WorldWideScience

Sample records for water components test

  1. Water-Cooled Components Testing Program. Water-cooled nozzle testing

    Energy Technology Data Exchange (ETDEWEB)

    1985-05-01

    This experimental program involving full-sized gas turbine components was directed towards investigating the nature, composition, and formation rates of the ash deposited on these components by the combustion of hot, minimally cleaned coal gas (MCCG) under actual operating environments. Fired combustion testing was performed using the hot coal gas generated by the fixed-bed coal gasifier in the GE/CRD Process Evaluation Facility (PEF). The hot gas was routed from the gasifier at approx.1000/sup 0/F to a hot cyclone for particulate removal, following which the gas was burned in the turbine simulator, a pressurized test rig. The cyclone was found to have an average particulate removal efficiency of approximately 98%. The concentration of total alkali in the fuel gas entering the turbine simulator was 0.3 to 0.6 ppM, half of which was water-soluble; this corresponds to 1 to 2 ppM in a liquid petroleum-based fuel. The ash content of the fuel gas was 9 to 16 ppM, which would correspond to 51 to 91 ppM of ash in a residual fuel oil, i.e., much lower than that usually found in the latter fuel. Very little ash was found to deposit on the water-cooled nozzle airfoils. Ash deposits on the airfoils were primarily PbSO/sub 4/ and Fe/sub 2/O/sub 3/, which proved to be readily removed by water washing. While the MCCG combustion process was satisfactory, testing indicated that a potential area of concern in burning hot MCCG fuel is the formation of carbonaceous deposits in the fuel nozzle and piping. Variations in operating parameters and procedures may be effective in avoiding such deposits. Test data and analysis thus provided clearer insight into the additional work needed to enable a gas turbine to utilize hot (>1000/sup 0/F), minimally cleaned coal gas fuel. Five problems are described. 5 refs., 82 figs., 26 tabs.

  2. Analysis of Removal Alternatives for the Heavy Water Components Test Reactor at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1996-08-01

    This engineering study was developed to evaluate different options for decommissioning of the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site. This document will be placed in the DOE-SRS Area reading rooms for a period of 30 days in order to obtain public input to plans for the demolition of HWCTR.

  3. Residual radioactivity guidelines for the heavy water components test reactor at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B. Smith, R.; McNeil, J.

    1997-04-01

    Guidelines were developed for acceptable levels of residual radioactivity in the Heavy Water Components Test Reactor (HWCTR) facility at the conclusion of its decommissioning. Using source terms developed from data generated in a detailed characterization study, the RESRAD and RASRAD-BUILD computer codes were used to calculate derived concentration guideline levels (DCGLs) for the radionuclides that will remain in the facility. The calculated DCGLs, when compared to existing concentrations of radionuclides measured during a 1996 characterization program, indicate that no decontamination of concrete surfaces will be necessary. Also, based on the results of the calculations, activated concrete in the reactor biological shield does not have to be removed, and imbedded radioactive piping in the facility can remain in place. Viewed in another way, the results of the calculations showed that the present inventory of residual radioactivity in the facility (not including that associated with the reactor vessel and steam generators) would produce less than one millirem per year above background to a hypothetical individual on the property. The residual radioactivity is estimated to be approximately 0.04 percent of the total inventory in the facility as of March, 1997. According to the results, the only radionuclides that would produce greater than 0.0.1-millirem per year are Am-241 (0.013 mrem/yr at 300 years), C-14 (0.022 mrem/yr at 1000 years) and U-238 (0.034 mrem/yr at 6000 years). Human exposure would occur only through the groundwater pathways, that is, from water drawn from, a well on the property. The maximum exposure would be approximately one percent of the 4 millirem per year ground water exposure limit established by the U.S. Environmental Protection Agency. 11 refs., 13 figs., 15 tabs.

  4. Component Based Testing with ioco

    NARCIS (Netherlands)

    van der Bijl, H.M.; Rensink, Arend; Tretmans, G.J.

    Component based testing concerns the integration of components which have already been tested separately. We show that, with certain restrictions, the ioco-test theory for conformance testing is suitable for component based testing, in the sense that the integration of fully conformant components is

  5. Protective structures on the surface of zirconium components of light water reactor cores: Formation, testing, and prototype equipment

    Energy Technology Data Exchange (ETDEWEB)

    Begrambekov, L. B.; Gordeev, A. A.; Evsin, A. E., E-mail: evsin@plasma.mephi.ru; Ivanova, S. V.; Kaplevsky, A. S.; Sadovskiy, Ya. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    The results of tests of plasma treatment of zirconium and deposition of protective yttrium coatings used as the methods of protection of zirconium components of light water reactor cores against hydrogenation are detailed. The amount of hydrogen in the treated sample exposed to superheated steam for 2500 h at temperature T = 400°C and pressure p = 1 atm was five times lower than the corresponding value for the untreated one. The amount of hydrogen in the sample coated with yttrium remained almost unchanged in 4000 h of exposure. A plasma method for rapid testing for hydrogen resistance is proposed. The hydrogenation rate provided by this method is 700 times higher than that in tests with superheated steam. The results of preliminary experiments confirm the possibility of constructing a unit for batch processing of the surfaces of fuel rod claddings.

  6. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, N.J.

    1998-10-21

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  7. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    Science.gov (United States)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  8. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

  9. Metallurgical Laboratory and Components Testing

    Data.gov (United States)

    Federal Laboratory Consortium — In the field of metallurgy, TTC is equipped to run laboratory tests on track and rolling stock components and materials. The testing lab contains scanning-electron,...

  10. PACS component testing: beta and acceptance testing

    Science.gov (United States)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1997-05-01

    The functionality and performance expectations of all PACS components must be specified at the time of purchase and tested completely upon delivery to assure customer satisfaction and successful adoption of the new technology. This process may be more elaborate if the customer agrees to serve as a Beta test site for a new component or a new revision of an existing component.A carefully designed test plan will save time at installation, will allow the customer and vendor to agree on expectations, and will assure that the installation will proceed as planned. This paper describes the test procedure used at the University of Florida to accept each PACS component, either a commercial product, or one developed in house. A set of documents contain descriptions of the pre-installation environment, sets of studies to be used in the test, installation checklist, functional usage reports, subjective evaluations, and problem reporting forms. Training and user documentation is also reviewed and 'help lists' are created to help users perform the most common functions. Although details in the documents are changed to match the type of component being tested, the general form of the test remains the same. A formal procedure for testing the functionality and performance of new equipment can save time for both the vendor and the customer and, if specified at the time of purchase, can serve to document the expectations of the customer. Following these procedures will assure a successful installation and improve customer satisfaction.

  11. Component Interaction Graph: A new approach to test component composition

    CERN Document Server

    Acharya, Arup Abhinna

    2010-01-01

    The key factor of component based software development is component composition technology. A Component interaction graph is used to describe the interrelation of components. Drawing a complete component interaction graph (CIG) provides an objective basis and technical means for making the testing outline. Although many researches have focused on this subject, the quality of system that is composed of components has not been guaranteed. In this paper, a CIG is constructed from a state chart diagram and new test cases are generated to test the component composition.

  12. Testing the Waters.

    Science.gov (United States)

    Finks, Mason

    1993-01-01

    Provides information about home drinking water treatment systems to address concerns about the safety and quality of drinking water. Discusses water testing, filtration, product options and selection, water testing resources, water treatment device guidelines, water analysis terminology, and laboratory selection. (MCO)

  13. Water quality assessment using SVD-based principal component ...

    African Journals Online (AJOL)

    Water quality assessment using SVD-based principal component analysis of hydrological data. ... value decomposition (SVD) of hydrological data was tested for water quality assessment. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  14. Semiautomatic device tests components with biaxial leads

    Science.gov (United States)

    Marshall, T. C.

    1966-01-01

    Semiautomatic device with a four-terminal network tests quantities of components having biaxial leads. The four-terminal network permits the testing of components in different environments. This device is easily modified for completely automatic operation.

  15. Component Based Dynamic Reconfigurable Test System

    Institute of Scientific and Technical Information of China (English)

    LAI Hong; HE Lingsong; ZHANG Dengpan

    2006-01-01

    In this paper, a novel component based framework of test system is presented for the new requirements of dynamic changes of test functions and reconfiguration of test resources. The complexity of dynamic reconfiguration arises from the scale, redirection, extensibility and interconnection of components in test system. The paper is started by discussing the component assembly based framework which provide the open platform to the deploy of components and then the script interpreter model is introduced to dynamically create the components and build the test system by analyzing XML based information of test system. A pipeline model is presented to provide the data channels and behavior reflection among the components. Finally, a dynamic reconfigurable test system is implemented on the basis of COM and applied in the remote test and control system of CNC machine.

  16. Permutation Tests in Principal Component Analysis.

    Science.gov (United States)

    Pohlmann, John T.; Perkins, Kyle; Brutten, Shelia

    Structural changes in an English as a Second Language (ESL) 30-item reading comprehension test were examined through principal components analysis on a small sample (n=31) of students. Tests were administered on three occasions during intensive ESL training. Principal components analysis of the items was performed for each test occasion.…

  17. A three-component freshwater test system for biomonitoring superficial water quality; Sviluppo di un sistema di biomonitoraggio a tre componenti per la valutazione della qualita` delle acque

    Energy Technology Data Exchange (ETDEWEB)

    Dell`Orto, Nicola; Ciccotelli, Marina; Cantelli, Davide; Camatini, Marina [Milan, Univ. (Italy). Dipt. di Scienze dell`Ambiente e del Territorio

    1997-10-01

    Most watercourse flowing in urbanized areas are extremely complex mixtures containing several inorganic and organic compounds. A successful approach to the risk assessment of pollutants is represented by the use of biological test, which have been applied to the analyses of the Arno stream: it rises at Varese district and overflows in an extensive area at Castano Primo, after receiving effluent out coming from municipal wastewater treatment plant. Water quality of this stream was tested using: the EPA`s algal (Selenastrum capricornutum) growth test, the IRSA-proposed Daphnia magna toxicity test, and the Frog Embryo Teratogenesis Assay Xenopus (FETAX) procedure. The results obtained here demonstrate that the waters tested did not produce toxicity to the organisms used, while the effluent from treatment plant affected a significant algal growth. The test here used result to be a simple battery of test for broader scale detection of environmental hazards.

  18. Compatibility and testing of electronic components

    CERN Document Server

    Jowett, C E

    2013-01-01

    Compatibility and Testing of Electronic Components outlines the concepts of component part life according to thresholds of failure; the advantages that result from identifying such thresholds; their identification; and the various tests used in their detection. The book covers topics such as the interconnection of miniature passive components; the integrated circuit compatibility and its components; the semiconductor joining techniques; and the thin film hybrid approach in integrated circuits. Also covered are topics such as thick film resistors, conductors, and insulators; thin inlays for el

  19. Processing, testing and selecting blood components.

    Science.gov (United States)

    Jones, Alister; Heyes, Jennifer

    Transfusion of blood components can be an essential and lifesaving treatment for many patients. However, components must comply with a number of national requirements to ensure they are safe and fit for use. Transfusion of incorrect blood components can lead to mortality and morbidity in patients, which is why patient testing and blood selection are important. This second article in our five-part series on blood transfusion outlines the requirements for different blood components, the importance of the ABO and RhD blood group systems and the processes that ensure the correct blood component is issued to each patient.

  20. Component evaluation testing and analysis algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  1. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K

    2010-01-01

    Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergi...

  2. Corrosion Control Test Method for Avionic Components

    Science.gov (United States)

    1981-09-25

    Oelionstration and Corrosion Tests Documnentation Task 1 Task 2k3 3 Tent Methods 3 Test Methods 2 Test Methods FIgure 1program Plan 2 NADC 81174-60 04 L...per 10 cubic foot of uhamber velume every 24 hours. The solution is atomized by compressed air humidified by bubbling through 115*F distilled water

  3. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K

    2010-01-01

    disease. Novel tools to predict severe outcomes and to plan for allergen-specific treatment are necessary, and because only a small amount of blood is needed to test for a multitude of allergens and allergenic components, component resolved diagnostics is promising. A drawback is the risk of overdiagnosis......Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergic...... and misinterpretation of the complex results of such tests. Also, the practical use and selection of allergenic components need to be evaluated in large studies including well-characterized patients and healthy, sensitized controls and with representation of different geographical regions....

  4. Abrasion Testing of Critical Components of Hydrokinetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska; Ali, Muhammad [Ohio University; Ravens, Tom [University of Alaska Anchorage

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  5. Water Hammer Test

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation This video shows the propulsion system on an engineering model of NASA's Phoenix Mars Lander being successfully tested. Instead of fuel, water is run through the propulsion system to make sure that the spacecraft holds up to vibrations caused by pressure oscillations. The test was performed very early in the development of the mission, in 2005, at Lockheed Martin Space Systems, Denver. Early testing was possible because Phoenix's main structure was already in place from the 2001 Mars Surveyor program. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Water Hammer Test

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation This video shows the propulsion system on an engineering model of NASA's Phoenix Mars Lander being successfully tested. Instead of fuel, water is run through the propulsion system to make sure that the spacecraft holds up to vibrations caused by pressure oscillations. The test was performed very early in the development of the mission, in 2005, at Lockheed Martin Space Systems, Denver. Early testing was possible because Phoenix's main structure was already in place from the 2001 Mars Surveyor program. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Dynamic leaching test of personal computer components.

    Science.gov (United States)

    Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K

    2009-11-15

    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains.

  8. Estimation of GRACE water storage components by temporal decomposition

    Science.gov (United States)

    Andrew, Robert; Guan, Huade; Batelaan, Okke

    2017-09-01

    The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 2002. Water storage estimates are calculated from gravity anomalies detected by the operating satellites and although not the true resolution, can be presented as 100 km × 100 km data cells if appropriate scaling functions are applied. Estimating total water storage has shown to be highly useful in detecting hydrological variations and trends. However, a limitation is that GRACE does not provide information as to where the water is stored in the vertical profile. We aim to partition the total water storage from GRACE into water storage components. We use a wavelet filter to decompose the GRACE data and partition it into various water storage components including soil water and groundwater. Storage components from the Australian Water Resources Assessment (AWRA) model are used as a reference for the decompositions of total storage data across Australia. Results show a clear improvement in using decomposed GRACE data instead of raw GRACE data when compared against total water storage outputs from the AWRA model. The method has potential to improve GRACE applications including a means to test various large scale hydrological models as well as helping to analyse floods, droughts and other hydrological conditions.

  9. Feasibility and Testing of Additive Manufactured Components

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Hummelt, Ed [Eaton Corporation; Solovyeva, Lyudmila [Eaton Corporation

    2016-09-01

    This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques were selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.

  10. Gene set analysis using variance component tests

    Science.gov (United States)

    2013-01-01

    Background Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. Results We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). Conclusion We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data. PMID:23806107

  11. Trends in water balance components across the Brazilian Cerrado

    Science.gov (United States)

    Oliveira, Paulo Tarso S.; Nearing, Mark A.; Moran, M. Susan; Goodrich, David C.; Wendland, Edson; Gupta, Hoshin V.

    2014-09-01

    We assess the water balance of the Brazilian Cerrado based on remotely sensed estimates of precipitation (TRMM), evapotranspiration (MOD16), and terrestrial water storage (GRACE) for the period from 2003 to 2010. Uncertainties for each remotely sensed data set were computed, the budget closure was evaluated using measured discharge data for the three largest river basins in the Cerrado, and the Mann-Kendall test was used to evaluate temporal trends in the water balance components and measured river discharge. The results indicate an overestimation of discharge data, due mainly to the overestimation of rainfall by TRMM version 6. However, better results were obtained when the new release of TRMM 3B42 v7 was used instead. Our results suggest that there have been (a) significant increases in average annual evapotranspiration over the entire Cerrado of 51 ± 15 mm yr-1, (b) terrestrial water storage increases of 11 ± 6 mm yr-1 in the northeast region of the Brazilian Cerrado, and (c) runoff decreases of 72 ± 11 mm yr-1 in isolated spots and in the western part of the State of Mato Grosso. Although complete water budget closure from remote sensing remains a significant challenge due to uncertainties in the data, it provides a useful way to evaluate trends in major water balance components over large regions, identify dry periods, and assess changes in water balance due to land cover and land use change.

  12. Full Scale Component Test Facility KOPRA - Qualification Test of EPR Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Alexander; Herr, Wolfgang [AREVA NP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Champomier, Francois [AREVA NP SAS, Tour AREVA - Cedex 16, 92084 Paris-La Defense (France)

    2008-07-01

    The test facility KOPRA is designed for full scale-tests on nuclear components under operational conditions. One part of it is the component test loop for developing and qualifying nuclear core components respecting temperature, pressure and mass flow of pressurized water reactor conditions. The KOPRA test facility and its measuring equipment is presented through qualification tests for the control rod drive mechanism and the control rod drive line of the new European Pressurized Water Reactor (EPR). The control rod drive mechanism qualification test program is split into three different test phases. At first, performance tests are conducted to verify the adequate performance of the new equipment, e.g. measurement of rod cluster control assembly drop time under different thermal hydraulic conditions, impact velocity of drive rod on CRDM latch tips and drive rod acceleration during stepping operation by means of strain gauges or through direct measurement. After these functional tests follow the stability tests to ensure that proper functioning is reliably achieved over an appreciable amount of time and the endurance tests to quantify the amount of time and/or the number of steps during which no appreciable wear, that could possibly alter the correct behaviour, is to be expected. (authors)

  13. Chemical and Physical Indicators in Drinking Water and Water Sources of Boroujerd Using Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    Darabi , M. (MSC

    2014-05-01

    Full Text Available Background and Objective: Quality control of drinking water is important for maintaining health and safety of consumers, and the first step is to study the water quality variables. This study aimed to evaluate the chemical and physical indicators, water quality variables and qualitative classification of drinking water stations and water sources in Boroujerd. Material and Methods: This descriptive-cross sectional study was conducted on 70 samples of drinking water and 10 samples from sources in 2011-2012. Nine Water quality variables were measured and coded using STATISTICA10 Software. Principal component analysis (PCA was performed for qualitative classification of water samples and determination of water quality variables. Results: Based on PCA, chemical variables such as fluoride, nitrate, total hardness and iron, and physical variables such as pH and TDS were paramount importance to water quality. According to T-test, the average concentration of fluoride and iron, and the turbidity in all samples were significantly less than the standard. But other variables were up to standard. Conclusion: For the large water quality data, the use of PCA to identify the main qualitative variables and to classify physical and chemical variables can be used as an effective way in water quality management. Keywords: Physical and Chemical Indicators, Drinking Water and Sources, Boroujerd, Principal Component Analysis

  14. 21 CFR 866.5240 - Complement components immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement components immunological test system....5240 Complement components immunological test system. (a) Identification. A complement components... complement components C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8, and C9, in serum, other body fluids,...

  15. Test System for Standard ALICE DCS Components

    CERN Document Server

    AUTHOR|(CDS)2160773

    2016-01-01

    Currently, the ALICE DCS project is supervising equipment installed in the ALICE experiment site at CERN. Hence, the aim of this project was to provide a test bench in the DCS lab, where a real equipment and software tools will be deployed. Using this test bench, test procedures which exercise the devices under the test in a configurable way and provide logging and trending of the acquired data were implemented. The setup was devised using the ALICE software framework and Siemens SCADA system WINCC OA, providing the same functionality as the systems installed in ALICE, and will be used for the commissioning of the new software and hardware, burn-in tests of new modules and log-term stability tests of ALICE hardware.

  16. Components and Treatments of Oilfield Produced Water

    Directory of Open Access Journals (Sweden)

    Essam Abdul-Jalil Saeed

    2010-01-01

    Full Text Available In this study, a review of variety of processes that are used in the treatment produced water prior to reuse or to responsible disposal are presented with their environmental issues and economical benefits. Samples of produced water from five locations in Rumaila oilfield/in south of Iraq were taken and analyzed for their contents of brine, some heavy metals, total suspended solids and oil and grease. Moreover, two samples of water were treated using reverse osmosis technique which showed its ability to treat such contaminated water. The results showed that the environmental impact of produced water arises from its chemical composition; i.e., its salt content, its heavy metals, and hydrocarbon contents.

  17. Leak testing of cryogenic components - problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S P; Pandarkar, S P; Unni, T G; Sinha, A K; Mahajan, K; Suthar, R L [Centre for Design and Manufacture, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: sushils@barc.gov.in

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN{sub 2}) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN{sub 2} basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN{sub 2} through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in

  18. Leak testing of cryogenic components — problems and solutions

    Science.gov (United States)

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  19. HEAVY METALS IN THE ECOSYSTEM COMPONENTS AT "DEGELEN" TESTING GROUND OF THE FORMER SEMIPALATINSK TEST SITE

    Directory of Open Access Journals (Sweden)

    A.B. Yankauskas

    2012-06-01

    Full Text Available The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and "nonradiative" factors. There were investigated near-portal areas of the tunnels with water seepage at "Degelen" site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel # 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10-5 – n*10-7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238U in the studied waters lie in the range of n*10-4 – n*10-6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor.

  20. Reliability Compliance Testing of Electronic Components for Consumer Electronics

    OpenAIRE

    Peciakowski, E.; Przybyl, E.

    1985-01-01

    In this paper the organisation of reliability compliance testing of electronic components in Poland is discussed. The aim of the testing is to find the reliability of the components to both producer and user and hence to establish reliability for the two parties. The system described is derived from standard methods and has two aims. These are:-1) To enable periodical checks of production to be made.2) To estimate the reliability level of the components produced.Sampling plans are constructed...

  1. Alternative Water Processor Test Development

    Science.gov (United States)

    Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew

    2012-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  2. Alternative Water Processor Test Development

    Science.gov (United States)

    Pickering, Karen D.; Mitchell, Julie L.; Adam, Niklas M.; Barta, Daniel; Meyer, Caitlin E.; Pensinger, Stuart; Vega, Leticia M.; Callahan, Michael R.; Flynn, Michael; Wheeler, Ray; hide

    2013-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  3. Characteristic test technology for PWR fuel and its components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho; Jeong, Yong Hwan; Park, Sang Yoon; Kim, Kyeng Ho; Nam, Cheol; Baek, Jong Hyuk; Lee, Myung Ho; Choi, Byoung Kwon; Song, Kun Woo; Kang, Ki Won; Kim, Keon Sik; Kim, Jong Hun; Kim, Young Min; Yang, Jae Ho; Song, Kee Nam; Kim, Hyung Kyu; Kang, Heung Seok; Yoon, Kyung Ho; Chun, Tae Hyun; In, Wang Kee; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Characteristic tests of fuel assembly and its components being developed in the Advanced LWR Fuel Development Project supported by the mid-long term nuclear R and D program are described in this report. Performance verification of fuel and its components by the characteristic tests are essential to their development. Fuel components being developed in the Advanced LWR Fuel Development Project are zirconium alloy cladding, UO{sub 2} and burnable absorber pellets, spacer grid and top and bottom end pieces. Detailed test plans for those fuel components are described in this report, and test procedures of cladding and pellet are also described in the Appendix. Examples of the described tests are in- and out-of- pile corrosion and mechanical tests such as creep and burst tests for the cladding, in-pile capsule and ramp tests for the pellet, mechanical tests such as strength and vibration, and thermal-hydraulic tests such as pressure drop and critical heat flux for the spacer grid and top and bottom end pieces. It is expected that this report could be used as the standard reference for the performance verification tests in the development of LWR fuel and its components. 11 refs., 9 figs., 2 tabs. (Author)

  4. TESTS FOR VARIANCE COMPONENTS IN VARYING COEFFICIENT MIXED MODELS

    National Research Council Canada - National Science Library

    Zaixing Li; Yuedong Wang; Ping Wu; Wangli Xu; Lixing Zhu

    2012-01-01

    .... To address the question of whether a varying coefficient mixed model can be reduced to a simpler varying coefficient model, we develop one-sided tests for the null hypothesis that all the variance components are zero...

  5. Robust Principal Component Test in Gross Error Detection and Identification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Principle component analysis (PCA) based chi-square test is more sensitive to subtle gross errors and has greater power to correctly detect gross errors than classical chi-square test. However, classical principal component test (PCT) is non-robust and can be very sensitive to one or more outliers. In this paper, a Huber function liked robust weight factor was added in the collective chi-square test to eliminate the influence of gross errors on the PCT. Meanwhile, robust chi-square test was applied to modified simultaneous estimation of gross error (MSEGE) strategy to detect and identify multiple gross errors. Simulation results show that the proposed robust test can reduce the possibility of type Ⅱ errors effectively. Adding robust chi-square test into MSEGE does not obviously improve the power of multiple gross error identification, the proposed approach considers the influence of outliers on hypothesis statistic test and is more reasonable.

  6. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  7. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  8. Testing to Support Improvements to PV Components and Systems

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

    2000-07-15

    The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

  9. Fiber Optic Component Tests In High Speed Data Bus Applications

    Science.gov (United States)

    Creswell, R.; Drake, M. D.; Husbands, C. R.

    1982-12-01

    A series of tests was performed to evaluate off-the-shelf components for the design of a fiber optic channel for the Nascom System Improvements Project in support of the NASA Goddard Space Flight Center. This paper describes the results of this series of tests, establishing operational performance of active and passive fiber optic components at data rates up to 150 Mb/s. These tests determine the transmission characteristics of the fiber optic transmitters and receivers and the effects of data rate, bit pattern sensitivity, and vestigial optical energy on the performance of these devices. Tests were also performed to evaluate the capability of fused biconical couplers to Function properly at these high data rates.

  10. Evaluation of Integrated High Temperature Component Testing Needs

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Soto; David Duncan; Vincent Tonc

    2009-05-01

    This paper describes the requirements for a large-scale component test capability to support the development of advanced nuclear reactor technology and their adaptation to commercial applications that advance U.S. energy economy, reliability, and security and reduce carbon emissions.

  11. Calibration and Testing of Digital Zenith Camera System Components

    Science.gov (United States)

    Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim

    2017-04-01

    Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.

  12. A Novel Method to Test Dependable Composed Service Components

    Directory of Open Access Journals (Sweden)

    Khaled Farj

    2016-05-01

    Full Text Available Assessing Web service systems performance and their dependability are crucial for the development of today’s applications. Testing the performance and Fault Tolerance Mechanisms (FTMs of composed service components is hard to be measured at design time due to service instability is often caused by the nature of the network conditions. Using a real internet environment for testing systems is difficult to set up and control. We have introduced a fault injection toolkit that emulates a WAN within a LAN environment between composed service components and offers full control over the emulated environment in addition to the capability to inject network-related faults and application specific faults. The toolkit also generates background workloads on the system under test so as to produce more realistic results. We describe an experiment that has been performed to examine the impact of fault tolerance protocols deployed at a service client by using our toolkit system.

  13. Design and Testing of Improved Spacesuit Shielding Components

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  14. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  15. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  16. Relationships of Cognitive Components of Test Anxiety to Test Performance: Implications for Assessment and Treatment.

    Science.gov (United States)

    Bruch, Monroe A.; And Others

    1983-01-01

    Assessed the degree to which components of test-taking strategies, covert self-statements, and subjective anxiety during an exam provide increments in prediction of test performance of undergraduates (N=72). Results showed that only test-taking strategies provided a significant increment to multiple-choice and essay test performance but not math…

  17. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1980-08-01

    tests of reference steels of the NRC light water reactor, pressure vessel irradiation dosimetry program. SECURITY CLAS5IICATION 0PHiS PA6GMbn" Dfat ...multiple specimen R- curve approach; NRL emphasis was on the SSC procedure as it is being developed for hot- cell testing of irradiated materials. MULTIPLE...a second autoclave, capable of testing 50 or 100 mm (2T or 4T) thick CT or WOL specimens, was installed in a hot cell and a test was started on 2T-CT

  18. Multigroup Moderation Test in Generalized Structured Component Analysis

    Directory of Open Access Journals (Sweden)

    Angga Dwi Mulyanto

    2016-05-01

    Full Text Available Generalized Structured Component Analysis (GSCA is an alternative method in structural modeling using alternating least squares. GSCA can be used for the complex analysis including multigroup. GSCA can be run with a free software called GeSCA, but in GeSCA there is no multigroup moderation test to compare the effect between groups. In this research we propose to use the T test in PLS for testing moderation Multigroup on GSCA. T test only requires sample size, estimate path coefficient, and standard error of each group that are already available on the output of GeSCA and the formula is simple so the user does not need a long time for analysis.

  19. Seawater test results of Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) components

    Science.gov (United States)

    Zangrando, F.; Bharathan, D.; Link, H.; Panchal, C. B.

    Key components of open-cycle ocean thermal energy conversion systems- the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages- have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 cu m/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  20. Field Testing of Nano-PCM Enhanced Building Envelope Components

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of

  1. Leaching of heavy metals from water bottle components into the drinking water of rodents.

    Science.gov (United States)

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals.

  2. Ballast Water Treatment Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides functionality for the full-scale testing and controlled simulation of ship ballasting operations for assessment of aquatic nuisance species (ANS)...

  3. Studies on leaching of photoresist components by water

    Science.gov (United States)

    Oh, Seung Keun; Kim, Jong Yong; Jung, Young Ho; Lee, Jae Woo; Kim, Deog Bae; Kim, Jaehyun; Lee, Geun Su; Lee, Sung Koo; Ban, Keun Do; Jung, Jae Chang; Bok, Cheol Kyu; Moon, Seung Chan

    2005-05-01

    Immersion lithography has drawn tons of interests as a potential solution for sub-65nm patterning. High refractive index liquid, which is filled in the gap between exposure lens and a photoresist, can improve a resolution through increased effective numerical aperture (NA) of the exposure system. Most attractive liquid for this purpose is water. Our works were conducted as a part of the basic study for immersion lithography and aimed for the verification of leached resist components by water. It was observed that leaching relies largely on the free volume of a polymer and anion size of photoacid generator (PAG). The larger free volume and the smaller anion, the larger T-top resist profile was generated. Additionally, effects of solvents, quenchers and polarity of the polymer were investigated. Detailed results will be reported in this paper.

  4. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Phil WInston

    2011-09-01

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  5. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  6. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Science.gov (United States)

    Müller Schmied, Hannes; Adam, Linda; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Kim, Hyungjun; Oki, Taikan; Portmann, Felix Theodor; Reinecke, Robert; Riedel, Claudia; Song, Qi; Zhang, Jing; Döll, Petra

    2016-10-01

    The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971-2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (-6 to 11 % from the ensemble mean). Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  7. Purification of Spatial Tests: An IRT Analysis of Spatial and Reasoning Components in "Spatial" Tests.

    Science.gov (United States)

    Zimowski, Michele F.; Wothke, Werner

    Tests of spatial ability were analyzed for their analog (visuospatial) and nonanalog (verbal reasoning) components, using factor analyses of items and test scores. The self-selected sample consisted of over 2000 clients (average age about 26 or 27) employing the Johnson O'Connor Research Foundation's aptitude evaluation services in 12 metropolitan…

  8. AWRA-G: A continental scale groundwater component linked to a land surface water balance model

    Science.gov (United States)

    Joehnk, Klaus; Crosbie, Russell; Peeters, Luk; Doble, Rebecca

    2013-04-01

    The Australian Water Resources Assessment (AWRA) system is a combination of models, data sources and analysis techniques that together will describe the water balance of Australia's landscapes, rivers and groundwater systems. It is a grid based water balance model that has lumped representation of the water balance of the soil, groundwater and surface water stores for each cell. The purpose of AWRA is to operationally provide up to date, credible, comprehensive, and accurate information about the history, present state and future trajectory of the water balance across Australia with sufficient spatial and temporal detail and enable water resources management for undertaking annual water resource assessments and national water accounts. AWRA is developed to link three major components: a landscape water balance model (AWRA-L), a river routing model (AWRA-R), and a groundwater component model (AWRA-G). These three component models combined are expected to be able to model the fluxes and stores of water throughout the landscape. The groundwater component (AWRA-G) addresses an improved representation of groundwater in the AWRA system to describe basic aquifer dynamics and groundwater-surface water processes. While most continental scale land surface models do not have the capacity to allow water to flow between cells and thus ignore this element of the water balance, AWRA-G does account for lateral flows. In general, AWRA-G provides estimates of groundwater fluxes that are not incorporated into either AWRA-L and its modifications to in-cell soil and groundwater processes, or AWRA-R. The processes integrated into AWRA-G thus are lateral groundwater flow between cells in regional and intermediate groundwater flow systems, groundwater discharge to the ocean, groundwater extraction and infiltration, river losses to groundwater, recharge from overbank flooding, and interactions between deep confined systems and surficial groundwater systems. Basis of AWRA-G is a good

  9. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  10. Performance of materials in the component cooling water systems of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S.

    1993-06-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed.

  11. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  12. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  13. Development and verification test of integral reactor major components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability.

  14. Component tests for the ITER Ion Cyclotron Transmission Line and Matching System - Status and Plans

    Science.gov (United States)

    Goulding, R. H.; McCarthy, M. P.; Deibele, C. E.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Campbell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.; Kung, C.

    2015-11-01

    New Z0 = 50 Ω gas-cooled component designs for the ITER Ion Cyclotron Heating and Current Drive System have been successfully tested at high RF power levels. They include two types featuring spoke-ring assembly (SRA) inner conductor supports: 20° elbows, and variable length assembly bellows, both achieving RF voltages > 35 kV peak, and currents ~ 760 A peak during quasi-steady state operation. The SRA utilizes mechanically preloaded fused quartz spokes, increasing lateral load handling capability. Components with SRA supports have been seismically tested, with no variation in low power electrical performance detected after testing. A 3 MW four-port switch has also been successfully tested at high RF power, and tests of a 6 MW hybrid power splitter are planned in the near future. Latest results will be presented. Plans for arc localization tests in a 60 m SRA transmission line run, and RF tests of Z0 = 50 Ω and Z0 = 20 Ω matching components with water-cooled inner conductors will also be discussed. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  15. Optical Methods For Automatic Rating Of Engine Test Components

    Science.gov (United States)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  16. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    Science.gov (United States)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  17. 76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2011-12-01

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY...- ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water... management of stainless steel structures and components exposed to treated borated water. In response to...

  18. Immunogenicity test of tetanus component in adsorbed vaccines by toxin binding inhibition test

    Directory of Open Access Journals (Sweden)

    Denise Cristina Souza Matos

    2002-09-01

    Full Text Available Samples from 20 lots of diphtheria-tetanus (adult use dT vaccine and from 20 lots of diphtheria-tetanus-pertussis (DTP vaccine were used to standardize and validate the in vitro toxin binding inhibition (ToBI test for the immunogenicity test of the tetanus component. The levels of tetanus antitoxin obtained by ToBI test were compared to those obtained using the toxin neutralization (TN test in mice routinely employed to perform the quality control of the tetanus component in adsorbed vaccines. The results ranged from 1.8 to 3.5 IU/ml for dT and 2 to 4 IU/ml for DTP by ToBI test and 1.4 to 3 IU/ml for dT and 1.8 to 3.5 IU/ml for DTP by TN in mice. These results were significantly correlated. From this study, it is concluded that the ToBI test is an alternative to the in vivo neutralization procedure in the immunogenicity test of the tetanus component in adsorbed vaccines. A substantial refinement and a reduction in use of animals can be achieved.

  19. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  20. The Performance test of Mechanical Sodium Pump with Water Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang [SAM JIN Industrial Co. LTD., Chunan (Korea, Republic of)

    2015-10-15

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  1. Investigation of Correlation of Test Sequences for Reliability Testing of Digital Physical System Components

    Science.gov (United States)

    Kushik, N. G.; López, J. E.; Yevtushenko, N. V.

    2016-12-01

    The topical problem of effective verification of digital circuits of different physical systems remains a hot topic. Devices ranging from embedded components to perform specific tasks or experiments to modern communication clusters used for data transmission are concerned. The method of synthesis of the test sequences is based on injection of faults into a reference circuit and deriving a corresponding distinguishing sequence which detects this fault. The method is known as mutation testing and is widely used for the synthesis of high-quality verification tests for digital circuits. Naturally, test suits that detect faults of various classes, and larger amount of faults, are of greater interest. The paper studies the correlation between different test suits derived for different mutant types. The considered fault types include 1) single stuck-at faults, 2) bridges, and 3) hardly detectable faults, i.e., slightly modifying the behavior of a single circuit gate. Tests for detecting faults of each type are derived for the B01-B10 benchmark package (ITC'99 benchmarks (Second Release)), which are components of physical systems intended for various applications including processing of data obtained, load balancing systems, etc. Experiments aim to access the fault coverage of the test derived for one mutant type against faults of other types. It is shown experimentally that the synthesis of tests of one type, including a single stuck-at fault test, is insufficient, because its fault coverage for faults of other types cannot exceed 60%.

  2. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  3. Respiratory exposure to components of water-miscible metalworking fluids.

    Science.gov (United States)

    Suuronen, Katri; Henriks-Eckerman, Maj-Len; Riala, Riitta; Tuomi, Timo

    2008-10-01

    Water-miscible metalworking fluids (MWFs) are capable of causing respiratory symptoms and diseases. Recently, much emphasis has been put on developing new methods for assessing respiratory exposure to MWF emulsions. The air concentrations of ingredients and contaminants of MWF and inhalable dust were measured in 10 metal workshops in southern Finland. Oil mist was determined by infra red spectroscopy analysis after tetrachloroethylene extraction from the filter. Aldehydes were collected on Sep-Pak chemosorbents and analysed by liquid chromatography. Volatile organic compounds (VOCs) were collected on Tenax adsorbents and analysed by gas chromatography with mass spectrometric detection after thermal desorption. Endotoxins were collected on glass fibre filter and analysed by enzyme-based spectrophotometry, and viable microbes were collected on polycarbonate filter and cultured. Inhalable dust was collected on cellulose acetate filter and quantified gravimetrically. Associations between the different exposures were calculated with Spearman's correlations. The mean concentration of oil mist was 0.14 (range aliphatic hydrocarbons. Several potential sensitizing chemicals such as terpenes were found in small quantities. The concentration of microbial contaminants was low. All the measured air concentrations were below the Finnish occupational exposure limits. The exposure in machine shops was quantitatively dominated by volatile compounds. Additional measurements of MWF components such as aldehydes, alkanolamines and VOCs are needed to get more information on the chemical composition of workshops' air. New air cleaning methods should be introduced, as oil mist separators are insufficient to clean the air of small molecular impurities.

  4. Interfacial properties of dissolved crude oil components in produced water

    OpenAIRE

    Eftekhardadkhah, Mona

    2013-01-01

    Produced water is a mixture of water trapped in underground formations and injection water that is brought to the surface along with oil or gas. In general, produced water is a mixture of dispersed oil in water (o/w), dissolved organic compounds (including hydrocarbons), residual concentration of chemical additives from the production line, heavy metals, dissolved minerals and suspended solids.In the year 2011, 131 million m3 of produced water were discharged on the Norwegian Continental Shel...

  5. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Science.gov (United States)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  6. Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis

    Science.gov (United States)

    Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas

    2016-10-01

    To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.

  7. Initial results for a 170 GHz high power ITER waveguide component test stand

    Science.gov (United States)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  8. Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Groza, Voicu; Isleifsson, Fridrik Rafn

    2012-01-01

    Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads......Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads...

  9. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    Science.gov (United States)

    Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-11-01

    Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.

  10. Water NSTF Design, Instrumentation, and Test Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.

    2017-08-01

    The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric

  11. NGNP Component Test Capability Design Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  12. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  13. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  14. Trip Report-Produced-Water Field Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J. [Los Alamos National Laboratory

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  15. Heidrun Testing Produced Water Reinjection (Pwri)

    Energy Technology Data Exchange (ETDEWEB)

    Paltiel, Sten [Statoil, Stavanger (Norway)

    2001-07-01

    On the Heidrun platform in the Norwegian Sea, Statoil is carrying out tests to determine the feasibility of re-injecting produced water into the reservoir. There are two main incentives for the implementation of PWRI: - Environmental gains through reduced discharge to sea, - Provides a source of low sulphate water, which is positive for the reservoir. The production wells on the field need pressure support, and produced water is an alternative to the sea water that is currently used for this purpose. The Heidrun reservoir has a great potential for producing scale due to the high content of barium sulphate. Experience so far shows that if scaling goes unchecked, a large portion of the oil will be non-recoverable. Well treatments also create separation problems when back flowing. This means that maintaining the 40 mg/l limit is a challenge. (author)

  16. Supercritical Water Oxidation Data Acquisition Testing

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Garcia

    1996-08-01

    Supercritical Water Oxidation (SCWO) is a high pressure oxidation process that blends air, water, and organic waste material in an oxidizer in which where the temperature and pressure in the oxidizer are maintained above the critical point of water. Supercritical water mixed with hydrocarbons, which would be insoluble at subcritical conditions, forms a homogeneous phase which possesses properties associated with both a gas and a liquid. Hydrocarbons in contact with oxygen and SCW are readily oxidized. These properties of SCW make it an attractive means for the destruction of waste streams containing organic materials. SCWO technology holds great promise for treating mixed wastes in an environmentally safe and efficient manner. In the spring of 1994 the U.S. Department of Energy (DOE) initiated a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the SCWO technology. The program concentrated on the acquisition of data through pilot plant testing. The Phase I DOE testing used a simulated waste stream that contained a complex machine cutting oil and metals, that acted as surrogates for radionuclides. The Phase II Navy testing included pilot testing using hazardous waste materials to demonstrate the effectiveness of the SCWO technology. The SCWODAT program demonstrated that the SCWO process oxidized the simulated waste stream containing complex machine cutting oil, selected by DOE as representative of one of the most difficult of the organic waste streams for which SCWO had been applied. The simulated waste stream with surrogate metals in solution was oxidized, with a high destruction efficiency, on the order of 99.97%, in both the neutralized and unneutralized modes of operation.

  17. Components of Program for Analysis of Spectra and Their Testing

    Directory of Open Access Journals (Sweden)

    Ivan Taufer

    2013-11-01

    Full Text Available The spectral analysis of aqueous solutions of multi-component mixtures is used for identification and distinguishing of individual componentsin the mixture and subsequent determination of protonation constants and absorptivities of differently protonated particles in the solution in steadystate (Meloun and Havel 1985, (Leggett 1985. Apart from that also determined are the distribution diagrams, i.e. concentration proportions ofthe individual components at different pH values. The spectra are measured with various concentrations of the basic components (one or severalpolyvalent weak acids or bases and various pH values within the chosen range of wavelengths. The obtained absorbance response area has to beanalyzed by non-linear regression using specialized algorithms. These algorithms have to meet certain requirements concerning the possibility ofcalculations and the level of outputs. A typical example is the SQUAD(84 program, which was gradually modified and extended, see, e.g., (Melounet al. 1986, (Meloun et al. 2012.

  18. Uptake and degradation of discharged produced water components in marine microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Brakstad, O.G.; Olsen, A.J.; Nordtug, T. [and others

    1996-12-31

    Produced waters from offshore oil production are a significant source of aromatic compounds discharged to the seawater. Exposure studies have revealed toxic effects of alkylated phenols and PAH compounds to various marine organisms. In this study the fate of aromatic compounds in seawater was investigated, using a dynamic exposure system which simulated dilution effects of discharged chemicals and {open_quotes}natural{close_quotes} conditions in the seawater recipient. {sup 14}C-labelled alkylated phenols (para-cresol) and polyaromatic hydrocarbons (PAH; naphthalene or phenanthrene) were applied to exposure tanks at sub-ppb concentrations by the aid of a computer-controlled injector device. Natural seawater, with normal seawater bacteria, cultures of the phytoplankton Isochrysis galbana, or the ciliate Euplotes bisulcatus, passed the exposure system at a residence time of approximately 5 hours, creating a short and defined exposure time between compounds and microorganisms. Compounds bound to or taken up by the organisms were collected on filters downstream the exposure system. The results showed that marine microorganisms may take up portions of aromatic compounds within a short period of time. Uptake mechanisms were expected to be passive events. Comparison of bioconcentration factors to the water-octanol coefficients of the components indicated alternative uptake mechanisms to a passive incorporation in the lipid membranes of the organisms. Binding to surface protein and carbohydrate moieties may play a central role during uptake. Studies in static systems with exposure of components to normal seawater bacteria showed a significant uptake and mineralization only for p-cresol. Standard seawater BOD testing indicated that all compounds tested were potentially biodegradable in normal non-acclimated seawater. The results demonstrate that uptake and degradation of produced water components are important to consider during studies of the fate of these components.

  19. Shake, Rattle and Roll: James Webb Telescope Components Pass Tests

    Science.gov (United States)

    2008-01-01

    Mike Ressler (right) and Kalyani Sukhatme of JPL pose in the clean room with a model component, called a focal plane module, of the Mid-Infrared Instrument on NASA's James Webb Space Telescope. Ressler is the project scientist for the instrument, and Sukhatme is the project element manager for the instrument's focal plane module.

  20. Using of mathematical optimization methods for test specification development of simplified chassis components tests

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, A.; Seise, M. (IAMT mbH, Lehmgrubenstrasse 5, 08538 Weischlitz); Schliebner, R.

    2011-04-15

    Testing the fatigue life time of chassis components is necessary during the development process and for quality supervision during the period of series production. In many cases a simplified test is done to reduce the complexity of the test. The development engineer has to develop the specification of those simplified tests. According to the task different approaches are possible: Looking for an adequate test load or for a simplified mounting ore both. This paper deals with several numerical methods for test specification development. Especially a numerical optimization routine is presented for detection of a significant load case. Also the iterative searching for a simplified mounting in combination with damage based selection of load channel is shown. Exemplary the application of the routines is demonstrated by Porsche PANAMERA wheel carrier and a suspension-strut receiving. The actual stage of development of the numerical routines is presented. In addition intended upgrades of the software are shown. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  2. Round robin test for odour testing of migration waters.

    Science.gov (United States)

    Rapp, Thomas; Günther, Herbert

    2015-04-15

    For a round robin test for EN 1420-1 (Odour assessment for organic materials in contact with drinking water) with 14 contributing laboratories from 10 European countries segments of a plastic pipe were sent to the laboratories which performed a migration test and an odour analysis of the migration waters (water that had contact with the organic material) according to the procedure described in the standard from 1999. In addition reference substances (Methyl tert-butyl ether, 1-butanol and hexanal) were investigated for their suitability to qualify the panels and the individual panellists. Methyl tert-butyl ether (MtBE) and 1-butanol proved to be suitable for this purpose, whereas hexanal showed a wide distribution of the individual odour threshold concentrations. Both possible testing options (unforced and forced choice) were performed and gave similar results. However, with respect to the qualification of the panellists and the data analysis the unforced choice procedure showed advantages. As human olfactory perception is used for the analysis, the reproducibility and the comparability between laboratories is of particular concern. For the pipe material the TON results of the different laboratories were in a range of ±1.5 dilutions based on a dilution factor of 2. This might be improved by taking the individual sensitivities of the panellists into account more strongly. Appropriate measures for the improvement of the test method appear to be the use of the proposed reference substances for the training of the panellists as well as the auditing and the selection of the panellists. The results of this round robin test are used in the revision process of the standard.

  3. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    Science.gov (United States)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  4. Armenia - Water to Market Farmer Training Credit Component

    Data.gov (United States)

    Millennium Challenge Corporation — The Farming Practices Survey (FPS) was commissioned by MCC to evaluate the impact of Water-to-Market (WtM) activities, particularly farmer training, on rural farmers...

  5. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  6. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  7. Interactions of phosphororganic agents with water and components of polyelectrolyte membranes.

    Science.gov (United States)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Gor, Gennady Yu; Neimark, Alexander V

    2011-11-24

    Interactions of nerve G-agents (sarin and soman) and their simulants DMMP (dimethyl methylphosphonate) and DIFP (diisopropyl fluorophosphate) with water and components of polyelectrolyte membranes are studied using ab initio calculations in conjunction with thermodynamic modeling using the conductor-like screening model for real solvents (COSMO-RS). To test reliability of COSMO-RS calculations, we measured the vapor-liquid equilibrium in DMMP-water mixtures and found quantitative agreement between computed and experimental results. Using COSMO-RS, we studied the interactions of phosphororganic agents with the characteristic fragments of perfluorinated and sulfonated polystyrene (sPS) polyelectrolytes, which are explored for protective clothing membranes. We found that both simulants, DIFP and DMMP, mimic the thermodynamic properties of G-agents reasonably well; however, there are certain specific differences that are discussed. We also suggested that sPS-based polyelectrolytes have less affinity for phosphorganic agents compared to prefluorinated polyelectrolytes similar to Nafion.

  8. High level radioactive waste vitrification process equipment component testing

    Energy Technology Data Exchange (ETDEWEB)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  9. A review of DOE HEPA filter component test activities

    Energy Technology Data Exchange (ETDEWEB)

    Slawski, J.W.; Bresson, J.F. [Informatics Corp., Inc., Albuquerque, NM (United States); Scripsick, R.C. [Los Alamos National Lab., NM (United States)

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  10. 76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2011-11-08

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY... Staff Guidance (LR-ISG), LR- ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG revises the guidance in the Standard Review Plan...

  11. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Science.gov (United States)

    2012-05-11

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG... Power Plants (SRP-LR) and Generic Aging Lessons Learned (GALL) Report for the aging management...

  12. Information-Processing on Intelligence Test Items: Some Response Components

    Science.gov (United States)

    Whitely, Susan E.

    1977-01-01

    A factor analysis was used to study the relationships among response time and accuracy scores for a verbal analogies test, as well as a number of experimental variables designed to measure a series of information processing stages of the analogies task. (CTM)

  13. TECHNOLOGICAL TESTS USING QUARTZITE RESIDUES AS COMPONENT OF CERAMIC MASS AT THE PORCELAIN STONEWARE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Marcondes Mendes Souza

    2015-03-01

    Full Text Available This work aims to evaluate through technological tests the use of quartzite residues as component at the the production of porcelain stoneware. Were collected five samples of quartzites called of green quartzite, black quartzite, pink quartzite, goldy quartzite, white quartzite. After, the raw materials were milled, passed by a sieve with a Mesh of 200# (Mesh and characterized by chemical analysis in fluorescence of x-rays and also analysis of the crystalline phases by diffraction of x-rays. The porcelain tiles mass is composed of five formulations containing 57% of feldspar, 37% of clay and 6% of residues of quartzite with different coloration. For the preparation of the specimens, it was used uniaxial pressing, which afterwards were synthesized at 1150°C, 1200°C and 1250°C. After the sintering, the specimens were submit for tests of technological characterization like: water absorption, linear shrinkage, apparently porosity, density and flexural strain at three points. The results presented in the fluorescence of x-rays showed a high-content of iron oxide on black quartzite that is why it was discarded the utilization of it in porcelain stoneware. All quartzite formulations had low water absorption achieved when synthesized at 1200°C, getting 0.1 to 0.36% without having gone through the atomization process. At the tests of flexural strain, all the quartzite had in acceptance limits, according to the European norm EN 100, overcoming 27 MPA at 1200°C

  14. Cumulative human threats on fish biodiversity components in Tunisian waters

    Directory of Open Access Journals (Sweden)

    F. BEN RAIS LASRAM

    2015-02-01

    Full Text Available Human activities are increasingly impacting biodiversity. To improve conservation planning measures in an ecosystem-based management context, we need to explore how the effects of these activities interact with different biodiversity components. In this study, we used a semi-quantitative method to assess the cumulative impacts of human activities on three biodiversity components (species richness, phylogenetic diversity, and functional diversity in Tunisia’s exclusive economic zone. For each of the nine activities considered, we developed an understanding of their effects from local studies and the expert opinion of stakeholders with country-specific experience. We mapped the cumulative effects and the three biodiversity components and then assessed the degree to which these elements overlapped using an overlap index. This is the first time such an assessment has been made for Tunisia’s marine ecosystems and our assessment highlight the inappropriateness of current conservation measures. The results of this study have specific application for the prioritization of future management actions.

  15. Cumulative human threats on fish biodiversity components in Tunisian waters

    Directory of Open Access Journals (Sweden)

    F. BEN RAIS LASRAM

    2014-06-01

    Full Text Available Human activities are increasingly impacting biodiversity. To improve conservation planning measures in an ecosystem-based management context, we need to explore how the effects of these activities interact with different biodiversity components. In this study, we used a semi-quantitative method to assess the cumulative impacts of human activities on three biodiversity components (species richness, phylogenetic diversity, and functional diversity in Tunisia’s exclusive economic zone. For each of the nine activities considered, we developed an understanding of their effects from local studies and the expert opinion of stakeholders with country-specific experience. We mapped the cumulative effects and the three biodiversity components and then assessed the degree to which these elements overlapped using an overlap index. This is the first time such an assessment has been made for Tunisia’s marine ecosystems and our assessment highlight the inappropriateness of current conservation measures. The results of this study have specific application for the prioritization of future management actions.

  16. Moving from peanut extract to peanut components : towards validation of component-resolved IgE tests

    NARCIS (Netherlands)

    Aalberse, J. A.; Meijer, Y.; Derksen, N.; van der Palen-Merkus, T.; Knol, E.; Aalberse, R. C.

    2013-01-01

    Background Replacement of peanut extracts by recombinant peanut components is an important step in allergy serologic testing. Criteria are needed for the unbiased inclusion of patients into a study to validate such a replacement. Methods Plasma samples from 64 peanut-positive children (42 reactors,

  17. Moving from peanut extract to peanut components : towards validation of component-resolved IgE tests

    NARCIS (Netherlands)

    Aalberse, J. A.; Meijer, Y.; Derksen, N.; van der Palen-Merkus, T.; Knol, E.; Aalberse, R. C.

    2013-01-01

    Background Replacement of peanut extracts by recombinant peanut components is an important step in allergy serologic testing. Criteria are needed for the unbiased inclusion of patients into a study to validate such a replacement. Methods Plasma samples from 64 peanut-positive children (42 reactors,

  18. COTS FPGA/SRAM Irradiations Using a Dedicated Testing Infrastructure for Characterization of Large Component Batches

    CERN Document Server

    Slawosz, Uznanski; Johannes, Walter; Andrea, Vilar-Villanueva

    2015-01-01

    This paper introduces a new testing platform for irradiation of large batches of COTS FPGA and SRAMs. The main objective is measurement of component radiation response and assessment of component-to-component variability within one batch. The first validation and test results using the testing platform are presented for 150nm TFT SRAM (Renesas) and different sizes of the 130nm ProASIC3 FPGA (Microsemi).

  19. Final report on the in situ testing of electrical components and devices at TMI-2

    Energy Technology Data Exchange (ETDEWEB)

    Soberano, F T

    1984-06-01

    A total of 88 electrical components and devices were in situ tested. Of these, 11 totally failed and 21 suffered degradation that varied from mild to severe. The equipment that failed or incurred severe degradation was located in areas of known environmental extremes. Several motor operated valves in the Reactor Building basement failed because of submersion in water. Others severely degraded from contamination tracking, resulting in the alteration of their circuit electrical characteristics - a circumstance that could compromise their designed function. One backup oil lift pump motor for a reactor coolant pump motor, although located well above the Reactor Building basement high water mark, failed because of a break in its armature and field circuits; this failure was surmised to be a result of corrosion. The limit switch of a Class 1E solenoid valve likewise failed due to moisture intrusion. Components that noticeably degraded exhibited anomalies, likely due to the incursion of moisture, that varied from high capacitance to increased circuit resistance. The effect of the other degenerating conditions that existed during the accident, such as high temperature, high radiation levels, and the hydrogen burn, could not be evaluated individually or synergistically.

  20. Determining water balance components at a lysimeter site in north-eastern Austria

    Science.gov (United States)

    Nolz, Reinhard; Kammerer, Gerhard; Cepuder, Peter

    2014-05-01

    The water balance of a certain soil profile in a certain time interval is subjected to changes of soil water content within the respective profile, and fluxes at its upper and lower boundary such as evapotranspiration and percolation, respectively. Weighing lysimeters are valuable instruments for water balance studies. Typically, mass changes - thus, changes of soil profile water content - are detected by a weighing system, while percolating water is measured by a tipping bucket or a weighed storage tank, and precipitation is measured by a rain gauge. Consequently, evapotranspiration can be determined by solving a simple water balance equation. However, a typical problem is that using separately measured precipitation data may cause implausible (negative) evapotranspiration. As a solution, the quantities can be determined directly from lysimeter mass changes, which are assumed to be positive due to precipitation and negative due to evapotranspiration. This method requires short measuring intervals and precise data. In this regard, data management of primarily older lysimeter facilities may be improved to fulfil these criteria. At an experimental site in north-eastern Austria hourly water balance components were determined using a reference lysimeter that was installed 1983 and equipped with lever-arm-counterbalance weighing system. A disadvantage of such systems is their sensitivity to external disturbances, mainly forces exerted by wind, which can significantly decrease measuring accuracy. Hence, we firstly studied the mechanical performance of the system regarding wind effects and oscillation behavior, and tested averaging procedures on noisy raw data to enhance measurement accuracy. The measurement accuracy for a wind velocity dew formation was measured, though its total amount was small. Evapotranspiration calculated on daily and hourly base according to ASCE standards indicated good correlation with measured data, but measured values were considerably smaller

  1. Water management as a key component of integrated weed management

    Directory of Open Access Journals (Sweden)

    Giuseppe Zanin

    2011-02-01

    Full Text Available Water management within the cropping system is a key factor for an integrated weed management. Soil moisture affects seed persistence and seed dormancy, thus influencing their germination, the establishment of seedlings as well as the competition at adult stage and the number, vitality and dormancy of the new seeds produced by the weeds. The interactions among water availability and competition are very complex and still not fully understood. A research effort in this sector should the be very relevant for the development of new approaches of weed management, such as “Ecological weed management”, aiming to reduce weed density and competitiveness and, in the medium term, to prevent undesired modifications of the weed flora.

  2. Component failures at pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, M.F.

    1980-10-01

    Objectives of this study were to identify those systems having major impact on safety and availability (i.e. to identify those systems and components whose failures have historically caused the greatest number of challenges to the reactor protective systems and which have resulted in greatest loss of electric generation time). These problems were identified for engineering solutions and recommendations made for areas and programs where research and development should be concentrated. The program was conducted in three major phases: Data Analysis, Engineering Evaluation, Cost Benefit Analysis.

  3. Component unavailability versus inservice test (IST) interval: Evaluations of component aging effects with applications to check valves

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, W.E. [Vesely, (W.E.), Dublin, OH (United States); Poole, A.B. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Methods are presented for calculating component unavailabilities when inservice test (IST) intervals are changed and when component aging is explicitly included. The methods extend usual approaches for calculating unavailability and risk effects of changing IST intervals which utilize Probabilistic Risk Assessment (PRA) methods that do not explicitly include component aging. Different IST characteristics are handled including ISTs which are followed by corrective maintenances which completely renew or partially renew the component. ISTs which are not followed by maintenance activities needed to renew the component are also handled. Any downtime associated with IST, including the test downtime and the following maintenance downtime, is included in the unavailability evaluations. A range of component aging behaviors is studied including both linear and nonlinear aging behaviors. Based upon evaluations completed to date, pooled failure data on check valves show relatively small aging (e.g., less than 7% per year). However, data from some plant systems could be evidence for larger aging rates occurring in time periods less than 5 years. The methods are utilized in this report to carry out a range of sensitivity evaluations to evaluate aging effects for different possible applications. Based on the sensitivity evaluations, summary tables are constructed showing how optimal IST interval ranges for check valves can vary relative to different aging behaviors which might exist. The evaluations are also used to identify IST intervals for check valves which are robust to component aging effects. General insights on aging effects are also extracted. These sensitivity studies and extracted results provide useful information which can be supplemented or be updated with plant specific information. The models and results can also be input to PRAs to determine associated risk implications.

  4. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Science.gov (United States)

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  5. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1981-02-20

    RES-79-103 UNCLASSIFIED NRL--- 400 NURE-CR-17B3 NL mnmmnuunin -’El-.--. IIIIIIINI ., *q. - - ,aM T? * NUREG /CI 73 NIL Iteof AW, SOIituA 1 nert of Water...Progress Report for July-September 1979," NUREG /CR-1197, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1978. 2. F. J. Loss, Ed., "Structural...Progress Report for April-June 1976," ORNL/ NUREG /TM-49, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1976, pp. 27-38. 5. R. G. Berggren

  6. No masking between test and mask components in perceptually different depth planes.

    Science.gov (United States)

    Hibbeler, Patrick J; Olzak, Lynn A

    2011-01-01

    2-D cues to perceived depth organization have been used to segregate test and mask stimulus components in a discrimination task. Observers made either spatial-frequency or orientation judgments on a rectangular test component by itself or in the presence of constant rectangular masks. There were two basic masking conditions: same-plane or different-plane. In the same-plane conditions, the test components and masks are perceived as existing in the same depth plane. In the different-plane conditions, the test and mask components are perceived to exist in different depth planes. The perception of different depth planes was achieved by using perceived occlusion, which could place either component closer or further from the observer. The results suggest that when test and mask components are separated into different depth planes they no longer influence one another. This effect could be observed in either depth organization, test components in front of the masks or mask components in front of the test. These results indicate that the figure-ground organization of components is not important. Only the designation as existing in the same or different depth planes affects whether or not a mask is effective.

  7. Qualification test of the EPR control rod drive mechanism in the full scale component test facility KOPRA

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Wolfgang; Sykora, Alexander; Kleideiter, Ansgar [AREVA NP GmbH, Erlangen (Germany); Champomier, Francois [AREVA NP SAS, Paris (France)

    2009-07-01

    The control rod drive mechanism (CRDM) and the mobile set consisting of rod cluster control assembly (RCC-A) of the evolutionary power reactor (EPR) had to pass a full scale qualification test in representative site conditions. The KOPRA core test section in Erlangen is precisely designed for full scale tests on nuclear core components in respect to coolant temperature and volume flow of PWR site conditions. In the test channel the complete geometry of the central core position of the reactor pressure vessel is simulated with 1:1 scale. The performance test program has led to an optimized test sequence through small adjustments in operating parameters of CRDM. The endurance test program has demonstrated that all tested components, i.e. the CRDN, the control rod driveline and the components of the drop channel are able to function properly and to meet the specification goals.

  8. Ecological, psychological, and cognitive components of reading difficulties: testing the component model of reading in fourth graders across 38 countries.

    Science.gov (United States)

    Chiu, Ming Ming; McBride-Chang, Catherine; Lin, Dan

    2012-01-01

    The authors tested the component model of reading (CMR) among 186,725 fourth grade students from 38 countries (45 regions) on five continents by analyzing the 2006 Progress in International Reading Literacy Study data using measures of ecological (country, family, school, teacher), psychological, and cognitive components. More than 91% of the differences in student difficulty occurred at the country (61%) and classroom (30%) levels (ecological), with less than 9% at the student level (cognitive and psychological). All three components were negatively associated with reading difficulties: cognitive (student's early literacy skills), ecological (family characteristics [socioeconomic status, number of books at home, and attitudes about reading], school characteristics [school climate and resources]), and psychological (students' attitudes about reading, reading self-concept, and being a girl). These results extend the CMR by demonstrating the importance of multiple levels of factors for reading deficits across diverse cultures.

  9. THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Duncan; Vondell J. Balls; Stephanie L. Austad

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

  10. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free secretory component immuno-logical test system. 866.5380 Section 866.5380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Systems § 866.5380 Free secretory component immuno-logical test system. (a) Identification. A...

  11. Analysis of solderability test methods: predicition model generation for through-hole components

    OpenAIRE

    Woods, Bobby

    2013-01-01

    peer-reviewed In order to achieve a reduction in solderability related defects on electronic components and Printed Circuit Board???s (PCB???s) in electronics manufacturing, preventive controls such as ???Dip & Look??? and ???Wetting Balance??? solderability testing need to be fully optimised to screen out all poor soldering components and PCB???s. Components and PCB???s that pass these tests should solder correctly in volume production. This thesis initially investigates the variations...

  12. Methodology to identify risk-significant components for inservice inspection and testing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.; Kido, C.; Phillips, J.H.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  13. Assessing adsorption of polycyclic aromatic hydrocarbons on Rhizopus oryzae cell wall components with water-methanol cosolvent model.

    Science.gov (United States)

    Ma, Bin; Lv, Xiaofei; He, Yan; Xu, Jianming

    2016-03-01

    The contribution of different fungal cell wall components in adsorption of polycyclic aromatic hydrocarbons (PAHs) is still unclear. We isolated Rhizopus oryzae cell walls components with sequential extraction, characterized functional groups with NEXAFS spectra, and determined partition coefficients of PAHs on cell walls and cell wall components with cosolvent model. Spectra of NEXAFS indicated that isolated cell walls components were featured with peaks at ~532.7 and ~534.5eV energy. The lipid cosolvent partition coefficients were approximately one order of magnitude higher than the corresponding carbohydrate cosolvent partition coefficients. The partition coefficients for four tested carbohydrates varied at approximate 0.5 logarithmic units. Partition coefficients between biosorbents and water calculated based cosolvent models ranged from 0.8 to 4.2. The present study proved the importance of fungal cell wall components in adsorption of PAHs, and consequently the role of fungi in PAHs bioremediation.

  14. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow

    Science.gov (United States)

    Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.

    1999-01-01

    Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the

  15. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  16. HOT WATER COMFORT TEST PROCEDURE FOR SOLAR COMBISYSTEMS: PROPOSAL

    DEFF Research Database (Denmark)

    Furbo, Simon

    1999-01-01

    A proposal for a test procedure for hot water comfort for solar heating systems for combined space heating and domestic hot water supply was worked out.......A proposal for a test procedure for hot water comfort for solar heating systems for combined space heating and domestic hot water supply was worked out....

  17. Micro-components survey of residential indoor water consumption in Chiang Mai

    Directory of Open Access Journals (Sweden)

    T. Aramaki

    2008-08-01

    Full Text Available The direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet-, laundry-, bath-, and kitchen-use, both in the dry season and in the rainy season, was conducted in Chiang Mai, Thailand. It was expected that rainfall differences between the dry and rainy season would influence awareness for water resources so that water consumption in the dry season would be smaller than that in the rainy season. In addition, it was examined whether the differences in water resources such as public waterworks or non-public waterworks (i.e., community waterworks, mountainous water and groundwater, affected the amount of water use. A small-sized accumulative water meter was developed for measurement. This survey provides important information for water demand estimations and water supply planning in middle-developed countries where water consumption is expected to increase in future.

  18. Micro-components survey of residential indoor water consumption in Chiang Mai

    Directory of Open Access Journals (Sweden)

    T. Aramaki

    2008-02-01

    Full Text Available The direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet, laundry, bath, and kitchen both in the dry season and in the rainy season was conducted in Chiang Mai, Thailand. It was expected that rainfall differences between the dry and rainy season could influence awareness for water resources so that water consumption in the dry season may be smaller than that in the rainy season. It was also examined that whether the differences in water resources such as public waterworks or non-public waterworks like community waterworks, mountainous water and groundwater, affect the water use amount. A small-sized accumulative water meter was developed for measurement. This survey can provide the important information for water demand estimation and water supply planning in middle-developed countries where their water consumption should be expected to increase from here on.

  19. Mean annual water-budget components for the Island of Maui, Hawaii, 1978-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Maui,...

  20. Thermal behaviour analysis on ITER component cooling water system loop 2B

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: guobin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dell’Orco, Giovanni; Liliana, Teodoros; Tao, Jun [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Yang, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-11-15

    Highlights: • Thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. • The cooling water temperature profile at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained. • Operation behaviour of the main heat exchanger for CCWS-2B has been depicted. - Abstract: ITER cooling water system is composed by several cooling loops, the primary heat transfer loops that form the Tokamak Cooling Water System (TCWS), the secondary heat transfer loops that form the Component Cooling Water System (CCWS) and the Chilled Water System (CHWS) and a tertiary heat transfer loop which is the Heat Rejection System (HRS). The CCWS is further divided into CCWS-1, CCWS-2A, CCWS-2B, CCWS-2C, CCWS-2D depending on the water chemistry needs of clients and wetted area material. The component cooling water system loop 2B (CCWS-2B) has the function to remove heat load from coil power supply component, Neutral Beam Injectors (NBIs) system component and diagnostic system which are located in different buildings. As the total number of the client connections for the loop is a few hundreds, simplified thermal hydraulic analysis model has been developed to perform thermal analysis on the component cooling water system loop 2B. The curve of the cooling water temperature at client inlet and outlet during one cycle of the most demanding plasma operation scenario was obtained and the cooling water flow rate can meet the thermal removal requirement of client was also confirmed from this analysis. In addition, operation behaviour of the main heat exchanger for CCWS-2B in this thermal analysis was depicted for main heat exchanger selection purposes. This study has been carried out with the AFT Fathom code.

  1. Limitations of the inspection and testing concepts for pressurised components from the viewpoint of operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2001-07-01

    The role of in-service inspection and testing is to contribute to a safe and reliable operation of systems, structures and components. It is therefore the objective of inspections and tests to identify malfunctions and degradations at a stage early enough to avoid detrimental impacts on safety as well as on the reliability of the plant. Taking mostly the pressure boundary of German light-water reactors as an example, it is the intention of this paper to analyse how successful present inspection and testing requirements are and to discuss limitations. Based on a review of the world-wide operating experience the following questions of a more generic nature are addressed: - Are the relevant damage mechanisms being addressed in our codes and standards? - What are the criteria to develop a representative scope of inspection? - How to maintain a sufficient level of information for a decreasing number of nuclear power plants in operation? It can be concluded that the revision of codes and standards according to lessons learned from operating experience remains as an ongoing process. Furthermore, the criteria applied to derive a representative scope of inspection need to be addressed in more detail, specifically with respect to corrosion. The continuous evaluation of operating experience of a large number of plants is the most valuable source to identify beginning degradations. (author)

  2. A Metadata Model Based on Coupling Testing Information to Increase Testability of Component

    Institute of Scientific and Technical Information of China (English)

    MA Liang-li; GUO Fu-liang; WU Zhao-hui

    2008-01-01

    A software component must be tested every time it is reused in order to assure quality of component itself and system in which it is to be integrated. So how to increase testability of component has become a key technology in the software engineering community. Here a method is introduced to increase component testability. And meanings of component testability and relative effective ways to increase testability are summarized. Then definitions of component coupling testing criterion, DU-I (Definition-Use Information) and OP-Vs (Observation-Point Values) are given. Base on these, a definition-use table is introduced, which includes DU-A and OP-Vs item, to help component testers to understand and observe interior details about component under test better. Then a framework of testable component based on above DU-table is given. These facilities provide ways to detect errors, observe state variables by observation-points based monitor mechanism. Moreover, above methods are applied to our application developed by ourselves before, and some test cases are generated. Then our method is compared with Orso method and Kan method using the same example, presenting the comparison results. The results illustrate the validity of our method, effectively generating test cases and killing more mutants.

  3. Significance testing testate amoeba water table reconstructions

    Science.gov (United States)

    Payne, Richard J.; Babeshko, Kirill V.; van Bellen, Simon; Blackford, Jeffrey J.; Booth, Robert K.; Charman, Dan J.; Ellershaw, Megan R.; Gilbert, Daniel; Hughes, Paul D. M.; Jassey, Vincent E. J.; Lamentowicz, Łukasz; Lamentowicz, Mariusz; Malysheva, Elena A.; Mauquoy, Dmitri; Mazei, Yuri; Mitchell, Edward A. D.; Swindles, Graeme T.; Tsyganov, Andrey N.; Turner, T. Edward; Telford, Richard J.

    2016-04-01

    Transfer functions are valuable tools in palaeoecology, but their output may not always be meaningful. A recently-developed statistical test ('randomTF') offers the potential to distinguish among reconstructions which are more likely to be useful, and those less so. We applied this test to a large number of reconstructions of peatland water table depth based on testate amoebae. Contrary to our expectations, a substantial majority (25 of 30) of these reconstructions gave non-significant results (P > 0.05). The underlying reasons for this outcome are unclear. We found no significant correlation between randomTF P-value and transfer function performance, the properties of the training set and reconstruction, or measures of transfer function fit. These results give cause for concern but we believe it would be extremely premature to discount the results of non-significant reconstructions. We stress the need for more critical assessment of transfer function output, replication of results and ecologically-informed interpretation of palaeoecological data.

  4. Fiber Optics Component Testing: Requirements And Trends-Fibers, Cables, Connectors

    Science.gov (United States)

    Makuch, John A.

    1983-03-01

    A review of requirements for testing of fibre optic components is presented, with emphasis on connectors, the connector/cable interface, and fibre and cable parameters affecting the connector/connector interface parameters. The review will be developed from the point of view of an ultimate user of a connectorized cable, and will correlate system requirements with the parameters to be tested and the trends in developing test techniques which properly assign performance responsibility to the cognizant component supplier.

  5. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-04-19

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... Management Criteria for PWR Reactor Vessel Internal Components.'' The original notice provided the ADAMS... published a notice requesting public comments on draft LR-ISG-2011-04, ``Updated Aging Management...

  6. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  7. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species

    Science.gov (United States)

    Frederick Meinzer; David Woodruff; Danielle Marias; Katherine McCulloh; Sanna Sevanto

    2014-01-01

    Because iso- and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co-occurring anisohydric Juniperus...

  8. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance component

  9. A microbial fuel cell-based biosensor for the detection of toxic components in water

    NARCIS (Netherlands)

    Stein, N.E.

    2011-01-01

    In a microbial fuel cell bacteria produce electricity. When water with a constant quality is lead passed the bacteria, a constant current will be measured. When toxic components enter the cell with the water, the bacteria are affected a

  10. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance component

  11. Safe drinking water: critical components of effective inter-agency relationships.

    Science.gov (United States)

    Jalba, Daniel I; Cromar, Nancy J; Pollard, Simon J T; Charrois, Jeffrey W; Bradshaw, Roland; Hrudey, Steve E

    2010-01-01

    The paper supports the development of evidence-based emergency management frameworks of cooperation between agencies in the area of drinking water and public health, as part of developing the overall risk management culture within water utilities. We employed a qualitative research design to understand critical gaps in inter-agency relations that aggravated past drinking water and health incidents and from these identified determinants of effective relationships. We identified six critical institutional relationship components that were deficient in past incidents, namely proactivity, communication, training, sharing expertise, trust and regulation. We then analysed how these components are addressed by reputable water utilities and public health departments to develop positive examples of inter-agency cooperation. Control of different risks (e.g. public health, business, and reputation) resulting from drinking water incidents should employ a preventive framework similar to the multiple barrier approach for management of drinking water quality.

  12. Study on variation of smoke component concentration with water mist applying

    Institute of Scientific and Technical Information of China (English)

    Fang Yudong

    2014-01-01

    Interaction between water mist and fire smoke is studied by experiments in an ISO 9705 room, The variation of 02, CO and CO2 concentration is disclosed, and the mathematical models of smoke component con- centration with water mist pressure and ventilation speed are established according to the experimental results. It is found in the experiment that the smoke component concentration will break when ventilation speed exceeds 1.5 kg/s. This paper provides necessary theory for water mist technology using in smoke restraining.

  13. Study on variation of smoke component concentration with water mist applying

    Institute of Scientific and Technical Information of China (English)

    Fang Yudong

    2014-01-01

    Interaction between water mist and fire smoke is studied by experiments in an ISO 9705 room. The variation of O2,CO and CO2 concentration is disclosed,and the mathematical models of smoke component con-centration with water mist pressure and ventilation speed are established according to the experimental results. It is found in the experiment that the smoke component concentration will break when ventilation speed exceeds 1.5 kg/s. This paper provides necessary theory for water mist technology using in smoke restraining.

  14. [Evaluation on contribution rate of each component total salvianolic acids and characterization of apparent oil/water partition coefficient].

    Science.gov (United States)

    Yan, Hong-mei; Chen, Xiao-yun; Xia, Hai-jian; Liu, Dan; Jia, Xiao-bin; Zhang, Zhen-hai

    2015-02-01

    The difference between three representative components of total salvianolic acids in pharmacodynamic activity were compared by three different pharmacological experiments: HUVECs oxidative damage experiment, 4 items of blood coagulation in vitro experiment in rabbits and experimental myocardial ischemia in rats. And the effects of contribution rate of each component were calculated by multi index comprehensive evaluation method based on CRITIC weights. The contribution rates of salvianolic acid B, rosmarinic acid and Danshensu were 28.85%, 30.11%, 41.04%. Apparent oil/water partition coefficient of each representative components of total salvianolic acids in n-octyl alcohol-buffer was tested and the total salvianolic acid components were characterized based on a combination of the approach of self-defined weighting coefficient with effects of contribution rate. Apparent oil/water partition coefficient of total salvianolic acids was 0.32, 1.06, 0.89, 0.98, 0.90, 0.13, 0.02, 0.20, 0.56 when in octanol-water/pH 1.2 dilute hydrochloric acid solution/ pH 2.0, 2.5, 5.0, 5.8, 6.8, 7.4, 7.8 phosphate buffer solution. It provides a certain reference for the characterization of components.

  15. 76 FR 69545 - Conditions and Requirements for Relying on Component Part Testing or Certification, or Another...

    Science.gov (United States)

    2011-11-08

    ... supply chain to include the manufacturers of the subcomponents used in component parts. (Response 6... design or manufacturing process, including the sourcing of component parts. The final rule on ``Testing... finished product on the finished product certifier. Another commenter liked the strong chain of custody and...

  16. Testing and examination of TMI-2 electrical components and discrete devices

    Energy Technology Data Exchange (ETDEWEB)

    Soberano, F.T.

    1982-11-01

    This report discusses the approach and results of the in situ test conducted on TMI-2 reactor building electrical components and discrete devices. Also included are the necessary presumptions and assumptions to correlate observed anomalies to the accident.

  17. Mechanical and Fatigue Testing of Rapid Prototyped Aerospace Titanium Component by Electron Beam Melting Process

    Science.gov (United States)

    Forbush, Arrian B.

    The mechanical and fatigue behavior of a Ti-6Al-4V structural component that was manufactured by electron beam melting (EBM) was studied. Ti-6Al-4V EBM components were subjected to cyclic loading and monotonic loading tests. The results indicated that the EBM component did not fail before the fasteners in both tests. This was a preliminary study regarding an attempt to model an EBM component to validate the physical tests. An attempt was made to model the monotonic and cyclic testing in the linear elastic region using finite elements with the assumed loading conditions to investigate the stress distributions at each loading condition. Additionally, an attempt was made to use finite element modeling to validate the experimental results within the elastic range.

  18. Numerical Modeling for Hole-Edge Cracking of Advanced High-Strength Steels (AHSS) Components in the Static Bend Test

    Science.gov (United States)

    Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem

    2011-08-01

    Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.

  19. Regression Test-Selection Technique Using Component Model Based Modification: Code to Test Traceability

    Directory of Open Access Journals (Sweden)

    Ahmad A. Saifan

    2016-04-01

    Full Text Available Regression testing is a safeguarding procedure to validate and verify adapted software, and guarantee that no errors have emerged. However, regression testing is very costly when testers need to re-execute all the test cases against the modified software. This paper proposes a new approach in regression test selection domain. The approach is based on meta-models (test models and structured models to decrease the number of test cases to be used in the regression testing process. The approach has been evaluated using three Java applications. To measure the effectiveness of the proposed approach, we compare the results using the re-test to all approaches. The results have shown that our approach reduces the size of test suite without negative impact on the effectiveness of the fault detection.

  20. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  1. Operational Experience of Cooling Water Systems for Accelerator Components at PLS

    CERN Document Server

    Kim, Kyungryul; Kim, Young-Chan; Lee, Bongho; Sik Han, Hong; Soo Ko In; Wha Chung, Chin

    2005-01-01

    The cooling water system has been utilized for absorbing heat generated by a multitude of electromagnetic power delivering networks at PLS. The separate cooling water distribution systems for the storage ring, beam transport line and linear accelerator have been operated with a different operating temperature of supplying water. All water used for heat removal from the accelerator components are deionised and filtered to provide with over 2 MO-cm specific resistance. The operating pressures and flows of input water are also controlled with flow balancing scheme at a specified range. The operating temperature of components in the accelerator is sustained as tight as below ±0.1 deg C to minimize the influence of temperature fluctuation on the beam energy and stability. Although the PLS cooling systems were initially installed with a high degree of flexibility to allow for easy maintenance, a number of system improvements have been employed to enhance operational reliability and to incorporate the newly...

  2. Calibration of Results of Water Meter Test Facility

    OpenAIRE

    Andrius Bončkus; Gediminas Gediminas

    2011-01-01

    The results of water meter test facility calibration are presented. More than 30 test facilities are used in Lithuania nowadays. All of them are certificated for water meter of class 2 verification. The results of inter-laboratory comparison of multi-jet water meter calibration at flow rate Q = 5 m3/h are presented. Lithuanian Energy Institute was appointed as reference laboratory for the comparison. Twelve water meter verification and calibration laboratories from Lithuania participated in t...

  3. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    Science.gov (United States)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  4. Water footprint components required to address the water-energy-food nexus, with the recent Urban Water Atlas for Europe as an example

    Science.gov (United States)

    Vanham, Davy

    2017-04-01

    The first part of this presentation analyses which water footprint (WF) components are necessary in WF accounting to provide relevant information to address the Sustainable Development Goals (SDG's) water security (SDG 6), food security (SDG 2) and energy security (SDG 7) in a nexus setting. It is strongly based on the publication Vanham (2016) http://dx.doi.org/10.1016/j.ecoser.2015.08.003. First, the nexus links between (1) the planetary boundary freshwater resources (green and blue water resources) and (2) food, energy and blue water security are discussed. Second, it is shown which water uses are mostly represented in WF accounting. General water management and WF studies only account for the water uses agriculture, industry and domestic water. Important water uses are however mostly not identified as separate entities or even included, i.e. green and blue water resources for aquaculture, wild foods, biofuels, hydroelectric cooling, hydropower, recreation/tourism, forestry (for energy and other biomass uses) and navigation. Third, therefore a list of essential separate components to be included within WF accounting is presented. The latter would be more coherent with the water-food-energy-ecosystem nexus. The second part of the presentation gives a brief overview of the recently published Urban Water Atlas for Europe. It shows for a selected city which WF components are represented and which not. As such, it also identifies research gaps.

  5. Variational derivation of two-component Camassa-Holm shallow water system

    CERN Document Server

    Ionescu-Kruse, Delia

    2012-01-01

    By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.

  6. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    Energy Technology Data Exchange (ETDEWEB)

    Foehl, J.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) (Spain); Ernestova, M.; Zamboch, M. [Nuclear Research Inst. (NRI) (Czech Republic); Seifert, H.P.; Ritter, S. [Paul Scherrer Inst. (PSI) (Switzerland); Roth, A.; Devrient, B. [Framatome ANP GmbH (F ANP) (Germany); Ehrnsten, U. [Technical Research Centre of Finland (VTT) (Finland)

    2004-07-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the content of chlorides. Time based crack growth was also observed in one Russian type base material in oxygenated VVER water and in one Western type base material in oxygenated high purity BWR

  7. Development and test of prototype components for ITER; Entwicklung und Test von Prototypkomponenten fuer ITER

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David; and others

    2015-08-15

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  8. Capacity building in water demand management as a key component for attaining millennium development goals

    Science.gov (United States)

    Gumbo, Bekithemba; Forster, Laura; Arntzen, Jaap

    Successful water demand management (WDM) implementation as a component of integrated water resource management (IWRM) can play a significant role in the alleviation of poverty through more efficient use of available water resources. The urban population in Southern African cities is characterised by so-called ‘water poor’ communities who typically expend a high percentage of their household income on poor quality water. Usually they have no access to an affordable alternative source. Although WDM as a component of IWRM is not a panacea for poverty, it can help alleviate poverty by facilitating water services management by municipal water supply agencies (MWSAs) in the region. WDM is a key strategy for achieving the millennium development goals (MDGs) and, as such, should be given due attention in the preparation of national IWRM and water efficiency plans. Various studies in the Southern African region have indicated that capacity building is necessary for nations to develop IWRM and water-use efficiency plans to meet the targets set out in the MDGs. WDM education and training of water professionals and end-users is particularly important in developing countries, which are resource and information-access poor. In response to these findings, The World Conservation Union (IUCN) and its consulting partners, the Training and Instructional Design Academy of South Africa (TIDASA), and Centre for Applied Research (CAR) designed, developed and presented a pilot WDM Guideline Training Module for MWSAs as part of Phase II of IUCN’s Southern Africa regional WDM project. Pilot training was conducted in July 2004 in Lusaka, Zambia for a group of 36 participants involved in municipal water supply from nine Southern African countries. This paper looks at the links between building the capacity of professionals, operational staff and other role-players in the municipal water supply chain to implement WDM as part of broader IWRM strategies, and the subsequent potential for

  9. Static and dynamic superheated water extraction of essential oil components from Thymus vulgaris L.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota

    2009-09-01

    Superheated water extraction (SWE) performed in both static and dynamic condition (S-SWE and D-SWE, respectively) was applied for the extraction of essential oil from Thymus vulgaris L. The influence of extraction pressure, temperature, time, and flow rate on the total yield of essential oil and the influence of extraction temperature on the extraction of some chosen components are discussed in the paper. The SWE extracts are related to PLE extracts with n-hexane and essential oil obtained by steam distillation. The superheated water extraction in dynamic condition seems to be a feasible option for the extraction of essential oil components from T. vulgaris L.

  10. Identification of Water Quality Significant Parameter with Two Transformation/Standardization Methods on Principal Component Analysis and Scilab Software

    Directory of Open Access Journals (Sweden)

    Jovan Putranda

    2016-09-01

    Full Text Available Water quality monitoring is prone to encounter error on its recording or measuring process. The monitoring on river water quality not only aims to recognize the water quality dynamic, but also to evaluate the data to create river management policy and water pollution in order to maintain the continuity of human health or sanitation requirement, and biodiversity preservation. Evaluation on water quality monitoring needs to be started by identifying the important water quality parameter. This research objected to identify the significant parameters by using two transformation or standardization methods on water quality data, which are the river Water Quality Index, WQI (Indeks Kualitas Air, Sungai, IKAs transformation or standardization method and transformation or standardization method with mean 0 and variance 1; so that the variability of water quality parameters could be aggregated with one another. Both of the methods were applied on the water quality monitoring data which its validity and reliability have been tested. The PCA, Principal Component Analysis (Analisa Komponen Utama, AKU, with the help of Scilab software, has been used to process the secondary data on water quality parameters of Gadjah Wong river in 2004-2013, with its validity and reliability has been tested. The Scilab result was cross examined with the result from the Excel-based Biplot Add In software. The research result showed that only 18 from total 35 water quality parameters that have passable data quality. The two transformation or standardization data methods gave different significant parameter type and amount result. On the transformation or standardization mean 0 variances 1, there were water quality significant parameter dynamic to mean concentration of each water quality parameters, which are TDS, SO4, EC, TSS, NO3N, COD, BOD5, Grease Oil and NH3N. On the river WQI transformation or standardization, the water quality significant parameter showed the level of

  11. Interrater reliability of mechanical tests for functional classification of transtibial prosthesis components distal to the socket

    Directory of Open Access Journals (Sweden)

    Matthew J. Major, PhD

    2015-08-01

    Full Text Available Substantial evidence suggests that the design and associated mechanical function of lower-limb prostheses affects user health and mobility, supporting common standards of clinical practice for appropriate matching of prosthesis design and user needs. This matching process is dependent on accurate and reliable methods for the functional classification of prosthetic components. The American Orthotic & Prosthetic Association developed a set of tests for L-code characterization of prosthesis mechanical properties to facilitate functional classification of passive below-knee prosthetic components. The mechanical tests require use of test-specific fixtures to be installed in a materials testing machine by a test administrator. Therefore, the purpose of this study was to assess the interrater reliability of test outcomes between two administrators using the same testing facility. Ten prosthetic components (8 feet and 2 pylons that spanned the range of commercial designs were subjected to all appropriate tests. Tests with scalar outcomes demonstrated high interrater reliability (intraclass correlation coefficient (2,1 >/= 0.935, and there was no discrepancy in observation-based outcomes between administrators, suggesting that between-administrator variability may not present a significant source of error. These results support the integration of these mechanical tests for prosthesis classification, which will help enhance objectivity and optimization of the prosthesis-patient matching process for maximizing rehabilitation outcomes.

  12. Interrater reliability of mechanical tests for functional classification of transtibial prosthesis components distal to the socket.

    Science.gov (United States)

    Major, Matthew J; Johnson, William Brett; Gard, Steven A

    2015-01-01

    Substantial evidence suggests that the design and associated mechanical function of lower-limb prostheses affects user health and mobility, supporting common standards of clinical practice for appropriate matching of prosthesis design and user needs. This matching process is dependent on accurate and reliable methods for the functional classification of prosthetic components. The American Orthotic & Prosthetic Association developed a set of tests for L-code characterization of prosthesis mechanical properties to facilitate functional classification of passive below-knee prosthetic components. The mechanical tests require use of test-specific fixtures to be installed in a materials testing machine by a test administrator. Therefore, the purpose of this study was to assess the interrater reliability of test outcomes between two administrators using the same testing facility. Ten prosthetic components (8 feet and 2 pylons) that spanned the range of commercial designs were subjected to all appropriate tests. Tests with scalar outcomes demonstrated high interrater reliability (intraclass correlation coefficient(2,1) >/= 0.935), and there was no discrepancy in observation-based outcomes between administrators, suggesting that between-administrator variability may not present a significant source of error. These results support the integration of these mechanical tests for prosthesis classification, which will help enhance objectivity and optimization of the prosthesis-patient matching process for maximizing rehabilitation outcomes.

  13. Experience with helium leak and thermal shocks test of SST-1 cryo components

    Science.gov (United States)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  14. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    Science.gov (United States)

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  15. Reliability Analysis of Component Software in Wireless Sensor Networks Based on Transformation of Testing Data

    Directory of Open Access Journals (Sweden)

    Chunyan Hou

    2009-08-01

    Full Text Available We develop an approach of component software reliability analysis which includes the benefits of both time domain, and structure based approaches. This approach overcomes the deficiency of existing NHPP techniques that fall short of addressing repair, and internal system structures simultaneously. Our solution adopts a method of transformation of testing data to cover both methods, and is expected to improve reliability prediction. This paradigm allows component-based software testing process doesn’t meet the assumption of NHPP models, and accounts for software structures by the way of modeling the testing process. According to the testing model it builds the mapping relation from the testing profile to the operational profile which enables the transformation of the testing data to build the reliability dataset required by NHPP models. At last an example is evaluated to validate and show the effectiveness of this approach.

  16. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  17. Travelling wave solutions for some two-component shallow water models

    Science.gov (United States)

    Dutykh, Denys; Ionescu-Kruse, Delia

    2016-07-01

    In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.

  18. A study on the establishment of component/equipment performance criteria considering Heavy Water Reactor characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keun Sun; Kwon, Young Chul; Lee, Min Kyu; Lee, Yun Soo [Sunmoon Univ., Asan (Korea, Republic of); Chang, Seong Hoong; Ryo, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Soong Pyung; Hwnag, Jung Rye; Chung, Chul Kee [Chosun Univ., Gwangju (Korea, Republic of)

    2002-03-15

    Foreign and domestic technology trends, regulatory requirements, design and researches for heavy water reactors are analyzed. Safety design guides of Canada industry and regulatory documents and consultative documents of Canada regulatory agency are reviewed. Applicability of MOST guidance 16 Revision 'guidance for technical criteria of nuclear reactor facility' is reviewed. Specific performance criteria are established for components and facilities for heavy water reactor.

  19. Manufacturing surface hardened components of 42CrMo4 by water-air spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gretzki, T.; Krause, C.; Frolov, I.; Hassel, T.; Nicolaus, M.; Bach, F.W. [Inst. of Materials Science, Leibniz Univ. Hannover, Garbsen (Germany); Kaestner, M.; Abo-Namous, O.; Reithmeier, E. [Inst. of Measurement and Control Engineering, Leibniz Univ. Hannover (Germany); National Metallurgical Academy of Ukraine, Dniepropetrovsk (Ukraine)

    2009-12-15

    By employing integrated heat-treatment using forging heat, a significant shortening of the process chain is attained for manufacturing precision forged components with considerable savings in time and energy. With the aid of water-air spray cooling, surface hardening and tempering can be carried out without, at the same time, reheating the component following quenching. In this work, geometric models of splines and single cylinder crankshafts (both made of 1.7225) were surface hardened and tempered using a purpose-built rotating spray unit The obtained hardness, microstructures and their distortions were investigated. To optically and spatially detect the components, fringe and shadow projection systems were employed. In a second research topic, the influence of the spray parameters on the component's distortion was investigated. For both components; the splined shaft and the crankshaft geometries, it was possible to carry out successful surface heat-treatments using these processes. (orig.)

  20. Testing time for deep water[Deep water test facility in Rotterdam, NL

    Energy Technology Data Exchange (ETDEWEB)

    Snieckus, Darius

    2000-06-01

    A new deep water test facility in Rotterdam in the Netherlands is described. The construction is a basin measuring 45m by 36m and some 10.5m deep: it can accommodate large scale model tests at depths equivalent to 1000m by using a hydraulic 'moveable' floor buoyed by syntactic foam. For simulation of depths of 3000m it opens its 'deep pit' - a well 5m diameter and 20m deep. The facility can also simulate the winds, waves and currents met offshore in places such as the Shetlands, West Africa and the Gulf of Mexico. The article includes pictures and diagrams of the facility.

  1. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  2. C/SiC Component & Material Analysis, Attachment Verification, & Blisk Turbopump Testing

    Science.gov (United States)

    Effinger, Michael R.; Genge, Gary; Gregg, Wayne; Jordan, William

    1999-01-01

    Ceramic composite blisk components constructed of carbon fibers & silicon carbide ceramic matrix have been fabricated and tested. Room and cryogenic torque testing have verified the attachment configuration. The polar and quasi-isotropic blisks have been proof spun, balanced, and tested in the Simplex turbopump. Foreign particle impact analysis was conducted for C/SiC. Data and manufacturing lessons learned are significantly benefiting the development of the Reusable Launch Vehicle's ceramic matrix composite integrally bladed disk.

  3. A Summary Catalogue of Microbial Drinking Water Tests for Low and Medium Resource Settings

    Directory of Open Access Journals (Sweden)

    Stephen Gundry

    2012-05-01

    Full Text Available Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from $0.60 to $5.00 for a presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application.

  4. The SHOOT cryogenic components - Testing and applicability to other flight programs

    Science.gov (United States)

    Dipirro, Michael J.; Schein, Michael E.; Boyle, Robert F.; Figueroa, Orlando; Lindauer, David A.; Mchugh, Daniel C.; Shirron, P. J.

    1990-01-01

    Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.

  5. Tests and Confidence Intervals for an Extended Variance Component Using the Modified Likelihood Ratio Statistic

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund; Frydenberg, Morten; Jensen, Jens Ledet

    2005-01-01

    The large deviation modified likelihood ratio statistic is studied for testing a variance component equal to a specified value. Formulas are presented in the general balanced case, whereas in the unbalanced case only the one-way random effects model is studied. Simulation studies are presented, s......, showing that the normal approximation to the large deviation modified likelihood ratio statistic gives confidence intervals for variance components with coverage probabilities very close to the nominal confidence coefficient....

  6. Investigating New Innovations to Detect Small Salt-Water Fraction Component in Mineral Oil and Small Oil Fraction Component in Salt-Water Projects

    Directory of Open Access Journals (Sweden)

    E.R.R. Mucunguzi-Rugwebe

    2011-09-01

    Full Text Available The main purpose of this study is to present the key findings on the effects of small salt-water fraction component, β expressed in volume % per L on rotation are presented in the temperature range of 19.0 to 24.0ºC. It was found that rotations in oils with low boiling point known as light oils like Final diesel No. 2 were greater than the rotations which occurred in oils with high boiling point called heavy oils such as Esso diesel. Small oil fraction components, γs expressed in mL/L of salt water down to 10 ppm were detected. The greatest impact on rotation of these oils was found in light oils like Fina No. 2 diesel. At 40 ppm which is the oil content level below which the environment authority considers process water to be free from oil environmental hazards, the observed rotation angles were 23.2º for Esso, 36.7º for Nors Hydro AS, and 71.8º in Fina No. 2 diesel. It was observed that light oils molecules have drastic effect on optical properties of the mixture in which they exist. It was found that for all oils, oil fractions greater than 100 ppm, caused the medium to be optically dense. This technology has shown a very high potential of being used as an environmental monitor to detect oil fractions down to 10 ppm and the technique can use laser beam to control re-injected process water with oil fractions between 100-2000 ppm.

  7. Rapid Field Toxicity Test for Water Supplies

    Science.gov (United States)

    1994-02-28

    of trichothecenes (2). The correlation of the novel method with the Mysid trichothecenes paper described a perfect qualitative shrimp test, using fresh...test designed for human or animal consumption. organisms in a standard time LED light emitting diode CONCLUSION ml milliliter ppm parts per million A...potassium. of Trichothecenes ," Naval Research Laboratory Memorwdm Report 5738 (March 1986) Logistics dictate a day or so to test field samples in the

  8. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use

    Science.gov (United States)

    Müller Schmied, Hannes; Adam, Linda; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Kim, Hyungjun; Oki, Taikan; Portmann, Felix Theodor; Reinecke, Robert; Riedel, Claudia; Song, Qi; Zhang, Jing; Döll, Petra

    2016-07-01

    When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901-2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971-2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non

  9. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  10. How do components of real cloud water affect aqueous pyruvate oxidation?

    Science.gov (United States)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2014-06-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  11. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    Science.gov (United States)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  12. Sheet Membrane Spacesuit Water Membrane Evaporator Thermal Test

    Science.gov (United States)

    Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.

  13. PRINCIPAL COMPONENT ANALYSIS AND CLUSTER ANALYSIS IN MULTIVARIATE ASSESSMENT OF WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Elzbieta Radzka

    2017-03-01

    Full Text Available This paper deals with the use of multivariate methods in drinking water analysis. During a five-year project, from 2008 to 2012, selected chemical parameters in 11 water supply networks of the Siedlce County were studied. Throughout that period drinking water was of satisfactory quality, with only iron and manganese ions exceeding the limits (21 times and 12 times, respectively. In accordance with the results of cluster analysis, all water networks were put into three groups of different water quality. A high concentration of chlorides, sulphates, and manganese and a low concentration of copper and sodium was found in the water of Group 1 supply networks. The water in Group 2 had a high concentration of copper and sodium, and a low concentration of iron and sulphates. The water from Group 3 had a low concentration of chlorides and manganese, but a high concentration of fluorides. Using principal component analysis and cluster analysis, multivariate correlation between the studied parameters was determined, helping to put water supply networks into groups according to similar water quality.

  14. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-03-20

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... license renewal interim staff guidance (LR-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for... Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures...

  15. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira

    2014-08-01

    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  16. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  17. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  18. Components of evaporative water loss in the desert tenebrionid beetles, Eleodes armata and Cryptoglossa verrucosa

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.D.

    1981-01-01

    Water loss in Eleodes armata and Cryptoglossa verrucosa increased with increasing temperature and decreasing vapor activity (a/sub v/). Rates of evaporative water loss were always about 4 times greater in E. armata than in C. verrucosa at the different temperatures and 0.0 a/sub v/, while as a/sub v/ increased the ratio of E. armata loss to C. verrucosa decreased from 4 at 0.0 a/sub v/ to about 2 at 0.94 a/sub v/. A method for determining mesothoracic spiracular, sub-elytral abdominal, and cuticular water loss rates was described and validated for living E. armata. Sub-elytral abdominal water loss through the caudal opening was 8.0 mg H/sub 2/O (g.d)/sup -1/, meso-thoracic spiracular water loss was approximately 7.9 mg H/sub 2/O (g.d)/sup -1/, and cuticular loss was 26.2 mg H/sub 2/O (g.d)/sup -1/ at 30 C and 0.0 a/sub v/. Evaporative water loss was shown to have two unidirectional components, efflux and influx, for both beetles with the use of tritiated water (H/sup 3/HO). Efflux was independent of a/sub v/, while influx increased linearly with a/sub v/, with both components having lower rates in C. verrucosa compared to E. armata.

  19. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  20. Water quality of the Chhoti Gandak River using principal component analysis, Ganga Plain, India

    Indian Academy of Sciences (India)

    Vikram Bhardwaj; Dhruv Sen Singh; A K Singh

    2010-02-01

    Chhoti Gandak is a meandering river which originates in the terai area of the Ganga Plain and serves as a lifeline for the people of Deoria district, Uttar Pradesh. It travels a distance of about 250 km and drains into Ghaghara near Gothani, Siwan district of Bihar. It has been observed that people of this region suffer from water-borne health problems; therefore water samples were collected to analyse its quality along the entire length of Chhoti Gandak River. The principal components of water quality are controlled by lithology, gentle slope gradient, poor drainage, long residence of water, ion exchange, weathering of minerals, heavy use of fertilizers, and domestic wastes. At some stations water is hard with an excess alkalinity and is not suitable for drinking and irrigation purposes. The variation in the local and regional hydrogeochemical processes distinguished the geogenic sources from the anthropogenic one.

  1. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    Science.gov (United States)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  2. In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.R.

    1997-03-01

    Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

  3. Verification test report on a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  4. Component Prioritization Schema for Achieving Maximum Time and Cost Benefits from Software Testing

    Science.gov (United States)

    Srivastava, Praveen Ranjan; Pareek, Deepak

    Software testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. Defining the end of software testing represents crucial features of any software development project. A premature release will involve risks like undetected bugs, cost of fixing faults later, and discontented customers. Any software organization would want to achieve maximum possible benefits from software testing with minimum resources. Testing time and cost need to be optimized for achieving a competitive edge in the market. In this paper, we propose a schema, called the Component Prioritization Schema (CPS), to achieve an effective and uniform prioritization of the software components. This schema serves as an extension to the Non Homogenous Poisson Process based Cumulative Priority Model. We also introduce an approach for handling time-intensive versus cost-intensive projects.

  5. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  6. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Science.gov (United States)

    2013-01-11

    ... also questionable whether thermal efficiency is an appropriate metric for smaller storage water heaters... that the test procedure for residential water heaters utilized the thermal efficiency and standby loss..., particularly for heat pump water heaters and gas instantaneous water heaters. 3. Revised Thermal Efficiency...

  7. Improvement on Mixograph test through water addition and parameter conversions

    Institute of Scientific and Technical Information of China (English)

    SUN Jia-zhu[1; YANG Wen-long[1; LIU Dong-cheng[1; ZHAO Jun-tao[2; LUO Guang-bin[1; LI Xin[1; LIU Yan-jun[3; GUO Jin-kao[3; ZHANG Ai-min[1

    2015-01-01

    To improve Mixograph testing effect, Farinograph measurements were adopted as a quality standard and changes in water absorption and parameter conversion in Mixograph test were explored. Comparative study showed that increasing water absorption to about 73% and converting original parameters to compound parameters in Mixograph tests significantly increased their predictive power for flour quality. These efforts also enabled the adoption of fixed water addition level in Mixograph test and simplified the test procedure significantly. With the success in parameter conversions, Mixograph test results were successfully described by Farinograph parameters, which allow breeders to compare and exchange test results easily. All these changes optimized the official method of Mixograph test with simplified procedure and enhanced reliability and made the Mixograph being the superior tool for quality assessment in wheat-breeding programs.

  8. Improvement on Mixograph test through water addition and parameter conversions

    Institute of Scientific and Technical Information of China (English)

    SUN Jia-zhu; YANG Wen-long; LIU Dong-cheng; ZHAO Jun-tao; LUO Guang-bin; LI Xin; LIU Yan-jun; GUO Jin-kao; ZHANG Ai-min

    2015-01-01

    To improve Mixograph testing effect, Farinograph measurements were adopted as a quality standard and changes in water absorption and parameter conversion in Mixograph test were explored. Comparative study showed that increasing water absorption to about 73% and converting original parameters to compound parameters in Mixograph tests signiifcantly increased their predictive power for lfour quality. These efforts also enabled the adoption of ifxed water addition level in Mixograph test and simpliifed the test procedure signiifcantly. With the success in parameter conversions, Mixograph test results were successful y described by Farinograph parameters, which al ow breeders to compare and exchange test results easily. Al these changes optimized the ofifcial method of Mixograph test with simpliifed procedure and enhanced reliability and made the Mixograph being the superior tool for quality assessment in wheat-breeding programs.

  9. Design study of water chemistry control system for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yuichiro; Ide, Hiroshi; Nabeya, Hideaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In relation to the aging of Light Water Reactor (LWR), the Irradiation Assisted Stress Corrosion Cracking (IASCC) has been regarded as a significant and urgent issue for the reliability of in-core components of LWR, and the irradiation research on the IASCC is now under schedule. With the progress of the irradiation research on reactor materials, well-controlled environment conditions during irradiation testing are required. Especially for irradiation testing of IASCC studies, water chemistry control is essential in addition to the control of neutron fluence and irradiation temperature. According to these requirements, at the Japan Atomic Energy Research Institute (JAERI), an irradiation testing facility that simulates in-core environment of Boiling Water Reactor (BWR) has been designed to be installed in the Japan Materials Testing Reactor (JMTR). This facility is composed of the Saturated Temperature Capsules (SATCAP) that are installed into the JMTR's core to irradiate material specimens, the Water Control Unit that is able to supply high-temperature and high-pressure chemical controlled water to SATCAP, and other components. This report describes the design study of water chemistry control system of the Water Control Unit. The design work has been performed in the fiscal year 1999. (author)

  10. Testing mensuration of the vertical component deviation of phase center of GPS antenna combinations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, W.; Xu, S.; Li, L. [Wuhan University, Wuhan (China). School of Geodesy and Geomatics

    2004-07-01

    Five models of three types of Topcon, Trimble and Leica GPS receiver antennas were combined in pairs and tested using outdoor antenna mensuration. The differences of antenna phase center vertical component deviations of all combinations were figured out and the mm-level measuring precision was achieved when Bernese software was used to process the data. It is verified by the practical example that the difference of the same model of same type of GPS receiver antennas phase center vertical component deviations is about 1 mm or less than 1 mm. And that the difference of the different model of same type or different types of GPS receiver antennas phase center vertical component deviations is very big, and reaches several mm or several cm. Such difference must be corrected in order to obtain the exact and credible distortion value of height component. 4 refs., 3 figs., 3 tabs.

  11. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  12. Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

    NARCIS (Netherlands)

    Fagas, Giorgos; Nolan, Michael; Georgiev, Yordan M.; Yu, Ran; Lotty, Olan; Petkov, Nikolay; Holmes, Justin D.; Jia, Guobin; Eisenhawer, Björn; Gawlik, Annett; Falk, Fritz; Khosropour, Naser; Buitrago, Elizabeth; Fernández-Bolaños Badia, Montserrat; Krummenacher, Francois; Ionescu, Adrian M.; Kayal, Maher; Nightingale, Adrian M.; De Mello, John C; Puik, Erik; Bent, Frank van der; Lafeber, Rik; Ramaneti, Rajesh; Tong, Hien Duy; Rijn, Cees van

    2014-01-01

    From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials pl

  13. Components of Spatial Thinking: Evidence from a Spatial Thinking Ability Test

    Science.gov (United States)

    Lee, Jongwon; Bednarz, Robert

    2012-01-01

    This article introduces the development and validation of the spatial thinking ability test (STAT). The STAT consists of sixteen multiple-choice questions of eight types. The STAT was validated by administering it to a sample of 532 junior high, high school, and university students. Factor analysis using principal components extraction was applied…

  14. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  15. A study of electric field components in shallow water and water half-space models in seabed logging

    Science.gov (United States)

    Rostami, Amir; Soleimani, Hassan; Yahya, Noorhana; Nyamasvisva, Tadiwa Elisha; Rauf, Muhammad

    2016-11-01

    Seabed logging (SBL) is an electromagnetic (EM) method to detect hydrocarbon (HC) laid beneath the seafloor, which is a development of marine controlled source electromagnetic (CSEM) method. CSEM is a method to show resistivity log of geological layers, transmitting ultra-low frequency EM wave. In SBL a net of receivers, placed on the seafloor, detect reflected and refracted EM wave by layers with different resistivity. Contrast of electrical resistivity of layers impacts on amplitude and phase of the EM wave response. The most indispensable concern in SBL is to detect guided wave via high resistive layer under the seafloor that can be an HC reservoir. Guided wave by HC creates a remarkable difference in received signal when HC reservoir does not exist. While the major contribution of received EM wave in large offset, especially in shallow water environment, is airwave, which is refracted by sea surface due to extremely high resistivity of atmosphere, airwave can affect received guided wave, dramatically. Our objective for this work is to compare HC delineation of tangential and normal components of electric field in shallow water area, using finite element method simulation. Will be reported that, in shallow water environment, minor contribution of air wave in normal component of E field (Ey) versus its major contribution in the tangential component (Ex), causes a considerable contrast on HC delineation of Ey for deeply buried reservoirs (more than 3000 m), while Ex is unable to show different contrasts of received data for with and without HC media at the same condition.

  16. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  17. Application of Tank Model for Predicting Water Balance and Flow Discharge Components of Cisadane Upper Catchment

    Directory of Open Access Journals (Sweden)

    Nana Mulyana Arifjaya

    2012-01-01

    Full Text Available The concept of hydrological tank model was well described into four compartments (tanks. The first tank (tank A comprised of one vertical (qA0 and two lateral (qA1 and qA2 water flow components and tank B comprised of one vertical (qB0 and one lateral (qB1 water flow components. Tank C comprised of one vertical (qC0 and one lateral (qC1 water flow components, whereas tank D comprised of one lateral water flow component (qD1.  These vertical water flows would also contribute to the depletion of water flow in the related tanks but would replenish tanks in the deeper layers. It was assumed that at all lateral water flow components would finally accumulate in one stream, summing-up of the lateral water flow, much or less, should be equal to the water discharge (Qo at specified time concerns. Tank A received precipitation (R and evapo-transpiration (ET which was its gradientof (R-ET over time would become the driving force for the changes of water stored in the soil profiles and thosewater flows leaving the soil layer.  Thus tank model could describe th vertical and horizontal water flow withinthe watershed. The research site was Cisadane Upper Catchment, located at Pasir Buncir Village of CaringinSub-District within the Regency of Bogor in West Java Province.  The elevations ranged 512 –2,235 m above sealevel, with a total drainage area of 1,811.5 ha and total length of main stream of 14,340.7 m.  The land cover wasdominated by  forest  with a total of 1,044.6 ha (57.67%,  upland agriculture with a total of 477.96 ha (26.38%,mixed garden with a total of 92.85 ha(5.13% and semitechnical irigated rice field with a total of 196.09 ha (10,8%.  The soil was classified as hydraquent (96.6% and distropept (3.4%.  Based on the calibration of tank model application in the study area, the resulting coefficient of determination (R2 was 0.72 with model efficiency (NSEof= 0.75, thus tank model could well illustrate the water flow distribution of

  18. Calibration of Results of Water Meter Test Facility

    Directory of Open Access Journals (Sweden)

    Andrius Bončkus

    2011-04-01

    Full Text Available The results of water meter test facility calibration are presented. More than 30 test facilities are used in Lithuania nowadays. All of them are certificated for water meter of class 2 verification. The results of inter-laboratory comparison of multi-jet water meter calibration at flow rate Q = 5 m3/h are presented. Lithuanian Energy Institute was appointed as reference laboratory for the comparison. Twelve water meter verification and calibration laboratories from Lithuania participated in the ILC. The deviations from reference values were described by the normalized deviation En.Article in Lithuanian

  19. Testing of optical components to assure performance in a high acerage power environment

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Taylor, J.R.; Eickelberg, W.K.; Primdahl, K.A.

    1997-06-24

    Evaluation and testing of the optical components used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant is critical for qualification of suppliers, development of new optical multilayer designs and monufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  20. Boeing Helicopters Advanced Rotorcraft Transmission (ART) Program summary of component tests

    Science.gov (United States)

    Lenski, Joseph W., Jr.; Valco, Mark J.

    1992-07-01

    The principal objectives of the ART program are briefly reviewed, and the results of advanced technology component tests are summarized. The tests discussed include noise reduction by active cancellation, hybrid bidirectional tapered roller bearings, improved bearing life theory and friction tests, transmission lube study with hybrid bearings, and precision near-net-shape forged spur gears. Attention is also given to the study of high profile contact ratio noninvolute tooth form spur gears, parallel axis gear noise study, and surface modified titanium accessory spur gears.

  1. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2016-10-01

    Full Text Available Quantification of the changes of water balance components is significant for water resource assessment and management. This paper employed the Soil and Water Assessment Tool (SWAT model to estimate the water balance in a mountainous watershed in northwest China at different spatial scales over the past half century. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.90 for the calibration and validation periods. The water balance components presented rising trends at the watershed scale, and the total runoff increased by 30.5% during 1964 to 2013 period. Rising surface runoff and rising groundwater flow contributed 42.7% and 57.3% of the total rising runoff, respectively. The runoff coefficient was sensitive to increasing precipitation and was not significant to the increase of temperature. The alpine meadow was the main landscape which occupied 51.1% of the watershed and contributed 55.5% of the total runoff. Grass land, forest land, bare land, and glacier covered 14.2%, 18.8%, 15.4%, and 0.5% of the watershed and contributed 8.5%, 16.9%, 15.9%, and 3.2% of the total runoff, respectively. The elevation zone from 3500 to 4500 m occupied 66.5% of the watershed area, and contributed the majority of the total runoff (70.7%. The runoff coefficients in the elevation zone from 1637 to 2800 m, 2800 to 3500 m, 3500 to 4000 m, 4000 to 4500 m, and 4500 to 5062 m were 0.20, 0.27, 0.32, 0.43, and 0.78, respectively, which tend to be larger along with the elevation increase. The quantities and change trends of the water balance components at the watershed scale were calculated by the results of the sub-watersheds. Furthermore, we characterized the spatial distribution of quantities and changes in trends of water balance components at the sub-watershed scale analysis. This study provides some references for water resource management and planning in inland river basins.

  2. High power testing of water-cooled waveguide for ITER-like ECH transmission lines

    Science.gov (United States)

    Anderson, J. P.; Doane, J. L.; Grunloh, H. J.; O'Neill, R. C.; Ikeda, R.; Oda, Y.; Takahashi, K.; Sakamoto, K.

    2017-05-01

    The results of high power testing of new water-cooled ECH waveguide components for ITER are presented. The components are a precision-coupled 4.2 m waveguide assembly, a short expansion joint, and water-cooled waveguide for gyrotron commissioning. The testing was conducted at the QST Naka Fusion Institute using gyrotron pulses of 450 kW at 170 GHz for 300 s. Analysis shows that the power absorbed per unit length for the various waveguide components are dependent on location in the transmission line with respect to high order mode generators, such as miter bends. Additionally, larger-than-expected reflections from the load led to high absorption levels in the transmission line.

  3. A discrimination-association model for decomposing component processes of the implicit association test.

    Science.gov (United States)

    Stefanutti, Luca; Robusto, Egidio; Vianello, Michelangelo; Anselmi, Pasquale

    2013-06-01

    A formal model is proposed that decomposes the implicit association test (IAT) effect into three process components: stimuli discrimination, automatic association, and termination criterion. Both response accuracy and reaction time are considered. Four independent and parallel Poisson processes, one for each of the four label categories of the IAT, are assumed. The model parameters are the rate at which information accrues on the counter of each process and the amount of information that is needed before a response is given. The aim of this study is to present the model and an illustrative application in which the process components of a Coca-Pepsi IAT are decomposed.

  4. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Science.gov (United States)

    2010-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... of components, in-process materials, and finished PET drug products must have and follow written... identified to show the specific component, in-process material, or drug product for each lot tested. (4) A...

  5. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  6. Integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, P.G.; Walia, A.; Roy, A.; Lioy, P.J. [Rutgers Univ. and Univ. of Medicine & Dentistry of New Jersey, Piscataway, NJ (United States)

    1997-01-01

    The conceptual and theoretical framework for a modular integrated Exposure and Dose Modeling and Analysis System (EDMAS) has been formulated, and its stepwise implementation and testing is currently in progress. This system aims to provide state-of-the art tools for performing integrated assessments of exposure and dose for individuals and populations. The integration of modeling components with each other as well as with available environmental, exposure, and toxicological databases in being accomplished with the use of computational tools that include interactive simulation environments, Geographical information Systems, and various data retrieval, management, statistical analysis, and visualization methods. This paper overviews the structure and modular nature of this integrated modeling system and focuses specifically on two of its components: (a) a hierarchy of physiologically based pharmacokinetic models (PBPKM), representing various levels of detail and sophistication, and (b) a family of microenvironmental models, that incorporate complex physical and chemical transformations. The deterministic implementation of these components is also presented here in two test applications: (i) a case study of benzene exposure indoors resulting from the volatilization of contaminated tap water and (ii) a case study of photochemical pollution infiltration indoors, in an office building environment. 77 refs., 6 figs., 2 tabs.

  7. Baltimore WATERS Test Bed -- Quantifying Groundwater in Urban Areas

    Science.gov (United States)

    Welty, C.; Miller, A. J.; Ryan, R. J.; Crook, N.; Kerchkof, T.; Larson, P.; Smith, J.; Baeck, M. L.; Kaushal, S.; Belt, K.; McGuire, M.; Scanlon, T.; Warner, J.; Shedlock, R.; Band, L.; Groffman, P.

    2007-12-01

    The purpose of this project is to quantify the urban water cycle, with an emphasis on urban groundwater, using investigations at multiple spatial scales. The overall study focuses on the 171 sq km Gwynns Falls watershed, which spans an urban to rural gradient of land cover and is part of the Baltimore Ecosystem Study LTER. Within the Gwynns Falls, finer-scale studies focus on the 14.3 sq km Dead Run and its subwatersheds. A coarse-grid MODFLOW model has been set up to quantify groundwater flow magnitude and direction at the larger watershed scale. Existing wells in this urban area are sparse, but are being located through mining of USGS NWIS and local well data bases. Wet and dry season water level synoptics, stream seepage transects, and existing permeability data are being used in model calibration. In collaboration with CUAHSI HMF Geophysics, a regional-scale microgravity survey was conducted over the watershed in July 2007 and will be repeated in spring 2008. This will enable calculation of the change in groundwater levels for use in model calibration. At the smaller spatial scale (Dead Run catchment), three types of data have been collected to refine our understanding of the groundwater system. (1) Multiple bromide tracer tests were conducted along a 4 km reach of Dead Run under low-flow conditions to examine groundwater- surface water exchange as a function of land cover type and stream position in the watershed. The tests will be repeated under higher base flow conditions in early spring 2008. Tracer test data will be interpreted using the USGS OTIS model and results will be incorporated into the MODFLOW model. (2) Riparian zone geophysical surveys were carried out with support from CUAHSI HMF Geophysics to delineate depth to bedrock and the water table topography as a function of distance from the stream channel. Resistivity, ground penetrating radar, and seismic refraction surveys were run in ten transects across and around the stream channels. (3) A finer

  8. Test results of a shower water recovery system

    Science.gov (United States)

    Verostko, Charles E.; Price, Donald F.; Garcia, Rafael; Pierson, Duane L.; Sauer, Richard L.

    1987-01-01

    A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.

  9. Engineers conduct key water test for A-3 stand

    Science.gov (United States)

    2009-01-01

    Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.

  10. [Eosin Y-water test for sperm function examination].

    Science.gov (United States)

    Zha, Shu-wei; Lü, Nian-qing; Xu, Hao-qin

    2015-06-01

    Based on the principles of the in vitro staining technique, hypotonic swelling test, and water test, the Eosin Y-water test method was developed to simultaneously detect the integrity of the sperm head and tail and sperm membrane structure and function. As a widely used method in clinical laboratories in China, the Eosin Y-water test is methodologically characterized by three advantages. Firstly, both the sperm head and tail can be detected at the same time, which allows easy and comprehensive assessment of membrane damage in different parts of sperm. Secondly, distilled water is used instead of the usual formula solution to simplify and standardize the test by eliminating any potential effects on the water molecules through the sperm membrane due to different osmotic pressure or different sugar proportions and electrolyte solutions. Thirdly, the test takes less time and thus can be repeated before and after treatment. This article focuses on the fundamental principles and modification of the Eosin Y-water test and its application in sperm function examination and routine semen analysis for male infertility, assessment of the quality of sperm retrieved by testicular fine needle aspiration, semen cryopreservation program development, and evaluation of sperm membrane integrity after microwave radiation.

  11. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado

    Science.gov (United States)

    Oliveira, P. T. S.; Wendland, E.; Nearing, M. A.; Scott, R. L.; Rosolem, R.; da Rocha, H. R.

    2015-06-01

    Deforestation of the Brazilian cerrado region has caused major changes in hydrological processes. These changes in water balance components are still poorly understood but are important for making land management decisions in this region. To better understand pre-deforestation conditions, we determined the main components of the water balance for an undisturbed tropical woodland classified as "cerrado sensu stricto denso". We developed an empirical model to estimate actual evapotranspiration (ET) by using flux tower measurements and vegetation conditions inferred from the enhanced vegetation index and reference evapotranspiration. Canopy interception, throughfall, stemflow, surface runoff, and water table level were assessed from ground measurements. We used data from two cerrado sites, Pé de Gigante (PDG) and Instituto Arruda Botelho (IAB). Flux tower data from the PDG site collected from 2001 to 2003 were used to develop the empirical model to estimate ET. The other hydrological processes were measured at the field scale between 2011 and 2014 at the IAB site. The empirical model showed significant agreement (R2 = 0.73) with observed ET at the daily timescale. The average values of estimated ET at the IAB site ranged from 1.91 to 2.60 mm day-1 for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20 % and stemflow values were approximately 1 % of the gross precipitation. The average runoff coefficient was less than 1 %, while cerrado deforestation has the potential to increase that amount up to 20-fold. As relatively little excess water runs off (either by surface water or groundwater), the water storage may be estimated by the difference between precipitation and evapotranspiration. Our results provide benchmark values of water balance dynamics in the undisturbed cerrado that will be useful to evaluate past and future land-cover and land-use changes for this region.

  12. Quality assurance and functionality tests on electrical components during the ATLAS IBL production

    Science.gov (United States)

    Bassalat, A.

    2014-01-01

    During the shutdown of 2013-2014, for the enhancement of the current ATLAS Pixel Detector, a fourth layer (Insertable B Layer, IBL) is being built and will be installed between the innermost layer and a new beam pipe. A new generation of readout chip has been developed, and two different sensor designs, a rather conventional planar and a 3D design, have been bump bonded to the Front Ends. Additionally, new staves and module flex circuits have been developed. A production QA test bench was therefore established to test all production staves before integration with the new beam pipe. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are being performed on the individual components during the various production steps of the IBL; namely, connectivity tests, electrical tests and signal probing on individual parts and assembled subsystems. This paper discusses the pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results from stave testing.

  13. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  14. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  15. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  16. Detailed measurements and modelling of thermo active components using a room size test facility

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    This paper describes an investigation of thermo active components based on prefabricated hollow core concrete decks. Recent years have given an increased awareness of the use of thermo active components as an alternative to mechanical cooling systems in office buildings. The investigation covers...... measurements in an office sized test facility with thermo active ceiling and floor as well as modelling of similar conditions in a computer program designed for analysis of building integrated heating and cooling systems. A method for characterizing the cooling capacity of thermo active components is described...... based on measurements of the energy balance of the thermo active deck. A cooling capacity of around 60W/m² at a temperature difference of 10K between room and fluid temperature has been found. It is also shown, that installing a lowered acoustic ceiling covering around 50% of the ceiling surface area...

  17. Testing of Commercial Cutting Heads for Abrasive Water Jet Technology

    OpenAIRE

    Klich, J. (Jiří); Hlaváček, P.; M. Zeleňák; Sitek, L. (Libor); Foldyna, J. (Josef)

    2013-01-01

    Five different cutting heads designed for cutting by high-speed abrasive water jet technology were tested from cutting ability point of view. Straight kerfs were cut in several metal materials by abrasive water jet. Material removal volume was determined as a measure of performance of specific cutting head. Quality of cutting surface was observed, too. Results are compared and discussed.

  18. Testing large volume water treatment and crude oil ...

    Science.gov (United States)

    Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A

  19. IAEA proficiency tests for determination of radionuclides in sea water.

    Science.gov (United States)

    Harms, Arend; Khanh Pham, Mai; Blinova, Oxana; Tarjan, Sandor; Nies, Hartmut; Osvath, Iolanda

    2017-08-01

    The International Atomic Energy Agency organised four proficiency tests between 2012 and 2015 to test the performance of participating laboratories in an analysis of radionuclides in sea water samples. These exercises were initiated to support IAEA Member States in sea water analyses of tritium, strontium-90 and caesium isotopes in relation to the accident at the Fukushima Daiichi nuclear power station, in March 2011, and subsequent contamination of the marine environment. Copyright © 2017. Published by Elsevier Ltd.

  20. Evaluation of annual corrosion tests for aggressive water

    Science.gov (United States)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  1. Biodegradation of the water-soluble gasoline components in a novel hybrid bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De-Jesus, A.; Lara-Rodriguez, A.; Santoyo-Tepole, F.; Juarez-Ramirez, C.; Cristiani-Urbina, E.; Ruiz-Ordaz, N.; Galindez Mayer, J. [Escuela Nacional de Ciencias Biologicas, del Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, Carpio y Plan de Ayala, ' ' Centro Operativo Naranjo' ' , Mexico, D.F. (Mexico)

    2003-07-01

    A novel hybrid bioreactor was designed to remove volatile organic compounds from water contaminated with water-soluble gasoline components, and the performance of this new bioreactor was investigated. It was composed of two biotrickling filter sections and one biofilter section. The liquid phase pollutants were removed by a mixed culture in the biotrickling filter sections and the gas phase pollutants stripped by air injection in the biofilter section. The specific rates of chemical oxygen demand (COD) removal obtained in the reactor were directly proportional to the pollutant-loading rate. A stable operation of the hybrid bioreactor was attained for long periods of time. The bioreactor had the potential to simultaneously treat a complex mixture of volatile organic compounds, e.g., those present in the water-soluble fraction of gasoline, as well as the capacity to readily adapt to changing operational conditions, such as an increased contaminant loading, and variations in the airflow rate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  2. 77 FR 74883 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water; Revision 1

    Science.gov (United States)

    2012-12-18

    ... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water; Revision 1... corrects License Renewal Interim Staff Guidance, LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water,'' which was announced in the Federal Register on May...

  3. Proton radiation testing of laser optical components for NASA Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Thomes, W. Joe, Jr.; Cavanaugh, John F.; Ott, Melanie N.

    2011-09-01

    The Jupiter Europa Orbiter (JEO) is NASA's element of the joint Europa Jupiter System Mission (EJSM). Based on current trajectories, the spacecraft will spend a significant amount of time in the Jovian radiation belts. Therefore, research endeavors are underway to study the radiation effects on the various parts and components needed to implement the instruments. Data from these studies will be used for component selection and system design to ensure reliable operation throughout the mission duration. The radiation environment en route to Jupiter is nothing new for NASA designed systems, however, the long durations orbiting Jupiter and Europa present new challenges for radiation exposure. High-energy trapped electrons and protons at Jupiter dominate the expected radiation environment. Therefore, most of the initial component level radiation testing is being conducted with proton exposure. In this paper we will present in-situ monitoring of the optical transmission of various laser optical components during proton irradiation. Radiation induced optical attenuation of some components is less than would be expected, based on the authors experiences, and is attributed to the interaction of the protons with the materials. The results are an encouraging first step in screening these optical materials for spaceflight in a high radiation environment.

  4. Water tank installed at A-3 Test Stand

    Science.gov (United States)

    2009-01-01

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  5. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Laboratory (INL), Idaho Falls, ID (United States); O' Brien, James E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  6. Developing and Testing Water Cycle Intensification Indicator (WCI) over the United States

    Science.gov (United States)

    Feng, X.; Houser, P. R.

    2014-12-01

    Is the water cycle intensifying in response to global warming due to temperature-driven changes in atmospheric water holding capacity? To address this question, we are developing and testing Water Cycle Intensification Indicator (WCI) to quantify the current and future change in the strength of the water cycle across the conterminous U.S. in support of the National Climate Assessment (NCA). The WCI consists of a suite of primary water cycle trend and extreme composites that are spatially- and temporally-scalable for summarizing how the climate changes results in stronger or more extreme water cycling over the nation. We calculated trend and extreme in water cycle components using NASA-produced data and modeling products. Six water cycle variables are chosen, including precipitation, evaporation, runoff, moisture convergence flux, terrestrial storage and water vapor. Our preliminary results showed that the strength of water cycle depends on specific regions and variables, even different datasets. For instance, precipitation from MERRA-Land offline simulation is consistent with the CPC unified precipitation dataset in showing positive trend over the northeastern, northwestern and west north central, but negative trend over the western and central regions. However, negative trends are observed in MERRA-land over the southern Texas and some parts of the southern coast, contrary to the positive trend revealed by the unified dataset in the same area. Next, we are going to integrate and combine the trends and extremes of these water cycle components to develop a suite of climate indicators to monitor the changes of water cycle as result of climate change. These indicators will be implemented and tested over the nation for further optimization. Moreover, we will also be developing innovative WCI visualization, documentation and distribution methods to disseminate WCI products to the public and stakeholders.

  7. Field-testing of a Passive Surface Water Flux Meter for the Direct Measurement of Water and Solute Mass Fluxes

    Science.gov (United States)

    Atkinson, E. C.; Jawitz, J. W.; Annable, M. D.; Klammler, H.; Hatfield, K.

    2007-05-01

    The measurement of water and solute mass discharges in surface water flow systems is a fundamental hydrologic task for ecological and economic decision making. However, due to the extensive monetary, labor, and time costs of traditional monitoring devices and methods, many water quality monitoring programs lack the resources necessary to provide comprehensive descriptions of surface water impairments. The Passive Surface Water Flux Meter (PSFM) is a recently developed passive sampling device that measures water and solute fluxes within flowing surface water bodies. Devoid of mechanical components and power supply requirements, the relatively low-maintenance, low-cost design of the PSFM gives it considerable potential as a tool for extensive, large-scale surface water quality characterization and monitoring. The novelty of the PSFM extends to its direct mass-based approach to solute flux measurement, as compared to conventional, indirect concentration-based approaches. During this field-testing campaign, the PSFM was deployed in flowing surface water bodies of north- central Florida. The device contained a dual-packed porous media cartridge that performed simultaneous ion exchange to determine phosphate mass flux and equilibrium tracer desorption to determine water flux within the stream. The PSFM demonstrated accurate measurement of steady-state water and phosphate mass fluxes to within 15% over a range of stream velocities, solute concentrations, and deployment durations. The PSFM design described here was found to perform well in steady-flow conditions. The device was also shown to be effective under transient conditions of limited variability, but full transient testing remains for future work.

  8. Combined Cycle Fatigue Testing with Ultrasonic Frequency Component of S350 Steel Welded Joint

    Institute of Scientific and Technical Information of China (English)

    柳阳; 王东坡; 邓彩艳; 吴良晨; 尹丹青; 龚宝明

    2014-01-01

    A combined cycle fatigue (CCF) testing system with ultrasonic frequency component was developed to evaluate the CCF properties of S350 steel welded joints in this study. The fatigue testing results indicated that the S-N curves of CCF did not have fatigue limit, which agreed with those of pure high frequency fatigue of welded joints. The S-N curves showed that the CCF strength of welded joints dropped greatly with the increasing interaction between high and low frequency fatigue loading. An approximation design method of CCF was presented using amplitude envelope as the stress range.

  9. Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure for components of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Waller, R.A.

    1977-06-01

    A Bayesian-Zero-Failure (BAZE) reliability demonstration testing procedure is presented. The method is developed for an exponential failure-time model and a gamma prior distribution on the failure-rate. A simple graphical approach using percentiles is used to fit the prior distribution. The procedure is given in an easily applied step-by-step form which does not require the use of a computer for its implementation. The BAZE approach is used to obtain sample test plans for selected components of nuclear reactor safety systems.

  10. Small punch creep test: A promising methodology for high temperature plant components life evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, S. [CISE SpA, Milan (Italy); Crudeli, R. [ENEL SpA, Milan (Italy)

    1998-12-31

    CISE and ENEL are involved for years in a miniaturization creep methodology project to obtain similar non-destructive test with the same standard creep test reliability. The goal can be reached with `Small punch creep test` that collect all the requested characteristics; quasi nondestructive disk specimens extracted both on external or internal side of components, than accurately machined and tested on little and cheap apparatus. CISE has developed complete creep small punch procedure that involved peculiar test facility and correlation`s law comparable with the more diffused isostress methodology for residual life evaluation on ex-serviced high temperature plant components. The aim of this work is to obtain a simple and immediately applicable relationship useful for plant maintenance managing. More added work is need to validate the Small Punch methodology and for relationship calibration on most diffusion high temperature structural materials. First obtained results on a comparative work on ASTM A355 P12 ex-serviced pipe material are presented joint with a description of the Small Punch apparatus realized in CISE. (orig.) 6 refs.

  11. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it [INFN Sezione di Ferrara and University of Ferrara (Italy); Baltzell, N. [Argonne National Laboratory, IL (United States); Benmokhtar, F. [Christopher Newport University, VA (United States); Duquesne University, PA (United States); Barion, L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Cisbani, E. [INFN Sezione di Roma – Gruppo Collega to Sanità (Italy); Italian National Institute of Health (Italy); El Alaoui, A. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Argonne National Laboratory, IL (United States); Hafidi, K. [Argonne National Laboratory, IL (United States); Hoek, M. [Glasgow University (United Kingdom); J. Gutenberg Universität, Mainz (Germany); Kubarovsky, V. [Thomas Jefferson National Laboratory, VA (United States); Lagamba, L. [INFN Sezione di Bari, University of Bari (Italy); Lucherini, V. [INFN Laboratori Nazionali di Frascati (Italy); Malaguti, R. [INFN Sezione di Ferrara and University of Ferrara (Italy); Mirazita, M. [INFN Laboratori Nazionali di Frascati (Italy); Montgomery, R. [Glasgow University (United Kingdom); INFN Laboratori Nazionali di Frascati (Italy); Movsisyan, A. [INFN Sezione di Ferrara and University of Ferrara (Italy); Musico, P. [INFN Sezione di Genova (Italy); Orecchini, D.; Orlandi, A. [INFN Laboratori Nazionali di Frascati (Italy); Pappalardo, L.L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Pereira, S. [INFN Laboratori Nazionali di Frascati (Italy); and others

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures.

  12. Development and tests of molybdenum armored copper components for MITICA ion source

    Science.gov (United States)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  13. Development and tests of molybdenum armored copper components for MITICA ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Böswirth, Bernd; Greuner, Henri [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  14. Quality Assurance and Functionality Tests on Electrical Components during the ATLAS IBL Production

    CERN Document Server

    Bassalat, A; The ATLAS collaboration

    2014-01-01

    During the shutdown of 2013-2014, for the enhancement of the current ATLAS Pixel Detector, a fourth layer (Insertable B Layer, IBL) is being built and will be installed between the innermost layer and a new beam pipe. A new generation of readout chip has been developed, and two different sensor designs, a rather conventional planar and a 3D design, have been bump bonded to the Front Ends. Additionally, new staves and module flex circuits have been developed. A production QA test bench was therefore established to test all production staves before integration with the new beam pipe. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are being performed on the individual components during the various production steps of the IBL; namely, connectivity tests, electrical tests and signal probing on individual parts and assembled subsystems. This paper discusses the pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results fr...

  15. Fracture tests of etched components using a focused ion beam machine

    Science.gov (United States)

    Kuhn, Jonathan L.; Fettig, Rainer K.; Moseley, Samuel H., Jr.; Kutyrev, Alexander S.; Orloff, Jon

    2000-08-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 (mu) m) components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture tests configurations for 0.5 (mu) m thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe, and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  16. Water Pollution Detection Based on Hypothesis Testing in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xu Luo

    2017-01-01

    Full Text Available Water pollution detection is of great importance in water conservation. In this paper, the water pollution detection problems of the network and of the node in sensor networks are discussed. The detection problems in both cases of the distribution of the monitoring noise being normal and nonnormal are considered. The pollution detection problems are analyzed based on hypothesis testing theory firstly; then, the specific detection algorithms are given. Finally, two implementation examples are given to illustrate how the proposed detection methods are used in the water pollution detection in sensor networks and prove the effectiveness of the proposed detection methods.

  17. A geo-informatics approach for estimating water resources management components and their interrelationships

    KAUST Repository

    Liaqat, Umar Waqas

    2016-09-21

    A remote sensing based geo-informatics approach was developed to estimate water resources management (WRM) components across a large irrigation scheme in the Indus Basin of Pakistan. The approach provides a generalized framework for estimating a range of key water management variables and provides a management tool for the sustainable operation of similar schemes globally. A focus on the use of satellite data allowed for the quantification of relationships across a range of spatial and temporal scales. Variables including actual and crop evapotranspiration, net and gross irrigation, net and gross groundwater use, groundwater recharge, net groundwater recharge, were estimated and then their interrelationships explored across the Hakra Canal command area. Spatially distributed remotely sensed estimates of actual evapotranspiration (ETa) rates were determined using the Surface Energy Balance System (SEBS) model and evaluated against ground-based evaporation calculated from the advection-aridity method. Analysis of ETa simulations across two cropping season, referred to as Kharif and Rabi, yielded Pearson correlation (R) values of 0.69 and 0.84, Nash-Sutcliffe criterion (NSE) of 0.28 and 0.63, percentage bias of −3.85% and 10.6% and root mean squared error (RMSE) of 10.6 mm and 12.21 mm for each season, respectively. For the period of study between 2008 and 2014, it was estimated that an average of 0.63 mm day−1 water was supplied through canal irrigation against a crop water demand of 3.81 mm day−1. Approximately 1.86 mm day−1 groundwater abstraction was estimated in the region, which contributed to fulfil the gap between crop water demand and canal water supply. Importantly, the combined canal, groundwater and rainfall sources of water only met 70% of the crop water requirements. As such, the difference between recharge and discharge showed that groundwater depletion was around −115 mm year−1 during the six year study period. Analysis indicated that

  18. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  19. Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber

    Science.gov (United States)

    Klenhenz, Julie; Linne, Diane

    2013-01-01

    In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.

  20. Supercritical water oxidation data acquisition testing. Final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included.

  1. Developing standard performance testing procedures for material control and accounting components at a site

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Carolynn P [Los Alamos National Laboratory; Bushlya, Anatoly V [ROSATOM, RUSSIA; Efimenko, Vladimir F [IPPE, RUSSIA; Ilyanstev, Anatoly [IPPE, RUSSIA; Regoushevsky, Victor I [IPPE, RUSSIA

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  2. Monitoring the Methane Hydrate Dissociation by the Offshore Methane Hydrate Production Tests using Multi-component Seismic

    Science.gov (United States)

    Asakawa, Eiichi; Hayashi, Tsutomu; Tsukahara, Hitoshi; Takahashi, Hiroo; Saeki, Tatsuo

    2013-04-01

    We developed a new OBC (Ocean Bottom Cable), named as 'DSS' (Deep-sea Seismic System). The sensor has 3-component accelerometer and a hydrophone applicable for four-component (4C) seismic survey. Using the DSS, the methane hydrate dissociation zone will be tried to be monitored at the water depth of around 1000m during JOGMEC offshore methane hydrate production test in early 2013. Before the DSS, we had developed the RSCS (Real-time Seismic Cable System) with 3-component gimbaled geophones, and carried out a reflection seismic survey in the Nankai Trough in 2006. Referring this successful survey, we improved the RSCS to the DSS. The receiver size is reduced to 2/3 and the receiver case has a protective metallic exterior and the cable is protected with steel-screened armouring, allowing burial usage using ROV for sub-seabed deployment at the water depth up to 2000m. It will realize a unique survey style that leaves the system on the seabed between pre-test baseline survey and post-test repeated surveys, which might be up to 6 months. The fixed location of the receiver is very important for time-lapse monitoring survey. The DSS has totally 36 sensors and the sensor spacing is 26.5m. The total length is about 1km. We carried out the pre-test baseline survey between off Atsumi and Shima-peninsula in August, 2012.We located the DSS close to the production test well. The nearest sensor is 63m apart from the well. A newly developed real-time 3-D laying simulation system consisting of ADCP (Acoustic Doppler Current Profiler), transponders attached to the DSS, and real-time 3-D plotting system for transponder locations have been adopted. After we laid the cable, we buried the DSS using ROV (Remotely Operated Vehicle). The baseline survey included 2D/3D seismic surveys with shooting vessel and cable laying/observation ship. The resultant 2D section and 3D volume shows the good quality to delineate the methane hydrate concentrated zone. After the baseline survey, we have left

  3. Three-component U-Pu-Th fuel for plutonium irradiation in heavy water reactors

    Directory of Open Access Journals (Sweden)

    Peel Ross

    2016-01-01

    Full Text Available This paper discusses concepts for three-component fuel bundles containing plutonium, uranium and thorium for use in pressurised heavy water reactors, and cases for and against implementation of such a nuclear energy system in the United Kingdom. Heavy water reactors are used extensively in Canada, and are deploying within India and China, whilst the UK is considering the use of heavy water reactors to manage its plutonium inventory of 140 tonnes. The UK heavy water reactor proposal uses a mixed oxide (MOX fuel of plutonium in depleted uranium, within the enhanced CANDU-6 (EC-6 reactor. This work proposes an alternative heterogeneous fuel concept based on the same reactor and CANFLEX fuel bundle, with eight large-diameter fuel elements loaded with natural thorium oxide and 35 small-diameter fuel elements loaded with a MOX of plutonium and reprocessed uranium stocks from UK MAGNOX and AGR reactors. Indicative neutronic calculations suggest that such a fuel would be neutronically feasible. A similar MOX may alternatively be fabricated from reprocessed <5% enriched light water reactor fuel, such as the fuel of the AREVA EPR reactor, to consume newly produced plutonium from reprocessing, similar to the DUPIC (direct use of PWR fuel in CANDU process.

  4. PRODUCTION COMPONENTS OF Vigna unguiculata (L. Walp IRRIGATED WITH BRACKISH WATER UNDER DIFFERENT LEACHING FRACTIONS

    Directory of Open Access Journals (Sweden)

    JOSÉ FRANCISCO DE CARVALHO

    2016-01-01

    Full Text Available The objective of this work was to evaluate the production components of cowpea ( Vigna unguiculata L. Walp subjected to irrigation with brackish water and different leaching fractions. The experiment was conducted in a lysimeter system of the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, Recife campus. The treatments, consisting of two water salinity levels (ECw (1.2 and 3.3 dS m - 1 and five leaching fractions (0, 5, 10, 15 and 20%, were evaluated using a completely randomized design in a 2x5 factorial arrangement with four replications. The variables evaluated were: number of pods per plant, 100 - grain weight, number of grains per pod, grain and shoot dry weight, grain yield and harvest index. The soil salinity increased with increasing salinity of the water used for irrigation, and reduced with increasing leaching fraction. The salinity of the water used for irrigation influenced only the variables number of pods per plant and grain yield. The estimated leaching fractions of 9.1% and 9.6% inhibited the damage caused by salinity on the number of pods per plant and grain yield, respectively. Therefore, the production of V. unguiculata irrigated with brackish water, leaching salts from the plant root environment, is possible under the conditions evaluated.

  5. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Ko, E-mail: etoko@gpo.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Sonoda, Yoshiyuki [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Jin, Yuji [School of Basic Medicine, Jilin Medical College, Jilin 132013 (China); Abe, Shin-ichi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan)

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  6. Characterising water balance dynamics and different runoff components in a poorly gauged tropical catchment, Nicaragua

    Science.gov (United States)

    Calderon, Heyddy; Uhlenbrook, Stefan

    2014-05-01

    The water balance dynamics, groundwater flow systems and the runoff components of a tropical forested small catchment (46 km2) is the southwestern Pacific coast of Nicaragua were studied by a combination of hydrometry (observation of rainfall, runoff, evaporation and groundwater levels), geological characterisation (hydrogeological mapping, flow systems, characterization and Piper diagrams) and hydrochemical and isotopic tracers (chemograph analysis, 2- and 3-component hydrograph separation, discharge-hydrochemical hysteresis effects, and MWL). Although some methods can be considered standard in runoff generation research in temperate climate regions; to the best of our knowledge, this is one of the few studies that used the combination of these techniques in a tropical catchment of Central America. Runoff components were studied at different spatial and temporal scales, finding that different sources and temporal contributions are controlled by geology, catchment size, and dominant landscape elements. Two major groundwater flow systems were identified with different chemical and isotopic characteristics. Indication of moisture recycling in the upper catchment area was found based on d-excess analysis. Runoff components were studied at different spatial and temporal scales, demonstrating that different sources and temporal contributions are controlled by dominant landscape elements and precipitation distribution. Evidence of strong river-aquifer interactions in the lower part of the catchment was found. The results provide an in-depth understanding of the surface and groundwater contributions to stream flow and its temporal and spatial distribution, which indicate the importance of runoff generation areas upstream in the catchment and also the vulnerability of the alluvial aquifer to contamination. This provides the basis to develop realistic, evidence-based water management plans for this developing region.

  7. Design of water feeding system for IASCC irradiation tests at JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Masaru; Nabeya, Hideaki; Mori, Yuichiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-12-01

    In relation to the aging of light water reactors (LWRs), the irradiation assisted stress corrosion cracking (IASCC) has been regarded as a significant and urgent issue for the reliability of in-core components and materials of LWRs, and the irradiation research is now under schedule. It is essential for IASCC studies to irradiated materials under well-controlled conditions simulating LWR in-core environment. Therefore, a new water feeding system to supply high temperature water into irradiation capsules in the Japan Materials Testing Reactor (JMTR) has been designed and will be installed in near future. This report describes the specification and performance of the water feeding system that is designed to supply high temperature water to simulate BWR conditions in irradiation capsules. This design work was performed in the fiscal year 1999. (author)

  8. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  9. Formation of the Innovation Component of Marketing Technologies of Enterprises That Produce Mineral Waters

    Directory of Open Access Journals (Sweden)

    Golodniuk Olena S.

    2014-03-01

    Full Text Available The article considers main marketing technologies of building competitive advantages by enterprises that produce Ukrainian mineral waters. It considers individual innovations of the conceptual (eco-marketing and applied (branding, benchmarking and competitive reconnaissance nature with consideration of their significance for participants of this market. It offers directions of increasing the innovation component of topical marketing technologies with the aim of implementation of their results into management of competitive advantages of enterprises. It draws a conclusion about a necessity of: reducing evident and growth of a number of latent competitive advantages, based on intellectual technologies, and also development and realisation of a conceptual model of providing marketing innovations in the system of managing competitive advantages of enterprises; and formation of the system of monitoring marketing innovations with the aim of development of additional services and means of building competitive advantages of enterprises that produce mineral waters.

  10. Testing Multiple Psychological Processes for Common Neural Mechanisms Using EEG and Independent Component Analysis.

    Science.gov (United States)

    Wessel, Jan R

    2016-03-08

    Temporal independent component analysis (ICA) is applied to an electrophysiological signal mixture (such as an EEG recording) to disentangle the independent neural source signals-independent components-underlying said signal mixture. When applied to scalp EEG, ICA is most commonly used either as a pre-processing step (e.g., to isolate physiological processes from non-physiological artifacts), or as a data-reduction step (i.e., to focus on one specific neural process with increased signal-to-noise ratio). However, ICA can be used in an even more powerful way that fundamentally expands the inferential utility of scalp EEG. The core assumption of EEG-ICA-namely, that individual independent components represent separable neural processes-can be leveraged to derive the following inferential logic: If a specific independent component shows activity related to multiple psychological processes within the same dataset (e.g., elicited by different experimental events), it follows that those psychological processes involve a common, non-separable neural mechanism. As such, this logic allows testing a class of hypotheses that is beyond the reach of regular EEG analyses techniques, thereby crucially increasing the inferential utility of the EEG. In the current article, this logic will be referred to as the 'common independent process identification' (CIPI) approach. This article aims to provide a tutorial into the application of this powerful approach, targeted at researchers that have a basic understanding of standard EEG analysis. Furthermore, the article aims to exemplify the usage of CIPI by outlining recent studies that successfully applied this approach to test neural theories of mental functions.

  11. Water Balance Components in Covered and Uncovered Soil Growing Irrigated Muskmelon

    Directory of Open Access Journals (Sweden)

    Paulo Leonel Libardi

    2015-10-01

    Full Text Available ABSTRACT Knowledge of the terms (or processes of the soil water balance equation or simply the components of the soil water balance over the cycle of an agricultural crop is essential for soil and water management. Thus, the aim of this study was to analyze these components in a Cambissolo Háplico (Haplocambids growing muskmelon (Cucumis melo L. under drip irrigation, with covered and uncovered soil, in the municipality of Baraúna, State of Rio Grande do Norte, Brazil (05º 04’ 48” S, 37º 37’ 00” W. Muskmelon, variety AF-646, was cultivated in a flat experimental area (20 × 50 m. The crop was spaced at 2.00 m between rows and 0.35 m between plants, in a total of ten 50-m-long plant rows. At points corresponding to ⅓ and ⅔ of each plant row, four tensiometers (at a distance of 0.1 m from each other were set up at the depths of 0.1, 0.2, 0.3, and 0.4 m, adjacent to the irrigation line (0.1 m from the plant row, between two selected plants. Five random plant rows were mulched using dry leaves of banana (Musa sp. along the drip line, forming a 0.5-m-wide strip, which covered an area of 25 m2 per of plant row with covered soil. In the other five rows, there was no covering. Thus, the experiment consisted of two treatments, with 10 replicates, in four phenological stages: initial (7-22 DAS - days after sowing, growing (22-40 DAS, fruiting (40-58 DAS and maturation (58-70 DAS. Rainfall was measured with a rain gauge and water storage was estimated by the trapezoidal method, based on tensiometer readings and soil water retention curves. For soil water flux densities at 0.3 m, the tensiometers at the depths of 0.2, 0.3, and 0.4 m were considered; the tensiometer at 0.3 m was used to estimate soil water content from the soil water retention curve at this depth, and the other two to calculate the total potential gradient. Flux densities were calculated through use of the Darcy-Buckingham equation, with hydraulic conductivity determined by

  12. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  13. Nanoscaled Components for Improved Efficiency in a Multiplanel Photocatalytic Water-Splitting System

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Marye Anne [Univ. of California, San Diego, CA (United States); Whitesell, James [Univ. of California, San Diego, CA (United States)

    2014-04-30

    The goal of this program was to construct a multicell photochemical device for the direct conversion of solar energy directly to hydrogen by water splitting. We have fabricated a practical photolytic system for quantum efficient production of hydrogen. Our approach is based on the assembly of a multi-component integrated system for direct photocatalytic splitting of water for the efficient production of hydrogen. We propose to produce hydrogen as an energy source that is cost competitive with fossil fuels and without the concomitant production of greenhouse gases. The concept is quite straightforward. In order to achieve the over potential required for direct water splitting, the device is composed of multiple dye-sensitized cells directly linked in series, as illustrated in the figure below. The advantage of this concept is that each cell need contribute only a fraction of the overall potential required for water splitting, thus permitting device engineering to maximized efficiently without regard to electric potential. Progress and barriers to practical application will be described.

  14. Monitoring dental-unit-water-line output water by current in-office test kits.

    Science.gov (United States)

    Lal, Sham; Singhrao, Sim K; Bricknell, Matt; Pearce, Mark; Morton, L H Glyn; Ahmed, Waqar; Crean, St John

    2014-08-01

    The importance of monitoring contamination levels in the output water of dental-unit-water-lines (DUWLs) is essential as they are prone to developing biofilms that may contaminate water that is used to treat patients, with opportunistic pathogens such as species of Legionella, Pseudomonas and others. Dentists and practice staff are also at risk of being infected by means of cross-infection due to aerosols generated from DUWL water. The unit of measurement for the microbial contamination of water by aerobic mesophilic heterotrophic bacteria is the colony-forming unit per millilitre (cfu/ml) of water. The UK has its own guidelines set by the Department of Health for water discharged from DUWL to be between 100 and 200 cfu/ml of water. The benchmark or accepted standard laboratory test is by microbiological culture on R2A agar plates. However, this is costly and not convenient for routine testing in dental practices. A number of commercial indicator tests are used in dental surgeries, but they were not developed for the dental market and serve only to indicate gross levels of contamination when used outside of the manufacturer's recommended incubation period. The aim of this article is to briefly review the universal problem of DUWL contamination with microbial biofilms and to update dental professionals on the availability of currently available commercial in-office monitoring systems for aerobic mesophilic heterotrophic bacteria and to discuss their limitations for testing water samples in assuring compliance with recommended guidelines.

  15. LARGO hot water system thermal performance test report

    Science.gov (United States)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  16. Investigating the persistence of earnings components and pricing test of abnormal changes in cash

    Directory of Open Access Journals (Sweden)

    Yaser Ahmadi

    2013-03-01

    Full Text Available This paper investigates the persistence of earnings components and pricing test of abnormal changes in cash for selected firms listed on Tehran Stock Exchange (TSE. The proposed study gathers the necessary data from 166 firms over the period 2004-2012 from firms whose shares were actively traded on TSE market. The study uses Panel data and with the implementation of linear regression technique examines four hypotheses. The results indicate that abnormal negative changes in cash are more persistence than positive abnormal changes. In addition, both positive and negative abnormal changes are more persistence than accruals. Market also has a good perception on abnormal positive and negative changes in cash.

  17. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-A spacecraft

    Science.gov (United States)

    1975-01-01

    These vibration, acoustic, and shock specifications provide the qualification test criteria for spacecraft components and subassemblies and for the High Energy Astronomy Observatory (HEAO-A) experiments. The HEAO-A was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A Subzone is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate Subzone weight ranges are available. Experiment and specific component specifications are available.

  18. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-C spacecraft

    Science.gov (United States)

    1975-01-01

    The vibration, acoustic, and shock specification test criteria for spacecraft components and subassemblies and for the high Energy Astronomy Observatory (HEAO-C) experiments are presented. The HEAO-C was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A subzone (general specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate subzone weight ranges (-A, -B, etc. ) are available. Experiment and specific component specifications are available.

  19. Integral toxicity test of sea waters by an algal biosensor.

    Science.gov (United States)

    Tonnina, Daniele; Campanella, Luigi; Sammartino, Maria Pia; Visco, Giovanni

    2002-04-01

    An integral toxicity test, based on an algal biosensor and suitable to be used in sea water, is presented. The biosensor was designed and built by coupling a Clark oxygen electrode as transducer and the marine alga Spirulina subsalsa as biological mediator; it constitutes the "core" in a lab-scale prototype of a flow apparatus suitable to continuously monitor, in sea water, the photosynthetic activity of the alga and, from its variation, the marine pollution from the toxicological point of view. Inorganic pollutants (heavy metals) were tested in previous researches while organic ones (chlorophenols, pesticides and surfactants) are the object of the present paper.

  20. Remote sensing reflectance model of optically active components of turbid waters

    Science.gov (United States)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  1. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  2. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  3. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    Science.gov (United States)

    Dickinson, Jesse E.; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A

  4. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    Science.gov (United States)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  5. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Branca, V. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Marco, M. Di [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (Albania) (Italy); Federici, A. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Grattarola, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)]. E-mail: grattarola@ansaldo.it; Gualco, G. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Guarnone, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Luconi, U. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Merola, M. [EFDA, Boltzmanstr. 2, D-85748 Garching (Germany); Ozzano, C. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Pasquale, G. [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (AL) (Italy); Poggi, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Rizzo, S. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Varone, F. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)

    2005-11-15

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions.

  6. Swelling in light water reactor internal components: Insights from computational modeling

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, Roger E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barashev, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Golubov, Stanislav I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    A modern cluster dynamics model has been used to investigate the materials and irradiation parameters that control microstructural evolution under the relatively low-temperature exposure conditions that are representative of the operating environment for in-core light water reactor components. The focus is on components fabricated from austenitic stainless steel. The model accounts for the synergistic interaction between radiation-produced vacancies and the helium that is produced by nuclear transmutation reactions. Cavity nucleation rates are shown to be relatively high in this temperature regime (275 to 325°C), but are sensitive to assumptions about the fine scale microstructure produced under low-temperature irradiation. The cavity nucleation rates observed run counter to the expectation that void swelling would not occur under these conditions. This expectation was based on previous research on void swelling in austenitic steels in fast reactors. This misleading impression arose primarily from an absence of relevant data. The results of the computational modeling are generally consistent with recent data obtained by examining ex-service components. However, it has been shown that the sensitivity of the model s predictions of low-temperature swelling behavior to assumptions about the primary damage source term and specification of the mean-field sink strengths is somewhat greater that that observed at higher temperatures. Further assessment of the mathematical model is underway to meet the long-term objective of this research, which is to provide a predictive model of void swelling at relevant lifetime exposures to support extended reactor operations.

  7. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  8. The Key Components of Job Satisfaction in Malaysian Water Utility Industry

    OpenAIRE

    Khalizani Khalid; Hanisah M. Salim; Siew-Phaik Loke; Khalisanni Khalid

    2011-01-01

    Problem statement: This study aimed to examine the impacts of employees rewards and employees motivation on employees job satisfaction between public and private water utility organization in Malaysia. Approach: A total of 689 employees from both sectors participated. While hierarchical regression analysis was conducted to test the relationship between employees rewards, employees motivation and employees job satisfaction, gap analysis was utilized to determine the si...

  9. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guzina, Bojan [Univ. of Minnesota, Minneapolis, MN (United States); Kunerth, Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  10. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  11. Relationship Between the Clinical Components of the Boder Test of Reading-Spelling Patterns and the Stanford Achievement Test: Validity of the Boder.

    Science.gov (United States)

    Hooper, Stephen R.

    1988-01-01

    Investigated the concurrent validity of the diagnostic components of the Boder Test of Reading-Spelling Patterns with the reading and spelling measures of the Stanford Achievement Reading Test (SAT) in 87 reading-disabled elementary school students. Results indicated the relationship between the reading components of the Boder and SAT were…

  12. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Canik, John [ORNL; Diem, Stephanie J [ORNL; Milora, Stanley L [ORNL; Park, J. M. [Oak Ridge National Laboratory (ORNL); Sontag, Aaron C [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Lumsdaine, Arnold [ORNL; Murakami, Masanori [ORNL; Burgess, Thomas W [ORNL; Cole, Michael J [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Patton, Bradley D [ORNL; Wagner, John C [ORNL; Yoder, III, Graydon L [ORNL

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  13. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    Science.gov (United States)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  14. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    Science.gov (United States)

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T(2) statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  15. Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    Science.gov (United States)

    Prasad, Narasimha S.

    2012-01-01

    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  16. Performance testing of lidar components subjected to exposure in space via MISSE 7 mission

    Science.gov (United States)

    Prasad, Narasimha S.

    2012-10-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  17. Yield components and water use efficiency in coriander under irrigation and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Karoline P. Angeli

    2016-05-01

    Full Text Available ABSTRACT Among the determining factors of yield, nitrogen (N fertilization and the correct supply of water play an important role in the quality and yield aspects of coriander. Therefore, the aim of this study was to evaluate the yield components and the water use efficiency (WUE in coriander subjected to different depths and N doses. A completely randomized design in split plot was used. Water depths were applied in the plots at the rates of 25, 50, 75, 100 and 125% of the Required Real Irrigation (RRI. N doses were distributed within the subplots at the following proportions: 50, 100 and 150% of the recommendation for the crop (70 kg ha-1. The N dose of 94 kg ha-1 and irrigation depth of 115% of RRI promoted the greatest yield (29.0 t ha-1 and number of bunches (29 bunches m-2. The highest number of leaves per plant was obtained with the N dose of 103.2 kg ha-1 and irrigation depth of 68% of the RRI. The maximum plant height (43 cm was obtained with N dose of 105 kg ha-1 and irrigation depth of 121% of RRI. The highest WUE in coriander (71 kg m-3 occurred at the irrigation depth of 26% of RRI and N dose of 105 kg ha-1.

  18. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species.

    Science.gov (United States)

    Meinzer, Frederick C; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Sevanto, Sanna

    2014-11-01

    Because iso- and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis to pressure-volume analysis with and without prior artificial rehydration. In J. monosperma, the shoot water potential at turgor loss (Ψ(TLP)) ranged from -3.4 MPa in artificially rehydrated shoots to -6.6 MPa in shoots with an initial Ψ of -5.5 MPa, whereas in P. edulis mean Ψ(TLP) remained at ∼ -3.0 MPa over a range of initial Ψ from -0.1 to -2.3 MPa. The shoot osmotic potential at full turgor and the bulk modulus of elasticity also declined sharply with shoot Ψ in J. monosperma, but not in P. edulis. The contrasting behaviour of J. monosperma and P. edulis reflects differences in their capacity for homeostatic regulation of turgor that may be representative of aniso- and isohydric species in general, and may also be associated with the greater capacity of J. monosperma to withstand severe drought.

  19. Field survey and laboratory tests on composite materials case of GRP (Glass Fiber Reinforced Polyester tubes for water suply

    Directory of Open Access Journals (Sweden)

    Radu Hariga

    2013-09-01

    Full Text Available In the Moldova land, were made two lines of water adduction, having 6000 m length and 40 m slope, or 1/150 slope. The water supply component tubes were disposed under the plant: The tubes are made of glass – reinforced thermosetting plastics (GRP. After about 180 days of operation, one of the lines showed severe deterioration of the quality pipe components. This paper deals with some laboratory tests in order to detect the failure cases of the pipelines components.

  20. Testing, installation and development of hardware and software components for the forward pixel detector of CMS

    CERN Document Server

    Florez Bustos, Carlos Andres

    2007-01-01

    The LHC (Large Hadron Collider) will be the particle accelerator with the highest collision energy ever. CMS (Compact Muon Solenoid) is one of the two largest experiments at the LHC. A main goal of CMS is to elucidate the electroweak symmetry breaking and determine if the Higgs mechanism is responsible for it. The pixel detector in CMS is the closest detector to the interaction point and is part of the tracker system. This thesis presents four different projects related to the forward pixel detector, performed as part of the testing and development of its hardware and software components. It presents the methods, implementation and results for the data acquisition and installation of the detector control system at the Meson Test Beam Facility of Fermilab for the beam test of the detector; the study of the C.A.E.N power supply and the multi service cable; the layout of the test stands for the assembly of the half-disk and half-service cylinder and the development of a software interface to the data acquisition...

  1. Water Stress Effect on Cell Wall Components of Maize (Zea mays Bran

    Directory of Open Access Journals (Sweden)

    Eleazar LUGO-CRUZ

    2016-03-01

    Full Text Available In México, around 82% of the total production of maize is grown under rainfed conditions leading to a water stress environment which affects physiologic and biochemical process of the plant. Maize bran is a composited plant material consisting mainly in aleurone layer, testa and pericarp; the cell walls of these tissues are composed of proteins, non-starch polysaccharides, phenolic acids and lignin which are potential bioactive substances for human nutrition. In this research it was investigated the effect of water stress on cell wall components in the bran of three genotypes of maize by applying irrigation and water stress treatments. The content of protein, lignin, arabinoxylans, total phenols and phenolic acids was performed in the bran of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ genotypes. Water stress applied through grain development stage increased protein levels of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ in 4.05, 16.13 and 0.40% respectively. Respecting to lignin content, water stress increased levels at 1.28, 2.26 and 4.24% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. Arabinoxylans content also increased in water stress treatment at levels of 1.28, 2.26 and 3.66% in ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ. On the other hand, water stress treatment decreased the levels of total phenols and hydroxycinnamic acids in the three maize hybrids analysed. Reduction of total phenols was 35.34, 5.59 and 31.57% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. In addition, the levels of t-ferulic, c-ferulic and p-coumaric acids decreased 17.74, 23.93, 29.83% in ʽCebúʼ, 8.92, 8.62, 24.03% in ʽDK2027ʼ and 13.66, 11.03, 10.38% in ʽDK2034ʼ respectively.

  2. Astronauts Scott Carpenter and Walter Schirra completes water egress test

    Science.gov (United States)

    1962-01-01

    Project Mercury Astronauts M. Scott Carpenter, prime pilot of the Mercury-Atlas 7, prepares to go through a water egress test. Astronaut Walter M. Schirra (back to camera), the backup MA-7 pilot is also present. Carpenter and Schirra are in the Mercury pressure suit, without the helmet. Behind them is an inflated life raft.

  3. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  4. Design requirements for the supercritical water oxidation test bed

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG&G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided.

  5. Aerosol Scrubbing Performance Test for Self-Priming Scrubbing Nozzle Submerged in Water Pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae; Song, Yong Jae [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    A scrubbing nozzle is one of the key components for a wet scrubber process based Containment Filtered Venting System (CFVS). As a part of a development of Korean CFVS, a self-priming scrubbing nozzle shown in Fig. 1 has been developed based on the well-known venturi scrubber concept. The thermal-hydraulic performances such as the pressure drop across the nozzle, water suction behavior and droplet generation inside throat have been tested in the non-submerged condition as well as submerged condition. The self-priming scrubbing nozzle used for the wet scrubber based CFVS has been developed, which is submerged in the water pool. When there is gas flow at the inlet of the nozzle, the pool water is passively sucked from the water suction slit. The fine droplets generated inside the throat capture the aerosol particles and is discharged into the water pool. In the water pool, the pool scrubbing happens. The aerosol scrubbing performance tests for the developed self-priming scrubbing nozzle has been conducted under the operational conditions such as different aerosol sizes, different carrier gas steam fractions, different, different pool water level and nozzle inlet pressure. The major findings are as follows. (1) Aerosol scrubbing efficiency increases with the increase of the aerosol size. (2) Aerosol scrubbing efficiency increases with the increase of the carrier gas steam fraction. (3) Aerosol scrubbing.

  6. An automated dynamic water vapor permeation test method

    Science.gov (United States)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  7. Ultrasonic and magnetic powder testing of wind power plant components; Ultraschall- und Magnetpulverpruefungen an Komponenten fuer Windkraftanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, Wolfram A. Karl; Bartholomai, Frank; Klein, Stefan; Kierspel, Stefan [Karl Deutsch Pruef- und Messgeraetebau GmbH und Co. KG, Wuppertal (Germany)

    2010-07-01

    Wind power components are subject to high loads, with strong speed variations, standstill and sudden restart depending on wind conditions; all this results in enormous loads on components. Non-destructive testing is employed in many aspects of the technology. Surface quality is tested in raw cast gears and again in machined gears. The tests are more accurate in the machined state but parts may be inaccessible, e.g. in cased of complex shapes and meshed gears. Vertical and angular acoustic testing is employed as well. High product quality is ensured by testing both in the raw state and in the finished state. Toothed ears for heavy-duty transmission systems are tested in the final state using magnetic powder crack testing methods (at least in the toothed sections). A number of test instruments were developed for this during the past few years in accordance with the customers' specifications. Important factors are a short inspection time by combined testing (at least two field circuits for identification of all flaw directions in a single test stage), and the ergonomy of component handling. Ease of access to the surface areas to be inspection must be combined with the complex geometries and unusual weight of the components. Another interesting task is the demagnetization (not: testing) of wind power components by an arrangement of coils. This is an important first step for further mechanical finishing. (orig.)

  8. Self-Similar Blowup Solutions to the 2-Component Degasperis-Procesi Shallow Water System

    CERN Document Server

    Yuen, Manwai

    2010-01-01

    In this article, we study the self-similar solutions of the 2-component Degasperis-Procesi water system:% [c]{c}% \\rho_{t}+k_{2}u\\rho_{x}+(k_{1}+k_{2})\\rho u_{x}=0 u_{t}-u_{xxt}+4uu_{x}-3u_{x}u_{xx}-uu_{xxx}+k_{3}\\rho\\rho_{x}=0. By the separation method, we can obtain a class of self-similar solutions,% [c]{c}% \\rho(t,x)=\\max(\\frac{f(\\eta)}{a(4t)^{(k_{1}+k_{2})/4}},\\text{}0),\\text{}u(t,x)=\\frac{\\overset{\\cdot}{a}(4t)}{a(4t)}x \\overset{\\cdot\\cdot}{a}(s)-\\frac{\\xi}{4a(s)^{\\kappa}}=0,\\text{}a(0)=a_{0}% \

  9. Development of dual frequency gyrotron and high power test of EC components

    Directory of Open Access Journals (Sweden)

    Sakamoto K.

    2012-09-01

    Full Text Available In JAEA, development of high-power long-pulse gyrotrons is underway. The output power of the gyrotron was applied for high-power long-pulse tests of the transmission line (TL and the equatorial launcher (EL mock up for ITER. The feature of design in the dual frequency gyrotron is the simultaneously satisfying the matching of both frequencies at a window and the same radiation angle at an internal mode convertor for both frequencies. The dual frequency gyrotron was developed and high power operations at 170 GHz and 137 GHz were carried out. The 170 GHz high power experiment of 40 m length ITER relevant TL was carried out and transmission efficiency and mode purity change caused by long pulse operation were measured. The mock-up model of EL was also tested using 170 GHz gyrotron. The power transmission through the quasi-optical beam line in EL was demonstrated using the full scale mock up model. Furthermore, the high power test results of the transmission components will be summarized.

  10. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  11. Radiation Resistance testing of commercial components for the new SPS Beam Position Measurement System

    CERN Document Server

    Deplano, C; Bogey, T; Gonzalez, J L; Savioz, J J

    2013-01-01

    A new Front-End (FE) electronics is under development for the SPS Multi Orbit POsition System (MOPOS). To cover the large dynamic range of beam intensities (70 dB) to be measured in the SPS, the beam position monitor signals are processed using logarithmic amplifiers. They are then digitized locally and transmitted via optical fibers over long distances (up to 1 km) to VME acquisition boards located in surface buildings. The FE board is designed to be located in the SPS tunnel, where it must withstand radiation doses of up to 100 Gy per year. Analogue components, such as Logarithmic Amplifiers (LA), ADC-Drivers (ADC-D) and Voltage Regulators (VR), have been tested at PSI (Paul Scherrer Institute) for radiation hardness, while several families of bidirectional SFP, both single-fiber and double-fiber, have been tested at both PSI and CNRAD. This paper gives a description of the overall system architecture and presents the results of the radiation hardness tests in detail.

  12. Quality Assurance and Functionality Tests on Electrical Components during the ATLAS IBL Production

    CERN Document Server

    Jentzsch, J

    2013-01-01

    To improve performance of the ATLAS inner tracker, a fourth Pixel layer, called the Insertable B-layer (IBL), will be installed in 2014 on a new beam pipe. A new read out chip generation, FE-I4, has been developed and two different sensor designs, a rather conventional planar and a 3D design, have been flip chipped to these front ends. New staves holding new stave and module flex circuits have been developed as well. Therefore, a production QA test bench has been established to test all production staves before integration with the new beam pipe. This setup combines former ATLAS Pixel services and a new readout system, namely the RCE (Reconfigurable Cluster Element) system developed at SLAC. With this setup all production staves will be tested to ensure the installation of only those staves which fulfill the IBL criteria. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are performed on the individual components during the various production steps of the I...

  13. Component-Level Electronic-Assembly Repair (CLEAR) Synthetic Instrument Capabilities Assessment and Test Report

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.

    2011-01-01

    The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.

  14. Development and testing of an integrated smart tool holder for four-component cutting force measurement

    Science.gov (United States)

    Xie, Zhengyou; Lu, Yong; Li, Jianguang

    2017-09-01

    Cutting force measurement is a significant requirement for monitoring and controlling the machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this study, an innovative integrated smart tool holder system based on capacitive sensors is designed, constructed and tested, which is capable of measuring triaxial cutting force and a torque simultaneously in a wireless environment system. A standard commercial tool holder is modified to make itself be the force sensing element that has advantages of simple structure and easy machining. Deformable beams are created in the tool holder, and the tiny deformations of which used to calculate the four-component cutting force are detected by six high precision capacitive sensors. All the sensors and other electronics, like data acquisition and transmitting unit, and wireless power unit, are incorporated into the tool holder as a whole system. The device is intended to be used in a rotating spindle such as in milling and drilling processes. Eventually, the static and dynamic characteristics of the smart tool holder have been determined by a series of tests. Cutting tests have also been carried out and the results show it is stable and practical to measure the cutting force in milling and drilling processes.

  15. Improved drought indicators based on Gravity Recovery and Climate Experiment (GRACE), water balance components and soil moisture

    Science.gov (United States)

    Saemian, Peyman; Tourian, Mohammad J.; Sneeuw, Nico

    2017-04-01

    Drought, as a natural recurring hazard, can occur in virtually all climate zones. In recent years, severe large scale droughts have been detected in all continents including large areas in Europe. A change in water storage, which is the combination of groundwater, snow, and soil moisture, can indicate deficiencies in water storage in general. Such deficiencies may be related to any of its components or even a combination of them. We present here a new water storage deficiency index that has been developed using the terrestrial water storage (TWS) change from the Gravity Recovery and Climate Experiment (GRACE) and global water balance components data (Precipitation, Evapotranspiration and Runoff). First, for each monthly time series of TWS we calculate differences of water storage from a climatology that has been obtained from the long term water balance components time series. We then turn the differences into meaningful indices with the help of soil moisture data that characterizes agricultural drought. Our indexes identifies variation in water storage in general and characterizes groundwater drought including onset, severity, and duration of drought periods. Our results highlight the ability of GRACE TWS in combination with global water balance fluxes as an invaluable source to detect and monitor groundwater and groundwater drought which is a vital step for the planning and management of water resources both at local and global scales.

  16. DipTest: A litmus test for E. coli detection in water.

    Science.gov (United States)

    Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb; Mitra, Sushanta K

    2017-01-01

    We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source.

  17. Preliminary Feasibility Testing of the BRIC Brine Water Recovery Concept

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Pickering, Karen D.

    2011-01-01

    The Brine Residual In-Containment (BRIC) concept was developed as a new technology to recover water from spacecraft wastewater brines. Such capability is considered critical to closing the water loop and achieving a sustained human presence in space. The intention of the BRIC concept is to increase the robustness and efficiency of the dewatering process by performing drying inside the container used for the final disposal of the residual brine solid. Recent efforts in the development of BRIC have focused on preliminary feasibility testing using a laboratory- assembled pre-prototype unit. Observations of the drying behavior of actual brine solutions processed under BRIC-like conditions has been of particular interest. To date, experiments conducted with three types of analogue spacecraft wastewater brines have confirmed the basic premise behind the proposed application of in-place drying for these solutions. Specifically, the dried residual mass from these solutions have tended to exhibit characteristics of adhesion and flow that are expected to continue to challenge process stream management in spacecraft brine dewatering system designs. Yet, these same characteristics may favor the development of capillary- and surface-tension-based approaches envisioned as part of an ultimate microgravity-compatible BRIC design. In addition, preliminary feasibility testing of the BRIC pre-prototype confirmed that high rates of water recovery, up to 98% of the available brine water, may be possible while still removing the majority of the brine contaminants from the influent brine stream. These and other observations from testing are reported.

  18. Assessing the Chemical Components of some Iranian Brands of Bottled Water

    Directory of Open Access Journals (Sweden)

    Miranzadeh M.B.1 PhD,

    2015-09-01

    Full Text Available Aims Bottled water is widely used in many countries and more than 100 different brands of bottled water are produced in Iran. The aim of the present research was to assess the chemical compound of some Iranian brands of bottled water and compare them with the mention information on their labels. Instrument & Methods This descriptive study was performed during March to December 2012 on the 16 brands of bottled water produced in Iran. Random sampling (10 samples for each brand was done by buying 1.5liter bottled water with different brands from the supermarkets in Kashan City, Iran. The concentration of Na+, K+, F-, NO3-, SO4-2 and Cl- and the pH of bottled water samples were measured. Data were analyzed by SPSS 16 software using independent T test. Findings The mean concentration of NO3- was 1.70±2.52mg/l, Na+ was 8.44±8.76mg/l, K+ was 0.11±0.53mg/l, SO4-2 was 15.15±12.49mg/l, Cl- was 42.30±33.84mg/l and F- was 1.02±1.88mg/l in all samples of 16 brands of bottled water. The highest concentration of NO3- was seen in brand 12 (9.55±2.76mg/l, Na+ in brand 6 (32.18±12.60mg/l, K+ in brand 13 and 4 (1.86±0.76mg/l, SO4-2 in brand 6 (40.53±8.90mg/l,Cl- in brand 16 (88.73±13.80mg/l, F- in brand 13 (0.63±0.12mg/l. The pH of brand 12 (7.9±0.1 was the highest among the samples. Conclusion The concentrations of Na+, K+, F-, NO3-, SO4-2 and Cl- of the studied Iranian brands of bottled water are not higher than the national and international standards and the pH is in the acceptable range.

  19. Flexural Properties of PLA Components Under Various Test Condition Manufactured by 3D Printer

    Science.gov (United States)

    Jaya Christiyan, K. G.; Chandrasekhar, U.; Venkateswarlu, K.

    2016-10-01

    Rapid Prototyping (RP) technologies have emerged as a fabrication method to obtain engineering components in the resent past. Desktop 3D printing, also referred as an additive layer manufacturing technology is a powerful method of RP technique that can fabricate 3 dimensional engineering components. In this method, 3D digital data is converted into real product. In the present investigation, Polylactic Acid (PLA) was considered as a starting material. Flexural strength of PLA material was evaluated using 3-point bend test, as per ASTM D790 standard. Specimens with flat (0°) and vertical (90°) orientation were considered. Moreover, layer thicknesses of 0.2, 0.25, and 0.3 mm were considered. To fabricate these specimens, printing speed of 38 and 52 mm/s was maintained. Nozzle diameter of 0.4 mm with 40 % of infill density were used. Based on the experimental results, it was observed that 0° orientation, 38 mm/s printing speed, and 0.2 mm layer thickness resulted maximum flexural strength, as compared to all other specimens. The improved flexural strength was due to the lower layer thickness (0.2 mm) specimens, as compared with other specimens made of 0.25 and 0.30 mm layer thicknesses. It was concluded that flexural strength properties were greatly influenced by lower the layer thickness, printing speed, and orientation.

  20. Results of high heat flux testing of W/CuCrZr multilayer composites with percolating microstructure for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Greuner, Henri, E-mail: henri.greuner@ipp.mpg.de; Zivelonghi, Alessandro; Böswirth, Bernd; You, Jeong-Ha

    2015-10-15

    Highlights: • Improvement of the performance of plasma-facing components made of W and CuCrZr. • Functionally graded composite at the interface of W and CuCrZr to mitigate the CTE. • A three-layer composite system (W volume fraction: 70/50/30%) was developed. • Design of water-cooled divertor components up to 20 MW/m{sup 2} heat load for e.g. DEMO. • HHF tests up to 20 MW/m{sup 2} were successfully performed. - Abstract: Reliable joining of tungsten to copper is a major issue in the design of water-cooled divertor components for future fusion reactors. One of the suggested advanced engineering solutions is to use functionally graded composite interlayers. Recently, the authors have developed a novel processing route for fabricating multi-layer graded W/CuCrZr composites. Previous characterization confirmed that the composite materials possess enhanced strength compared to the matrix alloy and shows reasonable ductility up to 300 °C indicating large potential to extend the operation temperature limit. Furthermore, a three-layer composite system (W volume fraction: 70/50/30%) was developed as a graded interlayer between the W armour and CuCrZr heat sink. In this study, we investigated the structural performance of the graded joint. Three water-cooled mock-ups of a flat tile type component were fabricated using electron beam welding and thermally loaded at the hydrogen neutral beam test facility GLADIS. Cycling tests at 10 MW/m{sup 2} and screening tests up to 20 MW/m{sup 2} were successfully performed and confirmed the expected thermal performance of the compound. The measured temperature values were in good agreement with the prediction of finite element analysis. Microscopic investigation confirmed the structural integrity of the newly developed functionally graded composite after these tests.

  1. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures

    Science.gov (United States)

    Sabour, Mohammad Hossein

    components in general, and specifically using thermal scaling for the first time for prototype and model with two different materials. (2) Developing 1-D creep ANSYS macro to study creep effects to get meaningful results for industrial applications of gas turbine blade. (3) Analyzing the curve veering and flattening phenomena in rotating blade at thermal environment, using Lagrange-Bhat method. (4) Simple constitutive models in creep-fatigue interaction are proposed that can predict the lifetime in complicated situations of creep-fatigue, using the pure creep and pure fatigue test data.

  2. Variability of Hydrological Parameters and Water Balance Components in Small Catchment in Croatia

    Directory of Open Access Journals (Sweden)

    Lidija Tadić

    2016-01-01

    Full Text Available Analysis of small catchment area in Croatian lowland with its hydrological characteristics in the period between 1981 and 2014 was carried out in order to define significance of change in hydrological and meteorological parameters (precipitation, air temperatures, and discharges and water balance components (deep percolation and potential evapotranspiration. There was no significant land use change in the observed period, so all changes in hydrological processes can be considered to be without human impact in the last 35 years. Application of RAPS (Rescaled Adjusted Partial Sums on all data series distinguished two subperiods with different length but the same behaviour. The first subperiod was a period characterised by the decrease, starting in 1980 and finishing between 1991 and 1995, while the second one was a period characterised by the increase of parameters in all analyses, starting between 1991 and 1995 and finishing in 2001. In comparison to the analysis of climate change impacts per decade, this approach is much more appropriate and gives insight into variations throughout the entire observed period. The most variable but not significant parameters are precipitation and discharges, especially in the second subperiod which has a major impact on occurrence of hydrological hazards such as droughts and floods and makes great pressure and responsibility on water management system.

  3. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  4. Fourier component imaging of water resonance in the human breast provides markers for malignancy

    Science.gov (United States)

    Medved, Milica; Newstead, Gillian M.; Fan, Xiaobing; Du, Yiping P.; Olopade, Olufunmilayo I.; Shimauchi, Akiko; Zamora, Marta A.; Karczmar, Gregory S.

    2009-10-01

    The purpose of this paper is to demonstrate that voxels with inhomogeneously broadened water resonances, as revealed by high spectral and spatial resolution (HiSS) MRI, correlate with underlying tumor pathology findings, and thus carry diagnostically useful information. Thirty-four women with mammographically suspicious breast lesions were imaged at 1.5 T, using high-resolution echo-planar spectroscopic imaging. Fourier component images (FCIs) of the off-peak spectral signal were generated, and clusters of voxels with significant inhomogeneous broadening (broadened clusters) were identified and correlated to biopsy results. Inhomogeneously broadened clusters were found significantly more frequently in malignant than in benign lesions. A larger percentage of broadened cluster voxels were found inside the malignant versus benign lesions. The high statistical significance for separation of benign and malignant lesions was robust over a large range of post-processing parameters, with a maximum ROC area under curve of 0.83. In the human breast, an inhomogeneously broadened water resonance can serve as a correlate marker for malignancy and is likely to reflect the underlying anatomy or physiology.

  5. Wear Scar Similarities between Retrieved and Simulator-Tested Polyethylene TKR Components: An Artificial Neural Network Approach

    Science.gov (United States)

    2016-01-01

    The aim of this study was to determine how representative wear scars of simulator-tested polyethylene (PE) inserts compare with retrieved PE inserts from total knee replacement (TKR). By means of a nonparametric self-organizing feature map (SOFM), wear scar images of 21 postmortem- and 54 revision-retrieved components were compared with six simulator-tested components that were tested either in displacement or in load control according to ISO protocols. The SOFM network was then trained with the wear scar images of postmortem-retrieved components since those are considered well-functioning at the time of retrieval. Based on this training process, eleven clusters were established, suggesting considerable variability among wear scars despite an uncomplicated loading history inside their hosts. The remaining components (revision-retrieved and simulator-tested) were then assigned to these established clusters. Six out of five simulator components were clustered together, suggesting that the network was able to identify similarities in loading history. However, the simulator-tested components ended up in a cluster at the fringe of the map containing only 10.8% of retrieved components. This may suggest that current ISO testing protocols were not fully representative of this TKR population, and protocols that better resemble patients' gait after TKR containing activities other than walking may be warranted. PMID:27597955

  6. Kilowatt Isotope Power System: component test report for the ground demonstration system jet condenser orifice performance. 77-KIPS-103

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, E.L.

    1977-11-08

    The purpose of these tests was to determine which orifice elements achieved satisfactory hydraulic and thermal performance prior to their incorporation into the Jet Condenser Assembly. Requirements were as set forth within the Kilowatt Isotope Power System (KIPS) Component Test Procedure number 414 for the Jet Condenser Orifice Performance testing. The results of the performance testing conducted on the Jet Condenser Orifices are presented. Part Number 720841 Jet Condenser Orifice Nozzle successfully completed the orifice screening tests.

  7. Qualification and inspection of armatures in the component test facility KOPRA; Armaturenqualifikationen und -inspektionen in der Komponentenpruefanlage KOPRA

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Wolfgang; Schoepf, Moritz; Stecher, Willi; Wallaschek, Sebastian [AREVA NP GmbH, Erlangen (Germany). Komponentenqualifikation Erlangen

    2010-05-15

    The KOPRA test facility is an authorized testing rig for reactor component qualification and inspection. Due to the combination of two pressurizers the testing of any armature in closed or open circuit is possible. The authors describe in detail the qualification of controllable splash valves for German PWR plants, functionality tests of gate valves for the NPP Olkiluoto 3. The testing facility is performing inspection, qualification and diagnosis tasks of safety relevant armatures in the frame of periodic safety analyses.

  8. Experimental Study of the Influence of the Concentration of Organic Water-Coal Fuel Components on the Integral Ignition Characteristics

    Science.gov (United States)

    Vershinina, K. Yu.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-01-01

    To enlarge the power raw material base, the processes of stable initiation of combustion of drops of organic watercoal fuels have been investigated. For the main components, we used filter cakes (coal processing waste), anthracite, bituminous and brown coals of brands D and B2, water, and spent machine, turbine, and transformer oils. We have established the influence of concentrations of components on the minimum (limiting) ignition temperatures of organic water-coal fuels and the ignition delay times of drops of fuel components with initial sizes of 0.25-1.5 mm. Investigations were carried out for oxidizer temperatures of 600-1100 K and its velocities of 0.5-5 m/s characteristic of units, aggregates, and large and small power plants. We have determined the characteristic differences of organic water-coal fuel from water-coal fuel and the close laws of the investigated processes for these fuels.

  9. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    Science.gov (United States)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  10. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip Lon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of the rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite

  11. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip Lon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of the rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite

  12. Implementation of neuromorphic systems: from discrete components to analog VLSI chips (testing and communication issues).

    Science.gov (United States)

    Dante, V; Del Giudice, P; Mattia, M

    2001-01-01

    We review a series of implementations of electronic devices aiming at imitating to some extent structure and function of simple neural systems, with particular emphasis on communication issues. We first provide a short overview of general features of such "neuromorphic" devices and the implications of setting up "tests" for them. We then review the developments directly related to our work at the Istituto Superiore di Sanità (ISS): a pilot electronic neural network implementing a simple classifier, autonomously developing internal representations of incoming stimuli; an output network, collecting information from the previous classifier and extracting the relevant part to be forwarded to the observer; an analog, VLSI (very large scale integration) neural chip implementing a recurrent network of spiking neurons and plastic synapses, and the test setup for it; a board designed to interface the standard PCI (peripheral component interconnect) bus of a PC with a special purpose, asynchronous bus for communication among neuromorphic chips; a short and preliminary account of an application-oriented device, taking advantage of the above communication infrastructure.

  13. Design, fabrication and testing of a marketable waterwall component. Final technical report, 1 September 1978-31 August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, T.J.; Habib, V.

    1979-08-01

    One Design, Inc., has designed and developed modular waterwall components that make up a system for passive solar space heating using a south-facing thermal storage wall. The modules can also be used as thermal mass storage for roof apertures and for greenhouse applications. The modules are constructed of fiberglass reinforced polyester and each is 95 inches long, 16.5 inches wide and 24.5 inches tall. Each module contains 94 gallons or 784 pounds of water. When stacked behind south glazing, they provide 52 Btu//sup 0/F per square foot of net glazed area. A stack of four modules has a height of 93.5 inches, suitable for an 8-foot interior ceiling; a stack of five modules is 116.5 inches high, suitable for a 10-foot interior ceiling. The modules are designed to stack on one another without requiring additional hardware and nest inside each other to reduce shipping costs. Prototype modules were fabricated and subjected to structural tests. They were found to be capable of supporting at least 4.8 times the load imposed by a five tank stack, well above the recommended safety factor of 2. Long term purity of the water in the containers was tested and evaluated and found to be within acceptable limits. Prototype modules were installed in One Design's Star Tannery House near Winchester, Virginia, and performance was extensively monitored from January to April, 1979. Based on the performance during the period, it has been estimated that the passive solar heating contribution would be 79.5% of the house's total heating requirement.

  14. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  15. New and Green Multi-component Scaling and Corrosion Inhibitor for the Cooling Water of Central Air Conditioners

    Science.gov (United States)

    Li, Maodong; Dai, Chenlin; Yang, Bo; Qiao, Yue; Zhu, Zhiping

    2016-12-01

    A green multi-component inhibitor was developed in this study to obtain suitable scale and corrosion inhibitor for the cooling water treatment of central air conditioners. The inhibitor formulation consisted of hydrolyzed polymaleic anhydride/Tween-80/sodium N-lauroyl sarcosinate/tolyltriazole (named 4-HTSA). Weight loss test and electrochemical method were used to investigate the corrosion inhibition performance of 4-HTSA on A3 carbon steel and T2 red copper in synthetic cooling water, and the scale inhibition performance of 4-HTSA was studied by the calcium carbonate precipitation method. The influence of parameters, such as pH, temperature, scaling and corrosive ion, on 4-HTSA was researched. Scanning electron microscopy (SEM) and x-ray diffraction were used for examination of the scale, and corrosion coupons were analyzed by SEM/energy-dispersive x-ray spectroscopy. Results showed that 4-HTSA had excellent scale and corrosion inhibition performance and wide tolerance to pH, temperature and the concentration of scaling and corrosive ion. Polarization curves indicated that 4-HTSA was anodic inhibitor.

  16. Design of water shock tube for testing shell materials

    OpenAIRE

    Ji, Hongjuan; Mustafa, Mohamad; Khawaja, Hassan Abbas; Ewan, Bruce C.; Moatamedi, Mojtaba

    2014-01-01

    This paper presents design considerations for a shock tube experimental rig used to investigate the dynamic failure mechanisms of shell geometries subjected to water shock impact loading. In such setup, it is desirable that the drive pressure used within the tube can provide a wide range of impulsive loads on the test structures and some flexibility can be achieved on the applied pulse durations. With this aim a review of various existing shock tube experimental setup is presented and choi...

  17. The Key Components of Job Satisfaction in Malaysian Water Utility Industry

    Directory of Open Access Journals (Sweden)

    Khalizani Khalid

    2011-01-01

    Full Text Available Problem statement: This study aimed to examine the impacts of employee’s rewards and employee’s motivation on employee’s job satisfaction between public and private water utility organization in Malaysia. Approach: A total of 689 employees from both sectors participated. While hierarchical regression analysis was conducted to test the relationship between employee’s rewards, employee’s motivation and employee’s job satisfaction, gap analysis was utilized to determine the significant differences on the levels of employee’s rewards, employee’s motivation and employee’s job satisfaction between both sectors. Results: The result revealed that (1 employee’s reward was positively related to motivation; and (2 both employee’s rewards and employee’s motivation were found to had positive significant influences on employees’ job satisfaction. The t-test result revealed that employees in public water utility organization scored significantly higher on the levels of employee’s rewards, motivation and job satisfaction. Conclusion: The interesting findings showed that there are other factors than rewards and motivation involved in job satisfaction. However, motivation seems to give more impact to job satisfaction as compared to rewards for both organizations.

  18. Melt water interaction tests. PREMIX tests PM10 and PM11

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A.; Schuetz, W.; Will, H. [Forschungszentrum Karlsruhe Inst. fuer Reaktorsicherheit, Karlsruhe (Germany)

    1998-01-01

    A series of experiments is being performed in the PREMIX test facility in which the mixing behaviour is investigated of a hot alumina melt discharged into water. The major parameters have been: the melt mass, the number of nozzles, the distance between the nozzle and the water, and the depth of the water. The paper describes the last two tests in which 20 kg of melt were released through one and three nozzles, respectively, directly into the water whose depth was 500 mm. The melt penetration and the associated phenomena of mixing are described by means of high-speed films and various measurements. The steam production and, subsequently, the pressure increased markedly only after the melt had reached the bottom of the pool. Spreading of the melt across the bottom caused violent boiling in both tests. Whereas the boiling lasted for minutes in the single-jet test, a steam explosion occurred in the triple-jet test about one second after the start of melt penetration. (author)

  19. Can Sanitary Surveys Replace Water Quality Testing? Evidence from Kisii, Kenya

    Science.gov (United States)

    Misati, Aaron Gichaba; Ogendi, George; Peletz, Rachel; Khush, Ranjiv; Kumpel, Emily

    2017-01-01

    Information about the quality of rural drinking water sources can be used to manage their safety and mitigate risks to health. Sanitary surveys, which are observational checklists to assess hazards present at water sources, are simpler to conduct than microbial tests. We assessed whether sanitary survey results were associated with measured indicator bacteria levels in rural drinking water sources in Kisii Central, Kenya. Overall, thermotolerant coliform (TTC) levels were high: all of the samples from the 20 tested dug wells, almost all (95%) of the samples from the 25 tested springs, and 61% of the samples from the 16 tested rainwater harvesting systems were contaminated with TTC. There were no significant associations between TTC levels and overall sanitary survey scores or their individual components. Contamination by TTC was associated with source type (dug wells and springs were more contaminated than rainwater systems). While sanitary surveys cannot be substituted for microbial water quality results in this context, they could be used to identify potential hazards and contribute to a comprehensive risk management approach. PMID:28178226

  20. Can the red-green duochrome test be used prior to correcting the refractive cylinder component?

    Directory of Open Access Journals (Sweden)

    Liat Gantz

    Full Text Available A primary task of the eye care professional is determining the refraction, or optical correction, of a patient. The duochrome red-green test is a standard tool for verification of the final refraction. Traditionally, it is recommended for use both prior to and subsequent to determining the cylindrical or astigmatic component of the refraction. In order for it to be effective when used before correcting the cylinder it is necessary that the COLC (Circle of Least Confusion be on the retina. This study examined whether it is necessarily true that the duochrome response in uncorrected astigmatism will be as trust-worthy as it is with corrected cylinders.The red-green examination was performed monocularly under the following three conditions: a. fully corrected refraction for the subgroup of eyes that had spherical refractions and for the subgroup of eyes with sphero-cylindrical refractions. b. best sphere-only correction without cylinder correction in sphero-cylindrical eyes c. an induced cylinder error in spherical eyes. The interval between the last "red" response and the first "green" response for the right eyes as a group and separately for the physiological cylinder and induced cylinder correction sub-groups was calculated and compared using a paired, two-tailed t-test.The intervals between "red" and "green" responses were not significantly different in the population as a whole and in the uncorrected physiological cylinder and induced cylinder subgroups examined.Based on the finding that the interval of red-green equality with fully corrected cylinder and without the cylindrical correction are not significantly different, the red-green duochrome test can indeed be used both before and after cylindrical correction.

  1. Field-testing UV disinfection of drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, A.; Drescher, A.; Greene, D. [Lawrence Berkeley National Lab., CA (United States); Miller, P. [Natural Resources Defense Council (United States); Motau, C. [South African Center for Essential Community Services (South Africa); Stevens, F. [Durban Metro Water (South Africa)

    1997-09-01

    A recently invented device, ``UV Waterworks,`` uses ultraviolet (UV) light to disinfect drinking water. Its novel features are: low cost, robust design, rapid disinfection, low electricity use, low maintenance, high flow rate and ability to work with unpressurized water sources. The device could service a community of 1,000 persons, at an annual total cost of less than 10 US cents per person. UV Waterworks has been successfully tested in the laboratory. Limited field trials of an early version of the device were conducted in India in 1994--95. Insights from these trials led to the present design. Extended field trials of UV Waterworks, initiated in South Africa in February 1997, will be coordinated by the South African Center for Essential Community Services (SACECS), with technical and organizational support from Lawrence Berkeley National Laboratory(LBNL) and the Natural Resources Defense Council (both US). The first of the eight planned sites of the year long trial is an AIDS hospice near Durban. Durban metro Water and LBNL lab-tested a UV Waterworks unit prior to installing it at the hospice in August, 1997. The authors describe the field test plans and preliminary results from Durban.

  2. The Effect of Climate Change on Water Balance Components in the Senegal River Basin

    Science.gov (United States)

    Sandholt, I.; Ridler, M.; Stisen, S.; MacKellar, N.; Christensen, J. H.; Nielsen, C.; Rasmussen, K.

    2009-12-01

    West Africa has undergone some of the most dramatic recorded changes in climate during the last decades, having affected people directly due to large impact on food production and water resources. The livelihood of future generations in this very vulnerable region of the World is dependent on access to water, influenced directly by changes in climate and land cover. The goal of this study is thus to investigate the relative effects of future changes in climate and land cover in one of the large river basins in the region, the transnational Senegal Basin, from a water resource perspective. Based on predictions from an ensemble of up to nine regional climate models over West Africa and associated land cover change scenarios, the effect on components of the water balance in the Senegal Basin is analysed. We apply a distributed hydrological model based on the MIKE SHE code to simulate changes in stream flow and in the partitioning of evapotranspiration for the years 2030-2050. The model is calibrated on a control period spanning from 1951 to 1990. The results from RCMs and their associated uncertainties derived in the ENSEMBLES project are used as input to the hydrological model. Climate change effects on land cover are introduced via a simple relation between remotely sensed vegetation cover and precipitation. The simulations enable us to assess the relative importance of changes in climate and land cover constrained by model results and realistic land cover changes. Stream flow and evapotranspiration in four sub-basins each with distinct characteristics with regards to land cover and precipitation are subject to more detailed analyses. We acknowledge the ENSEMBLES project (http://ensembles-eu.metoffice.com), funded by the European Commission's 6th Framework Programme and the AMMA Project (http://www.amma-international.org). Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies

  3. NDT Reliability - Final Report. Reliability in non-destructive testing (NDT) of the canister components

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato; Takahashi, Kazunori; Mueller, Christina; Boehm, Rainer (BAM, Federal Inst. for Materials Research and Testing, Berlin (Germany)); Ronneteg, Ulf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    This report describes the methodology of the reliability investigation performed on the ultrasonic phased array NDT system, developed by SKB in collaboration with Posiva, for inspection of the canisters for permanent storage of nuclear spent fuel. The canister is composed of a cast iron insert surrounded by a copper shell. The shell is composed of the tube and the lid/base which are welded to the tube after the fuel has been place, in the tube. The manufacturing process of the canister parts and the welding process are described. Possible defects, which might arise in the canister components during the manufacturing or in the weld during the welding, are identified. The number of real defects in manufactured components have been limited. Therefore the reliability of the NDT system has been determined using a number of test objects with artificial defects. The reliability analysis is based on the signal response analysis. The conventional signal response analysis is adopted and further developed before applied on the modern ultrasonic phased-array NDT system. The concept of multi-parameter a, where the response of the NDT system is dependent on more than just one parameter, is introduced. The weakness of use of the peak signal response in the analysis is demonstrated and integration of the amplitudes in the C-scan is proposed as an alternative. The calculation of the volume POD, when the part is inspected with more configurations, is also presented. The reliability analysis is supported by the ultrasonic simulation based on the point source synthesis method

  4. Controlling system components with a sound card: A versatile inkjet fluid testing platform.

    Science.gov (United States)

    Bognet, Brice; Guo, Yang; Ma, Anson W K

    2016-01-01

    In this paper, we demonstrate how to use a personal computer sound card to develop an experimental platform for evaluating the jettability and jetting behavior of inkjet fluids. The test fluid is driven out of a nozzle acoustically using a loudspeaker, forming a jet. The subsequent jet breakup process is then captured using a stroboscopic light source and a camera. Instead of using a delay generator as in previous work, the current setup uses a computer sound card and audio amplifier to (i) generate actuation waveforms of arbitrary shapes and (ii) synchronize the jet actuation and imaging with a time precision close to 5 μs. To correct for any signal distortions caused by the built-in high pass filters of the sound card and amplifier, a numerical filter is created and applied before sending the desired signal to the sound card. Such correction method does not require physically modifying the hardware of the sound card or amplifier and is applicable to different waveforms and filters provided that the transfer function is correctly identified. The platform has been tested using 20% (v/v) glycerol in water as a model fluid. Combining this platform with digital image analysis further enables a quantitative assessment of parameters such as the volumes and positions of the jet and drop that are important for quality control and development of new ink formulations.

  5. Controlling system components with a sound card: A versatile inkjet fluid testing platform

    Science.gov (United States)

    Bognet, Brice; Guo, Yang; Ma, Anson W. K.

    2016-01-01

    In this paper, we demonstrate how to use a personal computer sound card to develop an experimental platform for evaluating the jettability and jetting behavior of inkjet fluids. The test fluid is driven out of a nozzle acoustically using a loudspeaker, forming a jet. The subsequent jet breakup process is then captured using a stroboscopic light source and a camera. Instead of using a delay generator as in previous work, the current setup uses a computer sound card and audio amplifier to (i) generate actuation waveforms of arbitrary shapes and (ii) synchronize the jet actuation and imaging with a time precision close to 5 μs. To correct for any signal distortions caused by the built-in high pass filters of the sound card and amplifier, a numerical filter is created and applied before sending the desired signal to the sound card. Such correction method does not require physically modifying the hardware of the sound card or amplifier and is applicable to different waveforms and filters provided that the transfer function is correctly identified. The platform has been tested using 20% (v/v) glycerol in water as a model fluid. Combining this platform with digital image analysis further enables a quantitative assessment of parameters such as the volumes and positions of the jet and drop that are important for quality control and development of new ink formulations.

  6. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta,Turkey

    Directory of Open Access Journals (Sweden)

    Ayşen DAVRAZ

    2014-09-01

    Full Text Available Water budget of lakes must be determined regarding to their sustainable usage as for all water resources. One of the major problems in the management of lakes is the estimation of water budget components. The lack of regularly measured data is the biggest problem in calculation of hydrological balance of a lake. A lake water budget is computed by measuring or estimating all of the lake’s water gains and losses and measuring the corresponding changes in the lake volume over the same time period. Eğirdir Lake is one of the most important freshwater lakes in Turkey and is the most important surface water resources in the region due to different usages. Recharge of the Eğirdir Lake is supplied from especially precipitation, surface and subsurface water inflow. The discharge components of the lake are evaporation and water intake for irrigation, drinking and energy purposes. The difference between recharge and discharge of the lake was calculated as 7.78 hm3 for 1970-2010 period. According to rainfall, evaporation and the lake water level relations, rainfall is dominantly effective on the lake water level such as direct recharge to the lake and indirect recharge with groundwater flow

  7. Qualification Program of Korea Heat Load Test Facility KoHLT-EB for ITER Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Park, Seoung Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The qualification tests were performed to evaluate the high heat flux test facility for the PFCs and fusion reactor materials. For the thermal fatigue test, two types of tungsten mock-ups were fabricated. The cooling performance was tested under the similar operation condition of ITER and fusion reactor. After the completion of the preliminary mockup test and facility qualification, the high heat flux test facility will assess the performance test for the various plasma facing components in fusion reactor materials. Preliminary thermo-hydraulic and performance tests were conducted using various test mockups for the plasma facing components in the high heat flux test facilities of the world. The previous heat flux tests were performed by using the graphite heater facilities in Korea. Several facilities which equipped with an electron beam as the uniform heat source were fabricated for the tokamak PFCs in the EU, Russia and US. These heat flux test facilities are utilized for a cyclic heat flux test of the PFCs. Each facility working for their own purpose in EU FZJ, US SNL, and Russia Efremov institute. For this purpose, KoHLTEB was constructed and this facility will be used for ITER TBM performance test with the small-scale and large-scale mockups, and prototype. Also, it has been used for other fusion application for developing plasma facing component (PFC) for ITER FW, tungsten divertor, and heat transfer experiment and so on under the domestic R and D program. Korea heat load test facility by using electron beam KoHLT-EB was constructed for the high heat flux test to verify the plasma facing components, including ITER TBM first wall.

  8. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    Science.gov (United States)

    Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy

  9. Separation of Regional and Residual Components by Finite Element Analysis – A New Approach for Analysis of Water Level Data

    Directory of Open Access Journals (Sweden)

    K. K. SHARMA

    2010-12-01

    Full Text Available Trend surfaces are generally used in the study of water level data to understanding the causes and effects of various trend surfaces. In the present paper the separation of regional and residual components of water level data is attempted using a method based on the Finite Element Analysis techniques. The residual is obtained by calculating the difference between the computed value of the trend surface at a point and the value of observed actual surface at that point. If the trend surface is thought to be regional or large scale component representing the total aquifer then the residual value can be considered the local ore small scale component representing the local variations in the aquifer. Removal of the regional trend has the effect of isolating and emphasizing local components represented by the residual values. Various techniques have been proposed and are widely in use for the separation of regional and the residual components, specially for separating the geophysical data. But the main drawback of all these techniques is that the regional component, so computed, has always the remnance of the residual components. Hence, the regional and residual components do not give a clear picture of the variations. In the present paper a new technique is suggested, in which the regional and residual components are computed using finite element analysis technique. This technique requires the water level data at only eight or twelve points representing the aquifer boundaries for the computation of regional component. A case history is presented wherein the data from the literature is analyzed using the technique proposed. The paper gives the details of the method and its advantages over the other methods which are supported by its application on the field data.

  10. Combustion tests of coal-water slurry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, G.A. Jr.; Johnson, S.A.; Vecci, S.J.

    1982-03-01

    The results of an experimental test program to determine the combustion characteristics of coal-water slurry (CWS) fuels (65 to 75 percent dry coal by weight and exhibiting room temperature viscosities of about 1000 cp) are presented. The slurry tested contained 66 percent solids by weight and was produced from a beneficiated high volatile eastern bituminous coal. The CWS and its parent coal were each fired in B and W's 4.0 x 10/sup 6/ Btu/hr Basic Combustion Test Unit. Each fuel was also subjected to extensive laboratory analysis work. No burner or atomizer development work was done - the primary objective of the study being to demonstrate that the CWS could be fired with existing fuel oil handling equipment.

  11. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    Energy Technology Data Exchange (ETDEWEB)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  12. Theory of Mind in aging: Comparing cognitive and affective components in the faux pas test.

    Science.gov (United States)

    Bottiroli, Sara; Cavallini, Elena; Ceccato, Irene; Vecchi, Tomaso; Lecce, Serena

    2016-01-01

    Theory of Mind (ToM) is a complex human ability that allows people to make inferences on others' mental states such as beliefs, emotions and desires. Previous studies on ToM in normal aging have provided heterogeneous findings. In the present study we examined whether a mixed calculation of different aspects of ToM may have contributed to these conflicting results. We had two aims. First, we explored the age-related changes in the performance of cognitive vs. affective ToM. Second, we investigated the extent to which the effect of aging on cognitive vs. affective ToM is mediated by age-related differences in executive functions. To address these issues three age groups (young, young-old, and old-old adults) were compared on cognitive and affective ToM using the faux pas test. In addition, participants were tested using a battery of executive function tasks tapping on inhibition, working memory updating, and word fluency. The analyses indicated that young adults outperform both young-old and old-old adults on cognitive ToM but not on affective ToM. Correlations showed that, whereas cognitive ToM was significantly associated with age, working memory updating, and inhibition, affective ToM was not. Finally, analyses revealed that individual differences in working memory updating (but not inhibition) mediated the effect of age on cognitive ToM. Our findings support the view of selective age-related differences on cognitive, but not affective, ToM in normal aging. The distinction between the two ToM components is further supported by a dissociable pattern of correlations with executive functions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  14. Equivalence versus classical statistical tests in water quality assessments.

    Science.gov (United States)

    Ngatia, Murage; Gonzalez, David; San Julian, Steve; Conner, Arin

    2010-01-01

    To evaluate whether two unattended field organic carbon instruments could provide data comparable to laboratory-generated data, we needed a practical assessment. Null hypothesis statistical testing (NHST) is commonly utilized for such evaluations in environmental assessments, but researchers in other disciplines have identified weaknesses that may limit NHST's usefulness. For example, in NHST, large sample sizes change p-values and a statistically significant result can be obtained by merely increasing the sample size. In addition, p-values can indicate that observed results are statistically significantly different, but in reality the differences could be trivial in magnitude. Equivalence tests, on the other hand, allow the investigator to incorporate decision criteria that have practical relevance to the study. In this paper, we demonstrate the potential use of equivalence tests as an alternative to NHST. We first compare data between the two field instruments, and then compare the field instruments' data to laboratory-generated data using both NHST and equivalence tests. NHST indicated that the data between the two field instruments and the data between the field instruments and the laboratory were significantly different. Equivalence tests showed that the data were equivalent because they fell within a pre-determined equivalence interval based on our knowledge of laboratory precision. We conclude that equivalence tests provide more useful comparisons and interpretation of water quality data than NHST and should be more widely used in similar environmental assessments.

  15. Effect of water activity on the growth of fungi isolated from „muesli“ components

    Directory of Open Access Journals (Sweden)

    Dimić Gordana R.

    2013-01-01

    Full Text Available The effect of water activity (aw (0.85-0.97 on the growth of Aspergillus niger, A. flavus, Penicillium chrysogenum, P. brevicompactum and Eurotium herbariorum was examined. The growth of A. niger was lower than that of A. flavus at aw of 0.89 and 0.85. A. niger was the least tolerant of reduced moisture, and low aw (0.85 could prevent colony formation in 5 days. P. brevicompactum was less sensitive to reduced moisture conditions than P. chrysogenum. The maximal growth of E. herbariorum was observed at the level of 0.89 aw. Among the tested fungi, E. herbariorum appeared to be best adapted to the conditions of low aw. [Projekat Ministarstva nauke Republike Srbije, br. TR - 31017

  16. Oscillatory water sorption test for determining water uptake behavior in bread crust

    NARCIS (Netherlands)

    Nieuwenhuijzen, N.H. van; Tromp, R.H.; Hamer, R.J.; Vliet, T. van

    2007-01-01

    In this work, water sorption kinetics of bread crust are described using an oscillatory sorption test in combination with a Langmuir type equation. Both kinetic and thermodynamic information could be obtained at the same time. An advantage of applying a Langmuir type equation for a quantitative desc

  17. SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Shouming ZHOU; Chunlai MU; Liangchen WANG

    2013-01-01

    In this article,we consider a two-component nonlinear shallow water system,which includes the famous 2-component Camassa-Holm and Degasperis-Procesi equations as special cases.The local well-posedess for this equations is established.Some sufficient conditions for blow-up of the solutions in finite time are given.Moreover,by separation method,the self-similar solutions for the nonlinear shallow water equations are obtained,and which local or global behavior can be determined by the corresponding Emden equation.

  18. Component-level test of molded freeform optics for LED beam shaping using experimental ray tracing

    Science.gov (United States)

    Gutierrez, Gustavo; Hilbig, David; Fleischmann, Friedrich; Henning, Thomas

    2017-06-01

    Due to the high demand of LED light sources, the need to modify their radiation pattern to meet specific application requirements has also increased. This is mostly achieved by using molded secondary optics, which are composed of a combination of several aspherical and freeform surfaces. Unfortunately, the manufacturers of these secondary optics only provide output information at system level, making impossible to independently characterize the secondary optic in order to determine the sources of erroneous results. For this reason, it is necessary to perform a component-level verification leading to the validation of the correctness of the produced secondary optic independently of the light source. To understand why traditional inspection methods fail, it is necessary to take into account that not only errors due to irregularities on the lens surface like pores, glass indentations or scratches affect the performance of the lens, but also differences in refractive index appear after the compression during fabrication process. These internal alterations are generally produced during the cooling stage and their effect over the performance of the lens are not possible to be measured using tactile techniques. Additionally, the small size of the lens and the freeform characteristics of its surface introduce additional difficulties to perform its validation. In this work, the component-level test is done by obtaining the ray mapping function (RMF) which describes the deflection of the light beam as a function of the input angle. To obtain the RMF, firstly a collimated light source is held fix and the lens is rotated. Thus, a virtual point source is created and subsequently by using experimental ray tracing it is possible to determine the ray slopes, which are used to the retrieve the RMF. Under the assumption that the optical system under analysis is lossless and considering the principle of energy conservation, it is possible under specific conditions to use this new

  19. Fault mechanism analysis and simulation for continuity resistance test of electrical components in aircraft engine

    Science.gov (United States)

    Shi, Xudong; Yin, Yaping; Wang, Jialin; Sun, Zhaorong

    2017-01-01

    A large number of electrical components are used in civil aircraft engines, whose electrical circuits are usually intricate and complicated. Continuity resistance is an important parameter for the operating state of electrical components. Electrical continuity fault has serious impact on the reliability of the aircraft engine. In this paper, mathematical models of electrical components are established, and simulation is made by Simulink to analyze the electrical continuity fault.

  20. Test Directions as a Critical Component of Test Design: Best Practices and the Impact of Examinee Characteristics

    Science.gov (United States)

    Lakin, Joni M.

    2014-01-01

    The purpose of test directions is to familiarize examinees with a test so that they respond to items in the manner intended. However, changes in educational measurement as well as the U.S. student population present new challenges to test directions and increase the impact that differential familiarity could have on the validity of test score…

  1. Test Directions as a Critical Component of Test Design: Best Practices and the Impact of Examinee Characteristics

    Science.gov (United States)

    Lakin, Joni M.

    2014-01-01

    The purpose of test directions is to familiarize examinees with a test so that they respond to items in the manner intended. However, changes in educational measurement as well as the U.S. student population present new challenges to test directions and increase the impact that differential familiarity could have on the validity of test score…

  2. How to constrain multi-objective calibrations using water balance components for an improved realism of model results

    Science.gov (United States)

    Pfannerstill, Matthias; Bieger, Katrin; Guse, Björn; Bosch, David; Fohrer, Nicola; Arnold, Jeffrey G.

    2017-04-01

    Accurate discharge simulation is one of the most common objectives of hydrological modeling studies. However, a good simulation of discharge is not necessarily the result of a realistic simulation of hydrological processes within the catchment. To enhance the realism of model results, we propose an evaluation framework that considers both discharge and water balance components as evaluation criteria for hydrological models. In this study, we integrated easily available expert knowledge such as average annual values of surface runoff, groundwater flow, and evapotranspiration in the model evaluation procedure to constrain the selection of good model runs. For evaluating water balance and discharge dynamics, the Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS) were used. In addition, the ratio of root mean square error and standard deviation of measured data (RSR) was calculated for individual segments of the flow duration curve to identify the best model runs in terms of discharge magnitude. Our results indicate that good statistics for discharge do not guarantee realistic simulations of individual water balance components. Therefore, we recommend constraining the ranges of water balance components to better capture internal and external fluxes of the hydrological system, even if trade-offs between good statistics for discharge simulations and reasonable amounts of the water balance components are unavoidable.

  3. Misunderstanding and Understanding of Primary Water Stress Corrosion Cracking of Structural Components in the Primary System of PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Sung Soo; Kim, Dae Whan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    All the structural components in the primary system of pressurized water reactors that are in contact with primary water are made of austenitic Ni-Cr-Fe alloys which are known to be corrosion resistant. Nevertheless, these Ni-Cr-Fe alloys such as Alloy 600, weld 182/82, austenitic stainless steels suffer from intergranular stress corrosion cracking (IGSCC) after their 10 year operation in reactors although the environment to which they have been exposed is almost pure water of pH 6.9 to 7.2, which is called primary water stress corrosion cracking (PWSCC). Given that the underlying mechanism of PWSCC remains unidentified so far, there are many misunderstandings related to PWSCC of the structural components, which may lead to unreasonable mitigation measures. The aim of this work is to highlight understanding and misunderstanding of PWSCC related to austenitic Ni-Cr-Fe alloys.

  4. Towards quantification of the water fooptprint of paper: a first estimate of its consumptive component

    NARCIS (Netherlands)

    van Oel, P.R.; Hoekstra, Arjen Ysbert

    2012-01-01

    For a hardcopy of this article, printed in the Netherlands, an estimated 100 l of water have been used. Most of the water is required in the forestry stage, due to evapotranspiration (green and blue water). In addition, the water footprint during the industrial stage, as accounted for in this study,

  5. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  6. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies using SDSS

    Science.gov (United States)

    Oh, Semyeong; Greene, Jenny E.; Lackner, Claire N.

    2017-02-01

    We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ∼3 and ∼15 kpc. The inner component lies on the mass–size relation of ETGs at z ∼ 0.25–0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing σ and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.

  7. Inlet Acoustic Data from a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    Bozak, Richard F.

    2017-01-01

    In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.

  8. First successful field tests of a water treatment system in the offshore Brazil environmental

    Energy Technology Data Exchange (ETDEWEB)

    Kriegshaeuser, Berthold [CETCO Oilfield Services Company, Covington, LA (United States); Fabian, Samuel [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In this paper we describe the first offshore Brazil field applications of a water treatment system deployed on various platforms to treat completion fluid flow backs. These completion fluid flow backs typically occur during well test operations that are routinely used to evaluate reservoir productivity. The composition of these completion flow back fluids typically comprises borehole fluid, reservoir fluid, and often gels. Since fluid storage capacity on a deep water platform rig is minimal, there is a significant interest in having a system available that can treat the produced fluids during well test operation where the water component can be discharged overboard. During the time of the discussed case histories the Institute for Environment and Natural Renewable Resources (IBAMA) had set an upper limit of 20 ppm (mg/l) of total oil and grease (TOG) for the water component from fluid flow backs before it can be discharged in the ocean. However, this limit has recently been increased to 29 ppm. Thus, it is critical for both, the operator and the service provider to meet IBAMA's regulations in order to improve the efficiency of well test operations in the offshore environment. The objective is to have a flow back treatment system available on the platform to treat the fluids online, and thus, eliminate the need to either store the fluid on the rig, or transport the fluid to the shoreline. This paper describes two different case histories where PETROBRAS evaluated a flow back treatment system in a light oil and a heavy oil application offshore Brazil. In both cases, the treatment system managed to reduce the TOG from inlet values between 10's and 100's of thousands ppm to below 10 ppm on the outlet prior to discharge in the ocean. (author)

  9. Development of modified vibration test criteria for qualifying space vehicle components. [subjected to broadband random acoustic excitation

    Science.gov (United States)

    Chang, K. Y.; Kao, G. C.

    1974-01-01

    Simplified methods are described to estimate the test criteria of primary structures at component attachment points subjected to broadband random acoustic excitations. The current method utilizes a constant smeared component mass attenuation factor across the frequency range of interest. The developed method indicates that the attenuation factor is based on a frequency dependent ratio of the mechanical impedances of both the component and primary structures. The procedures used to predict the structural responses are considered as the present state-of-the-art and provide satisfactory prediction results. Example problems are used to illustrate the application procedures of the two methods and to compare the significant difference. It was found that the lower test criteria obtained by the impedance ratio method is due to the results of considering the effects of component/primary structure interaction.

  10. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  11. Cluster and principle component analyses of maize accessions under normal and water stress conditions

    Directory of Open Access Journals (Sweden)

    Mustafa Hafiz Saad Bin

    2015-01-01

    Full Text Available In the current set of an experiment, forty maize genotypes were assessed for drought associated traits. For evaluation of these traits, PC and correlation analyses were employed to obtain suitable parents that can be further exploited in future breeding programmes. Correlation analysis revealed some important associations among the traits studied. Fresh root length had positive and significant associations, but leaf temperature had a significant negative correlation with root density at both 40% and 100% moisture levels while root density had negative association at 100% and positive correlation at 40% moisture level with chlorophyll content. The positive correlation among these yield contributing traits suggested that these characters are important for direct selection of drought tolerant high yielding genotypes. Principal component (PC analysis showed first 4 PCs having Eigen value >1 explaining 86.7% and 88.4% of the total variation at 40% and 100% moisture levels respectively with different drought related traits. Cluster analysis classified 40 accessions into four divergent groups. The members of clusters 1 and 2 may be combined in future breeding programmes to obtain genotypes/hybrids that can perform well under drought stress conditions. Members of cluster 3 may be selected on the basis of root density, leaf temperature, dry root weight and root shoot ratio by weight and can be combined with members of cluster 4 due to higher leaf temperature and root shoot ratio by length. The results showed that the germplasm having a wide genetic diversity can be thus utilized for future breeding programme to obtain drought tolerant maize genotypes/ hybrids for adaptation to water scarce areas.

  12. Preliminary vibration, acoustic, and shock design and test criteria for components on the SRB, ET, and SSME

    Science.gov (United States)

    1976-01-01

    Specifications for vibration, acoustic and shock design for components and subassemblies on the External Tank (ET), Solid Rocket Booster (SRB), and Space Shuttle Main Engine (SSME). Included are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. The space shuttle ET, SRB, and SSME have been divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (General Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Criteria for some specific components are also presented.

  13. Can water quality of tubewells be assessed without chemical testing?

    Science.gov (United States)

    Hoque, Mohammad A.; Butler, Adrian P.

    2016-04-01

    Arsenic is one of the major pollutants found in aquifers on a global scale. The screening of tubewells for arsenic has helped many people to avoid drinking from highly polluted wells in the Bengal Delta (West Bengal and Bangladesh). However, there are still many millions of tubewells in Bangladesh yet to be tested, and a substantial proportion of these are likely to contain excessive arsenic. Due to the level of poverty and lack of infrastructure, it is unlikely that the rest of the tubewells will be tested quickly. However, water quality assessment without needing a chemical testing may be helpful in this case. Studies have found that qualitative factors, such as staining in the tubewell basement and/or on utensils, can indicate subsurface geology and water quality. The science behind this staining is well established, red staining is associated with iron reduction leading to release of arsenic whilst black staining is associated with manganese reduction (any release of arsenic due to manganese reduction is sorbed back on the, yet to be reduced, iron), whereas mixed staining may indicate overlapping manganese and iron reduction at the tubewell screen. Reduction is not uniform everywhere and hence chemical water quality including dissolved arsenic varies from place to place. This is why coupling existing tubewell arsenic information with user derived staining data could be useful in predicting the arsenic status at a particular site. Using well location, depth, along with colour of staining, an assessment of both good (nutrients) and bad (toxins and pathogens) substances in the tubewell could be provided. Social-network technology, combined with increasing use of smartphones, provides a powerful opportunity for both sharing and providing feedback to the user. Here we outline how a simple digital application can couple the reception both qualitative and quantitative tubewell data into a centralised interactive database and provide manipulated feedback to an

  14. Preliminary vibration, acoustic, and shock design and test criteria for components on the Lightweight External Tank (LWT)

    Science.gov (United States)

    1981-01-01

    The Space Shuttle LWT is divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (general Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Along with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is presented.

  15. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    Science.gov (United States)

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  16. Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

    2009-11-30

    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

  17. The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat

    Directory of Open Access Journals (Sweden)

    G. Boulet

    2015-07-01

    Full Text Available Evapotranspiration is an important component of the water cycle, especially in semi-arid lands. A way to quantify the spatial distribution of evapotranspiration and water stress from remote-sensing data is to exploit the available surface temperature as a signature of the surface energy balance. Remotely sensed energy balance models enable to estimate stress levels and, in turn, the water status of continental surfaces. Dual-source models are particularly useful since they allow deriving a rough estimate of the water stress of the vegetation instead of that of a soil–vegetation composite. They either assume that the soil and the vegetation interact almost independently with the atmosphere (patch approach corresponding to a arallel resistance scheme or are tightly coupled (layer approach corresponding to a series resistance scheme. The water status of both sources is solved simultaneously from a single surface temperature observation based on a realistic underlying assumption which states that, in most cases, the vegetation is unstressed, and that if the vegetation is stressed, evaporation is negligible. In the latter case, if the vegetation stress is not properly accounted for, the resulting evaporation will decrease to unrealistic levels (negative fluxes in order to maintain the same total surface temperature. This work assesses the retrieval performances of total and component evapotranspiration as well as surface and plant water stress levels by (1 proposing a new dual-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE in two versions (parallel and series resistance networks based on the TSEB (Norman et al., 1995 model rationale as well as state of the art formulations of turbulent and radiative exchange, (2 challenging the limits of the underlying hypothesis for those two versions through a synthetic retrieval test and (3 testing the water stress retrievals (vegetation water stress and moisture

  18. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. An unexpected copper(II)-catalyzed three-component reaction of quinazoline 3-oxide, alkylidenecyclopropane, and water.

    Science.gov (United States)

    An, Yuanyuan; Zheng, Danqing; Wu, Jie

    2014-08-21

    An unexpected copper(II)-catalyzed three-component reaction of quinazoline-3-oxide, alkylidenecyclopropane and water under mild conditions is reported. This transformation including [3+2] cycloaddition and intramolecular rearrangement leads to N-(2-(5-oxa-6-azaspiro[2.4]hept-6-en-7-yl)phenyl)formamides in good yields.

  20. Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

    2009-08-01

    The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

  1. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  2. Multi-Component Remediation System for Generating Potable Water Onboard Spacecrafts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractal Systems Inc. proposes to develop an innovative, energy-efficient water purification system to enable humans to live and work permanently in space. Water...

  3. Effect of microbiological testing on subsequent mid-infrared milk component analysis of the same milk sample.

    Science.gov (United States)

    Wojciechowski, Karen L; Melilli, Caterina; Barbano, David M

    2014-09-01

    Our objectives were to determine if mixing and sampling of a raw milk sample at 4°C for determination of total bacteria count (TBC) and if incubation at 14°C for 18h and sampling for a preliminary incubation (PI) count influenced the accuracy of subsequent fat, protein, or lactose measurement by mid-infrared (IR) analysis of milk from the same sample container due to either nonrepresentative sampling or the presence of microbial metabolites produced by microbial growth in the milk from the incubation. Milks of 4 fat levels (2.2, 3, 4, and 5%) reflected the range of fat levels encountered in producer milks. If the portion of milk removed from a cold sample was not representative, then the effect on a milk component test would likely be larger as fat content increases. Within the milks at each fat level, 3 treatments were used: (1) 20 vials of the same milk sampled for testing TBC using a BactoScan FC and then used for a milk component test; (2) 20 vials for testing TBC plus PI count followed by component test; and (3) 20 vials to run for IR component test without a prior micro sampling and testing. This was repeated in 3 different weeks using a different batch of milk each week. No large effect on the accuracy of component milk testing [IR fat B (carbon hydrogen stretch) and fat A (carbonyl stretch)] due to the cold milk sample handling and mixing procedures used for TBC was detected, confirming the fact that the physical removal of milk from the vial by the BactoScan FC (Foss Electric, Hillerød, Denmark) was a representative portion of the milk. However, the representativeness of any other sampling procedure (manual or automated) of a cold milk sample before running milk component testing on the same container of milk should be demonstrated and verified periodically as a matter of routine laboratory quality assurance. Running TBC with a BactoScan FC first and then IR milk analysis after had a minimal effect on milk component tests by IR when milk bacteria counts

  4. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Science.gov (United States)

    Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Spagnolo, S.; Spolaore, M.; Veltri, P.

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  5. Thermal desorption study of catalytic systems. Communication 20. Adsorption of water vapors on the calcium aluminate components of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, V.D.; Danyushevskii, V.Y.; Golosman, E.Z.; Rubinstein, A.M.; Yakerson, V.I.

    1985-05-01

    Ca aluminates are used as a component of catalysts of gas-phase processes, some of which take place with the participation of water. Nickel calcium aluminate catalysts are thus used for hydrogenation of CO and CO/sub 2/ to CH/sub 4/ and water; zinc calcium aluminate catalysts are used for sulfur purification of process gases, where water is liberated during sulfiding of ZnO; and copper zinc calcium aluminate catalysts are used in low-temperature conversion of CO with water vapor. It is also known that Ca aluminates undergo various transformations in aqueous media with the formation of Ca hydroaluminates. This paper discusses the adsorption of water from the gas phase on calcium aluminate systems, which was investigated by the thermal desorption method. Samples of varying phase composition, different CaO/Al/sub 2/O/sub 3/ ratios, and specific surface areas were also studied and are reported on here.

  6. SPSS and SAS programs for determining the number of components using parallel analysis and velicer's MAP test.

    Science.gov (United States)

    O'Connor, B P

    2000-08-01

    Popular statistical software packages do not have the proper procedures for determining the number of components in factor and principal components analyses. Parallel analysis and Velicer's minimum average partial (MAP) test are validated procedures, recommended widely by statisticians. However, many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-greater-than-one rule. Use of the proper procedures might be increased if these procedures could be conducted within familiar software environments. This paper describes brief and efficient programs for using SPSS and SAS to conduct parallel analyses and the MAP test.

  7. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    Science.gov (United States)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  8. Performance tests of undercarriage components using electrodynamic shakers; Untersuchungen zur Betriebsfestigkeit von Fahrwerkstellen durch Elektrodynamische Shaker

    Energy Technology Data Exchange (ETDEWEB)

    Maruhn, M.; Brendel, A.; Bolz, P. [Car Synergies GmbH, Bochum (Germany)

    2005-10-01

    In the acquisition of dynamic material data, e.g. by Woehler tests, a large number of vibration cycles for a sufficient number of test pieces must be made available on the test stand within a short period of time. The thigher the test frequency, the faster the test results will be available. This is a fact that is getting increasingly important as up to 10{sup 8} vibration cycles are required in modern testing. Current servohydraulic test systems enable frequencies up to a bout 50 Hz. Car Synergies GmbH was able to optimize an electrodynamic shaper so that it can be used up to 150 Hz. (orig.)

  9. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Science.gov (United States)

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  10. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  11. Disinfection Tests of MF-2 Disinfectant on Nature Water Resource

    Institute of Scientific and Technical Information of China (English)

    WANG Jinlan; LIU Qingzeng; CUI Ying

    2002-01-01

    Objective To furnish evidence for practical application by examining the disinfection effect of MF - 2 disinfectant on different degree of contaminated water. Methods According to the determining methods of total bacterial count and coli - index of drinking water stimulated by the state conduct the forthwith disinfection experiments and accumulate disinfection experiments. Results Adding the MF - 2 into water resource to specific concentration according with the water resource sanitation criterion stipulated by the sater, after pointed time, it can chang water quality of severe contaminated water and questionable contaminated water into that of clean water, the quality of less contaminated water into that of drinking water. Conclusions MF - 2 disinfectant is applicable for disinfection of nature contaminated water resource in an outlying district and field - operation especially for urgent drinking water disinfection the area where there is neither clean water nor heating condition.

  12. Testing the BIO-SEA ballast water management system; Filter efficiency tests with high levels of zooplankton

    NARCIS (Netherlands)

    Kaag, N.H.B.M.; Sneekes, A.C.

    2015-01-01

    The BIO-SEA® Ballast Water Treatment System (BWTS) was tested at the IMARES land-based test facility. General goal of the tests was to compare two different brands of filter and to test the filter efficiency of finer mesh sizes of each brand. The filters were tested in combination with a ‘one-shot U

  13. Global dissipative solutions for the two-component Camassa-Holm shallow water system

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2015-01-01

    Full Text Available This article presents a continuous semigroup of globally defined weak dissipative solutions for the two-component Camassa-Holm system. Such solutions are established by using a new approach based on characteristics a set of new variables overcoming the difficulties inherent in multi-component systems.

  14. The Impact of Urbanization on the Precipitation Component of the Water Cycle: A New Perspective

    Science.gov (United States)

    Shephard, J. Marshal

    2002-01-01

    It is estimated that by the year 2025, 60% of the world s population will live in cities (UNFP, 1999). As cities continue to grow, urban sprawl (e.g., the expansion of urban surfaces outward into rural surroundings) creates unique problems related to land use, transportation, agriculture, housing, pollution, and development. Urban expansion also has measurable impacts on environmental processes. Urban areas modify boundary layer processes through the creation of an urban heat island (UHI). The literature indicates that the signature of the urban heat island effect may be resolvable in rainfall patterns over and downwind of metropolitan areas. However, a recent U.S. Weather Research Program panel concluded that more observational and modeling research is needed in this area (Dabberdt et al. 2000). NASA and other agencies initiated programs such as the Atlanta Land-use Analysis: Temperature and Air Quality Project (ATLANTA) (Quattrochi et al. 1998) which aimed to identify and understand how urban heat islands impact the environment. However, a comprehensive assessment of the role of urban-induced rainfall in the global water and energy cycle (GWEC) and cycling of freshwater was not a primary focus of these efforts. NASA's Earth Science Enterprise (ESE) seeks to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards (NASA, 2000). Within this mission, the ESE has three basic thrusts: science research to increase Earth system knowledge; an applications program to transfer science knowledge to practical use in society; and a technology program to enable new, better, and cheaper capabilities for observing the earth. Within this framework, a research program is underway to further address the co-relationship between land cover use and change (e.g. urban development) and its impact on key components of the GWEC (e.g., precipitation). This

  15. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  16. Employing components-of-variance to evaluate forensic breath test instruments.

    Science.gov (United States)

    Gullberg, Rod G

    2008-03-01

    The evaluation of breath alcohol instruments for forensic suitability generally includes the assessment of accuracy, precision, linearity, blood/breath comparisons, etc. Although relevant and important, these methods fail to evaluate other important analytical and biological components related to measurement variability. An experimental design comparing different instruments measuring replicate breath samples from several subjects is presented here. Three volunteers provided n = 10 breath samples into each of six different instruments within an 18 minute time period. Two-way analysis of variance was employed which quantified the between-instrument effect and the subject/instrument interaction. Variance contributions were also determined for the analytical and biological components. Significant between-instrument and subject/instrument interaction were observed. The biological component of total variance ranged from 56% to 98% among all subject instrument combinations. Such a design can help quantify the influence of and optimize breath sampling parameters that will reduce total measurement variability and enhance overall forensic confidence.

  17. Design of a compact six-component force and moment sensor for aerodynamic testing

    Directory of Open Access Journals (Sweden)

    Georgeta IONAŞCU

    2011-03-01

    Full Text Available The measurement of steady and fluctuating forces acting on a body in a flow is one of themain tasks in wind-tunnel experiments. Usually, a multi-component strain gauge force and momentsensor (also known as balance is used to generate signals which are processed by means of anadequate instrumentation.To design a wind-tunnel balance, the specifications of the load ranges and the available space (for theplacement of the balance inside or outside the model are required. The main challenge is to conceivethe elastic element of the sensor as a monolithic part with a relative simple geometry and to identifythe adequate placement of strain gauges to maximize the measuring sensitivities and to diminish theinter-influence of the components.This paper describes the design of a six-component force/moment sensor which is compact, has highmeasuring sensitivities, and can be used either as internal or as external balance in the aerodynamictesting.

  18. Analyzing VLSI component test results of a GenRad GR125 tester

    Science.gov (United States)

    Zulaica, D.; Lee, C.-H.

    1995-06-01

    The GenRad GR125 VLSI chip tester provides tools for testing the functionality of entire chips. Test operation results, such as timing sensitivity or propagation delay, can be compared to published values of other manufacturers' chips. The tool options allow for many input vector situations to be tested, leaving the possibility that a certain test result has no meaning. Thus, the test operations are also analyzed for intent. Automating the analysis of test results can speed up the testing process and prepare results for processing by other tools. The procedure used GR125 test results of a 7404 Hex Inverter in a sample VHDL performance modeler on a Unix workstation. The VHDL code is simulated using the Mentor Graphics Corporation's Idea Station software, but should be portable to any VHDL simulator.

  19. Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables

    Directory of Open Access Journals (Sweden)

    Ming He

    2015-11-01

    Full Text Available We propose a random effects panel data model with both spatially correlated error components and spatially lagged dependent variables. We focus on diagnostic testing procedures and derive Lagrange multiplier (LM test statistics for a variety of hypotheses within this model. We first construct the joint LM test for both the individual random effects and the two spatial effects (spatial error correlation and spatial lag dependence. We then provide LM tests for the individual random effects and for the two spatial effects separately. In addition, in order to guard against local model misspecification, we derive locally adjusted (robust LM tests based on the Bera and Yoon principle (Bera and Yoon, 1993. We conduct a small Monte Carlo simulation to show the good finite sample performances of these LM test statistics and revisit the cigarette demand example in Baltagi and Levin (1992 to illustrate our testing procedures.

  20. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    Science.gov (United States)

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  1. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Rachel Peletz

    2016-03-01

    Full Text Available Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies, served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05. Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  2. Satellites and solid state electronics test concrete pressure water pipelines

    Science.gov (United States)

    Fumo, John; Worthington, Will

    2000-06-01

    Like all structures, water pressure pipelines have a finite life. Pipelines will eventually begin to fail, leaving the pipeline owner to deal with the quandary: what caused this to happen, can we prevent future failures, must we replace this structure now? The causes for pipeline failure include defects and anomalies which may occur in any phase of a pipeline's life: during the engineering, the manufacture, the construction, or the operation. Failure may simply be the result of environmental conditions or old age. In the past five years, passive acoustic emission detection technology has been adapted to concrete pressure pipelines. This method of inspection is based on the caustic emissions made by the prestressed reinforcing wire as it releases its energy. A recently patented method of using this technology relies on a series of remote, independent test stations to detect, record and time-stamp these acoustic emissions. A low-powered, high- performance embedded processor system makes use of global positioning system time signals to synchronize multiple stations. These methods are re-defining the standard of care of water pressure pipelines. This paper describes pipeline failure mechanisms and a state-of-the-art data sampling system which has been developed to evaluate pipeline structural integrity.

  3. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    Science.gov (United States)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  4. Validity and reliability of tests determining performance-related components of wheelchair basketball

    NARCIS (Netherlands)

    De Groot, Sonja; Balvers, Inge J. M.; Kouwenhoven, Sanne M.; Janssen, Thomas W. J.

    2012-01-01

    The purpose of this study was to investigate the reliability and validity of wheelchair basketball field tests. Nineteen wheelchair basketball players performed 10 test items twice to determine the reliability. The validity of the tests was assessed by relating the scores to the players'

  5. Validity and reliability of tests determining performance-related components of wheelchair basketball

    NARCIS (Netherlands)

    De Groot, Sonja; Balvers, Inge J. M.; Kouwenhoven, Sanne M.; Janssen, Thomas W. J.

    2012-01-01

    The purpose of this study was to investigate the reliability and validity of wheelchair basketball field tests. Nineteen wheelchair basketball players performed 10 test items twice to determine the reliability. The validity of the tests was assessed by relating the scores to the players' classificat

  6. Characteristics of the Test Components of the IELTS Battery: Australian Trial Data.

    Science.gov (United States)

    Griffin, Patrick

    Results of the International English Language Testing System (IELTS) battery trials in Australia are reported. The IELTS tests of productive language skills use direct assessment strategies and subjective scoring according to detailed guidelines. The receptive skills tests use indirect assessment strategies and clerical scoring procedures.…

  7. Validity and reliability of tests determining performance-related components of wheelchair basketball

    NARCIS (Netherlands)

    De Groot, Sonja; Balvers, Inge J. M.; Kouwenhoven, Sanne M.; Janssen, Thomas W. J.

    2012-01-01

    The purpose of this study was to investigate the reliability and validity of wheelchair basketball field tests. Nineteen wheelchair basketball players performed 10 test items twice to determine the reliability. The validity of the tests was assessed by relating the scores to the players' classificat

  8. A computational component analysis of dielectric relaxation and THz spectra of water/AOT reverse micelles with different water loading

    Science.gov (United States)

    Schmollngruber, Michael; Braun, Daniel; Steinhauser, Othmar

    2016-12-01

    In this computational study, we present molecular dynamics simulations of water/aerosol-OT/isooctane reverse micelles with different water loading. We compare these systems in terms of a detailed analysis of dielectric relaxation spectra and water librations in the THz region. The spectra are decomposed into contributions by molecular species and contributions from individual water solvation shells. Additionally, micellar tumbling motion is shown to have a profound influence on the observed dielectric relaxation spectra, if relaxation by internal reorganization and micellar tumbling occurs within similar time scales. A formalism to directly quantify the effect of micellar tumbling motion on a recorded dielectric spectrum is developed. Since micellar rotational diffusion obeys the laws of hydrodynamics, this method is applicable in an experimental context as well, only knowing the viscosity of the outside medium and the average volume of the reverse micelle.

  9. Risk of false decision on conformity of a multicomponent material when test results of the components' content are correlated.

    Science.gov (United States)

    Kuselman, Ilya; Pennecchi, Francesca R; da Silva, Ricardo J N B; Hibbert, D Brynn

    2017-11-01

    The probability of a false decision on conformity of a multicomponent material due to measurement uncertainty is discussed when test results are correlated. Specification limits of the components' content of such a material generate a multivariate specification interval/domain. When true values of components' content and corresponding test results are modelled by multivariate distributions (e.g. by multivariate normal distributions), a total global risk of a false decision on the material conformity can be evaluated based on calculation of integrals of their joint probability density function. No transformation of the raw data is required for that. A total specific risk can be evaluated as the joint posterior cumulative function of true values of a specific batch or lot lying outside the multivariate specification domain, when the vector of test results, obtained for the lot, is inside this domain. It was shown, using a case study of four components under control in a drug, that the correlation influence on the risk value is not easily predictable. To assess this influence, the evaluated total risk values were compared with those calculated for independent test results and also with those assuming much stronger correlation than that observed. While the observed statistically significant correlation did not lead to a visible difference in the total risk values in comparison to the independent test results, the stronger correlation among the variables caused either the total risk decreasing or its increasing, depending on the actual values of the test results. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation on used oil and engine components of vehicles road test using twenty percent Fatty Acid Methyl Ester (B20

    Directory of Open Access Journals (Sweden)

    Ihwan Haryono, Muhammad Ma’ruf, Hari Setiapraja

    2016-01-01

    Full Text Available The Indonesian government has mandated to utilize biodiesel at the Indonesian market with blend ratio of 20% biodiesel and 80% diesel fuel (B20. This policy bring car manufacturers concerning in using B20 effect on the engine life time. To evaluate the effect of using B20 on engine components, vehicles road test has been done along 40,000 KM. The test was using three brands of vehicles, in which each brand was composed of two identical vehicles fuelled by B20 FAME fuel and pure diesel fuel (B0 (solar. During the road test at certain intervals in accordance with the manufacturer's maintenance recommendations, the vehicles lubricating oil replacement and other routine maintenance were required. At the completion of the test all test vehicles to be dismantled and the engine components inspected. The test results show that the most parameter of used oil lubricants still in the limits. Likewise, the condition of the vehicles engine components did not show significant difference between using the pure diesel or B20.

  11. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...

  12. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  13. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  14. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  15. Assessing the decontamination efficiency of a three-component flocculating system in the treatment of oilfield-produced water.

    Science.gov (United States)

    Ottaviano, John G; Cai, Jianxin; Murphy, R Scott

    2014-04-01

    Produced water is a complex mixture of oil, water, dissolved solids, and suspended solids. It represents the largest volume of waste associated with the oil and gas industry, and its management is a costly aspect of oil recovery. Therefore, the development of effective treatment technologies for produced water is essential from both ecological and economic standpoints. We have developed a sensitive, fluorescence-based method to demonstrate the decontamination efficiency of a three-component polymeric flocculating system, the microencapsulating flocculating dispersion (MFD) technology. We have shown that the MFD technology can remove 90 ± 2% of the pyrene, a model wastewater contaminant, in a 0.4 ppm aqueous stock solution. The optimal flocculant concentrations used to remove pyrene was determined by fluorescence spectroscopy and zeta potential measurements. Under these conditions, flocculation and settling times were fast (i.e., water sample with a remarkable decontamination efficiency of ≥98 ± 1%. Using this fluorescence-based method, we will be better able to formulate the components of this technology and other polymeric flocculants in the treatment of oilfield-produced water, which will benefit wastewater treatment technologies.

  16. Integrated Component and System Analyses of Instabilities in Test Stands Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Instabilities associated with fluid handling and operation in liquid rocket propulsion systems and test facilities usually manifest themselves as structural...

  17. Integrated Component and System Analyses of Instabilities in Test Stands Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Instabilities associated with the operation of liquid rocket propulsion systems and test facilities usually manifest themselves as structural vibrations and may...

  18. Test Operations Procedure (TOP) 08-2-197 Chemical Protection Testing of Sorbent-Based Air Purification Components (APCs)

    Science.gov (United States)

    2016-06-24

    of all chemicals for flammability and explosive hazards. Reactive chemicals, such as arsine, phosphine, nitrogen dioxide, phosgene, chlorine ...36-8), acetic acid (AA, CAS® Number 64-19-7), and ethylene glycol (CAS® Number 107- 21-1). TOP 08-2-197 24 June 2016 A-1 APPENDIX A. TEST

  19. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  20. Application of a technique for scenario prediction of climate change impact on the water balance components of northern river basins

    Directory of Open Access Journals (Sweden)

    Gusev Yeugeniy M.

    2014-09-01

    Full Text Available The scenario forecasting technique for assessing changes of water balance components of the northern river basins due to possible climate change was developed. Three IPCC global emission scenarios corresponding to different possible scenarios for economic, technological, political and demographic development of the human civilization in the 21st century were chosen for generating climate change projections by an ensemble of 16 General Circulation Models with a high spatial resolution. The projections representing increments of monthly values of meteorological characteristics were used for creating 3-hour meteorological time series up to 2063 for the Northern Dvina River basin, which belongs to the pan-Arctic basin and locates at the north of the European part of Russia. The obtained time series were applied as forcing data to drive the land surface model SWAP to simulate possible changes in the water balance components due to different scenarios of climate change for the Northern Dvina River basin

  1. Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Xinggang LI; Qingzhi YAN; Rong MA; Haoqiang WANG; Changchun GE

    2009-01-01

    Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

  2. PROcedures for TESTing and measuring wind turbine components. Results for yaw and pitch system and drive train

    Energy Technology Data Exchange (ETDEWEB)

    Holierhoek, J.G.; Savenije, F.J.; Engels, W.P.; Van de Pieterman, R.P. [Unit Wind Energy, Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands); Lekou, D.J. [Wind Energy Section, Centre for Renewable Energy Sources and Saving (Greece); Hecquet, T. [SWE, Universitaet Stuttgart, Stuttgart (Germany); Soeker, H. [DEWI, Wilhelmshaven (Germany); Ehlers, B. [Suzlon Energy GmbH, Suzlon Energy GmbH, Rostock (Germany); Ristow, M.; Kochmann, M. [Load Assumptions, Germanischer Lloyd Industrial Services GmbH, Hamburg (Germany); Smolders, K.; Peeters, J. [R and D technology, Hansen Transmissions International, Lommel (Belgium)

    2012-07-16

    PROcedures for TESTing (PROTEST) and measuring wind energy systems was a pre-normative project that ran from 2008 to 2010 in order to improve the reliability of mechanical components of wind turbines. Initiating the project, it was concluded that the procedures concerning these components should be further improved. Within the PROTEST project, complementary procedures have been developed to improve the specification of the design loads at the interfaces where the mechanical components (pitch and yaw system, as well as the drive train) are attached to the wind turbine. This is required, since in optimizing wind turbine operation and improving reliability, focus should be given to the design, not only to safety related components but also to the rest of the components affecting the overall behaviour of the wind turbine as a system. The project has resulted in a proposal for new design load cases, specifically for the drive train, a description of the loads to be defined at the interfaces of each mechanical system, as well as a method to set up and use the prototype measurements to validate or improve the load calculations concerning the mechanical components. Following this method would improve the reliability of wind turbines, although more experience is needed to efficiently use the method. Examples are given for the analysis of the drive train, pitch system and yaw system.

  3. Analysis of Power Distribution on Beamline Components at Different Neutralization Efficiencies on NBI Test Stand

    Science.gov (United States)

    Li, Xiang; Xu, Yongjian; Yu, Ling; Chen, Yu; Hu, Chundong; Tao, Ling

    2016-12-01

    Neutral beam injection is recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, two sets of neutral beam injector (4-8 MW, 10-100 s) were built and operated in 2014. Neutralization efficiency is one of the important parameters for neutral beam. High neutralization efficiency can not only improve injection power at the same beam energy, but also decrease the power deposited on the heat-load components in the neutral beam injector (NBI). This research explores the power deposition distribution at different neutralization efficiencies on the beamline components of the NBI device. This work has great significance for guiding the operation of EAST-NBI, especially in long pulse and high power operation, which can reduce the risk of thermal damage of the beamline components and extend the working life of the NBI device. supported by the International Science and Technology Cooperation Program of China (No. 2014DFG61950), National Natural Science Foundation of China (No. 11405207) and the Foundation of ASIPP (No. DSJJ-15-GC03)

  4. Application of microCT to the non-destructive testing of an additive manufactured titanium component

    Directory of Open Access Journals (Sweden)

    Anton du Plessis

    2015-11-01

    Full Text Available In this paper the application of X-ray microCT to the non-destructive testing of an additive manufactured titanium alloy component of complex geometry is demonstrated. Additive manufacturing of metal components is fast growing and shows great promise, yet these parts may contain defects which affect mechanical properties of the components. In this work a layered form of defect is found by microCT, which would have been very difficult or impossible to detect by other non-destructive testing methods due to the object complexity, defect size and shape and because the pores are entirely contained inside the object and not connected to the surface. Additionally, this test part was subjected to hot isostatic pressing (HIPPING and subsequently scanned. Comparing before and after scans by alignment of the volumes allows visualization and quantification of the pore size changes. The application of X-ray microCT to additive manufacturing is thus demonstrated in this example to be an ideal combination, especially for process improvements and for high value components.

  5. Prediction of natural gas hydrate formation region in wellbore during deep- water gas well testing

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-yuan; SUN Bao-jiang; WANG Xue-rui; ZHANG Zhen-nan

    2014-01-01

    Wellbore temperature field equations are established with considerations of the enthalpy changes of the natural gas during the deep-water gas well testing. A prediction method for the natural gas hydrate formation region during the deep-water gas well testing is proposed, which combines the wellbore temperature field equations, the phase equilibrium conditions of the natural gas hydrate formation and the calculation methods for the pressure field. Through the sensitivity analysis of the parameters that affect the hydrate formation region, it can be concluded that during the deep-water gas well testing, with the reduction of the gas production rate and the decrease of the geothermal gradient, along with the increase of the depth of water, the hydrate formation region in the wellbore enlarges, the hydrate formation regions differ with different component contents of natural gases, as compared with the pure methane gas, with the increase of ethane and propane, the hydrate formation region expands, the admixture of inhibitors, the type and the concentrations of which can be optimized through the method proposed in the paper, will reduce the hydrate formation region, the throttling effect will lead to the abrupt changes of temperature and pressure, which results in a variation of the hydrate formation region, if the throttling occurs in the shallow part of the wellbore, the temperature will drop too much, which enlarges the hydrate formation region, otherwise, if the throttling occurs in the deep part of the wellbore, the hydrate formation region will be reduced due to the decrease of the pressure.

  6. An attempt to identify the muonic and electromagnetic components of extensive showers in water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Marcio Aparecido; Chinellato, Jose Augusto [Universidade de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin

    2011-07-01

    Full text: One of the purposes of the Pierre Auger Collaboration is to study the mass composition of primary cosmic rays. When a cosmic ray collides in the upper atmosphere, depending on the mass composition, we have different numbers of mesons being produced and therefore different amounts of muons at detector level. For example, showers initiated by proton have less muons than showers initiated by iron nucleus. If we can select the muon signal in Cherenkov tanks, we might be able to infer primary composition. To achieve this goal, we will use the so-called 'Muon Jump Method', which aims to discriminate muons from the electromagnetic component, based on the time structure of their FADC signal. Muons produces on average more signal than electrons or gammas and they induce spiky signals whereas the electromagnetic component produce a continuum of small peaks in the FADC traces. Using this information, we estimate the number of particles for each component, by setting filters the time distribution of the shower front. Therefore, we can infer the primary mass composition. Another important point of this study is to compare the predictions of the hadronic interaction models for each component of the shower front. We present an introduction to the main aspects of the 'Muon Jump Method' as well as some preliminary results we achieved by simulating air showers, reconstructing their main features and filtering the signals of each component. (author)

  7. RECONSTRUCTION AND PREDICTION OF WATER BALANCE COMPONENTS FROM DENDROCHRONOLOGICAL DATA FOR THE NARYN RIVER BASIN (KYRGYZSTAN

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2012-01-01

    Full Text Available Suggested new method for reconstruction of runoff includes: 1. Search informative points based weather observations for dependence runoff = f(climate index. Climate index consists of normalized anomalies of annual precipitation and air temperature, together with water vapor pressure and total cloud amount in the June–September. 2. The selection of sites that represent local relationship between the index of climate and tree rings. 3. Getting the multivariate linear regression equation between the runoff V and tree rings D. Basic climatic period 1961–1990 is used as a calibration interval of time. Verification of the equations for 1940–1960 identified the need to use other arguments in addition to the width of tree rings. For this purpose, two climate index: PDSI and SPEI were tested. It is established that the empirical formulae V = f(D, PDSI and V = f(D, SPEI are suitable for assessing the annual flow of the Naryn in 1901–2006. In the report is described a process of  reconstruction of flow for the years 1700–2005 based on the data of the width of the tree rings, and taking into account the temporal variability of parameters of regression equations.Chronologies of the width and density of tree rings in the thirty-two tree ring sites were used to reconstruct long-term series of average summer air temperature Ts at meteorological stations of the Pamir and Tien Shan. The calibration interval of time was 1961–1990 to find equations Ts = f(D of third-order multiple regression, and independent control of their quality, done in 1932–1960. Combined correlation coefficient in 10 cases out of 15 was more than 0.80, a relative error of calculation Ts in 19611990 ranged from 0.13 to 4.73%, and in 1932–1960 from 0.23 to 8.10%. Duration of the reconstructed series Ts ranged from 100 to 278 years. Positive results were received for predicting a common and glacial runoff of Naryn river, a long-term range of density of tree rings. 

  8. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    Science.gov (United States)

    Tobella, J.

    2010-05-01

    advanced and costly treatments. Nevertheless, a number of studies are demonstrating that physical, chemical and biochemical processes associated with water movement within the subsoil represent a natural alternative way to reduce the presence of these contaminants. This processes are called Soil Aquifer Treatment (SAT). Aquifer recharge will become a source for indirect potable reuse purposes as long as the presence of pathogens and organic and inorganic pollutants is avoided. To this end, understanding the biogeochemical degradation processes occurring within the aquifer during infiltration is capital. 2. Laboratory batch experiments A set of laboratory batch experiments has been assembled to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. The setup of the experiments consists of glass bottles containing 120 g of soil and 240 ml of synthetic water spiked with the mix of micropollutants. A source of easily degradable organic carbon and, depending on the type of test, electron acceptors are added in order to yield aerobic respiration and nitrate/iron/manganese/sulphate reduction conditions. The evolution of the processes is monitored by sacrificing duplicate bottles according to a defined schedule and analysing water for major and minor components as well as for micropollutants. Results from biotic tests are compared with abiotic ones in order to discern biodegradation from other chemical processes. The soil, the synthetic water and the micropollutants selected for the experiments are representative of a test site in the nearby of Barcelona (Spain) where artificial recharge of groundwater through ponds is going to be performed using river water or tertiary effluent from a waste water treatment plant. The results of the experiments improve the knowledge on the behaviour of the selected micropollutants under different redox conditions and provide with useful information

  9. Complex Demodulation in Monitoring Earth Rotation by VLBI: Testing the Algorithm by Analysis of Long Periodic EOP Components

    Science.gov (United States)

    Wielgosz, A.; Brzeziński, A.; Böhm, S.

    2016-12-01

    The complex demodulation (CD) algorithm is an efficient tool for extracting the diurnal and subdiurnal components of Earth rotation from the routine VLBI observations (Brzeziński, 2012). This algorithm was implemented by Böhm et al (2012b) into a dedicated version of the VLBI analysis software VieVs. The authors processed around 3700 geodetic 24-hour observing sessions in 1984.0-2010.5 and estimated simultaneously the time series of the long period components as well as diurnal, semidiurnal, terdiurnal and quarterdiurnal components of polar motion (PM) and universal time UT1. This paper describes the tests of the CD algorithm by checking consistency of the low frequency components of PM and UT1 estimated by VieVS CD and those from the IERS and IVS combined solutions. Moreover, the retrograde diurnal component of PM demodulated from VLBI observations has been compared to the celestial pole offsets series included in the IERS and IVS solutions. We found for all three components a good agreement of the results based on the CD approach and those based on the standard parameterization recommended by the IERS Conventions (IERS, 2010) and applied by the IERS and IVS. We conclude that an application of the CD parameterization in VLBI data analysis does not change those components of EOP which are included in the standard adjustment, while enabling simultaneous estimation of the high frequency components from the routine VLBI observations. Moreover, we deem that the CD algorithm can also be implemented in analysis of other space geodetic observations, like GNSS or SLR, enabling retrieval of subdiurnal signals in EOP from the past data.

  10. BALANCE OF ENERGY AND COMPONENTS OF VOLTAGE DURING THE ELECTROTECHNICAL MODIFICATION OF PHYSICOCHEMICAL PARAMETERS OF WATER

    Directory of Open Access Journals (Sweden)

    Stiopka O.G

    2006-04-01

    Full Text Available The paper is dealing with results of theoretical and experimental investigations related to the balance of energy and voltage distribution in units for electrochemical units for water treatment. The electrical energy conversion mechanism in electrochemical units equipped with ionic selective membrane is analyzed. The obtained results could be used for design of electrochemical units for the water conditioning for diverse technological processes in agriculture and biotechnology.

  11. The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds

    Science.gov (United States)

    Adams, Jordan M.; Gasparini, Nicole M.; Hobley, Daniel E. J.; Tucker, Gregory E.; Hutton, Eric W. H.; Nudurupati, Sai S.; Istanbulluoglu, Erkan

    2017-04-01

    Representation of flowing water in landscape evolution models (LEMs) is often simplified compared to hydrodynamic models, as LEMs make assumptions reducing physical complexity in favor of computational efficiency. The Landlab modeling framework can be used to bridge the divide between complex runoff models and more traditional LEMs, creating a new type of framework not commonly used in the geomorphology or hydrology communities. Landlab is a Python-language library that includes tools and process components that can be used to create models of Earth-surface dynamics over a range of temporal and spatial scales. The Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al.(2012). This explicit two-dimensional hydrodynamic algorithm simulates a flood wave across a model domain, where water discharge and flow depth are calculated at all locations within a structured (raster) grid. Here, we illustrate how the OverlandFlow component contained within Landlab can be applied as a simplified event-based runoff model and how to couple the runoff model with an incision model operating on decadal timescales. Examples of flow routing on both real and synthetic landscapes are shown. Hydrographs from a single storm at multiple locations in the Spring Creek watershed, Colorado, USA, are illustrated, along with a map of shear stress applied on the land surface by flowing water. The OverlandFlow component can also be coupled with the Landlab DetachmentLtdErosion component to illustrate how the non-steady flow routing regime impacts incision across a watershed. The hydrograph and incision results are compared to simulations driven by steady-state runoff. Results from the coupled runoff and incision model indicate that runoff dynamics can impact landscape relief and channel concavity, suggesting that, on landscape evolution timescales, the OverlandFlow model may lead to differences in

  12. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  13. System and Component Software Specification, Run-time Verification and Automatic Test Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The following background technology is described in Part 5: Run-time Verification (RV), White Box Automatic Test Generation (WBATG). Part 5 also describes how WBATG...

  14. Construction and testing of advanced ceramic fabric radiator components to 1000 K

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.; Bates, J.M.; Webb, B.J.

    1990-01-01

    For a number of years, the authors have been studying the application of advanced ceramic fabric materials to spacecraft heat rejection systems. Their studies indicated that significant mass and launch volume savings could be realized through such application, but concrete evidence to support this contention was lacking. Last year they presented preliminary test data that supported their claims (Antoniak and Webb 1989). Recent pressure, heat transfer, and wicking tests and analyses confirm the earlier results.

  15. Volume Sensor Development Test Series 4 Results - Multi-Component Prototype Evaluation

    Science.gov (United States)

    2006-01-25

    multiple locations in the test space by two aerosols, The aerosols used were: 1) Old Spice High Endurance deodorant 2) Lysol disinfectant spray. 9...Deodorant / Lysol and Old spice Deodorant (High Endurance) were sprayed Aerosol 5 seconds, off for 5 seconds, then sprayed for 5 seconds at spray... Lysol sprayed at location 4 -325 seconds after DAQ start old spice sprayed at location 1 -360 seconds after DAQ start Lysol sprayed at location 1 and test

  16. Millennial-scale influence of southern intermediate component water into the North-east Atlantic during the last 40 kyr

    Science.gov (United States)

    Colin, Christophe; Frank, Norbert; Dubois-Dauphin, Quentin; Bonneau, Lucile; Montero-Serrano, Jean-Carlos; Blamart, Dominique; Van Rooij, David

    2014-05-01

    advance of southern component water at shallow depth into the NE Atlantic potentially even into the Mediterranean sea that needs to be further investigated.

  17. Testing of heat transfer coefficient of photovoltaic components%光伏构件的传热系数检测

    Institute of Scientific and Technical Information of China (English)

    林磊

    2013-01-01

    本文首先阐述了建筑围护结构对光伏构件传热性能的要求,然后根据相关标准测试了三种光伏构件,分析影响传热系数的原因,最后分析了三种光伏构件在全国各气候分区的适应性。%In this article, the author described the requirements on the heat transfer performance of photovoltaic component architecture firstly, and then tested three photovoltaic components according to the relevant standard , and the factors which influencing heat transfer co-efficient had been analyzed .Finally, the climate adaptability of three kinds of photovoltaic component had been evaluated .

  18. Materials Reliability Program: Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-137)

    Energy Technology Data Exchange (ETDEWEB)

    R.Kilian

    2004-12-01

    Laboratory data generated in the past decade indicate a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been supported by nuclear power plant component operating experience. In recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but applicable in plant operating environments. Available data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of a reactor water environment. Similar information is lacking for stainless steel piping materials. This report documents progress made to date in an extensive testing program underway to evaluate the effects of flow rate on the corrosion fatigue of 304L stainless steel under simulated PWR primary water environmental conditions.

  19. Measurement of mental attention: Assessing a cognitive component underlying performance on standardized intelligence tests

    Directory of Open Access Journals (Sweden)

    Steven J. Howard

    2013-09-01

    Full Text Available Despite the widespread use of standardized IQ tests to measure human intelligence, problems with such measures have led some to suggest that better indices may derive from measurement of cognitive processes underlying performance on IQ tests (e.g., working memory capacity. However, measures from both approaches may exhibit performance biases in favour of majority groups, due to the influence of prior learning and experience. Mental attentional (M- capacity is proposed to be a causal factor underlying developmental growth in working memory. Measures of M-capacity index important cognitive variance underlying performance on standardized intelligence tests. These measures appear to be reasonably culture-fair and invariant across content domains. The current study tested theoretical predictions regarding the content-invariance of M-measures and the development of M-capacity for groups of children differing in performance on standardized IQ tests. Ninety-one participants differentiated on the basis of academic stream (intellectually gifted vs. mainstream and age (grade 4 vs. grade 8 received measures of M-capacity in the verbal and visuo-spatial domains. Children identified as gifted scored about one stage higher on both measures. Results suggest that measures of M-capacity may be useful adjuncts to standardized intelligence measures.

  20. Geodatabase compilation of hydrogeologic, remote sensing, and water-budget-component data for the High Plains aquifer, 2011

    Science.gov (United States)

    Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.

    2013-01-01

    The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate

  1. A uniaxial tension system and its applications in testing of thin films and small components.

    Science.gov (United States)

    Wu, Wenwang; Li, Xide; Liu, Liang

    2009-08-01

    The aim of this investigation is to develop a uniaxial tension system for testing very small samples that allows observation of the gauge section by optical or atomic force microscopy. Major parts of the system consist of a pair of identical piezoelectric actuators, two symmetrical double-cantilevered force sensors, and two symmetrical universal coupling joints. It can accomplish both-end loaded uniaxial tension to produce centrosymmetric deformations of the tested objects in the field of view and can apply tensile loads in the range from 7.8 microN to 15 N to the samples. Sample extensions from submicrometers to 100 microm can be measured with displacement resolution of several tens of nanometers. The system's performance is demonstrated by tests of a polycrystalline aluminum alloy thin sheet, a mica thin sheet, and a fibril of bamboo.

  2. Slowly moving test charge in two-electron component non-Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. [National Centre for Physics (NCP), Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Eliasson, B. [SUPA, Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)

    2015-08-15

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  3. Slowly moving test charge in two-electron component non-Maxwellian plasma

    Science.gov (United States)

    Ali, S.; Eliasson, B.

    2015-08-01

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  4. Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip

    2002-05-16

    An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests of the sort using in commissioning. This paper presents the results of field tests of mixing box and VAV fan system models in an experimental facility and a commercial office building. The models were found to be capable of representing the performance of correctly operating mixing box and VAV fan systems and detecting several types of incorrect operation.

  5. High rate lithium batteries safety testing for U.L. component recognition

    Science.gov (United States)

    Snuggerud, D. K.

    1985-12-01

    An evaluation is made of the safety-related aspects of high energy density lithium thionyl chloride batteries by subjecting them to extensive testing in that system configuration that has the highest hazard potential in virtue of its high voltage. The molten Li (at above 180 C) is violently reactive with the battery cathode material. Attention is given to designs which fuse current collectors to the Li at high heat values, and especially to a design that limits the movement of molten Li and thereby prevents internal short circuits. Results of safety tests concerned with battery operation in military applications are also noted.

  6. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    Science.gov (United States)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  7. Microbiological test results of the environmental control and life support systems vapors compression distillation subsystem recycle tank components following various pretreatment protocols

    Science.gov (United States)

    Huff, Tim

    1993-01-01

    Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.

  8. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    Science.gov (United States)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  9. Emotional-volitional components of operator reliability. [sensorimotor function testing under stress

    Science.gov (United States)

    Mileryan, Y. A.

    1975-01-01

    Sensorimotor function testing in a tracking task under stressfull working conditions established a psychological characterization for a successful aviation pilot: Motivation significantly increased the reliability and effectiveness of their work. Their acitivities were aimed at suppressing weariness and the feeling of fear caused by the stress factors; they showed patience, endurance, persistence, and a capacity for lengthy volitional efforts.

  10. Chemical Protection Testing of Sorbent-Based Air Purification Components (APCs)

    Science.gov (United States)

    2016-06-24

    of all chemicals for flammability and explosive hazards. Reactive chemicals, such as arsine, phosphine, nitrogen dioxide, phosgene, chlorine ...36-8), acetic acid (AA, CAS® Number 64-19-7), and ethylene glycol (CAS® Number 107- 21-1). TOP 08-2-197 24 June 2016 A-1 APPENDIX A. TEST

  11. The optimal patch test concentration for ascaridole as a sensitizing component of tea tree oil

    NARCIS (Netherlands)

    Christoffers, Wietske Andrea; Bloemeke, Brunhilde; Coenraads, Pieter-Jan; Schuttelaar, Marie-Louise Anna

    2014-01-01

    BACKGROUND: Tea tree oil is used as a natural remedy, but is also a popular ingredient in household and cosmetic products. Oxidation of tea tree oil results in degradation products, such as ascaridole, which may cause allergic contact dermatitis. OBJECTIVES: To identify the optimal patch test concen

  12. Evaluation of Tests for Cermets as Components of Heat-Resistant Materials.

    Science.gov (United States)

    Specimens of one cermet composition for flexural tests were received. These specimens K 152B (nominal composition of 70% titanium carbide - 30...nickel) were substituted for K 162B (nominal composition of 62% titanium carbide - 8% columbium - 25% nickel - 5% molybdenum). Equipment was designed for

  13. Assessing Attitudes about Genetic Testing as a Component of Continuing Medical Education

    Science.gov (United States)

    Mrazek, Michael; Koenig, Barbara; Skime, Michelle; Snyder, Karen; Hook, Christopher; Black, John, III; Mrazek, David

    2007-01-01

    Objective: To investigate the attitudes among mental health professionals regarding the use of genetic testing. Methods: Psychiatrists and other mental health professionals (N = 41) who were enrolled in a week-long course in psychiatric genomics completed questionnaires before and after the course designed to assess how diagnostic genetic tests…

  14. High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components

    Energy Technology Data Exchange (ETDEWEB)

    Paul Demkowicz; Prateek Sachdev; Kevin DeWall; Pavel Medvedev

    2007-06-01

    Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850°C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.

  15. The Impact of Speaking Component of an Institutional Test on Bilingual Students' Anxiety Level

    Science.gov (United States)

    Ramos, Selen

    2017-01-01

    The aim of the current study was to investigate whether bilingual university/ college students may have speaking test anxiety. Additionally, it was examined whether there were differences in anxiety levels among bilingual students according to gender. To collect data, 140 bilingual university students were given a GEP-TAS (General English…

  16. Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA"

    Science.gov (United States)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    We are conducting tests of optical and electronics components of JEMEUSO at the Telescope Array site in Utah with a ground-based "EUSO-TA" detector. The tests will include an engineering validation of the detector, cross-calibration of EUSO-TA with the TA fluorescence detector and observations of air shower events. Also, the proximity of the TA's Electron Light Source will allow for convenient use of this calibration device. In this paper, we report initial results obtained with the EUSO-TA telescope.

  17. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    Science.gov (United States)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  18. Effects of cellular structure and cell wall components on water holding capacity of mushrooms

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, Remko M.; Haaren, van Els; Siccama, Joanne; Sman, van der Ruud G.M.

    2016-01-01

    In a sequel of papers we have investigated effects of different physical contributions to the water holding capacity of foods by considering the common white button mushroom (Agaricus bisporus). In the current paper of our sequel, we consider individual contributions of the cellular phase to wate

  19. Design tool for large solar hot water systems - Uniform optimization of components and economy

    NARCIS (Netherlands)

    Visser, H.

    1996-01-01

    In close collaboration with the parties concerned, i.e. both the sellers and investors, a design and optimization method for large solar hot water systems is being developed. In order to support investors in achieving the feasibility of such systems, the normalized method including software tool for

  20. Development of a Rapid Immunodiagnostic Test for Pork Components in Raw Beef and Chicken Meats: a Preliminary Study

    Directory of Open Access Journals (Sweden)

    S. N. Depamede

    2011-08-01

    Full Text Available A rapid immunodiagnostic test that provides visual evidence of the presence of pork components in raw beef and chicken meats was developed. Colloidal gold was prepared and conjugated with anti-Swine IgG polyclonal antibody. Immunochromatographic test strips were produced, and then were used to test laboratory adulterated raw meat samples. The samples consisted adulteration meat, immunodiagnostic, pork, rapid test of pork-in-beef, or pork-in-chicken at 1/0; 1/100; 1/1,000; 1/5,000; 1/10,000 (w/w adulteration levels that were extracted in phosphate-buffered saline. Raw beef and chicken meats without pork were included as controls. Analysis was completed in 10 min. Detection limit was 1/5,000 (w/w, although 1/10,000 was also observed. This immunodiagnostic tests can be conveniently applied to detect low levels of pork components in raw beef and chicken meat products. For the commercial purposes, further studies need to be carried out.

  1. Results of Sediment Sampling and Elutriate Testing at the Proposed Desoto Shallow Water Habitat Project Site

    Science.gov (United States)

    2013-08-01

    Manganese ----- ----- ----- Nebraska Water Quality Standards – Manganese ; Warmwater Aquatic Life Class A and Public Drinking ... Water Constituent Acute Standard (Dissolved) Chronic Standard (Dissolved) Public Drinking Water Standard (Secondary) Manganese ----- 1,000 µg/L...indicated by the filtered elutriate testing, Manganese levels are below 34 the 50 µg/L secondary Public Drinking Water standard after

  2. Recommendations for replica testing of high temperature components in power plant; Rekommendationer foer replikprovning av hoegtemperaturkomponenter i kraftanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan [Det Norske Veritas AB, Stockholm (Sweden)

    2000-08-01

    Replica testing is a non-destructive testing method where the microstructure of the surface of a component is replicated. This involves careful metallographical preparation which in some points also should be adapted to the aims of the investigation. There are published guidelines for replica testing of high temperature components in power plant, for instance by Nordtest, but these may be considered to be insufficient to assure the required quality and reproducibility of the replicas. There are no certification systems for the replica method in Sweden as well as abroad and the experience has shown that differences in the performance that existing praxis can involve may give significant influence on the results when the replicas are evaluated. In the present project recommendations have been compiled for replica testing with regard to creep damage on occurring heat resistant steel types in Swedish power plants. The recommendations consist of guidelines for metallographical replication in the field and cover: - Test positions at weldments and pipe bends; - Equipment; - Rough and fine grinding; - Macro-etching; - Electrolytic and mechanical polishing; - Etching; - Replication; - Documentation and storage; - Personnel. They describe differences in the testing of the different materials and the purpose is to assure replica testing of the highest quality and reproducibility. The recommendations have been compiled by use of guidelines and company standards as a starting point. Some points in the recommendations refer to trials for verification which have been carried out within the frame of the project. The trials have been focused on the appearance of creep damage and microstructure in different established methods for polishing and etching. Comments and closer descriptions for some points of the test procedures are given in an appendix to the recommendations.

  3. Design and Testing of Braided Composite Fan Case Materials and Components

    Science.gov (United States)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  4. Testing of a technique for remotely measuring water salinity in an estuarine environment

    Science.gov (United States)

    Thomann, G. C.

    1975-01-01

    An aircraft experiment was flown on November 7, 1973 to test a technique for remote water salinity measurement. Apparent temperatures at 21 cm and 8-14 micron wavelengths were recorded on eight runs over a line along which the salinity varied from 5 to 30%. Boat measurements were used for calibration and accuracy calculations. Overall RMS accuracy over the complete range of salinities was 3.6%. Overall RMS accuracy for salinities greater than 10%, where the technique is more sensitive, was 2.6%. Much of this error is believed to be due to inability to exactly locate boat and aircraft positions. The standard deviation over the eight runs for salinities or = 10% is 1.4%; this error contains a component due to mislocation of the aircraft also. It is believed that operational use of the technique is possible with accuracies of 1-2%.

  5. Techniques for Determining Small Fractions of Oil Components in the Sea Water Flow by Rotation of Vibration Plane

    Directory of Open Access Journals (Sweden)

    Eric Mucunguzi-Rugwebe

    2013-09-01

    Full Text Available In this study, the results of the effect of water-flow rate and air fraction component on intensity, I, are presented and discussed. The study which was carried out at Bergen University in Norway, presents the impact of monochromatic defects on polarization and measurements of small oil fractions of various crude oils are presented. When there was refraction, it was observed that in static sea-water &mustatic = 0.38 and in running water &muflow = 0.42 When refraction was eliminated by grafting windows in the pipe, &mustatic = 0, &muflow = 0.11 and in both cases &muflow was independent of the flow rate. Air fraction component, &alpha> = 0.12 reduced light intensity. With rate flow Q = 13.6m3/h and Q = 27.2 m3/h critical air fraction was found at &alphac = 0.18 and &alphac = 0.12 respectively. For &alphac = 0.18 up to &alpha 0.87 at Q = 13.6m3/h and &alphac = 0.12 up to &alpha = 0.78 at Q = 27.2 m3/h light intensity was found independent of &alpha. The highest rotation was found in Gullfaks crude oil, followed by Heidrun, the rotation is Statfjord crude oil was less than one in Heidrun and the least rotation was observed in 0A sg 0a rd crude oil. At 40ppm, the rotation was as follows: Gullfaks &empty = 27.0±0.20, Heidrun &empty = 23.9±0.20, Statfjord &empty = 20.0±0.20 and 0Asg 0ard &empty = 10.0±0.10. This method studys very well when small oil fractions from 5.0-70 ppm are in sea-water flow. This technique can be deployed to monitor the environment and to control the re-injected process water.

  6. Produced water components: uptake kinetics and effects on the metabolism of the Arctic copepod Calanus glacialis

    OpenAIRE

    Bergentz, Sara Hanna Amalia

    2016-01-01

    The oil exploration and search for new oil production fields is expanding further north and has reached the Arctic. Oil drilling activities release large amounts of produced water (PW) to the marine environment and sub-lethal effects on biota cannot be excluded. The polycyclic aromatic hydrocarbons (PAHs) present in PW have previously been shown to exhibit negative effects on growth, development and survival of aquatic organisms. The Arctic copepod Calanus glacialis is an abundant zooplankton...

  7. [Effect of water on silica gel adsorption of blood plasma components].

    Science.gov (United States)

    Gall', L N; Malakhova, M Ia; Melenevskaia, E Iu; Podosenova, N G; Sharonova, L V

    2011-01-01

    In this work, the study of properties of silica gel as an adsorbent for plasmasorption has been performed. Investigations have been realized of the effect of silica gel preliminary treatment conditions and a period of plasma with silica gel contact on plasmasorption characteristics of human blood plasma components, such as protein, triglycerides, cholesterol (high-density and low-density one). The results obtained can be used for variation of silica gel adsorption properties, in situ at the adsorbent preparation process. For explanation of the experimental concentration and kinetic (temporal) characteristics of plasmasorption, the model of silica gel grains charging at the hydration was used.

  8. Fabrication and Characterizations of Materials and Components for Intermediate Temperature Fuel Cells and Water Electrolysers

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Prag, Carsten Brorson; Li, Qingfeng

    The worldwide development of fuel cells and electrolysers has so far almost exclusively addressed either the low temperature window (20-200 °C) or the high temperature window (600-1000 °C). This work concerns the development of key materials and components of a new generation of fuel cells...... might be used. One of the key materials in the fuel cell and electrolyser systems is the electrolyte. Proton conducting materials such as cesium hydrogen phosphates, zirconium hydrogen phosphates and tin pyrophosphates have been investigated by others and have shown interesting potential....

  9. High-resolution estimation of the water balance components from high-precision lysimeters

    Directory of Open Access Journals (Sweden)

    M. Hannes

    2015-01-01

    Full Text Available Lysimeters offer the opportunity to determine precipitation, evapotranspiration and groundwater-recharge with high accuracy. In contrast to other techniques, like Eddy-flux systems or evaporation pans, lysimeters provide a direct measurement of evapotranspiration from a clearly defined surface area at the scale of a soil profile via the built-in weighing system. In particular the estimation of precipitation can benefit from the much higher surface area compared to typical raingauge systems. Nevertheless, lysimeters are exposed to several external influences that could falsify the calculated fluxes. Therefore, the estimation of the relevant fluxes requires an appropriate data processing with respect to various error sources. Most lysimeter studies account for noise in the data by averaging. However, the effects of smoothing by averaging on the accuracy of the estimated water balance is rarely investigated. In this study, we present a filtering scheme, which is designed to deal with the various kinds of possible errors. We analyze the influence of averaging times and thresholds on the calculated water balance. We further investigate the ability of two adaptive filtering methods (the Adaptive Window and Adaptive Threshold filter (AWAT-filter (Peters et al., 2014 and the consecutively described synchro-filter in further reducing the filtering error. On the basis of the data sets of 18 simultanously running lysimeters of the TERENO SoilCan research site in Bad Lauchstädt, we show that the estimation of the water balance with high temporal resolution and good accuracy is possible.

  10. Initial development and chemical components of sugarcane under water stress associated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Carmem C. M. de Sousa

    2015-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of water stress levels in the soil and a mix (or: a mixed inoculum of four species: Claroideoglomus etunicatum, Gigasporas rosea, Acaulospora longula, Fuscutata heterogama of arbuscular mycorrhizal fungi (AMF on initial vegetative growth, fresh and dry biomass production, root colonization, phosphorus, proteins, enzymes and amino acid of the sugarcane variety RB 857515 under greenhouse conditions. The experiment was set in a randomized block design in a 2 x 2 factorial scheme with four treatments (T1 - 50% PC - pot capacity, with AMF; T2 - 100% PC with AMF; T3 - 50% PC without AMF; T4 - 100% PC without AMF with 16 replicates. The water stress level of 50% PC decreased stem diameter and shoot and root fresh weight of sugarcane plants, as well as AMF in the soil and in plant roots. However, AMF and the water stress level of 50% PC, separately or combined, did not affect plant height, number of leaves, dry matter and contents of phosphorus, total soluble proteins, catalase, ascorbate peroxidase, polyphenoloxidase, peroxidase and proline of the sugarcane variety RB857515.

  11. WET-tests on UV-treated ballast water

    NARCIS (Netherlands)

    Kaag, N.H.B.M.

    2015-01-01

    Damen Shipyards has developed a barge-based ballast water management system (BWMS) that enables direct treatment of ballast water during discharge in a receiving harbour. The treatment is based upon filtration and a once-through UV-treatment. As part of the Type Approval process, the Dutch Authoriti

  12. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    Science.gov (United States)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  13. Test simulation of neutron damage to electronic components using accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    King, D.B., E-mail: dbking@sandia.gov; Fleming, R.M.; Bielejec, E.S.; McDonald, J.K.; Vizkelethy, G.

    2015-12-15

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III–V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  14. Testing SiC fiber-reinforced ZrB2 sharp component in supersonic regime

    OpenAIRE

    Silvestroni, Laura; Monteverde, Frederic; Savino, Raffaele; SCITI, Diletta

    2012-01-01

    Ultra-high temperature ceramics are currently the most promising materials for thermal protection structures like wing leading edges in next generation space vehicles flying at hypersonic speed or/and re-entering the earth's atmosphere, which are characterized by sharp profiles to increase performances and maneuverability. In this contribution, the aero-dynamic behaviour of a very sharp ZrB2-SiC fiber composite is tested in a plasma wind tunnel in supersonic regime. A wedge with curvature rad...

  15. Importance of regular testing of private drinking water systems in North Carolina.

    Science.gov (United States)

    Barros, Nirmalla; Rudo, Kenneth; Shehee, Mina

    2014-01-01

    North Carolina state laws require that water from newly constructed private wells be tested for chemical and microbiologic contamination, but existing wells are not routinely tested. This commentary highlights the importance of regular testing of all private sources of drinking water.

  16. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    Science.gov (United States)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  17. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities

    Directory of Open Access Journals (Sweden)

    Jens Schwiesau

    2014-01-01

    Full Text Available The wear behaviour of total knee arthroplasty (TKA is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE cruciate retaining (CR total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62±0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  18. CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities.

    Science.gov (United States)

    Schwiesau, Jens; Fritz, Bernhard; Kutzner, Ines; Bergmann, Georg; Grupp, Thomas M

    2014-01-01

    The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear mechanisms: the abrasive wear and the delamination of the gliding components, where the second is strongly linked to aging processes and stress concentration in the material. The addition of vitamin E to the bulk material is a potential way to reduce the aging processes. This study evaluates the wear behaviour and delamination susceptibility of the gliding components of a vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate retaining (CR) total knee arthroplasty. Daily activities such as level walking, ascending and descending stairs, bending of the knee, and sitting and rising from a chair were simulated with a data set received from an instrumented knee prosthesis. After 5 million test cycles no structural failure of the gliding components was observed. The wear rate was with 5.62 ± 0.53 mg/million cycles falling within the limit of previous reports for established wear test methods.

  19. Testing of Composite Panels Used as Components of a Freight Wagon by Thermovision

    Directory of Open Access Journals (Sweden)

    Wróbel Andrzej

    2016-03-01

    Full Text Available In this paper research methods for detection of laminate panels damage were presented. The most common damage is: matrix cracking laminate interlayer damage to joints, connecting cracks, delamination and fiber breakage. The tested laminates will be used as assemblies and sub-assemblies of freight wagon. Other methods of modeling of machines by means of transducers are shown in Płaczek (2012, 2015 and Białas (2010. As part of the project authors were collaborated with specialists from other research centers and scientific research (Bocian and Kulisiewicz, 2013. As a part of future work the places where we will be able to replace the standard materials by parts made of laminate will be shown. Layered composites despite many advantages have also disadvantages. From last mentioned it is a relatively low resistance to transverse impact. When the laminate is used as a decorative element, its small damage is not a problem. The problems start when the composite satisfies more responsible tasks such as: is a part of the technical means for example of a railway wagon. Aspect of continuous monitoring of the technical state of the laminate is very important. Current technology provides numerous opportunities for non-destructive methods of technical inspections. In this paper method for testing of large areas, completely non-contact, based on the methods of thermography, was presented. It consists heating by using the composite tubes and examining it through a thermal imaging camera. Length of heating, and consequently the temperature to which the laminate is heated mostly were chosen experimentally. During the measurements, the camera measures the intensity of radiation, not temperature. Received thermogram is not always a precise representation of the actual temperature, because the camera does not reach only the radiation from tested object, but also reaches the radiation coming from the environment and reflected objects etc. As part of the research

  20. Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action.

    Directory of Open Access Journals (Sweden)

    Renu Wadhwa

    Full Text Available BACKGROUND: Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX. METHODOLOGY/PRINCIPAL FINDINGS: Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s. Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG. Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest, normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression. We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. CONCLUSION: We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.

  1. Effects of Uncaria tomentosa total alkaloid and its components on experimental amnesia in mice: elucidation using the passive avoidance test.

    Science.gov (United States)

    Mohamed, A F; Matsumoto, K; Tabata, K; Takayama, H; Kitajima, M; Watanabe, H

    2000-12-01

    The effects of Uncaria tomentosa total alkaloid and its oxindole alkaloid components, uncarine E, uncarine C, mitraphylline, rhynchophylline and isorhynchophylline, on the impairment of retention performance caused by amnesic drugs were investigated using a step-down-type passive avoidance test in mice. In this test, the retention performance of animals treated with the amnesic and test drugs before training was assessed 24 h after training. Uncaria tomentosa total alkaloid (10-20 mg kg(-1), i.p.) and the alkaloid components (10-40 mg kg(-1), i.p.), as well as the muscarinic receptor agonist oxotremorine (0.01 mg kg(-1), i.p.), significantly attenuated the deficit in retention performance induced by the muscarinic receptor antagonist scopolamine (3 mg kg(-1), i.p.). The effective doses of uncarine C and mitraphylline were larger than those of other alkaloid components. Uncarine E (20 mg kg(-1), i.p.) also blocked the impairment of passive avoidance performance caused by the nicotinic receptor antagonist mecamylamine (15 mg kg(-1), i.p.) and the N-methyl-D-aspartate (NMDA) receptor antagonist (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; 7.5 mg kg(-1), i.p.), but it failed to affect the deficit caused by the benzodiazepine receptor agonist diazepam (2 mg kg(-1), i.p.). Rhynchophylline significantly reduced the mecamylamine-induced deficit in passive avoidance behaviour, but it failed to attenuate the effects of CPP and diazepam. These results suggest that Uncaria tomentosa total alkaloids exert a beneficial effect on memory impairment induced by the dysfunction of cholinergic systems in the brain and that the effect of the total alkaloids is partly attributed to the oxindole alkaloids tested. Moreover, these findings raised the possibility that the glutamatergic systems are implicated in the anti-amnesic effect of uncarine E.

  2. Real time outdoor exposure testing of solar cell modules and component materials

    Science.gov (United States)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  3. The mini-dome Fresnel lens photovoltaic concentrator array - Current status of component and prototype panel testing

    Science.gov (United States)

    Piszczor, M. F.; Swartz, C. K.; O'Neill, M. J.; Mcdanal, A. J.; Fraas, L. M.

    1990-01-01

    NASA Lewis and ENTECH have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The emphasis of the program has shifted to fabrication and testing of the minidome Fresnel lens and other array components. Protototype lenses have been tested for optical efficiency, with results around 90 percent, and tracking error performance. The results of these tests have been very consistent with the predicted analytical performance. Work has also progressed in the fabrication of the array support structure. Recent advances in 30 percent efficient stacked cell technology will have a significant effect on the array performance. It is concluded that near-term array performance goals of 300 W/sq m and 100 W/kg are feasible.

  4. Manufacturing and testing of X-ray imaging components with high precision

    Institute of Scientific and Technical Information of China (English)

    HU Jia-sheng; WU Xü

    2005-01-01

    In the latest 20 years, X-ray imaging technology has developed rapidly in order to meet the needs of X-ray photo-etching,spatial exploration technology, high-energy physics, procedure diagnosis of ICF,etc. Since refractive indices of materials in the X-ray region are lower than 1, and X-ray is strongly absorbed by materials, the characteristics of X-ray increase greatly difficulty to obtain X-ray image. Conventional imaging methods are hardly suitable to X-ray range. In general, grazing reflective imaging and coding aperture imaging methods have been adopted more and more.We have designed a non-coaxial grazing reflective X-ray microscope which is composed of four spherical mirrors, in order to satisfy the requirement of the diagnosis of inertial confinement fusion (ICF). The four mirrors have the same radius of curvature. The radius of each mirror is 29 000 mm and the aperture is 30 mm×15 mm. Allowable tolerance of the radius is ≤0.2% and one of surface roughness (rms) is ≤0.6 nm. Evidently it is very difficult to fabricate and test such mirrors. In order to obtain eligible mirrors, we choose 18 mirror roughcasts and array them on a round disk according to format. The combined manufacturing method can ensure high accordant quality. The fabricated mirrors are tested by both templet and double round aperture methods. Radius errors of the mirrors is about 53 mm. The surface roughness (rms) of the mirrors is inspected by the relative interferometric equipment (WYKO) and atomic force microscope. Before and after coating the measured surface roughness is averagely 0.52 nm and 0.4 nm, respectively.

  5. Scenario forecasting changes in the water balance components of the Olenek and Iindigirka river basins due to possible climate change

    Directory of Open Access Journals (Sweden)

    Ye. M. Gusev

    2015-06-01

    Full Text Available Scenario projections of the dynamics of meteorological characteristics for the basins of the Olenek and Indigirka rivers (the Republic of Sakha in the XXI century have been obtained for four IPCC global climate change scenarios of SRES family which correspond to specified scenarios of economic, technological, political, and demographic development of human civilization. The projections have been used to calculate scenarios of possible changes in water balance components for the basins under consideration up to the year of 2063. The calculation procedure involves a physically-based model for heat and mass exchange between the land surface and the atmosphere SWAP and climate scenario generator MAGICC/SCENGEN.

  6. Test results on re-use of reclaimed shower water: Summary. [space stations

    Science.gov (United States)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  7. Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT)

    Science.gov (United States)

    Yousefi, Bardia; Sfarra, Stefano; Ibarra Castanedo, Clemente; Maldague, Xavier P. V.

    2017-09-01

    Thermal and infrared imagery creates considerable developments in Non-Destructive Testing (NDT) area. Here, a thermography method for NDT specimens inspection is addressed by applying a technique for computation of eigen-decomposition which refers as Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). The proposed approach uses a shorter computational alternative to estimate covariance matrix and Singular Value Decomposition (SVD) to obtain the result of Principal Component Thermography (PCT) and ultimately segments the defects in the specimens applying color based K-medoids clustering approach. The problem of computational expenses for high-dimensional thermal image acquisition is also investigated. Three types of specimens (CFRP, Plexiglas and Aluminium) have been used for comparative benchmarking. The results conclusively indicate the promising performance and demonstrate a confirmation for the outlined properties.

  8. New test for oil soluble/water dispersible gas pipeline inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Stegmann, D.W.; Asperger, R.G.

    1987-01-01

    The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its ability to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.

  9. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  10. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  11. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  12. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  13. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    Science.gov (United States)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  14. Quantitative Trait Loci Mapping of Maize Yield and Its Components Under Different Water Treatments at Flowering Time

    Institute of Scientific and Technical Information of China (English)

    Gui-He Lu; Yi-Rong Zhang; Jing-Rui Dai; Ji-Hua Tang; Jian-Bing Yan; Xi-Qing Ma; Jian-Sheng Li; Shao-Jiang Chen; Jian-Cang Ma; Zhan-Xian Liu; Li-Zhu E

    2006-01-01

    Drought or water stress is a serious agronomic problem resulting in maize (Zea mays L.) yield loss throughout the world. Breeding hybrids with drought tolerance is one important approach for solving this problem. However, lower efficiency and a longer period of breeding hybrids are disadvantages of traditional breeding programs. It is generally recognized that applying molecular marker techniques to traditional breeding programs could improve the efficiency of the breeding of drought-tolerant maize. To provide useful information for use in studies of maize drought tolerance,the mapping and tagging of quantitative trait loci (QTL) for yield and its components were performed in the present study on the basis of the principle of a mixed linear model. Two hundred and twenty-one recombinant inbred lines (RIL) of Yuyu 22 were grown under both well-watered and water-stressed conditions. In the former treatment group, plants were well irrigated, whereas those in the latter treatment group were stressed at flowering time.Ten plants of each genotype were grown in a row that was 3.00 m×0.67 m (length×width). The results show that a few of the QTL were the same (one additive QTL for ear length, two additive QTL and one pair of epistatic QTL for kernel number per row, one additive QTL for kernel weight per plant), whereas most of other QTL were different between the two different water treatment groups. It may be that genetic expression differs under the two different water conditions. Furthermore, differences in the additive and epistatic QTL among the traits under water-stressed conditions indicate that genetic expression also differs from trait to trait.Major and minor QTL were detected for the traits,except for kernel number per row, under water-stressed conditions. Thus, the genetic mechanism of drought tolerance in maize is complex because the additive and epistatic QTL exist at the same time and the major and minor QTL all contribute to phenotype under water

  15. Surface Water-Groundwater Interactions as a Critical Component of Uranium Plume Persistence

    Science.gov (United States)

    Williams, K. H.; Christensen, J. N.; Hobson, C.

    2015-12-01

    Residual contamination of soils, sediments and groundwater by uranium milling operations presents a lingering problem at former mill sites throughout the upper Colorado River Basin in the western USA. Remedial strategies predicated upon natural flushing by low uranium recharge waters have frequently failed to achieve target concentrations set by national and state regulators. Flushing times of tens of years have often yielded negligible decreases in groundwater uranium concentrations, with extrapolated trends suggesting multiple decades or longer may be required to achieve regulatory goals. The U.S. Department of Energy's Rifle, Colorado field site serves as a natural laboratory for investigating the underlying causes for uranium plume persistence, with recent studies there highlighting the important role that surface water-groundwater interactions play in sustaining uranium delivery to the aquifer. Annual snowmelt-driven increases in Colorado River discharge induce 1-2 m excursions in groundwater elevation at the Rifle site, which enables residual tailings-contaminated materials (so-called Supplemental Standards) to become hydrologically connected to the aquifer for short periods of time during peak discharge. The episodic contact between shallow groundwater and residual contamination leads to abrupt 20-fold increases in groundwater uranium concentration, which serve to seasonally replenish the plume given the location of the Supplemental Standards along the upgradient edge of the aquifer. Uranium isotope composition changes abruptly as uranium concentrations increase reflecting the contribution of a temporally distinct contaminant reservoir. The release of uranium serves to potentially replenish organic matter rich sediments located within the alluvial aquifer at downstream locations, which have been postulated to serve as a parallel contributor to plume persistence following the uptake, immobilization, and slow re-oxidation of uranium.

  16. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    Science.gov (United States)

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against (18) O and (2) H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  18. Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia.

    Science.gov (United States)

    Lasier, Peter J; Winger, Parley V; Hardin, Ian R

    2006-10-01

    Ceriodaphnia dubia were cultured in four reconstituted water formulations with hardness and alkalinity concentrations ranging from soft to the moderately hard water that is required by whole-effluent toxicity (WET) testing methods for culturing test organisms. The effects of these culture formulations alone and in combination with two levels of Cl-, SO4(2-), and HCO3- on reproduction of C. dubia were evaluated with the standard three-brood test. Reproduction was significantly reduced when test waters had lower hardness than culture waters. However, reproduction was not significantly different when animals cultured in low-hardness waters were exposed to moderately hard waters. The hardness of the culture water did not significantly affect the sensitivity of C. dubia to the three anions. Conversely, increased hardness in test waters significantly reduced the toxicities of Cl- and SO4(2-), with HCO3- toxicity following the same pattern. Alkalinity exhibited no consistent effect on Cl- and SO4(2-) toxicity. The physiological stress of placing animals cultured in moderately hard water into softer test waters might contribute to marginal failures of otherwise nontoxic effluents. The standard WET protocol should be revised to allow the culture of C. dubia under lower hardness conditions to better represent local surface water chemistries.

  19. Effects of hardness and alkalinity in culture and test waters on reproduction of Ceriodaphnia dubia

    Science.gov (United States)

    Lasier, P.J.; Winger, P.V.; Hardin, I.R.

    2006-01-01

    Ceriodaphnia dubia were cultured in four reconstituted water formulations with hardness and alkalinity concentrations ranging from soft to the moderately hard water that is required by whole-effluent toxicity (WET) testing methods for culturing test organisms. The effects of these culture formulations alone and in combination with two levels of Cl-, SO42, and HCO3- on reproduction of C. dubia were evaluated with the standard three-brood test. Reproduction was significantly reduced when test waters had lower hardness than culture waters. However, reproduction was not significantly different when animals cultured in low-hardness waters were exposed to moderately hard waters. The hardness of the culture water did not significantly affect the sensitivity of C. dubia to the three anions. Conversely, increased hardness in test waters significantly reduced the toxicities of Cl- and SO42-, with HCO3- toxicity following the same pattern. Alkalinity exhibited no consistent effect on Cl- and SO42- toxicity. The physiological stress of placing animals cultured in moderately hard water into softer test waters might contribute to marginal failures of otherwise nontoxic effluents. The standard WET protocol should be revised to allow the culture of C. dubia under lower hardness conditions to better represent local surface water chemistries.

  20. A new test method for measuring the water vapour permeability of fabrics

    Science.gov (United States)

    Huang, Jianhua; Qian, Xiaoming

    2007-09-01

    The water vapour permeability of textile fabrics is a critical determinant of wearer comfort. Existing test methods are either time consuming or require large amounts of material. A new test apparatus was developed for characterizing the water vapour permeability of fabrics. An aluminium cylinder covered with waterproof and vapour permeable PTFE laminate is used for generating water vapour source on one side of the sample. A dry nitrogen sweep gas stream is used to carry water vapour away. The calculation of the rate of water vapour transmission across the fabric is based on the measurement of the relative humidity of the outgoing nitrogen stream. This new measuring apparatus offers a short test time and calls for a small sample size. The comparison measurements show that the test results correlated well with those obtained from ISO 11092 and ASTM E96. Therefore, this test method provides a new technique to accurately and precisely characterize the water vapour transport properties of fabrics.