with nursery growers to encourage…

  2. Application of remote sensing techniques for conserving scarce water resources: a case study from Pakistan

    International Nuclear Information System (INIS)

    Shakoor, A; Alam, N; Asghar, M.N.

    2005-01-01

    Pakistan, which was once a water surplus, is now a water deficit country according to Malin Falkenmark criteria. The conventional wisdom of managing canal water supplies, which usually results in over- or under-irrigation, is not sufficient to meet the challenge of water demand in future. This paper introduces the use of modem tools like Remote Sensing (RS), Geographic Information Systems (GIS) and CROPWAT to improve the management of the existing irrigation systems. This study was conducted for the Pehure High Level Canal (PHLC) and the Upper Swat Canal (USC) system in the North Western Frontier Province (NWFP) of Pakistan. Crop identification at distributary level was made from multi-temporal Remote Sensing satellite images, using various image processing techniques, such as supervised, unsupervised classification and spectral mixture analysis. Cropped areas were calculated for each individual crop from these classified images, and then crop water requirement at distributary level was estimated using CROPWAT. Assuming all other parameters of the CROPWAT model optimistic, the calculated crop area was of major concern. The supervised classification with support of unsupervised classification and ground truth information has proven to be the best option and cost-effective technique for calculating the actual cropped area. The results of this study can be used while devising guidelines for water managers to release the canal supplies based, on crop water requirement. This practice will help in avoiding wastage of canal water at farm level, which can be optimally used for increasing irrigated areas and crop productivity in the area. (author)

  3. Pearl mussels (Margaritifera marocana) in Morocco: Conservation status of the rarest bivalve in African fresh waters.

    Science.gov (United States)

    Sousa, Ronaldo; Varandas, Simone; Teixeira, Amílcar; Ghamizi, Mohamed; Froufe, Elsa; Lopes-Lima, Manuel

    2016-03-15

    Margaritifera marocana is one of the rarest freshwater mussel species (listed as critically endangered), and is endemic to Morocco. Despite its constrained distribution and low abundance, to date there are no quantitative studies addressing the conservation status of this species. Surveys were conducted in 36 sites along the Oum Er Rbia river basin (Rivers Derna, Laabid and Oum Er Rbia) to assess the distribution, abundance, population structure and genetic diversity of M. marocana. Just one specimen was found on River Oum Er Rbia and none on River Derna; however, a high abundance was found in the lower section of River Laabid (e.g., site Laabid 6 reached a mean density of 11.0 ± 6.8 ind.m(-2)). Contrary to earlier information, which reported an overall population size fewer than 250 individuals in a restricted area and no juvenile presence, this study showed that a much higher abundance exists in River Laabid alone. In addition, the species is present in more than 50 km of this river and is still recruiting since small specimens were found. Regarding genetic diversity, six of nine loci previously used in Margaritifera margaritifera were polymorphic and suitable in M. marocana. The spatial range contraction of this species is likely to be very recent, since no strong signature was detected by the molecular diversity indices. Information gathered in this study can be used as a reference to the present conservation status of M. marocana, and guide future research and management initiatives to better conserve it. We conclude discussing the potential major threats for the future survival of M. marocana and suggest some management measures (and research needs) that should be urgently applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Increased salt consumption induces body water conservation and decreases fluid intake.

    Science.gov (United States)

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  5. Modelling the dispersion of non-conservative radionuclides in tidal waters. Pt. 1: Conceptual and mathematical model

    International Nuclear Information System (INIS)

    Perianez, R.; Abril, J.M.; Garcia-Leon, M.

    1996-01-01

    A 2D four-phase model to study the dispersion of non-conservative radionuclides in tidal waters, in conditions of disequilibrium for ionic exchanges, has been developed. At disequilibrium conditions, ionic exchanges cannot be formulated using distribution coefficients k d . Thus, kinetic transfer coefficients have been used. The model includes ionic exchanges among water and the solid phases (suspended matter and two grain size fractions of sediments), the deposition and resuspension of suspended matter and advective plus diffusive transport. In the second part of this work, which is presented in a separate paper, the model is applied to simulate 226 Ra dispersion, discharged from a fertilizer processing plant, in an estuarine system in the south-west of Spain. (Author)

  6. Performance evaluation of an integrated solar water heater as an option for building energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Dharuman, C.; Arakeri, J.H.; Srinivasan, K. [Indian Inst. of Science, Bangalaore (India). Dept. of Mechanical Engineering

    2006-03-15

    Since a majority of residential and industrial building hot water needs are around 50 {sup o}C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m{sup 2} and can hold 170 l of water, of which extractable volume per day is 100 l. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 100 l of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 {sup o}C, the next morning temperatures were lower at 45-50 {sup o}C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation. (author)

  7. Smart Metering and Water End-Use Data: Conservation Benefits and Privacy Risks

    Directory of Open Access Journals (Sweden)

    Damien P. Giurco

    2010-08-01

    Full Text Available Smart metering technology for residential buildings is being trialed and rolled out by water utilities to assist with improved urban water management in a future affected by climate change. The technology can provide near real-time monitoring of where water is used in the home, disaggregated by end-use (shower, toilet, clothes washing, garden irrigation, etc.. This paper explores questions regarding the degree of information detail required to assist utilities in targeting demand management programs and informing customers of their usage patterns, whilst ensuring privacy concerns of residents are upheld.

  8. A major challenge for modeling conservation-based water use reductions in aquifers supporting irrigated agriculture: The specific yield quandary

    Science.gov (United States)

    Butler, J. J., Jr.; Whittemore, D. O.; Wilson, B. B.; Bohling, G.

    2017-12-01

    Many large regional aquifers supporting irrigated agriculture are experiencing high rates of water-level decline. The primary means of moderating these rates is to reduce pumping. The key question is what percent pumping reduction will significantly impact decline rates. We have recently developed a water-balance approach to address this question for subareas (100s to 1000s km2 in size) of seasonally pumped aquifers (Butler et al., GRL, 2016). This approach also provides an estimate of specific yield (Sy), which has been difficult to estimate from field data at the scale of modeling analyses. When applied to subareas of the High Plains aquifer in Kansas, this approach reveals that the Sy estimate is much lower (as much as a factor of five or more) than expected for an unconsolidated aquifer. One explanation is that the aquifer is heterogeneous with considerable amounts of fine material, whereas field data, such as drillers' logs, are often biased towards coarser intervals. An additional explanation, which appears to have received little attention, is the impact of entrapped air. In seasonally pumped systems, water levels pass through the same aquifer intervals multiple times, giving ample opportunity for air to be entrapped. This entrapped air imbues the aquifer with a specific yield that is considerably lower than what would be expected from lithology. If unrecognized, a larger-than-actual Sy value is input into the aquifer model. This can lead to the inadvertent use of the same-year recharge assumption, which may not be appropriate for many conditions (e.g., large depths to water), and can also result in artificially low estimates of net inflow for a depleting aquifer. Moreover, failure to recognize this condition can bedevil efforts to model conservation-based water use reductions. In that case, models will leave the range of conditions for which they have been calibrated and can become more vulnerable to parameter errors. Conservation-based water use reductions

  9. Impact of watercourse lining on water conservation in the gadeji minor command, sindh pakistan

    International Nuclear Information System (INIS)

    Solangi, G.S.; Panhawar, S.; Katbar, N.M.; Khokhar, J.I.

    2018-01-01

    Looming water scarcity could be curtailed with intelligent water losses control. Present study was designed to assess the relative effect of watercourse lining in prospect of seepage minimization. Qualitative as well as quantitative analysis was undertaken using water conveyance efficiency, annual water saving, increase in cropping intensities, time and land saving along with labor saving indictors over Gadeji minor in Sindh, Pakistan. Primary data was collected from field measurements while secondary data was gathered from NPIW (National Program for Improvement of Watercourses), Irrigation Department, personal interviews and site survey. The analysis revealed that lining of 30 percent initial portion of watercourses resulted average annual water saving of 10.32 hectare-m. Similarly, the cropping intensity increased 15% in Rabi and 14 percent in Kharif seasons. Crop yield increased by 17 percent for wheat crop, 14% for cottoncrop, 12 percent for sugarcane, 17 percent for chilies, 11% for onion crop and 20% for rice crop after lining the selected watercourses. Thus, it is concluded that watercourse lining has noticeable effect for seepage control which yielded a significant water saving. In future, economic viability of watercourse lining may be assessed for obtaining optimum benefits. (author)

  10. Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

    Directory of Open Access Journals (Sweden)

    Clemente García Cutillas

    2017-03-01

    Full Text Available The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

  11. Impact of Watercourse Lining on Water Conservation in the Gadeji Minor Command, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Ghulam Shabir Solangi

    2018-01-01

    Full Text Available Looming water scarcity could be curtailed with intelligent water losses control. Present study was designed to assess the relative effect of watercourse lining in prospect of seepage minimization. Qualitative as well as quantitative analysis was undertaken using water conveyance efficiency, annual water saving, increase in cropping intensities, time and land saving along with labor saving indictors over Gadeji minor in Sindh, Pakistan. Primary data was collected from field measurements while secondary data was gathered from NPIW (National Program for Improvement of Watercourses, Irrigation Department, personal interviews and site survey. The analysis revealed that lining of 30% initial portion of watercourses resulted average annual water saving of 10.32 hectare-m. Similarly, the cropping intensity increased 15% in Rabi and 14% in Kharif seasons. Crop yield increased by 17% for wheat crop, 14% for cottoncrop, 12% for sugarcane, 17% for chilies, 11% for onion crop and 20% for rice crop after lining the selected watercourses. Thus, it is concluded that watercourse lining has noticeable effect for seepage control which yielded a significant water saving. In future, economic viability of watercourse lining may be assessed for obtaining optimum benefits.

  12. A Sensitivity Analysis of Impacts of Conservation Practices on Water Quality in L’Anguille River Watershed, Arkansas

    Directory of Open Access Journals (Sweden)

    Gurdeep Singh

    2018-04-01

    Full Text Available Assessing the performance of appropriate agricultural conservation practices (CPs frequently relies on the use of simulation models as a cost-effective tool instead of depending solely on the monitoring of water quality at individual field and watershed levels. This study evaluates the predicted impacts of several CPs on nutrient and sediment loss at the hydrological response unit scale in the L’Anguille River Watershed, which is a watershed identified as a “focus watershed” under the Mississippi River Basin healthy watershed Initiative (MRBI program. The Soil and Water Assessment Tool model was calibrated and validated between 1998–2005 and 2006–2012, respectively for flow, sediment, total phosphorus, and nitrate nitrogen. Out of the seven MRBI CPs modeled in this study, the highest reduction in sediment (80% and nutrient (58% for total phosphorus and 16% for total nitrogen was predicted for the critical area planting practice, followed by filter strip, irrigation land leveling, grade stabilization structure, irrigation pipeline, nutrient management, and irrigation water management. Some of the predicted impacts conflicted with expected CP performance. The study underscores the importance of the proper formulation of CP algorithms in using simulation models for predicting impacts on water quality.

  13. Main issues in research and practice of environmental protection for water conservancy and hydropower projects in China

    Directory of Open Access Journals (Sweden)

    Ang Chen

    2016-10-01

    Full Text Available In this paper, we generally summarize the main issues in the operational period of water conservancy and hydropower projects in China over the past several decades. First, the adverse impacts of these projects since the technical guidelines were proposed in 2006 are analyzed. Then, combined with projects and experience from 2006 to 2014, the four main issues are summarized: (1 There exist many questions in the design and construction of fishways, which are useful for fish migration, and the migration effects are not as expected. (2 Temperature stratification affecting the downstream fish is the major impact of temperature, and alters fish spawning in the reproduction season. (3 Ecological base flow has been one of the primary questions of the last 30 years in China, the greatest related difficulty being quantification of the amount and flow process necessary to satisfy fish life history. (4 Fish habitat protection and restoration are popular topics in recent years with the development of river ecosystem restoration. Fish habitat loss due to the impacts of dam construction and habitat fragmentation has become more and more serious. These four issues are now the main difficulties in water project management, and interact with one another to bear combined effects on river ecosystems. The issues of eco-hydraulic consideration in the design period are the key factors. Finally, future priorities for research and practice of environmental protection for water conservancy and hydropower projects in China are proposed. The main purpose of this paper is to enhance the scientific research, monitoring, and assessment of operating effectiveness.

  14. Study on the Strategies for the Soil and Water Resource Con-servation of Slopeland in Taiwan in Response to the Extreme Climate

    Science.gov (United States)

    Huang, Wen-Cheng

    2014-05-01

    Global climate change results in extreme weather, especially ex-treme precipitation in Taiwan. Though the total amount of precipi-tation remains unchanged, the frequency of rainfall return period increases which affects slopeland and causes sediment disaster. In Taiwan, slopeland occupies about 73% of national territory. Under harsh environmental stress, soil and water conservation of slope-land becomes more important. In response to the trends of global-ization impacts of climate change, long term strategic planning be-comes more necessary. This study reviewed international practices and decision making process about soil and water conservation of slopeland; and conducted the compilation and analysis of water and soil conservation related research projects in Taiwan within the past five years. It is necessary for Taiwan to design timely adaptive strategies about conducting the all-inclusive conservation of na-tional territory, management and business operation of watershed based on the existing regulation with the effects of extreme weather induced by climate change and the changes of social-economic en-vironments. In order to realize the policy vision of "Under the premise of multiple uses, operating the sustainable business and management of the water and soil resources in the watershed through territorial planning in response to the climate and so-cial-economic environment change". This study concluded the future tasks for soil and water con-servation: 1.Design and timely amend strategies for soil and wand water conservation in response to extreme weather. 2. Strengthen the planning and operating of the land management and integrated conservation of the water and soil resources of key watershed. 3. Manage and operate the prevention of debris flow disaster and large-scale landslide. 4. Formulate polices, related regulations and assessment indicators of soil and water conservation. 5. Maintain the biodiversity of the slopeland and reduce the ecological footprint

  15. Understanding Farmers: Explaining Soil and Water Conservation in Konso, Wolaita and Wello, Ethiopia

    NARCIS (Netherlands)

    Beshah, T.

    2003-01-01

    Soil erosion by water is an old problem in Ethiopia. The prevalence of mountainous and undulating landscapes, coupled with the expansion of arable farming on steep areas due to population pressure have aggravated the soil erosion problem in the country. Prompted by one of the great famines in the

  16. Utilization of air conditioner condenser as water heater in an effort to energy conservation

    Science.gov (United States)

    Sonawan, Hery; Saputro, Panji; Kurniawan, Iden Muhtar

    2018-04-01

    This paper presents an experimental study of utilization of air conditioner condenser as water heater. Modification of existing air conditioner system is an effort to harvest waste heat energy from condenser. Modification is conducted in order to test the system into two mode tests, first mode with one condenser and second mode with two condensers. Harvesting the waste heat from condenser needs a theoretical and practice study to see how much the AC performance changes if modifications are made. It should also be considered how the technique of harvesting waste heat for water heating purposes. From the problem, this paper presents a comparison between AC performance before and after modification. From the experiment, an increase in compressor power consumption is 4.3% after adding a new condenser. The hot water temperature is attained to 69 °C and ready for warm bath. The increase in power consumption is not too significant compared to the attainable hot water temperature. Also seen that the value of condenser Performance Factor increase from 5.8 to 6.25 or by 7.8%.

  17. Drought Resilience and Water Conservation - Agency-Wide Actions and Research

    Science.gov (United States)

    In many areas of the United States, the frequency and duration of drought events are increasing. This pattern is expected to continue and to shift outside of historical trends, making forecasting our water quality and supply more difficult. EPA is conducting research and working ...

  18. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  19. Determination of carbonyl compounds (acetaldehyde and formaldehyde in polyethylene terephthalate containers designated for water conservation

    Directory of Open Access Journals (Sweden)

    Redžepović Azra S.

    2012-01-01

    Full Text Available Polyethylene terephthalate (PET has in the last several years become the main packaging material for many food products, particularly carbonated beverages and bottled water, as well as for products of chemical industry (packaging of various hygiene maintenance agents, pesticides, solvents, etc.. The strength and permeability properties of PET are very good for packaging of beverages, its resistance to chemicals is high and it has a high degree of transparency. Acetaldehyde and formaldehyde are formed during the thermoforming of PET containers. After cooling, acetaldehyde and formaldehyde remain trapped in the walls of a PET bottle and may migrate into the water after filling and storage. Since there are no migration tests in Serbia prescribed for the determination of acetaldehyde and formaldehyde, the purpose of the paper is to test the quantitative contents of carbonyl compounds (acetaldehyde and formaldehyde in PET containers of different volumes, made by various manufacturers of bottled mineral carbonated and noncarbonated water, and exposed to different temperatures. In this study, the migration of acetaldehyde and formaldehyde from PET bottles into mineral carbonated and noncarbonated water was determined by high performance liquid chromatography. Taking into consideration that formaldehyde and acetaldehyde have no UV active or fluorescent group, the chromatography shall be preceded by derivatization in a closed system (due to a low boiling point of acetaldehyde and formaldehyde, which shall transform carbonyl compounds into UV active compounds.

  20. Accès Eau: Enhanced Water Access for Bio-diversity Conservation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Mahafaly Plateau in southwestern Madagascar has a high rate of poverty and some of the lowest rainfall in the country. Over the last 40 years, the central and eastern parts of the plateau have experienced increasing variability in precipitation and longer dry spells. Due to water scarcity, people living here are forced to ...

  1. Tillage for soil and water conservation in the semi-arid Tropics

    NARCIS (Netherlands)

    Hoogmoed, W.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In

  2. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation

    Science.gov (United States)

    Gilby, Ben L.; Olds, Andrew D.; Connolly, Rod M.; Yabsley, Nicholas A.; Maxwell, Paul S.; Tibbetts, Ian R.; Schoeman, David S.; Schlacher, Thomas A.

    2017-12-01

    Species surrogates, the use of particular species to index habitat condition or to represent ecological assemblages are commonly identified in many ecosystems, but are less tested, and therefore less employed in estuaries. Estuaries provide important ecosystem goods (e.g. harvestable species) and services (e.g. carbon processing, coastal armouring), but require protection from multiple human activities, meaning that finding surrogates for estuarine condition or faunal assemblages is a significant knowledge gap. In this study, we test the efficacy of the threatened estuary ray Hemitrygon fluviorum, as a suitable indicator of ecosystem condition and management umbrella surrogate species for conservation prioritisation and monitoring purposes within estuaries. We surveyed fish assemblages and ray presence at ten sites within each of 22 estuaries in southeast Queensland, Australia, using one hour deployments of baited video arrays. We then tested for correlations between ray presence, a series of environmental variables considered important to ecosystem management within estuaries (i.e. testing rays as indicator species), and the co-occurring fish species (i.e. testing rays as umbrella species). Estuary rays function as both umbrella species and ecological indicators of habitat status in subtropical Australian estuaries. As umbrellas, ray occurrence concords with elevated species richness. As ecological indicators, ray distribution concords with habitats of good water quality (especially low turbidity) and more natural vegetation remaining in the catchment. These results highlight the potential for other threatened aquatic vertebrates that are both readily detectable and that are reliable proxies for ecosystems status to be become useful management tools in estuaries. The protection of such large, threatened species in coastal seascapes allows managers to address multiple targets for conservation, especially; (1) protecting species of conservation concern; (2

  3. BIOLOGICAL WATER QUALITY ASSESSMENT OF THE WHITECLAWED CRAYFISH HABITAT BASED ON MACROINVERTEBRATE COMMUNITIES: USEFULNESS FOR ITS CONSERVATION

    Directory of Open Access Journals (Sweden)

    GRANDJEAN F.

    2003-04-01

    Full Text Available A survey of the macroinvertebrates of three brooks harbouring the white-clawed crayfish was conducted in Haute-Vienne department (France. Its aim was to increase our understanding of these ecosystems to help the conservation of A. pallipes. These brooks run through pastoral areas with well-developed riparian vegetation, which offers an important shade. Water temperature, dissolved oxygen concentration, pH, and conductivity fell within the ranges found for this species. A total of 34, 31, 29 taxa and 1 502, 1 364, 2 707 individuals of macrobenthos were collected in Holme, Besque and Bellecombe streams, respectively. Results showed good to very good water quality with IBGN scores ranging from 15 (Bellecombe to 17 (Holme and Besque, reflecting a limited impact of the anthropogenic disturbances. Taxa diversity were high for Holme and Besque with Shannon index around 3.2, translating a great heterogeneity of habitat and an equilibrated faunal community. Bellecombe showed a limited diversity with Shannon index of 1.42, resulting from the presence of numberous Chironomidae. This brook suffers probably weak organic pollution which could be related to the low water flow observed during the sampling. The similarity test according to Jaccard index showed high percentage of common taxa among ETP (Ephemeroptera-Trichoptera-Plecoptera between all sites. The high similarity of benthic macroinvertebrate communities could be an useful criteria to identify brooks for restocking purpose.

  4. Demands for the generation of biogas from the view of the water conservation; Anforderungen an die Biogaserzeugung aus Sicht des Gewaesserschutzes

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Joachim [DVGW-Technologiezentrum Wasser (TZW), Karlsruhe (Germany). Abt. Grundwasser und Boden

    2012-05-15

    Especially in drinking water capture area with agricultural utilization, many points of contact of the drinking water production with bioenergy production result. The resulting potential for conflict should be reduced before a possible further expansion of power generation from biomass. From this perspective, the author of the contribution under consideration reports on the requirements for the production of biogas from the perspective of water conservation.

  5. Elements of vilnius' infrastructure (lighting and water supply system): aspects of cultural heritage conservation

    OpenAIRE

    Kecoriūtė, Eglė

    2008-01-01

    In 2009 Vilnius is publicized as European Cultural capital. It means that our country lives an active cultural life. It’s like a present to us symbolizing that Lithuanians understand their history, culture and heritage; that they know how to save and use it for esthetical, financial, cultural or other purposes. Object of this work – technical heritage, specifically street lighting and water supply equipment in Vilnius. This is a range of small technical heritage directly related with domestic...

  6. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  7. New Comparative Experiments of Different Soil Types for Farmland Water Conservation in Arid Regions

    Directory of Open Access Journals (Sweden)

    Yiben Cheng

    2018-03-01

    Full Text Available Irrigated farmland is the main food source of desert areas, and moisture is the main limiting factor of desert farmland crop productivity. Study on the influence of irrigation on desert farmland soil moisture can guide the agricultural water resource utilization and agricultural production in those regions. At present, the efficiency of irrigation water usage in Northwest China is as low as approximately 40% of the irrigated water. To understand the response of farmland soil moisture in different soil types on irrigation in the Ulan Buh Desert of Inner Mongolia of China, this experimental study takes advantage of different infiltration characteristics and hydraulic conductivities of sand, clay, and loam to determine an optimized soil combination scheme with the purpose of establishing a hydraulic barrier that reduces infiltration. This study includes three comparative experiments with each consisting of a 100 cm thick of filled sand, or clay, or loam soil underneath a 50 cm plough soil, with a total thickness of 150 cm soil profile. A new type of lysimeter is installed below the above-mentioned 150 cm soil profile to continuously measure deep soil recharge (DSR, and the ECH2O-5 soil moisture sensors are installed at different depths over the 150 cm soil profile to simultaneously monitor the soil moisture above the lysimeter. The study analyzes the characteristics of soil moisture dynamics, the irrigation-related recharge on soil moisture, and the DSR characteristics before and after irrigation, during the early sowing period from 2 April to 2 May 2017. Research results show that: (1 Irrigation significantly influences the soil moisture of 0–150 cm depths. The soil moisture increase after the irrigation follows the order from high to low when it is in the order of loam, sand, and clay. (2 Irrigation-induced soil moisture recharge occurs on all three soil combinations at 0–150 cm layers, and the order of soil moisture recharge from high to low

  8. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    Science.gov (United States)

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato.

  9. Assessment of Sustainable Use of Coastal Resources of Regional Waters Conservation Area Biak Numfor Regency, Papua Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sutaman Sutaman

    2017-06-01

    Full Text Available Efforts to exploit fish resources optimally, continuous and sustainable is an urgent demand for the greatest prosperity of the people, especially to improve the welfare of fishermen and fish farmers. The level of sustainable use of coastal resources in water conservation is very important, so that the utilization does not exceed the carrying capacity of the environment. The purpose of this study was to determine the level of sustainable use of coastal resources Biak Numfor, associated with the utilization of fisheries, aquaculture and tourism. The study was conducted in June to December 2015 and October to November 2016. The primary data obtained by interview and direct discussion through Focus Group Disscution (FGD with fishermen community, tourist and tourist entrepreneurs as well as related officials in the Office of Fisheries and Marine Affairs, and Tourism Office of Biak Numfor Regency. Methods of data analysis approach sustainability analysis conducted by the method of MDS (Multi-Dimensional Scaling with the help of software Rapfish. Based on the survey results revealed that the value of fisheries ordinated to achieve 57.66%, 44.80% aquaculture, and tourism 46.25%. With these achievements ordinated value, it can be concluded that the use of sustainable capture fisheries are still classified by the lever sustainability attributes include; the type of fishing gear, vessel types used and the catch per unit effort (CPUE. Meanwhile the relatively less sustainable aquaculture with the sustainability lever attributes include; cultivation technology, the number of business units with different types and species of fish. For tourism utilization is still considered less sustainable with levers sustainability attributes include the number of tourists, the type and number of amenities and facilities and infrastructure   Keywords: Sustainability, utilization, waters conservation area (KKPD, MDS-Rapfish

  10. Computation and Analysis of High Rocky Slope Safety in a Water Conservancy Project

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2015-01-01

    Full Text Available An integrated method, covering the actual monitoring analysis, practical geological model, and theoretical mathematical simulation model, is systematically proposed and successfully applied. Deformation characteristic of a unique high rocky slope was firstly analyzed from multiple angles and multiple layers by changeable elevations and distances. Arrangements of monitoring points were listed and monitoring equipment was designed to comprise a complete monitoring system. Present larger displacement was concluded for bottom larger displacement caused by water erosion and middle larger displacement formed by seepage. Temporal and spatial displacements rule study of multiple-points linkage effects with water factor proved this conclusion. To better excavate useful message and analyze the deep rule from the practical monitoring data, the slope geological model was conducted and rock mechanic parameters were researched. Finally, a unique three-dimensional finite element model was applied to approach the structure character using numerical simulations. The corresponding strength criterion was used to determine the safety coefficient by selecting a typical section. Subsequently, an integrated three-dimensional finite element model of the slope and dam was developed and more detailed deformation evolution mechanism was revealed. This study is expected to provide a powerful and systematic method to analyze very high, important, and dangerous slopes.

  11. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications.

    Science.gov (United States)

    Perissinotto, Renzo; Bird, Matthew S; Bilton, David T

    2016-01-01

    Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this biodiverse

  12. Soil erosion, fertility and water conservation factors in agricultural activities in Kenya: A look at problems and efforts being made to solve them using radioisotope techniques

    International Nuclear Information System (INIS)

    Gitonga, J.

    1980-01-01

    Inadequate nutrient supply is the major factor limiting production in the adequately rainfed region of Kenya around Lake Victoria. Phosphorus is particularly deficient and its availability difficult to determine. Soil P availability and optimum fertilizer P placement is being determined with 32 P. Serious soil erosion problems have been reduced by establishing tea on the steep slopes. The uneven rainfall distribution on the lowlands results in serious soil and water conservation problems. Residue management and terracing have provided erosion protection. Neutron probes have been used to measure water conservation. Stress tolerant crops such as an early maturing maize have proven useful. The role of International Organizations in supporting the research activities is acknowledged

  13. Energy conservation measures adopted in heavy water plants (Paper No. 1.8)

    International Nuclear Information System (INIS)

    Sundaresan, S.; Lakshmanan, S.

    1992-01-01

    Energy use can be significantly reduced in the process plants by systematically reviewing the original design and operating practices. While designing a chemical process plant, sometimes the designers go for high margin in certain areas anticipating to suit process conditions which finally result in wastage of energy if those conditions are not realised in the actual operation of the plant. Similarly some of the operating practices evolved since commissioning, might be resulting in uneconomical use of energy when they are not checked by the regular review of the operating practices. This paper deals with the various efforts made by Heavy Water Plant, Tuticorin, in identifying the potential energy losses and steps taken to minimise them, which not only resulted in substantial energy savings but also helped in debottle-necking of the plant. (author)

  14. Large-scale soil conservation measures contribute to water insecurity in NW China

    Science.gov (United States)

    Zhang, Lulu; Feger, Karl-Heinz; Schwärzel, Kai

    2014-05-01

    The Loess Plateau of NW China is one of the most degraded environments worldwide with an annual soil loss rate of ~20,000 t/km². To improve the situation, a national policy against erosion has been implemented in this region since 1950s. This policy includes biological (tree and grass plantation) and engineering (terrace and check-dam construction) measures. However, subject to enormous alteration in land cover / form, an undesired drastic reduction of runoff has appeared hampering economic growth, agricultural production and thus threatening social stability. As a consequence, adaptive innovative management strategies are necessary for mitigating water use conflicts and ensuring regional sustainable development. For successful implementation of such strategies, an improved understanding and quantification of hydrological response to land use and climate change across different scales is essential. For this purpose, the hydrological response to different land cover / form and climate change in the past 50 years was analyzed in small and medium-scale catchments using the upstream of Jing River (Gansu province) as a case. It appears that the driving factors of runoff reduction at different scales are different in terms of land use and climate change. Our study gave evidence that in a small catchment (19 km²), land cover / form change and precipitation variability are the major factors reducing runoff. After separating their contribution, we found that land use change was responsible for 74% of runoff decline while decreased precipitation accounted for 26%. Surprisingly, the annual runoff exhibits a good correlation with precipitation and the percentage area of various land use. Notably, with increasing catchment size the impact of land use on runoff attenuates, while the role of climate ascends. In addition to land use and precipitation, energy supply (evaporative demand of the atmosphere) becomes another dominant climatic factor affecting runoff on the larger

  15. DISTRIBUTION, RECENT MORTALITIES AND CONSERVATION MEASURES OF CRAYFISH IN HELLENIC FRESH WATERS

    Directory of Open Access Journals (Sweden)

    KOUTRAKIS E.

    2007-04-01

    Full Text Available Freshwater crayfish are found in 20 out of 53 Prefectures of Greece (38% and they form isolated populations in relatively pristine water bodies. Three indigenous crayfish species (ICS occur in Greek waters: Astacus astacus, Astacus leptodactylus and Austropotamobius torrentium, as well as one non-indigenous crayfish species (NICS Pacifastacus leniusculus. Greece represents probably the most southern natural distribution limit for A. astacus and A. torrentium in the world. Concerning NICS, P. leniusculus was imported, at least in two cases, from Sweden and Germany during the early and late 1980’s respectively, in order to replace A. astacus stocks impoverished by human activities. Recently, Cherax quadricarinatus specimens have been seen in a restaurant’s aquarium and pet shop, raising fears about uncontrolled imports of alien pet species. During our 2004-2005 survey, we found that P. leniusculus established not only a thriving population in the artificial Lake Agra (Region of Central Macedonia, but also they co-occur with A. torrentium there. It is also suspected that A. astacus may co-occur there with these two species, as three large male specimens of A. astacus were caught in a creek close to the lake. Concerning A. leptodactylus, there are three sets of preserved samples from the River Evros (state border with Turkey in Thrace today, dated back to the 19th century, but no recent information about occurrence was available. But the accidental catch of six specimens of A. leptodactylus during May 2005 in that river re-documented the occurrence of the species. Finally, a deep-dwelling A. torrentium population with bluish legs was found to live in depths up to 7,800 meters inside the Aggitis Cave in northeastern Greece. There is a lot of work to be done on geographic distribution, population dynamics, genetics, reproduction, nutrition, diseases, and farming of crayfish species in Greece. Moreover, several actions should be undertaken to

  16. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    Science.gov (United States)

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    The effectiveness of agricultural conservation programmes to adequately reduce nutrient exports to receiving streams and to help limit downstream hypoxia issues remains a concern. Quantifying programme success can be difficult given that short-term basin changes may be masked by long-term water-quality shifts. We evaluated nutrient export at stream sites in the 44 months that followed a period of increased, integrated conservation implementation within the Lower Grand River Basin. These short-term responses were then compared with export that occurred in the main stem and adjacent rivers in northern Missouri over a 22-year period to better contextualize any recent changes. Results indicate that short-term (October 2010 through May 2014) total nitrogen (TN) concentrations in the Grand River were 20% less than the long-term average, and total phosphorus (TP) concentrations were 23% less. Nutrient reductions in the short term were primarily the result of the less-than-average precipitation and, consequently, streamflow that was 36% below normal. Therefore, nutrient concentrations measured in tributary streams were likely less than normal during the implementation period. Northern Missouri streamflow-normalized TN concentrations remained relatively flat or declined over the period 1991 through 2013 likely because available sources of nitrogen, determined as the sum of commercial fertilizers, available animal manures and atmospheric inputs, were typically less than crop requirement for much of that time frame. Conversely, flow-normalized stream TP concentrations increased over the past 22 years in northern Missouri streams, likely in response to many years of phosphorus inputs in excess of crop requirements. Stream nutrient changes were most pronounced during periods that coincided with the major tillage, planting and growth phases of row crops and increased streamflow. Nutrient reduction strategies targeted at the period February through June would likely have the

  17. Understanding farmers' intention and behavior regarding water conservation in the Middle-East and North Africa: a case study in Iran.

    Science.gov (United States)

    Yazdanpanah, Masoud; Hayati, Dariush; Hochrainer-Stigler, Stefan; Zamani, Gholam Hosein

    2014-03-15

    There is a high risk of serious water shortages in Middle-East and North African countries. To decrease this threat water conservation strategies are gaining overall importance and one main focus is now on farmer's behavior. Among other dimensions it is assumed that normative issues play an important role in predicting environmental oriented intentions and actual actions. To empirically test the possible interactions the Theory of Planned Behavior was used, revised and expanded for the specific case on water management issues and applied to Iranian farmers. The results could not validate the TPB framework which emphasizes the importance of perceived behavioral control for intention and actual behavior and findings are much more in line with the Theory of Reasoned Action. Normative inclinations as well as perception of risk are found to be important for intention as well as actual water conservation behavior. Additionally, the importance and linkages of the dimensions are found to be different between sub-groups of farmers, especially between traditional water management farmers and those who already using advanced water management strategies. This raises the question if one-fits-all behavioral models are adequate for practical studies where sub-groups may very much differ in their actions. Still, our study suggests that in the context of water conservation, normative inclination is a key dimension and it may be useful to consider the role of positive, self-rewarding feelings for farmers when setting up policy measures in the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Anthropogenic impact in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea): Observations and conservation straits

    Science.gov (United States)

    D'Onghia, G.; Calculli, C.; Capezzuto, F.; Carlucci, R.; Carluccio, A.; Grehan, A.; Indennidate, A.; Maiorano, P.; Mastrototaro, F.; Pollice, A.; Russo, T.; Savini, A.; Sion, L.; Tursi, A.

    2017-11-01

    The Santa Maria di Leuca (SML) cold-water coral (CWC) province is a proposed priority conservation area according to several conservation initiatives in the Mediterranean Sea. Part of it is a Fisheries Restricted Area (FRA). Anthropogenic impacts due to fishing on this FRA were investigated using a towed camera system during 2005. The geographic distribution of fishing effort in the SML CWC province was examined through an observers' program of longline and trawl fishing activities during 2009 and 2010 and Vessel Monitoring by satellite System (VMS) data from 2008 to 2013. Using the video system, it was possible to observe evidence of impacts in the FRA due to longlines, proved by remains of lines on the bottoms and/or entangled in corals, and those due to trawl nets, proved by trawl door scars on the bottom. The application of Generalized Liner Models indicates that the impacts due to longline were significantly related to a geographic site characterized by carbonate mounds while those from trawl net were significantly related to the soft bottoms, consisting of bioturbated fine-grained sediments. The presence of waste of various types was also observed in the FRA; plastic was the most widespread waste and was significantly related to a macrohabitat characterized by the presence of corals. The geographic distribution of fishing effort for each type of fishing were rather superimposed in the two years of the observers' program and six years of VMS data with a significantly greater fishing effort outside the FRA than inside this area. The trawlers generally fished on the muddy bottoms of the upper and middle slope within the SML CWC province and near and inside the northward limit of the FRA. The longliners fished mainly on the shelf in north and off the FRA. The coral by-catch was only recorded during 2009 in 26% of the trawl hauls. No coral by-catch was recorded from longlining in either year. The catches from longlining mainly consisted of Chelidonichthys lucerna

  19. Optimal capacity design of LID facility for conserving natural water cycle and its sensitivity analysis

    Science.gov (United States)

    Lee, O.; Choi, J.; Lee, J.; Kim, S.

    2017-12-01

    Since the 20th century, urbanization has resulted in increased impermeable land surface and reduced infiltration capacity in catchment scale. Especially, when agriculture area or forest area would be developed into urban area, it can cause more runoff in the same climate condition. Such urbanization causes problems such as changes in hydrological cycle and ecosystem disturbance. Various methods have been proposed worldwide to reduce the impact of such urbanization. Among the various strategies, the low-impact development is a development strategy that aims to return to pre-development state by minimizing the change of the hydrological cycle due to urbanization. In this strategy, the infiltration and/or surface storage of stormwater runoff can be increased through the installation of various facilities. In this study, a facility capacity design strategy is proposed to return into the natural water cycle through the installation of various LID facilities. This is accomplished by determining the optimal LID facility design capacity through which flow duration curves remain the same before and after urban development. For this purpose, EPA-SWMM is constructed with a part of Busan Metropolitan City Noksan Industrial Complex as a virtual processing area. Under the various land-use scenarios, the optimum design capacity of various LID facilities capable of retaining the flow duration curve before and after development is determined. In addition, the sensitivity of the optimal design capacity of LID facilities is analyzed according to the design specifications of various LID facilities, the local rainfall characteristics, and the size of the treatment area. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  20. Satellite tagging highlights the importance of productive Mozambican coastal waters to the ecology and conservation of whale sharks

    Science.gov (United States)

    Richardson, Anthony J.; Jaine, Fabrice R. A.; Bennett, Michael B.; Weeks, Scarla J.; Cliff, Geremy; Robinson, David P.; Reeve-Arnold, Katie E.; Pierce, Simon J.

    2018-01-01

    The whale shark Rhincodon typus is an endangered, highly migratory species with a wide, albeit patchy, distribution through tropical oceans. Ten aerial survey flights along the southern Mozambican coast, conducted between 2004–2008, documented a relatively high density of whale sharks along a 200 km stretch of the Inhambane Province, with a pronounced hotspot adjacent to Praia do Tofo. To examine the residency and movement of whale sharks in coastal areas around Praia do Tofo, where they may be more susceptible to gill net entanglement, we tagged 15 juveniles with SPOT5 satellite tags and tracked them for 2–88 days (mean = 27 days) as they dispersed from this area. Sharks travelled between 10 and 2,737 km (mean = 738 km) at a mean horizontal speed of 28 ± 17.1 SD km day−1. While several individuals left shelf waters and travelled across international boundaries, most sharks stayed in Mozambican coastal waters over the tracking period. We tested for whale shark habitat preferences, using sea surface temperature, chlorophyll-a concentration and water depth as variables, by computing 100 random model tracks for each real shark based on their empirical movement characteristics. Whale sharks spent significantly more time in cooler, shallower water with higher chlorophyll-a concentrations than model sharks, suggesting that feeding in productive coastal waters is an important driver of their movements. To investigate what this coastal habitat choice means for their conservation in Mozambique, we mapped gill nets during two dedicated aerial surveys along the Inhambane coast and counted gill nets in 1,323 boat-based surveys near Praia do Tofo. Our results show that, while whale sharks are capable of long-distance oceanic movements, they can spend a disproportionate amount of time in specific areas, such as along the southern Mozambique coast. The increasing use of drifting gill nets in this coastal hotspot for whale sharks is likely to be a threat to regional

  1. Adaptation to heavy rainfall events: watershed-community planning of soil and water conservation technologies in Syria

    Science.gov (United States)

    Ziadat, Feras; Al-Wadaey, Ahmed; Masri, Zuhair; Sakai, Hirokazu

    2010-05-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) and other research, predict a significant future increase in the frequency and intensity of heavy rainfall events in many regions. This increase runoff and soil erosion, and reduce agricultural productivity, as well as increasing risks of flood damage to crops and infrastructure. Implementing adaptation measures and improved land management through erosion control and soil protection are among those that protect water and agriculture and limit their vulnerability. Soil erosion control practices are often based on long-term climatic averages. Special attention is needed to provide protection against average high-return frequency storms as well as severe storms with low-return frequency. Suitable and affordable soil conservation plans, coupled with an appropriate enabling environment, are needed. A watershed and community were selected in the mountainous area of North West Syria. The fields represent the non-tropical highland dry areas and dominated by olive orchards on steep slopes. Farmers were aware of resource degradation and productivity reduction, but lacked financial capital to implement the needed adaptation measures. A micro-credit system was established with the help of the UNDP Global Environment Facility - Small Grants Program (GEF-SGP) with small grants available for each farmer. Haphazard implementation on scattered fields proved inefficient in demonstrating obvious impact. Therefore, each watershed was classified into three erosion risk categories (high, moderate and low), derived from maps of flow accumulation, slope steepness, slope shape and land use. Using field survey of land ownership, the boundaries of 168 farms in the watersheds were mapped. Farmers' fields were classified using the erosion-risk map and considering the on-farm erosion hazard and the off-farm effect on other farmers' fields following the hillslope sequence. More than 60% of the farms were

  2. Positive impacts in soil and water conservation in an Andean region of South America: Case scenarios from a USAID multidisciplinary cooperative project

    Science.gov (United States)

    The USAID-SANREM-Virginia Polytechnic Institute project has made and continues to make an excellent impact, specifically showcasing the positive results of soil and water conservation (Barrera et al. 2010a; 2010b). This project has strong international cooperation between the USA, Ecuador and Bolivi...

  3. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949

    NARCIS (Netherlands)

    Wang, F.; Mu, X.; Li, R.; Fleskens, L.; Stringer, L.C.; Ritsema, C.J.

    2015-01-01

    Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin

  4. Voluntary cooperation in the provision of a semi-public good : Community-based soil and water conservation in semi-arid India

    NARCIS (Netherlands)

    Bouma, J.A.

    2008-01-01

    This dissertation analyses the question whether households in India’s semi-arid tropics can be expected to voluntarily maintain semi-public investments in soil and water conservation. Increasingly, public investment programs decentralise project planning, implementation and management to local

  5. Determinants of farmers’ perception to invest in soil and water conservation technologies in the North-Western Highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Desalew Meseret Moges

    2017-03-01

    Full Text Available Soil erosion by water is a severe and continuous ecological problem in the north-western Highlands of Ethiopia. Limited perception of farmers to practice soil and water conservation (SWC technologies is one of the major causes that have resulted accelerated soil erosion. Therefore, this paper examines the major determinants of farmers’ perception to use and invest in SWC technologies in Ankasha District, north-western highlands of Ethiopia. A detailed field survey was carried out among 338 households, randomly selected from two rural sample kebeles (called villages here after. Descriptive statistics and logistic regression model were used to analyse the effects of multiple variables on farmers’ perception. The results indicate that educational level of the respondents and their access to trainings were found to have a positive and very significant association (P<0.01 with farmers’ perception. Likewise, land ownership, plot size, slope type, and extension contact positively and significantly influenced farmers’ perception at 5% level of significance. On the other hand, the influence of respondents’ age and plot distance from the homestead was found to be negative and significant (P<0.05. The overall results of this study indicate that the perception of farmers to invest in SWC technologies was highly determined by socioeconomic, institutional, attitudinal and biophysical factors. Thus, a better understanding of constrains that influence farmers' perception is very important while designing and implementing SWC technologies. Frequent contacts between farmers and extension agents and continues agricultural trainings are also needed to increase awareness of the impacts of SWC benefits.

  6. Effect of soil and water conservation on rehabilitation of degraded lands and crop productivity in Maego watershed, North Ethiopia

    Directory of Open Access Journals (Sweden)

    Gebremariam Yaebiyo Dimtsu

    2018-04-01

    Full Text Available Many soil and water conservation (SWC measures were undertaken to decrease land degradation in Ethiopia. However, evaluation of their performance is essential to understand their success or failure and readjusting accordingly in the future planning.  Therefore, the objective of this study was to evaluate effectiveness of SWC measures in rehabilitation of degraded watershed and increase crop productivity in Maego watershed, Ethiopia. Seventy six sample plots were randomly taken from treated and untreated sub-watersheds for woody species and soil sampling. Crops yield was measured on top side, middle zone and below side of SWC structures. There were significantly higher woody species density and diversity, total nitrogen (TN, soil organic matter (SOM and soil moisture in the treated uncultivated land than the untreated one. The highest tree and sapling species density and diversity, TN and SOM were recorded on the exclosure part of the treated sub-watershed. Landscape position affected soil fertility, but has no effect on woody species density and diversity. The highest barley and wheat yield was measured on top side of SWC structures. Therefore, physical SWC structures should be integrated with exclosure to enhance rehabilitation of degraded watersheds/landscapes. Integration of biological SWC measures that improve soil fertility are essential on the cultivated land of the watershed. Most of the existing SWC structures, especially the old ones are filled with accumulated sediment, so maintenance is needed.

  7. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    Science.gov (United States)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  8. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    Science.gov (United States)

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  9. Assessment of the effectiveness of soil and water conservation measures in reducing runoff and soil loss: establishment of a European database

    International Nuclear Information System (INIS)

    Maetens, W.; Vanmaercke, M.; Poesen, J.

    2009-01-01

    Soil erosion by water is recognised as a major soil degradation process that requires a global approach. Large regions all over the world are in need of integrated conservation strategies that sustainable prevent and remediate soil erosion. therefore, quantitative and globally interpretable data are needed in support of models and decision making. the effects of various soil and water conservation techniques (SWCT) on runoff and soil loss in Europe have been extensively studied over the last 60 years. Runoff plots are the most widely used measurement technique to study the effects of SWCT on runoff and soil loss by water erosion. Hence, many data are available. However, the insights gained hereby remain mostly local and often qualitative whereas the full potential of the available data is not exploited yet. This is mainly due to the fragmentation of knowledge and extrapolation difficulties inherently linked with this type of data. (Author) 8 refs.

  10. Development and Simulation of Decentralised Water and Energy Supply Concepts – Case Study of Rainwater Harvesting at the Angkor Centre for Conservation of Biodiversity in Cambodia

    Directory of Open Access Journals (Sweden)

    Joel Czarny

    2017-12-01

    Full Text Available Besides a sufficient energy supply, concepts for accommodations require an intelligent water management. Using the example of quarters that do not have water and energy access, a dynamic simulation model is presented in which a rainwater harvesting concept is implemented and simulated over one year using MATLAB-Simulink. The aim is to minimize respectively suspend the use of fossil energy sources and to guarantee the provision of decentralized clean drinking water. Since traditional water bodies, e.g. groundwater, are increasingly polluted and depleted, utilisation of alternative sources is prudent. Especially in rural areas, where access to drinking water is scarce, rainwater is suitable for providing potable water. Besides its beneficial chemical water properties, it is easily accessed in a decentralized manner, which makes it a preferred choice in areas with sufficient precipitation. However, access to rainwater is limited by its occurrence and contamination, calling for proper storage, utilisation, and treatment strategies. For this purpose, a rainwater harvesting system, including different water and energy management systems, was modelled and implemented using the site of the Angkor Centre for Conservation of Biodiversity in Cambodia as an example. For the simulation, a precipitation generator was implemented using real historical rain event data. An appropriate rainwater treatment process was chosen, consisting of a microfiltration and a subsequent ultrafiltration unit removing bacteriological loads entirely. Both were modelled and implemented dynamically. Using the site of the Angkor Centre of Conservation of Biodiversity, a complete rainwater harvesting plant was implemented including harvest, storage, and utilization of rainwater. Further, a renewable energy management strategy is developed, using photovoltaic modules and batteries. It was shown that the cumulative runoff meets the water demand of the Angkor Centre for Conservation of

  11. Transfer of conservative and non-conservative radionuclides from the Sellafield nuclear fuel reprocessing plant to the coastal waters of Ireland

    International Nuclear Information System (INIS)

    Mcmahon, C.A.; Fegan, M.; Wong, J.; Long, S.C.; Mckittrick, L.; Thomas, K.; Rafferty, B.

    2004-01-01

    The Radiological Protection Institute of Ireland has monitored levels of anthropogenic radionuclides in the Irish marine environment for over 20 years. While the primary objective of the monitoring programme is to assess the exposure of the Irish population resulting from the presence of these radionuclides in the marine environment, the programme also aims to assess the geographical distribution and temporal variations of the radionuclides. The programme involves the routine sampling of and testing for radioactivity in fish, shellfish, seaweed, sediments and seawater. The data generated in the course of this programme, as well as in a separate study of changing plutonium isotopic ratios in Fucus vesiculosus from the west coast of Ireland, are used in this paper to estimate transport times from the Sellafield nuclear fuel reprocessing plant to the western Irish Sea and from the Irish Sea to the west coast of Ireland. The results obtained are discussed in the paper and the transfer times estimated for particle-reactive radionuclides (plutonium isotopes) compared with those obtained for more conservative radionuclides ( 137 Cs and 99 Tc). Transfer factors (calculated as the ratio between observed concentrations in the environment and an average discharge rate τ years earlier, where τ is the transport time) are also presented. (author)

  12. [Impact of rural land market on farm household's behavior of soil & water conservation and its regional difference: A case study of Xingguo, Shangrao, and Yujiang County in Jiangxi province ecologically vulnerable districts].

    Science.gov (United States)

    Zhong, Tai-Yang; Huang, Xian-jin

    2006-02-01

    The paper analyzed the farm households' decision-making progress of soil & water conservation and its two-stage conceptual model. It also discussed the impacts of rural land market on the farm households' behavior of soil & water conservation. Given that, the article established models for the relations between the land market and soil & water conservation, and the models' parameters were estimated with Heckman's two-stage approach by using the farm household questionnaires in Xingguo, Shangrao and Yujiang counties of Jiangxi province. The paper analyzed the impact o f rural land market on farm household's behavior of soil & water conservation and its regional difference with the result of model estimation. The results show that the perception of soil & water loss and the tax & fee on the farm land have significant influence upon the soil and water conservation from the view of the population; however, because of different social and economic condition, and soil & water loss, there are differences of the influence among the three sample counties. These differences go as follows in detail: In Xingguo County, the rent-in land area and its cost have remarkable effect on the farm households' soil & water conservation behavior; In Yujiang County, the rent-in land area, rent-in cost and rent-out land area remarkably influence the farm households' behavior of soil and water conservation, with the influence of the rent-in land area being greater than Xingguo County; In Shangrao County, only rent-out land area has significant influence on the behaviors of soil & water conservation; In all samples, Xingguo County and Yujiang County samples, the rent-out income has no significant influence on the farm household's decision-making behavior soil and water conservation. Finally, the paper put forward some suggestions on how to bring the soil & water loss under control and use land resource in sustainable ways.

  13. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia.

    Science.gov (United States)

    Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye

    2018-05-01

    Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.

  14. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  15. PPP mode’s applications motivation in the field of water conservancy project - based on the “money service” theory of Milton Friedman

    Science.gov (United States)

    Chen, Zurong; Feng, Jingchun; Wang, Yuting; Xue, Song

    2017-06-01

    We study on PPP mode’s applications motivation in the field of water conservancy project, on the basis of analyzing Friedman’s “money service” theory, for the disadvantages of traditional investment mode in water conservancy project field. By analyzing the way of government and social capital spending money in PPP projects, we get conclusion that both of which are the way of “spending their own money to do their own thing”, which fully reflects that the two sides are a win-win partnership in PPP mode. From the application motivation, PPP mode can not only compensate for the lack of local funds, improve the investment efficiency of the government, but also promote marketization and the supply-side structural reforms.

  16. Implementation proposal of a water conservation and reuse program at the TRANSPETRO; Proposta de implementacao de um programa de conservacao e reuso de agua na TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Andrea Dietrich; Alves, Anibal Jose Constantino; Melo Neto, Joao Evangelista de [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The great amount of water that is used by industries and the ascendant preoccupation about the quantity and quality of water resources in Brazil and in the world are important justifications to start thinking of more efficient proposals for water application. Between the alternatives for water consume reduction in industry there is the reuse as the principle of those. A study of PricewaterhouseCoopers about this matter at the main national industries identified that 48% have reuse goals. The present work intends to show a methodology and the justifications to implement a conservation and water reuse program at the Terminals of PETROBRAS Transporte S.A. - TRANSPETRO. Therefore are presented the many possible applications for reuse water at TRANSPETRO and the stages to the implementation of this kind of project. The methodology presented, based on FIESP Proposal, has as the objective both water consumed reduction and water discharged reduction. Then it must be realized an identification of several water consumed sources and water discharged sources, focusing on the many reuse possible. (author)

  17. Awareness and Adoption of Soil and Water Conservation Technologies in a Developing Country: A Case of Nabajuzi Watershed in Central Uganda

    Science.gov (United States)

    Kagoya, Sarah; Paudel, Krishna P.; Daniel, Nadhomi L.

    2018-02-01

    Soil and water conservation technologies have been widely available in most parts of Uganda. However, not only has the adoption rate been low but also many farmers seem not to be aware of these technologies. This study aims at identifying the factors that influence awareness and adoption of soil and water conservation technologies in Nabajuzi watershed in central Uganda. A bivariate probit model was used to examine farmers' awareness and adoption of soil and water conservation technologies in the watershed. We use data collected from the interview of 400 households located in the watershed to understand the factors affecting the awareness and adoption of these technologies in the study area. Findings indicate that the likelihood of being aware and adopting the technologies are explained by the age of household head, being a tenant, and number of years of access to farmland. To increase awareness and adoption of technologies in Uganda, policymakers may expedite the process of land titling as farmers may feel secure about landholding and thus adopt these technologies to increase profitability and productivity in the long run. Incentive payments to farmers residing in the vulnerable region to adopt these considered technologies may help to alleviate soil deterioration problems in the affected area.

  18. Resource Conservation Glossary.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    This glossary is a composite of terms selected from 13 technologies, and is the expanded revision of the original 1952 edition of "The Soil and Water Conservation Glossary." The terms were selected from these areas: agronomy, biology, conservation, ecology, economics, engineering, forestry, geology, hydrology, range, recreation, soils, and…

  19. Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Li, Hailong; Yan, Jinyue

    2015-01-01

    Highlights: • A novel design procedure for photovoltaic and wind power water pumping systems for irrigation is proposed. • The design procedure is proved conducting dynamic simulations of the water supply and water demand. • The technical and economic effectiveness of photovoltaic water pumping systems is proved simulating the crop yield response. - Abstract: Photovoltaic water pumping (PVWP) and wind power water pumping (WPWP) systems for irrigation represent innovative solutions for the restoration of degraded grassland and the conservation of farmland in remote areas of China. The present work systematically compares the technical and economic suitability of such systems, providing a general approach for the design and selection of the suitable technology for irrigation purposes. The model calculates the PVWP and WPWP systems sizes based on irrigation water requirement (IWR), solar irradiation and wind speed. Based on the lowest PVWP and WPWP systems components costs, WPWP systems can compete with PVWP systems only at high wind speed and low solar irradiation values. Nevertheless, taking into account the average specific costs both for PVWP and WPWP systems, it can be concluded that the most cost-effective solution for irrigation is site specific. According to the dynamic simulations, it has also been found that the PVWP systems present better performances in terms of matching between IWR and water supply compared to the WPWP systems. The mismatch between IWR and pumped water resulted in a reduction of crop yield. Therefore, the dynamic simulations of the crop yield are essential for economic assessment and technology selection

  20. A Resource Conservation Unit.

    Science.gov (United States)

    Porter, Philip D.

    1979-01-01

    Describes a variety of learning activities for teaching elementary and junior high students about air, water, and energy conservation techniques. Suggests community resources, social studies objectives, language skills, and 20 activities. (CK)

  1. Food, Fracking, and Freshwater: The Potential for Markets and Cross-Sectoral Investments to Enable Water Conservation

    Directory of Open Access Journals (Sweden)

    Margaret Cook

    2016-01-01

    Full Text Available Hydraulic fracturing—the injection of pressurized fluid, often water, to increase recovery of oil or gas—has become increasingly popular in combination with horizontal drilling. Hydraulic fracturing improves production from a well, but requires a significant amount of water to do so and could put pressure on existing water resources, especially in water-stressed areas. To supply water needs, some water rights holders sell or lease their water resources to oil and gas producers in an informal water market. These transactions enable the opportunity for cross-sectoral investments, by which the energy sector either directly or indirectly provides the capital for water efficiency improvements in the agricultural sector as a mechanism to increase water availability for other purposes, including oil and gas production. In this analysis, we employ an original water and cost model to evaluate the water market in Texas and the potential for cross-sectoral collaboration on water efficiency improvements through a case study of the Lower Rio Grande Valley in Texas. We find that, if irrigation efficiency management practices were fully implemented, between 420 and 800 million m3 of water could be spared per year over a ten year period, potentially enabling freshwater use in oil and gas production for up to 26,000 wells, while maintaining agricultural productivity and possibly improving water flows to the ecosystem.

  2. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    Directory of Open Access Journals (Sweden)

    Julia Asencio-Hernández

    Full Text Available There is growing evidence that bisphenol A (BPA, a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER, estrogen-related receptor (ERR and androgen receptor (AR. BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD, which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules.

  3. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  4. 78 FR 78305 - Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act...

    Science.gov (United States)

    2013-12-26

    ... that your comment does not include any sensitive personal information, such as anyone's Social Security... Part 305 Advertising, Energy conservation, Household appliances, Labeling, reporting and recordkeeping... as HDMI, Component video, Svideo, Composite video; and/or (3) Media storage devices such as a USB...

  5. Caring for the land : best practice in soil and water conservation in Beressa watershed, highlands of Ethiopia

    NARCIS (Netherlands)

    Amsalu Taye, A.

    2006-01-01

    Land degradation in the form of soil erosion and nutrient loss is a major constraint to farming activities and agricultural development in the highlands of Ethiopia. Though large-scale conservation projects have been initiated and carried out by the government during the past few decades, the

  6. Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations

    NARCIS (Netherlands)

    Hof, Bas van ’t; Veldman, Arthur E.P.

    2012-01-01

    The paper explains a method by which discretizations of the continuity and momentum equations can be designed, such that they can be combined with an equation of state into a discrete energy equation. The resulting 'MaMEC' discretizations conserve mass, momentum as well as energy, although no

  7. The Effect of Community-Based Soil and Water Conservation Practices on Abundance and Diversity of Soil Macroinvertebrates in the Northern Highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Mengistu Welemariam

    2018-04-01

    Full Text Available Soil and water conservation (SWC practices in the northern highlands of Ethiopia have important implications for land restoration and biodiversity recovery. The present study determined soil macroinvertebrate (SMI abundance and diversity in response to spatial conditions i.e., generated by different conservation practices, soil depth, and temporal seasonality with the wet and dry season. The SWC practices considered were exclosure + terrace, exclosure alone, terraces, and non-conserved grazing lands. Each SWC measure was selected in three sites that were considered as replications due to low heterogeneity in terms of human and livestock disturbances and biophysical factors. Soil macroinvertebrates were collected using a monolith according to tropical soil biology and fertility (TSBF method. The highest density (55% of SMI was found in exclosures followed by terraces 26%. Non-conserved communal grazing lands account for only 19% of the total. Shannon diversity index was significantly (P < 0.05 higher (1.21 in the exclosures supported with terraces and the lowest (0.9 was observed in the non-conserved communal grazing lands. Diversity was also significantly (P < 0.05 higher (1.26 in wet than dry season (0.70. The highest (41% Sorensen similarity index among SMI was found between exclosures with terraces and exclosures alone during the wet season. The lowest (20% Sorensen similarity index was found between terraces alone and exclosures with terraces in dry season. Soil macroinvertebrate abundance was higher in upper (0–10 cm than lower (10–20 and 20–30 cm soil depth. Soil macroinvertebrate abundance was positively and strongly correlated with soil moisture (R2 = 0.85 and soil organic carbon stock (R2 = 0.95. However, it was negatively (R2 = −0.71 correlated with bulk density. Generally, the abundance and diversity of SMI increased as exclosures and communal grazing lands are supported with terraces.

  8. Toward a theory of farmer conservation attitudes: Dual interests and willingness to take action to protect water quality

    Science.gov (United States)

    Kristin Floress; Silvestre García de Jalón; Sarah P. Church; Nicholas Babin; Jessica D. Ulrich-Schad; Linda S. Prokopy

    2017-01-01

    Water quality in the Midwestern United States is threatened as a result of agricultural runoff. Based on self-reported data from a survey of farmers in Indiana, we aim to provide a better understanding of how awareness of water quality problems, farm-as-business attitudes, and stewardship attitudes are related to each other and willingness to improve water quality....

  9. Conservation Education: A Position Statement.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    The Soil Conservation Society of America's (SCSA) aim is to advance the science and art of good land and water use. Conservation education has a significant role in achieving the wise use of these resources. In this report, perspectives are offered on: (1) the requirements for effective conservation education programs; (2) rationale for…

  10. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.].

    Science.gov (United States)

    Kholová, Jana; Hash, C Tom; Kakkera, Aparna; Kocová, Marie; Vadez, Vincent

    2010-01-01

    Pearl millet, a key staple crop of the semi-arid tropics, is mostly grown in water-limited conditions, and improving its performance depends on how genotypes manage limited water resources. This study investigates whether the control of water loss under non-limiting water conditions is involved in the terminal drought tolerance of pearl millet. Two pairs of tolerant x sensitive pearl millet genotypes, PRLT 2/89-33-H77/833-2 and 863B-P2-ICMB 841-P3, and near-isogenic lines (NILs), introgressed with a terminal drought tolerance quantitative trait locus (QTL) from the donor parent PRLT 2/89-33 into H77/833-2 (NILs-QTL), were tested. Upon exposure to water deficit, transpiration began to decline at lower fractions of transpirable soil water (FTSW) in tolerant than in sensitive genotypes, and NILs-QTL followed the pattern of the tolerant parents. The transpiration rate (Tr, in g water loss cm(-2) d(-1)) under well-watered conditions was lower in tolerant than in sensitive parental genotypes, and the Tr of NILs-QTL followed the pattern of the tolerant parents. In addition, Tr measured in detached leaves (g water loss cm(-2) h(-1)) from field-grown plants of the parental lines showed lower Tr values in tolerant parents. Defoliation led to an increase in Tr that was higher in sensitive than in tolerant genotypes. The differences in Tr between genotypes was not related to the stomatal density. These results demonstrate that constitutive traits controlling leaf water loss under well-watered conditions correlate with the terminal drought tolerance of pearl millet. Such traits may lead to more water being available for grain filling under terminal drought.

  11. Statistical analysis and mapping of water levels in the Biscayne aquifer, water conservation areas, and Everglades National Park, Miami-Dade County, Florida, 2000–2009

    Science.gov (United States)

    Prinos, Scott T.; Dixon, Joann F.

    2016-02-25

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000–2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000–2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990–1999 and 2000–2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974–2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer.

  12. Native trees show conservative water use relative to invasive: results from a removal experiment in a Hawaiian wet forest

    Science.gov (United States)

    M.A. Cavaleri; R. Ostertag; S. Cordell; L. and Sack

    2014-01-01

    While the supply of freshwater is expected to decline in many regions in the coming decades, invasive plant species, often 'high water spenders', are greatly expanding their ranges worldwide. In this study, we quantified the ecohydrological differences between native and invasive trees and also the effects of woody invasive removal on plot-level water use in...

  13. Time evolving multi-city dependencies and robustness tradeoffs for risk-based portfolios of conservation, transfers, and cooperative water supply infrastructure development pathways

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.; Zeff, H. B.; Characklis, G. W.

    2016-12-01

    Water scarcity in historically water-rich regions such as the southeastern United States is becoming a more prevalent concern. It has been shown that cooperative short-term planning that relies on conservation and transfers of existing supplies amongst communities can be used by water utilities to mitigate the effects of water scarcity in the near future. However, in the longer term, infrastructure expansion is likely to be necessary to address imbalances between growing water demands and the available supply capacity. This study seeks to better diagnose and avoid candidate modes for system failure. Although it is becoming more common for water utilities to evaluate the robustness of their water supply, defined as the insensitivity of their systems to errors in deeply uncertain projections or assumptions, defining robustness is particularly challenging in multi-stakeholder regional contexts for decisions that encompass short management actions and long-term infrastructure planning. Planning and management decisions are highly interdependent and strongly shape how a region's infrastructure itself evolves. This research advances the concept of system robustness by making it evolve over time rather than static, so that it is applicable to an adaptive system and therefore more suited for use for combined short and long-term planning efforts. The test case for this research is the Research Triangle area of North Carolina, where the cities of Raleigh, Durham, Cary and Chapel Hill are experiencing rapid population growth and increasing concerns over drought. This study is facilitating their engagement in cooperative and robust regional water portfolio planning. The insights from this work have general merit for regions where adjacent municipalities can benefit from improving cooperative infrastructure investments and more efficient resource management strategies.

  14. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  15. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report, July 1--September 30, 1989

    International Nuclear Information System (INIS)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality

  16. An Approach for Selection of Flow Regime and Models for Conservative Evaluation of a Vessel Integrity Monitoring System for Water-Cooled Vacuum Vessels

    International Nuclear Information System (INIS)

    Pointer, W. David; Ruggles, Arthur E.

    2003-01-01

    Thin-walled vacuum containment vessels cooled by circulating water jackets are often utilized in research and industrial applications where isolation of equipment or experiments from the influences of the surrounding environment is desirable. The development of leaks in these vessels can result in costly downtime for the facility. A Vessel Integrity Monitoring System (VIMS) is developed to detect leak formation and estimate the size of the leak to allow evaluation of the risk associated with continued operation. A wide range of leak configurations and fluid flow phenomena are considered in the evaluation of the rate at which a tracer gas dissolved in the cooling jacket water is transported into the vacuum vessel. A methodology is presented that uses basic fluid flow models and careful evaluation of their ranges of applicability to provide a conservative estimate of the transport rates for the tracer gas and hence the time required for the VIMS to detect a leak of a given size

  17. Systematic Environmental Impact Assessment for Non-natural Reserve Areas: A Case Study of the Chaishitan Water Conservancy Project on Land Use and Plant Diversity in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Zhu

    2017-06-01

    Full Text Available Environmental impact assessment (EIA before and after the establishment of a Water Conservancy Project (WCP is of great theoretical and practical importance for assessing the effectiveness of ecological restoration efforts. WCPs rehabilitate flood-damaged areas or other regions hit by disasters by controlling and redistributing surface water and groundwater. Using Geographic Information System (GIS and Composite Evaluation Index (CEI in predictive modeling, we studied the degree to which a WCP could change land use, plant communities, and species diversity in Yunnan, China. Via modeling, we quantified likely landscape pattern changes and linked them to naturality (i.e., the percentage of secondary vegetation types, diversity, and stability together with the human interferences (e.g., conservation or restoration project of an ecosystem. The value of each index was determined by the evaluation system, and the weight percentage was decided through Analytical Hierarchy Process (AHP. We found that minor land-use changes would occur after the Chaishitan WCP was theoretically established. The greatest decline was farmland (0.079%, followed by forest (0.066%, with the least decline in water bodies (0.020%. We found 1,076 vascular plant species (including subspecies, varieties and form belonging to 165 families and 647 genera in Chaishitan irrigation area before the water conservancy establishment. The naturality and diversity decreased 11.18 and 10.16% respectively. The CEI was 0.92, which indicated that Chaishitan WCP will enhance local landscape heterogeneity, and it will not deteriorate local ecological quality. Our study proposes a comprehensive ecological evaluation system for this WCP and further suggests the importance of including the ecological and environmental consequences of the WCP, along with the well-established socioeconomic evaluation systems for non-natural reserve areas. We conclude that the Chaishitan WCP will have minor

  18. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer.

    Science.gov (United States)

    Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei

    2016-09-23

    The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation.

  19. Conservation Value

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    This paper outlines the significance of the concept of conservation value and discusses ways in which it is determined paying attention to views stemming from utilitarian ethics and from deontological ethics. The importance of user costs in relation to economic decisions about the conservation and use of natural resources is emphasised. Particular attention is given to competing views about the importance of conserving natural resources in order to achieve economic sustainability. This then l...

  20. Water Conservation as a Way to Lessen the Impact of New Construction at the Presidio of Monterey.

    Science.gov (United States)

    1983-06-01

    and the laundry figure would be about 8 gpcd, rather than 10 gpcd, to reflect the use of off-post laundromats and the use of dry cleaning shops for...but not encugh to make a difference, although the post laundry or laundromat will continue to consume water. Also, mcst new clothes washers are water...and energy effi- cient so no new savings would be available. Future constructicn of laundromats should evaluate the type of washer being installed. 68

  1. 松华坝水源地不同植被土壤特性及水源涵养功能%The Soil Properties and Water Conservation Function of Different Vegetations in Songhuaba Water Source

    Institute of Scientific and Technical Information of China (English)

    苗武; 史正涛; 陈骏; 韦海波

    2013-01-01

    根据松华坝水源地的实际情况,按不同植被类型选择了次生林地、人工林地、园地、耕地四种类型,共挖取36个典型剖面进行采样调查,分别对其进行土壤物理性质、有机质和贮水特性的测定.结果表明,次生林地的水源涵养功能最好,人工林地的最差;次生林转变为人工林、园地的植被变化过程是流域内水源涵养功能恶化的主因.%According to the actual situation of Songhuaba water source and the different vegetation types,36 typical soil profile samples were collected in secondary forest,artificial forest,garden and cultivated land.And the physical property,the organic matter and water storage characteristics of soils were determined.The result shows the water conservation function of secondary forest land was the best,the artificial forest land was the worst; the major cause of water conservation function change in the basin was conversion the secondary forest into artificial forest and garden.

  2. A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids

    International Nuclear Information System (INIS)

    Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A.M.; Koolivand, H.

    2016-01-01

    Highlights: • Stable MWNTs and graphene nanofluids were used in a mechanical wet cooling tower. • Thermal and rheological properties of nanofluids were investigated. • Nanofluids enhanced the efficiency, cooling range and tower characteristic. • Water consumption reduced significantly for both MWNTs and graphene nanofluids. - Abstract: This study deals with an experimental investigation on the thermal performance of a mechanical wet cooling tower with counter flow arrangement by using multi-walled carbon nanotubes (MWNTs) and nanoporous graphene nanofluids. Stable nanofluids were prepared through two-step procedure by using water with properties taken from a working cooling tower in the South of Iran. Zeta potential revealed suitable stability of MWNTs and nanoporous graphene nanofluids. Thermal and rheological properties of the nanofluids were investigated. It was found that thermal conductivity increases by 20% and 16% at 45 °C for MWNTs and nanoporous graphene nanofluids, respectively. The increase in density and viscosity, particularly in low concentrations of nanoparticles, was insignificant enough for industrial applications. Moreover, it was found that by using nanofluids, efficiency, cooling range and tower characteristic (KaV/L) are enhanced in comparison to water. For instance, at inlet water temperature of 45 °C and water/air (L/G) flow ratio of 1.37, the cooling range increases by 40% and 67% for MWNTs and nanoporous graphene nanofluids (0.1 wt.%), respectively. On the other hand water consumption is reduces by 10% and 19% at inlet water temperature of 45 °C for MWNTs and nanoporous graphene nanofluids, respectively.

  3. The Consequences of the FAA not Offering Emergency Agricultural UAS Rules for Water Conservation During the 2012 Drought

    Science.gov (United States)

    Darling, R. G.

    2016-12-01

    The FAA's policies for agricultural Unmanned Aerial Systems (UAS) is essential towards preservation and optimization of water use in the parched Western United States. Had FAA applied emergency rules putting farmers on equal-footing with hobbyists for sUAS use at the beginning of the 2012 drought, the Western US could have been able to save approximately 3 Million/AF of water through improved irrigation management. For perspective, Los Angeles city's annual current consumption is 587,000 acre-feet. This study uses various assumptions about developed water use in agriculture and urban areas to determine water use, energy consumption, monetary loss through delay in FAA regulations. If the saved water was added to the ground the energy savings could have been approximately 1.27 Terra-Watt hours, enough energy to power the entire University of California system for 5 years. It remains unclear if new FAA regulations are sufficiently permissive to allow for widespread adoption of sUAS based precision agriculture. Substantial opportunities exist for utilizing UAS traffic management software in rural areas of less crowed airspace: incorporating geofencing and a notification system to operators and air traffic control as an alternative to a difficult examination process.

  4. Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Laura Essl

    2012-09-01

    Full Text Available Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands, and (vermi-composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation, however, is

  5. Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Tiemen A. Nanninga

    2012-09-01

    Full Text Available Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands, and (vermi-composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation

  6. Gas exchange at whole plant level shows that a less conservative water use is linked to a higher performance in three ecologically distinct pine species

    Science.gov (United States)

    Salazar-Tortosa, D.; Castro, J.; Rubio de Casas, R.; Viñegla, B.; Sánchez-Cañete, E. P.; Villar-Salvador, P.

    2018-04-01

    Increasing temperatures and decreasing precipitation in large areas of the planet as a consequence of global warming will affect plant growth and survival. However, the impact of climatic conditions will differ across species depending on their stomatal response to increasing aridity, as this will ultimately affect the balance between carbon assimilation and water loss. In this study, we monitored gas exchange, growth and survival in saplings of three widely distributed European pine species (Pinus halepensis, P. nigra and P. sylvestris) with contrasting distribution and ecological requirements in order to ascertain the relationship between stomatal control and plant performance. The experiment was conducted in a common garden environment resembling rainfall and temperature conditions that two of the three species are expected to encounter in the near future. In addition, gas exchange was monitored both at the leaf and at the whole-plant level using a transient-state closed chamber, which allowed us to model the response of the whole plant to increased air evaporative demand (AED). P. sylvestris was the species with lowest survival and performance. By contrast, P. halepensis showed no mortality, much higher growth (two orders of magnitude), carbon assimilation (ca. 14 fold higher) and stomatal conductance and water transpiration (ca. 4 fold higher) than the other two species. As a consequence, P. halepensis exhibited higher values of water-use efficiency than the rest of the species even at the highest values of AED. Overall, the results strongly support that the weaker stomatal control of P. halepensis, which is linked to lower stem water potential, enabled this species to maximize carbon uptake under drought stress and ultimately outperform the more water conservative P. nigra and P. sylvestris. These results suggest that under a hotter drought scenario P. nigra and P. sylvestris would very likely suffer increased mortality, whereas P. halepensis could maintain

  7. Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region.

    Science.gov (United States)

    The Ogallala Aquifer is one of the largest freshwater aquifers in the world. It acts as a valuable resource in agriculture, animal production, and public water supplies across eight Great Plains states. However, with high irrigation demand, low recharge rates across most of the region, and extreme c...

  8. An experimental evolution study confirms that discontinuous gas exchange does not contribute to body water conservation in locusts.

    Science.gov (United States)

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2016-12-01

    The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO 2 , rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts. © 2016 The Author(s).

  9. Conservation and reuse of water in Brazilian petroleum refineries; Conservacao e reuso de agua em refinarias de petroleo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Pombo, Felipe Ramalho; Magrini, Alessandra; Szklo, Alexandre Salem [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], Emails: frpombo@ppe.ufrj.br, ale@ppe.ufrj.br, szklo@ppe.ufrj.br

    2010-07-01

    This paper views to present the main technologies for effluent treatment of petroleum refineries having as target the reuse. An analysis of international and Brazilian experiences of water reuse in petroleum refineries is performed viewing to support the proposition of recommendations for Brazilian refineries.

  10. Mass conservative three-dimensional water tracer distribution from MCMC inversion of time-lapse GPR data

    NARCIS (Netherlands)

    Lalov, E.; Linde, N.; Vrugt, J.A.

    2012-01-01

    Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate

  11. RUNOFF AND EROSION IN DIFFERENT (AGRO CLIMATOLOGICAL ZONES OF LATIN AMERICA AND PROPOSALS FOR SOIL AND WATER CONSERVATION SCENARIOS

    Directory of Open Access Journals (Sweden)

    Donald Gabriels

    2005-05-01

    Full Text Available Steeplands, when cleared from forests, are susceptible to erosion by rainfall and are prone toland degradation and desertification processes.The dominant factors affecting those erosion processes and hence the resulting runoff and soillosses are the aggressiveness of the rainfall during the successive plant growth stages, the soilcover-management, but also the topography (slope length and slope steepness. Depending onthe type of (agro climatological zone, the runoff water should either be limited and controlled(excess of water or should be enhanced and collected from the slope on the downslopecropping area if water is short (negative soil water balance.Examples are given of practical applications in Ecuador where alternative soil conservationscenarios are proposed in maize cultivation in small fields on steep slopes. Adding peas andbarley in the rotation of maize and beans resulted only in a slight decrease of the soil losses.Subdividing the fields into smaller parcels proved to give the best reduction in soil loss.Because the average slope steepness is high, erosion control measures such as contourploughing and strip cropping have only small effects.Erosion and its effect on productivity of a sorghum -livestock farming system are assessed onfour different areas in Venezuela with different levels of erosion. A Productivity Index (PIand an Erosion Risk Index (ERI were used to classify the lands for soil conservationpriorities and for alternative land uses. Intensive agriculture can be applied on slightly erodedsoil, whereas severely eroded soil can be used with special crops or agro-forestry. Semiintensiveagriculture is possible on moderately eroded soil.Reforestation of drylands in Chili requires understanding of the infiltration/runoff process inorder to determine dimensions of water harvesting systems. Infiltration processes in semi-aridregions of Chile were evaluated, using rainfall experiments and constant-head infiltrationmeasurements

  12. 7 CFR 633.9 - Conservation plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture... AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program participant... conservation plan for the acreage designated under an agreement. (b) The conservation plan is the basis for the...

  13. An Eco-Hydrological Model-Based Assessment of the Impacts of Soil and Water Conservation Management in the Jinghe River Basin, China

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2015-11-01

    Full Text Available Many soil and water conservation (SWC measures have been applied in the Jinghe River Basin to decrease soil erosion and restore degraded vegetation cover. Analysis of historical streamflow records suggests that SWC measures may have led to declines in streamflow, although climate and human water use may have contributed to observed changes. This paper presents an application of a watershed-scale, physically-based eco-hydrological model—the Regional Hydro-Ecological Simulation System (RHESSys—in the Jinghe River Basin to study the impacts of SWC measures on streamflow. Several extensions to the watershed-scale RHESSys model were made in this paper to support the model application at larger scales (>10,000 km2 of the Loess Plateau. The extensions include the implementation of in-stream routing, reservoir sub-models and representation of soil and water construction engineering (SWCE. Field observation data, literature values and remote sensing data were used to calibrate and verify the model parameters. Three scenarios were simulated and the results were compared to quantify both vegetation recovery and SWCE impacts on streamflow. Three scenarios respectively represent no SWC, vegetation recovery only and both vegetation recovery and SWCE. The model results demonstrate that the SWC decreased annual streamflow by 8% (0.1 billion m3, with the largest decrease occurring in the 2000s. Model estimates also suggest that SWCE has greater impacts than vegetation recovery. Our study provides a useful tool for SWC planning and management in this region.

  14. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang, Renxiu [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Wang, Yan; Li, Jun; Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Xiangdong [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil > vegetable soil > paddy soil > natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The {sup 206}Pb/{sup 207}Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. - Highlights: Black-Right-Pointing-Pointer Soil Cd exceeded the upper limit of Chinese standard for agricultural soils. Black-Right-Pointing-Pointer Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. Black-Right-Pointing-Pointer Agricultural soil had higher concentrations of metals and lower {sup 206}Pb/{sup 207}Pb ratios. Black-Right-Pointing-Pointer Pb in above-ground tissues of plant was more anthropogenic than soil. Black-Right-Pointing-Pointer Atmospheric deposition may be a major pathway for Pb to enter plant leaves.

  15. The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters

    Directory of Open Access Journals (Sweden)

    Mitja Janža

    2016-12-01

    Full Text Available Assessment of the available quantity of groundwater is of essential importance for its sustainable use. Modern approaches for estimation of groundwater availability take into account all potential impacts of abstractions, including impacts on groundwater dependent ecosystems and impacts on surface waters ecological status. Groundwater body is in good quantitative status if groundwater abstractions do not cause signifiant damages to groundwater dependent ecosystems and signifiant diminution in the ecological status of surface water bodies. The methodology presented in this paper was developed as an integral part of the assessment of the quantitative status of groundwater bodies in Slovenia and is tailored to the characteristics of the groundwater dependent ecosystems as well as hydrological and hydrogeological conditions in the Slovenian territory. Two different approaches were implemented; for forest habitats on alluvial aquifers, and habitats of amphibians and molluscs in karst areas. Estimates of the required quantity of groundwater for groundwater dependent ecosystems conservation were performed at the level of groundwater bodies and annual averages of temporal variables of the water balance, calculated with the regional water balance model GROWA-SI. In the areas of groundwater bodies with groundwater dependent ecosystems estimated quantity present 0.1 % - 12.4 % of the groundwater recharge. The estimated share of annual renewable quantity of groundwater to maintain the ecological status of surface waters for the entire territory of Slovenia is 23.2 %. The largest share, 30 % is in north-eastern Slovenia and the lowest in the north-west part of Slovenia with a 16.6 % average annual renewable quantity.

  16. Seasonal variations in the water quality of a tropical wetland dominated by floating meadows and its implication for conservation of Ramsar wetlands

    Science.gov (United States)

    Tuboi, Chongpi; Irengbam, Michelle; Hussain, Syed Ainul

    2018-02-01

    The Loktak Lake is a palustrine wetland located in the Barak-Chindwin river basin of Northeast India. The Lake is characterized by floating meadows of various thickness which support severely depleted endangered Eld's deer (Rucervus eldii) and sympatric hog deer (Axis porcinus). The southern part of the Lake is protected as Keibul Lamjao National Park as the last remaining habitat of the Eld's deer in India. The Loktak Lake has been included in the Montreux record as it is changing its ecological character due to anthropogenic pressures especially due to water pollution. We examined the seasonal pattern of water quality of Loktak Lake and compared it with the Keibul Lamjao National Park with a view to suggest measures for removal of this wetland from the Montreux record and for improved conservation. The evaluation of spatio-temporal variations in the water quality parameters over two years was carried out using multivariate statistical analysis. Hierarchical cluster analysis grouped the 11 sampling sites into four groups, less polluted, medium polluted, highly polluted and most polluted and the 12 months into three time periods. Principal Component Analysis identified three factors in the data structure which explained 92.9% of the total variance of the data set which was used to group the selected parameters according to common features and to evaluate the influence of each group on the overall variation in water quality. Significant difference in terms of water quality parameters were observed across different parts of the lake and seasons (ANOVA, p Restoration of the Lake requires an integrated approach in reduction of nutrient inputs, enhanced flushing mechanism and restoration of environmental flow which has been disrupted due to damming.

  17. Consuming the savings: Water conservation in a vegetation barrier system at the Central Plateau in Burkina Faso

    OpenAIRE

    Spaan, W.

    2003-01-01

    The vast majority of land users at the Central Plateau of Burkina Faso make a living by farming small plots, where mainly staple crops are produced for subsistence use. Both area interventions and line interventions comprising indigenous techniques as well as introduced techniques can be encountered at the Central Plateau and have proved to be effective. There is a preference for semi-permeable line measures that slow down runoff and prevent water logging in wet periods.In order to ascertain ...

  18. Modification / procedural changes adopted for safe and smooth operation of Heavy Water Plant, Hazira for maximising productivity and resulting in energy conservation (Paper No. 6.6)

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Heavy Water Plant at Hazira is based on monothermal ammonia-hydrogen exchange process. The plant is built in two stream for isotopic exchange and enrichment with common facilities for interconnections with fertilizer plant, synthesis unit, amide preparation, utilities and final product, identical to HWP, Thal unit. This plant is built after incorporating some of the improvement effected from operating experiences gained from Baroda, Tuticorin and Thal plants. Plant erection was completed without a single casualty/mishap well within the time schedule and commissioning was completed within six months from charging of synthesis gas and ammonia in the plant. A few modifications of minor/major nature have been incorporated both in the design and during the course of operation. Some procedural changes have also been adopted for flexibility of operation, improved productivity and energy conservation. (author). 2 figs

  19. 12种林下地被植物水土保持功能研究%Soil and Water Conservation of Twelve Under-forest Cover Plants

    Institute of Scientific and Technical Information of China (English)

    赵雪乔; 袁小环

    2017-01-01

    To study the soil and water conservation function of cover plants on the forest floor,the water absorption of stem and leaves,the soil anti-erodibility and the soil permeability were measured with 12 cover plants using the indoor leaf immersion method,the hydrostatic collapse method,and the bicyclic knife method,respectively.The results showed that Calamagrostis brachytricha and Phalaris arundinacea var.picta had the highest water absorption over 40% of the stem and leaves weight;Phalaris arundinacea var.Picta,Carex lanceolata and Carex leucochlora best increased the soil anti-erodibility;the cover plants decreased the soil bulk density and generally increased the soil permeability,and the permeability of soils planted with Phalaris arundinacea var.picta,Pennisetum alopecuroides,C.brachytricha,C.leucochlora,C.lanceolata and Cosmos sulphureus extremely significantly differed from the control.Therefore,C.leucochlora,C.Lanceolata,P.arundinacea var.picta and C.brachytricha have the higher integrated soil and water conservation function and fit to be planted under the forest.%为了研究林下地被植物的水土保持功能,分别运用室内茎叶浸泡法、静水崩析法、双环刀法对12种地被植物的茎叶截留雨水能力、土壤抗蚀性和渗透性进行了测定.结果表明:茎叶截留雨水最强的为拂子茅(Calamagrostis brach ytricha)和玉带草(Phalaris arundinacea var.picta),超过自身质量的40%;玉带草、披针叶苔草(Carex lanceolata)和青绿苔草(Carex leucochlora)最大地提高了土壤抗蚀性;种植地被植物普遍地降低了土壤容重,提高了土壤的渗透系数,其中玉带草、狼尾草(Pennisetum alopecuroides)、拂子茅、青绿苔草、披针叶苔草、硫华菊效果极显著.青绿苔草、披针叶苔草、玉带草、拂子茅的综合水土保持功能较强,适合林下栽植.

  20. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    Science.gov (United States)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland

  1. Review: Freshwater conservation planning in South Africa ...

    African Journals Online (AJOL)

    Review: Freshwater conservation planning in South Africa: Milestones to ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... Since the 1970s, at approximately 10-year intervals, 4 national-scale freshwater conservation ...

  2. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    Science.gov (United States)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  3. An analysis of the feasibility of carbon management policies as a mechanism to influence water conservation using optimization methods.

    Science.gov (United States)

    Wright, Andrew; Hudson, Darren

    2014-10-01

    Studies of how carbon reduction policies would affect agricultural production have found that there is a connection between carbon emissions and irrigation. Using county level data we develop an optimization model that accounts for the gross carbon emitted during the production process to evaluate how carbon reducing policies applied to agriculture would affect the choices of what to plant and how much to irrigate by producers on the Texas High Plains. Carbon emissions were calculated using carbon equivalent (CE) calculations developed by researchers at the University of Arkansas. Carbon reduction was achieved in the model through a constraint, a tax, or a subsidy. Reducing carbon emissions by 15% resulted in a significant reduction in the amount of water applied to a crop; however, planted acreage changed very little due to a lack of feasible alternative crops. The results show that applying carbon restrictions to agriculture may have important implications for production choices in areas that depend on groundwater resources for agricultural production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949.

    Science.gov (United States)

    Wang, Fei; Mu, Xingmin; Li, Rui; Fleskens, Luuk; Stringer, Lindsay C; Ritsema, Coen J

    2015-03-01

    Policy plays a very important role in natural resource management as it lays out a government framework for guiding long-term decisions, and evolves in light of the interactions between human and environment. This paper focuses on soil and water conservation (SWC) policy in the Yellow River Basin (YRB), China. The problems, rural poverty, severe soil erosion, great sediment loads and high flood risks, are analyzed over the period of 1949-present using the Driving force-Pressure-State-Impact-Response (DPSIR) framework as a way to organize analysis of the evolution of SWC policy. Three stages are identified in which SWC policy interacts differently with institutional, financial and technology support. In Stage 1 (1949-1979), SWC policy focused on rural development in eroded areas and on reducing sediment loads. Local farmers were mainly responsible for SWC. The aim of Stage 2 (1980-1990) was the overall development of rural industry and SWC. A more integrated management perspective was implemented taking a small watershed as a geographic interactional unit. This approach greatly improved the efficiency of SWC activities. In Stage 3 (1991 till now), SWC has been treated as the main measure for natural resource conservation, environmental protection, disaster mitigation and agriculture development. Prevention of new degradation became a priority. The government began to be responsible for SWC, using administrative, legal and financial approaches and various technologies that made large-scale SWC engineering possible. Over the historical period considered, with the implementation of the various SWC policies, the rural economic and ecological system improved continuously while the sediment load and flood risk decreased dramatically. The findings assist in providing a historical perspective that could inform more rational, scientific and effective natural resource management going forward. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Analysis of different management systems for water and soil conservation in experimental plots of "macauba" (Acrocomia aculeata) in Araponga (MG, Brazil)

    Science.gov (United States)

    Batista Lúcio-Correa, João; Cristina-Tonello, Kelly; Taguas, Encarnación V.; Texeira-Dias, Herly C.

    2015-04-01

    In Brazil, the conservation of water resources and agricultural soil are key environmental and economic aspects to mantain land services and the quality of life people in rural and urban communities. The macaw - Acrocomia aculeata) (Jacq.) Lodd. (Ex Martius) - is a Brazilian native oleaginous palm, whose potential has been highlighted in the scientific community due to its high economic potential and its recent advances in crop farming. This study aims to quantify the runoff in macaw plantation, comparing different techniques of crop management for a period of one year (from September 2012 to August 2013). The data from this study were collected in the Experimental Farm of the Federal University of Viçosa (UFV) located in the municipality of Araponga, MG, Brazil. The seedlings took place in February 2009, in holes, spaced 5X5 in an area of 1.7 ha (680 plants) with a slope of 25%. Rainfall was monitored through three pluviometers with expose area of 162.86 cm² whereas the impact of different management systems on runoff was measured by using 10 plots of 63 m² each: 3 treatments with three repetitions plus the control plot. Each plot presented four macaw plants. The treatment one (T1), was formed by macaw plants without using any soil conservation technique; the treatment two (T2) consisted of macaws with a contour cord with 40 cm wide by 30 cm deep, located between the plantation lines; for the treatment three (T3) beans were planted forming vegetation strips; the control (T0) was represented by a portion without macaws plants, with spontaneous vegetation growing throughout the plot, which was not used any soil conservation technique. T2 presented the lowest values of runoff during the twelve months and at the same time, the greatest requirements of initial rainfall for runoff generation. In contrast, T3 showed the highest volumes of runoff for the study period, with a small reduction with the exception of January and February 2013, when the bean plants were well

  6. Conservation endocrinology

    Science.gov (United States)

    McCormick, Stephen; Romero, L. Michael

    2017-01-01

    Endocrinologists can make significant contributions to conservation biology by helping to understand the mechanisms by which organisms cope with changing environments. Field endocrine techniques have advanced rapidly in recent years and can provide substantial information on the growth, stress, and reproductive status of individual animals, thereby providing insight into current and future responses of populations to changes in the environment. Environmental stressors and reproductive status can be detected nonlethally by measuring a number of endocrine-related endpoints, including steroids in plasma, living and nonliving tissue, urine, and feces. Information on the environmental or endocrine requirements of individual species for normal growth, development, and reproduction will provide critical information for species and ecosystem conservation. For many taxa, basic information on endocrinology is lacking, and advances in conservation endocrinology will require approaches that are both “basic” and “applied” and include integration of laboratory and field approaches.

  7. Laboratory simulation of water-resources conservation by means of the layout of a series of ponds along a streambank

    Science.gov (United States)

    Jean, Jiin-Shuh; Hung, Chao-Chi

    The purpose of this research is to describe a water-storage method that is more reliable than reservoirs, and to study the efficacy of interception and storage of surface runoff in ponds. In this method, a series of ponds is laid out along a streambank so that interception of surface runoff can be increased and more water can be stored in the wet season for use in the dry season. The simulated results show that the structure of a pond, vegetation and the extent of land development, topographic slope, and the degree to which a pond penetrates an aquifer affect the efficacy of interception and storage of surface runoff in ponds. Résumé Le but de ce travail est de décrire une méthode de stockage d'eau qui soit plus sure que les réservoirs, et d'étudier l'efficacité de l'interception et du stockage d'eau de ruissellement dans des bassins. Dans cette méthode, une série de bassins est disposée le long d'une berge de rivière de façon à ce que l'interception de l'écoulement de surface puisse être accrue et que plus d'eau puisse être stockée pendant la saison humide pour être utilisée en saison sèche. Les résultats de la simulation montrent que l'efficacité de l'interception et du stockage du ruissellement dans les bassins sont déterminés par la structure du bassin, la végétation et l'importance du développement agricole, la pente des versants et le degré de pénétration du bassin dans la nappe. Resumen El objetivo de este trabajo es describir un método de almacenamiento de agua que ofrece mayor garantía que los embalses, así como estudiar la eficacia de la intercepción y almacenamiento de la escorrentía superficial en pequeñas lagunas artificiales. Este método consiste en crear una serie de lagunas a lo largo de las riberas de un torrente, de manera que intercepción de la escorrentía superficial se pueda incrementar y se almacene más agua en la época húmeda para su utilización en la época seca. Los resultados simulados muestran

  8. Evaluation on Sustainability of Technological Dimension Biopore Absorption Hole Management for Soil Water Conservation in Semarang City

    Directory of Open Access Journals (Sweden)

    Elesvera Destry

    2015-01-01

    Full Text Available Biopore technology innovation is an easy and cheap technology that can be applied in any class of society. Biopore Absorption Hole (BAH is a cylincric vertical hole with a relatively small diameter. Eventhough the diameter is not so big, it is still effective to absorb groundwater.The dimension of technology reflected how this BAH tecnology is applied to the Management of BAH within the society of Semarang City.In order to achieve maximum results, an evaluation toward the sustainability of the dimension of BAH Management technology in Semarang City needs to be performed.The objectives of this research are to:1 studying the status of technology dimension in maintaining BAH, 2 studying sensitive attributes having influence toward index value and the sustainability status of technology dimension in maintaining BAH, as well as 3 formulating the priorities for policies applicable to technology in maintaining BAH in Semarang.The research took place in three administrative villages (Srondol Wetan, Jatingaleh, and Bendan Ngisor in the city of Semarang.Those three locations were chosen to represent upper, middle, and lower regions of Semarang as water absorption area.The analysis of status determining data and leveraging factor was conducted using RAP – biopore method, while the the making of policy priorities was performed by using Analitycal Hierarchy Process (AHP.Results suggest that the status of the sustainability of Semarang’s BAH Management technology dimension was on “less sustainable” status (25,01 – 50,00. The strategy of enhancing influential sensitive attributes to improve sustainability status was a great success in affecting the values and sustainability status.

  9. Creative conservation

    NARCIS (Netherlands)

    Bentham, Roelof J.

    1968-01-01

    The increasing exploitation of our natural resources, the unlimited occupation of ever more new areas, and the intensification of land-use, make it necessary for us to expand the concept of conservation. But we also need to reconsider that concept itself. For the changing conditions in the

  10. Reshaping conservation

    DEFF Research Database (Denmark)

    Funder, Mikkel; Danielsen, Finn; Ngaga, Yonika

    2013-01-01

    members strengthen the monitoring practices to their advantage, and to some extent move them beyond the reach of government agencies and conservation and development practitioners. This has led to outcomes that are of greater social and strategic value to communities than the original 'planned' benefits...

  11. Hydrology and Conservation Ecology

    Science.gov (United States)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  12. Soil and Water Conservation Strategies in Cape Verde (Cabo Verde in Portuguese and Their Impacts on Livelihoods: An Overview from the Ribeira Seca Watershed

    Directory of Open Access Journals (Sweden)

    Isaurinda Baptista

    2015-01-01

    Full Text Available Severe land degradation has strongly affected both people’s livelihood and the environment in Cape Verde (Cabo Verde in Portuguese, a natural resource poor country. Despite the enormous investment in soil and water conservation measures (SWC or SLM, which are visible throughout the landscape, and the recognition of their benefits, their biophysical and socioeconomic impacts have been poorly assessed and scientifically documented. This paper contributes to filling this gap, by bringing together insights from literature and policy review, field survey and participatory assessment in the Ribeira Seca Watershed through a concerted approach devised by the DESIRE project (the “Desire approach”. Specifically, we analyze government strategies towards building resilience against the harsh conditions, analyze the state of land degradation and its drivers, survey and map the existing SWC measures, and assess their effectiveness against land degradation, on crop yield and people’s livelihood. We infer that the relative success of Cape Verde in tackling desertification and rural poverty owes to an integrated governance strategy that comprises raising awareness, institutional framework development, financial resource allocation, capacity building, and active participation of rural communities. We recommend that specific, scientific-based monitoring and assessment studies be carried out on the biophysical and socioeconomic impact of SLM and that the “Desire approach” be scaled-up to other watersheds in the country.

  13. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  14. Water conservation under scarcity conditions

    NARCIS (Netherlands)

    Zietlow, Kim J.; Michalscheck, Mirja; Weltin, Meike

    2016-01-01

    This study measures the long-run effect of the Abu Tawfeer media campaign in Jordan. Based on a representative sample (N = 367) conducted five years after the end of the campaign, a multivariate instrumental variable regression analysis shows that the campaign only marginally changed people’s

  15. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  16. Linking spatial planning, water resources management and biodiversity protection: a case study for the systematic conservation of rivers in South Africa

    CSIR Research Space (South Africa)

    Maree, GA

    2006-03-01

    Full Text Available . PAGE 2 OF 14 Background Biological Diversity or ‘biodiversity’ is an umbrella term and is defined by the Convention on Biological Diversity as: “the variability among living organisms from all sources including, inter alia, terrestrial, marine... as a means of conserving biological diversity is not enough to ensure sustainability. Rather, a range of strategies that consider the legislative framework at local and national levels should be included. The need for systematic conservation...

  17. 18 CFR 430.15 - Conservation requirements.

    Science.gov (United States)

    2010-04-01

    ... area of the municipal or public water supply. Such program shall include a program for leakage control... shall be adopted and implemented to provide for the detection and expeditious correction of leakage. (3... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Conservation...

  18. Environmental management of estuarine areas: a proposal for conservation of water and biodiversity to the mangroves of the Paraiba do Sul River estuary, Gargaú, RJ

    Directory of Open Access Journals (Sweden)

    Edêmea Faria Carlos Rocha

    2016-12-01

    Full Text Available Being impacted by illegal occupation and untreated sewage release, the mangrove estuary of the Paraíba do Sul River has high biodiversity and provides various ecosystem services. In this study, we focused on strategies for sustainability promotion in Gargaú, a locality in this estuarine region, associating mangrove conservation to the uses of common resources practiced by locals. The main investigated issues were: “Would it be feasible to create a Conservation Unit in order to reinforce legal mechanisms to protect the mangrove?”; and “How does the local community see the scenario of environmental degradation and the proposal of creating a Conservation Unit in the region?”. Locals strongly depend on the estuarine area resources and perceive mangrove deforestation as well as untreated sewage release as the main causes of negative impacts. Despite not knowing what a Conservation Unit actually is, local key informants agreed to its creation after clarification of the categories and groups fixed by Brazilian legislation. Although accepting it with reservation, they understood it is a necessary measure to conserve the mangrove that sustains them.

  19. Comparing the cost-effectiveness of water conservation policies in a depleting aquifer:A dynamic analysis of the Kansas High Plains

    Science.gov (United States)

    This research analyzes two groundwater conservation policies in the Kansas High Plains located within the Ogallala aquifer: 1) cost-share assistance to increase irrigation efficiency; and 2) incentive payments to convert irrigated crop production to dryland crop production. To compare the cost-effec...

  20. The new oil : water, its use, reuse and conservation has become almost as important to Alberta's economic future as oil

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2009-03-15

    This article addressed concerns about water use in Alberta's oil sand industry and the need to effectively manage it. Companies such as Suncor, Syncrude Canada, Imperial Oil, Canadian Natural Resources Ltd., Petro-Canada, Nexen, Devon Energy and ConocoPhillips have improved water-use efficiency and reduced absolute water use significantly in recent years. A large percentage of the water produced from bitumen processing is recycled. In addition, saline groundwater not suitable for human or agricultural use has been pumped from deep aquifers to use in place of fresh water. The new Water and Environmental Science Research Facility at the University of Lethbridge, demonstrates just how prominent an issue water has become. Nexen Inc. is funding a Fellowship for Water Research at the new Lethbridge centre. A research team at the department of chemical and petroleum engineering at the Schulich School of Engineering is developing new ways to clean up produced water to such a purity that it can be used in oil and gas operations or used for irrigation. The standard of purity for oil production processes is higher than it is for irrigation because salts and silicon in water cause corrosion problems in metal equipment such as steam boilers. Ultrafiltration is being tested as an option to treat the produced water. To purify the produced water without the added cost of using pressure, the research team is enhancing the filtering process by adding a surfactant, a surface-active agent or detergent. 1 fig.

  1. Infiltration and runoff losses under fallowing and conservation ...

    African Journals Online (AJOL)

    Fallowing and conservation agriculture are sustainable farming practices that can be used for soil and water conservation. The objectives of the study were to evaluate the effects of different conservation agriculture practices on rainfall infiltration and soil and water losses across 4 sites, using simulated rainfall. The study ...

  2. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    Science.gov (United States)

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity

  3. 河南省水利投融资结构及其与GDP关系分析%Structure of Water Conservancy Investment and Financing in Relation to GDP in Henan Province

    Institute of Scientific and Technical Information of China (English)

    岳伟丽

    2015-01-01

    Evaluation on the current mode and economic benefits of water conservancy investment and financing is the premise of its system reform. Based on the water conservancy investment and financing data during the period of 1991—2010 in Henan Province,this study firstly analyzed the sources of funds and the structure of water conservancy investment and financing,and then discussed its trends in recent 20 years. Finally,water conservancy investment and financing in relation to GDP was quantitatively evaluated. The results show that water con-servancy investment funds in Henan Province mainly come from three channels of the investment in the central,provincial and local self fi-nancing investment;the national debt has become an important source of investment in a certain period of time. Although in recent years the investment and financing has a diversification trend,but other financing sources of funds are still relatively small proportion. In recent 10 years,investment in the central and provincial investment and other investments are increased with increment of GDP. In addition to other in-vestments,water conservancy investments and financings in relation to GDP are binomial or exponential relationship.%评价当前水利投融资方式及其经济效益是开展水利投融资体制改革的前提。以河南省为例,基于1991—2010年水利投融资数据,分析了水利投融资的资金来源与结构,探讨了近20 a来水利主要投融资资金变化趋势,定量分析了各项投融资资金与GDP的关系。结果表明:河南省水利投融资资金主要来源于中央投资、省级投资和地方自筹3个渠道,国债在一定时期成为投资的重要来源。尽管近年来河南省水利投融资呈现多元化趋势,但其他投融资资金所占比例还相对较小。中央投资、省级投资及其他投资均随GDP的增长而增加;总投资、中央投资、省级投资与GDP之间具有较好的拟

  4. Molecular Tools For Biodiversity Conservation

    Indian Academy of Sciences (India)

    conservation in India. They are ... cuss these with case studies on some cat species in India. Introduction ... fallout since vital resources such as clean air, water, and food ... tion, climate change has become a much-dreaded catchword, and .... (Eastern. Mangroves Total and West- ern). /Inland wetlands. DNA extraction. 66.

  5. Economics, Ethics, Ecology: Roots of Productive Conservation.

    Science.gov (United States)

    Jeske, Walter E., Ed.

    Forty-seven articles represent most of the papers presented at the annual meeting of the Soil Conservation Society of America. The conference addressed the facts and values from economics, ethics, and ecology as they pertain to critical issues in land and water conservation in North America. Part I includes discussions of economic realities,…

  6. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report for the period July 1 to September 30, 1989 - Volume 1 - Text

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality.

  7. New England's Drinking Water | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  8. Magnuson-Stevens Fishery Conservation Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnuson-Stevens Fishery Conservation and Management Act (MSA) is the primary law governing marine fisheries management in U.S. federal waters. It has since been...

  9. Beyond conservation agriculture.

    Science.gov (United States)

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  10. Beyond conservation agriculture

    Science.gov (United States)

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  11. Beyond Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    Ken E Giller

    2015-10-01

    Full Text Available Global support for Conservation Agriculture (CA as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance, soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals and biotechnology. Over the past ten years CA has been promoted among smallholder farmers in the (sub- tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  12. Plant water use characteristics of five dominant shrub species of the Lower Rio Grande Valley, Texas, USA: implications for shrubland restoration and conservation.

    Science.gov (United States)

    Adhikari, Arjun; White, Joseph D

    2014-01-01

    The biogeographic distribution of plant species is inherently associated with the plasticity of physiological adaptations to environmental variation. For semi-arid shrublands with a legacy of saline soils, characterization of soil water-tolerant shrub species is necessary for habitat restoration given future projection of increased drought magnitude and persistence in these ecosystems. Five dominant native shrub species commonly found in the Lower Rio Grande Valley, TX, USA, were studied, namely Acacia farnesiana, Celtis ehrenbergiana, Forestiera angustifolia, Parkinsonia aculeata and Prosopis glandulosa. To simulate drought conditions, we suspended watering of healthy, greenhouse-grown plants for 4 weeks. Effects of soil salinity were also studied by dosing plants with 10% NaCl solution with suspended watering. For soil water deficit treatment, the soil water potential of P. glandulosa was the highest (-1.20 MPa), followed by A. farnesiana (-4.69 MPa), P. aculeata (-5.39 MPa), F. angustifolia (-6.20 MPa) and C. ehrenbergiana (-10.02 MPa). For the soil salinity treatment, P. glandulosa also had the highest soil water potential value (-1.60 MPa), followed by C. ehrenbergiana (-1.70 MPa), A. farnesiana (-1.84 MPa), P. aculeata (-2.04 MPa) and F. angustifolia (-6.99 MPa). Within the species, only C. ehrenbergiana and F. angustifolia for soil water deficit treatment and A. farnesiana for the salinity treatment had significantly lower soil water potential after 4 weeks of treatment (P < 0.05). We found that soil water potential, stomatal conductance and net photosynthesis of the species significantly reduced over time for both treatments (P < 0.05). We conclude that while all species exhibited capacities to withstand current water availability, some species demonstrated limited tolerance for extreme water stress that may be important for management of future shrub diversity in Lower Rio Grande Valley.

  13. Water

    Science.gov (United States)

    ... drink and water in food (like fruits and vegetables). 6. Of all the earth’s water, how much is ocean or seas? 97 percent of the earth’s water is ocean or seas. 7. How much of the world’s water is frozen? Of all the water on earth, about 2 percent is frozen. 8. How much ...

  14. Improving Conservation of Florida Manatees ( Trichechus manatus latirostris): Conceptualization and Contributions Toward a Regional Warm-Water Network Management Strategy for Sustainable Winter Habitat

    Science.gov (United States)

    Flamm, Richard Owen; Reynolds, John Elliot; Harmak, Craig

    2013-01-01

    We used southwestern Florida as a case study to lay the groundwork for an intended and organized decision-making process for managing warm-water habitat needed by endangered manatees to survive winters in Florida. Scientists and managers have prioritized (a) projecting how the network of warm-water sites will change over the next 50 years as warmed industrial discharges may expire and as flows of natural springs are reduced through redirection of water for human uses, and (b) mitigating such changes to prevent undue consequences to manatees. Given the complexities introduced by manatee ecology; agency organizational structure; shifting public demands; fluctuating resource availability; and managing within interacting cultural, social, political, and environmental contexts, it was clear that a structured decision process was needed. To help promote such a process, we collected information relevant to future decisions including maps of known and suspected warm-water sites and prototyped a characterization of sites and networks. We propose steps that would lead to models that might serve as core tools in manatee/warm-water decision-making, and we summarized topics relevant for informed decision-making (e.g., manatee spatial cognition, risk of cold-stress morbidity and mortality, and human dimensions). A major impetus behind this effort is to ensure proactively that robust modeling tools are available well in advance of the anticipated need for a critical management decision.

  15. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  16. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  17. Arid Green Infrastructure for Water Control and Conservation State of the Science and Research Needs for Arid/Semi-Arid Regions

    Science.gov (United States)

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure pract...

  18. Adoption of agricultural water conservation practices – a question of individual or collective behaviour? The case of the North China Plain

    NARCIS (Netherlands)

    Bluemling, B.; Yang, H.; Mosler, H.J.

    2010-01-01

    This article compares two approaches to identifying the factors that motivate farmers’ application of agricultural water saving measures. On the one hand, it is assumed that farmers respond individually to falls in the groundwater table. Cognitive and socio-demographic parameters are employed to

  19. Study and conservation of wood objects saturated of water originating of a pre-Columbian archaeological site: The Gran Templo Mayor of Tenochtitlan

    International Nuclear Information System (INIS)

    Alonso O, A.; Tzompantzi R, T.; Mendoza A, D.; Morgos, A.; Imazu, S.

    2004-01-01

    Few studies have been practiced on deterioration processes suffered by objects made of ancient tropical and coniferous woods. The reason is related to the fact that very few objects made of wood are usually found in archaeological excavations in our country. For this reason, applied studies of archaeological woods are, to us, fundamental to understand the preservation processes which have allowed very few pre-Columbian objects to survive the extreme conditions or submerged in streams and oceans. Some preliminary results were obtained in the studies practiced on the Mexican wooden miniature from the Offering number 102 of the Great Temple of Tenochtitlan. Light and electron microscopy as well as physical tests have proven to be suitable examination techniques to obtain information about the preservation level of wooden structures. The results obtained were important to understand the influence of the context in the preservation of the buried materials, furthermore they have allowed us to evaluate and ascertain new conservation procedures. (Author) 24 refs., 1 tab., 12 figs

  20. The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters

    OpenAIRE

    Mitja Janža; Dejan Šram; Kim Mezga; Mišo Andjelov; Jože Uhan

    2016-01-01

    Assessment of the available quantity of groundwater is of essential importance for its sustainable use. Modern approaches for estimation of groundwater availability take into account all potential impacts of abstractions, including impacts on groundwater dependent ecosystems and impacts on surface waters ecological status. Groundwater body is in good quantitative status if groundwater abstractions do not cause signifiant damages to groundwater dependent ecosystems and signifiant d...

  1. Research objectives to support the South Florida Ecosystem Restoration initiative-Water Conservation Areas, Lake Okeechobee, and the East/West waterways

    OpenAIRE

    Kitchens, Wiley M.

    1994-01-01

    The South Florida Ecosystem encompasses an area of approximately 28,000 km2 comprising at least 11 major physiographic provinces, including the Kissimmee River Valley, Lake Okeechobee, the Immokalee Rise, the Big Cypress, the Everglades, Florida Bay, the Atlantic Coastal Ridge, Biscayne Bay, the Florida Keys, the Florida Reef Tract, and nearshore coastal waters. South Florida is a heterogeneous system of wetlands, uplands, coastal areas, and marine areas, dominated by the watershe...

  2. Water: Too Precious to Waste.

    Science.gov (United States)

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  3. Conservation: Toward firmer ground

    Science.gov (United States)

    1975-01-01

    The following aspects of energy conservation were reviewed in order to place the problems in proper perspective: history and goals, conservation accounting-criteria, and a method to overcome obstacles. The effect of changing prices and available supplies of energy sources and their causes on consumption levels during the last few decades were described. Some examples of attainable conservation goals were listed and justified. A number of specific criteria applicable to conservation accounting were given. Finally, a discussion was presented to relate together the following aspects of energy conservation: widespread impact, involvement of government, industry, politics, moral and ethical aspects, urgency and time element.

  4. DESAIN VEGETASI BERNILAI KONSERVASI DAN EKONOMI PADA KAWASAN PENYANGGA SISTEM TATA AIR DAS BOLANGO (Designing of Vegetation which Conservation and Economic Values in the Buffer Area of Water System at the Bolango Watershed

    Directory of Open Access Journals (Sweden)

    Danang Wahyu Purnomo

    2016-02-01

    Full Text Available ABSTRAK Perencanaan pembangunan arboretum di DAS Bolango dengan konsep konservasi dan ekonomi perlu dilakukan karena DAS ini memiliki peranan yang penting dalam kehidupan masyarakat sekitar. Tujuan penelitian ini adalah memberikan rekomendasi tentang komposisi dan struktur vegetasi penyusun hutan pada kawasan arboretum sebagai pemelihara mata air Sungai Bolango. Penelitian dimulai dengan mengidentifikasi sumber mata air, tanah, dan kondisi vegetasi eksisting. Metode wawancara kepada masyarakat setempat dilakukan untuk mendukung data etnobotani. Kajian lahan dilakukan antara lain tata guna, kelas kemampuan, konsep pengelolaan, kesesuaian lahan, dan penentuan vegetasinya. Hasil identifikasi sumber mata air menunjukkan bahwa terdapat 3 lokasi yang potensial dibangun arboretum, yaitu Desa Meranti Kecamatan Tapa Kabupaten Bone Bolango, Desa Dulamayo Selatan Kecamatan Telaga Kabupaten Gorontalo, dan Desa Mongiilo Kecamatan Bolango Ulu Kabupaten Bone Bolango. Berdasarkan data kualitas tanah, ketiga lokasi memiliki media perakaran yang cukup baik untuk tanaman budi daya. Secara umum, semua jenis tanaman budi daya sesuai untuk ditanam di ketiga lokasi arboretum. Perlu dilakukan pembuatan teras dan penerapan pola tanam konservasi yang mengaplikasikan tanaman penutup tanah (cover crop, tanaman budi daya, dan pohon penyusun hutan. Selain itu, perlu pemberian pupuk organik berupa kompos dan pupuk kandang.   ABSTRACT Arboretum development planning in Bolango Watershed using concept of conservation and economy is conducted because the watershed has an important role in people's lives around. This study aims to provide recommendations about composition and structure of forest vegetation in the arboretum area for conserving of Bolango River’s water springs. The study began by identifying the source of the springs, soil, and the existing vegetation. Interview to local communities was conducted to support the data of ethnobotany. Land observation was studied

  5. 77 FR 12076 - Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan...

    Science.gov (United States)

    2012-02-28

    ... water conservation and market reallocation elements. The plan elements include projects and actions... Conservation (agricultural water and municipal/ domestic conservation); and 7. Market-Based Reallocation of Water Resources (institutional improvements to facilitate market-based water transfers). Public...

  6. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  7. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  8. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  9. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry...... concentration facilitated conservation of entire ecosystems. We investigate the benefits that accrued through dynamic linkages of the hydrological cycle and groundwater aquifer system. This provides a clear example of the need to consider integrated watershed effects, industrial structure, and linkages...... in determining conservation policy. We incorporated remote-sensing data, expert opinion on current watershed quality, and a spatial economic and hydrological model of O`ahu’s freshwater use with reports of conservation activities from 1910–1960 to assess these benefits. We find a 2.3% annual increase...

  10. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  11. Ethics of conservation triage

    Directory of Open Access Journals (Sweden)

    Kerrie A Wilson

    2016-09-01

    Full Text Available Conservation triage seems to be at a stalemate between those who accept triage based on utilitarian rationalization, and those that reject it based on a number of ethical principles. We argue that without considered attention to the ethics of conservation triage we risk further polarization in the field of conservation. We draw lessons from the medical sector, where triage is more intuitive and acceptable, and also from disaster planning, to help navigate the challenges that triage entails for conservation science, practice, and policy. We clarify the consequentialist, deontological, and virtue ethical stances that influence the level of acceptance of triage. We emphasize the ethical dimensions of conservation triage in principle and in practice, particularly in the context of stakeholder diversity, a wide range of possible objectives and actions, broader institutions, and significant uncertainties. A focus on a more diverse set of ethics, more considered choice of triage as a conservation tool, open communication of triage objectives and protocols, greater consideration of risk preferences, and regular review and adaptation of triage protocols is required for conservation triage to become more acceptable among diverse conservation practitioners, institutions, and the general public. Accepting conservation triage as fundamentally an ethical problem would foster more open dialogue and constructive debate about the role of conservation triage in a wider system of care.

  12. Hygienic aspects of pool water treatment plants. Fresh water and energy conservation by using Desozid 2000. Hygienische Aspekte bei Schwimmbadwasser-Aufbereitungsanlagen. Frischwasser- und Energieeinsparung durch den Einsatz von Desozid 2000

    Energy Technology Data Exchange (ETDEWEB)

    Pacik, D [Hygiene-Institut des Ruhrgebiets, Gelsenkirchen (Germany, F.R.)

    1989-01-01

    In the last years the so-called leisure swimming pools have become more and more popular. Swimming is no longer only a sport but it has become a substantial part of leisure activities. In this respect also hygiene aspect of pool water treatment plants gain importance. The legal basis forms the Bundesseuchengesetz (Federal Disease Law), the degree law about swimming and bathing pool water as well as the BGA-list. At present a DIN committee is working out a standard concerning the problems with hot bubbling pools. For hygiene reasons a means for disinfection should in any case be provided for the filling water (even before its introduction into the water storage). (BWI).

  13. Profit by conserving energy in your restaurant

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This manual is aimed at the Canadian restaurant sector with a view of promoting sound energy conservation practices. Monitoring is recommended to identify energy consumption and measure results of a conservation effects. These efforts can be done with respect to selection, operation, and maintenance of restaurant equipment used in food preparation, HVAC systems, refrigeration, water heating, and lighting. Overall building design and planning of new installations are also considered. 27 figs.

  14. Conservation: Toward firmer ground

    Science.gov (United States)

    1975-01-01

    The following aspects of energy conservation were discussed: conservation history and goals, conservation modes, conservation accounting-criteria, and a method to overcome obstacles. The conservation modes tested fall into one of the following categories: reduced energy consumption, increased efficiency of energy utilization, or substitution of one or more forms of energy for another which is in shorter supply or in some sense thought to be of more value. The conservation accounting criteria include net energy reduction, economic, and technical criteria. A method to overcome obstacles includes (approaches such as: direct personal impact (life style, income, security, aspiration), an element of crisis, large scale involvement of environmental, safety, and health issues, connections to big government, big business, big politics, involvement of known and speculative science and technology, appeal to moral and ethical standards, the transient nature of opportunities to correct the system.

  15. Econometric modelling of conservation

    International Nuclear Information System (INIS)

    Parker, J.C.; Seal, D.J.

    1990-01-01

    The issue of energy conservation in general, and conservation in the natural gas markets in particular, has recently had a much lower profile than in the past, when energy prices were significantly higher and energy costs composed a much larger proportion of industrial operating costs than today. The recent downward trend in energy prices has diverted attention away from this issue. In the face of expected significant real price increases, increasing pressure from environmental groups, and directives on the part of regulator authorities, conservation is once again becoming a topic of consideration in the energy industry. From the point of view of gas demand forecasting, conservation has received too little attention. The intentions of this paper are to establish the need for forecasting conservation in the natural gas utility sector, and to construct a model of industrial demand which incorporates conservation and is appropriate for use as a forecasting tool

  16. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  17. Handbook on energy conservation

    International Nuclear Information System (INIS)

    1989-12-01

    This book shows energy situation in recent years, which includes reserves of energy resource in the world, crude oil production records in OPEC and non OPEC, supply and demand of energy in important developed countries, prospect of supply and demand of energy and current situation of energy conservation in developed countries. It also deals with energy situation in Korea reporting natural resources status, energy conservation policy, measurement for alternative energy, energy management of Korea, investment in equipment and public education for energy conservation.

  18. 水库水面用地性质及水利水电建设项目用地保障研究%A Study on the Land Use Features of Reservoir Water Surface and the Land Use Security of Water Conservancy and Hydropower Projects

    Institute of Scientific and Technical Information of China (English)

    陈俊; 吴晓伟

    2014-01-01

    This paper comprehensively analyzes the definition,features,characteristics of reservoir and res-ervoir water land use.Using case studies,it analyzes and investigates the proportion of land for reservoir water in water land.Though comparing definition and classification of various land use classification system in China, it studies the similarities and differences of reservoir water and other water.It arrives at the conclusion that the land use for the reservoir water should be categorized as waters land rather than construction land.According to fine management requirement of land and resources ministry which explores water conservancy and hydropower for land,the paper proposes the strategies to improve the examining and approving of the land-use of water re-sources and hydropower construction project.%综合分析了水库及水库水面用地的定义、性质及特点。运用实例分析,研究了水库水面用地在水利用地中的比例及水库与其他水体的异同,认为水库水面用地宜归入水域类用地,而非建设用地。按照国土资源部探索水利水电用地精细化管理的要求,提出了改进水利水电建设项目用地审批的相关对策。

  19. Geomorphological characterization of conservation agriculture

    Science.gov (United States)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to

  20. Biodiversity Conservation and Conservation Biotechnology Tools

    Science.gov (United States)

    This special issue is dedicated to the in vitro tools and methods used to conserve the genetic diversity of rare and threatened species from around the world. Species that are on the brink of extinction, due to the rapid loss of genetic diversity and habitat, come mainly from resource poor areas the...

  1. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  2. REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy.

    Science.gov (United States)

    Kareiva, Peter; Groves, Craig; Marvier, Michelle

    2014-10-01

    The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries 'to conserve the lands and waters on which all life depends'. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as 'Conservation by Design' that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted. Synthesis and applications . Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions

  3. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  4. Controllability of conservative behaviours

    NARCIS (Netherlands)

    Rao, Shodhan

    2012-01-01

    In this article, we first define the class of J-conservative behaviours with observable storage functions, where J is a symmetric two-variable polynomial matrix. We then provide two main results. The first result states that if J(-xi,xi) is nonsingular, the input cardinality of a J-conservative

  5. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  6. Fixism and conservation science.

    Science.gov (United States)

    Robert, Alexandre; Fontaine, Colin; Veron, Simon; Monnet, Anne-Christine; Legrand, Marine; Clavel, Joanne; Chantepie, Stéphane; Couvet, Denis; Ducarme, Frédéric; Fontaine, Benoît; Jiguet, Frédéric; le Viol, Isabelle; Rolland, Jonathan; Sarrazin, François; Teplitsky, Céline; Mouchet, Maud

    2017-08-01

    The field of biodiversity conservation has recently been criticized as relying on a fixist view of the living world in which existing species constitute at the same time targets of conservation efforts and static states of reference, which is in apparent disagreement with evolutionary dynamics. We reviewed the prominent role of species as conservation units and the common benchmark approach to conservation that aims to use past biodiversity as a reference to conserve current biodiversity. We found that the species approach is justified by the discrepancy between the time scales of macroevolution and human influence and that biodiversity benchmarks are based on reference processes rather than fixed reference states. Overall, we argue that the ethical and theoretical frameworks underlying conservation research are based on macroevolutionary processes, such as extinction dynamics. Current species, phylogenetic, community, and functional conservation approaches constitute short-term responses to short-term human effects on these reference processes, and these approaches are consistent with evolutionary principles. © 2016 Society for Conservation Biology.

  7. Setting conservation priorities.

    Science.gov (United States)

    Wilson, Kerrie A; Carwardine, Josie; Possingham, Hugh P

    2009-04-01

    A generic framework for setting conservation priorities based on the principles of classic decision theory is provided. This framework encapsulates the key elements of any problem, including the objective, the constraints, and knowledge of the system. Within the context of this framework the broad array of approaches for setting conservation priorities are reviewed. While some approaches prioritize assets or locations for conservation investment, it is concluded here that prioritization is incomplete without consideration of the conservation actions required to conserve the assets at particular locations. The challenges associated with prioritizing investments through time in the face of threats (and also spatially and temporally heterogeneous costs) can be aided by proper problem definition. Using the authors' general framework for setting conservation priorities, multiple criteria can be rationally integrated and where, how, and when to invest conservation resources can be scheduled. Trade-offs are unavoidable in priority setting when there are multiple considerations, and budgets are almost always finite. The authors discuss how trade-offs, risks, uncertainty, feedbacks, and learning can be explicitly evaluated within their generic framework for setting conservation priorities. Finally, they suggest ways that current priority-setting approaches may be improved.

  8. Madagascar Conservation & Development

    African Journals Online (AJOL)

    Madagascar Conservation & Development welcomes the results of original research, field surveys, advances in field and laboratory techniques, book reviews, and informal status reports from research, conservation, development and management programs and in-field projects in Madagascar. In addition, notes on changes ...

  9. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  10. Conservation biology in Asia: the major policy challenges.

    Science.gov (United States)

    McNeely, Jeffrey A; Kapoor-Vijay, Promila; Zhi, Lu; Olsvig-Whittaker, Linda; Sheikh, Kashif M; Smith, Andrew T

    2009-08-01

    With about half the world's human population and booming economies, Asia faces numerous challenges to its biodiversity. The Asia Section of the Society for Conservation Biology has identified some key policy issues in which significant progress can be made. These include developing new sources of funding for forest conservation; identifying potential impacts of energy alternatives on the conservation of biodiversity; curbing the trade in endangered species of plants and animals; a special focus on the conservation of mountain biodiversity; enhancing relevant research; ensuring that conservation biology contributes to major international conventions and funding mechanisms; using conservation biology to build a better understanding of zoonotic diseases; more effectively addressing human-animal conflicts; enhancing community-based conservation; and using conservation biology to help address the pervasive water-deficit problems in much of Asia. These challenges can be met through improved regional cooperation among the relevant stakeholders.

  11. Japan's energy conservation policy

    International Nuclear Information System (INIS)

    Yoda, Kenichi

    1990-01-01

    This article reviews developments in Japanese energy conservation since the 1970s. The industrial sector has achieved the greatest success, due to industrial restructuring as well as improvements in energy efficiency. In the residential/commercial sector, the efficiency of appliances has been much improved. Although improvements have been made in the fuel efficiency of passenger cars, energy consumption in the transportation sector has risen slightly owing to increased transport of passengers and freight. The overall responsibility for energy conservation policy rests with the Ministry of International Trade and Industry. MITI is also responsible for implementing specific conservation policies in regard to the industrial and commercial sectors. In the residential sector, MITI works with the Ministry of Construction and in the transportation sector with the Ministry of Transport. To realize the goals of energy conservation policy through general research, dissemination of public information and other activities, MITI works with the Energy Conservation Center (ECC). (author). 2 figs, 3 tabs

  12. Tests of conservation laws

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1988-01-01

    For quite a while it has been realized that some discrete quantum numbers are conserved in some interactions but not in others. The most conspicuous cases are parity P, charge conjugation C, and the product CP which are conserved in strong and electromagnetic interactions but not in weak interactions. The question arises whether for some of the other conserved quantities, which are conserved in strong, electromagnetic and weak interactions, there is an interaction intermediate in strength between weak and gravitational which violates these quantum numbers, e.g., baryon number B and lepton number L. The possibility exists that these conservation laws, if they are broken at all, are only broken by the gravitational force which would make the mass of an intermediate boson which induces the break-down equal to the Planck mass. (orig.)

  13. Drinking Water - National Drinking Water Clearinghouse

    Science.gov (United States)

    Savings Septic Unsafe Disposable Wipe Woes FacebookLogo FOCUS AREAS Drinking Water Wastewater Training Security Conservation & Water Efficiency Water We Drink Source Water Protection SORA/COI EPA MOU CartIcon Links Listserv Educators Homeowners Operators Small Systems Drinking Water Read On Tap Latest

  14. 77 FR 32307 - Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers

    Science.gov (United States)

    2012-05-31

    ... energy conservation standards for various consumer products and certain commercial and industrial... Efficiency Levels 5. Proprietary Designs 6. Reverse Engineering D. Markups Analysis E. Energy and Water Use... per-cycle hot water energy consumption; (2) the total weighted per-cycle machine electrical energy...

  15. 高职《工程水文与水利计算》课程设计的理念与思路%Curruculum Design Concept and Idea Water Conservancy Computation in of Engineering Hydrology and Higher Vocational Education

    Institute of Scientific and Technical Information of China (English)

    黄泽钧

    2012-01-01

    课程改革是教育教学改革的核心,也是难点。本文就高等职业教育《工程水文与水利计算》课程设计,从课程教学目标、课程的设计理念、设计思路、设计的主要内容与原则几个方面进行了论述,提出课程设计要形成基于岗位工作要求的课程目标、基于职业能力培养的课程内容、基于教学规律的课程组织和适应学生自主学习的课程资源。%Curriculum reform is the core of reform in education and teaching and also the difficult point. The curriculum design of Engineering Hydrology and Water Conservancy Computation in higher vocational education is discussed from such aspects as the teaching objective, the design concept~ the design idea, the main content and pricinple. It is proposed that the objective should be set based on the requirements of the working position, the content should be designed for the cultivation of students" profesional ability, curriculum organization should be based on teaching rules and curriculum resources should be adaptable to students" autonomous learning.

  16. Navy Water Conservation Guide for Shore Activities.

    Science.gov (United States)

    1996-07-01

    later in this chapter). Generally, this contaminants from the cubes. will be applied to base laundromats and industrial laundries, rather than...There are not gpl (gallons per load). Laundromat many manufacturers of household type washers are front-loading, hori- front-loading, horizontal-axis

  17. Hearing Conservation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Hearing Conservation Team focuses on ways to identify the early stages of noise-induced damage to the human ear.Our current research involves the evaluation of...

  18. Madagascar Conservation & Development

    African Journals Online (AJOL)

    Madagascar Conservation & Development. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 1 (2014) >. Log in or Register to get access to full text downloads.

  19. Metro Conservation Corridors

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Metro Conservation Corridors (MeCC) grow out of the natural resource analysis work done by the DNR in the late '90's, documented in the Metro Greenprint...

  20. Madagascar Conservation & Development

    African Journals Online (AJOL)

    www.journalmcd.com

    2012-02-19

    Feb 19, 2012 ... MADAGASCAR CONSERVATION & DEVELOPMENT. VOLUME 7 ... die within a short period of time (e.g., infanticide) (Erhart and. Overdorff 1998 .... been as deep or may have healed by the time of examination. Falls during ...