WorldWideScience

Sample records for water channel aquaporin

  1. Dynamic regulation of aquaporin-4 water channels in neurological disorders.

    Science.gov (United States)

    Hsu, Ying; Tran, Minh; Linninger, Andreas A

    2015-10-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution.

  2. Glutathionylation of the Aquaporin-2 Water Channel

    Science.gov (United States)

    Tamma, Grazia; Ranieri, Marianna; Di Mise, Annarita; Centrone, Mariangela; Svelto, Maria; Valenti, Giovanna

    2014-01-01

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and urine concentration. AQP2 undergoes different regulated post-translational modifications, including phosphorylation and ubiquitylation, which are fundamental for controlling AQP2 cellular localization, stability, and function. The relationship between AQP2 and S-glutathionylation is of potential interest because reactive oxygen species (ROS), produced under renal failure or nephrotoxic drugs, may influence renal function as well as the expression and the activity of different transporters and channels, including aquaporins. Here, we show for the first time that AQP2 is subjected to S-glutathionylation in kidney and in HEK-293 cells stably expressing AQP2. S-Glutathionylation is a redox-dependent post-translational modification controlling several signal transduction pathways and displaying an acute effect on free cytosolic calcium concentration. Interestingly, we found that in fresh kidney slices, the increased AQP2 S-glutathionylation correlated with tert-butyl hydroperoxide-induced ROS generation. Moreover, we also found that cells expressing wild-type human calcium-sensing receptor (hCaSR-wt) and its gain of function (hCaSR-R990G; hCaSR-N124K) had a significant decrease in AQP2 S-glutathionylation secondary to reduced ROS levels and reduced basal intracellular calcium concentration compared with mock cells. Together, these new findings provide fundamental insight into cell biological aspects of AQP2 function and may be relevant to better understand and explain pathological states characterized by an oxidative stress and AQP2-dependent water reabsorption disturbs. PMID:25112872

  3. Molecular dynamics insights into human aquaporin 2 water channel.

    Science.gov (United States)

    Binesh, A R; Kamali, R

    2015-12-01

    In this study, the first molecular dynamics simulation of the human aquaporin 2 is performed and for a better understanding of the aquaporin 2 permeability performance, the characteristics of water transport in this protein channel and key biophysical parameters of AQP2 tetramer including osmotic and diffusive permeability constants and the pore radius are investigated. For this purpose, recently recovered high resolution X-ray crystal structure of` the human aquaporin 2 is used to perform twenty nanosecond molecular dynamics simulation of fully hydrated tetramer of this protein embedded in a lipid bilayer. The resulting water permeability characteristics of this protein channel showed that the water permeability of the human AQP2 is in a mean range in comparison with other human aquaporins family. Finally, the results reported in this research demonstrate that molecular dynamics simulation of human AQP2 provided useful insights into the mechanisms of water permeation and urine concentration in the human kidney.

  4. The aquaporin family of water channel proteins in clinical medicine.

    Science.gov (United States)

    Lee, M D; King, L S; Agre, P

    1997-05-01

    The aquaporins are a family of membrane channel proteins that serve as selective pores through which water crosses the plasma membranes of many human tissues and cell types. The sites where aquaporins are expressed implicate these proteins in renal water reabsorption, cerebrospinal fluid secretion and reabsorption, generation of pulmonary secretions, aqueous humor secretion and reabsorption, lacrimation, and multiple other physiologic processes. Determination of the aquaporin gene sequences and their chromosomal locations has provided insight into the structure and pathophysiologic roles of these proteins, and primary and secondary involvement of aquaporins is becoming apparent in diverse clinical disorders. Aquaporin-1 (AQP1) is expressed in multiple tissues including red blood cells, and the Colton blood group antigens represent a polymorphism on the AQP1 protein. AQP2 is restricted to renal collecting ducts and has been linked to congenital nephrogenic diabetes insipidus in humans and to lithium-induced nephrogenic diabetes insipidus and fluid retention from congestive heart failure in rat models. Congenital cataracts result from mutations in the mouse gene encoding the lens homolog Aqp0 (Mip). The present understanding of aquaporin physiology is still incomplete; identification of additional members of the aquaporin family will affect future studies of multiple disorders of water distribution throughout the body. In some tissues, the aquaporins may participate in the transepithelial movement of fluid without being rate limiting, so aquaporins may be involved in clinical disorders without being causative. As outlined in this review, our challenge is to identify disease states in which aquaporins are involved, to define the aquaporins' roles mechanistically, and to search for ways to exploit this information therapeutically.

  5. Electrostatic tuning of permeation and selectivity in aquaporin water channels

    DEFF Research Database (Denmark)

    Jensen, Mogens O Stibius; Tajkhorshid, E.; Schulten, K.

    2003-01-01

    -palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The movement of the single. le water molecules through the channel is concerted, and we show that it can be described by a continuous-time random-walk model. The integrity......Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/ 18:1c9...... of the single file remains intact during the permeation, indicating that a disrupted water chain is unlikely to be the mechanism of proton exclusion in aquaporins. Specific hydrogen bonds between permeating water and protein at the channel center (at two conserved Asp-Pro-Ala "NPA'' motifs), together...

  6. Aquaporin water channels: molecular mechanisms for human diseases.

    Science.gov (United States)

    Agre, Peter; Kozono, David

    2003-11-27

    Although water is the major component of all biological fluids, the molecular pathways for water transport across cell membranes eluded identification until the discovery of the aquaporin family of water channels. The atomic structure of mammalian AQP1 illustrates how this family of proteins is freely permeated by water but not protons (hydronium ions, H3O+). Definition of the subcellular sites of expression predicted their physiological functions and potential clinical disorders. Analysis of several human disease states has confirmed that aquaporins are involved in multiple different illnesses including abnormalities of kidney function, loss of vision, onset of brain edema, starvation, and arsenic toxicity.

  7. Aquaporins: highly regulated channels controlling plant water relations.

    Science.gov (United States)

    Chaumont, François; Tyerman, Stephen D

    2014-04-01

    Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.

  8. Regulation of the water channel aquaporin-2 by posttranslational modification.

    Science.gov (United States)

    Moeller, Hanne B; Olesen, Emma T B; Fenton, Robert A

    2011-05-01

    The cellular functions of many eukaryotic membrane proteins, including the vasopressin-regulated water channel aquaporin-2 (AQP2), are regulated by posttranslational modifications. In this article, we discuss the experimental discoveries that have advanced our understanding of how posttranslational modifications affect AQP2 function, especially as they relate to the role of AQP2 in the kidney. We review the most recent data demonstrating that glycosylation and, in particular, phosphorylation and ubiquitination are mechanisms that regulate AQP2 activity, subcellular sorting and distribution, degradation, and protein interactions. From a clinical perspective, posttranslational modification resulting in protein misrouting or degradation may explain certain forms of nephrogenic diabetes insipidus. In addition to providing major insight into the function and dynamics of renal AQP2 regulation, the analysis of AQP2 posttranslational modification may provide general clues as to the role of posttranslational modification for regulation of other membrane proteins.

  9. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes......). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device....

  10. Involvement of aquaporin channels in water extrusion from biosilica during maturation of sponge siliceous spicules.

    Science.gov (United States)

    Wang, Xiaohong; Müller, Werner E G

    2015-08-01

    Aquaporins are a family of small, pore-forming, integral cell membrane proteins. This ancient protein family functions as water channels and is found in all kingdoms (including archaea, eubacteria, fungi, plants, and animals). We discovered that in sponges aquaporin plays a novel role during the maturation of spicules, their skeletal elements. Spicules are synthesized enzymatically via silicatein following a polycondensation reaction. During this process, a 1:1 stoichiometric release of water per one Si-O-Si bond formed is produced. The product of silicatein, biosilica, is a fluffy, soft material that must be hardened in order to function as a solid rod. Using the model of the demosponge species Suberites domuncula Olivi, 1792, which expresses aquaporin, cDNA was cloned and the protein was heterologously expressed. The sponge aquaporin is grouped with the type 8 aquaporins. The function of the sponge aquaporin can be blocked by Mn-sulfate (MnSO4) and mercury chloride (HgCl2). Microscopic and functional studies suggest that aquaporin is involved in removal of the reaction water at the site where siliceous spicules are formed. Another molecule that is likely to be involved in biosilica maturation is the mucin/nidogen-like polypeptide. cDNA has also been cloned from S. domuncula. Experimental studies suggest that water extrusion/suctioning from biosilica after enzymatic synthesis during spicule formation involves both aquaporin-mediated water channeling and "polymerization-induced phase separation" facilitated by the mucin/nidogen-like polypeptide.

  11. Aquaporin-2 water channels in spontaneously hypertensive rats.

    Science.gov (United States)

    Buemi, Michele; Nostro, Lorena; Di Pasquale, Giuseppe; Cavallaro, Emanuela; Sturiale, Alessio; Floccari, Fulvio; Aloisi, Carmela; Ruello, Antonella; Calapai, Gioacchino; Corica, Francesco; Frisina, Nicola

    2004-12-01

    Vasopressin (AVP), an antidiuretic hormone, is known to induce hypervolemia and to regulate the renal expression of aquaporin-2 (AQP2) water channels, but it is not yet known whether the latter are involved in the pathogenesis of essential hypertension. The aim of the present study was therefore to make a comparative study of blood pressure (BP), urinary volume (UV), urinary osmolarity (uOsm), urinary AQP2 (uAQP2), and plasma AVP levels (PAVP) in male spontaneously hypertensive rats (SHR; n = 30) at 3, 7, and 12 weeks of age and in male Wistar-Kyoto rats (WKY, n = 30), also after the subcutaneous administration of OPC-31260 (OPC), a human AVP V(2) receptor antagonist. At 3 weeks, SHR had markedly higher uOsm and lower UV levels than WKY. At 7 weeks, SHR were hypertensive, showing increased uAQP2, PAVP, and uOsm levels and a decreased UV. At 12 weeks, no significant changes were observed in this condition. At 7 and 12 weeks of age, OPC-treated WKY rats showed significant reduction in BP and uOsm and increase in UV with respect to untreated animals. From 3 weeks of age, OPC-treated SHR presented significantly lower BP levels, higher UV levels, and lower uOsm than untreated animals. In treated WKY and SHR, uAQP2 levels were lower than in untreated animals. The PAVP appeared to be higher in OPC-treated rats from both strains. These findings suggest that AVP and the AQP2 are involved in the pathogenesis of hypertension in SHR.

  12. Role of cytoplasmic termini in sorting and shuttling of the aquaporin-2 water channel

    NARCIS (Netherlands)

    Balkom, B.W.M. van; Graat, M.P.J.; Raak, M.M.J.P. van; Hofman, E.; Sluijs, P. van der; Deen, P.M.T.

    2004-01-01

    In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after

  13. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water.

    Science.gov (United States)

    Calamita, Giuseppe; Ferri, Domenico; Gena, Patrizia; Liquori, Giuseppa E; Cavalier, Annie; Thomas, Daniel; Svelto, Maria

    2005-04-29

    Mitochondria are remarkably plastic organelles constantly changing their shape to fulfil their various functional activities. Although the osmotic movement of water into and out of the mitochondrion is central for its morphology and activity, the molecular mechanisms and the pathways for water transport across the inner mitochondrial membrane (IMM), the main barrier for molecules moving into and out of the organelle, are completely unknown. Here, we show the presence of a member of the aquaporin family of water channels, AQP8, and demonstrate the strikingly high water permeability (Pf) characterizing the rat liver IMM. Immunoblotting, electron microscopy, and biophysical studies show that the largest mitochondria feature the highest AQP8 expression and IMM Pf. AQP8 was also found in the mitochondria of other organs, whereas no other known aquaporins were seen. The osmotic water transport of liver IMM was partially inhibited by the aquaporin blocker Hg2+, while the related activation energy remained low, suggesting the presence of a Hg2+-insensitive facilitated pathway in addition to AQP8. It is suggested that AQP8-mediated water transport may be particularly important for rapid expansions of mitochondrial volume such as those occurring during active oxidative phosphorylation and those following apoptotic signals.

  14. The aquaporin-2 water channel in autosomal dominant primary nocturnal enuresis.

    NARCIS (Netherlands)

    Deen, P.M.T.; Dahl, N.; Caplan, M.J.

    2002-01-01

    PURPOSE: Nocturnal enuresis is one of the most common diagnoses in a pediatric clinic. Recently, linkage analysis revealed a 2-point lod score of 4.2 in 6 families with dominant primary nocturnal enuresis around the aquaporin-2 (AQP2) water channel locus. Since primary nocturnal enuresis is ameliora

  15. Aquaporin water channels in the canine gubernaculum testis.

    Science.gov (United States)

    Arrighi, Silvana; Aralla, Marina; Fracassetti, Paola; Mobasheri, Ali; Cremonesi, Fausto

    2013-07-01

    The jelly-like gubernaculum testis (GT) is a hydrated structure consisting of a concentric sheath of dense connective tissue around a loose mesenchymal core, with two cords of skeletal muscle cells asymmetrically placed alongside. Expansion of the GT occurs during the transabdominal phase of testicular descent, linked to cell proliferation together with modifications of the hydric content of the organ. The aim of this study was to detect immunohistochemically the presence of aquaporins (AQPs), integral membrane proteins permitting passive transcellular water movement, in the canine GTs. Samples (n=15) were obtained from pregnancies of 9 medium sized bitches and dissected from healthy fetuses. Five fetuses were aged 35-45 days of gestation, 10 fetuses from 46 days of gestation to delivery, thus offering us the opportunity to study the progressive maturation of the gubernacula. The presence of AQP3, 4, 7, 8 and -9 was assessed in the muscular components of the GT, some of them (AQP3, AQP4, AQP7) with increasing intensity through the second half of pregnancy up to term. AQP1 was localized in the capillary and venous endothelia in the younger fetuses, also in the artery adventitia and in the nerve perineurium in progressively older fetuses. These data demonstrate the potential importance and contribution of AQP-mediated water flux in hydration and volume modification of the growing GT in a canine model.

  16. Comment on: Cloning and characterization of porcine aquaporin 1 water channel expressed extensively in the gastrointestinal system

    Institute of Scientific and Technical Information of China (English)

    Ali Mobasheri

    2006-01-01

    @@ TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers[1] on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology.However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.

  17. Importance of NPA motifs in the expression and function of water channel aquaporin-1

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong; MA TongHui

    2007-01-01

    The asparagine-proline-alanine sequences (NPA motifs) are highly conserved in aquaporin water channel family. Crystallographic studies of AQP1 structure demonstrated that the two NPA motifs are in the narrow central constriction of the channel, serving to bind water molecules for selective and efficient water passage. To investigate the importance of the two NPA motifs in the structure, function and biogenesis of aquaporin water channels, we generated AQP1 mutations with NPA1 deletion, NPA2 deletion and NPA1,2 double deletion. The coding sequences of the three mutated cDNAs were subcloned into the mammalian expression vector pcDNA3.1 to form expression plasmids. We established stably transfected CHO cell lines expressing these AQP1 mutants. Immunofluorescence indicated that all the three mutated AQP1 proteins are expressed normally on the plasma membrane of stably transfected CHO cells, suggesting that deletion of NPA motifs does not influence the expression and intracellular processing of AQP1. Functional analysis demonstrated that NPA1 or NPA2 deletion reduced AQP1 water permeability by 49.6% and 46.7%, respectively, while NPA1,2 double deletion had little effect on AQP1 water permeability. These results provide evidence that NPA motifs are important for water per-meation but not essential for the expression, intracellular processing and the basic structure of AQP1 water channel.

  18. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mM of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...

  19. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Robben, J.H.; Knoers, N.V.A.M.; Deen, P.M.T.

    2006-01-01

    In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the

  20. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...... of alkali-leaking AQPs depolarized membrane potentials and compromised cell survival. Our results hint at the alkali-tight but solute-unselective NPA region as a feature of primordial channels and the proton-tight and solute-selective ar/R constriction variants as later adaptations within the AQP...

  1. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins.

    Science.gov (United States)

    Yu, Lili; Rodriguez, Roberto A; Chen, L Laurie; Chen, Liao Y; Perry, George; McHardy, Stanton F; Yeh, Chih-Ko

    2016-02-01

    Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients.

  2. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  3. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    Science.gov (United States)

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  4. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel.

    NARCIS (Netherlands)

    Balkom, B.W.M. van; Savelkoul, P.J.M.; Markovich, D.; Hofman, E.; Nielsen, S.; Sluijs, P. van der; Deen, P.M.T.

    2002-01-01

    In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To

  5. Cloning and characterization of porcine aquaporin 1 water channel expressed extensively in gastrointestinal system

    Institute of Scientific and Technical Information of China (English)

    Shun-Ying Jin; Yan-Li Liu; Li-Na Xu; Yong Jiang; Ying Wang; Bao-Xue Yang; Hong Yang; Tong-Hui Ma

    2006-01-01

    AIM: To clone and characterize the porcine aquaporins (AQPs) in the gastrointestinal system.METHODS: A PCR-based cloning strategy and RACE were used to clone full-length AQP coding sequence from reversely transcribed pig liver cDNA. Stopped-flow light scattering and a YFP-based fluorescence method were used to measure the osmotic water permeability of erythrocytes and the stably transfected CHO cells.RT-PCR, Northern blot, and immunohistochemistry were used to determine the gastrointestinal expression and localization of cloned AQPs. Protein expression in transfected cells and red blood cells was analyzed by Western blot.RESULTS: An 813 bp cDNA encoding a 271 amino acid porcine aquaporin (designated pAQP1) was cloned from liver mRNA (pAQP1 has a 93% identity with human AQP1 and contains two NPA motifs conserved in AQP family, one consensus sequence for N-linked glycosylation, and one mercury-sensitive site at cysteine 191). RT-PCR analysis revealed extensive expression of pAQP1 mRNA in porcine digestive glands and gut.Northern blot showed a single 3.0 kb transcript in selected digestive organs, pAQP1 protein was localized at central lacteals of the small intestine, microvessles of salivary glands, as well as epithelium of intrahepatic bile ducts by immunoperoxydase. High osmotic water permeability that is inhibitable by HgCl2 was detected in porcine erythrocytes and CHO cells stably transfected with pAQP1 cDNA. Tmmunoblot analysis of porcine erythrocytes and pAQP-transfected CHO cells revealed an unglycosylated 28 ku band and larger glycosylated proteins.CONCLUSION: pAQP1 is the first porcine aquaporin that can be molecularly identified so far. The broad distribution of pAQP1 in epithelium and endothelium of porcine digestive organs may suggest an important role of channel-mediated water transport in fluid secretion/absorption as well as in digestive function and pathophysiology of the gastrointestinal system.

  6. Quantification of Aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA.

    OpenAIRE

    Maeda, Y; Smith, B L; Agre, P; Knepper, M A

    1995-01-01

    Several transporters have been localized along the nephron by physiological methods or immunocytochemistry. However, the actual abundance of these molecules has not been established. To accomplish this goal, we have developed a fluorescence-based ELISA method and have used it to quantitate Aquaporin-CHIP (AQP-CHIP) water channel protein in rat kidney tubules. Microdissected tubules (2 mm/sample, permeabilized with 0.5% Triton X-100) or purified AQP-CHIP standards (0-200 fmol) were utilized in...

  7. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    Science.gov (United States)

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  8. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    Directory of Open Access Journals (Sweden)

    Cui Zhu

    2016-08-01

    Full Text Available Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11 have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes, goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  9. Involvement of water channel Aquaporin 5 in H2S-induced pulmonary edema.

    Science.gov (United States)

    Xu, Chunyang; Jiang, Lei; Zou, Yuxia; Xing, Jingjing; Sun, Hao; Zhu, Baoli; Zhang, Hengdong; Wang, Jun; Zhang, Jinsong

    2017-01-01

    Acute exposure to hydrogen sulfide (H2S) poses a significant threat to life, and the lung is one of the primary target organs of H2S. However, the mechanisms involved in H2S-induced acute pulmonary edema are poorly understood. This study aims to investigate the effects of H2S on the expression of water channel aquaporin 5 (AQP5) and to elucidate the signaling pathways involved in AQP5 regulation. In an in vivo study, C57BL6 mice were exposed to sub-lethal concentrations of inhaled H2S, and histological injury of the lungs and ultrastructure injury of the epithelial cells were evaluated. With real-time PCR and western blot assays, we found that H2S exposure contributed to a significant decrease in AQP5 expression both in murine lung tissue and the A549 cell line, and the ERK1/2 and p38 MAPK signaling pathways were demonstrated to be implicated in AQP5 regulation. Therefore, adjusting AQP5 protein levels could be considered a therapeutic strategy for the treatment of APE induced by H2S and other hazardous gases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. New roles for old holes: ion channel function in aquaporin-1.

    Science.gov (United States)

    Yool, Andrea J; Weinstein, Alan M

    2002-04-01

    Mammalian aquaporins are part of the diverse major intrinsic protein family of water and solute channels. Intriguing links exist in structural and functional properties between aquaporins and ion channels. A novel role for aquaporin-1 as a gated ion channel reshapes our current views of this ancient family of transmembrane channel proteins.

  11. Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration

    Institute of Scientific and Technical Information of China (English)

    Qi Chen; Hongying Peng; Li Lei; Ying Zhang; Haibin Kuang; Yujing Cao; Qi-xian Shi; Tonghui Ma; Enkui Duan

    2011-01-01

    In the journey from the male to female reproductive tract,mammalian sperm experience a natural osmotic decrease (e.g.,in mouse,from ~415 mOsm in the cauda epididymis to ~310 mOsm in the uterine cavity). Sperm have evolved to utilize this hypotonic exposure for motility activation,meanwhile efficiently silence the negative impact of hypotonic cell swelling. Previous physiological and pharmacological studies have shown that ion channel-controlled water influx/efflux is actively involved in the process of sperm volume regulation; however,no specific sperm proteins have been found responsible for this rapid osmoadaptation. Here,we report that aquaporin3 (AQP3) is a sperm water channel in mice and humans. Aqp3-deficient sperm show normal motility activation in response to hypotonicity but display increased vulnerability to hypotonic cell swelling,characterized by increased tail bending after entering uterus. The sperm defect is a result of impaired sperm volume regulation and progressive cell swelling in response to physiological hypotonic stress during male-female reproductive tract transition. Time-lapse imaging revealed that the cell volume expansion begins at cytoplasmic droplet,forcing the tail to angulate and form a hairpin-like structure due to mechanical membrane stretch. The tail deformation hampered sperm migration into oviduct,resulting in impaired fertilization and reduced male fertility. These data suggest AQP3 as an essential membrane pathway for sperm regulatory volume decrease (RVD) that balances the "trade-off" between sperm motility and cell swelling upon physiological hypotonicity,thereby optimizing postcopulatory sperm behavior.

  12. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production.

    Science.gov (United States)

    Tinning, Anne R; Jensen, Boye L; Schweda, Frank; Machura, Katharina; Hansen, Pernille B L; Stubbe, Jane; Gramsbergen, Jan Bert; Madsen, Kirsten

    2014-12-01

    Both the processing and release of secretory granules involve water movement across granule membranes. It was hypothesized that the water channel aquaporin (AQP)1 directly contributes to the recruitment of renin-positive cells in the afferent arteriole. AQP1(-/-) and AQP1(+/+) mice were fed a low-salt (LS) diet [0.004% (wt/wt) NaCl] for 7 days and given enalapril [angiotensin-converting enzyme inhibitor (ACEI), 0.1 mg/ml] in drinking water for 3 days. There were no differences in plasma renin concentration at baseline. After LS-ACEI, plasma renin concentrations increased markedly in both genotypes but was significantly lower in AQP1(-/-) mice compared with AQP1(+/+) mice. Tissue renin concentrations were higher in AQP1(-/-) mice, and renin mRNA levels were not different between genotypes. Mean arterial blood pressure was not different at baseline and during LS diet but decreased significantly in both genotypes after the addition of ACEI; the response was faster in AQP1(-/-) mice but then stabilized at a similar level. Renin release after 200 μl blood withdrawal was not different. Isoprenaline-stimulated renin release from isolated perfused kidneys did not differ between genotypes. Cortical tissue norepinephrine concentrations were lower after LS-ACEI compared with baseline with no difference between genotypes. Plasma nitrite/nitrate concentrations were unaffected by genotype and LS-ACEI. In AQP1(-/-) mice, the number of afferent arterioles with recruitment was significantly lower compared with AQP1(+/+) mice after LS-ACEI. We conclude that AQP1 is not necessary for acutely stimulated renin secretion in vivo and from isolated perfused kidneys, whereas recruitment of renin-positive cells in response to chronic stimulation is attenuated or delayed in AQP1(-/-) mice.

  13. Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes.

    Science.gov (United States)

    Madeira, Ana; Fernández-Veledo, Sonia; Camps, Marta; Zorzano, Antonio; Moura, Teresa F; Ceperuelo-Mallafré, Victoria; Vendrell, Joan; Soveral, Graça

    2014-09-01

    For a long time Aquaporin-7 has been the only aquaporin associated with the adipose tissue, and its dysregulation has been linked to the underlying mechanisms of obesity. However, the presence of alternative glycerol channels within the adipose tissue has been postulated, which has prompted us to the search of alternate glycerol transport routes in adipocytes. In view of this, it is hypothesized that Aquaporin-11 (AQP11) would have a role in adipocyte cell biology. The expression, the localization and the function of human AQP11 (hAQP11) in cultured differentiated adipocytes were investigated. Gene expression analysis revealed the presence of AQP11 in both subcutaneous and visceral human mature adipocytes. It is found that hAQP11 is primarily located intracellularly in human adipocytes and partially colocalizes with perilipin, pointing towards AQP11 preferential location in the vicinity of lipid droplets. Overexpression of hAQP11 in 3T3-L1 adipocytes enabled to validate its function as a water channel and reveal its glycerol permeation activity. hAQP11 permeates both water and glycerol, localizing in the vicinity of lipid droplets in human adipocytes. © 2014 The Obesity Society.

  14. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Jacqueline A. Hubbard

    2015-10-01

    Full Text Available Aquaporin-4 (AQP4 is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.

  15. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    Science.gov (United States)

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  16. Brain expression of the water channels Aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema

    DEFF Research Database (Denmark)

    Eefsen, Martin; Jelnes, Peter; Schmidt, Lars E;

    2010-01-01

    Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and....../or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally......(6266) (p edema in mice with ALF....

  17. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation.

    Science.gov (United States)

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L

    2011-04-12

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl(2) and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa.

  18. p.R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation.

    NARCIS (Netherlands)

    Savelkoul, P.J.M.; Mattia, F.P. de; Li, Yuedan; Kamsteeg, E.J.; Konings, I.B.M.; Sluijs, P. van der; Deen, P.M.T.

    2009-01-01

    Vasopressin regulates human water homeostasis by re-distributing homotetrameric aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane of renal principal cells, a process in which phosphorylation of AQP2 at S256 by cAMP-dependent protein kinase A (PKA) is thought to be

  19. Assignment of the human gene for the water channel of renal collecting duct Aquaporin 2 (AQP2) to chromosome 12 region q12-->q13

    NARCIS (Netherlands)

    Deen, P M; Weghuis, D O; Sinke, R J; Geurts van Kessel, A; Wieringa, B; van Os, C H

    1994-01-01

    The chromosomal localization of the gene encoding Aquaporin 2 (previously called WCH-CD), which acts as a water channel in the collecting tubules of the kidney, was determined. Southern blot hybridizations of chromosomal DNA from a panel of 25 different human-rodent hybrid cell lines assigned AQP2 t

  20. Water Channels Aquaporin 4 and -1 Expression in Subependymoma Depends on the Localization of the Tumors.

    Directory of Open Access Journals (Sweden)

    Susan Noell

    Full Text Available We analyzed aquaporin 4 and -1 expression in subependymomas, benign and slow growing brain tumors WHO grade I. Ten subependymoma cases were investigated, five of the fossa inferior and five of the fossa superior.Using immunohistochemistry, we observed different aquaporin expression patterns depending on localization: aquaporin 4 and -1 were detected in infratentorial subependymomas in the entire tumor tissue. In contrast, supratentorial subependymomas revealed aquaporin 4 and -1 expression only in border areas of the tumor. PCR analyses however showed no difference in aquaporin 4 expression between all subependymomas independent of localization but at higher levels than in normal brain. In contrast, aquaporin 1 RNA levels were found to be higher only in infratentorial samples compared to supratentorial and normal brain samples. The reason for the different distribution pattern of aquaporin 4 in subependymomas still remains unclear. On the cellular level, aquaporin 4 was redistributed on the surface of the tumor cells, and in freeze fracture replicas no orthogonal arrays of particles were found. This was similar to our previous findings in malignant glioblastomas. From these studies, we know that extracellular matrix molecules within the tumor like agrin and its receptor alpha-dystroglycan are involved in forming orthogonal arrays of particles. In subependymomas neither agrin nor alpha-dystroglycan were detected around blood vessels.Taken together, we show in this study that in the benign subependymomas aquaporins 1 and 4 are dramatically redistributed and upregulated. We speculate that extracellular environments of infra- and supratentorial subependymomas are different and lead to different distribution patterns of aquaporin 4 and -1.

  1. Glutathionylation of the aquaporin-2 water channel: a novel post-translational modification modulated by the oxidative stress.

    Science.gov (United States)

    Tamma, Grazia; Ranieri, Marianna; Di Mise, Annarita; Centrone, Mariangela; Svelto, Maria; Valenti, Giovanna

    2014-10-03

    Aquaporin-2 (AQP2) is the vasopressin-regulated water channel that controls renal water reabsorption and urine concentration. AQP2 undergoes different regulated post-translational modifications, including phosphorylation and ubiquitylation, which are fundamental for controlling AQP2 cellular localization, stability, and function. The relationship between AQP2 and S-glutathionylation is of potential interest because reactive oxygen species (ROS), produced under renal failure or nephrotoxic drugs, may influence renal function as well as the expression and the activity of different transporters and channels, including aquaporins. Here, we show for the first time that AQP2 is subjected to S-glutathionylation in kidney and in HEK-293 cells stably expressing AQP2. S-Glutathionylation is a redox-dependent post-translational modification controlling several signal transduction pathways and displaying an acute effect on free cytosolic calcium concentration. Interestingly, we found that in fresh kidney slices, the increased AQP2 S-glutathionylation correlated with tert-butyl hydroperoxide-induced ROS generation. Moreover, we also found that cells expressing wild-type human calcium-sensing receptor (hCaSR-wt) and its gain of function (hCaSR-R990G; hCaSR-N124K) had a significant decrease in AQP2 S-glutathionylation secondary to reduced ROS levels and reduced basal intracellular calcium concentration compared with mock cells. Together, these new findings provide fundamental insight into cell biological aspects of AQP2 function and may be relevant to better understand and explain pathological states characterized by an oxidative stress and AQP2-dependent water reabsorption disturbs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Biophysical assessment of human aquaporin-7 as a water and glycerol channel in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Ana Madeira

    Full Text Available The plasma membrane aquaporin-7 (AQP7 has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both adipose and stromal vascular fractions. Moreover, AQP7 was the only aquaglyceroporin expressed in adipose tissue and in 3T3-L1 adipocytes. By overexpressing the human AQP7 in 3T3-L1 adipocytes it was possible to ascertain its role as a water and glycerol channel in a gain-of-function scenario. AQP7 expression had no effect in equilibrium cell volume but AQP7 loss of function correlated with higher triglyceride content. Furthermore it is also reported for the first time a negative correlation between water permeability and the cell non-osmotic volume supporting the observation that AQP7 depleted cells are more prone to lipid accumulation. Additionally, the strong positive correlation between the rates of water and glycerol transport highlights the role of AQP7 as both a water and a glycerol channel and reflects its expression levels in cells. In all, our results clearly document a direct involvement of AQP7 in water and glycerol transport, as well as in triglyceride content in adipocytes.

  3. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels.

    Science.gov (United States)

    Nielsen, S; Marples, D; Birn, H; Mohtashami, M; Dalby, N O; Trimble, M; Knepper, M

    1995-01-01

    Body water balance is controlled by vasopressin, which regulates Aquaporin-2 (AQP2) water channels in kidney collecting duct cells by vesicular trafficking between intracellular vesicles and the plasma membrane. To examine the molecular apparatus involved in vesicle trafficking and vasopressin regulation of AQP2 in collecting duct cells, we tested if targeting proteins expressed in the synaptic vesicles, namely vesicle-associated membrane proteins 1 and 2 (VAMP1 and 2), are expressed in kidney collecting duct. Immunoblotting revealed specific labeling of VAMP2 (18-kD band) but not VAMP1 in membrane fractions prepared from kidney inner medulla. Controls using preadsorbed antibody or preimmune serum were negative. Bands of identical molecular size were detected in immunoblots of brain membrane vesicles and purified synaptic vesicles. VAMP2 in kidney membranes was cleaved by tetanus toxin, revealing a tetanus toxin-sensitive VAMP homologue. Similarly, tetanus toxin cleaved VAMP2 in synaptic vesicles. In kidney inner medulla, VAMP2 was predominantly expressed in the membrane fraction enriched for intracellular vesicles, with little or no VAMP2 in the plasma membrane enriched fraction. This was confirmed by immunocytochemistry using semithin cryosections, which showed mainly vesicular labeling in collecting duct principal cells, with no labeling of intercalated cells. VAMP2 immunolabeling colocalized with AQP2 labeling in intracellular vesicles, as determined by immunoelectron microscopy after double immunolabeling of isolated vesicles. Quantitative analysis of 1,310 vesicles revealed a highly significant association of both AQP2 and VAMP2 in the same vesicles (P < 0.0001). Furthermore, the presence of AQP2 in vesicles immunoisolated with anti-VAMP2 antibodies was confirmed by immunoblotting. In conclusion, VAMP2, a component of the neuronal SNARE complex, is expressed in vesicles carrying AQP2, suggesting a role in vasopressin-regulated vesicle trafficking of AQP2

  4. Regulation of the Water Channel Aquaporin-2 via 14-3-3 Theta (θ) and Zeta (ζ)

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Slengerik-Hansen, Joachim; Aroankins, Takwa

    2015-01-01

    The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function....... With the exception of sigma (σ), all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3 beta (β) and zeta (ζ......256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3 ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life and reduced AQP2 levels. In contrast, knockdown of 14-3-3 θ resulted in increased AQP2 half-life and increased AQP2...

  5. Functional reconstitution of a rice aquaporin water channel, PIP1;1, by a micro-batchwise methodology.

    Science.gov (United States)

    Scalera, Vito; Gena, Patrizia; Mastrodonato, Maria; Kitagawa, Yoshichika; Carulli, Salvatore; Svelto, Maria; Calamita, Giuseppe

    2014-12-01

    Assessing the selectivity, regulation and physiological relevance of aquaporin membrane channels (AQPs)requires structural and functional studies of wild type and modified proteins. In particular, when characterizing their transport properties, reconstitution in isolation from native cellular or membrane processes is of pivotal importance. Here, we describe rapid and efficient incorporation of OsPIP1;1, a rice AQP, in liposomes at analytical scale. PIP1;1 was produced as a histidine-tagged form, 10 His-OsPIP1;1, in an Escherichia coli-based expression system. The recombinant protein was purified by affinity chromatography and incorporated into liposomes by a micro-batchwise technology using egg-yolk phospholipids and the non-polar Amberlite resin. PIP1;1 proteoliposomes and control empty liposomes had good size homogeneity as seen by quasi-elastic light scattering and electron microscopy analyses. By stopped-flow light scattering, indicating correct protein folding of the incorporated protein, the osmotic water permeability exhibited by the PIP1;1 proteoliposomes was markedly higher than empty liposomes. Functional reconstitution of OsPIP1;1 was further confirmed by the low Arrhenius activation energy (3.37 kcal/mol) and sensitivity to HgCl2, a known AQP blocker, of the PIP1;1-mediated osmotic water conductance. These results provide a valuable contribution in fully elucidating the regulation and water-conducting property of PIP1;1, an AQP that needs to hetero-multimerize with AQPs of the PIP2 subgroupto reach the native plasma membrane and play its role. The micro-batchwise methodology is suitable for the functional reconstitution of whichever AQPs and other membrane transport proteins.

  6. Renal aquaporins and water balance disorders

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Fenton, Robert A.

    2013-01-01

    BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, A......-solute diet and diuretics. GENERAL SIGNIFICANCE: In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies.......BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP......2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders...

  7. Control of the selectivity of the aquaporin water channel family by global orientational tuning

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Tajkhorshid, E.; Nollert, P.

    2002-01-01

    membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution...

  8. Renal aquaporins and water balance disorders

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Fenton, Robert A.

    2013-01-01

    associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists......BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP......2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders...

  9. Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin.

    NARCIS (Netherlands)

    Boccalandro, C.; Mattia, F.P. de; Guo, D.C.; Xue, L.; Orlander, P.; King, T.M.; Gupta, P.; Deen, P.M.T.; Lavis, V.R.; Milewicz, D.M.

    2004-01-01

    A Mexican family with partial congenital nephrogenic diabetes insipidus (NDI) that resulted from a mutation in the aquaporin-2 water channel (AQP2) was characterized, and the source of this rare mutation was traced to the family's town of origin in Mexico. Affected individuals with profound polyuria

  10. Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin.

    NARCIS (Netherlands)

    Boccalandro, C.; Mattia, F.P. de; Guo, D.C.; Xue, L.; Orlander, P.; King, T.M.; Gupta, P.; Deen, P.M.T.; Lavis, V.R.; Milewicz, D.M.

    2004-01-01

    A Mexican family with partial congenital nephrogenic diabetes insipidus (NDI) that resulted from a mutation in the aquaporin-2 water channel (AQP2) was characterized, and the source of this rare mutation was traced to the family's town of origin in Mexico. Affected individuals with profound polyuria

  11. The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum.

    Science.gov (United States)

    Grohme, Markus A; Mali, Brahim; Wełnicz, Weronika; Michel, Stephanie; Schill, Ralph O; Frohme, Marcus

    2013-01-01

    Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters.

  12. Opposing effects of cAMP and T259 phosphorylation on plasma membrane diffusion of the water channel aquaporin-5 in Madin-Darby canine kidney cells

    DEFF Research Database (Denmark)

    Koffman, Jennifer Skaarup; Christensen, Eva Arnspang; Marlar, Saw

    2015-01-01

    Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in resp...

  13. Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum.

    NARCIS (Netherlands)

    Hendriks, G.; Koudijs, M.; Balkom, B.W.M. van; Oorschot, V.; Klumperman, J.; Deen, P.M.T.; Sluijs, P. van der

    2004-01-01

    Aquaporin-2 (AQP2) is a pore-forming protein that is required for regulated reabsorption of water from urine. Mutations in AQP2 lead to nephrogenic diabetes insipidus, a disorder in which functional AQP2 is not expressed on the apical cell surface of kidney collecting duct principal cells. The

  14. Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum

    NARCIS (Netherlands)

    Hendriks, G; Koudijs, M; van Balkom, BWM; Oorschot, [No Value; Klumperman, J; Deen, PMT; van der Sluijs, P

    2004-01-01

    Aquaporin-2 (AQP2) is a pore-forming protein that is required for regulated reabsorption of water from urine. Mutations in AQP2 lead to nephrogenic diabetes insipidus, a disorder in which functional AQP2 is not expressed on the apical cell surface of kidney collecting duct principal cells. The

  15. Aquaporin 4 as a NH3 Channel

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Schneider, Hans-Peter

    2016-01-01

    that the ionic NH4 (+) did not permeate AQP4. Molecular dynamics simulations revealed partial pore permeation events of NH3 but not of NH4 (+) and a reduced energy barrier for NH3 permeation through AQP4 compared with that of a cholesterol-containing lipid bilayer, suggesting AQP4 as a favored transmembrane...... route for NH3 Our data propose that AQP4 belongs to the growing list of NH3-permeable water channels....

  16. Reduction of Skin pH during Treatment for Palmoplantar Hyperhidrosis: A Conjecture on the Role of pH-Regulated Water Channel, i.e. Aquaporin

    Directory of Open Access Journals (Sweden)

    Kyoko Nakahigashi

    2013-04-01

    Full Text Available Primary palmoplantar hyperhidrosis (PPH is a disorder that involves excessive sweating on the palms and soles. Although the pathophysiology of PPH remains unknown, some treatments, including topical aluminum chloride (AC and tap water iontophoresis (TWI, are effective at suppressing the perspiration. Herein, we report the kinetics of the skin pH of two cases of PPH treated with AC and TWI. We found that the skin pH decreased in accordance with the reduction in sweating. This finding indicates that the reduction in sweating may be attributed to the reduction of skin pH in AC and TWI. Whether or not the pH-regulated function of aquaporin can explain this finding remains unknown.

  17. Involvement of mitogen-activated protein kinase pathways in expression of the water channel protein aquaporin-4 after ischemia in rat cortical astrocytes.

    Science.gov (United States)

    Nito, Chikako; Kamada, Hiroshi; Endo, Hidenori; Narasimhan, Purnima; Lee, Yong-Sun; Chan, Pak H

    2012-09-20

    Brain edema after ischemic brain injury is a key determinant of morbidity and mortality. Aquaporin-4 (AQP4) plays an important role in water transport in the central nervous system and is highly expressed in brain astrocytes. However, the AQP4 regulatory mechanisms are poorly understood. In this study, we investigated whether mitogen-activated protein kinases (MAPKs), which are involved in changes in osmolality, might mediate AQP4 expression in models of rat cortical astrocytes after ischemia. Increased levels of AQP4 in primary cultured astrocytes subjected to oxygen-glucose deprivation (OGD) and 2 h of reoxygenation were observed, after which they immediately decreased at 0 h of reoxygenation. Astrocytes exposed to OGD injury had significantly increased phosphorylation of three kinds of MAPKs. Treatment with SB203580, a selective p38 MAPK inhibitor, or SP600125, a selective c-Jun N-terminal kinase inhibitor, significantly attenuated the return of AQP4 to its normal level, and SB203580, but not SP600125, significantly decreased cell death. In an in vivo study, AQP4 expression was upregulated 1-3 days after reperfusion, which was consistent with the time course of p38 phosphorylation and activation, and decreased by the p38 inhibition after transient middle cerebral artery occlusion (MCAO). These results suggest that p38 MAPK may regulate AQP4 expression in cortical astrocytes after ischemic injury.

  18. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?

    Science.gov (United States)

    Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava

    2015-03-01

    Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.

  19. Water transport between CNS compartments: contributions of aquaporins and cotransporters

    DEFF Research Database (Denmark)

    MacAulay, N; Zeuthen, T

    2010-01-01

    review we introduce another family of transport proteins as water transporters, namely the cotransporters and the glucose uniport GLUT1. In direct contrast to the aquaporins, these proteins have an inherent ability to transport water against an osmotic gradient. Some of them may also function as water...... or hydrocephalus. The molecular pathways by which water molecules cross the cell membranes of the brain are not well-understood, although the discovery of aquaporin 4 (AQP4) in the brain improved our understanding of some of these transport processes, particularly under pathological conditions. In the present...

  20. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid.

    Science.gov (United States)

    Desai, Bhargav; Hsu, Ying; Schneller, Benjamin; Hobbs, Jonathan G; Mehta, Ankit I; Linninger, Andreas

    2016-09-01

    Aquaporin-4 (AQP4) channels play an important role in brain water homeostasis. Water transport across plasma membranes has a critical role in brain water exchange of the normal and the diseased brain. AQP4 channels are implicated in the pathophysiology of hydrocephalus, a disease of water imbalance that leads to CSF accumulation in the ventricular system. Many molecular aspects of fluid exchange during hydrocephalus have yet to be firmly elucidated, but review of the literature suggests that modulation of AQP4 channel activity is a potentially attractive future pharmaceutical therapy. Drug therapy targeting AQP channels may enable control over water exchange to remove excess CSF through a molecular intervention instead of by mechanical shunting. This article is a review of a vast body of literature on the current understanding of AQP4 channels in relation to hydrocephalus, details regarding molecular aspects of AQP4 channels, possible drug development strategies, and limitations. Advances in medical imaging and computational modeling of CSF dynamics in the setting of hydrocephalus are summarized. Algorithmic developments in computational modeling continue to deepen the understanding of the hydrocephalus disease process and display promising potential benefit as a tool for physicians to evaluate patients with hydrocephalus.

  1. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed in the b...

  2. Phosphorylation of rat aquaporin-4 at Ser(111) is not required for channel gating

    DEFF Research Database (Denmark)

    Assentoft, Mette; Kaptan, Shreyas; Fenton, Robert A

    2013-01-01

    of a phosphorylation of AQP4.Ser(111) recorded no phosphorylation-induced change in water permeability. A phospho-specific antibody, exclusively recognizing AQP4 when phosphorylated on Ser(111) , failed to detect phosphorylation in cell lysate of rat brain stimulated by conditions proposed to induce phosphorylation...... is therefore of therapeutic interest. Phosphorylation of some aquaporins has been proposed to regulate their water permeability via gating of the channel itself. Protein kinase (PK)-dependent phosphorylation of Ser(111) has been reported to increase the water permeability of AQP4 expressed in an astrocytic...... cell line. This possibility was, however, questioned based on the crystal structure of the human AQP4. Our study aimed to resolve if Ser(111) was indeed a site involved in phosphorylation-mediated gating of AQP4. The water permeability of AQP4-expressing Xenopus oocytes was not altered by a range...

  3. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  4. Water channels in peritoneal dialysis.

    Science.gov (United States)

    Devuyst, Olivier

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that up-regulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haploinsufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  5. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.

  6. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Macaulay, Nanna; Knepper, Mark A;

    2009-01-01

    in the COOH-terminal tail of AQP2 on protein function. When expressed in Xenopus laevis oocytes, prevention of AQP2 phosphorylation at S256A (S256A-AQP2) reduced osmotic water permeability threefold compared with wild-type (WT) AQP2-injected oocytes. In contrast, prevention of AQP2 single phosphorylation at S...... demonstrated that lack of phosphorylation at S256, S261, S264, or S269 had no effect on AQP2 unit water transport. Similarly, no effect on AQP2 unit water transport was observed for the 264D and 269D forms, indicating that phosphorylation of the COOH-terminal tail of AQP2 is not involved in gating...

  7. Differential expression of inwardly rectifying K+ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in Müller glial cell-dependent ion and water homeostasis.

    Science.gov (United States)

    Eberhardt, Christina; Amann, Barbara; Feuchtinger, Annette; Hauck, Stefanie M; Deeg, Cornelia A

    2011-05-01

    Reactive gliosis is a well-established response to virtually every retinal disease. Autoimmune uveitis, a sight threatening disease, is characterized by recurrent relapses through autoaggressive T-cells. The purpose of this study was to assess retinal Müller glial cell function in equine recurrent uveitis (ERU), a spontaneous disease model resembling the human disease, by investigating membrane proteins implicated in ion and water homeostasis. We found that Kir2.1 was highly expressed in diseased retinas, whereas Kir4.1 was downregulated in comparison to controls. Distribution of Kir2.1 appeared Müller cell associated in controls, whereas staining of cell somata in the inner nuclear layer was observed in uveitis. In contrast to other subunits, Kir4.1 was evenly expressed along equine Müller cells, whereas in ERU, Kir4.1 almost disappeared from Müller cells. Hence, we suggest a different mechanism for potassium buffering in the avascular equine retina and, moreover, an impairment in uveitis. Uveitic retinas showed significantly increased expression of AQP4 as well as a displaced expression from Müller cells in healthy specimens to an intense circular expression pattern in the outer nuclear layer in ERU cases. Most interestingly, we detected the aquaporin family member protein AQP5 to be expressed in Müller cells with strong enrichments in Müller cell secondary processes. This finding indicates that fluid regulation within the equine retina may be achieved by an additional aquaporin. Furthermore, AQP5 was significantly decreased in uveitis. We conclude that the Müller cell response in autoimmune uveitis implies considerable changes in its potassium and water physiology.

  8. The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier.

    Science.gov (United States)

    Hirt, B; Penkova, Z H; Eckhard, A; Liu, W; Rask-Andersen, H; Müller, M; Löwenheim, H

    2010-07-28

    Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome).

  9. 1/ f Fluctuations of amino acids regulate water transportation in aquaporin 1.

    Science.gov (United States)

    Yamamoto, Eiji; Akimoto, Takuma; Hirano, Yoshinori; Yasui, Masato; Yasuoka, Kenji

    2014-02-01

    Aquaporins (AQPs), which transport water molecules across cell membranes, are involved in many physiological processes. Recently, it is reported that the water-water interactions within the channel are broken at the aromatic/arginine selectivity filter (ar/R region), which prevents proton transportation [U. K. Eriksson et al., Science 340, 1346 (2013)]. However, the effects of the conformational fluctuations of amino acids on water transportation remain unclear. Using all-atom molecular dynamics simulations, we analyze water transportation and fluctuations of amino acids within AQP1. The amino acids exhibit 1/f fluctuations, indicating possession of long-term memory. Moreover, we find that water molecules crossing the ar/R region obey a non-Poisson process. To investigate the effect of 1/f fluctuations on water transportation, we perform restrained molecular dynamics simulations of AQP1 and simple Langevin stochastic simulations. As a result, we confirm that 1/f fluctuations of amino acids contribute to water transportation in AQP1. These findings appreciably enhance our understanding of AQPs and suggest possibilities for developing biomimetic nanopores.

  10. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen;

    2015-01-01

    To clarify the significance of immunoglobulin G autoantibody specific for the astrocyte water channel aquaporin-4 in cerebrospinal fluid, aquaporin-4-immunoglobulin G from a neuromyelitis optica patient was administered intrathecally to naïve mice, and the distribution and pathogenic impact...

  11. Expression Analysis of Sugarcane Aquaporin Genes under Water Deficit

    Directory of Open Access Journals (Sweden)

    Manassés Daniel da Silva

    2013-01-01

    Full Text Available The present work is a pioneer study specifically addressing the aquaporin transcripts in sugarcane transcriptomes. Representatives of the four aquaporin subfamilies (PIP, TIP, SIP, and NIP, already described for higher plants, were identified. Forty-two distinct aquaporin isoforms were expressed in four HT-SuperSAGE libraries from sugarcane roots of drought-tolerant and -sensitive genotypes, respectively. At least 10 different potential aquaporin isoform targets and their respective unitags were considered to be promising for future studies and especially for the development of molecular markers for plant breeding. From those 10 isoforms, four (SoPIP2-4, SoPIP2-6, OsPIP2-4, and SsPIP1-1 showed distinct responses towards drought, with divergent expressions between the bulks from tolerant and sensitive genotypes, when they were compared under normal and stress conditions. Two targets (SsPIP1-1 and SoPIP1-3/PIP1-4 were selected for validation via RT-qPCR and their expression patterns as detected by HT-SuperSAGE were confirmed. The employed validation strategy revealed that different genotypes share the same tolerant or sensitive phenotype, respectively, but may use different routes for stress acclimation, indicating the aquaporin transcription in sugarcane to be potentially genotype-specific.

  12. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.

    Science.gov (United States)

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-08-01

    Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines.

  13. Aquaporins are major determinants of water use efficiency of rice plants in the field.

    Science.gov (United States)

    Nada, Reham M; Abogadallah, Gaber M

    2014-10-01

    This study aimed at specifying the reasons of unbalanced water relations of rice in the field at midday which results in slowing down photosynthesis and reducing water use efficiency (WUE) in japonica and indica rice under well-watered and droughted conditions. Leaf relative water content (RWC) decreased in the well-watered plants at midday in the field, but more dramatically in the droughted indica (75.6 and 71.4%) than japonica cultivars (85.5 and 80.8%). Gas exchange was measured at three points during the day (9:00, 13:00 and 17:00). Leaf internal CO2 (Ci) was not depleted when midday stomatal depression was highest indicating that Ci was not limiting to photosynthesis. Most aquaporins were predominantly expressed in leaves suggesting higher water permeability in leaves than in roots. The expression of leaf aquaporins was further induced by drought at 9:00 without comparable responses in roots. The data suggest that aquaporin expression in the root endodermis was limiting to water uptake. Upon removal of the radial barriers to water flow in roots, transpiration increased instantly and photosynthesis increased after 4h resulting in increasing WUE after 4h, demonstrating that WUE in rice is largely limited by the inadequate aquaporin expression profiles in roots.

  14. Aquaporin-1 water permeability as a novel determinant of axonal regeneration in dorsal root ganglion neurons.

    Science.gov (United States)

    Zhang, Hua; Verkman, A S

    2015-03-01

    Dorsal root ganglion (DRG) neurons transduce peripheral pain signals through small-diameter, non-myelinated C-fibers, which, when injured, can regenerate to restore pain sensation. Water channel aquaporin-1 (AQP1) is expressed at the plasma membrane of cell bodies and axons of DRG neurons, where it modulates the sensing of certain types of pain. Here, we found that AQP1 is also involved in DRG axonal growth and regeneration by a mechanism that may involve water transport-facilitated extension of axonal outgrowths. Spontaneous and nerve growth factor-stimulated axonal extension was reduced in cultures of AQP1-deficient DRG neurons and DRG explants compared to the wildtype. Axonal growth in AQP1-deficient DRG cultures was rescued by transfection with AQP1 or a different water-transporting AQP (AQP4), but not by a non-water-transporting AQP1 mutant. Following sciatic nerve compression injury AQP1 expression was increased in DRG neurons in wildtype mice, and DRG axonal growth was impaired in AQP1-deficient mice. Our results indicate AQP1 as a novel determinant of DRG axonal regeneration and hence a potential therapeutic target to accelerate neuronal regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-01-01

    salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two...

  16. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-01-01

    salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two...

  17. Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution.

    Science.gov (United States)

    Suzuki, Masakazu; Shibata, Yuki; Ogushi, Yuji; Okada, Reiko

    2015-08-01

    Amphibians represent the first vertebrates to adapt to terrestrial environments, and are successfully distributed around the world. The ventral skin, kidney, and urinary bladder are important osmoregulatory organs for adult anuran amphibians. Water channel proteins, called aquaporins (AQPs), play key roles in transepithelial water absorption/reabsorption in these organs. At least 43 types of AQPs were identified in anurans; a recent phylogenetic analysis categorized anuran AQPs among 16 classes (AQP0-14, 16). Anuran-specific AQPa2 was assigned to AQP6, then was further subdivided into the ventral skin-type (AQP6vs; AQPa2S), whose expression is confined to the ventral skin, and the urinary bladder-type (AQP6ub; AQPa2U), which is basically expressed in the urinary bladder. For the osmoregulatory organs, AQP3 is constitutively located in the basolateral plasma membrane of tight-junctioned epithelial cells. AQP6vs, AQP2 and/or AQP6ub are also expressed in these epithelial cells and are translocated to the apical membrane in response to arginine vasotocin, thereby regulating water absorption/reabsorption. It was suggested recently that two subtypes of AQP6vs contribute to cutaneous water absorption in Ranid species. In addition, AQP5 (AQP5a) and AQP5L (AQP5b) were identified from Xenopus tropicalis Gray, 1864, and AQP5 was localized to the apical membrane of luminal epithelial cells of the urinary bladder in dehydrated Xenopus. This finding suggested that AQP5 may be involved in water reabsorption from this organ under dehydration. Based on the hitherto reported information, we propose models for the evolution of water-absorbing/reabsorbing mechanisms in anuran osmoregulatory organs in association with AQPs.

  18. Aquaporin-2: COOH terminus is necessary but not sufficient for routing to the apical membrane.

    NARCIS (Netherlands)

    Deen, P.M.T.; Balkom, B.W.M. van; Savelkoul, P.J.M.; Kamsteeg, E.J.; Raak, M.M.J.P. van; Jennings, M.L.; Muth, T.R.; Rajendran, V.; Caplan, M.J.

    2002-01-01

    Renal regulation of mammalian water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which is expressed in the apical and basolateral membranes of proximal tubules and descending limbs of Henle, and aquaporin-2 (AQP2), which is redistributed from intracellular vesicles to the apical

  19. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  20. Structural basis of water-specific transport through the AQP1 water channel

    Science.gov (United States)

    Sui, Haixin; Han, Bong-Gyoon; Lee, John K.; Walian, Peter; Jap, Bing K.

    2001-12-01

    Water channels facilitate the rapid transport of water across cell membranes in response to osmotic gradients. These channels are believed to be involved in many physiological processes that include renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. Members of the water channel superfamily have been found in a range of cell types from bacteria to human. In mammals, there are currently 10 families of water channels, referred to as aquaporins (AQP): AQP0-AQP9. Here we report the structure of the aquaporin 1 (AQP1) water channel to 2.2Å resolution. The channel consists of three topological elements, an extracellular and a cytoplasmic vestibule connected by an extended narrow pore or selectivity filter. Within the selectivity filter, four bound waters are localized along three hydrophilic nodes, which punctuate an otherwise extremely hydrophobic pore segment. This unusual combination of a long hydrophobic pore and a minimal number of solute binding sites facilitates rapid water transport. Residues of the constriction region, in particular histidine 182, which is conserved among all known water-specific channels, are critical in establishing water specificity. Our analysis of the AQP1 pore also indicates that the transport of protons through this channel is highly energetically unfavourable.

  1. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    Science.gov (United States)

    Hill, Terry R.; Taylor, Brandon W.

    2011-01-01

    With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water 'super-Q' - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  2. Aquaporin 2 mutations in nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Loonen, A.J.M.; Knoers, N.V.A.M.; Os, C.H. van; Deen, P.M.T.

    2008-01-01

    Water reabsorption in the renal collecting duct is regulated by the antidiuretic hormone vasopressin (AVP). When the vasopressin V2 receptor, present on the basolateral site of the renal principal cell, becomes activated by AVP, aquaporin-2 (AQP2) water channels will be inserted in the apical

  3. Aquaporins in desert rodent physiology.

    Science.gov (United States)

    Pannabecker, Thomas L

    2015-08-01

    Desert rodents face a sizeable challenge in maintaining salt and water homeostasis due to their life in an arid environment. A number of their organ systems exhibit functional characteristics that limit water loss above that which occurs in non-desert species under similar conditions. These systems include renal, pulmonary, gastrointestinal, nasal, and skin epithelia. The desert rodent kidney preserves body water by producing a highly concentrated urine that reaches a maximum osmolality nearly three times that of the common laboratory rat. The precise mechanism by which urine is concentrated in any mammal is unknown. Insights into the process may be more apparent in species that produce highly concentrated urine. Aquaporin water channels play a fundamental role in water transport in several desert rodent organ systems. The role of aquaporins in facilitating highly effective water preservation in desert rodents is only beginning to be explored. The organ systems of desert rodents and their associated AQPs are described.

  4. A Gold Coordination Compound as a Chemical Probe to Unravel Aquaporin-7 Function

    NARCIS (Netherlands)

    Madeira, Ana; de Almeida, Andreia; de Graaf, Chris; Camps, Marta; Zorzano, Antonio; Moura, Teresa F; Casini, Angela; Soveral, Graça

    2014-01-01

    Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological functions. Aquaporin-based modulators are predicted to have potential utility in the treatment of several diseases, as well as chemical tools to assess AQPs function in biological systems. We recently repo

  5. Significance of oxygen transport through aquaporins

    Science.gov (United States)

    Zwiazek, Janusz J.; Xu, Hao; Tan, Xiangfeng; Navarro-Ródenas, Alfonso; Morte, Asunción

    2017-01-01

    Aquaporins are membrane integral proteins responsible for the transmembrane transport of water and other small neutral molecules. Despite their well-acknowledged importance in water transport, their significance in gas transport processes remains unclear. Growing evidence points to the involvement of plant aquaporins in CO2 delivery for photosynthesis. The role of these channel proteins in the transport of O2 and other gases may also be more important than previously envisioned. In this study, we examined O2 permeability of various human, plant, and fungal aquaporins by co-expressing heterologous aquaporin and myoglobin in yeast. Two of the most promising O2-transporters (Homo sapiens AQP1 and Nicotiana tabacum PIP1;3) were confirmed to facilitate O2 transport in the spectrophotometric assay using yeast protoplasts. The over-expression of NtPIP1;3 in yeasts significantly increased their O2 uptake rates in suspension culture. In N. tabacum roots subjected to hypoxic hydroponic conditions, the transcript levels of the O2-transporting aquaporin NtPIP1;3 significantly increased after the seven-day hypoxia treatment, which was accompanied by the increase of ATP levels in the apical root segments. Our results suggest that the functional significance of aquaporin-mediated O2 transport and the possibility of controlling the rate of transmembrane O2 transport should be further explored. PMID:28079178

  6. [Aquaporins in gametogenesis of vertebrate animals].

    Science.gov (United States)

    Skoblina, M N

    2008-01-01

    A review of the data on the presence, localization, and supposed role of aquaporin water channels in oocytes of Xenopus laevis, oogenesis and maturation of teleosts Sparus auratus and Oncorhynchus mykiss, oogenesis and oocyte maturation of rats and mice, and spermatogenesis of several mammalians.

  7. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine.

    Directory of Open Access Journals (Sweden)

    Steffen S Madsen

    2011-09-01

    Full Text Available Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW to seawater (SW; however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an investigation of the distribution and cellular localization of 3 aquaporins (Aqp1aa, -1ab and -8ab in pyloric caeca, middle (M and posterior (P intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (Jv was higher in SW than FW-trout and was inhibited by (mmol L-1: 0.1 KCN (41%, 0.1 ouabain (72% and 0.1 bumetanide (82% suggesting that active transport, Na+,K+-ATPase and Na+,K+,2Cl--cotransport are involved in establishing the driving gradient for water transport. Jv was also inhibited by 1 mmol L-1 HgCl2, serosally (23% in M and 44% in P, mucosally (27% in M or both (61% in M and 58% in P, suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L-1 mercaptoethanol. By comparison, 10 mmol L-1 mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited Jv by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na+-glucose cotransporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab and -8ab, we detected Aqp1aa, and -1ab immunoreactivity in the brush border and sub-apical region of enterocytes in all intestinal segments. The Aqp8ab antibody showed a particularly strong immunoreaction in the brush border and sub-apical region of enterocytes throughout the intestine and also stained lateral membranes and peri-nuclear regions though at lower intensity. The present localization of 3 aquaporins in both apical and lateral membranes of salmonid enterocytes facilitates a model for transcellular water transport in the intestine of SW-acclimated salmonids.

  8. Aquaporins in Coffea arabica L.: Identification, expression, and impacts on plant water relations and hydraulics.

    Science.gov (United States)

    Miniussi, Matilda; Del Terra, Lorenzo; Savi, Tadeja; Pallavicini, Alberto; Nardini, Andrea

    2015-10-01

    Plant aquaporins (AQPs) are involved in the transport of water and other small solutes across cell membranes, and thus play major roles in the regulation of plant water balance, as well as in growth regulation and response to abiotic stress factors. Limited information is currently available about the presence and role of AQPs in Coffea arabica L., despite the economic importance of the species and its vulnerability to drought stress. We identified candidate AQP genes by screening a proprietary C. arabica transcriptome database, resulting in the identification of nine putative aquaporins. A phylogenetic analysis based on previously characterized AQPs from Arabidopsis thaliana and Solanum tuberosum allowed to assign the putative coffee AQP sequences to the Tonoplast (TIP) and Plasma membrane (PIP) subfamilies. The possible functional role of coffee AQPs was explored by measuring hydraulic conductance and aquaporin gene expression on leaf and root tissues of two-year-old plants (C. arabica cv. Pacamara) subjected to different experimental conditions. In a first experiment, we tested plants for root and leaf hydraulic conductance both before dawn and at mid-day, to check the eventual impact of light on AQP activity and plant hydraulics. In a second experiment, we measured plant hydraulic responses to different water stress levels as eventually affected by changes in AQPs expression levels. Our results shed light on the possible roles of AQPs in the regulation of C. arabica hydraulics and water balance, opening promising research lines to improve the sustainability of coffee cultivation under global climate change scenarios.

  9. Aquaporin, forward osmosis and biomimetic membranes.

    Science.gov (United States)

    Kocherginsky, Nikolai

    2013-12-01

    Aquaporin attracted attention not only of physiologists and biophysicists, but also of chemical engineers. Here we critically analyze a paper describing aquaporin-based artificial membranes, suggested for forward osmosis-based water purification (Wang et al. 2012, Small 8, pp. 1185-1190). Related papers published later by the same group are also discussed. We indicate recently developed general approach to describe membrane transport, membrane permeability and selectivity, which is applicable for forward osmosis. In addition, we also mention our papers describing simple nitrocellulose-based membranes, which have selective aqueous channels without proteins, but successfully imitate many properties of biomembranes.

  10. Genome-wide identification and expression analysis of aquaporins in tomato.

    Science.gov (United States)

    Reuscher, Stefan; Akiyama, Masahito; Mori, Chiharu; Aoki, Koh; Shibata, Daisuke; Shiratake, Katsuhiro

    2013-01-01

    The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  11. Genome-wide identification and expression analysis of aquaporins in tomato.

    Directory of Open Access Journals (Sweden)

    Stefan Reuscher

    Full Text Available The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum, which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.

  12. Aquaporin 1 Facilitated Hepatocellular Carcinoma SMMC7221 Cell Migration Associated with Water Permeability

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-li; LI Jiang; WANG Yan-qing; ZAKNROU Zohra; MA Tong-hui; LI Xiao-meng

    2011-01-01

    The authors investigated the regulation of human aquaporin l(hAQPl) and the involvement of aquaporin l(AQPl) in the migration of human hepatocellular carcinoma SMMC-7221 cells using RNA intereference technology.Firstly, two short hairpin RNA(shRNA) constructs in PBSU6 vector were reconstructed and their knockdown effects were identified in SMMC-7221 cells. Next, the involvement of endogenous hAQPl in regulating the migration of SMMC-7221 cells was investigated via siRNA technology. HAQPl-shRNA can specifically inhibit AQPl dependent osmotic water permeability. Meanwhile the migration of SMMC-7221 cells was inhibited remarkably after silencing AQPl by performing transwell cell migration assay and in vitro wound healing assay. Furthermore, in the presence of an inhibitor HgCl2, the water permeability of the cell membrane was remarkably decreased, the expression of AQPl was upregulated after HgCl2 treatment and the cell movement was decreased at the moment. Increased AQPl cannot attenuate cell migration ability when cell membrane loses its water permeability function. This demonstrates that the cell migration was remarkably related to the transporting water function of cell membrane.

  13. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization

    DEFF Research Database (Denmark)

    Zhao, Yang; Qiu, Changquan; Li, Xuesong

    2012-01-01

    Aquaporins are water channel proteins with excellent water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...

  14. A novel human aquaporin-4 splice variant exhibits a dominant-negative activity: a new mechanism to regulate water permeability.

    Science.gov (United States)

    De Bellis, Manuela; Pisani, Francesco; Mola, Maria Grazia; Basco, Davide; Catalano, Francesco; Nicchia, Grazia Paola; Svelto, Maria; Frigeri, Antonio

    2014-02-01

    Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

  15. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions.

    Directory of Open Access Journals (Sweden)

    Thommie Karlsson

    Full Text Available All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i AQP9 induced and accumulated in filopodia, (ii AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

  16. Regulation of Aquaporin Z osmotic permeability in ABA tri-block copolymer

    Directory of Open Access Journals (Sweden)

    Wenyuan Xie

    2015-08-01

    Full Text Available Aquaporins are transmembrane water channel proteins present in biological plasma membranes that aid in biological water filtration processes by transporting water molecules through at high speeds, while selectively blocking out other kinds of solutes. Aquaporin Z incorporated biomimetic membranes are envisaged to overcome the problem of high pressure needed, and holds great potential for use in water purification processes, giving high flux while keeping energy consumption low. The functionality of aquaporin Z in terms of osmotic permeability might be regulated by factors such as pH, temperature, crosslinking and hydrophobic thickness of the reconstituted bilayers. Hence, we reconstituted aquaporin Z into vesicles that are made from a series of amphiphilic block copolymers PMOXA-PDMS-PMOXAs with various hydrophobic molecular weights. The osmotic permeability of aquaporin Z in these vesicles was determined through a stopped-flow spectroscopy. In addition, the temperature and pH value of the vesicle solutions were adjusted within wide ranges to investigate the regulation of osmotic permeability of aquaporin Z through external conditions. Our results show that aquaporin Z permeability was enhanced by hydrophobic mismatch. In addition, the water filtration mechanism of aquaporin Z is significantly affected by the concentration of H+ and OH- ions.

  17. Fragment Screening of Human Aquaporin 1

    Directory of Open Access Journals (Sweden)

    Janet To

    2016-03-01

    Full Text Available Aquaporins (AQPs are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 “fragments”, i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1 using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD, with an temperature of aggregation shift ΔTagg of +4 to +50 °C in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface.

  18. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.

    Science.gov (United States)

    Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari

    2012-08-01

    The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.

  19. Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.

    Science.gov (United States)

    Devuyst, O

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haplo-insufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  20. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia.

    OpenAIRE

    Nielsen, S.; B. L. Smith; Christensen, E I; Agre, P

    1993-01-01

    The existence of water-selective channels has been postulated to explain the high water permeability of erythrocytes and certain epithelial cells. The aquaporin CHIP (channel-forming integral membrane protein of 28 kDa), a molecular water channel, is abundant in erythrocytes and water-permeable segments of the nephron. To determine whether CHIP may mediate transmembrane water movement in other water-permeable epithelia, membranes of multiple organs were studied by immunoblotting, immunohistoc...

  1. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze

    2011-01-01

    Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an in......Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along...... with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41......%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally...

  2. Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Zhan-ping He; Hong Lu

    2015-01-01

    Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cel-lular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffu-sion-weighted imaging (DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and siRNA-aquaporin-4 was immediately injectedvia the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefifcient value on T2-weighted imaging (T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2WI and DWI reduced, relative apparent diffusion coefifcient value was increased, and cellular edema was ob-viously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefifcient value was similar between treatment and model groups, but angioedema was still obvious in the treat-ment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefifcient value and the area of high signal intensity on T2WI and DWI can relfect therapeutic effects of aquaporin-4 gene silencing on cellular edema.

  3. [Expression of aquaporins and its significance in human pulmonary adenocarcinoma cell line SPC-A-1].

    Science.gov (United States)

    Chen, Jie; Bai, Chunxue; Zhang, Min; Ren, Zhenyi; Hu, Jie

    2004-06-20

    To investigate the expression of aquaporins in human pulmonary adenocarcinoma cell line SPC-A-1. The expressions of aquaporin 1, aquaporin 3, aquaporin 4, and aquaporin 5 in mRNA level and their locations were determined in cell line SPC-A-1 respectively by RT-PCR and immunohistochemistry. The immunohistochemical stain showed aquaporin 3 and aquaporin 5 located on the membrane of SPC-A-1 cell, but no positive stain of aquaporin 1 and aquaporin 4 was observed. Both aquaporin 3 and aquaporin 5 mRNA expressed in SPC-A-1 cell line, and the expression level of aquaporin 5 mRNA was significantly higher than that of aquaporin 3 mRNA ( P SPC-A-1 cell line. Aquaporin 3 and aquaporin 5 express in SPC-A-1 cell, and their roles in water transport of SPC-A-1 cell should be further investigated.

  4. Aquaporin Inhibition by Gold(III) Compounds : New Insights

    NARCIS (Netherlands)

    Martins, Ana Paula; Ciancetta, Antonella; Batista de Almeida, Andreia; Marrone, Alessandro; Re, Nazzareno; Soveral, Graca; Casini, Angela

    2013-01-01

    Aquaporins (AQPs) are membrane water/glycerol channels with essential roles in biological systems, as well as being promising targets for therapy and imaging. Using a stopped-flow method, a series of gold(III), platinum(II) and copper(II) complexes bearing nitrogen donor ligands, such as 1,10-phenat

  5. Aquaporin-4-autoimmunity in patients with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Jarius, Sven; Laustrup, Helle

    2017-01-01

    BACKGROUND: Serum immunoglobulin G targeting the astrocyte water channel aquaporin-4 (AQP4) in the central nervous system (CNS) is a biomarker for neuromyelitis optica spectrum disease (NMOSD). Co-existence of NMOSD with systemic lupus erythematosus (SLE) putatively suggests susceptibility to ant...

  6. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms.

    Science.gov (United States)

    Hachez, Charles; Veselov, Dmitry; Ye, Qing; Reinhardt, Hagen; Knipfer, Thorsten; Fricke, Wieland; Chaumont, François

    2012-01-01

    Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.

  7. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption.

    Science.gov (United States)

    Whiting, Jennifer L; Ogier, Leah; Forbush, Katherine A; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K; Scott, John D

    2016-07-26

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis.

  8. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

    Science.gov (United States)

    Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P

    2007-01-12

    The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.

  9. Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy.

    Science.gov (United States)

    Yooyongwech, Suravoot; Horigane, Akemi K; Yoshida, Mitsuru; Yamaguchi, Masami; Sekozawa, Yoshihiro; Sugaya, Sumiko; Gemma, Hiroshi

    2008-11-01

    The movement of cellular water accompanies changes in growth within dormant buds. To further understand this process, accumulation of tonoplast deltaTIP1 and plasma membrane PIP2 aquaporin transcripts was measured by quantitative reverse transcriptase-polymerase chain reaction and the water dynamics in dormant peach (Prunus persica L.) flower buds was studied by magnetic resonance imaging. Proton density (PD), spin-spin relaxation time (T(2)) and apparent diffusion coefficient (ADC) were used to observe water dynamics during dormancy. The expression of deltaTIP1 and PIP2 aquaporins, PD and T(2) in the upper part of the bud including primordia, in the basal part of the bud and the bud trace increased earlier in the low-chill cultivar 'Coral' than in the high-chill cultivar 'Kansuke Hakuto,' reflecting the difference in timing for the end of endodormancy in the two cultivars. deltaTIP1 mRNA accumulated mainly in the basal part of the bud, whereas PIP2 mRNA was detected mainly in the upper part. These findings may reflect the activation of inter- and intracell communication through membrane transport properties of aquaporins resulting in a gradual increase in water content to that required for bud activity at the end of endodormancy. An apparent decrease in the expression of deltaTIP1 and PIP2 mRNAs was, however, observed in late winter in some portions of the buds of both cultivars just before sprouting.

  10. Bi-functionality of Opisthorchis viverrini aquaporins.

    Science.gov (United States)

    Geadkaew, Amornrat; von Bülow, Julia; Beitz, Eric; Tesana, Smarn; Vichasri Grams, Suksiri; Grams, Rudi

    2015-01-01

    Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels.

  11. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  12. Effect of Combination Transplanted Olfactory Ensheathing Cells and Goremor Vessel Electroacupuncture on Water Channel Aquaporin-4 in Experimental Spinal Cord Injured Rats%嗅鞘细胞移植联合督脉电针对大鼠脊髓损伤后水通道蛋白-4的影响

    Institute of Scientific and Technical Information of China (English)

    彭忠勇; 孙萍; 陈志斌; 修波; 敖强; 孙朝晖; 赵振强

    2016-01-01

    目的:探索大鼠嗅鞘细胞(olfactory ensheathing cells,OECs)移植联合督脉电针对大鼠脊髓损伤(spinal cord injury SCI)后水通道蛋白-4(AQP-4)和后肢功能的影响。方法:取Wistar大鼠150只,随机分为正常组(50只)、OECs移植组(50只)、OECs移植联合督脉电针组(50只),OECs移植联合督脉电针组和OECs移植组用改良的Allen法制成脊髓损伤模型,造模成功后, OECs移植组和OECs移植联合督脉电针在损伤处移植嗅鞘细胞。于术后1、3、7、14、21、28天进行BBB (Basso-Beattle-Bresnahan)运动功能评分,应用免疫组织化学技术检测脊髓组织AQP-4的表达,并用图像分析仪进行定量分析。结果:术后3~28天,OECs移植联合督脉电针组的BBB评分较OECs移植组明显提高,术后第1天,联合组和OECs移植组受损脊髓灰质、白质中AQP-4的表达明显增加;第3天时均达到高峰,但联合组低于O E C s移植组(P<0.05)。第7、14、21、28天,与O E C s移植组比较,联合组A Q P-4表达也较低(P<0.01)。结论:O E C s移植联合督脉电针使脊髓损伤后A Q P-4表达减少,这可能更有利于抑制脊髓水肿、消除脊髓继发性损伤,保存了残存正常脊髓组织并促进神经轴突再生,改善其肢体运动功能。%Objective To investigate effects of combination of transplanted olfactory ensheathing cells(OECs) and Goremor vessel electroacupuncture on the water channel aquaporin-4(AQP-4) expression and hind limbs function recovery in experimental spinal cord injured rats.Methods One hundred and fifty Wistar rats were divided into the normal group, the OECs grafted group(OECs group) and the OECs grafted plus Goremor vessel electroacupuncture group(OECs+EC group), with 50 rats in each group, modified Allen method was used to establish spinal cord injury model in the OECs and OECs+EC group. OECs were grafted into the transected site of spinal cord in OECs group and OECs

  13. Aquaporin family genes exhibit developmentally-regulated and host-dependent transcription patterns in the sea louse Caligus rogercresseyi.

    Science.gov (United States)

    Farlora, Rodolfo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2016-07-01

    Aquaporins are small integral membrane proteins that function as pore channels for the transport of water and other small solutes across the cell membrane. Considering the important roles of these proteins in several biological processes, including host-parasite interactions, there has been increased research on aquaporin proteins recently. The present study expands on the knowledge of aquaporin family genes in parasitic copepods, examining diversity and expression during the ontogeny of the sea louse Caligus rogercresseyi. Furthermore, aquaporin expression was evaluated during the early infestation of Atlantic (Salmo salar) and Coho salmon (Oncorhynchus kisutch). Deep transcriptome sequencing data revealed eight full length and two partial open reading frames belonging to the aquaporin protein family. Clustering analyses with identified Caligidae sequences revealed three major clades of aquaglyceroporins (Cr-Glp), classical aquaporin channels (Cr-Bib and Cr-PripL), and unorthodox aquaporins (Cr-Aqp12-like). In silico analysis revealed differential expression of aquaporin genes between developmental stages and between sexes. Male-biased expression of Cr-Glp1_v1 and female-biased expression of Cr-Bib were further confirmed in adults by RT-qPCR. Additionally, gene expressions were measured for seven aquaporins during the early infestation stage. The majority of aquaporin genes showed significant differential transcription expressions between sea lice parasitizing different hosts, with Atlantic salmon sea lice exhibiting overall reduced expression as compared to Coho salmon. The observed differences in the regulation of aquaporin genes may reveal osmoregulatory adaptations associated with nutrient ingestion and metabolite waste export, exposing complex host-parasite relationships in C. rogercresseyi.

  14. Aquaporins: New Targets for Cancer Therapy.

    Science.gov (United States)

    Wang, Liping; Zhang, Yixiang; Wu, Xiongzhi; Yu, Guohua

    2016-12-01

    Aquaporins are a family of integral membrane proteins that are expressed in all living organisms and play vital roles in transcellular and transepithelial water movement. Cell viability and motility are critical for progression of cancer. Cell survival requires the suitable concentration of water and solutes. The balance is largely maintained by aquaporins whose major function is the transport of water and small solutes across the plasma membrane. The important role of aquaporins has received more and more attention in the recent years. A number of recent studies have revealed that aquaporins may be involved in cell migration and angiogenesis. This review will highlight the expression of aquaporins in different malignant neoplasms. Remarkably, we will summarize the influence of drugs on aquaporins, not only the traditional Chinese medicine but also the Western medicine. Therapeutic targeting of aquaporins may thus be advantageous for blocking the mechanism common for a number of key cancer phenotypes. © The Author(s) 2015.

  15. Aquaporins in complex tissues

    DEFF Research Database (Denmark)

    Hamann, S; Zeuthen, T; La Cour, M

    1998-01-01

    Multiple physiological fluid movements are involved in vision. Here we define the cellular and subcellular sites of aquaporin (AQP) water transport proteins in human and rat eyes by immunoblotting, high-resolution immunocytochemistry, and immunoelectron microscopy. AQP3 is abundant in bulbar conj......, predicting specific roles for each in the complex network through which water movements occur in the eye....

  16. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kamsteeg, E.J.; Bichet, D.G.; Konings, I.B.M.; Nivet, H.; Lonergan, M.; Arthus, M.F.; Os, C.H. van; Deen, P.M.T.

    2003-01-01

    Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease

  17. The role of water channel proteins and nitric oxide signaling in rice seed germination

    Institute of Scientific and Technical Information of China (English)

    Hong-Yan Liu; Xin Yu; Da-Yong Cui; Mei-Hao Sun; Wei-Ning Sun; Zhang-Cheng Tang; Sang-Soo Kwak; Wei-Ai Su

    2007-01-01

    Previous studies have demonstrated the possible role of several aquaporins in seed germination. But systematic investigation of the role of aquaporin family members in this process is lacking. Here, the developmental regulation of plasma membrane intrinsic protein (PIP) expression throughout germination and post-germination processes in rice embryos was analyzed. The expression patterns of the PIPs suggest these aquaporins play different roles in seed germination and seedling growth. Partial silencing of the water channel genes, OsPIP1; 1 and OsPIP1;3, reduced seed germination while over-expression of OsPIPl;3 promoted seed germination under water-stress conditions. Moreover, spatial expression analysis indicates that OsPIP1;3 is expressed predominantly in embryo during seed germination. Our data also revealed that the nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO), promoted seed germination; furthermore, the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, inhibited germination and reduced the stimulative effects of SNP and GSNO on rice germination. Exogenous NO stimulated the transcription of OsPIP1;1, OsPIP1;2, OsPIP1;3 and OsPIP2;8 in germinating seeds. These results suggest that water channels play an important role in seed germination, acting, at least partly, in response to the NO signaling pathway.

  18. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Directory of Open Access Journals (Sweden)

    Rupalatha Maddala

    Full Text Available Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations

  19. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success.

    Directory of Open Access Journals (Sweden)

    Joshua B Benoit

    2014-04-01

    Full Text Available Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response and perform functional analysis of three specific genes utilizing RNA interference (RNAi gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4-6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20-25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and

  20. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  1. Aquaporins in sperm osmoadaptation: an emerging role for volume regulation

    Institute of Scientific and Technical Information of China (English)

    Qi CHEN; En-kui DUAN

    2011-01-01

    Upon ejaculation, mammalian sperm experience a natural osmotic decrease during male to female reproductive tract transition. This hypo-osmotic exposure not only activates sperm motility, but also poses potential harm to sperm structure and function by inducing unwanted cell swelling. In this physiological context, regulatory volume decrease (RVD) is the major mechanism that protects cells from detrimental swelling, and is essential to sperm survival and normal function. Aquaporins are selective water channels that enable rapid water transport across cell membranes. Aquaporins have been implicated in sperm osmoregulation. Recent discoveries show that Aquaporin-3 (AQP3), a water channel protein, is localized in sperm tail membranes and that AQP3 mutant sperm show defects in volume regulation and excessive cell swelling upon physiological hypotonic stress in the female reproductive tract, thereby highlighting the importance of AQP3 in the postcopulatory sperm RVD process. In this paper, we discuss current knowledge, remaining questions and hypotheses about the function and mechanismic basis of aquaporins for volume regulation in sperm and other cell types.

  2. Overexpression of Aquaporin-1 in lung adenocarcinomas and pleural mesotheliomas

    OpenAIRE

    López-Campos, José Luis; Sánchez Silva, Rocío; Gómez Izquierdo, Lourdes; Márquez, Eduardo; Ortega Ruiz, Francisco; Cejudo, Pilar; Barrot Cortés, Emilia; Toledo Aral, Juan José; Echevarría, Miriam

    2011-01-01

    Aquaporin-1 (AQP1) is the main water channel responsible for water transport through many epithelia and endothelia. The latest evidence pointed toward an important role of this protein also in gas permeation, angiogenesis, cell proliferation and migration. In the present work we studied the expression of AQP1 by immunohistochemical staining of 92 lung biopsies from patients diagnosed with a pleuropulmonary tumor (71 lung and 21 pleural neoplasms). AQP1 expression wa...

  3. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  4. Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0-5

    DEFF Research Database (Denmark)

    Meinild, A K; Klærke, Dan Arne; Zeuthen, T

    1998-01-01

    The dimensions of the aqueous pore in aquaporins (AQP) 0, 1, 2, 3, 4, and 5 expressed in Xenopus laevisoocytes were probed by comparing the ability of various solutes to generate osmotic flow. By improved techniques, volume flows were determined from initial rates of changes. Identical values...

  5. Channel incision and water quality

    Science.gov (United States)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p Ecological engineering of stream corridors must focus at least as much energy on mediating hydrologic

  6. Renal aquaporins and sodium transporters with special focus on urinary tract obstruction

    DEFF Research Database (Denmark)

    Frøkiaer, Jørgen; Li, Chunling; Shi, Yimin

    2003-01-01

    seven aquaporins are expressed at distinct sites in the kidney and 4 members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. Osmotic equilibration via renal aquaporins is maintained by active transport...... of NaCl. The major sodium transporters and channels in the individual renal tubule segments have been identified and the regulation of these transporters and channels are fundamental for renal sodium reabsorption and for establishing the driving force. In this mini-review the role of renal aquaporins...... and sodium transporters and channels is briefly described and their key role for the impaired urinary concentrating capacity in response to urinary tract obstruction is reviewed. Thus this review updates previous detailed reviews (1-5)....

  7. A novel aquaporin 3 in killifish (Fundulus heteroclitus) is not an arsenic channel.

    Science.gov (United States)

    Jung, Dawoon; MacIver, Bryce; Jackson, Brian P; Barnaby, Roxanna; Sato, J Denry; Zeidel, Mark L; Shaw, Joseph R; Stanton, Bruce A

    2012-05-01

    The Atlantic killifish (Fundulus heteroclitus) is a model environmental organism that has an extremely low assimilation rate of environmental arsenic. As a first step in elucidating the mechanism behind this phenomenon, we used quantitative real-time PCR to identify aquaglyceroporins (AQPs), which are arsenite transporters, in the killifish gill. A novel homolog killifish AQP3 (kfAQP3a) was cloned from the killifish gill, and a second homolog was identified as the consensus from a transcriptome database (kfAQP3b). The two were 99% homologous to each other, 98% homologous to a previously identified killifish AQP3 from embryos (kfAQP3ts), and 78% homologous to hAQP3. Expression of kfAQP3a in Xenopus oocytes significantly enhanced water, glycerol, and urea transport. However, kfAQP3a expressed in HEK293T cells did not transport significant amounts of arsenic. All sequence motifs thought to confer the ability of AQP3 to transport solutes were conserved in kfAQP3a, kfAQP3b, and kfAQP3ts; however, the C-terminal amino acids were different in kfAQP3a versus the other two homologs. Replacement of the three C-terminal amino acids of kfAQP3 (GKS) with the three C-terminal amino acids of kfAQP3b and kfAQP3ts (ANC) was sufficient to enable kfAQP3a to robustly transport arsenic. Thus, the C-terminus of kfAQP3b and kfAQP3ts confers arsenic selectivity in kfAQP3. Moreover, kfAQP3a, the only AQP expressed in killifish gill, is the first aquaglyceroporin identified that does not transport arsenic, which may explain, in part, why killifish poorly assimilate arsenic and are highly tolerant to environmental arsenic.

  8. Crystal Structure of an Ammonia-Permeable Aquaporin.

    Science.gov (United States)

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-03-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.

  9. Crystal Structure of an Ammonia-Permeable Aquaporin.

    Directory of Open Access Journals (Sweden)

    Andreas Kirscht

    2016-03-01

    Full Text Available Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.

  10. Aquaporin 4 and neuromyelitis optica

    Science.gov (United States)

    Papadopoulos, Marios C; Verkman, A S

    2013-01-01

    Neuromyelitis optica is an inflammatory demyelinating disorder of the CNS. The discovery of circulating IgG1 antibodies against the astrocyte water channel protein aquaporin 4 (AQP4) and the evidence that AQP4-IgG is involved in the development of neuromyelitis optica revolutionised our understanding of the disease. However, important unanswered questions remain—for example, we do not know the cause of AQP4-IgG-negative disease, how astrocyte damage causes demyelination, the role of T cells, why peripheral AQP4-expressing organs are undamaged, and how circulating AQP4-IgG enters neuromyelitis optica lesions. New drug candidates have emerged, such as aquaporumab (non-pathogenic antibody blocker of AQP4-IgG binding), sivelestat (neutrophil elastase inhibitor), and eculizumab (complement inhibitor). Despite rapid progress, randomised clinical trials to test new drugs will be challenging because of the small number of individuals with the disorder. PMID:22608667

  11. Aquaporins in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Michal K. Oklinski

    2016-12-01

    Full Text Available Aquaporins (AQPs are water channel proteins robustly expressed in the central nervous system (CNS. A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer’s disease and Parkinson’s disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.

  12. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney

    DEFF Research Database (Denmark)

    Lauridsen, Thomas G; Vase, Henrik; Bech, Jesper N;

    2010-01-01

    Glucocorticoids influence renal concentrating and diluting ability. We tested the hypothesis that methylprednisolone treatment increased renal water and sodium absorption by increased absorption via the aquaporin-2 (AQP2) water channels and the epithelial sodium channels (ENaCs) respectively....

  13. Differential expression of aquaporin 3 in Triturus italicus from larval to adult epidermal conversion

    Directory of Open Access Journals (Sweden)

    E Brunelli

    2009-06-01

    Full Text Available By using immunohistochemical techniques applied to confocal microscopy, the presence of aquaporin 3 water channel in the epidermis of Triturus italicus (Amphibia, Urodela has been shown. We analysed the expression of aquaporin 3 (AQP3 during the larval, pre-metamorphic and adult phases; we also showed the localization of the water-channel protein AQP3 in free-swimming conditions and during aestivation in parallel with histological analysis of the skin, focusing on the possible relationship between protein expression and terrestrial habitats. Our results indicate that aquaporin is produced as the epidermis modifies during the functional maturation phase starting at the climax. Moreover, our data suggest an increase in enzyme expression in aestivating newts emphasizing the putative functional importance of differential expression related to a distinct phase of the biological cycle.

  14. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Ariani, Andrea; Gepts, Paul

    2015-10-01

    Plant aquaporins are a large and diverse family of water channel proteins that are essential for several physiological processes in living organisms. Numerous studies have linked plant aquaporins with a plethora of processes, such as nutrient acquisition, CO2 transport, plant growth and development, and response to abiotic stresses. However, little is known about this protein family in common bean. Here, we present a genome-wide identification of the aquaporin gene family in common bean (Phaseolus vulgaris L.), a legume crop essential for human nutrition. We identified 41 full-length coding aquaporin sequences in the common bean genome, divided by phylogenetic analysis into five sub-families (PIPs, TIPs, NIPs, SIPs and XIPs). Residues determining substrate specificity of aquaporins (i.e., NPA motifs and ar/R selectivity filter) seem conserved between common bean and other plant species, allowing inference of substrate specificity for these proteins. Thanks to the availability of RNA-sequencing datasets, expression levels in different organs and in leaves of wild and domesticated bean accessions were evaluated. Three aquaporins (PvTIP1;1, PvPIP2;4 and PvPIP1;2) have the overall highest mean expressions, with PvTIP1;1 having the highest expression among all aquaporins. We performed an EST database mining to identify drought-responsive aquaporins in common bean. This analysis showed a significant increase in expression for PvTIP1;1 in drought stress conditions compared to well-watered environments. The pivotal role suggested for PvTIP1;1 in regulating water homeostasis and drought stress response in the common bean should be verified by further field experimentation under drought stress.

  15. Expression of aquaporin isoforms during human and mouse tooth development.

    Science.gov (United States)

    Felszeghy, S; Módis, L; Németh, P; Nagy, G; Zelles, T; Agre, P; Laurikkala, J; Fejerskov, O; Thesleff, I; Nielsen, S

    2004-04-01

    Previously, we described the development of hyaluronan (HA) deposition in human tooth germ tissues that are consistent with water transport in different stages of tooth development. The aquaporins (AQP) constitute a family of membrane water channels that are expressed in many organs. However, there are no data available about the expression pattern of aquaporin water channels in dental structures. In the present study we have characterised the expression of six different aquaporin isoforms (AQP1-5, AQP-9) in developing human and mouse tooth germs by immunohistochemistry using isoform specific antibodies. In the "bell stage" AQP1 was expressed in endothelial cells of small vessels whereas no other structures of the tooth primordial were labeled. AQP2, AQP3 and AQP9 immunoreactivity was not observed in tooth germs, whereas strong AQP4 and AQP5 expression was observed in dental lamina, inner enamel epithelium, stratum intermedium, stellate reticulum and the outer enamel epithelium. Oral epithelium also exhibited AQP4 and AQP5 immunolabeling. During development of the matrices of the dental hard tissues AQP4 and AQP5 immunostaining was observed in the odontoblasts and their processes, as well as in the secretory ameloblast and their apical processes. Immunolabeling controls were negative. In conclusion, AQP4 and AQP5 are expressed in tooth germ tissues in early development in cells that previously have been shown to express HA and/or CD44, indicating that AQP water channels may play a role for ECM hydration during tooth development.

  16. Aquaporin 1, a potential therapeutic target for migraine with aura

    Directory of Open Access Journals (Sweden)

    Jiang Xinghong

    2010-10-01

    Full Text Available Abstract The pathophysiology of migraine remains largely unknown. However, evidence regarding the molecules participating in the pathophysiology of migraine has been accumulating. Water channel proteins, known as aquaporins (AQPs, notably AQP-1 and AQP-4, appears to be involved in the pathophysiology of several neurological diseases. This review outlines newly emerging evidence indicating that AQP-1 plays an important role in pain signal transduction and migraine and could therefore serve as a potential therapeutic target for these diseases.

  17. Aquaporins as targets for drug discovery.

    Science.gov (United States)

    Frigeri, Antonio; Nicchia, Grazia Paola; Svelto, Maria

    2007-01-01

    The intracellular hydric balance is an essential process of mammalian cells. The water movement across cell membranes is driven by osmotic and hydrostatic forces and the speed of this process is dependent on the presence of specific aquaporin water channels. Since the molecular identification of the first water channel, AQP1, by Peter Agre's group, 13 homologous members have been found in mammals with varying degree of homology. The fundamental importance of these proteins in all living cells is suggested by their genetic conservation in eukaryotic organisms through plants to mammals. A number of recent studies have revealed the importance of mammalian AQPs in both physiology and pathophysiology and have suggested that pharmacological modulation of aquaporins expression and activity may provide new tools for the treatment of variety of human disorders, such as brain edema, glaucoma, tumour growth, congestive heart failure and obesity in which water and small solute transport may be involved. This review will highlight the physiological role and the pathological involvement of AQPs in mammals and the potential use of some recent therapeutic approaches, such as RNAi and immunotherapy, for AQP-related diseases. Furthermore, strategies that can be developed for the discovery of selective AQP-drugs will be introduced and discussed.

  18. Minireview: aquaporin 2 trafficking.

    Science.gov (United States)

    Valenti, Giovanna; Procino, Giuseppe; Tamma, Grazia; Carmosino, Monica; Svelto, Maria

    2005-12-01

    In the kidney aquaporin-2 (AQP2) provides a target for hormonal regulation of water transport by vasopressin. Short-term control of water permeability occurs via vesicular trafficking of AQP2 and long-term control through changes in the abundance of AQP2 and AQP3 water channels. Defective AQP2 trafficking causes nephrogenic diabetes insipidus, a condition characterized by the kidney inability to produce concentrated urine because of the insensitivity of the distal nephron to vasopressin. AQP2 is redistributed to the apical membrane of collecting duct cells through activation of a cAMP signaling cascade initiated by the binding of vasopressin to its V2-receptor. Protein kinase A-mediated phosphorylation of AQP2 has been proposed to be essential in regulating AQP2-containing vesicle exocytosis. Cessation of the stimulus is followed by endocytosis of the AQP2 proteins exposed on the plasma membrane and their recycling to the original stores, in which they are retained. Soluble N-ethylmaleimide sensitive fusion factor attachment protein receptors (SNARE) and actin cytoskeleton organization regulated by small GTPase of the Rho family were also proved to be essential for AQP2 trafficking. Data for functional involvement of the SNARE vesicle-associated membrane protein 2 in AQP2 targeting has recently been provided. Changes in AQP2 expression/trafficking are of particular importance in pathological conditions characterized by both dilutional and concentrating defects. One of these conditions, hypercalciuria, has shown to be associated with alteration of AQP2 urinary excretion. More precisely, recent data support the hypothesis that, in vivo external calcium, through activation of calcium-sensing receptors, modulates the expression/trafficking of AQP2. Together these findings underscore the importance of AQP2 in kidney pathophysiology.

  19. Functional challenge affects aquaporin mRNA abundance in mouse blastocysts

    DEFF Research Database (Denmark)

    Offenberg, Hanne Kjær; Thomsen, Preben Dybdahl

    2005-01-01

    The aquaporins (AQPs) are a family of channel proteins that facilitate diffusion of water across cell membranes. Three members of the AQP family have been detected in the mouse blastocyst: AQP 3 and 8 are located in the basolateral domain and AQP 9 predominantly in the apical domain...

  20. Autoantibodies Targeting a Collecting Duct-Specific Water Channel in Tubulointerstitial Nephritis

    DEFF Research Database (Denmark)

    Landegren, Nils; Pourmousa Lindberg, Mina; Skov, Jakob

    2016-01-01

    Tubulointerstitial nephritis is a common cause of kidney failure and may have diverse etiologies. This form of nephritis is sometimes associated with autoimmune disease, but the role of autoimmune mechanisms in disease development is not well understood. Here, we present the cases of three patients...... with autoimmune polyendocrine syndrome type 1 who developed tubulointerstitial nephritis and ESRD in association with autoantibodies against kidney collecting duct cells. One of the patients developed autoantibodies targeting the collecting duct-specific water channel aquaporin 2, whereas autoantibodies...

  1. Aquaporins in the Skin.

    Science.gov (United States)

    Patel, Ravi; Kevin Heard, L; Chen, Xunsheng; Bollag, Wendy B

    2017-01-01

    The skin is the largest organ of the body, serving as an important barrier between the internal milieu and the external environment. The skin is also one of the first lines of defense against microbial infection and other hazards, and thus, the skin has important immune functions . This organ is composed of many cell types, including immune-active dendritic cells (epidermal Langerhans cells and dermal dendritic cells), connective tissue-generating dermal fibroblasts and pigment-producing melanocytes. Comprising the outer skin layer are the epidermal keratinocytes, the predominant cell of this layer, the epidermis , which provides both a mechanical barrier and a water -permeability barrier. Recent data suggest that aquaporins, a family of barrel-shaped proteins surrounding internal pores that allow the passage of water and, in some family members, small solutes such as glycerol , play critical roles in regulating various skin parameters. The involvement of different aquaporin family members in skin function is discussed.

  2. Molecular Characterization of LRB7 Gene and a Water Channel Protein TIP2 in Chorispora bungeana

    Directory of Open Access Journals (Sweden)

    Ming Li

    2016-01-01

    Full Text Available Background. Water channel proteins, also called aquaporins, are integral membrane proteins from major intrinsic protein (MIP family and involved in several pathways including not only water transport but also cell signaling, reproduction, and photosynthesis. The full cDNA and protein sequences of aquaporin in Chorispora bungeana Fisch. & C.A. Mey (C. bungeana are still unknown. Results. In this study, PCR and rapid amplification of cDNA ends approaches were used to clone the full cDNA of LRB7 (GenBank accession number: EU636988 of C. bungeana. Sequence analysis indicated that it was 1235 bp, which had two introns and encoded a protein of 250 amino acids. Structure analysis revealed that the protein had two conserved NPA motifs, one of which is MIP signature sequence (SGxHxNPAVT, six membrane helix regions, and additional membrane-embedded domains. Phylogenetic analysis suggested that the protein was from TIP2 subgroup. Surprisingly, semiquantitative RT-PCR experiment and western blot analysis showed that LRB7 and TIP2 were only detectable in roots, unlike Arabidopsis and Raphanus. Connecting with our previous studies, LRB7 was supported to associate with chilling-tolerance in C. bungeana. Conclusion. This is the first time to characterize the full sequences of LRB7 gene and water channel protein in C. bungeana. Our findings contribute to understanding the water transports in plants under low temperatures.

  3. Molecular Characterization of LRB7 Gene and a Water Channel Protein TIP2 in Chorispora bungeana

    Science.gov (United States)

    Liang, Zhaoxu; Di, Cuixia; Fang, Weikuan; Wu, Kaichao; Chen, Maoshan; He, Shanshan; Zeng, Yuan; Jing, Yan; Liang, Jun; Tan, Fang; Li, Song; Chen, Tuo; Liu, Guangxiu

    2016-01-01

    Background. Water channel proteins, also called aquaporins, are integral membrane proteins from major intrinsic protein (MIP) family and involved in several pathways including not only water transport but also cell signaling, reproduction, and photosynthesis. The full cDNA and protein sequences of aquaporin in Chorispora bungeana Fisch. & C.A. Mey (C. bungeana) are still unknown. Results. In this study, PCR and rapid amplification of cDNA ends approaches were used to clone the full cDNA of LRB7 (GenBank accession number: EU636988) of C. bungeana. Sequence analysis indicated that it was 1235 bp, which had two introns and encoded a protein of 250 amino acids. Structure analysis revealed that the protein had two conserved NPA motifs, one of which is MIP signature sequence (SGxHxNPAVT), six membrane helix regions, and additional membrane-embedded domains. Phylogenetic analysis suggested that the protein was from TIP2 subgroup. Surprisingly, semiquantitative RT-PCR experiment and western blot analysis showed that LRB7 and TIP2 were only detectable in roots, unlike Arabidopsis and Raphanus. Connecting with our previous studies, LRB7 was supported to associate with chilling-tolerance in C. bungeana. Conclusion. This is the first time to characterize the full sequences of LRB7 gene and water channel protein in C. bungeana. Our findings contribute to understanding the water transports in plants under low temperatures. PMID:27689074

  4. The Expression of Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology

    Science.gov (United States)

    Del Carlo Bernardi, Fabiola; Alves de Araujo, Priscila; Mauad, Thais; Dolhnikoff, Marisa

    2016-01-01

    Introduction Aquaporins and ion channels are membrane proteins that facilitate the rapid movement of water and solutes across biological membranes. Experimental and in vitro studies reported that the function of these channels and pulmonary edema resolution are impaired in acute lung injury (ALI). Although current evidence indicates that alveolar fluid clearance is impaired in patients with ALI/diffuse alveolar damage (DAD), few human studies have addressed the alterations in pulmonary channels in this clinical condition. Additionally, it is not known whether the primary cause of DAD is a relevant variable for the channel dysfunction. Methods Autopsied lungs of 43 patients with acute respiratory failure (ARF) due to DAD of three different etiologies, non-pulmonary sepsis, H1N1 viral infection and leptospirosis, were compared to 18 normal lungs. We quantified the expression of aquaporin (AQP) 1, AQP3, AQP5, epithelial Na+ channel (ENaC) and sodium potassium ATPase (Na-K-ATPase) in the alveolar septum using immunohistochemistry and image analysis. Results The DAD group presented with increased expression of AQP3, AQP5 and Na-K-ATPase and decreased expression of ENaC compared to controls. However, there was no difference in protein expression within the DAD groups of different etiologies. Conclusion Water and ion channels are altered in patients with ARF due to DAD. The cause of DAD does not seem to influence the level of impairment of these channels. PMID:27835672

  5. New challenges in plant aquaporin biotechnology.

    Science.gov (United States)

    Martinez-Ballesta, Maria del Carmen; Carvajal, Micaela

    2014-03-01

    Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress. However, newly uncovered mechanisms, such as aquaporin functions and regulation, may be essential for the beneficial effects seen in plants overexpressing aquaporin genes. Under distinct stress conditions, differences in the phenotype of transgenic plants where aquaporins were manipulated need to be analyzed. In the development of nano-technologies for agricultural practices, multiple-walled carbon nanotubes promoted plant germination and cell growth. Their effects on aquaporins need further investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review is to prov......Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review...... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....

  7. The gating mechanism of the human aquaporin 5 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Lorant Janosi

    Full Text Available Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins. The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5 shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value.

  8. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.;

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water...

  9. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice.

    Science.gov (United States)

    Zhang, Yue; Peti-Peterdi, János; Heiney, Kristina M; Riquier-Brison, Anne; Carlson, Noel G; Müller, Christa E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2015-12-01

    Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.

  10. The Role of Aquaporin and Tight Junction Proteins in the Regulation of Water Movement in Larval Zebrafish (Danio rerio)

    Science.gov (United States)

    Kwong, Raymond W. M.; Kumai, Yusuke; Perry, Steve F.

    2013-01-01

    Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP) and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio). We observed that the half-time for saturation of water influx (Ku) was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM). Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H+-ATPase-rich cells or Na+/K+-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca2+-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP); the paracellular routes may become significant when the paracellular permeability is increased. PMID:23967101

  11. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Raymond W M Kwong

    Full Text Available Teleost fish living in freshwater are challenged by passive water influx; however the molecular mechanisms regulating water influx in fish are not well understood. The potential involvement of aquaporins (AQP and epithelial tight junction proteins in the regulation of transcellular and paracellular water movement was investigated in larval zebrafish (Danio rerio. We observed that the half-time for saturation of water influx (K(u was 4.3±0.9 min, and reached equilibrium at approximately 30 min. These findings suggest a high turnover rate of water between the fish and the environment. Water influx was reduced by the putative AQP inhibitor phloretin (100 or 500 μM. Immunohistochemistry and confocal microscopy revealed that AQP1a1 protein was expressed in cells on the yolk sac epithelium. A substantial number of these AQP1a1-positive cells were identified as ionocytes, either H⁺-ATPase-rich cells or Na⁺/K⁺-ATPase-rich cells. AQP1a1 appeared to be expressed predominantly on the basolateral membranes of ionocytes, suggesting its potential involvement in regulating ionocyte volume and/or water flux into the circulation. Additionally, translational gene knockdown of AQP1a1 protein reduced water influx by approximately 30%, further indicating a role for AQP1a1 in facilitating transcellular water uptake. On the other hand, incubation with the Ca²⁺-chelator EDTA or knockdown of the epithelial tight junction protein claudin-b significantly increased water influx. These findings indicate that the epithelial tight junctions normally act to restrict paracellular water influx. Together, the results of the present study provide direct in vivo evidence that water movement can occur through transcellular routes (via AQP; the paracellular routes may become significant when the paracellular permeability is increased.

  12. Aquaporin 2 of Rhipicephalus (Boophilus) microplus as a potential target to control ticks and tick-borne parasites

    Science.gov (United States)

    In a collaboration with Washington State University and ARS-Pullman, WA researchers, we identified and sequenced a 1,059 base pair Rhipicephalus microplus transcript that contained the coding region for a water channel protein, Aquaporin 2 (RmAQP2). The clone sequencing resulted in the production of...

  13. Identification and role of plasma membrane aquaporin in maize root

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using antiserum against expressed aquaporin fusion protein, GST-RD28, the distribution of aquaporin in the plasma membrane of maize root protoplasts has been examined under confocal laser scanning microscopy by indirect fluorescence staining. Results indicate that there are abundant aquaporins in maize roots, which are distributed in plasma membrane unevenly. Western blotting analysis of total protein solubilized from maize root plasma membrane shows that antiserum against GST-RD28 can cross-react with one protein around 55 ku. Another 28 ku protein can also be detected when the concentration of SDS and DTT in SDS-PAGE sample buffer is increased. The 55 and 28 ku proteins may be dimeric and monomeric of aquaporin respectively. Functional experiments show that aquaporin blocker HgCl2 and aquaporin antiserum can suppress the swelling of maize root protoplasts in hypotonic solution, indicating that aquaporin in plasma membrane of protoplast facilitates rapid transmembrane water flow.

  14. Aquaporins in development – a review

    Directory of Open Access Journals (Sweden)

    Wintour E Marelyn

    2005-05-01

    Full Text Available Abstract Water homeostasis during fetal development is of crucial physiologic importance. It depends upon maternal fetal fluid exchange at the placenta and fetal membranes, and some exchange between fetus and amniotic fluid can occur across the skin before full keratinization. Lungs only grow and develop normally with fluid secretion, and there is evidence that cerebral spinal fluid formation is important in normal brain development. The aquaporins are a growing family of molecular water channels, the ontogeny of which is starting to be explored. One question that is of particular importance is how well does the rodent (mouse, rat fetus serve as a model for long-gestation mammals such as sheep and human? This is particularly important for organs such as the lung and the kidney, whose development before birth is very much less in rodents than in the long-gestation species.

  15. Maternal-fetal fluid balance and aquaporins: from molecule to physiology

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan SHA; Zheng-fang XIONG; Hui-shu LIU; Xiao-dan DI; Tong-hui MA

    2011-01-01

    Maternal-fetal fluid balance is critical during pregnancy, and amniotic fluid is essential for fetal growth and development. The placenta plays a key role in a successful pregnancy as the interface between the mother and her fetus. Aquaporins (AQPs) form specific water channels that allow the rapid transcellular movement of water in response to osmotic/hydrostatic pressure gradients. AQPs expression in the placenta and fetal membranes may play important roles in the maternal-fetal fluid balance.

  16. A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L.

    NARCIS (Netherlands)

    Mattia, F.P. de; Savelkoul, P.J.M.; Bichet, D.G.; Kamsteeg, E.J.; Konings, I.B.M.; Marr, N.; Arthus, M.F.; Lonergan, M.; Os, C.H. van; Sluijs, P. van der; Robertson, G.; Deen, P.M.T.

    2004-01-01

    Vasopressin regulates water homeostasis through insertion of homotetrameric aquaporin-2 (AQP2) water channels in the apical plasma membrane of renal cells. AQP2 mutations cause recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine

  17. The Vasopressin Type-2 Receptor and Prostaglandin Receptors EP2 and EP4 can Increase Aquaporin-2 Plasma Membrane Targeting Through a cAMP Independent Pathway

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Moeller, Hanne Bjerregaard; Assentoft, Mette

    2016-01-01

    Apical membrane targeting of the collecting duct water channel aquaporin-2 (AQP2) is essential for body water balance. As this event is regulated by Gs coupled 7-transmembrane receptors such as the vasopressin type 2 receptor (V2R) and the prostanoid receptors EP2 and EP4, it is believed to be cA...

  18. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel.

    Science.gov (United States)

    Kim, Gheun-Ho; Lee, Jay Wook; Oh, Yun Kyu; Chang, Hye Ryun; Joo, Kwon Wook; Na, Ki Young; Earm, Jae-Ho; Knepper, Mark A; Han, Jin Suk

    2004-11-01

    Thiazides have been used in patients with nephrogenic diabetes insipidus (NDI) to decrease urine volume, but the mechanism by which it produces the paradoxic antidiuretic effect remains unclear. Previous studies have reported that downregulation of aquaporin-2 (AQP2) is important for the development of lithium-induced (Li-induced) polyuria and that hydrochlorothiazide (HCTZ) increases renal papillary osmolality and Na(+) concentration in Brattleboro rats. For elucidating the molecular basis of the antidiuretic action of HCTZ in diabetes insipidus, whether administration of HCTZ may affect the expression of AQP2 and major renal Na(+) transporters in Li-induced NDI rats was investigated, using semiquantitative immunoblotting and immunohistochemistry. After feeding male Sprague-Dawley rats Li chloride-containing rat diet for 4 wk, HCTZ or vehicle was infused subcutaneously via osmotic minipump. Urine output was significantly decreased by HCTZ treatment, whereas it was not changed in vehicle-treated rats. Urine osmolality was also higher in HCTZ-treated rats than in vehicle-treated rats. Semiquantitative immunoblotting using whole-kidney homogenates revealed that HCTZ treatment caused a significant partial recovery in AQP2 abundance from Li-induced downregulation. AQP2 immunohistochemistry showed compatible findings with the immunoblot results in both cortex and medulla. The abundances of thiazide-sensitive NaCl co-transporter and alpha-epithelial sodium channel were increased by HCTZ treatment. Notably, HCTZ treatment induced a shift in molecular weight of gamma-epithelial sodium channel from 85 to 70 kD, consistent with previously demonstrated aldosterone stimulation. The upregulation of AQP2 and distal renal Na(+) transporters in response to HCTZ treatment may account for the antidiuretic action of HCTZ in NDI.

  19. Enhancement of water permeation across nanochannels by partial charges mimicked from biological channels

    Institute of Scientific and Technical Information of China (English)

    Gong Xiao-Jing; Fang Hai-Ping

    2008-01-01

    In biological water channel aquaporins (AQPs), it is believed that the bipolar orientation of the single-file water molecules inside the channel blocks proton permeation but not water transport. In this paper, the water permeation and particularly the water-selective behaviour across a single-walled carbon nanotube (SWNT) with two partial charges adjacent to the well of the SWNT are studied by molecular dynamics simulations, in which the distance between the two partial charges is varied from 0.14nm to 0.5nm and the charges each have a quantity of 0.5e. The two partial charges are used to mimic the charge distribution of the conserved non-pseudoautosomal (NPA) (asparagine/proline/alanine) regions in AQPs. Compared with across the nanochannel in a system with one+1e charge, the water permeation across the nanochannel is greatly enhanced in a system with two+0.5e charges when charges are close to the nanotube, i. e. the two partial charges permit more rapid water diffusion and maintain better bipolar order along the water file when the distance between the two charges and the well of SWNT is smaller than about 0.05nm. The bipolar orientation of the single-file water molecules is crucial for the exclusion of proton transfer. These findings may serve as guidelines for the future nanodevices by using charges to transport water and have biological implications because membrane water channels share a similar single-file water chain and positive charged region at centre and provide an insight into why two residues are necessitated in the central region of water channel protein.

  20. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.

    Science.gov (United States)

    Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie

    2014-09-01

    A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. [Roles of Aquaporins in Brain Disorders].

    Science.gov (United States)

    Yasui, Masato

    2015-06-01

    Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected.

  2. Water immersion is associated with an increase in aquaporin-2 excretion in healthy volunteers.

    NARCIS (Netherlands)

    Valenti, G.; Fraszl, W.; Addabbo, F.; Tamma, G.; Procino, G.; Satta, E.; Cirillo, M.; Santo, N.G. De; Drummer, C.; Bellini, L.; Kowoll, R.; Schlemmer, M.; Vogler, S.; Kirsch, K.A.; Svelto, M.; Gunga, H.C.

    2006-01-01

    Here, we report the alterations in renal water handling in healthy volunteers during a 6 h thermoneutral water immersion at 34 to 36 degrees C. We found that water immersion is associated with a reversible increase in total urinary AQP2 excretion.

  3. Aquaporin-1 and Aquaporin-3 Expressions in the Intervertebral Disc of Rats with Aging

    Directory of Open Access Journals (Sweden)

    Mustafa Sarsılmaz

    2012-12-01

    Full Text Available Objective: The intervertebral disc (IVD undergoes biochemical and morphologic degenerative changes during the process of aging. Aquaporins (AQPs are a family of water channel proteins that facilitate water and small solute movement in tissues and may have a potential role in the aging degeneration of IVDs. One of the important problems in understanding disc degeneration is to find cellular molecules which contribute to the pathogenesis of IVDs. XThe aim of this study was to demonstrate the expression of aquaporin 1 and 3 in nucleus pulposus (NP, annulus fibrosus (AF cells of rat lumbar intervertebral discs from both young and aged animals using immunohistochemistry.Material and Methods: Twenty Wistar-albino rats were included in the study. The rats were separated into two groups: 2-month-old rats (n=10 as the young group, 18-month-old rats (n=10 as the old group. The intervertebral disc tissues obtained from the lumbar spine (L1–L4, 4 discs were used for immunohistochemical staining of AQP-1 and 3. Results: This study demonstrated that AQP-1 and AQP-3 immunoreactivity significantly decreased in NP and AF of aged rats compared to the young rats. Conclusion: We suggest that AQP-1 and 3 may contribute to the age related degeneration of the intervertebral disc.

  4. The effects of the combination of salinity and excess boron on the water relations of tolerant tomato (Solanum lycopersicum L.) cv. Poncho Negro, in relation to aquaporin functionality

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, C.; Montoya, A.; Pacheco, P.; Martinez-Ballesta, M. C.; Carvajal, M.; Bastias, E.

    2011-07-01

    As elevated levels of boron (B) are accompanied by conditions of excessive salinity with drastic consequences for crops, it is crucial to find a crop that is tolerant to these conditions. In this work, the interaction between salinity and excess B with respect to aquaporin-mediated changes by blockade of mercury and water relations were studied as well as the osmotic adjustment of the plants. The treatments, for tomato Poncho Negro cultivated hydroponically in a controlled environment chamber, were control (75 and 150 mM) NaCl and/or 5 mg L{sup -}1 or 20 mg L{sup -}1 B. Hydraulic conductance (L0) of detached exuding root systems exhibits large variations in response to abiotic stimuli. No additive (synergic) effects of B and salinity were observed. Under salinity, the plants increased their turgor, compensating for the decrease in the leaf water potential through the reduction in the leaf osmotic potential by the accumulation of soluble sugars and proline. The involvement of Hg{sup 2}+-insensitive aquaporins or the osmotic gradient as the main force for water flow through the apoplastic pathway must be contemplated. Finally, all the data reveal the tomato cv. Poncho Negro to be a germplasm of agronomic interest and a good alternative for cultivation areas with high content of salts and the excess B of the soil and irrigation water. (Author) 67 refs.

  5. Fouling Characterization of Forward Osmosis Biomimetic Aquaporin Membranes Used for Water Recovery from Municipal Wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Petrinic, Irena; Hey, Tobias;

    /ultrafiltration coupled with RO and sand filtration, or advanced oxidation process require high energy. Contrary to pressure driven membrane processes, forward osmosis (FO) offers advantages such as no need of high hydraulic pressure, reduced fouling and simple cleaning. Even though fouling of FO membranes is less severe......Generally more than 99.93% of municipal wastewater is composed of water, therefore water recovery can alleviate global water stress which currently exists. Traditional ways to extract water from wastewater by the use of membrane bioreactors combined with reverse osmosis (RO), or micro...

  6. Identification and characterization of plasma membrane aquaporins isolated from fiber cells of Calotropis procera

    OpenAIRE

    Aslam, Usman; Khatoon,Asia; Cheema,Hafiza Masooma Naseer; Bashir, Aftab

    2013-01-01

    Calotropis procera, commonly known as “milkweed”, possesses long seed trichomes for seed dispersal and has the ability to survive under harsh conditions such as drought and salinity. Aquaporins are water channel proteins expressed in all land plants, divided into five subfamilies plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like proteins (NIPs), small basic intrinsic proteins (SIPs), and the unfamiliar X intrinsic proteins (XIPs). PIPs constitute the l...

  7. Water channel proteins: from their discovery in 1985 in Cluj-Napoca, Romania, to the 2003 Nobel Prize in Chemistry.

    Science.gov (United States)

    Benga, Gh

    2006-10-30

    Water channel proteins, later called aquaporins, are transmembrane proteins that have as their main(specific) function the water transport across biological membranes. The first water channel protein (WCP), now called aquaporin 1, was identified or "seen" in situ (hence discovered) in the human red blood cell (RBC) membrane in 1985 by Benga's group (Cluj-Napoca, Romania). This was achieved by a very selective radiolabeling of RBC membrane proteins with the water transport inhibitor [203Hg]-p-chloromercuribenzene sulfonate (PCMBS), under conditions of specific inhibition. The presence and location of the WCP was discovered among the polypeptides migrating in the region of 35-60 kDa on the electrophoretogram of RBC membrane proteins. The work was first published in 1986 in Biochemistry and Eur. J. Cell Biol. and reviewed by Benga in several articles in 1988-2004. We have thus a world priority in the discovery of the first water channel in the RBC membrane, that was re-discovered by chance by the group of Agre (Baltimore, USA) in 1988, when they isolated a new protein from the RBC membrane, nick-named CHIP28 (channel-forming integral membrane protein of 28 kDa). However, in addition to the 28 kDa component, this protein had a 35-60 kDa glycosylated component, the one detected by Benga's group. Only in 1992 the Agre's group suggested that "it is likely that CHIP28 is a functional unit of membrane water channels". In 1993 CHIP28 was renamed aquaporin 1. Looking in retrospect, asking the crucial question, when was the first WCP, discovered, a fair and clear cut answer would be: the first WCP, now called aquaporin 1, was identified or "seen" (hence discovered) in situ in the human RBC membrane by Benga and coworkers in 1985. It was again "seen" when it was purified in 1988 and again identified when its water transport property was found byAgre's group in 1992. If we make a comparison with the discovery of New World of America, the first man who has "seen" a part, very

  8. Genetic deletion of laminin isoforms β2 and γ3 induces a reduction in Kir4.1 and aquaporin-4 expression and function in the retina.

    Directory of Open Access Journals (Sweden)

    Petra G Hirrlinger

    Full Text Available Glial cells such as retinal Müller glial cells are involved in potassium ion and water homeostasis of the neural tissue. In these cells, inwardly rectifying potassium (Kir channels and aquaporin-4 water channels play an important role in the process of spatial potassium buffering and water drainage. Moreover, Kir4.1 channels are involved in the maintenance of the negative Müller cell membrane potential. The subcellular distribution of Kir4.1 and aquaporin-4 channels appears to be maintained by interactions with extracellular and intracellular molecules. Laminins in the extracellular matrix, dystroglycan in the membrane, and dystrophins in the cytomatrix form a complex mediating the polarized expression of Kir4.1 and aquaporin-4 in Müller cells.The aim of the present study was to test the function of the β2 and γ3 containing laminins in murine Müller cells. We used knockout mice with genetic deletion of both β2 and γ3 laminin genes to assay the effects on Kir4.1 and aquaporin-4. We studied protein and mRNA expression by immunohistochemistry, Western Blot, and quantitative RT-PCR, respectively, and membrane currents of isolated cells by patch-clamp experiments. We found a down-regulation of mRNA and protein of Kir4.1 as well as of aquaporin-4 protein in laminin knockout mice. Moreover, Müller cells from laminin β2 and γ3 knockout mice had reduced Kir-mediated inward currents and their membrane potentials were more positive than those in age-matched wild-type mice.These findings demonstrate a strong impact of laminin β2 and γ3 subunits on the expression and function of both aquaporin-4 and Kir4.1, two important membrane proteins in Müller cells.

  9. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Braunstein, Thomas Hartig; Jørgensen, Anders;

    2006-01-01

    Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing......-CF spheroids and were not significantly influenced by hyperosmotic stress. The results suggest that hyperosmotic stress is an important activator of AQP-5 in human airway epithelium, leading to significantly increased transepithelial water permeability.......Osmotic water permeability (P(f )) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing...

  10. Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4.

    Science.gov (United States)

    Frigeri, Antonio; Nicchia, Grazia Paola; Balena, Rosalba; Nico, Beatrice; Svelto, Maria

    2004-05-01

    Aquaporin-4 (AQP4) is the major water channel of the neuromuscular system, but its physiological function in both perivascular astrocytes and skeletal muscle sarcolemma is unclear. The purpose of this study was to assess the following in skeletal muscle: a) the expression of all cloned water cannels; b) the functional role of AQP4 using sarcolemma vesicles purified by means of several fractionation methods, and c) the functional effect of AQP4 reduction in mdx mice, the animal model of Duchenne muscular dystrophy (DMD). Immunofluorescence and immunoblot experiments performed with affinity purified antibodies revealed that only AQP1 and AQP4 are expressed in mouse skeletal muscle: AQP1 in endothelial cells of continuous capillaries and AQP4 on the plasma membrane of muscle fiber. Plasma membrane vesicle purification was performed with a procedure extensively used to purify and characterize dystrophin-associated proteins (DAPs) from rabbit skeletal muscle. Western blot analysis showed strong co-enrichment of the analyzed DAPs and AQP4, indicating that the membrane vesicle preparation was highly enriched in sarcolemma. Stopped-flow light-scattering measurements showed high osmotic water permeability of sarcolemma vesicles (approximately 150 microm/s) compatible with the AQP-mediated pathway for water movement. Sarcolemma vesicles prepared from mdx mice revealed, in parallel with AQP4 disappearance from the plasma membrane, a strong reduction in water permeability compared with wild-type mice. Altogether, these results demonstrate high AQP4-mediated water permeability of the skeletal muscle sarcolemma. Expression of sarcolemmal AQP4 together with that of vascular AQP1 may be responsible for the fast water transfer from the blood into the muscle during intense activity. These data imply an important role for aquaporins in skeletal muscle physiology as well as an involvement of AQP4 in the molecular alterations that occur in the muscle of DMD patients.

  11. Water Channel Facility for Fluid Dynamics Experiments

    Science.gov (United States)

    Eslam-Panah, Azar; Sabatino, Daniel

    2016-11-01

    This study presents the design, assembly, and verification process of the circulating water channel constructed by undergraduate students at the Penn State University at Berks. This work was significantly inspired from the closed-loop free-surface water channel at Lafayette College (Sabatino and Maharjan, 2015) and employed for experiments in fluid dynamics. The channel has a 11 ft length, 2.5 ft width, and 2 ft height glass test section with a maximum velocity of 3.3 ft/s. First, the investigation justifies the needs of a water channel in an undergraduate institute and its potential applications in the whole field of engineering. Then, the design procedures applied to find the geometry and material of some elements of the channel, especially the contraction, the test section, the inlet and end tanks, and the pump system are described. The optimization of the contraction design, including the maintenance of uniform exit flow and avoidance of flow separation, is also included. Finally, the discussion concludes by identifying the problems with the undergraduate education through this capstone project and suggesting some new investigations to improve flow quality.

  12. Electron crystallography and aquaporins.

    Science.gov (United States)

    Schenk, Andreas D; Hite, Richard K; Engel, Andreas; Fujiyoshi, Yoshinori; Walz, Thomas

    2010-01-01

    Electron crystallography of two-dimensional (2D) crystals can provide information on the structure of membrane proteins at near-atomic resolution. Originally developed and used to determine the structure of bacteriorhodopsin (bR), electron crystallography has recently been applied to elucidate the structure of aquaporins (AQPs), a family of membrane proteins that form pores mostly for water but also other solutes. While electron crystallography has made major contributions to our understanding of the structure and function of AQPs, structural studies on AQPs, in turn, have fostered a number of technical developments in electron crystallography. In this contribution, we summarize the insights electron crystallography has provided into the biology of AQPs, and describe technical advancements in electron crystallography that were driven by structural studies on AQP 2D crystals. In addition, we discuss some of the lessons that were learned from electron crystallographic work on AQPs.

  13. Blind estimation of shallow water acoustic channel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper proposed a method for blind estimation of underwater channels in shallow water environment by using received data at a single hydrophone or from single beam.First, the received signal is used for source signal reconstruction by means of signal-dependent TF (Time-Frequency) distribution, in association with instantaneous frequency estimation and TF inversion. Then the shallow-water channel estimation is achieved via WRELAX technique by use of the received signal and the estimated source signal. Finally, the results of numerical simulation and experimental test from real data taken in South China Sea trial have proved satisfactory. It is shown that the proposed method is useful for underwater channel estimation.

  14. 3D flexible water channel: stretchability of nanoscale water bridge.

    Science.gov (United States)

    Chen, Jige; Wang, Chunlei; Wei, Ning; Wan, Rongzheng; Gao, Yi

    2016-03-14

    Artificial water channels can contribute to a better understanding of natural water channels and offer a highly selective, advanced conductance system. Most studies use nanotubes, however it is difficult to fabricate a flexible structure, and the nanosized diameter brings nanoconfinement effects, and nanotube toxicity arouses biosafety concerns. In this paper, we use an electric field to restrain the water molecules to form a nanoscale water bridge as an artificial water channel to connect a separated solid plate by molecular dynamics simulations. We observe strong 3D flexible stretchability in the water bridge, maintaining a variable length and an arbitrary angle for a considerably long time. The stretching of the water bridge enables it to be polarized at an arbitrary angle and the stretchability is linearly dependent upon the polarization strength. More interestingly, we show the possibility of establishing complex water networks, e.g., triangle, rectangle, hexagon, and tetrahedron-tetrahedron water networks. Our results may help realize structurally flexible and environmentally friendly water channels for lab-on-a-chip applications in nanofluidics.

  15. Computational optimization of synthetic water channels.

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  16. Aquaporins: Their role in cholestatic liver disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This review focuses on currant knowledge on hepato-cyte aquaporins (AQPs) and their significance in bile formation and cholestasis. Canalicular bile secretion results from a combined interaction of several solute transporters and AQP water channels that facilitate wa-ter flow in response to the osmotic gradients created. During choleresis, hepatocytes rapidly increase their canalicular membrane water permeability by modulat-ing the abundance of AQP8. The question was raised as to whether the opposite process, i.e. a decreased canalicular AQP8 expression would contribute to the development of cholestasis. Studies in several experi-mental models of cholestasis, such as extrahepatic obstructive cholestasis, estrogen-induced cholestasis, and sepsis-induced cholestasis demonstrated that the protein expression of hepatocyte AQP8 was impaired. In addition, biophysical studies in canalicular plasma membranes revealed decreased water permeability as-sociated with AQP8 protein downregulation. The com-bined alteration in hepatocyte solute transporters and AQP8 would hamper the efficient coupling of osmotic gradients and canalicular water flow. Thus cholestasis may result from a mutual occurrence of impaired sol-ute transport and decreased water permeability.

  17. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects

    Science.gov (United States)

    The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...

  18. The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production

    DEFF Research Database (Denmark)

    Tinning, Anne Robdrup; Jensen, Boye L; Schweda, Frank

    2014-01-01

    to (+/+) mice. Tissue renin concentration was higher in AQP1(-/-) mice and renin mRNA level was not different between genotypes. Mean arterial blood pressure was not different at baseline and during low salt diet but decreased significantly in both genotypes after addition of ACEI; the response was faster...

  19. Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation.

    Science.gov (United States)

    Temmei, Yusuke; Uchida, Shinichi; Hoshino, Daisuke; Kanzawa, Nobuyuki; Kuwahara, Michio; Sasaki, Sei; Tsuchiya, Takahide

    2005-08-15

    cDNAs encoding aquaporins PIP1;1, PIP2;1, and TIP1;1 were isolated from Mimosa pudica (Mp) cDNA library. MpPIP1;1 exhibited no water channel activity; however, it facilitated the water channel activity of MpPIP2;1 in a phosphorylation-dependent manner. Mutagenesis analysis revealed that Ser-131 of MpPIP1;1 was phosphorylated by PKA and that cooperative regulation of the water channel activity of MpPIP2;1 was regulated by phosphorylation of Ser-131 of MpPIP1;1. Immunoprecipitation analysis revealed that MpPIP1;1 binds directly to MpPIP2;1 in a phosphorylation-independent manner, suggesting that phosphorylation of Ser-131 of MpPIP1;1 is involved in regulation of the structure of the channel complex with MpMIP2;1 and thereby affects water channel activity.

  20. El litio y su relación con la acuaporina-2 y el canal de sodio ENaC Lithium and its relation with the epithelial sodium channel and aquaporin-2

    Directory of Open Access Journals (Sweden)

    Luciano Galizia

    2012-04-01

    the collecting duct's principal cells through the epithelial Na channel (ENaC located on the apical side of the cells. Polyuria, renal tubular acidosis and chronic renal failure are the most frequent adverse effects of lithium after 10-20 years of treatment and these alterations can reach to a vasopressin nonresponding form of diabetes insipidus entity called nephrogenic diabetes insipidus. It is believed that the molecular mechanisms of these renal changes are related to a reduction in the number of aquaporin-2 inserted in the apical membrane of the cells. The causes of this are complex. Lithium is a powerful inhibitor of the enzyme glycogen synthase kinase 3β and this is associated with a lower activity of adenylate cyclase with a reduction in the cAMP levels inside of the cells. The latter may interfere with the synthesis of aquaporin-2 and also with the traffic of these molecules from the subapical site to membrane promoting the impairment of water reabsorption in the distal part of the kidney.

  1. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies.

    Science.gov (United States)

    Nicchia, Grazia Paola; Mastrototaro, Mauro; Rossi, Andrea; Pisani, Francesco; Tortorella, Carla; Ruggieri, Maddalena; Lia, Anna; Trojano, Maria; Frigeri, Antonio; Svelto, Maria

    2009-10-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune demyelinating disease of the central nervous system (CNS) which in autoantibodies produced by patients with NMO (NMO-IgG) recognize a glial water channel protein, Aquaporin-4 (AQP4) expressed as two major isoforms, M1- and M23-AQP4, in which the plasma membrane form orthogonal arrays of particles (OAPs). AQP4-M23 is the OAP-forming isoform, whereas AQP4-M1 alone is unable to form OAPs. The function of AQP4 organization into OAPs in normal physiology is unknown; however, alteration in OAP assemblies is reported for several CNS pathological states. In this study, we demonstrate that in the CNS, NMO-IgG is able to pull down both M1- and M23-AQP4 but experiments performed using cells selectively transfected with M1- or M23-AQP4 and native tissues show NMO-IgG epitope to be intrinsic in AQP4 assemblies into OAPs. Other OAP-forming water-channel proteins, such as the lens Aquaporin-0 and the insect Aquaporin-cic, were not recognized by NMO-IgG, indicating an epitope characteristic of AQP4-OAPs. Finally, water transport measurements show that NMO-IgG treatment does not significantly affect AQP4 function. In conclusion, our results suggest for the first time that OAP assemblies are required for NMO-IgG to recognize AQP4. (c) 2009 Wiley-Liss, Inc.

  2. One-step extraction of functional recombinant aquaporin Z from inclusion bodies with optimal detergent.

    Science.gov (United States)

    Wang, Lili; Zhou, Hu; Li, Zhengjun; Lim, Teck Kwang; Lim, Xin Shan; Lin, Qingsong

    2015-11-01

    Aquaporins are integral membrane channel proteins found in all kingdoms of life. The Escherichia coli aquaporin Z (AqpZ) has been shown to solely conduct water at high permeability. Functional AqpZ is generally purified from the membrane fraction. However, the quantity of the purified protein is limited. In this study, a new method is developed to achieve high yield of bioactive AqpZ protein. A mild detergent n-dodecyl-β-D-maltopyranoside (DDM) was used to solubilize the over-expressed insoluble AqpZ from inclusion bodies without a refolding process. The recovered AqpZ protein showed high water permeability comparable with AqpZ obtained from the membrane fraction. In this way, the total yield of bioactive AqpZ has been increased greatly, which will facilitate the structural and functional characterization and future applications of AqpZ.

  3. Elevated cAMP increases aquaporin-3 plasma membrane diffusion

    DEFF Research Database (Denmark)

    Marlar, Saw; Christensen, Eva Arnspang; Koffman, Jennifer Skaarup

    2014-01-01

    Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water ex...

  4. Aquaporin-4 and traumatic brain edema

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; XU Qiu-ping

    2010-01-01

    Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortal-ity following traumatic brain injury as it increases intracra-nial pressure, impairs cerebral perfusion and oxygenation,and contributes to additional ischemic injuries.Classically,two major types of traumatic brain edema exist: "vasogenic"and "cytotoxic/cellular".However, the cellular and molecu-lar mechanisms contributing to the development/resolution of traumatic brain edema are poorly understood and no ef-fective drugs can be used now.Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, pre-dominantly in astrocyte foot processes at the borders be-tween the brain parenchyma and major fluid compartments, including cerebrospinal fluid and blood.This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma.In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma.AQP4 has been proposed as a novel drug target in brain edema.These findings sug-gest that modulation of AQP4 expression or function may be beneficial in traumatic brain edema.

  5. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  6. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?

    Science.gov (United States)

    Hub, Jochen S; Grubmüller, Helmut; de Groot, Bert L

    2009-01-01

    Aquaporins (AQPs) are a family of integral membrane proteins, which facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Molecular dynamics (MD) simulations contributed substantially to the understanding of the molecular mechanisms that underlie this remarkable efficiency and selectivity of aquaporin channels. This chapter reviews the current state of MD simulations of aquaporins and related aquaglyceroporins as well as the insights these simulations have provided. The mechanism of water permeation through AQPs and methods to determine channel permeabilities from simulations are described. Protons are strictly excluded from AQPs by a large electrostatic barrier and not by an interruption of the Grotthuss mechanism inside the pore. Both the protein's electric field and desolvation effects contribute to this barrier. Permeation of apolar gas molecules such as CO(2) through AQPs is accompanied by a large energetic barrier and thus can only be expected in membranes with a low intrinsic gas permeability. Additionally, the insights from simulations into the mechanism of glycerol permeation through the glycerol facilitator GlpF from E. coli are summarized. Finally, MD simulations are discussed that revealed that the aro-matic/arginine constriction region is generally the filter for uncharged solutes, and that AQP selectivity is controlled by a hydrophobic effect and steric restraints.

  7. Students' Conceptions of Water Transport

    Science.gov (United States)

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  8. Water transport in graphene nano-channels

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Oyarzua, Elton; Walther, J. H.

    The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices dueto their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate...... between the chirality of the graphene walls and the slip length has not been established. In this study, we perform non-equilibrium molecular dynamics simulations of water flow in single- and multi-walled GCs. We examine the influence on the flow rates of dissipating the viscous heat produced...... by connecting the thermostat to the water molecules, the CNT wall atoms or both of them. From the atomic trajectories, we compute the fluid flow rates in GCs with zig-zag and armchair walls, heights from 1 to 4 nm and different number of graphene layers on the walls. A relation between the chirality, slip...

  9. Aquaporins-2 and -4 regulate glycogen metabolism and survival during hyposmotic-anoxic stress in Caenorhabditis elegans.

    Science.gov (United States)

    LaMacchia, John C; Roth, Mark B

    2015-07-15

    Periods of oxygen deprivation can lead to ion and water imbalances in affected tissues that manifest as swelling (edema). Although oxygen deprivation-induced edema is a major contributor to injury in clinical ischemic diseases such as heart attack and stroke, the pathophysiology of this process is incompletely understood. In the present study we investigate the impact of aquaporin-mediated water transport on survival in a Caenorhabditis elegans model of edema formation during complete oxygen deprivation (anoxia). We find that nematodes lacking aquaporin water channels in tissues that interface with the surrounding environment display decreased edema formation and improved survival rates in anoxia. We also find that these animals have significantly reduced demand for glycogen as an energetic substrate during anoxia. Together, our data suggest that reductions in membrane water permeability may be sufficient to induce a hypometabolic state during oxygen deprivation that reduces injury and extends survival limits.

  10. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries.

    Directory of Open Access Journals (Sweden)

    Ida Anjomshoaa

    Full Text Available Aquaporins (AQP are water channel proteins and the genes coding for AQP2, AQP5, and AQP6 are clustered in 12q13. Since AQP5 is expressed in serous acinar cells of salivary glands, we investigated its involvement in caries. DNA samples from 1,383 individuals from six groups were studied. Genotypes of eight single nucleotide polymorphisms covering the aquaporin locus were tested for association with caries experience. Interaction with genes involved in enamel formation was tested. The association between enamel microhardness at baseline, after creation of artificial caries lesion, and after exposure to fluoride and the genetic markers in AQP5 was tested. Finally, AQP5 expression in human whole saliva, after exposure to fluoride in a mammary gland cell line, which is known to express AQP5, and in Wistar rats was also verified. Nominal associations were found between caries experience and markers in the AQP5 locus. Since these associations suggested that AQP5 may be inhibited by levels of fluoride in the drinking water that cause fluorosis, we showed that fluoride levels above optimal levels change AQP5 expression in humans, cell lines, and rats. We have shown that AQP5 is involved in the pathogenesis of caries and likely interacts with fluoride.

  11. Role of Aquaporin 0 in lens biomechanics.

    Science.gov (United States)

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  12. Aquaporin-8-facilitated mitochondrial ammonia transport.

    Science.gov (United States)

    Soria, Leandro R; Fanelli, Elena; Altamura, Nicola; Svelto, Maria; Marinelli, Raúl A; Calamita, Giuseppe

    2010-03-05

    Aquaporin-8 (AQP8) is a membrane channel permeable to water and ammonia. As AQP8 is expressed in the inner mitochondrial membrane of several mammalian tissues, we studied the effect of the AQP8 expression on the mitochondrial transport of ammonia. Recombinant rat AQP8 was expressed in the yeast Saccharomyces cerevisiae. The presence of AQP8 in the inner membrane of yeast mitochondria was demonstrated by subcellular fractionation and immunoblotting analysis. The ammonia transport was determined in isolated mitochondria by stopped flow light scattering using formamide as ammonia analog. We found that the presence of AQP8 increased by threefold mitochondrial formamide transport. AQP8-facilitated mitochondrial formamide transport in rat native tissue was confirmed in liver (a mitochondrial AQP8-expressing tissue) vs. brain (a mitochondrial AQP8 non-expressing tissue). Comparative studies indicated that the AQP8-mediated mitochondrial movement of formamide was markedly higher than that of water. Together, our data suggest that ammonia diffusional transport is a major function for mitochondrial AQP8. 2010 Elsevier Inc. All rights reserved.

  13. Hypotonicity-induced Renin exocytosis from juxtaglomerular cells requires aquaporin-1 and cyclooxygenase-2

    DEFF Research Database (Denmark)

    Friis, Ulla G; Madsen, Kirsten; Svenningsen, Per

    2009-01-01

    The mechanism by which extracellular hypotonicity stimulates release of renin from juxtaglomerular (JG) cells is unknown. We hypothesized that osmotically induced renin release depends on water movement through aquaporin-1 (AQP1) water channels and subsequent prostanoid formation. We recorded...... membrane capacitance (C(m)) by whole-cell patch clamp in single JG cells as an index of exocytosis. Hypotonicity increased C(m) significantly and enhanced outward current. Indomethacin, PLA(2) inhibition, and an antagonist of prostaglandin transport impaired the C(m) and current responses to hypotonicity...

  14. Effect of aquaporin-q deletion on pleural fluid transport

    Institute of Scientific and Technical Information of China (English)

    JIANGJin-Jun; HONGQun-Ying; 等

    2003-01-01

    AIM:To investigate the role of aquaporin-1(AQP1)and sodium channel on pleural fluid transport.METHODS:Wild-type and AQP1 null mice were used in this study.After the mice were briefly anesthetized,0.25mL of hyperosmolar or isosmolar solution(containing terbutaline,amiloride or saline only)was infused into the pleural space.Then mice were sacrificed at scheduled times for measurement of pleural fluid osmolality or volume,RESULTS:After instillation of hyperosmolar fluid into the pleural space,the osmolality of pleural fluid in wild-type mice was higher than that in AQP1 null mice killed at the same time(1,2,5min).There was no difference in the isosmolar clearance between the wild-type and AQP1 null mice after injection of 0.25mL isosmolar fluid into the pleural space.Terbutaline increased the osmotic and isosmolar fluid transport across pleura,but these effects were not influenced by AQP1 dfeletion.In contrast,amiloride reduced osmotic and isosmolar pleural fluid transport and these effects were not influenced by AQP1 deletion.CONCLUSION;AQP1 water channels facilitated osmotic fluid transport across the pleural surface,However,AQP1 did not play an important role in pleural isosmolar fluid clearance.Sodium channel may play a role in osmotic and isosmolar pleural fluid transport.The effects of sodium channel on fluid transport across pleural space were not influenced by aquaporin-1 deletion.

  15. Changing water affinity from hydrophobic to hydrophilic in hydrophobic channels.

    Science.gov (United States)

    Ohba, Tomonori; Yamamoto, Shotaro; Kodaira, Tetsuya; Hata, Kenji

    2015-01-27

    The behavior of water at hydrophobic interfaces can play a significant role in determining chemical reaction outcomes and physical properties. Carbon nanotubes and aluminophosphate materials have one-dimensional hydrophobic channels, which are entirely surrounded by hydrophobic interfaces. Unique water behavior was observed in such hydrophobic channels. In this article, changes in the water affinity in one-dimensional hydrophobic channels were assessed using water vapor adsorption isotherms at 303 K and grand canonical Monte Carlo simulations. Hydrophobic behavior of water adsorbed in channels wider than 3 nm was observed for both adsorption and desorption processes, owing to the hydrophobic environment. However, water showed hydrophilic properties in both adsorption and desorption processes in channels narrower than 1 nm. In intermediate-sized channels, the hydrophobic properties of water during the adsorption process were seen to transition to hydrophilic behavior during the desorption process. Hydrophilic properties in the narrow channels for both adsorption and desorption processes are a result of the relatively strong water-channel interactions (10-15 kJ mol(-1)). In the 2-3 nm channels, the water-channel interaction energy of 4-5 kJ mol(-1) was comparable to the thermal translational energy. The cohesive water interaction was approximately 35 kJ mol(-1), which was larger than the others. Thus, the water affinity change in the 2-3 nm channels for the adsorption and desorption processes was attributed to weak water-channel interactions and strong cohesive interactions. These results are inherently important to control the properties of water in hydrophobic environments.

  16. Effects of Proteoliposome Composition and Draw Solution Types on Separation Performance of Aquaporin-Based Proteoliposomes

    DEFF Research Database (Denmark)

    Zhao, Yang; Vararattanavech, Ardcharaporn; Li, Xuesong

    2013-01-01

    Aquaporins are a large family of water transport proteins in cell membranes. Their high water permeability and solute rejection make them potential building blocks for high-performance biomimetic membranes for desalination. In the current study, proteoliposomes were prepared using AquaporinZ from...... dissolved ions in seawater (e.g., Mg2+ and SO42–) on the stability of proteoliposomes, and design criteria for aquaporin-based biomimetic membranes are proposed in the context of desalination....

  17. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes.

    Science.gov (United States)

    Nicchia, Grazia Paola; Frigeri, Antonio; Liuzzi, Grazia Maria; Svelto, Maria

    2003-08-01

    Recent studies indicate a key role of aquaporin (AQP) 4 in astrocyte swelling and brain edema and suggest that AQP4 inhibition may be a new therapeutic way for reducing cerebral water accumulation. To understand the physiological role of AQP4-mediated astroglial swelling, we used 21-nucleotide small interfering RNA duplexes (siRNA) to specifically suppress AQP4 expression in astrocyte primary cultures. Semiquantitative RT-PCR experiments and Western blot analysis showed that AQP4 silencing determined a progressive and parallel reduction in AQP4 mRNA and protein. AQP4 gene suppression determined the appearance of a new morphological cell phenotype associated with a strong reduction in cell growth. Water transport measurements showed that the rate of shrinkage of AQP4 knockdown astrocytes was one-half of that of controls. Finally, cDNA microarray analysis revealed that the gene expression pattern perturbed by AQP4 gene silencing concerned ischemia-related genes, such as GLUT1 and hexokinase. Taken together, these results indicate that 1) AQP4 seems to be the major factor responsible for the fast water transport of cultured astrocytes; 2) as in skeletal muscle, AQP4 is a protein involved in cell plasticity; 3) AQP4 alteration may be a primary factor in ischemia-induced cerebral edema; and 4) RNA interference could be a new potent tool for studying AQP pathophysiology in those organs and tissues where they are expressed.

  18. Aquaporin expression patterns in the developing mouse salivary gland.

    Science.gov (United States)

    Larsen, Helga S; Ruus, Ann-Kristin; Galtung, Hilde Kanli

    2009-12-01

    Little is known about the presence of the various membrane-located water channels, aquaporins (AQP), during the prenatal and postnatal development of the mouse submandibular salivary gland (SMG). To learn more about AQPs in the developing aspect of salivary glands, we investigated trends in the expression patterns of several AQPs using the embryonic, early postnatal, and young adult mouse SMGs as models. We have chosen AQPs previously found in salivary glands in other animals. Transcripts of AQPs 1, 3, 4, 5, and 8 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and quantified. Aquaporin proteins 1, 3, 4, and 5, but not AQP protein 8, were detected and quantified using western blotting. The various AQPs showed distinct transcript and protein-expression patterns. The change in trends may indicate that the importance of the various AQPs varies throughout the developmental stages in the mouse SMG. Their presence might be related to cell adhesion, migration, proliferation, apoptosis, transepithelial transport, osmosensing, or cell volume regulation; all roles that in the literature are linked to the various AQPs. Overall, this study demonstrates that AQP presentation varies and has a specific expression pattern during the development of mouse SMG. This feature may be important for glandular anatomical and physiological development.

  19. Inhibitory effect of topiramate on Lewis lung carcinoma metastasis and its relation with AQP1 water channel

    Institute of Scientific and Technical Information of China (English)

    BingMA; YangXIANG; TaoLI; He-mingYU; Xue-junLI

    2004-01-01

    AIM: To study the effect of topiramate on tumor metastasis and its relation with aquaporin 1 (AQP1) water channel. METHODS: Lewis lung carcinoma metastatic model was used to determine the effect of topiramate on tumor growth and metastasis. Colorimetric estimation was used to investigate the action of topiramate on carbonic anhydrase (CA) activity. Western blotting and immunohistochemical analysis were used to study the influence of topiramate on AQP1 water channel expression in lungs or tumor tissues of mice bearing Lewis lung carcinoma.RESULTS: Treatment with topiramate (120 mg.kg-1.d-1, ig for 20 d) reduced the growth of primary tumor signifi-cantly (P<0.05). Its inhibitory rate of metastasis was 81.25 %. Topiramate inhibited CA activity in lungs of mice in a dose-dependent manner. Topiramate apparently decreased AQP1 protein expression and immunostaining in lungs or in tumor microvessel endothelial cells of mice. CONCLUSION: Suppression of AQP1 water channel expression may be an important pathway for the inhibitory effect of topiramate on tumor metastasis.

  20. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    Science.gov (United States)

    Turgeman, Tidhar; Shatil-Cohen, Arava; Moshelion, Menachem; Teper-Bamnolker, Paula; Skory, Christopher D; Lichter, Amnon; Eshel, Dani

    2016-01-01

    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  1. Altered aquaporin expression in glaucoma eyes

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten

    2014-01-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5......, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure...... of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased...

  2. Coastal Maintained Channels in US waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  3. Expression and function of aquaporins in peripheral nervous system

    Institute of Scientific and Technical Information of China (English)

    Tong-hui MA; Hong-wen GAO; Xue-dong FANG; Hong YANG

    2011-01-01

    The expression and role of the aquaporin (AQP) family water channels in the peripheral nervous system was less investigated. Since 2004, however, significant progress has been made in the immunolocalization, regulation and function of AQPs in the peripheral nervous system. These studies showed selective localization of three AQPs (AQP1, AQP2, and AQP4) in dorsal root ganglion neurons,enteric neurons and glial cells, periodontal Ruffini endings, trigeminal ganglion neurons and vomeronasal sensory neurons. Functional characterization in transgenic knockout mouse model revealed important role of AQP1 in pain perception. This review will summarize the progress in this field and discuss possible involvement of AQPs in peripheral neuropathies and their potential as novel drug targets.

  4. Novel vasotocin-regulated aquaporins expressed in the ventral skin of semiaquatic anuran amphibians: evolution of cutaneous water-absorbing mechanisms.

    Science.gov (United States)

    Saitoh, Yasunori; Ogushi, Yuji; Shibata, Yuki; Okada, Reiko; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-06-01

    Until now, it was believed that only one form of arginine vasotocin (AVT)-regulated aquaporin (AQP) existed to control water absorption from the ventral skin of semiaquatic anuran amphibians, eg, AQP-rj3(a) in Rana japonica. In the present study, we have identified a novel form of ventral skin-type AQP, AQP-rj3b, in R. japonica by cDNA cloning. The oocyte swelling assay confirmed that AQP-rj3b can facilitate water permeability. Both AQP-rj3a and AQP-rj3b were expressed abundantly in the ventral hindlimb skin and weakly in the ventral pelvic skin. For the hindlimb skin, water permeability was increased in response to AVT, although the hydroosmotic response was not statistically significant in the pelvic skin. Isoproterenol augmented water permeability of the hindlimb skin, and the response was inhibited by propranolol. These events were well correlated with the intracellular trafficking of the AQPs. Immunohistochemistry showed that both AQP-rj3 proteins were translocated from the cytoplasmic pool to the apical membrane of principal cells in the first-reacting cell layer of the hindlimb skin after stimulation with AVT and/or isoproterenol. The type-b AQP was also found in R. (Lithobates) catesbeiana and R. (Pelophylax) nigromaculata. Molecular phylogenetic analysis indicated that the type-a is closely related to ventral skin-type AQPs from aquatic Xenopus, whereas the type-b is closer to the AQPs from terrestrial Bufo and Hyla, suggesting that the AQPs from terrestrial species are not the orthologue of the AQPs from aquatic species. Based on these results, we propose a model for the evolution of cutaneous water-absorbing mechanisms in association with AQPs.

  5. Automated cell-based assay for screening of aquaporin inhibitors.

    Science.gov (United States)

    Mola, Maria Grazia; Nicchia, Grazia Paola; Svelto, Maria; Spray, David C; Frigeri, Antonio

    2009-10-01

    Aquaporins form water channels that play major roles in a variety of physiological processes so that altered expression or function may underlie pathological conditions. In order to identify compounds that modulate aquaporin function, we have implemented a functional assay based on rapid measurement of osmotically induced cell volume changes to screen several libraries of diverse drugs. The time course of fluorescence changes in calcein-loaded cells was analyzed during an osmotic challenge using a 96-multiwell fluorescence plate reader. This system was validated using astrocyte primary cultures and fibroblasts that strongly express endogenous AQP4 and AQP1 proteins, respectively, as well as AQP4-transfected cells. We screened 3575 compounds, including 418 FDA-approved and commercially available drugs, for their effect on AQP-mediated water transport. Primary screening yielded 10 compounds that affected water transport activity in both astrocytes and AQP4-transfected cells and 42 compounds that altered cell volume regulation in astrocytes. Selected drugs were then analyzed on AQP1-expressing erythrocytes and AQP4-expressing membrane vesicles by stopped-flow light scattering. Four molecules of the National Cancer Institute's chemical library (NSC164914, NSC670229, NSC168597, NSC301460) were identified that differentially affected both AQP4 and AQP1 mediated water transport, with EC50 values between 20 and 50 microM. This fluorescence microplate reader-based assay may, thus, provide a platform for high-throughput screening which, when coupled to a secondary evaluation to confirm target specificity, should allow discovery of AQP-specific compounds for novel therapeutic strategies in the treatment of water balance disorders.

  6. Water hardness influences Flavobacterium columnare pathogenesis in channel catfish

    Science.gov (United States)

    Studies were conducted to determine aspects of water chemistry responsible for large differences in pathogenesis and mortality rates in challenges of channel catfish Ictalurus punctatus with Flavobacterium columnare; challenges were conducted in water supplying the Stuttgart National Aquaculture Res...

  7. Tonoplast Aquaporins Facilitate Lateral Root Emergence.

    Science.gov (United States)

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée; Beebo, Azeez; Swarup, Kamal; Voß, Ute; Bouhidel, Karim; Frigerio, Lorenzo; Schjoerring, Jan K; Bennett, Malcolm J; Chaumont, Francois

    2016-03-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.

  8. The discovery by Gh. Benga of the first water channel protein in 1985 in Cluj-Napoca, Romania, A few years before P. Agre (2003 Nobel Prize in Chemistry).

    Science.gov (United States)

    Cucuianu, M

    2006-01-01

    The first water channel protein, now called aquaporin 1, was identified or "seen" in situ in the human red blood cell membrane by Benga's group in 1985. It was again "seen" when it was by chance purified by Agre'group in 1988 and was again identified when its main feature, the water transport property, was found by Agre's group in 1992. Consequently, the omission of Gh. Benga from the 2003 Nobel Prize in Chemistry (half of which was awarded to P. Agre "for the discovery of the water channels") is a new mistake in the award of Nobel Prizes. The growing recognition of the priority of Gh. Benga over P. Agre in the discovery of water channels is documented in this paper.

  9. Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion

    DEFF Research Database (Denmark)

    Wree, Dorothea; Wu, Binghua; Zeuthen, Thomas

    2011-01-01

    Two highly conserved NPA motifs are a hallmark of the aquaporin (AQP) family. The NPA triplets form N-terminal helix capping structures with the Asn side chains located in the centre of the water or solute-conducting channel, and are considered to play an important role in AQP selectivity. Although...... another AQP selectivity filter site, the aromatic/Arg (ar/R) constriction, has been well characterized by mutational analysis, experimental data concerning the NPA region--in particular, the Asn position--is missing. Here, we report on the cloning and mutational analysis of a novel aquaglyceroporin...

  10. Experimental studies toward the characterization of Inmetro's circulating water channel

    Science.gov (United States)

    Santos, A. M.; Alho, A. T. P.; Garcia, D. A.; Farias, M. H.; Massari, P. L.; Silva, V. V. S.

    2016-07-01

    Circulating water channels are facilities which can be used for conducting environmental, metrological and engineering studies. The Brazilian National Institute of Metrology-INMETRO has a water channel of innovative design, and the present work deals with the prior experimental investigation of its hydrodynamics performance. By using the optical technique PIV - Particle Image Velocimetry, under certain conditions, the velocity profile behavior in a region inside the channel was analyzed in order to evaluate the scope of applicability of such bench.

  11. Identification of resonance waves in open water channels

    Science.gov (United States)

    This article presents a procedure to determine the characteristics of open water channels required for controller and filter design, with special focus on the resonance waves. Also, a new simplified model structure for open water channels is proposed. The procedure applies System Identification tool...

  12. Role of aquaporins in lung water transport%肺组织水转运中水通道蛋白的作用及调控

    Institute of Scientific and Technical Information of China (English)

    章怡苇; 田鲲; 刘溪; 王爱忠

    2015-01-01

    Background Water transport occurs mainly in the lung tissue between alveolar and interstitial spaces.Water transport system in alveolar epithelial cells consists of the Na+-K+-ATPase and aquaporin (AQP).AQPs are members of intrinsic membrane proteins which can facilitate the transport of water across membranes.Objective To systematically summarize the role and regulation of AQPs in lung water transport.Content Studies have reported that AQPs facilitate water transport through the alveolar epithelium which plays an important role in water balance physiologically and pathologically in respiratory system.Currently six types of AQPs are expressed in the lungs,i.e.,AQP1,AQP3,AQP4,AQP5,AQP8,and AQP9,and can be regulated by many factors.The short-and long-term regulation regulation of lung water transport by AQP will be discussed.Trend Research into the effect of AQPs in lung water transport is still ongoing,which may provide new thoughts for clinical therapy of acute pulmonary edema in future.%背景 肺组织的水转运主要发生在肺泡与肺间质之间.肺泡上皮细胞的水转运系统由Na+-K+-ATP酶和水通道蛋白(aquaporin,AQP)等组成.AQP是内在膜蛋白家族的成员之一,是一种水分跨膜运输的功能性通道蛋白,广泛存在于动物和植物细胞中.目的 了解AQP在肺组织水转运中的作用及其表达调控的影响因素.内容 AQP通过肺泡上皮促进水转运并且无论在生理或病理状态下均对呼吸系统水的平衡起重要作用.目前发现肺有6种AQPs表达,即AQP1、AQP3、AQP4、AQP5 、AQP8和AQP9.AQPs对水的通透性和蛋白表达水平受到许多因素的调节,调节方式包括短期调节和长期调节等.趋向 关于AQP在肺组织水转运中的作用及其表达调控影响因素的研究仍在探索与讨论中,为临床上治疗急性肺水肿等疾病提供了新思路.

  13. Aquaporin-1: new developments and perspectives for peritoneal dialysis.

    Science.gov (United States)

    Devuyst, Olivier; Yool, Andrea J

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transport and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the model of peritoneal transport. Proof-of-principle studies have shown that upregulation of the expression of AQP1 in peritoneal capillaries results in increased water permeability and ultrafiltration, without affecting the osmotic gradient or small solute permeability. Conversely, studies in Aqp1 mice have shown that haplo-insufficiency for AQP1 results in significant attenuation of water transport. Recent studies have demonstrated that AQP1 is involved in the migration of different cell types, including endothelial cells. In parallel, chemical screening has identified lead compounds that could act as antagonists or agonists of AQPs, with description of putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states.

  14. Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas.

    Science.gov (United States)

    Zhang, Ying; Wang, Yunxiao; Jiang, Luding; Xu, Ying; Wang, Yingchun; Lu, Daihua; Chen, Fang

    2007-10-01

    Water channel proteins, aquaporins, play fundamental roles in transmembrane water movements in plants. A new full-length cDNA encoding aquaporin was isolated from the seedlings of Jatropha curcas. The gene of the plasma membrane intrinsic protein (PIP) from J. curcas (JcPIP2) contained an 843 bp open reading frame encoding a protein of 280 amino acids. The amino acid sequence showed 94% identity with Ricinus communis PIP. Injection of JcPIP2 complementary RNA into Xenopus oocytes increased 10-fold the osmotic water permeability of the oocytes. Immunodetection of JcPIP2 with anti-JcPIP2 antibody indicated that this protein is ubiquitously located in all tested tissues of the plant. To investigate the relationship between aquaporins and drought resistance in J. curcas, the abundance of JcPIP2 was examined in seedlings of two J. curcas populations, GaoYou CSC63 and YanBian S1, under water deficit with PEG6000. Under field conditions, those two populations, GaoYou CSC63 was resistant to water deficit, but YanBian S1 was sensitive to water deprivation. With the increasing degree of drought stress, JcPIP2 level increased in seedlings of GaoYou CSC63, whereas there was no significant change in seedlings of YanBian S1. Compared with YanBian S1, GaoYou CSC63 also showed higher root hydraulic conductivity and lower decreasing trend in the seedlings under water deficit. These results indicated that JcPIP2 probably played a role in drought resistance in J. curcas.

  15. Aquaporin JcPIP2 is Involved in Drought Responses in Jatropha curcas

    Institute of Scientific and Technical Information of China (English)

    Ying ZHANG; Yunxiao WANG; Luding JIANG; Ying XU; Yingchun WANG; Daihua LU; Fang CHEN

    2007-01-01

    Water channel proteins, aquaporins, play fundamental roles in transmembrane water movements in plants. A new full-length cDNA encoding aquaporin was isolated from the seedlings of Jatropha curcas.The gene of the plasma membrane intrinsic protein (PIP) from J. curcas (JcPIP2) contained an 843 bp open reading frame encoding a protein of 280 amino acids. The amino acid sequence showed 94% identity with Ricinus communis PIP. Injection of JcPIP2 complementary RNA into Xenopus oocytes increased 10-fold the osmotic water permeability of the oocytes. Immunodetection of JcPIP2 with anti-JcPIP2 antibody indicated that this protein is ubiquitously located in all tested tissues of the plant. To investigate the relationship between aquaporins and drought resistance in J. curcas, the abundance of JcPIP2 was examined in seedlings of two J. curcas populations, Gao You CSC63 and YanBian S1, under water deficit with PEG6000. Under field conditions, those two populations, Gao You CSC63 was resistant to water deficit, but YanBian S1 was sensitive to water deprivation. With the increasing degree of drought stress, JcPIP2 level increased in seedlings of Gao You CSC63, whereas there was no significant change in seedlings of YanBian S1. Compared with YanBian S1, GaoYou CSC63 also showed higher root hydraulic conductivity and lower decreasing trend in the seedlings under water deficit. These results indicated that JcPIP2 probably played a role in drought resistance in J. curcas.

  16. Water transport into bile and role in bile formation.

    Science.gov (United States)

    Calamita, Giuseppe; Ferri, Domenico; Gena, Patrizia; Liquori, Giuseppa E; Marinelli, Raúl A; Meyer, Giuliano; Portincasa, Piero; Svelto, Maria

    2005-06-01

    Formation of bile and generation of bile flow are driven by the active secretion of bile salts (BS), lipids and electrolytes into the canalicular and bile duct lumens followed by the osmotic movement of water. Although the transporting proteins involved in solute secretion have been cloned and their coordinated interplay defined both in health and disease, boosted by the discovery of the aquaporin water channels, only recently has considerable attention been addressed to the mechanism by which water, the major component of bile (> 95%), moves across the hepatobiliary epithelia. This review summarizes the novel acquisitions in liver membrane water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Emerging evidences suggesting involvement of aquaporins in the metabolic homeostasis of the hepatobiliary tract are also discussed.

  17. Aquaporin-10 represents an alternative pathway for glycerol efflux from human adipocytes.

    Directory of Open Access Journals (Sweden)

    Umberto Laforenza

    Full Text Available BACKGROUND: Glycerol outflow from adipocytes has been considered for a decade to be mediated by aquaporin-7, an aquaglyceroporin highly expressed in the adipose tissue. Its involvement in glycerol metabolism has been widely studied also in humans. Recent studies in different aquaporin-7 KO mice models pose two different questions 1 the exact localization of aquaporin-7 in human white adipose tissue; 2 the existence of other aquaglyceroporins that work with aquaporin-7 to guarantee glycerol efflux and thus a normal adiposity in humans. To this purpose we investigated the expression, the localization and the functioning of aquaglyceroporin-10 in subcutaneous white adipose tissue, in isolated and cultured differentiated adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Aquaporin-7 and -10 were expressed in the white adipose tissue both at mRNA and at protein level. Immunofluorescence revealed aquaporin-7 and -10 labelling in the human adipose tissue both to the plasma membrane and to a thin rim of cytoplasm of adipocytes. Aquaporin-7, but not aquaporin-10, colocalized with the endothelial marker CD34. Human cultured differentiated adipocytes showed an aquaporin-7 and -10 labelling mainly in the cytoplasm and in the lipid droplets with insulin reinforcing the lipid droplets staining and isoproterenol inducing its translocation to the plasma membrane compartment. Water and glycerol permeability measurements using adipocytes and adipose membrane vesicles confirmed the presence of functioning aquaglyceroporins. Aquaporin-10 silencing in human differentiated adipocytes resulted in a 50% decrease of glycerol and osmotic water permeability. CONCLUSIONS/SIGNIFICANCE: The results indicate that aquaporin-7, differently from mice, is present in both adipocyte and capillary plasma membranes of human adipose tissue. Aquaporin-10, on the contrary, is expressed exclusively in the adipocytes. The expression of two aquaglyceroporins in human adipose tissue is

  18. Extracellular GTP is a potent water-transport regulator via aquaporin 5 plasma-membrane insertion in M1-CCD epithelial cortical collecting duct cells.

    Science.gov (United States)

    Mancinelli, Rosa; La Rovere, Rita Maria Laura; Fulle, Stefania; Miscia, Sebastiano; Marchisio, Marco; Pierdomenico, Laura; Lanuti, Paola; Procino, Giuseppe; Barbieri, Claudia; Svelto, Maria; Fanò-Illic, Giorgio; Pietrangelo, Tiziana

    2014-01-01

    Extracellular GTP is able to modulate some specific functions in neuron, glia and muscle cell models as it has been demonstrated over the last two decades. In fact, extracellular GTP binds its specific plasma membrane binding sites and induces signal transduction via [Ca(2+)]i increase. We demonstrate, for the first time, that extracellular GTP is able to modulate cell swelling in M1-CCD cortical collecting duct epithelial cells via upregulation of aquaporin 5 (AQP5) expression. We used videoimaging, immunocitochemistry, flow cytometry, confocal techniques, Western blotting and RT-PCR for protein and gene expression analysis, respectively. We demonstrate that AQP5 mRNA is up-regulated 7 h after the GTP exposure in the cell culture medium, and its protein level is increased after 12-24 h. We show that AQP5 is targeted to the plasma membrane of M1-CCD cells, where it facilitates cell swelling, and that the GTP-dependent AQP5 up-regulation occurs via [Ca(2+)]i increase. Indeed, GTP induces both oscillating and transient [Ca(2+)]i increase, and specifically the oscillating kinetic appears to be responsible for blocking cell cycle in the S-phase while the [Ca(2+)]i influx, with whatever kinetic, seems to be responsible for inducing AQP5 expression. The role of GTP as a regulator of AQP5-mediated water transport in renal cells is of great importance in the physiology of renal epithelia, due to its possible physiopathological implications. GTP-dependent AQP5 expression could act as osmosensor. In addition, the data presented here suggest that GTP might play the same role in other tissues where rapid water transport is required for cell volume regulation and maintenance of the homeostasis. © 2014 S. Karger AG, Basel.

  19. Extracellular GTP is a Potent Water-Transport Regulator via Aquaporin 5 Plasma-Membrane Insertion in M1-CCD Epithelial Cortical Collecting Duct Cells

    Directory of Open Access Journals (Sweden)

    Rosa Mancinelli

    2014-03-01

    Full Text Available Background/Aims: Extracellular GTP is able to modulate some specific functions in neuron, glia and muscle cell models as it has been demonstrated over the last two decades. In fact, extracellular GTP binds its specific plasma membrane binding sites and induces signal transduction via [Ca2+]i increase. We demonstrate, for the first time, that extracellular GTP is able to modulate cell swelling in M1-CCD cortical collecting duct epithelial cells via upregulation of aquaporin 5 (AQP5 expression. Methods: We used videoimaging, immunocitochemistry, flow cytometry, confocal techniques, Western blotting and RT-PCR for protein and gene expression analysis, respectively. Results: We demonstrate that AQP5 mRNA is up-regulated 7 h after the GTP exposure in the cell culture medium, and its protein level is increased after 12-24 h. We show that AQP5 is targeted to the plasma membrane of M1-CCD cells, where it facilitates cell swelling, and that the GTP-dependent AQP5 up-regulation occurs via [Ca2+]i increase. Indeed, GTP induces both oscillating and transient [Ca2+]i increase, and specifically the oscillating kinetic appears to be responsible for blocking cell cycle in the S-phase while the [Ca2+]i influx, with whatever kinetic, seems to be responsible for inducing AQP5 expression. Conclusion: The role of GTP as a regulator of AQP5-mediated water transport in renal cells is of great importance in the physiology of renal epithelia, due to its possible physiopathological implications. GTP-dependent AQP5 expression could act as osmosensor. In addition, the data presented here suggest that GTP might play the same role in other tissues where rapid water transport is required for cell volume regulation and maintenance of the homeostasis.

  20. Downregulation of aquaporin-1 in alveolar microvessels in lungs adapted to chronic heart failure

    DEFF Research Database (Denmark)

    Müllertz, Katrine M; Strøm, Claes; Trautner, Simon

    2011-01-01

    The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1 as a mol......The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1...... as a molecular determinant of pulmonary microvascular water transport. The present study examined the abundance and localization of AQP1 in lungs from rats with CHF. We used two different models of CHF: ligation of the left anterior descending coronary artery (LAD ligation) and aorta-banding (AB). Sham......-operated rats served as controls. Echocardiographic verification of left ventricular dysfunction, enhanced left ventricular end-diastolic pressure, and right ventricular hypertrophy confirmed the presence of CHF. Western blotting of whole-lung homogenates revealed significant downregulation of AQP1 in LAD...

  1. A molecular understanding of the dynamic mechanism of aquaporin osmosis

    CERN Document Server

    Shua, Liangsuo; Qian, Xin; Wanga, Xiyun; Lin, Yixin; Tan, Kai; Shu, Chaohui; Jin, Shiping

    2014-01-01

    AQPs (aquaporins), the rapid water channels of cells, play a key role in maintaining osmotic equilibrium of cells. In this paper, we reported the dynamic mechanism of AQP osmosis at the molecular level. A theoretical model based on molecular dynamics was carried out and verified by the published experimental data. The reflection coefficients ({\\sigma}) of neutral molecules are mainly decided by their relative size with AQPs, and increase with a third power up to a constant value 1. This model also indicated that the reflection coefficient of a complete impermeable solute can be smaller than 1. The H+ concentration of solution can influence the driving force of the AQPs by changing the equivalent diameters of vestibules surrounded by loops with abundant polar amino acids. In this way, pH of solution can regulate water permeability of AQPs. Therefore, an AQP may not only work as a switch to open or close, but as a rapid response molecular valve to control its water flow. The vestibules can prevent the channel b...

  2. Erosional processes in channelized water flows on Mars

    Science.gov (United States)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  3. Channel morphology effect on water transport through graphene bilayers

    Science.gov (United States)

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  4. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney.

    Directory of Open Access Journals (Sweden)

    Andrea Gerbino

    Full Text Available Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2 activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl--dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic.

  5. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney.

    Science.gov (United States)

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl--dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic.

  6. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  7. Acoustic MIMO Communications in a Very Shallow Water Channel

    Institute of Scientific and Technical Information of China (English)

    Yuehai Zhou; Xiuling Cao; Feng Tong

    2015-01-01

    Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  8. Altered aquaporin expression in glaucoma eyes.

    Science.gov (United States)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten; Nielsen, Søren; Prause, Jan Ulrik; Hamann, Steffen; Heegaard, Steffen

    2014-09-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression in the Müller cell endfeet. In the ciliary body of glaucoma eyes, the expression of AQP7 and AQP9 was reduced. Therefore, the expression of AQPs seems to play a role in glaucoma.

  9. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.

    Science.gov (United States)

    Song, Jinsuk; Han, Oc Hee; Han, Songi

    2015-03-16

    Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs.

  10. Pollen Aquaporins: The Solute Factor

    Science.gov (United States)

    Pérez Di Giorgio, Juliana A.; Soto, Gabriela C.; Muschietti, Jorge P.; Amodeo, Gabriela

    2016-01-01

    In the recent years, the biophysical properties and presumed physiological role of aquaporins (AQPs) have been expanded to specialized cells where water and solute exchange are crucial traits. Complex but unique processes such as stomatal movement or pollen hydration and germination have been addressed not only by identifying the specific AQP involved but also by studying how these proteins integrate and coordinate cellular activities and functions. In this review, we referred specifically to pollen-specific AQPs and analyzed what has been assumed in terms of transport properties and what has been found in terms of their physiological role. Unlike that in many other cells, the AQP machinery in mature pollen lacks plasma membrane intrinsic proteins, which are extensively studied for their high water capacity exchange. Instead, a variety of TIPs and NIPs are expressed in pollen. These findings have altered the initial understanding of AQPs and water exchange to consider specific and diverse solutes that might be critical to sustaining pollen’s success. The spatial and temporal distribution of the pollen AQPs also reflects a regulatory mechanism that allowing a properly adjusting water and solute exchange. PMID:27881985

  11. Non-invasive imaging using reporter genes altering cellular water permeability

    Science.gov (United States)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-12-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  12. Model studies of dense water overflows in the Faroese Channels

    Science.gov (United States)

    Cuthbertson, Alan; Davies, Peter; Stashchuk, Nataliya; Vlasenko, Vasiliy

    2014-01-01

    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with

  13. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    Science.gov (United States)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  14. Aquaporin-2 excretion in hospitalized patients with cirrhosis

    DEFF Research Database (Denmark)

    Busk, Troels M; Møller, Søren; Pedersen, Erling B.

    2017-01-01

    Background and Aim: Urinary aquaporin-2 (AQP2) is a parameter of water transport in the principal cells in the distal part of the nephron and involved in water retention in cirrhosis and may be a marker of renal function. The aim of the study was to evaluate AQP2 as a predictor of renal insuffici...

  15. Population Shift between the Open and Closed States Changes the Water Permeability of an Aquaporin Z Mutant

    DEFF Research Database (Denmark)

    Xin, Lin; Helix Nielsen, Claus; Su, Haibin;

    2012-01-01

    gate in the triple mutant with R189 as the primary steric gate in both mutant and WT AqpZ. The double gates (R189 and W43-F183) result in a high population of the closed conformation in the mutant. Occasionally an open state, with diffusive water permeability very close to that of WT AqpZ, was observed...

  16. Relationship between Aging-Related Skin Dryness and Aquaporins

    Directory of Open Access Journals (Sweden)

    Nobutomo Ikarashi

    2017-07-01

    Full Text Available Skin function deteriorates with aging, and the dermal water content decreases. In this study, we have analyzed the mechanism of aging-related skin dryness focusing on aquaporins (AQPs, which are the water channels. Mice aged 3 and 20 months were designated as young and aged mice, respectively, to be used in the experiments. No differences were observed in transepidermal water loss between the young mice and aged mice. However, the dermal water content in aged mice was significantly lower than that in young mice, thus showing skin dryness. The expression of AQP1, AQP3, AQP4, AQP7, and AQP9 was observed in the skin. All the mRNA expression levels of these AQPs were significantly lower in aged mice. For AQP3, which was expressed dominantly in the skin, the protein level was lower in aged mice than in young mice. The results of the study showed that the expression level of AQPs in the skin decreased with aging, suggesting the possibility that this was one of the causes of skin dryness. New targets for the prevention and treatment of aging-related skin dryness are expected to be proposed when the substance that increases the expression of AQP3 is found.

  17. Nuclear Receptor Regulation of Aquaporin-2 in the Kidney

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhang

    2016-07-01

    Full Text Available Aquaporin-2 (AQP2 is a vasopressin-regulated water channel responsible for regulating water reabsorption through the apical plasma membrane of the principal cells of renal collecting ducts. It has been found that dysregulation and dysfunction of AQP2 cause many disorders related to water balance in people and animals, including polyuria and dilutional hyponatremia. Classically, AQP2 mRNA and protein expression and its membrane translocation are regulated by systemic vasopressin involving short-term regulation of AQP2 trafficking to and from the apical plasma membrane and long-term regulation of the total amount of the AQP2 protein in the cell. Recently, increasing evidence has demonstrated that collecting duct AQP2 expression and membrane translocation are also under the control of many other local factors, especially nuclear receptors. Here, we briefly review the progress of studies in this area and discuss the role of nuclear receptors in the regulation of water reabsorption via affecting AQP2 expression and function.

  18. PTHrP regulates water absorption and aquaporin expression in the intestine of the marine sea bream (Sparus aurata, L.).

    Science.gov (United States)

    Carvalho, Edison S M; Gregório, Sílvia F; Canário, Adelino V M; Power, Deborah M; Fuentes, Juan

    2015-03-01

    Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) or the phospholipase C inhibitor (U73122, 10 μmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 μmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key

  19. Molecular dynamics simulations of water within models of ion channels.

    Science.gov (United States)

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-04-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.

  20. Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots.

    Science.gov (United States)

    Nguyen, Minh Xuan; Moon, Sunok; Jung, Ki-Hong

    2013-10-01

    The world population continually faces challenges of water scarcity for agriculture. A common strategy called water-balance control has evolved to adapt plant growth to these challenges. Aquaporins are a family of integral membrane proteins that play a central role in water-balance control. In this study, we identified 34 members of the rice aquaporin gene family, adding a novel member to the previous list. A combination of phylogenetic tree and anatomical meta-expression profiling data consisting of 983 Affymetrix arrays and 209 Agilent 44 K arrays was used to identify tissue-preferred aquaporin genes and evaluate functional redundancy among aquaporin family members. Eight aquaporins showed root-preferred expression in the vegetative growth stage, while 4 showed leaf/shoot-preferred expression. Integrating stress-induced expression patterns into phylogenetic tree and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that 3 rice aquaporin genes were markedly downregulated and 4 were upregulated by water deficiency in the root, suggesting that these candidate genes are key regulators of water uptake from the soil. Finally, we constructed a functional network of genes mediated by water stress and refined the network by confirming the differential expression using RT-PCR and real-time PCR. Our data will be useful to elucidate the molecular mechanism of water-balance control in rice root.

  1. Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality.

    Science.gov (United States)

    Prieto-Martínez, Noelia; Vilagran, Ingrid; Morató, Roser; Rodríguez-Gil, Joan E; Yeste, Marc; Bonet, Sergi

    2016-04-01

    Aquaporins (AQPs) are integral membrane water channels that allow transport of water and small solutes across cell membranes. Although water permeability is known to play a critical role in mammalian cells, including spermatozoa, little is known about their localisation in boar spermatozoa. Two aquaporins, AQP7 and AQP11, in boar spermatozoa were identified by western blotting and localised through immunocytochemistry analyses. Western blot results showed that boar spermatozoa expressed AQP7 (25kDa) and AQP11 (50kDa). Immunocytochemistry analyses demonstrated that AQP7 was localised in the connecting piece of boar spermatozoa, while AQP11 was found in the head and mid-piece and diffuse labelling was also seen along the tail. Despite differences in AQP7 and AQP11 content between boar ejaculates, these differences were not found to be correlated with sperm quality in the case of AQP7. Conversely, AQP11 content showed a significant correlation (Psperm membrane integrity and fluidity and sperm motility. In conclusion, boar spermatozoa express AQP7 and AQP11, and the amounts of AQP11 but not those of AQP7 are correlated with sperm motility and membrane integrity.

  2. Increased expression of aquaporin-4 in brain tissue of amygdala-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Yinghui Chen; Yongbo Zhao

    2011-01-01

    Recurrent epileptic seizures can lead to brain edema, indicating that water regulation may be perturbed by seizures.We hypothesized that the expression of the brain water channel aquaporin-4 (AQP-4) may be upregulated in the epileptic brain.In the present study, we established the amygdala kindling model of epilepsy, and quantified AQP-4 protein and mRNA levels, using reverse transcription-PCR, immunohistochemistry and western blotting, in epileptic and control rats.We found that AQP-4 was overexpressed in the cerebral cortex of rats with epilepsy compared with controls.These findings show that AQP-4 is highly expressed in the brain of amygdala-kindled rats, suggesting that repeated seizures affect water homeostasis in the brain.

  3. Simple and inexpensive hardware and software method to measure volume changes in Xenopus oocytes expressing aquaporins.

    Science.gov (United States)

    Dorr, Ricardo; Ozu, Marcelo; Parisi, Mario

    2007-04-15

    Water channels (aquaporins) family members have been identified in central nervous system cells. A classic method to measure membrane water permeability and its regulation is to capture and analyse images of Xenopus laevis oocytes expressing them. Laboratories dedicated to the analysis of motion images usually have powerful equipment valued in thousands of dollars. However, some scientists consider that new approaches are needed to reduce costs in scientific labs, especially in developing countries. The objective of this work is to share a very low-cost hardware and software setup based on a well-selected webcam, a hand-made adapter to a microscope and the use of free software to measure membrane water permeability in Xenopus oocytes. One of the main purposes of this setup is to maintain a high level of quality in images obtained at brief intervals (shorter than 70 ms). The presented setup helps to economize without sacrificing image analysis requirements.

  4. Strain Engineering Water Transport in Graphene Nano-channels

    CERN Document Server

    Xiong, Wei; Ma, Ming; Xu, Zhiping; Sheridan, John; Zheng, Quanshui

    2011-01-01

    Using equilibrium and non-equilibrium molecular dynamic (MD) simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nano-channels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nano-channel devices.

  5. 水通道蛋白与高等植物的耐盐性%Aquaporins and Salt Tolerance of Higher Plants

    Institute of Scientific and Technical Information of China (English)

    师恭曜; 王玉美; 华金平

    2012-01-01

    Aquaporins ( AQPs) is one of the largest superfamily of channel proteins in plants,where they facilitate the transport of water and/or small neutral solutes or gases. A wide range of regulation properties,such as translational regulation,gating mechanism,heterotetramerization and sub-cellular localization,make aquaporins a large contribution to membrane hydraulic conductance,which plays an important role in controlling water absorbing and transporting in plants. Osmotic stress,ion toxicity,active oxygen and other stresses induced by salinity severely affect plant growth and development. Plant aquaporins are integrated throughout the adaptations to salinity. The functional characteristics of plant aquaporins,injury forms of salt stress on plants,and roles of aquaporins helping the plant in combating salt stress were reviewed. And the study in plant aquaporins and feasibility in improving plant salt tolerance by rational use of aquaporins were proposed.%水通道蛋白是一类特异的、高效转运水及其它小分子底物的整合膜蛋白,在植物中具有丰富的亚型.水通道蛋白通过转录调控、门控机制、聚合调控、重新定位等多种活性调控方式影响细胞膜系统的通透性,参与调节植物的水分吸收和运输.盐害引起渗透胁迫、离子毒害、活性氧胁迫,影响植物生长;水通道蛋白通过多种调控方式,全程参与植物的盐胁迫应答.结合水通道蛋白的功能特征及盐胁迫对高等植物的影响,综述了水通道蛋白在植物盐胁迫应答过程中的功能,并探讨了水通道蛋白研究的重点方向.

  6. Aquaporins as potential drug targets

    Institute of Scientific and Technical Information of China (English)

    Fang WANG; Xue-chao FENG; Yong-ming LI; Hong YANG; Tong-hui MA

    2006-01-01

    The aquaporins (AQP) are a family of integral membrane proteins that selectively transport water and,in some cases,small neutral solutes such as glycerol and urea.Thirteen mammalian AQP have been molecularly identified and localized to various epithelial,endothelial and other tissues.Phenotype studies of transgenic mouse models of AQP knockout,mutation,and in some cases humans with AQP mutations have demonstrated essential roles for AQP in mammalian physiology and pathophysiology,including urinary concentrating function,exocrine glandular fluid secretion,brain edema formation,regulation of intracranial and intraocular pressure,skin hydration,fat metabolism,tumor angiogenesis and cell migration.These studies suggest that AQP may be potential drug targets for not only new diuretic reagents for various forms of pathological water retention,but also targets for novel therapy of brain edema,inflammatory disease,glaucoma,obesity,and cancer.However,potent AQP modulators for in vivo application remain to be discovered.

  7. Metal ion toxins and brain aquaporin-4 expression: an overview

    Directory of Open Access Journals (Sweden)

    Adriana eXimenes-Da-Silva

    2016-06-01

    Full Text Available Metal ions such as iron, zinc, and manganese are essential to metabolic functions, protein synthesis, neurotransmission, and antioxidant neuroprotective mechanisms. Conversely, non-essential metals such as mercury and lead are sources of human intoxication due to occupational activities or environmental contamination. Essential or non-essential metal accumulation in the central nervous system (CNS results in changes in blood-brain barrier (BBB permeability, as well as triggering microglia activation and astrocyte reactivity and changing water transport through the cells, which could result in brain swelling. Aquaporin-4 is the main water channel in the CNS, is expressed in astrocyte foot processes in brain capillaries and along the circumventricular epithelium in the ventricles, and has important physiological functions in maintaining brain osmotic homeostasis and supporting brain excitability through regulation of the extracellular space. Some evidence has pointed to a role of AQP4 during metal intoxication in the brain, where it may act in a dual form as a neuroprotector or a mediator of the development of oxidative stress in neurons and astrocytes, resulting in brain swelling and neuronal damage. This mini-review presents the way some metal ions affect changes in AQP4 expression in the CNS and discuss the ways in which water transport in brain cells can be involved in brain damage.

  8. Regulation of the Water Channel Aquaporin-2 via 14-3-3 Theta (θ) and Zeta (ζ)

    DEFF Research Database (Denmark)

    Moeller, Hanne B; Slengerik-Hansen, Joachim; Aroankins, Takwa

    2015-01-01

    . With the exception of sigma (σ), all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3 beta (β) and zeta (ζ...

  9. Is ion channel selectivity mediated by confined water?

    CERN Document Server

    Prada-Gracia, Diego

    2012-01-01

    Ion channels form pores across the lipid bilayer, selectively allowing inorganic ions to cross the membrane down their electrochemical gradient. While the study of ion desolvation free-energies have attracted much attention, the role of water inside the pore is less clear. Here, molecular dynamics simulations of a reduced model of the KcsA selectivity filter indicate that the equilibrium position of Na+, but not of K+, is strongly influenced by confined water. The latter forms a stable complex with Na+, moving the equilibrium position of the ion to the plane of the backbone carbonyls. Almost at the centre of the binding site, the water molecule is trapped by favorable electrostatic interactions and backbone hydrogen-bonds. In the absence of confined water the equilibrium position of both Na+ and K+ is identical. Our observations strongly suggest a previously unnoticed active role of confined water in the selectivity mechanism of ion channels.

  10. Roles of Aquaporins in Setaria viridis Stem Development and Sugar Storage

    Directory of Open Access Journals (Sweden)

    Samantha Alison McGaughey

    2016-12-01

    Full Text Available Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally towards fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow we analysed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2 we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.

  11. Drosophila big brain does not act as a water channel, but mediates cell adhesion.

    Science.gov (United States)

    Tatsumi, Kimiko; Tsuji, Shoji; Miwa, Hideki; Morisaku, Toshinori; Nuriya, Mutsuo; Orihara, Minako; Kaneko, Kazunari; Okano, Hideyuki; Yasui, Masato

    2009-06-18

    The neurogenic gene Drosophila big brain (bib) has a high sequence homology to aquaporin-4. However, its cellular functions in Drosophila neurogenesis have remained elusive. Here we investigated cell adhesion, and the ion and water permeability of Bib. The adhesive function was examined by a cell aggregation assay using L cells. Bib-transfected L cells formed aggregated clusters, while control-L cells remained as a single cell suspension. Ion permeation was not confirmed in L cells stably expressing Bib. When expressed in COS7 cells, Bib exhibited limited water permeability. This newly found cell adhesive function of Bib may be important for Drosophila neurogenesis.

  12. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only...... significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...

  13. Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2.

    Science.gov (United States)

    Sonalker, Prajakta A; Tofovic, Stevan P; Bastacky, Sheldon I; Jackson, Edwin K

    2008-05-01

    1. Because chronic activation of the renal sympathetic nervous system promotes sodium and water retention, it is conceivable that long-term exposure of the kidney to the sympathetic neurotransmitter noradrenaline upregulates the expression of key renal epithelial transport systems. 2. To test this hypothesis, we used immunoblotting of renal cortical and medullary tissue to investigate the abundance of major transport systems expressed along the renal tubule in response to long-term (15 days) infusions of noradrenaline (600 ng/min) in rats. 3. Mean arterial blood pressure and heart rate were significantly elevated in rats receiving chronic infusions of noradrenaline (128 +/- 10 mmHg and 492 +/- 16 b.p.m., respectively) compared with animals treated with saline only (89 +/- 3 mmHg and 376 +/- 14 b.p.m., respectively). 4. Chronic infusions of noradrenaline also increased the protein abundance of the cortical Na(+)/H(+) exchanger isoform 3 (NHE-3; 2.5-fold; P = 0.0142), the cortical sodium-bicarbonate cotransporter NBC-1 (2.5-fold; P = 0.0067), the bumetanide-sensitive sodium-potassium-chloride cotransporter BSC-1/NKCC2 in the inner stripe of outer medulla (threefold; P = 0.0020) and aquaporin-2 in the inner medulla (twofold; P = 0.0039). 5. In contrast, noradrenaline did not significantly affect expression of the thiazide-sensitive Na(+)-Cl(-) cotransporter in the cortex, Na(+)/K(+)-ATPase-alpha(1) in the cortex and inner stripe of the outer or inner medulla, the inwardly rectifying K(+) channel (ROMK-1) in the inner stripe of the outer medulla or aquaporin-1 in the cortex or inner medulla. Noradrenaline did significantly, but modestly (less than twofold), increase aquaporin-1 in the inner stripe of the outer medulla. 6. We conclude that noradrenaline-induced increases in the expression of NHE-3, NBC-1, BSC-1 and aquaporin-2 are likely to play an important role in the regulation of salt and water transport by noradrenaline in the kidney and may explain, at least in

  14. The stream channel incision syndrome and water quality

    Science.gov (United States)

    Watershed development often triggers channel incision, which accounts for 60-90% of sediments leaving many disturbed watersheds. Impacts of such incision on water quality processes and the implication of such impairment on stream biota are relevant to issues associated with establishing total maxim...

  15. Robust Source Localization in a Random Shallow Water Channel

    CERN Document Server

    Sazontov, Alexander; Matveyev, Alexander

    2014-01-01

    This paper addresses source localization problem in a random shallow water channel. We present an extension of the generalized MUSIC method to the case, %in which when the signal correlation matrix is imprecisely known. The algorithm is validated by %simulations and its application to the experimental data observed in the Barents Sea. It has been found that the approach proposed demonstrates its excellent performance.

  16. CALCULATION OF THE UNSTEADY WATER LINE IN THE KRASNODAR SUBURBAN CHANNEL FOR WATER MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Ivanenko Y. G.

    2015-12-01

    Full Text Available Low level of water accounting and poor control in water distribution in the irrigation system are the main negative factors of industrial influence on irrigated natural complexes. Complex ecosystem way to control water resources involves qualitative improvement and optimization of all parts and elements of irrigation system, from the headwater pool, main channels to local water distribution channels. In this regard, when engineering, constructing, using some new and reconstructed old irrigated systems, the most important problems are the optimization of water use from natural water resources, development and use of highly efficient water-saving and energy-saving technologies of water distribution and water use in the irrigation system. The problem of economical and efficient consumption of water resources on the studied water complex cannot be solved successfully without any related consideration of water accounting and water consumption questions based on system principles. System principles are supposed to collect, analyze and use the information, with the help of complex technical means, which are used for water measurement in conditions of water charges, and for the purpose to control the technological processes of water supply and water drainage, when the needs of water users are satisfied and the environment get less damage. In the work, we study the mathematical calculation of the unsteady water line in the Krasnodar suburban channel for water measurement. The imitated research of hydraulic processes were carried out on the mathematical model of water measurement, based on the characteristic methods, with the use of analytical solution of ordinary differential equations of the initial characteristics. The use of the considered method of water measurement in irrigation channels with the use of analytical solution of ordinary differential equations of initial characteristics will allow to optimize the processes of water measurement and to

  17. Aquaporin-1 expression in the chick embryo chorioallantoic membrane.

    Science.gov (United States)

    Ribatti, Domenico; Frigeri, Antonio; Nico, Beatrice; Nicchia, Grazia Paola; De Giorgis, Michela; Roncali, Luisa; Svelto, Maria

    2002-10-01

    The chick embryo chorioallantoic membrane (CAM) is commonly used in vivo to study both angiogenesis and anti-angiogenesis. Rapid membrane water transport is mediated by a family of molecular water channels, called aquaporins (AQPs), which have been identified in the epithelial and endothelial cells of higher vertebrates. AQP1, expressed in adsorptive and secretory epithelia, is also expressed in endothelial cells of capillaries and arteries. Its mRNA has been found in vascular smooth muscle cells (VSMCs) of arteries and capillaries, as well as in a subset of VSMCs of human atherosclerotic plaques. This study investigated the developmental expression of AQP1 in the chick CAM by Western blot and immunohistochemistry. Western blot results show that a major nonglycosylated band was observed with electrophoretic mobility of approximately 28 kDa in the three developmental stages examined. Immunohistochemistry data demonstrate that AQP1 was clearly expressed in the ectodermal and endodermal epithelia, the vascular endothelium, and the VSMCs. Because little information is available on the behavior of microvessel AQP1 during angiogenesis in normal and pathological conditions, our data relative to the pattern of expression of AQP1 in CAM blood vessels in normal conditions may be considered a useful tool to further investigate its modifications in several experimental conditions implying a stimulation or an inhibition of angiogenesis in the CAM assay. Copyright 2002 Wiley-Liss, Inc.

  18. Aquaporins in the adult mouse submandibular and sublingual salivary glands.

    Science.gov (United States)

    Aure, Marit H; Ruus, Ann-Kristin; Galtung, Hilde K

    2014-02-01

    Aquaporins (AQPs) is a family of membrane bound water channels found in most tissues. In addition to contribute to transepithelial water movement, AQPs are shown to be involved in a variety of processes such as proliferation, cell migration, and apoptosis. In salivary glands, it is well known that AQP5 plays an important role in fluid secretion. In recent years, several AQPs that demonstrate specific expression trends during development have been found in the mouse submandibular gland (SMG). In this study, we wanted to further investigate the presence and localization of the AQP family in the adult mouse SMG in addition to the less studied sublingual gland. Real time PCR and Western blot demonstrated the presence of AQP3, 4, 8, 9, and 11 transcripts and proteins. AQP1 and AQP7 were shown to be localized in endothelial cells, while AQP4 was found in the satellite cells of the parasympathetic ganglia in both glands. The result from this study shows that AQPs are found in defined subpopulations of cells in salivary glands, providing novel insights to their specific roles in salivary glands.

  19. Diabetes Insipidus in Mice with a Mutation in Aquaporin-2.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Congenital nephrogenic diabetes insipidus (NDI is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2 gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2 gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI.

  20. A novel role for aquaporin-5 in enhancing microtubule organization and stability.

    Directory of Open Access Journals (Sweden)

    Venkataramana K Sidhaye

    Full Text Available Aquaporin-5 (AQP5 is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function.

  1. Demeclocycline Attenuates Hyponatremia by Reducing Aquaporin-2 Expression in the Renal Inner Medulla

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen L. A.; Sinke, Anne P.; Hadrup, Niels;

    2013-01-01

    Binding of vasopressin to its type-2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin-2 (AQP2) water channels to the plasma membrane and water reabsorption from the pro-urine. Demeclocycline is currently used to treat hyponatremia in patients...... urine volume, decreased urine osmolality and reverted hyponatremia in an SIADH rat model. AQP2 and adenylate cyclase 5/6 abundances were reduced in the inner medulla, but increased in the cortex and outer medulla, in the absence of any sign of toxicity. In conclusion, our in vitro and in vivo data...... indicate that demeclocycline mainly attenuates hyponatremia in SIADH by reducing adenylate cyclase 5/6 expression, and consequently cAMP generation, AQP2 gene transcription and AQP2 abundance in the renal inner medulla, coinciding with a reduced vasopressin-escape response in the other collecting duct...

  2. Aquaporin 1 and aquaporin 4 overexpression in bovine spongiform encephalopathy in a transgenic murine model and in cattle field cases.

    Science.gov (United States)

    Costa, Carme; Tortosa, Raül; Rodríguez, Agustín; Ferrer, Isidre; Torres, Juan Maria; Bassols, Anna; Pumarola, Martí

    2007-10-17

    Aquaporins (AQP) are a family of transmembrane proteins that act as water selective channels. AQP1 and AQP4 are widely expressed in the central nervous system where they play several roles. Overexpression of AQP has been reported in some human and animal transmissible spongiform encephalopathies, but information is scanty about their distribution in the central nervous system in bovine spongiform encephalopathy (BSE). Double immunohistochemistry for AQP1, AQP4 and GFAP was developed in a transgenic mouse line overexpressing the bovine cellular prion protein (BoTg110), intracerebrally infected with cattle BSE. Western blot for AQP1 and AQP4, and immunohistochemistry for both AQP and GFAP were carried out in cases of BSE-diagnosed cattle as part of surveillance plan in Catalonia (Spain). A marked increase in AQP1 and AQP4 was observed in mice at the terminal stage of the disease, when they had a wide range of clinical signs, whereas no increase could be observed in the early stage before the onset of the clinical signs. In cattle which did not show evidence of clinical signs, both AQP already showed a great increase. The AQP overexpression correlated with GFAP-immunoreactive astrocytes and PrPres deposition in both cases. The results of this study suggest that AQP overexpression in glial cells could lead to an imbalance in water and ion homeostasis which could contribute to triggering the typical histopathological changes of BSE.

  3. Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation.

    Science.gov (United States)

    Di Giusto, Gisela; Flamenco, Pilar; Rivarola, Valeria; Fernández, Juan; Melamud, Luciana; Ford, Paula; Capurro, Claudia

    2012-12-01

    We have previously demonstrated that in renal cortical collecting duct cells (RCCD(1)) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT-RCCD(1) (not expressing aquaporins) and AQP2-RCCD(1) (transfected with AQP2). Our results showed that when most RCCD(1) cells are in the G(1)-phase (unsynchronized), the blockage of barium-sensitive K(+) channels implicated in rapid RVD inhibits cell proliferation only in AQP2-RCCD(1) cells. Though cells in the S-phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down-regulation in the rapid RVD response only in AQP2-RCCD(1) cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2-besides increasing water permeability-would play some other role. These observations together with evidence implying a cell-sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G(1), volume tends to increase but it may be efficiently regulated by an AQP2-dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down-regulated when volume needs to be increased in order to proceed into the S-phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. Copyright © 2012 Wiley Periodicals, Inc.

  4. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    Science.gov (United States)

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.

  5. Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W

    Science.gov (United States)

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François

    2012-01-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  6. Aquaporins of the PIP2 Class Are Required for Efficient Anther Dehiscence in Tobacco

    Science.gov (United States)

    Bots, Marc; Vergeldt, Frank; Wolters-Arts, Mieke; Weterings, Koen; van As, Henk; Mariani, Celestina

    2005-01-01

    Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence. PMID:15734911

  7. Expression of Fragaria vesca PIP Aquaporins in Response to Drought Stress: PIP Down-Regulation Correlates with the Decline in Substrate Moisture Content

    OpenAIRE

    Nada Šurbanovski; Sargent, Daniel J.; Else, Mark A.; Simpson, David W.; Hanma Zhang; Grant, Olga M.

    2013-01-01

    PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the ...

  8. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  9. Screening of aquaporin 7 and aquaporin 8 expression in 35 organs using semi-quantified RT-PCR methods

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM:Aquaporins (AQP) are very important for the water transport across cell membrane. There are at least 10 mammalian AQPs( aquaporins 0-9) distributed in various organs and different kinds of cells. Each AQP has a distinct organ distribution, and this distribution could be useful in presuming the biological function of the aquaporin. The aim of this study was to figure out the distribution of aquaporin 7 (AQP7) and aquaporin 8(AQP8).METHODS:Semi-quantified RT-PCR was employed in this research. The ratio of OD value of target gene products divided by which of control gene products was calculated. Among 35 organs, testis, epididymis, skin, muscle, rectum, lung, bronchus, lymph node, stomach, duodenum, jejunum, ileum, colon, pancreas, liver, gall bladder, spleen, mammary gland, uterus, placenta, tonsil, urinary bladder, thyroid came from normal area of removed samples during operation. cDNA library of Prostate, thymus, salivary gland, penis, carotiol artery, adrenal gland, occipital lobe of brain, temporal lobe of brain, frontal lobe of brain, parietal lobe of brain, mid brain, choroid plexus are purchased from OriGene biotechnique company.RESULTS:①AQP 7 mRNA was found in testis, muscle, gall bladder, carotiol artery, lymph node and adrenal gland, and maximum expression of AQP 7 was in testis.②AQP 8 mRNA was found in pancreas, testis, skin and colon. and maximum expression of AQP 8 was in pancreas.CONCLUSION:Coexistence of AQP 7 and 8 in testis was confirmed, which suggested that both of these two aquaporins were involved in the regulation of testis function.

  10. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later.

    Science.gov (United States)

    Pittock, Sean J; Lucchinetti, Claudia F

    2016-02-01

    The discovery of AQP4-IgG (a pathogenic antibody that targets the astrocytic water channel aquaporin-4), as the first sensitive and specific biomarker for any inflammatory central nervous system demyelinating disease (IDD), has shifted emphasis from the oligodendrocyte and myelin to the astrocyte as a central immunopathogenic player. Neuromyelitis optica (NMO) spectrum disorders (SDs) represent an evolving spectrum of IDDs extending beyond the optic nerves and spinal cord to include the brain (especially in children) and, rarely, muscle. NMOSD typical brain lesions are located in areas that highly express the target antigen, AQP4, including the circumventricular organs (accounting for intractable nausea and vomiting) and the diencephalon (accounting for sleep disorders, endocrinopathies, and syndrome of inappropriate antidiuresis). Magnetic resonance imaging brain abnormalities fulfill Barkoff criteria for multiple sclerosis in up to 10% of patients. As the spectrum broadens, the importance of highly specific assays that detect pathogenic AQP4-IgG targeting extracellular epitopes of AQP4 cannot be overemphasized. The rapid evolution of our understanding of the immunobiology of AQP4 autoimmunity necessitates continuing revision of NMOSD diagnostic criteria. Here, we describe scientific advances that have occurred since the discovery of NMO-IgG in 2004 and review novel targeted immunotherapies. We also suggest that NMOSDs should now be considered under the umbrella term autoimmune aquaporin-4 channelopathy. © 2015 New York Academy of Sciences.

  11. Cloning and sequence analysis of gene encoding plasma aquaporin of Tamarix albiflonum

    Institute of Scientific and Technical Information of China (English)

    DONG Yuzhi; YANG Chuanping; ZHANG Daoyuan; WANG Yucheng

    2007-01-01

    Plant aquaporins are water-selected-channels in plants and are involved in seed germination,cell elongation,stoma movement,fertilization and so on.Some plant aquapotins also play an important role in drought stress response.In this paper,the gene encoding the Tamarix albiflonum Aquaporin (AQP) was amplified by 5'rapid amplification of cDNA end (RACE) on the basis of the sequence information obtained from the expressed sequence tag of the subtractive hybridization library constructed under PEG6000 stress.The cDNA of the T.albiflonum AQP gene is 1,043 bp long,encoding a protein of 287 amino acids with a predicted molecular mass of 30.9 kDa,has 6 transmembrane regions,and possessing the major intrinsic protein (MIP) family signal consensus sequence SGXHXNPAVT and the higher plant plasma membrane intrinsic protein (PIP) highly conservative sequence GGGANXXXXGY and TGI/TNPARSL /FGAA I/VI/VF/YN.A comparative molecular analysis of the nucleotide sequence in National Center for Biotechnology Information (NCBI) databases showed that it shared 95% homology with the gene ofArabidopsis thaliana (MIP-C),with a theoretical isoelectric point 8.84.

  12. Aquaporin-4 and ischemic brain edema

    Institute of Scientific and Technical Information of China (English)

    Saihong Dun; Yang Guo

    2007-01-01

    OBJECTIVE: To investigate the relationship of aquaporin 4 (AQP4) and brain edema.DATA SOURCES: Using the terms of "aquaporin-4, brain edema", we searched PubMed database to identify studies published from January 1997 to April 2006 in the English languages. Meanwhile, we also searched China National Knowledge Infrastructure (CNKI) for related studies.STUDY SELECTION: The collected data were selected firstly. Studies on AQP4 and brain edema were chosen and their full-texts were searched for, and those with repetitive or review studies were excluded.DATA EXTRACTION: Totally 146 related studies were collected, 42 of them were involved and the other 104 studies were used for reading reference data.DATA SYNTHESIS: AQP4 is a selective water permeable integral membrane protein. It is mainly expressed in astrocytes and ependymocyte, and is the important structural basis for water regulation and transportation between glial cells and cerebrospinal fluid or vessels. Phosphorylation is involved in the regulation of AQP4.AQP4 participates in the formation of brain edema caused by various factors. Studies on the structure and pathological changes of AQP4 are still in the initial stage, and the role and mechanism of AQP4 in the formation of brain edema is very unclear.CONCLUSION: AQP4 plays a critical regulating role in the formation of ischemic brain edema, but whether it is regulated by drugs lacks reliable evidence.

  13. ABRUPT DEFLECTED SUPERCRITICAL WATER FLOW IN SLOPED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-kun; NI Han-gen

    2008-01-01

    The effect of the bottom slope on abrupt deflected supercritical water flow was experimentally and theoretically studied. Model tests were conducted in a flume of 1.2 m wide and 2.6 m long with sloped bottom at an angle 35.54o, its length of deflector was 0.2 m and the deflection angles were 15o and 30o. An approximate method for calculatjng the shock wave angle and depth ratio of the abrupt deflected supercritical water flow was suggested, and a correction coefficient for the hydrodynamic pressure was introduced to generalize the momentum equation in the direction perpendicular to the shock front. It must be noticed that in the sloped channel the shock wave angle and the depth ratio are no longer constant as those in the horizontal channels, but slowly change along the shock front. The calculated results are in good agreement with measured data.

  14. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    Directory of Open Access Journals (Sweden)

    Raquel L. Bernardino

    2016-07-01

    Full Text Available Aquaporins (AQPs are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs. Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field.

  15. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends.

    Science.gov (United States)

    Bernardino, Raquel L; Marinelli, Raul A; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G; Svelto, Maria; Oliveira, Pedro F; Calamita, Giuseppe

    2016-07-09

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field.

  16. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    Science.gov (United States)

    Bernardino, Raquel L.; Marinelli, Raul A.; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G.; Svelto, Maria; Oliveira, Pedro F.; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  17. Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes.

    Science.gov (United States)

    Shinkai, Yasuhiro; Sumi, Daigo; Toyama, Takashi; Kaji, Toshiyuki; Kumagai, Yoshito

    2009-06-01

    Aquaporin (AQP) 9 is a member of the aquaglyceroporin subfamily of AQPs in the transfer of water and small solutes such as glycerol and arsenite. It is well recognized that arsenic toxicity is associated with intracellular accumulation of this metalloid. In the present study, we examined the contribution of AQP9 to the uptake of inorganic arsenite, thereby increasing arsenic-induced cytotoxicity in primary mouse hepatocytes. Pretreatment with sorbitol as a competitive inhibitor of AQP9 and siRNA-mediated knockdown of AQP9 resulted in a significant decrease of arsenite uptake in the cell and its cytotoxicity. Furthermore, overexpression of AQP9 in HEK293 cells led to the enhancement of intracellular arsenic concentration, resulting in enhanced cytotoxicity after arsenite exposure. These results suggest that AQP9 is a channel to define arsenite sensitivity in primary mouse hepatocytes.

  18. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  19. Immunohistochemical Study of Aquaporins in an African Grey Parrot (Psittacus erithacus) With Hydrocephalus.

    Science.gov (United States)

    Blasco, Ester; Martorell, Jaime; De la Fuente, Cristian; Pumarola, Martí

    2014-12-01

    A 5-month-old African grey parrot (Psittacus erithacus) was examined after 3 weeks of weakness, ataxia, mental depression, and seizures. Results of a complete blood cell count and plasma biochemical analysis were unremarkable. Magnetic resonance imaging revealed a severe bilateral hydrocephalus. The bird failed to improve with supportive care, and the owner requested euthanasia. Necropsy findings were severe bilateral hydrocephalus with no evidence of cerebrospinal fluid obstruction. Histologic examination of the brain revealed microspongiosis, edema, gliosis, and neuronal chromatolysis of surrounding periventricular tissue. Aquaporins (AQP) and astrocytes were examined to elucidate the participation of these water channel proteins and glial cells in the pathophysiology and resolution of hydrocephalus. Results showed AQP4 and glial fibrillary acidic protein were overexpressed, especially near the ventricles, but expression of AQP1 was decreased. This is the first report, to our knowledge, of AQP immunolabeling in hydrocephalus in avain species.

  20. Identification and characterization of plasma membrane aquaporins isolated from fiber cells of Calotropis procera

    Institute of Scientific and Technical Information of China (English)

    Usman ASLAM; Asia KHATOON; Hafiza Masooma Naseer CHEEMA; Aftab BASHIR

    2013-01-01

    Calotropis procera,commonly known as "milkweed",possesses long seed trichomes for seed dispersal and has the ability to survive under harsh conditions such as drought and salinity.Aquaporins are water channel proteins expressed in all land plants,divided into five subfamilies plasma membrane intrinsic proteins (PIPs),tonoplast intrinsic proteins (TIPs),NOD26-1ike proteins (NIPs),small basic intrinsic proteins (SIPs),and the unfamiliar X intrinsic proteins (XlPs).PIPs constitute the largest group of water channel proteins that are involved in different developmental and regulatory mechanisms including water permeability,cell elongation,and stomata opening.Aquaporins are also involved in abiotic stress tolerance and cell expansion mechanisms,but their role in seed trichomes (fiber cells) has never been investigated.A large number of clones isolated from C.procera fiber cDNA library showed sequence homology to PIPs.Both expressed sequence tags (ESTs) and real-time polymerase chain reaction (PCR) studies revealed that the transcript abundance of this gene family in fiber cells of C.procera is greater than that of cotton.Full-length cDNAs of CpPIP1 and CpPIP2 were isolated from C.procera fiber cDNA library and used for constructing plant expression vectors under constitutive (2x35S) and trichome-specific (GhLTP3) promoters.Transgenic tobacco plants were developed via Agrobacterium-mediated transformation.The phenotypic characteristics of the plants were observed after confirming the integration of transgene in plants.It was observed that CpPIP2 expression cassette under 2x35S and GhLTP3 promoter enhanced the numbers of stem and leave trichomes.However,2x35S::CpPIP2 has a more amplified effect on trichome density and length than GhLTP3::CpPIP2 and other PIP constructs.These findings imply the role of C.procera PIP aquaporins in fiber cell elongation.The PIPs-derived cell expansion mechanism may be exploited through transgenic approaches for improvement of fiber staple

  1. Identification and characterization of plasma membrane aquaporins isolated from fiber cells of Calotropis procera.

    Science.gov (United States)

    Aslam, Usman; Khatoon, Asia; Cheema, Hafiza Masooma Naseer; Bashir, Aftab

    2013-07-01

    Calotropis procera, commonly known as "milkweed", possesses long seed trichomes for seed dispersal and has the ability to survive under harsh conditions such as drought and salinity. Aquaporins are water channel proteins expressed in all land plants, divided into five subfamilies plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like proteins (NIPs), small basic intrinsic proteins (SIPs), and the unfamiliar X intrinsic proteins (XIPs). PIPs constitute the largest group of water channel proteins that are involved in different developmental and regulatory mechanisms including water permeability, cell elongation, and stomata opening. Aquaporins are also involved in abiotic stress tolerance and cell expansion mechanisms, but their role in seed trichomes (fiber cells) has never been investigated. A large number of clones isolated from C. procera fiber cDNA library showed sequence homology to PIPs. Both expressed sequence tags (ESTs) and real-time polymerase chain reaction (PCR) studies revealed that the transcript abundance of this gene family in fiber cells of C. procera is greater than that of cotton. Full-length cDNAs of CpPIP1 and CpPIP2 were isolated from C. procera fiber cDNA library and used for constructing plant expression vectors under constitutive (2×35S) and trichome-specific (GhLTP3) promoters. Transgenic tobacco plants were developed via Agrobacterium-mediated transformation. The phenotypic characteristics of the plants were observed after confirming the integration of transgene in plants. It was observed that CpPIP2 expression cassette under 2×35S and GhLTP3 promoter enhanced the numbers of stem and leave trichomes. However, 2×35S::CpPIP2 has a more amplified effect on trichome density and length than GhLTP3::CpPIP2 and other PIP constructs. These findings imply the role of C. procera PIP aquaporins in fiber cell elongation. The PIPs-derived cell expansion mechanism may be exploited through transgenic approaches for

  2. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs—A Comparative Perspective

    Directory of Open Access Journals (Sweden)

    Corinna Gleiser

    2016-08-01

    Full Text Available The main water channel of the brain, aquaporin-4 (AQP4, is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4 is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.

  3. Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs-A Comparative Perspective.

    Science.gov (United States)

    Gleiser, Corinna; Wagner, Andreas; Fallier-Becker, Petra; Wolburg, Hartwig; Hirt, Bernhard; Mack, Andreas F

    2016-08-26

    The main water channel of the brain, aquaporin-4 (AQP4), is one of the classical water-specific aquaporins. It is expressed in many epithelial tissues in the basolateral membrane domain. It is present in the membranes of supporting cells in most sensory organs in a specifically adapted pattern: in the supporting cells of the olfactory mucosa, AQP4 occurs along the basolateral aspects, in mammalian retinal Müller cells it is highly polarized. In the cochlear epithelium of the inner ear, it is expressed basolaterally in some cells but strictly basally in others. Within the central nervous system, aquaporin-4 (AQP4) is expressed by cells of the astroglial family, more specifically, by astrocytes and ependymal cells. In the mammalian brain, AQP4 is located in high density in the membranes of astrocytic endfeet facing the pial surface and surrounding blood vessels. At these locations, AQP4 plays a role in the maintenance of ionic homeostasis and volume regulation. This highly polarized expression has not been observed in the brain of fish where astroglial cells have long processes and occur mostly as radial glial cells. In the brain of the zebrafish, AQP4 immunoreactivity is found along the radial extent of astroglial cells. This suggests that the polarized expression of AQP4 was not present at all stages of evolution. Thus, a polarized expression of AQP4 as part of a control mechanism for a stable ionic environment and water balanced occurred at several locations in supporting and glial cells during evolution. This initially basolateral membrane localization of AQP4 is shifted to highly polarized expression in astrocytic endfeet in the mammalian brain and serves as a part of the neurovascular unit to efficiently maintain homeostasis.

  4. The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Lisa L Drake

    Full Text Available BACKGROUND: The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT. Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti. METHODOLOGY/PRINCIPAL FINDINGS: Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis. CONCLUSIONS/SIGNIFICANCE: Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.

  5. Tonoplast Aquaporins Facilitate Lateral Root Emergence1[OPEN

    Science.gov (United States)

    Hachez, Charles; Bienert, Manuela Désirée; Beebo, Azeez; Swarup, Kamal

    2016-01-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence. PMID:26802038

  6. Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis.

    Science.gov (United States)

    Calamita, Giuseppe; Ferri, Domenico; Gena, Patrizia; Carreras, Flavia I; Liquori, Giuseppa E; Portincasa, Piero; Marinelli, Raúl A; Svelto, Maria

    2008-10-01

    Rat hepatocytes express aquaporin-9 (AQP9), a basolateral channel permeable to water, glycerol, and other small neutral solutes. Although liver AQP9 is known for mediating the uptake of sinusoidal blood glycerol, its relevance in bile secretion physiology and pathophysiology remains elusive. Here, we evaluated whether defective expression of AQP9 is associated to secretory dysfunction of rat hepatocytes following bile duct ligation (BDL). By immunoblotting, 1-day BDL resulted in a slight decrease of AQP9 protein in basolateral membranes and a simultaneous increase of AQP9 in intracellular membranes. This pattern was steadily accentuated in the subsequent days of BDL since at 7 days BDL basolateral membrane AQP9 decreased by 85% whereas intracellular AQP9 increased by 115%. However, the AQP9 immunoreactivity of the total liver membranes from day 7 of BDL rats was reduced by 49% compared with the sham counterpart. Results were confirmed by immunofluorescence and immunogold electron microscopy and consistent with biophysical studies showing considerable decrease of the basolateral membrane water and glycerol permeabilities of cholestatic hepatocytes. The AQP9 mRNA was slightly reduced only at day 7 of BDL, indicating that the dysregulation was mainly occurring at a posttranslational level. The altered expression of liver AQP9 during BDL was not dependent on insulin, a hormone known to negatively regulate AQP9 at a transcriptional level, since insulinemia was unchanged in 7-day BDL rats. Overall, these results suggest that extrahepatic cholestasis leads to downregulation of AQP9 in the hepatocyte basolateral plasma membrane and dysregulated aquaporin channels contribute to bile flow dysfunction of cholestatic hepatocyte.

  7. Human Aquaporin 4 Gating Dynamics under Perpendicularly-Oriented Electric-Field Impulses: A Molecular Dynamics Study

    Science.gov (United States)

    Marracino, Paolo; Liberti, Micaela; Trapani, Erika; Burnham, Christian J.; Avena, Massimiliano; Garate, José-Antonio; Apollonio, Francesca; English, Niall J.

    2016-01-01

    Human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static electric fields. The pulses were 10 ns in duration and 0.012–0.065 V/Å in intensity acting along both directions perpendicular to the pores. Water permeability and the dipolar response of all residues of interest (including the selectivity filter) within the pores have been studied. Results showed decreased levels of water osmotic permeability within aquaporin channels during orthogonally-oriented field impulses, although care must be taken with regard to statistical certainty. This can be explained observing enhanced “dipolar flipping” of certain key residues, especially serine 211, histidine 201, arginine 216, histidine 95 and cysteine 178. These residues are placed at the extracellular end of the pore (serine 211, histidine 201, and arginine 216) and at the cytoplasm end (histidine 95 and cysteine 178), with the key role in gating mechanism, hence influencing water permeability. PMID:27428954

  8. Kinetics of gravity-driven water channels under steady rainfall

    Science.gov (United States)

    Cejas, Cesare M.; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J.; Dreyfus, Rémi

    2014-10-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972), 10.2136/sssaj1972.03615995003600050010x]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

  9. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    Science.gov (United States)

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  10. Maize black Mexican sweet suspension cultured cells are a convenient tool for studying aquaporin activity and regulation.

    Science.gov (United States)

    Cavez, Damien; Hachez, Charles; Chaumont, François

    2009-09-01

    Aquaporins (AQPs) are channel proteins that facilitate and regulate the permeation of water across biological membranes. Black Mexican sweet suspension cultured cells are a convenient model for studying the regulation of maize AQP expression and activity. Among other advantages, a single cell system allows the contribution of plasma membrane AQPs (PIPs, plasma membrane intrinsic proteins) to the membrane water permeability coefficient (P(f)) to be determined using biophysical measurement methods, such as the cell pressure probe or protoplast swelling assay. We generated a transgenic cell culture line expressing a tagged version of ZmPIP2;6 and used this material to demonstrate that the ZmPIP2;6 and ZmPIP2;1 isoforms physically interact. This kind of interaction could be an additional mechanism for regulating membrane water permeability by acting on the activity and/or trafficking of PIP hetero-oligomers.

  11. Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays.

    Science.gov (United States)

    Heinen, Robert B; Bienert, Gerd Patrick; Cohen, David; Chevalier, Adrien S; Uehlein, Norbert; Hachez, Charles; Kaldenhoff, Ralf; Le Thiec, Didier; Chaumont, François

    2014-10-01

    Stomata, the microscopic pores on the surface of the aerial parts of plants, are bordered by two specialized cells, known as guard cells, which control the stomatal aperture according to endogenous and environmental signals. Like most movements occurring in plants, the opening and closing of stomata are based on hydraulic forces. During opening, the activation of plasma membrane and tonoplast transporters results in solute accumulation in the guard cells. To re-establish the perturbed osmotic equilibrium, water follows the solutes into the cells, leading to their swelling. Numerous studies have contributed to the understanding of the mechanism and regulation of stomatal movements. However, despite the importance of transmembrane water flow during this process, only a few studies have provided evidence for the involvement of water channels, called aquaporins. Here, we microdissected Zea mays stomatal complexes and showed that members of the aquaporin plasma membrane intrinsic protein (PIP) subfamily are expressed in these complexes and that their mRNA expression generally follows a diurnal pattern. The substrate specificity of two of the expressed ZmPIPs, ZmPIP1;5 and ZmPIP1;6, was investigated by heterologous expression in Xenopus oocytes and yeast cells. Our data show that both isoforms facilitate transmembrane water diffusion in the presence of the ZmPIP2;1 isoform. In addition, both display CO2 permeability comparable to that of the CO2 diffusion facilitator NtAQP1. These data indicate that ZmPIPs may have various physiological roles in stomatal complexes.

  12. Red blood cell aquaporin-1 expression is decreased in hereditary spherocytosis.

    Science.gov (United States)

    Crisp, Renée L; Maltaneri, Romina E; Vittori, Daniela C; Solari, Liliana; Gammella, Daniel; Schvartzman, Gabriel; García, Eliana; Rapetti, María C; Donato, Hugo; Nesse, Alcira

    2016-10-01

    Aquaporin-1 (AQP1) is the membrane water channel responsible for changes in erythrocyte volume in response to the tonicity of the medium. As the aberrant distribution of proteins in hereditary spherocytosis (HS) generates deficiencies of proteins other than those codified by the mutated gene, we postulated that AQP1 expression might be impaired in spherocytes. AQP1 expression was evaluated through flow cytometry in 5 normal controls, 1 autoimmune hemolytic anemia, 10 HS (2 mild, 3 moderate, 2 severe, and 3 splenectomized), and 3 silent carriers. The effect of AQP1 inhibitors was evaluated through water flow-based tests: osmotic fragility and hypertonic cryohemolysis. Serum osmolality was measured in 20 normal controls and 13 HS. The effect of erythropoietin (Epo) on AQP1 expression was determined in cultures of erythroleukemia UT-7 cells, dependent on Epo to survive. Independent of erythrocyte size, HS patients showed a lower content of AQP1 in erythrocyte membranes which correlated with the severity of the disease. Accordingly, red blood cells from HS subjects were less sensitive to cryohemolysis than normal erythrocytes after inhibition of the AQP1 water channel. A lower serum osmolality in HS with respect to normal controls suggests alterations during reticulocyte remodeling. The decreased AQP1 expression could contribute to explain variable degrees of anemia in hereditary spherocytosis. The finding of AQP1 expression induced by Epo in a model of erythroid cells may be interpreted as a mechanism to restore the balance of red cell water fluxes.

  13. Characterization of Leishmania donovani aquaporins shows presence of subcellular aquaporins similar to tonoplast intrinsic proteins of plants.

    Directory of Open Access Journals (Sweden)

    Neha Biyani

    Full Text Available Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs annotated as AQP9 (230aa, AQP putative (294aa, AQP-like protein (279aa, AQP1 (314aa and AQP-like protein (596aa. We report here the structural modeling, localization and functional characterization of the AQPs from L. donovani. LdAQP1, LdAQP9, LdAQP2860 and LdAQP2870 have the canonical NPA-NPA motifs, whereas LdAQP putative has a non-canonical NPM-NPA motif. In the carboxyl terminal to the second NPA box of all AQPs except AQP1, a valine/alanine residue was found instead of the arginine. In that respect these four AQPs are similar to tonoplast intrinsic proteins in plants, which are localized to intracellular organelles. Confocal microscopy of L. donovani expressing GFP-tagged AQPs showed an intracellular localization of LdAQP9 and LdAQP2870. Real-time PCR assays showed expression of all aquaporins except LdAQP2860, whose level was undetectable. Three-dimensional homology modeling of the AQPs showed that LdAQP1 structure bears greater topological similarity to the aquaglyceroporin than to aquaporin of E. coli. The pore of LdAQP1 was very different from the rest in shape and size. The cavity of LdAQP2860 was highly irregular and undefined in geometry. For functional characterization, four AQP proteins were heterologously expressed in yeast. In the fps1Δ yeast cells, which lacked the key aquaglyceroporin, LdAQP1 alone displayed an osmosensitive phenotype indicating glycerol transport activity. However, expression of LdAQP1 and LdAQP putative in a yeast gpd1Δ strain, deleted for glycerol production, conferred osmosensitive phenotype indicating water transport activity or aquaporin function. Our analysis

  14. In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats: a new drug target for hypertension?

    Science.gov (United States)

    Liantonio, Antonella; Gramegna, Gianluca; Camerino, Giulia M; Dinardo, Maria M; Scaramuzzi, Antonia; Potenza, Maria A; Montagnani, Monica; Procino, Giuseppe; Lasorsa, Domenica R; Mastrofrancesco, Lisa; Laghezza, Antonio; Fracchiolla, Giuseppe; Loiodice, Fulvio; Perrone, Maria G; Lopedota, Angela; Conte, Salvatore; Penza, Rosa; Valenti, Giovanna; Svelto, Maria; Camerino, Diana Conte

    2012-01-01

    The human kidney-specific chloride channels ClC-Ka (rodent ClC-K1) and ClC-Kb (rodent ClC-K2) are important determinants of renal function, participating to urine concentration and blood pressure regulation mechanisms. Here we tested the hypothesis that these chloride channels could represent new drug targets for inducing diuretic and antihypertensive effects. To this purpose, the CLC-K blockers benzofuran derivatives MT-189 and RT-93 (10, 50, 100 mg/kg), were acutely administered by gavage in Wistar rats, and pharmacodynamic and pharmacokinetic parameters determined by functional, bioanalytical, biochemical and molecular biology assays. Plasma concentration values for MT-189 and RT-93 were indicative of good bioavailability. Both MT-189 and RT-93 dose-dependently increased urine volume without affecting electrolyte balance. A comparable reduction of SBP was observed in rats after MT-189, RT-93 or furosemide administration. Benzofuran derivatives treatment did not affect kidney CLC-K mRNA level or inner medulla osmolality, whereas a significant vasopressin-independent down-regulation of aquaporin water channel type 2 was observed at protein and transcriptional levels. In rats treated with benzofuran derivatives, the observed polyuria was mainly water diuresis; this finding indirectly supports a cross-talk between chloride and water transport in nephron. Moreover, preliminary in-vitro evaluation of the drugs capability to cross the blood-inner ear barrier suggests that these compounds have a limited ability to induce potential auditory side effects. CLC-K blockers may represent a new class of drugs for the treatment of conditions associated with expanded extracellular volume, with a hopeful high therapeutic potential for hypertensive patients carrying ClC-K gain-of-function polymorphisms.

  15. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy

    KAUST Repository

    Jourdain, P.

    2013-12-11

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  16. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy.

    Science.gov (United States)

    Jourdain, Pascal; Becq, Frédéric; Lengacher, Sylvain; Boinot, Clément; Magistretti, Pierre J; Marquet, Pierre

    2014-02-01

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  17. Pressure measurements on a pitching airfoil in a water channel

    Science.gov (United States)

    Conger, Rand N.; Ramaprian, B. R.

    1994-01-01

    Measurements of unsteady pressures over a symmetric NACA 0015 airfoil performing pitching maneuvers are reported. The tests were performed in an open-surface water channel specially constructed for this purpose. The design of the apparatus allowed the pressure measurements to be made to a very high degree of spatial and temporal resolution. Reynolds numbers in the range of 5.2 x 10(exp 4) to 2.2 x 10(exp 5) were studied. Although the results qualitatively agreed with earlier studies performed at similar Reynolds numbers, the magnitudes of pressure and aerodynamic forces measured were observed to be much larger than those measured in ealier pitchup studies. They were found, in fact, to be closer to those obtained in some recent high-Reynolds-number experiments. This interesting behavior, which was suspected to be caused by the relatively high freestream turbulence level in the water channel, was explored in some detail. In addition, several issues like the quasisteady and dynamic effects of the pitching process are discussed. The experimental data are all archived and are available for use as a database.

  18. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren;

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes....

  19. Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

    Science.gov (United States)

    Wei, Yuli; Cejas, Cesare M.; Barrois, Rémi; Dreyfus, Rémi; Durian, Douglas J.

    2014-10-01

    We visualize the formation of fingered flow in dry model sandy soils under different rain conditions using a quasi-2D experimental setup and systematically determine the impact of the soil grain diameter and surface wetting properties on the water channeling phenomenon. The model sandy soils we use are random closely packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of the soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in the water infiltration depth, water channel width, and water channel separation. At a fixed rain condition, we combine the effects of the grain diameter and surface hydrophobicity into a single parameter and determine its influence on the water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to the rain water channeling phenomenon, including prewetting sandy soils at different levels before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.

  20. Aquaporin-4 expression in post-traumatic syringomyelia.

    Science.gov (United States)

    Hemley, Sarah J; Bilston, Lynne E; Cheng, Shaokoon; Chan, Jing Ning; Stoodley, Marcus A

    2013-08-15

    Aquaporin-4 (AQP4) is an astroglial water channel protein that plays an important role in the transmembrane movement of water within the central nervous system. AQP4 has been implicated in numerous pathological conditions involving abnormal fluid accumulation, including spinal cord edema following traumatic injury. AQP4 has not been studied in post-traumatic syringomyelia, a condition that cannot be completely explained by current theories of cerebrospinal fluid dynamics. Alterations of AQP4 expression or function may contribute to the fluid imbalance leading to syrinx formation or enlargement. The aim of this study was to examine AQP4 expression levels and distribution in an animal model of post-traumatic syringomyelia. Immunofluorescence and western blotting were used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression in an excitotoxic amino acid/arachnoiditis model of post-traumatic syringomyelia in Sprague-Dawley rats. At all time-points, GFAP-positive astrocytes were observed in tissue surrounding syrinx cavities, although western blot analysis demonstrated an overall decrease in GFAP expression, except at the latest stage investigated. AQP4 expression was significantly higher at the level of syrinx at three and six weeks following the initial syrinx induction surgery. Significant increases in AQP4 expression also were observed in the upper cervical cord, rostral to the syrinx except in the acute stage of the condition at the three-day time-point. Immunostaining showed that AQP4 was expressed around all syrinx cavities, most notably adjacent to a mature syrinx (six- and 12-week time-point). This suggests a relationship between AQP4 and fluid accumulation in post-traumatic syringomyelia. However, whether this is a causal relationship or occurs in response to an increase in fluid needs to be established.

  1. The central role of aquaporins in the pathophysiology of ischemic stroke

    Directory of Open Access Journals (Sweden)

    Jasmine eVella

    2015-04-01

    Full Text Available Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of ischemic stroke and early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP water channels are contributors to water homeostasis by facilitating or impeding water transport and are consequently implicated in several disease pathways. At least 7 subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our current understanding of the roles of these channels. AQP4, the most abundant channel in the brain is upregulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4 null mice than wildtype, providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K+ channels (Kir4.1 and glial K+ uptake is attenuated in AQP4 knockout mice compared to wildtype, indicating some form of functional interaction. AQP4-null mice also exhibit reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with gap junction protein Cx43 possibly reiterate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocytic migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality

  2. Mutual interactions between aquaporins and membrane components

    Directory of Open Access Journals (Sweden)

    MCarmen Martinez-Ballesta

    2016-08-01

    Full Text Available During the last years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new regulations of aquaporins described based on these associations. Aquaporin isoforms heterotetramerizations are considered as novel regulatory mechanisms for plasma membrane (PIPs and tonoplast (TIPs proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein-protein interaction is an extensive theme that is difficult to tackle and new methodologies of physical interactions are being used in approaches to its study. Bimolecular fluorescence complementation (BiFC and the identification of cross-linked peptides based on tandem mass spectra, which resulted complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, have been discussed in this review. The chemical composition or physical characteristics of the lipid bilayer also influences many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the observed lipid positions around aquaporins could define their activity, which could alter the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is shown. Finally, the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances.

  3. Numerical study of water management in the air flow channel of a PEM fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Peng; Lai, Ming-Chia [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2007-01-10

    The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air-water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity. (author)

  4. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Joachim Habel

    2015-07-01

    Full Text Available In recent years, aquaporin biomimetic membranes (ABMs for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs, block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.

  5. Water permeability of rat liver mitochondria: A biophysical study.

    Science.gov (United States)

    Calamita, Giuseppe; Gena, Patrizia; Meleleo, Daniela; Ferri, Domenico; Svelto, Maria

    2006-08-01

    The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.

  6. Aquaporin 4 expression and ultrastructure of the blood-brain barrier following cerebral contusion injury

    Institute of Scientific and Technical Information of China (English)

    Xinjun Li; Yangyun Han; Hong Xu; Zhongshu Sun; Zengjun Zhou; Xiaodong Long; Yumin Yang; Linbo Zou

    2013-01-01

    This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2–72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelial cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.

  7. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  8. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers.

    Science.gov (United States)

    Bienert, Gerd P; Cavez, Damien; Besserer, Arnaud; Berny, Marie C; Gilis, Dimitri; Rooman, Marianne; Chaumont, François

    2012-07-01

    AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels.

  9. Coastal Maintained Channels in US waters as of May 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  10. Water behavior in a u-shaped flow channel of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Liu, Z.S. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    A study was conducted to find a practical approach for predicting liquid water distribution in the U-shaped flow channels of a proton exchange membrane (PEM) fuel cell. Computational fluid dynamics modeling with the FLUENT software package was used to demonstrate the two-phase flow of the air-water transport process inside the channel. It was noted that no chemical reaction occurs inside the flow channels and the liquid water is formed either on the surfaces of the flow channels or inside the flow channels. The problem can therefore be simplified as a fluid mechanics problem with water sources inside its physical domain or on its boundaries. The volume-of-fluid (VOF) model was used to track dynamic air-water interactions. Three cases with a range of initial water phase distributions corresponding to different fuel cell operating conditions were simulated numerically to gain a better understanding of water behaviour inside the serpentine channel. It was concluded that the bend area in the serpentine flow field affects the fuel cell performance. This is because it influences the flow field which in turn influences the air-water flow and water liquid distribution inside the channel or along the inside channel surfaces. 15 refs., 1 tab., 11 figs.

  11. Devic’s syndrome in aquaporin-4 antibody negative patient. What we need to know …

    Directory of Open Access Journals (Sweden)

    Nunes, Ana Teresa

    2014-12-01

    Full Text Available [english] Introduction: Neuromyelitis optica (NMO is a severe demyelinating syndrome characterized by optic neuritis (ON and acute myelitis. The NMO spectrum is actually recognized to typically evolve as a relapsing disorder that also includes patients with atypical unilateral ON and those with index events of ON and myelitis occurring weeks or even years apart (Jarius/Wildemann 2013. NMO was previously assumed to be a variant of multiple sclerosis (MS, but the discovery of aquaporin-4 antibodies in patients with neuromyelitis optica has led to this view being revised (Mandler 2006, Barnett/Sutton 2012, Wingerchuk et al. 2007. The cause of the condition is still unknown, but it has been shown that the antibodies bind selectively to a water channel expressed mainly on astrocytes at the blood-brain-barrier, which has an important role in the regulation of brain volume and ion homeostasis. However, there are some patients with NMO that are antibodies negative. The diagnosis is made on the basis of case history, clinical examination, magnetic resonance imaging (MRI of the brain and spinal cord, analysis of cerebrospinal fluid (CSF, visual evoked potentials and a blood test with analysis of aquaporin-4 antibodies (Barnett/Sutton 2012, Wingerchuk et al. 2007, Thornton et al. 2011. This suggests that periodical revisions of established concepts and diagnostic criteria are necessary.Purpose: The authors describe an extremely rare case of neuromyelitis optica and the aim of this paper is to call attention for the cases of NMO whith NMO-IgG negative.Methods: The selected method is a case report.Results: To date the patient showed partial recovery of left eye acuity and improvement of muscle strength of upper and lower limbs and does not show recurrence of the disease.Conclusion: NMO has a distinct clinical, imaging and immunopathological features sufficient to distinguish it from MS. This distinction is essential, because the treatment and the prognosis

  12. Trypanosomatid Aquaporins: Roles in Physiology and Drug Response

    Directory of Open Access Journals (Sweden)

    Goutam Mandal

    2013-12-01

    Full Text Available In the class Kinetoplastida, we find an order of parasitic protozoans classified as Trypanosomatids. Three major pathogens form part of this order, Trypanosoma cruzi, Trypanosoma brucei, and Leishmania, which are responsible for disease and fatalities in millions of humans worldwide, especially in non-industrialized countries in tropical and sub-tropical regions. In order to develop new drugs and treatments, the physiology of these pathogenic protozoans has been studied in detail, specifically the significance of membrane transporters in host parasites interactions. Aquaporins and Aquaglyceroporins (AQPs are a part of the major intrinsic proteins (MIPs super-family. AQPs are characterized for their ability to facilitate the diffusion of water (aquaporin, glycerol (aquaglyceroporin, and other small-uncharged solutes. Furthermore, AQPs have been shown to allow the ubiquitous passage of some metalloids, such as trivalent arsenic and antimony. These trivalent metalloids are the active ingredient of a number of chemotherapeutic agents used against certain cancers and protozoan parasitic infections. Recently, the importance of the AQPs not only in osmotic adaptations but also as a factor in drug resistance of the trypanosomatid parasites has been reported. In this review, we will describe the physiological functions of aquaporins and their effect in drug response across the different trypanosomatids.

  13. Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria.

    NARCIS (Netherlands)

    Procino, G.; Mastrofrancesco, L.; Mira, A.; Tamma, G.; Carmosino, M.; Emma, F.; Svelto, M.; Valenti, G.

    2008-01-01

    The kidney plays a critical role in regulating water homeostasis through specific proteins highly expressed in the kidney, called aquaporins, allowing water permeation at a high rate. This brief review focuses on some nephropathies associated with impaired urinary concentrating ability and in partic

  14. Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria.

    NARCIS (Netherlands)

    Procino, G.; Mastrofrancesco, L.; Mira, A.; Tamma, G.; Carmosino, M.; Emma, F.; Svelto, M.; Valenti, G.

    2008-01-01

    The kidney plays a critical role in regulating water homeostasis through specific proteins highly expressed in the kidney, called aquaporins, allowing water permeation at a high rate. This brief review focuses on some nephropathies associated with impaired urinary concentrating ability and in partic

  15. Aquaporin 2 and apical calcium-sensing receptor: new players in polyuric disorders associated with hypercalciuria.

    NARCIS (Netherlands)

    Procino, G.; Mastrofrancesco, L.; Mira, A.; Tamma, G.; Carmosino, M.; Emma, F.; Svelto, M.; Valenti, G.

    2008-01-01

    The kidney plays a critical role in regulating water homeostasis through specific proteins highly expressed in the kidney, called aquaporins, allowing water permeation at a high rate. This brief review focuses on some nephropathies associated with impaired urinary concentrating ability and in

  16. Immunodetection of aquaporin 5 in sheep salivary glands related to pasture vegetative cycle.

    Science.gov (United States)

    Scocco, Paola; Aralla, Marina; Catorci, Andrea; Belardinelli, Carlo; Arrighi, Silvana

    2011-01-01

    Mammalian aquaporins (AQPs) are a family of at least 13 integral membrane proteins expressed in various epithelia, where they function as channels to permeate water and small solutes. AQP5 is widely expressed in the exocrine gland where it is likely involved in providing an appropriate amount of fluid to be secreted with granular contents. As regards AQP5 expression in the salivary glands, literature is lacking concerning domestic animal species. This study was chiefly aimed at immunohistochemically investigating the presence and localization of AQP5 in sheep mandibular and parotid glands. In addition, AQP5 immunoreactivity was comparatively evaluated in animals fed with forage containing different amounts of water related to the pasture vegetative cycle, in order to shed light on the possible response of the gland to environmental modifications. Moderate AQP5-immunoreactivity was shown at the level of the lateral surface of mandibular serous demilune cells, not affected by the pasture vegetative cycle or water content. On the contrary, the parotid gland arcinar cells showed AQP5-immunoreactivity at the level of apical and lateral plasma membrane, which was slight to very strong, according to the pasture vegetative development and interannual climatic variations. AQP5 expression is likely due to its involvement in providing appropriate saliva fluidity. Indeed, the lowest AQP5 immunoreactivity was noticed when food water content increased.

  17. Functional interactome of Aquaporin 1 sub-family reveals new physiological functions in Arabidopsis Thaliana

    Directory of Open Access Journals (Sweden)

    Mohamed Ragab Abdel Gawwad

    2013-09-01

    Full Text Available Aquaporins are channel proteins found in plasma membranes and intercellular membranes of different cellular compartments, facilitate the water flux, solutes and gases across the cellular plasma membranes. The present study highlights the sub-family plasma membrane intrinsic protein (PIP predicting the 3-D structure and analyzing the functional interactome of it homologs. PIP1 homologs integrate with many proteins with different plant physiological roles in Arabidopsis thaliana including; PIP1A and PIP1B: facilitate the transport of water, diffusion of amino acids and/or peptides from the vacuolar compartment to the cytoplasm, play a role in the control of cell turgor and cell expansion and involved in root water uptake respectively. In addition we found that PIP1B plays a defensive role against Pseudomonas syringae infection through the interaction with the plasma membrane Rps2 protein. Another substantial function of PIP1C via the interaction with PIP2E is the response to nematode infection. Generally, PIP1 sub-family interactome controlling many physiological processes in plant cell like; osmoregulation in plants under high osmotic stress such as under a high salt, response to nematode, facilitate the transport of water across cell membrane and regulation of floral initiation in Arabidopsis thaliana.

  18. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells.

    Science.gov (United States)

    Sarda, X; Tousch, D; Ferrare, K; Legrand, E; Dupuis, J M; Casse-Delbart, F; Lamaze, T

    1997-11-01

    SunTIP7 and SunTIP20 are closely related sunflower cDNAs showing a deduced amino acid sequence homologous to proteins of the tonoplast intrinsic protein (TIP) family. Their expression in Xenopus oocytes caused a marked increase in osmotic water permeability (demonstrating that they are water channels) which was sensitive to mercury. In leaves, in situ hybridization revealed that both SunTIP7 and SunTIP20 mRNA accumulated in the guard cells. The possible involvement of SunTIPs in stomatal movement was examined by comparing the time course of transcript accumulation and leaf conductance during the daily cycle and following a water limitation. SunTIP7 mRNA fluctuations fitted changes occurring in leaf conductance. The transcript levels were markedly and systematically increased during stomatal closure. It is suggested that aquaporin SunTIP7 facilitates water exit associated with a decrease in guard cell volume. In the same conditions, the transcript level of SunTIP20 remained constant indicating that SunTIP genes are differentially regulated within the same cell.

  19. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Shiyi Zhou

    Full Text Available Aquaporin (AQP proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG, abscisic acid (ABA and H(2O(2. Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA and H(2O(2, and less ion leakage (IL, but higher relative water content (RWC and superoxide dismutase (SOD and catalase (CAT activities when compared with the wild type (WT under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants.

  20. Immunodetection of aquaporin 5 in sheep salivary glands related to pasture vegetative cycle

    Directory of Open Access Journals (Sweden)

    Silvana Arrighi

    2011-10-01

    Full Text Available Mammalian aquaporins (AQPs are a family of at least 13 integral membrane proteins expressed in various epithelia, where they function as channels to permeate water and small solutes. AQP5 is widely expressed in the exocrine gland where it is likely involved in providing an appropriate amount of fluid to be secreted with granular contents. As regards AQP5 expression in the salivary glands, literature is lacking concerning domestic animal species. This study was chiefly aimed at immunohistochemically investigating the presence and localization of AQP5 in sheep mandibular and parotid glands. In addition, AQP5 immunoreactivity was comparatively evaluated in animals fed with forage containing different amounts of water related to the pasture vegetative cycle, in order to shed light on the possible response of the gland to environmental modifications. Moderate AQP5-immunoreactivity was shown at the level of the lateral surface of mandibular serous demilune cells, not affected by the pasture vegetative cycle or water content. On the contrary, the parotid gland arcinar cells showed AQP5-immunoreactivity at the level of apical and lateral plasma membrane, which was slight to very strong, according to the pasture vegetative development and interannual climatic variations. AQP5 expression is likely due to its involvement in providing appropriate saliva fluidity. Indeed, the lowest AQP5 immunoreactivity was noticed when food water content increased. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 3, pp. 458–464

  1. WATER-FILLING SPACE-TIME CODE IN CORRELATED FLAT RAYLEIGH FADING MISO CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian; Chen Ming; Cheng Shixin

    2003-01-01

    In this paper, STC with water-filling transmit power distribution in MISO systemis proposed when the partial channel information feedback is possible, for example, at slow fadingscenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSKmodulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.

  2. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity.

    Science.gov (United States)

    Kanai, Synsuke; Moghaieb, Reda E; El-Shemy, Hany A; Panigrahi, R; Mohapatra, Pravat K; Ito, J; Nguyen, Nguyen T; Saneoka, Hirofumi; Fujita, Kounosuke

    2011-02-01

    The potassium requirement of green house tomatoes is very high for vegetative growth and fruit production. Potassium deficiency in plants takes long time for expression of visible symptoms. The objective of this study is to detect the deficiency early during the vegetative growth and define the roles of aquaporin and K-channel transporters in the process of regulation of water status and source-sink relationship. The tomato plants were grown hydroponically inside green house of Hiroshima University, Japan and subjected to different levels of K in the rooting medium. Potassium deficiency stress decreased photosynthesis, expansion and transport of ¹⁴C assimilates of the source leaf, but the effects became evident only after diameter expansion of the growing stem (sink) was down-regulated. The depression of stem diameter expansion is assumed to be associated with the suppression of water supply more than photosynthate supply to the organ. The stem diameter expansion is parameterized by root water uptake and leaf transpiration rates. The application of aquaporin inhibitor (AgNO₃) decreased leaf water potential, stem expansion and root hydraulic conductance within minutes of application. Similar results were obtained for application of the K-channel inhibitors. These observations suggested a close relationship between stem diameter expansion and activities of aquaporins and K-channel transporters in roots. The deficiency of potassium might have reduced aquaporin activity, consequently suppressing root hydraulic conductance and water supply to the growing stem for diameter expansion and leaf for transpiration. We conclude that close coupling between aquaporins and K-channel transporters in water uptake of roots is responsible for regulation of stem diameter dynamics of green house tomato plants.

  3. Vegetation and Channel Morphology Responses to Ordinary High Water Discharge Events in Arid West Stream Channels

    Science.gov (United States)

    2009-05-01

    from aggrading main channel Single-thread channels with adjacent floodplains – Meandering that develops to minimize amount of change at...widening with bank destabilization – Aggradation due to decrease in capacity to transport sediment ERDC/CRREL TR-09-5 6 3 Methods In an

  4. Preventive administration of cromakalim reduces aquaporin-4 expression and blood-brain barrier permeability in a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shilei Wang; Yanting Wang; Yan Jiang; Qingxian Chang; Peng Wang; Shiduan Wang

    2011-01-01

    Cromakalim, an adenosine triphosphate-sensitive potassium channel opener, exhibits protective effects on cerebral ischemia/reperfusion injury. However, there is controversy as to whether this effect is associated with aquaporin-4 and blood-brain barrier permeability. Immunohistochemistry results show that preventive administration of cromakalim decreased aquaporin-4 and IgG protein expression in rats with ischemia/reperfusion injury; it also reduced blood-brain barrier permeability, and alleviated brain edema, ultimately providing neuroprotection.

  5. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  6. Seasonal and Ageing-Depending Changes of Aquaporins 1 and 9 Expression in the Genital Tract of Buffalo Bulls (Bubalus bubalis).

    Science.gov (United States)

    Arrighi, S; Bosi, G; Accogli, G; Desantis, S

    2016-08-01

    The presence of Aquaporins 1 (AQP1) and 9 (AQP9), integral membrane water channels that facilitate rapid passive movement of water and solutes, was immunohistochemically detected in the excurrent ducts collected from sexually mature buffalo bulls of proven fertility during the mating (late autumn-winter) and non-mating (late spring to the beginning of autumn) seasons. Furthermore, the research was performed also on the epididymal cauda of a senile buffalo bull with inactive testis. Aquaporins 1 and 9 were immunolocalized at distinct levels. In the efferent ducts, AQP1 immunoreactivity was strongly evidenced at the apical surface of the non-ciliated cells and weakly along the basal membrane of the epithelial cells. The latter reactivity disappeared during the non-mating season. No AQP1 immunoreactivity was detected in the epithelium of epididymis and vas deferens, whereas AQP1 was expressed in the smooth muscle layer of the vas deferens. Aquaporin 1 was present in the blood vessels and in small nerve bundles all along the genital tract. The supranuclear zone of the epididymal principal cells was AQP9 immunoreactive, limited to the corpus and cauda regions, and vas deferens. The samples collected in the two reproductive seasons showed a weaker AQP9 immunoreactivity during the non-mating season. A typical AQP9 immunoreactivity was noticed in the old buffalo examined. The tested AQP molecules showed a different expression pattern in comparison with laboratory mammals, primates, equine, dog and cat. In addition, seasonal differences were noticed which are possibly useful in regard to the comprehension of the morphophysiology of reproduction in the bubaline species, which are still a matter of debate.

  7. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation.

    Science.gov (United States)

    Montiel, V; Leon Gomez, E; Bouzin, C; Esfahani, H; Romero Perez, M; Lobysheva, I; Devuyst, O; Dessy, C; Balligand, J L

    2014-02-01

    The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1-AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac

  8. Aquaporin 4 in the sensory organs of adult zebrafish (Danio rerio).

    Science.gov (United States)

    Zichichi, Rosalia; Magnoli, Domenico; Montalbano, Giuseppe; Laurà, Rosaria; Vega, José A; Ciriaco, Emilia; Germanà, Antonino

    2011-04-12

    The aquaporins (AQPs) are a family (AQP-AQP10) of transmembrane channel proteins that mediate the transport of water, ions, gases, and small molecules across the cell membrane, thus regulating cell homeostasis. AQP4 has the highest water permeability and it is involved in hearing and vision in mammals. Here, we used immunohistochemistry to map the presence of AQP4 in the sensory organs of adult zebrafish. The antibody used detected by Western blot proteins of 34 kDa (equivalent to that of mammalian AQP4) and maps in the sensory cells of taste buds, the hair sensory cells of the neuromast and of the maculae, and cristae ampullaris of the inner ear. Moreover, the retinal photoreceptors display AQP4 immunoreactivity. The non-sensory cells in these organs were AQP4 negative. These results suggest that the AQP4 could play a role in the regulation of water balance and ion transport in the sensory cells of zebrafish, bringing new data for the utilizing of this experimental model in the biology of sensory system.

  9. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: a molecular dynamics study of field effects and relaxation.

    Science.gov (United States)

    Reale, Riccardo; English, Niall J; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca

    2013-11-28

    Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and

  10. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance.

    Science.gov (United States)

    Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel

    2014-04-01

    The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions.

  11. Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis.

    Science.gov (United States)

    Philip, Benjamin N; Yi, Shu-Xia; Elnitsky, Michael A; Lee, Richard E

    2008-04-01

    Survival of freezing not only requires organisms to tolerate ice formation within their body, but also depends on the rapid redistribution of water and cryoprotective compounds between intra- and extracellular compartments. Aquaporins are transmembrane proteins that serve as the major pathway through which water and small uncharged solutes (e.g. glycerol) enter and leave the cell. Consequently, we examined freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis, to determine whether aquaporins are present and if their presence promotes freeze tolerance of specific tissues. Immunoblotting with mammalian anti-AQP2, -AQP3 and -AQP4 revealed corresponding aquaporin homologues in E. solidaginis, whose patterns of expression varied depending on acclimation temperature and desiccation treatment. To examine the role of aquaporins in freeze tolerance, we froze fat body, midgut and salivary gland tissues in the presence and absence of mercuric chloride, an aquaporin inhibitor. Survival of fat body and midgut cells was significantly reduced when mercuric chloride was present. In contrast, survival of the salivary gland did not decrease when it was frozen with mercuric chloride. Overall, this study supports our hypothesis that naturally occurring aquaporins in E. solidaginis are regulated during desiccation and promote cell survival during freezing.

  12. Aquaporin expression contributes to human transurothelial permeability in vitro and is modulated by NaCl.

    Directory of Open Access Journals (Sweden)

    Peter C Rubenwolf

    Full Text Available It is generally considered that the bladder is impervious and stores urine in unmodified form on account of the barrier imposed by the highly-specialised uro-epithelial lining. However, recent evidence, including demonstration of aquaporin (AQP expression by human urothelium, suggests that urothelium may be able to modify urine content. Here we have we applied functional assays to an in vitro-differentiated normal human urothelial cell culture system and examined both whether AQP expression was responsive to changes in osmolality, and the effects of blocking AQP channels on water and urea transport. AQP3 expression was up-regulated by increased osmolality, but only in response to NaCl. A small but similar effect was seen with AQP9, but not AQP4 or AQP7. Differentiated urothelium revealed significant barrier function (mean TER 3862 Ω.cm(2, with mean diffusive water and urea permeability coefficients of 6.33×10(-5 and 2.45×10(-5 cm/s, respectively. AQP blockade with mercuric chloride resulted in decreased water and urea flux. The diffusive permeability of urothelial cell sheets remained constant following conditioning in hyperosmotic NaCl, but there was a significant increase in water and urea flux across an osmotic gradient. Taken collectively with evidence emerging from studies in other species, our results support an active role for human urothelium in sensing and responding to hypertonic salt concentrations through alterations in AQP protein expression, with AQP channels providing a mechanism for modifying urine composition. These observations challenge the traditional concept of an impermeable bladder epithelium and suggest that the urothelium may play a modulatory role in water and salt homeostasis.

  13. Space-Time Water-Filling for Composite MIMO Fading Channels

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We analyze the ergodic capacity and channel outage probability for a composite MIMO channel model, which includes both fast fading and shadowing effects. The ergodic capacity and exact channel outage probability with space-time water-filling can be evaluated through numerical integrations, which can be further simplified by using approximated empirical eigenvalue and maximal eigenvalue distribution of MIMO fading channels. We also compare the performance of space-time water-filling with spatial water-filling. For MIMO channels with small shadowing effects, spatial water-filling performs very close to space-time water-filling in terms of ergodic capacity. For MIMO channels with large shadowing effects, however, space-time water-filling achieves significantly higher capacity per antenna than spatial water-filling at low to moderate SNR regimes, but with a much higher channel outage probability. We show that the analytical capacity and outage probability results agree very well with those obtained from Monte Carlo simulations.

  14. Why does the mammalian red blood cell have aquaporins?

    Science.gov (United States)

    Kuchel, Philip W; Benga, Gheorghe

    2005-11-01

    Aquaporins are now known to mediate the rapid exchange of water across the plasma membranes of diverse cell types. This exchange has been studied and kinetically characterized in red blood cells (erythrocytes; RBC) from many animal species. In recent years, a favoured method has been one based on NMR spectroscopy. Despite knowledge of their molecular structure the physiological raison d' etre of aquaporins in RBCs is still only speculated upon. Here, we present two hypotheses that account for the fact that the exchange of water is so fast in RBCs. The first is denoted the "oscillating sieve" hypothesis and it posits that known membrane undulations at frequencies up to 30 Hz with displacements up to 0.3 microm are energetically favoured by the high water permeability of the membrane. The second denoted the "water displacement" hypothesis is based on the known rapid exchange across the RBC membrane of ions such as Cl- and HCO3- and solutes such as glucose, all of whose molecular volumes are significantly greater than that of water. The ideas are generalizable to other cell types and organelles.

  15. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2008-05-15

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  16. Anti-aquaporin-1 autoantibodies in patients with neuromyelitis optica spectrum disorders.

    Directory of Open Access Journals (Sweden)

    John S Tzartos

    Full Text Available Autoantibodies against aquaporin-4 (AQP4, a water channel in CNS astrocytes, are detected in ∼50-80% of patients with neuromyelitis optica spectrum disorders (NMOsd, characterized by longitudinally extensive transverse myelitis (LETM and/or optic neuritis. Although these autoantibodies present an invaluable biomarker for NMOsd and for the differential diagnosis of multiple sclerosis (MS, diagnosis of anti-AQP4-seronegative NMOsd remains challenging. We hypothesized that seronegative NMOsd patients might have autoantibodies against aquaporin-1 (AQP1, another water channel in CNS astrocytes. We initially developed a radioimmunoprecipitation assay to search for anti-AQP1 antibodies in sera from 632 individuals. Anti-AQP1 or anti-AQP4 autoantibodies were detected in 16.7% and 12%, respectively, of 348 patients with suspected NMOsd. Anti-AQP1 specificity was confirmed by competition, protein immunoblotting and ELISA assays, whereas epitope localization was studied by immunoadsorption on intact cells expressing AQP1 and peptide mapping experiments. Most anti-AQP1 autoantibodies were of the complement-activating IgG1 subclass and the majority bound to the extracellular domain of AQP1, suggesting a possible pathogenic role. Five out of 42 MS patients had anti-AQP1 antibodies, but 2 of them also had spinal cord lesions, while the anti-AQP1 antibodies in the other 3 bound to the cytoplasmic domain of AQP1. Anti-AQP1 antibodies were not detected in 100 healthy individuals or 142 patients with non-demyelinating neuroimmune diseases. Analysis of 17 anti-AQP1+/anti-AQP4- patients with suspected NMOsd showed that 5 had NMO and 11 had LETM. 12/17 of these sera bound predominantly to the extracellular AQP1 loop-Α. Overall, we found that anti-AQP1 autoantibodies are present in a subgroup of patients with chronic demyelination in the CNS and similarities with anti-AQP4-seronegative NMOsd, offering a novel potential biomarker for CNS demyelination disorders.

  17. Crystal Structure of an Ammonia-Permeable Aquaporin

    DEFF Research Database (Denmark)

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick;

    2016-01-01

    the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals...... an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity...

  18. Aquaporin-1 Expression in Retinal Pigment Epithelial Cells Overlying Retinal Drusen

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten

    2016-01-01

    PURPOSE: In the outer retina, age-related macular degeneration (AMD) results in reduced hydraulic conductivity in Bruch's membrane, possibly leading to altered water transport in retinal pigment epithelial (RPE) cells. We hypothesize that RPE cells may express aquaporin-1 (AQP1) to compensate...

  19. Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development.

    Science.gov (United States)

    Nicchia, Grazia P; Mola, Maria G; Pisoni, Michela; Frigeri, Antonio; Svelto, Maria

    2007-05-01

    Aquaporin-4 (AQP4) is the neuromuscular water channel expressed at the sarcolemma of mammalian fast-twitch fibers that mediates a high water transport rate, which is important during muscle activity. Clinical interest in the neuromuscular expression of AQP4 has increased as it is associated with the protein complex formed by dystrophin, the product of the gene affected in Duchenne muscular dystrophy. The expression of AQP4 during development has not been characterized. In this study, we analyzed the expression of AQP4 in extensor digitorum longus (EDL) and soleus, a fast- and slow-twitch muscle, respectively, during the first weeks after birth. The results show that AQP4 expression in both types of skeletal muscle occurs postnatally. The time course of expression of AQP4 in the two types of muscles was also different. Whereas the expression of AQP4 protein levels in the EDL showed a progressive increase during the first month after birth, reaching levels found in adults by day 24, the levels of the protein in the soleus showed a transient peak between day 12 and day 24 and declined thereafter, an effect that may be related to the transient high number of fast motor units innervating the soleus muscle during this time. The results suggest that AQP4 expression in skeletal muscle is under neuronal influence and contribute to the understanding of the molecular events of fiber differentiation during development.

  20. Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth.

    Directory of Open Access Journals (Sweden)

    Gilor Kelly

    Full Text Available Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO₂ and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1, a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO₂ conductance (g(m. Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO₂ conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO₂.

  1. Distribution of aquaporin 4 on sarcolemma of fast-twitch skeletal myofibres.

    Science.gov (United States)

    Kaakinen, Mika; Salmela, Paula; Zelenin, Sergey; Metsikkö, Kalervo

    2007-09-01

    The aquaporin 4 (AQP4) water channel is present on the sarcolemma of fast-twitch-type skeletal myofibres. We have examined the distribution of AQP4 in relation to sarcolemmal domain structure and found that AQP4 protein is not evenly distributed on the sarcolemma. Immunofluorescence staining of isolated single myofibres indicated a punctate staining pattern overlapping with the dystrophin glycoprotein complex, but with the transverse tubule openings being left clear. Myotendinous and neuromuscular junctions also lacked AQP4, despite their high content of the dystrophin glycoprotein complex. The destruction of caveoli with methyl-beta-cyclodextrin did not change the distribution of AQP4 at the sarcolemma. Moreover, AQP4 did not float with the caveolar marker caveolin-3 in sucrose gradients after Triton X-100 extraction at 4 degrees C. These data indicated that AQP4 was not associated with caveoli. Surprisingly, m. flexor digitorum brevis fibres, although of the fast-twitch type, often lacked AQP4. Furthermore, those fibres harbouring AQP4 at the sarcolemma showed a regionalized distribution, suggesting that large areas were devoid of the protein. Blockage of the synthesized proteins in the endoplasmic reticulum with brefeldin A showed that, in spite of its regionalized sarcolemmal distribution, AQP4 was synthesized along the entire length of the fibres. These results suggest functional differences in the water permeability of the sarcolemma not only between the fast-twitch muscles, but also within single muscle fibres.

  2. Direct simulation of liquid water dynamics in the gas channel of a polymer electrolyte fuel cell

    NARCIS (Netherlands)

    Qin, C.; Rensink, D.; Hassanizadeh, S.M.; Fell, S.

    2012-01-01

    For better water management in gas channels (GCs) of polymer electrolyte fuel cells (PEFCs), a profound understanding of the liquid water dynamics is needed. In this study, we propose a novel geometrical setup to conduct a series of direct simulations of the liquid water dynamics in a GC. The conduc

  3. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins

    Directory of Open Access Journals (Sweden)

    Kristina eSundell

    2012-09-01

    Full Text Available The anadromous salmonid life cycle includes both fresh water (FW and seawater (SW stages. The parr-smolt transformation (smoltification pre–adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+,K+-ATPase (NKA activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions, is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle.

  4. Detection of Liquid Water in PEM Fuel Cells' Channels: Design and Validation of a Microsensor.

    OpenAIRE

    Conteau, Delphine; Bonnet, Caroline; Funfschilling, Denis; Weber, Mathieu; Didierjean, Sophie; Lapicque, François

    2010-01-01

    Abstract Suitable water management is a critical issue to reach the full potential of PEM fuel cells: whereas the membrane must be hydrated enough, liquid droplets formed by water in excess can block the flow in the gas distribution channels and hinder the fuel cell performance. In order to detect the presence of droplets in cathode flow channel, an electrochemical sensor has been developed and tested in a dedicated emulation cell. It is based on the widely used principle of two-el...

  5. A flow channel design procedure for PEM fuel cells with effective water removal

    Science.gov (United States)

    Li, Xianguo; Sabir, Imran; Park, Jaewan

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm 2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.

  6. A flow channel design procedure for PEM fuel cells with effective water removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianguo; Sabir, Imran; Park, Jaewan [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2007-01-01

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441cm{sup 2}. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure. (author)

  7. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.

    Science.gov (United States)

    Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2008-08-01

    We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.

  8. 脑水肿与通道蛋白4的关系及进展%Correlation between cerebral edema and aquaporin 4

    Institute of Scientific and Technical Information of China (English)

    林锋; 吴江

    2012-01-01

    Cerebral edema is a common symptom in neurology and neurosurgery. Currently its cause is still not fully understood, thus its treatment means and effect are still limited. AQP (Aquaporin), a kind of molecule water channel in the body, is discovered in 1988. AQP4 (aquaporin-4) is a subtype of AQP and found to be closely related to the formation and prognosis of cerebral edema. The inhibiting and enhancing of AQP4 can affect the formation and prognosis of cerebral edema and it is also found that AQP4 may have other functions. In-depth study of the relationship between AQP4 and cerebral edema can help answer the questions regarding the formation and treatment of cerebral edema, and at the same time enhance understanding of water metabolism in the body.%脑水肿是神经内外科的一种常见症状,对于它的形成目前还未能全部了解,治疗手段有限,效果不一.水通道蛋白(aquaporin,AQP)是1988年发现的生物体内的一种水的分子通道.水通道蛋白4(aquaporin-4,AQP4)是AQP蛋白的一种,研究发现,AQP4蛋白对脑水肿的形成及预后有非常密切的关系,通过调节AQP4蛋白可影响脑水肿的形成及预后,同时AQP4可能还有一些其他功能.因此,对AQP4蛋白及脑水肿的关系进行深入研究有助于解决脑水肿的发生与治疗问题,同时对水在生物体内的代谢有更深入的了解.

  9. Improved Correction Method for Water-Refracted Terrestrial Laser Scanning Data Acquired in the Mountain Channel

    Science.gov (United States)

    Miura, N.; Asano, Y.; Moribe, Y.

    2016-06-01

    Detailed information of underwater topography is required for better understanding and prediction of water and sediment transport in a mountain channel. Recent research showed promising utility of green-wavelength Terrestrial Laser Scanning (TLS) for measuring submerged stream-bed structure in fluvial environment. However, difficulty in acquiring reliable underwater data has been remained in the part of mountain channel where water surface has some gradient. Since horizontal water surface was a major premise for the existing water refraction correction method, significant error was resulted in such area. Therefore, this paper presents a modified method to correct water-refracted TLS data acquired over mountain channel with complex water-surface slope. Applicability of the modified method was validated using the field data and compared with the existing correction method and non-corrected data. The results showed that the modified method has much smaller error with RMSE value of 3 mm than the existing method (RMSE = 10 mm) and non-corrected data (RMSE = 23 mm). Presented method successfully corrected water-refracted TLS data acquired over sloped channel. This would enable us to quantitatively measure whole units of complex mountain channels, and help us to understand water dynamics better in the area.

  10. Hyperosmolality-mediated peritoneal microvascular vasodilation is linked to aquaporin function.

    Science.gov (United States)

    Zakaria, El Rasheid; Althani, Asma; Fawzi, Ashraf A; Fituri, Omar M

    2014-01-01

    Glucose-based peritoneal dialysis (PD) solutions dilate the parietal and visceral peritoneal microvasculature by endothelium-dependent mechanisms that primarily involve hyperosmolality. This PD-mediated dilation occurs by active intracellular glucose uptake and adenosine Al receptor activation, and by hyperosmolality-stimulated glibenclamide-sensitive potassium channels. Both pathways invoke NO as a second messenger for vasodilation. We hypothesized that during crystalloid-induced osmosis, the osmotic water flux through the transendothelial water-exclusive aquaporin 1 (AQP1) channels is the primary mechanism whereby the endothelium is being stimulated to instigate hyperosmolality-driven vasodilation. Four microvascular levels (diameters in the range 6 - 100 microm) were visualized by intravital videomicroscopy of the terminal ileum in anesthetized rats. Microvascular diameters and flow were measured after topical exposure to a 5% hypertonic mannitol or 2.5% glucose-based PD solution, at baseline and after brief tissue pre-treatment (with 0.1% glutaraldehyde for 10 seconds) or after combined tissue pre-treatment and pharmacologic blockade of AQP1 with HgCl2 (100 micromol/L). Vascular endothelial integrity was verified by the response to acetylcholine (10(-4) mol/L) and sodium nitroprusside (10(-4) mol/L). The hyperosmolar solutions both caused rapid and sustained vasodilation at all microvascular levels, which was not altered by tissue pre-treatment. Inhibition of AQP1 completely abolished the mannitol-induced vasodilation and markedly attenuated the PD fluid-mediated vasodilation. Neither glutaraldehyde pre-treatment nor HgCl2 affected tissue integrity or endothelial cell function. We conclude that the peritoneal microvascular vasodilation caused by hyperosmolar PD fluid is instigated by the osmotic water flux through AQP1. Clinical PD solutions have components other than hyperosmolality that can induce endothelium-dependent peritoneal microvascular vasodilation

  11. The Role of Channel Bar Influences on Groundwater / Surface Water Interactions

    Science.gov (United States)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2010-12-01

    Channel bars are dominant in-stream geomorphic island features present in a large range of river classes throughout the world, particularly in the arid western United States. A quantitative understanding of groundwater and surface water exchange through channel bar features is necessary to understand near-stream hyporheic flow patterns. The Truckee River in northwestern Nevada was used as a research site to quantitatively examine the influence of channel bars on near-stream water fluxes using heat as a tracer. This study provided the near-stream hydraulic physical framework for current and future research on nutrient cycling and biogeochemical impacts of near-stream exchange and can be used for assessing critical water quality impacts. Field activities included the installation and development of monitoring wells and piezometers, instrumentation of the piezometers with pressure transducers and temperature thermistors, and slug tests to estimate hydraulic conductivity. The potentiometric surface throughout the study site was monitored over time and the temperature thermistors were used to estimate transport using heat as a tracer. Horizontal and vertical Darcian water fluxes were estimated from field observations. To increase confidence in the hydraulic conductivity values for water flux estimates, heat-based numerical simulations were completed. Three-dimensional models of the channel bar study area were constructed and hydraulic conductivity was inversely estimated by minimizing the difference between observed and simulated head and temperature measurements. Numerical simulations indicated that lateral water fluxes between the channel bar and the stream were an order of magnitude greater than between the adjacent streambank and the stream. The fluxes at the downstream end of the channel bar were an order of magnitude greater than upstream fluxes. Net groundwater and surface water fluxes at the channel bar and stream interface were at least 2 times greater than

  12. Experimental study of two-phase water flow in vertical thin rectangular channels

    Science.gov (United States)

    Wright, Christopher T.; O'Brien, James E.; Anderson, Elgin A.

    2001-11-01

    An experimental heat transfer study of two-phase water flow in vertical thin rectangular channels with side vents is conducted. A multiple, heated channel configuration with up- and down-flow conditions is investigated. Parallel heated and unheated flow channels test the effects of cross flow on the onset of nucleate boiling (ONB) and critical heat flux (CHF). The test apparatus provides pressure and substrate temperature data and visual data of the boiling regimes and side-vent flow patterns. The objectives are to determine the two-phase, heat and mass transfer characteristics between adjacent channels as permitted by side-vent cross flow. These data will help develop ONB and CHF correlations for flow geometries typical of plate-type nuclear reactors and heat exchangers. Fundamentally, the data shows how the geometry, flow conditions, and channel configurations affect the heat transfer characteristics of interior channel flows, essential in understanding the ONB and CHF phenomena.

  13. A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening.

    Science.gov (United States)

    Mut, Paula; Bustamante, Claudia; Martínez, Gustavo; Alleva, Karina; Sutka, Moira; Civello, Marcos; Amodeo, Gabriela

    2008-04-01

    Despite the advances in the physiology of fruit ripening, the role and contribution of water pathways are still barely considered. Our aim was therefore to characterize aquaporins, proteins that render the molecular basis for putative regulatory mechanisms in water transport. We focused our work on strawberry (Fragaria xananassa) fruit, a non-climacteric fruit of special interest because of its forced brief commercial shelf life. A full-length cDNA was isolated with high homology with plasma membrane (PM) intrinsic proteins (named FaPIP1;1), showing a profile with high expression in fruit, less in ovaries and no detection at all in other parts. Its cellular localization was confirmed at the PM. As reported in other plasma membrane intrinsic proteins subtype 1 (PIP1s), when expressing the protein in Xenopus leavis oocytes, FaPIP1;1 shows low water permeability values that only increased when it is coexpressed with a plasma membrane intrinsic protein subtype 2. Northern blotting using total RNA shows that its expression increases during fruit ripening. Moreover, functional characterization of isolated PM vesicles from red stage fruit unequivocally demonstrates the presence of active water channels, i.e. high water permeability values and a low Arrhenius activation energy, both evidences of water transport mediated by proteins. Interestingly, as many ripening-related strawberry genes, the expression pattern of FaPIP1;1 was also repressed by the presence of auxins. We therefore report a fruit specific PIP1 aquaporin with an accumulation pattern tightly associated to auxins and to the ripening process that might be responsible for increasing water permeability at the level of the PM in ripe fruit.

  14. Aquaporin-1 Facilitates Angiogenic Invasion in the Pathologic Neovasculature that Accompanies Cirrhosis

    Science.gov (United States)

    Huebert, Robert C.; Vasdev, Meher M.; Shergill, Uday; Das, Amitava; Huang, Bing Q.; Charlton MR, Michael R.; LaRusso, Nicholas F.; Shah, Vijay H.

    2010-01-01

    Increasing evidence suggests that hepatic fibrosis and pathologic angiogenesis are inter-dependent processes that occur in parallel. Endothelial cell invasion is requisite for angiogenesis and thus studies of the mechanisms governing liver endothelial cell (LEC) invasion during cirrhosis are of great importance. Emerging research implicates amoeboid-type motility and membrane blebbing as features that may facilitate invasion through matrix-rich microenvironments. Aquaporins (AQPs) are integral membrane water channels, recognized for their importance in epithelial secretion and absorption. However, recent studies also suggest links between water transport and cell motility / invasion. Therefore, the purpose of this study was to test the hypothesis that AQP-1 is involved in amoeboid motility and angiogenic invasion during cirrhosis. AQP-1 expression and localization was examined in normal and cirrhotic liver tissues derived from human and mouse. AQP-1 levels were modulated in LEC using retroviral overexpression or siRNA knockdown and functional effects on invasion, membrane blebbing dynamics, and osmotic water permeability were assayed. Results demonstrate that AQP-1 is up-regulated in the small, angiogenic, neo-vasculature within the fibrotic septa of cirrhotic liver. AQP-1 overexpression promotes FGF-induced dynamic membrane blebbing in LEC which is sufficient to augment invasion through extracellular matrix. Additionally, AQP-1 localizes to plasma membrane blebs where it increases osmotic water permeability and locally facilitates the rapid, trans-membrane flux of water. CONCLUSION AQP-1 enhances osmotic water permeability and FGF-induced dynamic membrane blebbing in LEC and thereby drives invasion and pathologic angiogenesis during cirrhosis PMID:20578142

  15. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Directory of Open Access Journals (Sweden)

    Roderick Nigel Finn

    Full Text Available A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16. The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  16. Advances of the lung injury mediated by aquaporin 1, 5%水通道蛋白-1、5介导的肺损伤的研究进展

    Institute of Scientific and Technical Information of China (English)

    钟薇薇; 李元海

    2012-01-01

    背景 水通道蛋白(aquaporin,AQP)是一类高效率跨膜转运水分子的蛋白通道家族,参与诸多组织器官中的水转运及细胞内外的水平衡.现已证实有6种AQP(AQP1、3、4、5、8、9)分布于肺组织,有大量研究证明AQP1、5在肺水转运中的作用尤为重要.目的 通过对AQP1、5在急性肺损伤(acute lung injury,ALI)中的作用的研究来指导临床实践.内容 探讨AQP1、5在ALI中的作用及调控机制.趋势 随着对AQP1、5作用机制研究的不断深入,给相关疾病的防治带来了希望.%Background Aquaporins(AQP),a kind of high efficiency family of transmembrane water channels,participate in the water transport of kinds of tissues and organs,and they also maintain intracellular & extracellular water balance.Nowadays,it is showed that there are six aquaporins in the lung tissue,and that AQP1 and AQP5 might play an important role in the water transport of the lung tissue.Objective It is of great clinical significance to clarify the mechanisms of AQP1,5 mediated acute lung injury (ALI).Content This review mainly discusses the lung injury mediated by AQP1,5.Trend With the progresses of the research,it will develop some new clinical prevention and treatment strategys of lung diseases.

  17. Research on measurement-device-independent quantum key distribution based on an air-water channel

    Science.gov (United States)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  18. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2008-04-01

    Full Text Available Abstract Background Aquaporins, also called major intrinsic proteins (MIPs, constitute an ancient superfamily of channel proteins that facilitate the transport of water and small solutes across cell membranes. MIPs are found in almost all living organisms and are particularly abundant in plants where they form a divergent group of proteins able to transport a wide selection of substrates. Results Analyses of the whole genome of Physcomitrella patens resulted in the identification of 23 MIPs, belonging to seven different subfamilies, of which only five have been previously described. Of the newly discovered subfamilies one was only identified in P. patens (Hybrid Intrinsic Protein, HIP whereas the other was found to be present in a wide variety of dicotyledonous plants and forms a major previously unrecognized MIP subfamily (X Intrinsic Proteins, XIPs. Surprisingly also some specific groups within subfamilies present in Arabidopsis thaliana and Zea mays could be identified in P. patens. Conclusion Our results suggest an early diversification of MIPs resulting in a large number of subfamilies already in primitive terrestrial plants. During the evolution of higher plants some of these subfamilies were subsequently lost while the remaining subfamilies expanded and in some cases diversified, resulting in the formation of more specialized groups within these subfamilies.

  19. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Directory of Open Access Journals (Sweden)

    Kiminori Sada

    Full Text Available We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs, cellular hypoxia increased after incubation with high glucose (HG. A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1, a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  20. Methylprednisolone Administration Following Spinal Cord Injury Reduces Aquaporin 4 Expression and Exacerbates Edema

    Directory of Open Access Journals (Sweden)

    Eibar Ernesto Cabrera-Aldana

    2017-01-01

    Full Text Available Spinal cord injury (SCI is an incapacitating condition that affects motor, sensory, and autonomic functions. Since 1990, the only treatment administered in the acute phase of SCI has been methylprednisolone (MP, a synthetic corticosteroid that has anti-inflammatory effects; however, its efficacy remains controversial. Although MP has been thought to help in the resolution of edema, there are no scientific grounds to support this assertion. Aquaporin 4 (AQP4, the most abundant component of water channels in the CNS, participates in the formation and elimination of edema, but it is not clear whether the modulation of AQP4 expression by MP plays any role in the physiopathology of SCI. We studied the functional expression of AQP4 modulated by MP following SCI in an experimental model in rats along with the associated changes in the permeability of the blood-spinal cord barrier. We analyzed these effects in male and female rats and found that SCI increased AQP4 expression in the spinal cord white matter and that MP diminished such increase to baseline levels. Moreover, MP increased the extravasation of plasma components after SCI and enhanced tissue swelling and edema. Our results lend scientific support to the increasing motion to avoid MP treatment after SCI.

  1. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia.

    Science.gov (United States)

    Yao, Xiaoming; Derugin, Nikita; Manley, Geoffrey T; Verkman, A S

    2015-01-01

    Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet lining the blood-brain barrier. AQP4 deletion in mice is associated with improved outcomes in global cerebral ischemia produced by transient carotid artery occlusion, and focal cerebral ischemia produced by permanent middle cerebral artery occlusion (MCAO). Here, we investigated the consequences of 1-h transient MCAO produced by intraluminal suture blockade followed by 23 h of reperfusion. In nine AQP4(+/+) and nine AQP4(-/-) mice, infarct volume was significantly reduced by an average of 39 ± 4% at 24h in AQP4(-/-) mice, cerebral hemispheric edema was reduced by 23 ± 3%, and Evans Blue extravasation was reduced by 31 ± 2% (mean ± SEM). Diffusion-weighted magnetic resonance imaging showed greatest reduction in apparent diffusion coefficient around the occlusion site after reperfusion, with remarkably lesser reduction in AQP4(-/-) mice. The reduced infarct volume in AQP4(-/-) mice following transient MCAO supports the potential utility of therapeutic AQP4 inhibition in stroke.

  2. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy.

    Science.gov (United States)

    Rossi, Luigi; Nicoletti, Maria Celeste; Carmosino, Monica; Mastrofrancesco, Lisa; Di Franco, Antonella; Indrio, Francesca; Lella, Rossella; Laviola, Luigi; Giorgino, Francesco; Svelto, Maria; Gesualdo, Loreto; Procino, Giuseppe

    2017-01-01

    Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN.

  3. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Luigi Rossi

    2017-01-01

    Full Text Available Diabetic nephropathy (DN is a microangiopathic complication of diabetes mellitus (DM affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs, expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2, via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM, 11 with proteinuric nondiabetic nephropathy (NDN, and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN.

  4. Reversible, Temperature-Dependent Supramolecular Assembly of Aquaporin-4 Orthogonal Arrays in Live Cell Membranes

    Science.gov (United States)

    Crane, Jonathan M.; Verkman, A.S.

    2009-01-01

    Abstract The shorter “M23” isoform of the glial cell water channel aquaporin-4 (AQP4) assembles into orthogonal arrays of particles (OAPs) in cell plasma membranes, whereas the full-length “M1” isoform does not. N-terminal residues are responsible for OAP formation by AQP4-M23 and for blocking of OAP formation in AQP4-M1. In investigating differences in OAP formation by certain N-terminus mutants of AQP4, as measured by freeze-fracture electron microscopy versus live-cell imaging, we discovered reversible, temperature-dependent OAP assembly of certain weakly associating AQP4 mutants. Single-particle tracking of quantum-dot-labeled AQP4 in live cells and total internal reflection fluorescence microscopy showed >80% of M23 in OAPs at 10–50°C compared to 70% at 10°C for the double mutant M1-C13A/C17A. OAP assembly by this mutant, but not by native M23, could also be modulated by reducing its membrane density. Exposure of native M1 and single cysteine mutants to 2-bromopalmitate confirmed the presence of regulated OAP assembly by S-palmitoylation. Kinetic studies showed rapid and reversible OAP formation during cooling and OAP disassembly during heating. Our results provide what to our knowledge is the first information on the energetics of AQP4 OAP assembly in plasma membranes. PMID:19948131

  5. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy

    Science.gov (United States)

    Rossi, Luigi; Nicoletti, Maria Celeste; Mastrofrancesco, Lisa; Di Franco, Antonella; Indrio, Francesca; Lella, Rossella; Laviola, Luigi; Giorgino, Francesco; Svelto, Maria; Gesualdo, Loreto

    2017-01-01

    Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN. PMID:28246612

  6. Effect of a prostacyclin analogue, iloprost, on urinary aquaporin-2 excretion in humans.

    Science.gov (United States)

    Buemi, Michele; Di Pasquale, Giuseppe; Ruello, Antonella; Floccari, Fulvio; Aloisi, Carmela; Latassa, Giuseppe; Corsonello, Andrea; Sturiale, Alessio; Corica, Francesco; Frisina, Nicola

    2002-06-01

    The regulation of aquaporin-2 (AQP2) water channel excretion in the collecting duct depends mainly on the action of vasopressin (AVP). Recently, however, other regulatory factors have been identified: atrial natriuretic factor, oxytocin and prostaglandins. In healthy volunteers (5 males, 5 females; mean age 23 +/- 3 years) we therefore evaluated the effect of a stable analogue of prostacyclin-2 (PGI(2)), iloprost, on renal function and on the urinary excretion of AQP2 (U-AQP2). After 6 h of iloprost infusion, U-AQP2 increased from 0.8 +/- 0.15 to 1.8 +/- 0.2 pmol/mg creatinine (p < 0.001), while the urinary flow rate increased from 1.4 +/- 0.2 to 1.8 +/- 4 (p < 0.01). No significant change was found in the AVP serum concentration, with a basal value of 3.17 +/- 0.12 vs. 3.15 +/- 0.12 pg/ml after 6 h of prostacyclin infusion. All the values returned to pre-study levels after a recovery period of 6 h. In conclusion, the PGI(2) analogue, iloprost, can induce U-AQP2 excretion independent of AVP.

  7. Evidence of Positive Selection of Aquaporins Genes from Pontoporia blainvillei during the Evolutionary Process of Cetaceans.

    Directory of Open Access Journals (Sweden)

    Simone Lima São Pedro

    Full Text Available Marine mammals are well adapted to their hyperosmotic environment. Several morphological and physiological adaptations for water conservation and salt excretion are known to be present in cetaceans, being responsible for regulating salt balance. However, most previous studies have focused on the unique renal physiology of marine mammals, but the molecular bases of these mechanisms remain poorly explored. Many genes have been identified to be involved in osmotic regulation, including the aquaporins. Considering that aquaporin genes were potentially subject to strong selective pressure, the aim of this study was to analyze the molecular evolution of seven aquaporin genes (AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP9 comparing the lineages of cetaceans and terrestrial mammals.Our results demonstrated strong positive selection in cetacean-specific lineages acting only in the gene for AQP2 (amino acids 23, 83, 107,179, 180, 181, 182, whereas no selection was observed in terrestrial mammalian lineages. We also analyzed the changes in the 3D structure of the aquaporin 2 protein. Signs of strong positive selection in AQP2 sites 179, 180, 181, and 182 were unexpectedly identified only in the baiji lineage, which was the only river dolphin examined in this study. Positive selection in aquaporins AQP1 (45, AQP4 (74, AQP7 (342, 343, 356 was detected in cetaceans and artiodactyls, suggesting that these events are not related to maintaining water and electrolyte homeostasis in seawater.Our results suggest that the AQP2 gene might reflect different selective pressures in maintaining water balance in cetaceans, contributing to the passage from the terrestrial environment to the aquatic. Further studies are necessary, especially those including other freshwater dolphins, who exhibit osmoregulatory mechanisms different from those of marine cetaceans for the same essential task of maintaining serum electrolyte balance.

  8. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  9. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  10. Enzymatic activity in the surface microlayer and subsurface water in the harbour channel

    Science.gov (United States)

    Perliński, Piotr; Mudryk, Zbigniew J.; Antonowicz, Józef

    2017-09-01

    Hydrolytic activity of eight extracellular enzymes was determined spectrofluorimetric method in the surface microlayer and subsurface water in the harbour channel in Ustka. The ranking order of the potential enzyme activity rates in the studied water layers was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > xylanase > cellulase > chitinase. The level of activity of all studied hydrolases was higher in the surface microlayer than subsurface water. No clear gradients in the level of enzymatic activity were determined along the horizontal profile of the studied channel. Activity of extracellular enzymes was strongly influenced by the season.

  11. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    Directory of Open Access Journals (Sweden)

    Davide Basco

    Full Text Available Aquaporin-4 (AQP4 is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE, protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/- compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase, as well as in Ca(2+ handling (i.e. parvalbumin, SERCA1. Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  12. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    Science.gov (United States)

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  13. Aquaporin-4 expression is severely reduced in human sarcoglycanopathies and dysferlinopathies.

    Science.gov (United States)

    Assereto, Stefania; Mastrototaro, Mauro; Stringara, Silvia; Gazzerro, Elisabetta; Broda, Paolo; Nicchia, Grazia Paola; Svelto, Maria; Bruno, Claudio; Nigro, Vincenzo; Lisanti, M P; Frigeri, Antonio; Minetti, Carlo

    2008-07-15

    Aquaporin-4 (AQP4) is the major water channel expressed in fast-twitch skeletal muscle fibers. AQP4 is reduced in Duchenne and Becker Muscular Dystrophies, but not in caveolinopathies, thus suggesting an interaction with dystrophin or with members of the dystrophin-glycoprotein complex (DGC) rather than a nonspecific effect due to muscle membrane damage. To establish the role of sarcoglycans in AQP4 decrease occurring in muscular dystrophy, AQP4 expression was analyzed in muscle biopsies from patients affected by Limb Girdle Muscular Dystrophies (LGMDs) 2C-F genetically confirmed. In all the LGMD 2C-F (2alpha-, 1beta-, 2gamma-, 1delta-deficiency), AQP4 was severely decreased. This effect was associated to a marked reduction in alpha1-syntrophin levels. In control muscle AQP4 did not show a direct interaction with any of the four sarcoglycans but, it co-immunoprecipitated with alpha1-syntrophin, indicating that this modular protein may link AQP4 levels with the DGC complex. To determine whether AQP4 expression could be affected in other LGMDs due to the defect of a membrane protein not associated to the dystrophin complex, we examined AQP4 expression in 6 patients affected by dysferlin deficiency genetically confirmed. All the patients displayed a reduction of the water channel, and AQP4 expression appeared to correlate with the severity of the muscle histopathological lesions. However, differently from what observed in the sarcoglycans, alpha1-syntrophin expression was normal or just slightly reduced. These results seem to indicate an additional mechanism of regulation of AQP4 levels in muscle cells. In accordance with a specific effect of membrane muscle disorders, AQP4 protein levels were not changed in 3 mitochondrial and 3 metabolic myopathies. In conclusion, AQP4 expression and membrane localization are markedly reduced in LGMD 2B-2F. The role of AQP4 in the degenerative mechanism occurring in these diseases will be the object of our future research.

  14. The Discuss of the Formula of Flow Loss and Water Using Coefficient on Seepage Proofed Channel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of the analysis about present water resource situation in China ,the disadvantage of the for mula of flow loss and water using coefficient on anti-seep channel which have been applying in channel de sign and water saving irrigation administration will be indicated in the paper. The characteristics of that the loss of conveying water is changeable with the flow changing have been take into account in the new formula. The formula is validated by the example of middle permeable channel (A = 1.90,m = 0.40). The calculate re sult is more precision. Also some formula has been given,they can be referred to the worker of the irrigation administration.

  15. Aquaporin-1 is a Maxwell's Demon in the Body

    CERN Document Server

    Shu, Liangsuo; Xiaokang,; Qian, Liu Xin; Huang, Suyi; Jin, Shiping; Yang, Baoxue

    2015-01-01

    Aquaporin-1 (AQP1) is a membrane protein which is selectively permeable to water. Due to its hourglass shape, AQP1 can sense the information of solute molecules in osmosis. At the cost of consuming this information, AQP1 can move water against its chemical potential gradient: it works as one kind of Maxwell's Demon. This effect was detected quantitatively by measuring the water osmosis of mice erythrocytes. This ability may protect the erythrocytes from the eryptosis elicited by osmotic shock when they move in the kidney, where a large gradient of urea is required for the urine concentrating mechanism. This finding anticipates a new beginning of inquiries into the complicated relationships among mass, energy and information in bio-systems.

  16. Channels for change: private water and the urban poor

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Matthew; Matthews, Petter; Ryan-Collins, Lily [Engineers Against Poverty (United Kingdom)

    2010-05-15

    For the rapidly urbanising developing world, safe and affordable water is key to health and livelihoods, as well as meeting the Millennium Development Goals. But providing it demands innovative models. Where the context allows and the approach is appropriate, private sector involvement can generate win-win outcomes. Poor people can gain access to high-quality, affordable services, and companies can gain access to new and profitable business opportunities. Two examples of innovative 'private' water suppliers are the Manila Water Company's Water for the Poor Communities (TPSB) programme, and the Water & Sanitation for the Urban Poor (WSUP) partnership. Both have a multisector approach to service expansion and provision, including partnerships with local authorities; strong community involvement in selecting, designing and operating options; appropriate service levels to reduce costs; and a flexible range of services. Many elements of these models are also replicable.

  17. Immunogenic potential of the recombinant Rhipicephalus microplus aquaporin protein against the tick Rhipicephalus sanguineus Latreille, 1806 in domestic dogs

    Science.gov (United States)

    Aquaporins regulate water transport through the highly hydrophobic lipid bilayer of cell membranes. As ticks ingest large volumes of host blood in relation to their size, they are required to concentrate blood components and have efficient water transport mechanisms. This study aimed to evaluate the...

  18. Discharge capacity of sluiceway channel of water intake structure for diversion power plant in winter

    Directory of Open Access Journals (Sweden)

    N.P. Lavrov

    2013-06-01

    Full Text Available The paper presents results of research hydraulic processes at the intake structures of diversion power plants in winter. On the basis of the physical modeling results the flow characteristics of sluiceway channel of water intake on the river Issyk-Ata, Kyrgyzstan were determined. Statistical models of discharges of elements of sluiceway channel with their mutual influence were obtained, using the methods of experimental design and data analysis. The influence of the concentration of brash ice on the sluiceway channel and its elements is described. The comparison of experimental data with data obtained by other authors before is made by comparing flow coefficients. Recommendations for normal operation of ice pass at sluiceway track channel of water intake structure for diversion power plant are given.

  19. Preparation of semi-solid aluminum alloy slurry poured through a water-cooled serpentine channel

    Science.gov (United States)

    Chen, Zheng-Zhou; Mao, Wei-Min; Wu, Zong-Chuang

    2012-01-01

    A water-cooled serpentine channel pouring process was invented to produce semi-solid A356 aluminum alloy slurry for rheocasting, and the effects of pouring temperature and circulating cooling water flux on the microstructure of the slurry were investigated. The results show that at the pouring temperature of 640-680°C and the circulating cooling water flux of 0.9 m3/h, the semi-solid A356 aluminum alloy slurry with spherical primary α(Al) grains can be obtained, whose shape factors are between 0.78 and 0.86 and the grain diameter can reach 48-68 μm. When the pouring temperatures are at 660-680°C, only a very thin solidified shell remains inside the serpentine channel and can be removed easily. When the serpentine channel is cooled with circulating water, the microstructure of the semi-solid slurry can be improved, and the serpentine channel is quickly cooled to room temperature after the completion of one pouring. In terms of the productivity of the special equipment, the water-cooled serpentine channel is economical and efficient.

  20. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    Directory of Open Access Journals (Sweden)

    Bittagopal Mondal

    2016-01-01

    Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.

  1. Deep water overflow in the Faroe Bank Channel; modelling, processes, and impact

    DEFF Research Database (Denmark)

    Rullyanto, Arief

    2015-01-01

    More than 70% of the earth surface is covered by the ocean. The ocean is not static; it is in constant motion at many scales and circulates waters in coastal regions, the open seas and across ocean basins. The flow not only occurs in the surface of the ocean, as we can see in the form of waves...... or tides, but also deep beneath the surface, where deep-water currents circulate waters throughout the world’s oceans. In certain very-localized regions, the flow of the deep-water has to travel over a sill in a narrow submarine channel. This overflow process mixes the deep water with overlying waters...... under different circumstances. The focus is on the Faroe Bank Channel, a relatively small region, which has a significant impact on the global ocean circulation and marine organisms that live in its environment....

  2. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    Science.gov (United States)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  3. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory

    Directory of Open Access Journals (Sweden)

    Jenny I. Szu

    2016-02-01

    Full Text Available Aquaporin-4 (AQP4 is the predominant water channel expressed by astrocytes in the central nervous system. AQP4 is widely expressed throughout the brain, especially at the blood-brain barrier where AQP4 is highly polarized to astrocytic foot processes in contact with blood vessels. The bidirectional water transport function of AQP4 suggests its role in cerebral water balance in the CNS. The regulation of AQP4 has been extensively investigated in various neuropathological conditions such as cerebral edema, epilepsy, and ischemia, however, the functional role of AQP4 in synaptic plasticity, learning, and memory is only beginning to be elucidated. In this review, we explore the current literature on AQP4 and its influence on LTP and LTD in the hippocampus as well as the potential relationship between AQP4 in learning and memory. We begin by discussing recent in vitro and in vivo studies using AQP4 knockout (KO and wild-type mice, in particular, the impairment of LTP and LTD observed in the hippocampus. Early evidence using AQP4 KO mice have suggested that impaired LTP and LTD is BDNF dependent. Others have indicated a possible link between defective LTP and the downregulation of glutamate transporter-1 which is rescued by chronic treatment of β-lactam antibiotic ceftriaxone. Furthermore, behavioral studies may shed some light into the functional role of AQP4 in learning and memory. AQP4 KO mice performances utilizing Morris water maze, object placement tests, and contextual fear conditioning proposed a specific role of AQP4 in memory consolidation. All together, these studies highlight the potential influence AQP4 may have on long term synaptic plasticity and memory.

  4. Shallow water acoustic channel estimation using two-dimensional frequency characterization.

    Science.gov (United States)

    Ansari, Naushad; Gupta, Anubha; Gupta, Ananya Sen

    2016-11-01

    Shallow water acoustic channel estimation techniques are presented at the intersection of time, frequency, and sparsity. Specifically, a mathematical framework is introduced that translates the problem of channel estimation to non-uniform sparse channel recovery in two-dimensional frequency domain. This representation facilitates disambiguation of slowly varying channel components against high-energy transients, which occupy different frequency ranges and also exhibit significantly different sparsity along their local distribution. This useful feature is exploited to perform non-uniform sampling across different frequency ranges, with compressive sampling across higher Doppler frequencies and close to full-rate sampling at lower Doppler frequencies, to recover both slowly varying and rapidly fluctuating channel components at high precision. Extensive numerical experiments are performed to measure relative performance of the proposed channel estimation technique using non-uniform compressive sampling against traditional compressive sampling techniques as well as sparsity-constrained least squares across a range of observation window lengths, ambient noise levels, and sampling ratios. Numerical experiments are based on channel estimates from the SPACE08 experiment as well as on a recently developed channel simulator tested against several field trials.

  5. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  6. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels

    Science.gov (United States)

    Selbig, William R.

    2017-01-01

    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  7. Expression of aquaporin-1 in SMMC-7221 liver carcinoma cells promotes cell migration

    Institute of Scientific and Technical Information of China (English)

    LI Yongming; FENG Xuechao; YANG Hong; MA Tonghui

    2006-01-01

    Migration of tumor cells is a crucial step in tumor invasion and metastasis. Here we provide evidence that aquaporin expression is involved in tumor cell migration. RT-PCR, immunofluorescence and Western blot analysis demonstrated the AQP1 protein expression on the plasma membrane of SMMC-7221 human hepatoma cells. SMMC-7221 cell clones with high (SMMC-7221hPf) and low (SMMC-7221/Pf) water permeability were identified by functional assays with corresponding high and low AQP1 expression. Cell migration rate was remarkably higher in SMMC-7221hPf cells than SMMC-7221/Pf cells, assessed by Boyden chamber and wound healing assays, whereas cell growth and adhesion were not different. Adenovirus-mediated AQP1 expression in SMMC-7221/Pf cells increased their water permeability and migration rate. These results provide the first evidence that aquaporin-mediated membrane water permeability enhances tumor cell migration and may be associated with tumor invasion and metastasis.

  8. An Anti-multipath Frequency Hopped Communication Technique in Shallow-water Acoustic Channels

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper introduces a frequency-hopped (FH) communication system to anti-intersymbol interferences (ISI) caused by the multipath propagation in shallow-water acoustic channels, and uses high-speed digital signal processor (DSP) and serial ADC (MAX121) chip to demodulate received signal efficiently based Fast Fourier Transform (FFT) algorithm. The field experimental results show: a data rate of 1Kbit/s with the bit error rates on the order of 10-4 is demonstrated at 2000 m in the shallow-water acoustic channel of Xiamen harbor, and the key techniques of the system is analyzed in the paper.

  9. The diapause program impacts renal excretion and molecular expression of aquaporins in the northern house mosquito, Culex pipiens.

    Science.gov (United States)

    Yang, Liu; Denlinger, David L; Piermarini, Peter M

    2016-12-27

    Adult females of the mosquito Culex pipiens entering diapause increase sugar water ingestion and reduce evaporative water loss, but how these attributes of the diapause program impact activity of the renal excretory system remains unknown. Here we compared the renal excretory capacity of diapausing and non-diapausing females, as well as the molecular expression of aquaporin (AQP) genes that encode channels involved in transporting water and/or small metabolites. Baseline urine excretion rates in diapausing mosquitoes were higher than in those of their non-diapausing counterparts, possibly a consequence of the intense sugar feeding associated with diapause. But, diapausing mosquitoes exhibited a much lower capacity for diuresis than non-diapausing mosquitoes. The suppressed diuretic capacity likely reflects reduced investment in the energetically-expensive post-prandial diuresis, an event not observed in diapausing mosquitoes. The mRNA expression levels of two genes encoding AQPs, Eglp1 and Aqp12L, in diapausing mosquitoes were down-regulated (on day 14) and up-regulated (on both days 3 and 14), respectively, in whole body samples. These changes were not evident in the excretory system (i.e., Malpighian tubules and hindgut), which showed no differential expression of AQPs as a function of diapause. Several AQP mRNAs were, however, differentially expressed in the midgut, ovaries, and abdominal body wall of diapausing mosquitoes, suggesting that AQPs in these tissues may be playing important non-excretory roles that are unique to diapause physiology.

  10. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ayanjeet, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Gai, Feng, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Wang, Jun; DeGrado, William F. [Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143 (United States); Moroz, Yurii S.; Korendovych, Ivan V. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zanni, Martin [Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  11. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    Science.gov (United States)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  12. Unique and analogous functions of aquaporin O for fiber cell architecture and ocular lens transparency

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, S.S.; Eswaramoorthy, S.; Mathias, R. T.; Varadaraj, K.

    2011-09-01

    Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fibercell adhesion are different in AQP0{sup -/-}, and TgAQP1{sup +/+}/AQP0{sup -/-} mice that transgenically express AQP1 (TgAQP1) in fibercells without AQP0 (AQP0{sup -/-}). In WT, lenses were transparent with 'Y' sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0{sup -/-}lenses were cataractous, lacked 'Y' sutures, ordered packing and well-defined lateral interdigitations. TgAQP1{sup +/+}/AQP0{sup -/-} lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fibercells in WT whereas AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-}lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1{sup +/+}/AQP0{sup -/-} mice. Fibercell AQP0 expression is required to maintain their organization, which is a requisite for lenstransparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0{sup -/-} and TgAQP1{sup +/+}/AQP0{sup -/-} lenses, fiber cell disorganization was evident.

  13. 4D photogrammetric technique to study free surface water in open channels

    Science.gov (United States)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  14. Filter gate closure inhibits ion but not water transport through potassium channels.

    Science.gov (United States)

    Hoomann, Torben; Jahnke, Nadin; Horner, Andreas; Keller, Sandro; Pohl, Peter

    2013-06-25

    The selectivity filter of K(+) channels is conserved throughout all kingdoms of life. Carbonyl groups of highly conserved amino acids point toward the lumen to act as surrogates for the water molecules of K(+) hydration. Ion conductivity is abrogated if some of these carbonyl groups flip out of the lumen, which happens (i) in the process of C-type inactivation or (ii) during filter collapse in the absence of K(+). Here, we show that K(+) channels remain permeable to water, even after entering such an electrically silent conformation. We reconstituted fluorescently labeled and constitutively open mutants of the bacterial K(+) channel KcsA into lipid vesicles that were either C-type inactivating or noninactivating. Fluorescence correlation spectroscopy allowed us to count both the number of proteoliposomes and the number of protein-containing micelles after solubilization, providing the number of reconstituted channels per proteoliposome. Quantification of the per-channel increment in proteoliposome water permeability with the aid of stopped-flow experiments yielded a unitary water permeability pf of (6.9 ± 0.6) × 10(-13) cm(3)⋅s(-1) for both mutants. "Collapse" of the selectivity filter upon K(+) removal did not alter pf and was fully reversible, as demonstrated by current measurements through planar bilayers in a K(+)-containing medium to which K(+)-free proteoliposomes were fused. Water flow through KcsA is halved by 200 mM K(+) in the aqueous solution, which indicates an effective K(+) dissociation constant in that range for a singly occupied channel. This questions the widely accepted hypothesis that multiple K(+) ions in the selectivity filter act to mutually destabilize binding.

  15. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Science.gov (United States)

    2012-01-01

    Background Arbuscular mycorrhizas (AM) are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis. PMID:23046713

  16. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  17. An investigation of channel flow with a smooth air-water interface

    Science.gov (United States)

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan

    2015-06-01

    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  18. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues

    DEFF Research Database (Denmark)

    Assentoft, Mette; Larsen, Brian R; Olesen, Emma T B;

    2014-01-01

    . Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser...... heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4...

  19. Effect of tolvaptan on renal water and sodium excretion and blood pressure during nitric oxide inhibition

    DEFF Research Database (Denmark)

    Therwani, Safa Al; Rosenbæk, Jeppe Bakkestrøm; Mose, Frank Holden

    2017-01-01

    during 60 min. We measured urine output (UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma vasopressin (p-AVP) and central blood pressure (cBP). RESULTS: During baseline, FENa was unchanged...... in renal water and sodium excretion during NO-inhibition. Most likely, the lack of decrease in AQP2 excretion by tolvaptan could be attributed to a counteracting effect of the high level of p-AVP....

  20. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  1. 水孔蛋白在细胞延长、盐胁迫和光合作用中的作用%The action of aquaporins in cell elongation, salt stress and photosynthesis

    Institute of Scientific and Technical Information of China (English)

    杨淑慎; 崔丽荣

    2009-01-01

    Aquaporin belongs to a highly conserved group of membrane proteins called major intrinsic proteins (MIPs) that facilitate water transport across biological membranes. Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. We focused on GhPIP1;2 which belongs to the PIP subfamily and GhγTIP1 which belongs to the γTIP group of the TIP subfamily. Northern blot analysis with gene-specific probes and real-time PCR demonstrated that GhPlPl;2 and GhγTIP1 are predominantly expressed during cotton fiber elongation, with the highest expression levels at 5 days post anthesis. The high and preferential expression of GhPIPI;2 and GhγTIP1 suggests that they may play important roles in supporting the rapid influx of water into vacuoles during cotton fiber cell expansion. Also, the effects of Ca2+ on aquaporins in salinity-stressed plants were studied. Researchers treated the protoplasts and plasma membrane with NaCl or CaCl2, alone or in combination. Under saline conditions, osmotic water permeability (Pf) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIPI aquaporin abundance, indicating inhibitory effects of NaCI on aquaporin functionality and protein abundance. Two different actions of Ca2+ were observed. Increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure, however, the extra-calcium would lead to an upregulation of aquaporins. Meanwhile, experiments have demonstrated HvPIP2;1, one of barley aquaporins, has a higher water and CO2 transport activity. The goal of our plant aquaporin research is to determine the key aquaporin species responsible for water and CO2 transport, and to improve plant water relations, stress tolerance, CO2 uptake or assimilation, and plant productivity.%水孔蛋白属于一个高度保守的、能够进行跨生物膜水分运输的通道蛋白MIP家族.水孔蛋白

  2. Aquaporins in Salivary Glands: From Basic Research to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Christine Delporte

    2016-01-01

    Full Text Available Salivary glands are involved in saliva secretion that ensures proper oral health. Aquaporins are expressed in salivary glands and play a major role in saliva secretion. This review will provide an overview of the salivary gland morphology and physiology of saliva secretion, and focus on the expression, subcellular localization and role of aquaporins under physiological and pathophysiological conditions, as well as clinical applications involving aquaporins. This review is highlighting expression and localization of aquaporins in human, rat and mouse, the most studied species and is pointing out possible difference between major salivary glands, i.e., parotid, submandibular and sublingual glands.

  3. Free water transport in children on peritoneal dialysis is higher with more biocompatible dialysis solutions, higher with older age and declines with time.

    NARCIS (Netherlands)

    Raaijmakers, R.; Coester, A.; Smit, W.; Krediet, R.T.; Schroder, C.H.

    2012-01-01

    BACKGROUND: Water transport in peritoneal dialysis occurs through small pores and aquaporins. Free water transport (FWT) occurs through aquaporins only and gives a reflection of peritoneal aquaporin function. In this study, FWT in children was calculated for the first time in different settings. MET

  4. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.

    Science.gov (United States)

    Huang, Hubiao; Song, Zhigong; Wei, Ning; Shi, Li; Mao, Yiyin; Ying, Yulong; Sun, Luwei; Xu, Zhiping; Peng, Xinsheng

    2013-01-01

    Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

  5. Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding

    Energy Technology Data Exchange (ETDEWEB)

    McCready, M.J.; Uphold, D.D.; Gifford, K.A. [Univ. of Notre Dame, IN (United States)

    1997-12-31

    Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.

  6. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    Energy Technology Data Exchange (ETDEWEB)

    Kariev, Alisher M.; Green, Michael E.

    2012-02-26

    by the water present within the channel. Our own quantum calculations as well as numerous experiments of others are interpreted in terms of this hypothesis. It is also shown that the evidence that supports the motion of the sensor as the gating current can also be consistent with the hypothesis we present.

  7. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    Directory of Open Access Journals (Sweden)

    Alisher M. Kariev

    2012-02-01

    channel that is tuned by the water present within the channel. Our own quantum calculations as well as numerous experiments of others are interpreted in terms of this hypothesis. It is also shown that the evidence that supports the motion of the sensor as the gating current can also be consistent with the hypothesis we present.

  8. Morphology of rain water channelization in systematically varied model sandy soils

    OpenAIRE

    Wei, Y.; Cejas, C. M.; Barrois, R.; Dreyfus, R.; Durian, D. J.

    2014-01-01

    We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and...

  9. On the similarity in shape between debris-flow channels and high-gradient flood channels: Initial insight from continuum models for granular and water flow

    Science.gov (United States)

    Kean, J. W.; McCoy, S. W.; Tucker, G. E.

    2011-12-01

    The cross-sectional shape of high-gradient bedrock channels carved by debris flows is often very similar to that of channels formed by fluvial erosion. Both tend to have narrow U-shapes with width-to-depth ratios much less than 10. Gullies and channels cut into colluvium by both water erosion and debris-flow erosion have similarly narrow geometries. Given that the physics governing debris flow and turbulent water flow are very different, why are channels eroded by these two processes so similar in shape? To begin to investigate this question, we conducted a series of numerical simulations using continuum models for the end-member cases of granular flow and water flow. Each model is used to evolve the steady-state channel shape formed by uniform flow of the respective material. The granular model is based on the constitutive equation for dense granular flow proposed by Jop et al. (Nature, 2006). They demonstrated that without any fitting parameters, a numerical model using this constitutive equation could reproduce the velocity and depth profiles observed in granular-flow laboratory experiments. The model for water flow uses a ray-isovel turbulence closure to calculate the boundary shear stress across the wetted perimeter of the channel. This fully predictive model has also been shown to be in good agreement with laboratory data. We start the calculations for the granular and water-flow cases by determining the velocity and boundary shear-stress fields in an initial V-shape cross section. We then erode both channels using a simple wear law scaled linearly by the bed-normal boundary shear stress. The calculation is repeated until the channel reaches an equilibrium shape. Initial comparisons of the granular and water-flow channels show that they have very similar width-to-depth ratios of about four, and only moderate differences in bottom geometries and boundary shear-stress distributions. The structure of the velocity field differs more substantially between the two

  10. Numerical studies on liquid water flooding in gas channels used inpolymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, CZ.; Hassanizadeh, S.M.; Rensink, D.

    2012-01-01

    Water management plays an important role in the development of low-temperature polymer electrolyte fuel cells (PEFCs). The lack of a macroscopic gas channel (GC) flooding model constrains the current predictions of PEFC modeling under severe flooding situations. In this work, we have extended our pr

  11. Water behavior in a U-shaped flow channel of PEM fuel cells. Paper no. IGEC-1-036

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Univ. of Windsor, Dept. of Mechanical, Automotive and Materials Engineering, Windsor, Ontario (Canada)]. E-mail: bzhou@uwindsor.ca; Liu, Z.-S. [National Research Council Canada, Inst. for Fuel Cell innovation, Vancouver, British Columbia (Canada)

    2005-07-01

    The behavior of liquid water inside a U-shaped channel for a Proton Exchange Membrane (PEM) fuel cell was investigated through CFD modeling with the FLUENT software package. The Volume-Of-Fluid (VOF) model was adopted to track dynamic air-water interfaces. Three cases with varying initial water phase distributions corresponding to different fuel cell operating conditions were numerically simulated to obtain a better understanding of water behavior inside the serpentine channel. The results show that the bend area in the serpentine flow channel has significant effects on the flow field, which in turn affects the air-water flow and water liquid distribution inside the channel or along the interior channel surfaces, thus affecting fuel cell performance. (author)

  12. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana.

    Science.gov (United States)

    Di Giorgio, Juliana Andrea Pérez; Bienert, Gerd Patrick; Ayub, Nicolás Daniel; Yaneff, Agustín; Barberini, María Laura; Mecchia, Martín Alejandro; Amodeo, Gabriela; Soto, Gabriela Cynthia; Muschietti, Jorge Prometeo

    2016-05-01

    In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2 Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination.

  13. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes

    DEFF Research Database (Denmark)

    Tejada, Maria A; Hashem, Nadia; Callø, Kirstine

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes...... to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents...

  14. On the turbulent flow around water turbines placed in an open channel: an experimental study

    Science.gov (United States)

    Sotiropoulos, F.; Chamorro, L. P.; Arndt, R.

    2010-12-01

    A growing interest in water turbines (using tidal, river, marine currents) has been observed during the last few years. Fundamental understanding of the turbulent flow around the water turbines is crucial to predict the potential effects of these structures on the local morphology, water flow and power available in the current, among others. In this study, a series of model water turbines (single and an aligned array) of 50 cm rotor diameter were placed in the main channel of the Saint Anthony Falls Laboratory at the University of Minnesota. The main channel is approx 2.5 m wide, 1.8 m height and 85 m long. Flow around the water turbines were analyzed under subcritical conditions. Turbine hub heights coincided with the channel mid height. A series of acoustic Doppler anemometers (ADV) were used to obtain 3 velocity components of the flow at a rate of 200 Hz. Selected streamwise and spanwise vertical planes were measured to describe the kinematics around the water turbines. Potential interactions with the lateral walls were also addressed. High order statistics (mean velocity, turbulence intensities and Reynolds stresses) as well as two point correlations and spectra were computed to infer fundamental differences and similitude with their counterparts, the wind turbines.

  15. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  16. Transport Phenomena of Water in Molecular Fluidic Channels

    Science.gov (United States)

    Vo, Truong Quoc; Kim, Bohung

    2016-09-01

    In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices.

  17. Root ABA Accumulation Enhances Rice Seedling Drought Tolerance under Ammonium Supply: Interaction with Aquaporins

    Science.gov (United States)

    Ding, Lei; Li, Yingrui; Wang, Ying; Gao, Limin; Wang, Min; Chaumont, François; Shen, Qirong; Guo, Shiwei

    2016-01-01

    In previous studies, we demonstrated that ammonium nutrition enhances the drought tolerance of rice seedlings compared to nitrate nutrition and contributes to a higher root water uptake ability. It remains unclear why rice seedlings maintain a higher water uptake ability when supplied with ammonium under drought stress. Here, we focused on the effects of nitrogen form and drought stress on root abscisic acid (ABA) concentration and aquaporin expression using hydroponics experiments and stimulating drought stress with 10% PEG6000. Drought stress decreased the leaf photosynthetic rate and stomatal conductivity and increased the leaf temperature of plants supplied with either ammonium or nitrate, but especially under nitrate supply. After 4 h of PEG treatment, the root protoplast water permeability and the expression of root PIP and TIP genes decreased in plants supplied with ammonium or nitrate. After 24 h of PEG treatment, the root hydraulic conductivity, the protoplast water permeability, and the expression of some aquaporin genes increased in plants supplied with ammonium compared to those under non-PEG treatment. Root ABA accumulation was induced by 24 h of PEG treatment, especially in plants supplied with ammonium. The addition of exogenous ABA decreased the expression of PIP and TIP genes under non-PEG treatment but increased the expression of some of them under PEG treatment. We concluded that drought stress induced a down-regulation of aquaporin expression, which appeared earlier than did root ABA accumulation. With continued drought stress, aquaporin expression and activity increased due to root ABA accumulation in plants supplied with ammonium. PMID:27559341

  18. Promotion of Water Channels for Enhanced Ion Transport in 14-nm-diameter Carbon Nanotubes.

    Science.gov (United States)

    Sheng, Jiadong; Zhu, Qi; Zeng, Xian; Yang, Zhaohui; Zhang, Xiaohua

    2017-03-06

    Ion transport plays an important role in solar-to-electricity conversion, drug delivery and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after applying an electric potential. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.

  19. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    Science.gov (United States)

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV.

  20. Expression of aquaporin 1, 5 and 9 in the ovarian follicles of cycling and early pregnant pigs.

    Science.gov (United States)

    Skowronska, A; Mlotkowska, P; Eliszewski, M; Nielsen, S; Skowronski, M T

    2015-01-01

    Aquaporins (AQPs) are water channel proteins responsible for water homeostasis and important for proper functioning of all body systems, including reproductive structures. This study was designed to determine their localization and quantitative changes in the pig ovary during different stages of the estrous cycle and early pregnancy. The expression of AQP 1, 5 and 9 proteins was determined by immunocytochemistry and Western blot analyses. AQP1 was found in the plasma membranes of capillary endothelium, AQP5 - in the plasma membranes of granulosa cells of developing follicles and flattened follicle cells of the primordial follicles, and AQP9 - in granulosa cells of the developing follicles. In the cyclic pigs, the expression of AQP1 and 5 proteins was the highest on Days 18-20, but did not change significantly between Days 2-4, 10-12 and 14-16 of the cycle. In pregnant pigs (Days 14-16 and 30-32), the expression of AQP1 and 5 did not change and was similar to that observed during Days 10-12 and 14-16. In turn, AQP9 expression did not change between all studied periods. In conclusion, studied AQP are localized in different cells populations, the endothelial and granulosa cells, and AQP1 and 5 seem to be crucial for follicular development in pigs.

  1. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking.

    Science.gov (United States)

    Frick, Anna; Eriksson, Urszula Kosinska; de Mattia, Fabrizio; Oberg, Fredrik; Hedfalk, Kristina; Neutze, Richard; de Grip, Willem J; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2014-04-29

    Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.

  2. Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study.

    Science.gov (United States)

    Baaziz, Khaoula Ben; Lopez, David; Rabot, Amelie; Combes, Didier; Gousset, Aurelie; Bouzid, Sadok; Cochard, Herve; Sakr, Soulaiman; Venisse, Jean-Stephane

    2012-04-01

    Understanding the response of leaf hydraulic conductance (K(leaf)) to light is a challenge in elucidating plant-water relationships. Recent data have shown that the effect of light on K(leaf) is not systematically related to aquaporin regulation, leading to conflicting conclusions. Here we investigated the relationship between light, K(leaf), and aquaporin transcript levels in five tree species (Juglans regia L., Fagus sylvatica L., Quercus robur L., Salix alba L. and Populus tremula L.) grown in the same environmental conditions, but differing in their K(leaf) responses to light. Moreover, the K(leaf) was measured by two independent methods (high-pressure flow metre (HPFM) and evaporative flux method (EFM)) in the most (J. regia) and least (S. alba) responsive species and the transcript levels of aquaporins were analyzed in perfused and unperfused leaves. Here, we found that the light-induced K(leaf) value was closely related to stronger expression of both the PIP1 and PIP2 aquaporin genes in walnut (J. regia), but to stimulation of PIP1 aquaporins alone in F. sylvatica and Q. robur. In walnut, all newly identified aquaporins were found to be upregulated in the light and downregulated in the dark, further supporting the relationship between the light-mediated induction of K(leaf) and aquaporin expression in walnut. We also demonstrated that the K(leaf) response to light was quality-dependent, K(leaf) being 60% lower in the absence of blue light. This decrease in K(leaf) was correlated with strong downregulation of three PIP2 aquaporins and of all the PIP1 aquaporins tested. These data support a relationship between light-mediated K(leaf) regulation and the abundance of aquaporin transcripts in the walnut tree.

  3. Methods to Measure Water Permeability.

    Science.gov (United States)

    Solenov, Evgeniy I; Baturina, Galina S; Katkova, Liubov E; Zarogiannis, Sotirios G

    2017-01-01

    Water permeability is a key feature of the cell plasma membranes and it has seminal importance for a number of cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels , the aquaporins, who have very important function in physiological and pathophysiological states. Due to the above the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the past three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells as well as in tissues with a focus in the first category.

  4. Effects of the vasopressin agonist terlipressin on plasma cAMP and ENaC excretion in the urine in patients with cirrhosis and water retention

    DEFF Research Database (Denmark)

    Krag, Aleksander; Pedersen, Erling B; Møller, Søren;

    2011-01-01

    Terlipressin is a vasopressin analogue used for its potent V1a effects in cirrhotic patients. Recent data suggest that terlipressin has affinity to renal V2 receptors and modulates Aquaporin 2 (AQP2) expression and free water clearance. Stimulation of renal V2 receptors may also affect sodium tra...... transport via the Epithelial Sodium Channel (ENaC). Furthermore, endothelial V2 receptors may indirectly affect proximal sodium handling by increasing plasma cAMP....

  5. Microbiological analysis of drinking water quality of Ananthanar channel of Kanyakumari district, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Raju Mary Antony

    2012-08-01

    Full Text Available Bacteriological analyses were carried out on Ananthanar channel water of Kanyakumari district, Tamil Nadu, India. The Ananthanar channel was selected in this study because this channel runs about nearly 28 km and supplies water for many villages for drinking and bathing purposes. Fecal and total coliform counts were performed using the standard membrane filtration technique and multiple tube technique. The results obtained were compared with reports of All India Institute of Medical Sciences Standards for Drinking and Recreational Water. Faecal coliform counts varied from 12 to 180 MPN/100 ml while Escherichia coli counts ranged from 6 to 161 MPN/100 ml for all the sampled sites. Among the total coliform Pseudomonas aeruginosa, Shewanella putrefaciens, Klebsiella pneumoniae, Citrobacter freundii and Proteus mirabilis are reported. The Faecal coliform and the E. coli counts exceeding acceptable limits are indicative of pollution from domestic wastes from several informal settlements located along the riverbank. Water uses in the area were determined and were found to be mainly domestic and recreational. The gross pollution of the river exposes the local people who depend on it for their primary water source to serious health risk.

  6. Reciprocity in the developmental regulation of aquaporins 1, 3 and 5 during pregnancy and lactation in the rat.

    Directory of Open Access Journals (Sweden)

    Sasan Nazemi

    Full Text Available Milk secretion involves significant flux of water, driven largely by synthesis of lactose within the Golgi apparatus. It has not been determined whether this flux is simply a passive consequence of the osmotic potential between cytosol and Golgi, or whether it involves regulated flow. Aquaporins (AQPs are membrane water channels that regulate water flux. AQP1, AQP3 and AQP5 have previously been detected in mammary tissue, but evidence of developmental regulation (altered expression according to the developmental and physiological state of the mammary gland is lacking and their cellular/subcellular location is not well understood. In this paper we present evidence of developmental regulation of all three of these AQPs. Further, there was evidence of reciprocity since expression of the rather abundant AQP3 and less abundant AQP1 increased significantly from pregnancy into lactation, whereas expression of the least abundant AQP5 decreased. It would be tempting to suggest that AQP3 and AQP1 are involved in the secretion of water into milk. Paradoxically, however, it was AQP5 that demonstrated most evidence of expression located at the apical (secretory membrane. The possibility is discussed that AQP5 is synthesized during pregnancy as a stable protein that functions to regulate water secretion during lactation. AQP3 was identified primarily at the basal and lateral membranes of the secretory cells, suggesting a possible involvement in regulated uptake of water and glycerol. AQP1 was identified primarily at the capillary and secretory cell cytoplasmic level and may again be more concerned with uptake and hence milk synthesis, rather than secretion. The fact that expression was developmentally regulated supports, but does not prove, a regulatory involvement of AQPs in water flux through the milk secretory cell.

  7. Co-localisation of K(ir)4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K(+) recycling routes.

    Science.gov (United States)

    Eckhard, Andreas; Gleiser, Corinna; Rask-Andersen, Helge; Arnold, Heinz; Liu, Wei; Mack, Andreas; Müller, Marcus; Löwenheim, Hubert; Hirt, Bernhard

    2012-10-01

    Sensory transduction in the cochlea depends on perilymphatic-endolymphatic potassium (K(+)) recycling. It has been suggested that the epithelial supporting cells (SCs) of the cochlear duct may form the intracellular K(+) recycling pathway. Thus, they must be endowed with molecular mechanisms that facilitate K(+) uptake and release, along with concomitant osmotically driven water movements. As yet, no molecules have been described that would allow for volume-equilibrated transepithelial K(+) fluxes across the SCs. This study describes the subcellular co-localisation of the K(ir)4.1 K(+) channel (K(ir)4.1) and the aquaporin-4 water channel (AQP4) in SCs, on the basis of immunohistochemical double-labelling experiments in rat and human cochleae. The results of this study reveal the expression of K(ir)4.1 in the basal or basolateral membranes of the SCs in the sensory domain of the organ of Corti that are adjacent to hair cells and in the non-sensory domains of the inner and outer sulci that abut large extracellular fluid spaces. The SCs of the inner sulcus (interdental cells, inner sulcus cells) and the outer sulcus (Hensen's cells, outer sulcus cells) display the co-localisation of K(ir)4.1 and AQP4 expression. However, the SCs in the sensory domain of the organ of Corti reveal a gap in the expression of AQP4. The outer pillar cell is devoid of both K(ir)4.1 and AQP4. The subcellular co-localisation of K(ir)4.1 and AQP4 in the SCs of the cochlea described in this study resembles that of the astroglia of the central nervous system and the glial Mueller cells in the retina.

  8. Quantification of osmotic water transport in vivo using fluorescent albumin.

    Science.gov (United States)

    Morelle, Johann; Sow, Amadou; Vertommen, Didier; Jamar, François; Rippe, Bengt; Devuyst, Olivier

    2014-10-15

    Osmotic water transport across the peritoneal membrane is applied during peritoneal dialysis to remove the excess water accumulated in patients with end-stage renal disease. The discovery of aquaporin water channels and the generation of transgenic animals have stressed the need for novel and accurate methods to unravel molecular mechanisms of water permeability in vivo. Here, we describe the use of fluorescently labeled albumin as a reliable indicator of osmotic water transport across the peritoneal membrane in a well-established mouse model of peritoneal dialysis. After detailed evaluation of intraperitoneal tracer mass kinetics, the technique was validated against direct volumetry, considered as the gold standard. The pH-insensitive dye Alexa Fluor 555-albumin was applied to quantify osmotic water transport across the mouse peritoneal membrane resulting from modulating dialysate osmolality and genetic silencing of the water channel aquaporin-1 (AQP1). Quantification of osmotic water transport using Alexa Fluor 555-albumin closely correlated with direct volumetry and with estimations based on radioiodinated ((125)I) serum albumin (RISA). The low intraperitoneal pressure probably accounts for the negligible disappearance of the tracer from the peritoneal cavity in this model. Taken together, these data demonstrate the appropriateness of pH-insensitive Alexa Fluor 555-albumin as a practical and reliable intraperitoneal volume tracer to quantify osmotic water transport in vivo.

  9. Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.e [European Commission, JRC, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2010-10-15

    In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).

  10. Expression of CXCL4 and aquaporin 3 and 10 mRNAs in patients with otitis media with effusion.

    Science.gov (United States)

    Jin, Zhe; Cha, Sung Ho; Choi, Yong-Sung; Kim, Young Il; Choi, Sun A; Yeo, Seung Geun

    2016-02-01

    Bacterial infections in children with underdeveloped Eustachian tubes are a major cause of otitis media with effusion (OEM), and persistent effusion in the middle ear in these patients is a major cause of surgical intervention. CXCL4 is associated with bacterial infection, and aquaporins 3 and 10 are associated with water metabolism. This study assessed the expression of mRNAs encoding CXCL-4 and aquaporins 3 and 10 in the effusion of pediatric OME patients, and the association of this expression with clinical manifestations. Levels of CXCL4 and aquaporin 3 and 10 mRNA were assayed by real-time RT-PCR in the middle ear effusion of 38 pediatric patients with OME requiring ventilation tube insertion. The relationships of these mRNA levels with the presence of bacteria; concomitant diseases such as allergic rhinitis, sinusitis, and adenoid disease; recurrence of OME; and number of ventilation tube insertions were evaluated. CXCL4 and aquaporin 3 and 10 mRNAs were expressed in middle ear effusion of all OME patients. CXCL-4 mRNA levels were significantly lower when bacteria were present and in patients with concomitant diseases (p0.05 each). The levels of CXCL4 and aquaporin 10 mRNAs were significantly correlated (p<0.05). Expression of CXCL4 and aquaporin 3 and 10 mRNAs in middle ear effusion is associated with the pathophysiology of OME. CXCL4 mRNA levels are significantly lower in patients with than without concomitant diseases or bacterial infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Relationship and action mechanism between oxygen free radicals and aquaporin 4 in brain edema%氧自由基与水通道蛋白4在脑水肿中作用机制及联系

    Institute of Scientific and Technical Information of China (English)

    陈珊; 徐国海

    2011-01-01

    Background Aquaporin-4(AQP4) may be one of the candidates for inducing brain edema,however,it has not been reported whether AQP4 and oxidative free radical is involved in the formation of brain edema.Objective To study the effect as well as the mechanism of oxidative free radical and AQP4 on cerebral edema.Content Aquaporin (AQP) is a membrane water channel protein family.And AQP4 is abundant within the nervous system and is closely related to the physiological and pathological process particularly in the metabolism of water.Perihematoma antioxidant imbalance and oxidative free radical reactions further increase the cerebral edema in acute cerebral hemorrhage.Trend It will provide basis for further exploring of the pathogenesis of cerebral edema by studying the relationship between oxidative free radical and AQP.%背景 水通道蛋白4(aquaporin-4,AQP4)可能是导致脑水肿形成的调节因素之一,但AQP4与氧自由基作用与脑水肿形成尚未见报道.目的 将AQP4与氧自由基在脑水肿的作用及其机制作简要的概述.内容 水通道蛋白(aquaporin,AQP)是膜水通道蛋白家族,其中AQP4在神经系统内含量最丰富,与神经系统生理和病理过程尤其水的代谢密切相关,同时急性脑出血时血肿周围脑组织氧化抗氧化平衡紊乱及自由基反应病理性加剧进一步加重脑水肿.趋向 通过研究氧自由基与APQ关系,进一步为脑水肿的发病机制奠定基础.

  12. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content.

    Science.gov (United States)

    Šurbanovski, Nada; Sargent, Daniel J; Else, Mark A; Simpson, David W; Zhang, Hanma; Grant, Olga M

    2013-01-01

    PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the stress. In this study, ten Fragaria PIP genes were identified from the woodland strawberry (Fragaria vesca L.) genome sequence and characterised at the sequence level. The water relations of F. vesca were investigated and the effect of different intensities of drought stress on the expression of four PIP genes, as well as how drought stress influences their diurnal transcription was determined. PIP down-regulation in the root corresponded to the level of drought stress. Moreover, transcript abundance of two genes highly expressed in the root (FvPIP1;1 and FvPIP2;1) was strongly correlated to the decline in substrate moisture content. The amplitude of diurnal aquaporin expression in the leaves was down-regulated by drought without altering the pattern, but showing an intensity-dependent effect. The results show that transcription of PIP aquaporins can be fine-tuned with the environment in response to declining water availability.

  13. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content.

    Directory of Open Access Journals (Sweden)

    Nada Šurbanovski

    Full Text Available PIP aquaporin responses to drought stress can vary considerably depending on the isoform, tissue, species or level of stress; however, a general down-regulation of these genes is thought to help reduce water loss and prevent backflow of water to the drying soil. It has been suggested therefore, that it may be necessary for the plant to limit aquaporin production during drought stress, but it is unknown whether aquaporin down-regulation is gradual or triggered by a particular intensity of the stress. In this study, ten Fragaria PIP genes were identified from the woodland strawberry (Fragaria vesca L. genome sequence and characterised at the sequence level. The water relations of F. vesca were investigated and the effect of different intensities of drought stress on the expression of four PIP genes, as well as how drought stress influences their diurnal transcription was determined. PIP down-regulation in the root corresponded to the level of drought stress. Moreover, transcript abundance of two genes highly expressed in the root (FvPIP1;1 and FvPIP2;1 was strongly correlated to the decline in substrate moisture content. The amplitude of diurnal aquaporin expression in the leaves was down-regulated by drought without altering the pattern, but showing an intensity-dependent effect. The results show that transcription of PIP aquaporins can be fine-tuned with the environment in response to declining water availability.

  14. Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.

    Science.gov (United States)

    Dominic, A; Sarangan, J; Suresh, S; Sai, Monica

    2014-03-01

    The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.

  15. Simulation of Transport Channel in China's Middle Route South-to-North Water Transfer Project

    Institute of Scientific and Technical Information of China (English)

    FANG Shenguang; WEI Jiahua; WU Baosheng; SHANG Yizi

    2009-01-01

    The unsteady flow in the Middle Route South-to-North Water Transfer Channel was simulated numerically using an implicit solution procedure for the Saint Venant equations. An equivalent roughness was used to simulate the effect of many transfer structures on the water levels in the main channel. Various gate operating and control methods were analyzed to study the response to disturbances produced by varying the flow rates through the Tianjin outlet. The results show that when the inflow at the head changes in the same way as the sum of the flow rates through all the outlets, the transition time and the fluctuation of the water levels using the timed gate operation method are less than when using the simultaneous gate operation method, but the variations of the gate openings and flow rates through each control gate are much larger. The flow disturbances produced by the Tianjin outlet can be rectified within several channel sections and the transition time can be greatly shortened by allowing the water levels immediately upstream of the control gates to vary within proscribed ranges, rather than being held constant.

  16. Isolation and expression of an aquaporin-like gene VfPIP1 in Vicia faba

    Institute of Scientific and Technical Information of China (English)

    CUI Xianghuan; HAO Fushun; CHEN Hui; CAI Jinghui; CHEN Jia; WANG Xuechen

    2005-01-01

    To explore the effects of aquaporins on stomatal movement, we isolated a full length cDNA of aquaporin-like gene VfPIP1 ( Vicia faba plasma membrane intrinsic protein gene, GenBank accession number: AY667436), which encodes for a 290-amino-acid polypeptide, from Vicia faba leaf epidermis by 5′/3′ RACE (Rapid Amplification of cDNA Ends). The analyses of VfPIP1 transmembrane regions and amino acid sequence show that VfPIP1 owns six membrane-spanning domains and the special plasma membrane signature sequences GGGANXXXXGY and TGI/TNPARSL/FGAAI/VI/VF/YN, and it should be a member of PIP1 subfamily. The results of in situ hybridization and Northern blot indicate that VfPIP1 is strongly expressed in guard cells and induced by ABA. Hereby, VfPIP1 may be involved in the water-transmembrane movement of guard cells.

  17. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  18. Numerical Simulation of Seepage Field of Tailing Water Channel Under Different Conditions in Operation Period

    Science.gov (United States)

    Wang, Feihan; Yan, Guoxin; Chen, Deling

    According to mathematical model of rock and soil, it calculated seepage field of tailing water channel under different conditions. The results showed that under condition of no.1, the seepage discharge from outside to inside of channel is 0.394 m3/h and the discharge under plastic concrete cut-off is 0.358m3/h, and that under condition of no.2, the seepage discharge from outside to inside of channel is 0.249 m3/h and the discharge under plastic concrete cut-off is 0.236m3/h. Under condition of no.1, the outflow of saturation line is at elevation of 411.0m which is under sand and gravel filling layer and near boundary of drift gravel sand layer. Under condition of no.2, the outflow of saturation line is at elevation of 403.0m which is under drift gravel sand layer and near rock foundation. The results showed that numerical simulation can be used to do with seepage problems of tailing water channel.

  19. Grapevine aquaporins: gating of a tonoplast intrinsic protein (TIP2;1 by cytosolic pH.

    Directory of Open Access Journals (Sweden)

    Luís Leitão

    Full Text Available Grapevine (Vitis vinifera L. is one of the oldest and most important perennial crops being considered as a fruit ligneous tree model system in which the water status appears crucial for high fruit and wine quality, controlling productivity and alcohol level. V. vinifera genome contains 28 genes coding for aquaporins, which acting in a concerted and regulated manner appear relevant for plant withstanding extremely unfavorable drought conditions essential for the quality of berries and wine. Several Vv aquaporins have been reported to be expressed in roots, shoots, berries and leaves with clear cultivar differences in their expression level, making their in vivo biochemical characterization a difficult task. In this work V. vinifera cv. Touriga nacional VvTnPIP1;1, VvTnPIP2;2 and VvTnTIP2;1 were expressed in yeast and water transport activity was characterized in intact cells of the transformants. The three aquaporins were localized in the yeast plasma membrane but only VvTnTIP2;1 expression enhanced the water permeability with a concomitant decrease of the activation energy of water transport. Acidification of yeast cytosol resulted in loss of VvTnTIP2;1 activity. Sequence analysis revealed the presence of a His(131 residue, unusual in TIPs. By site directed mutagenesis, replacement of this residue by aspartic acid or alanine resulted in loss of pH(in dependence while replacement by lysine resulted in total loss of activity. In addition to characterization of VvTn aquaporins, these results shed light on the gating of a specific tonoplast aquaporin by cytosolic pH.

  20. The shallow-water Asellota (Crustacea: Isopoda from the Beagle Channel: Preliminary taxonomic and zoogeographical results

    Directory of Open Access Journals (Sweden)

    Brenda Lía Doti

    2005-12-01

    Full Text Available The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens. The present research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula.

  1. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections.

    Science.gov (United States)

    Smith, Alex J; Verkman, Alan S

    2015-12-15

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4(-/-) astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. Copyright © 2015 Biophysical Society

  2. Inhibition of aquaporin-1 dependent angiogenesis impairs tumour growth in a mouse model of melanoma.

    Science.gov (United States)

    Nicchia, Grazia P; Stigliano, Cinzia; Sparaneo, Angelo; Rossi, Andrea; Frigeri, Antonio; Svelto, Maria

    2013-05-01

    Prohibiting angiogenesis is an important therapeutic approach for fighting cancer and other angiogenic related diseases. Research focused on proteins that regulate abnormal angiogenesis has attracted intense interest in both academia and industry. Such proteins are able to target several angiogenic factors concurrently, thereby increasing the possibility of therapeutic success. Aquaporin-1 (AQP1) is a water channel membrane protein that promotes tumour angiogenesis by allowing faster endothelial cell migration. In this study we test the hypothesis that AQP1 inhibition impairs tumour growth in a mouse model of melanoma. After validating the inhibitor efficacy of two different AQP1 specific siRNAs in cell cultures, RNA interference experiments were performed by intratumoural injections of AQP1 siRNAs in mice. After 6 days of treatment, AQP1 siRNA treated tumours showed a 75 % reduction in volume when compared to controls. AQP1 protein level, in AQP1 knockdown tumours, was around 75 % that of the controls and was associated with a significant 40 % reduced expression of the endothelial marker, Factor VIII. Immunofluorescence analysis of AQP1 siRNA treated tumours showed a significantly lower microvessel density. Time course experiments demonstrated that repeated injections of AQP1 siRNA over time are effective in sustaining the inhibition of tumour growth. Finally, we have confirmed the role of AQP1 in sustaining an active endothelium during angiogenesis and we have shown that AQP1 reduction causes an increase in VEGF levels. In conclusion, this study validates AQP1 as a pro-angiogenic protein, relevant for the therapy of cancer and other angiogenic-related diseases such as psoriasis, endometriosis, arthritis and atherosclerosis.

  3. Altered aquaporin-4 expression in human muscular dystrophies: a common feature?

    Science.gov (United States)

    Frigeri, Antonio; Nicchia, Grazia Paola; Repetto, Silvia; Bado, Massimo; Minetti, Carlo; Svelto, Maria

    2002-07-01

    Duchenne Muscular Dystrophy (DMD) is a progressive lethal muscle disease that affects young boys. Dystrophin, absent in DMD and reduced in the milder form Becker Muscular Dystrophy (BMD), binds to several membrane-associated proteins known as dystrophin-associated proteins (DAPs). Once this critical structural link is disrupted, muscle fibers become more vulnerable to mechanical and osmotic stress. Recently, we have reported that the expression of aquaporin-4 (AQP4), a water-selective channel expressed in the sarcolemma of fast-twitch fibers and astrocyte end-feet, is drastically reduced in the muscle and brain of the mdx mouse, the animal model of DMD. In the present study, we analyzed the expression of AQP4 in several DMD/BMD patients of different ages with different mutations in the dystrophin gene. Immunofluorescence results indicate that, compared with healthy control children, AQP4 is reduced severely in all the DMD muscular biopsies analyzed and in 50% of the analyzed BMD. Western blot analysis revealed that the deficiency in sarcolemma AQP4 staining is due to a reduction in total AQP4 muscle protein content rather than to changes in immunoreactivity. Double-immunostaining experiments indicate that AQP4 reduction is independent of changes in the fiber myosin heavy chain composition. AQP4 and a-syntrophin analysis of BMD muscular biopsies revealed that the expression and stability of AQP4 in the sarcolemma does not always decrease when a-syntrophin is strongly reduced. Finally, limb-girdle muscular dystrophy biopsies and facioscapulohumeral muscular dystrophy revealed that AQP4 expression was not altered in these forms of muscular dystrophy. These experiments provide the first evidence of AQP4 reduction in a human pathology and show that this deficiency is an important feature of DMD/BMD.

  4. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: expression of aquaporin 5.

    Science.gov (United States)

    Borok, Z; Lubman, R L; Danto, S I; Zhang, X L; Zabski, S M; King, L S; Lee, D M; Agre, P; Crandall, E D

    1998-04-01

    We investigated the role of keratinocyte growth factor (KGF) in regulation of alveolar epithelial cell (AEC) phenotype in vitro. Effects of KGF on cell morphology, expression of surfactant apoproteins A, B, and C (SP-A, -B, and -C), and expression of aquaporin 5 (AQP5), a water channel present in situ on the apical surface of alveolar type I (AT1) cells but not expressed in alveolar type II (AT2) cells, were evaluated in AECs grown in primary culture. Observations were made on AEC monolayers grown in serum-free medium without KGF (control) or grown continuously in the presence of KGF (10 ng/ml) from either Day 0 (i.e., the time of plating) or Day 4 or 6 through Day 8 in culture. AECs monolayers express AQP5 only on their apical surfaces as determined by cell surface biotinylation studies. Control AECs grown in the absence of KGF through Day 8 express increasing levels of AQP5, consistent with transition toward the AT1 cell phenotype. Exposure of AECs to KGF from Day 0 results in decreased AQP5 expression, retention of a cuboidal morphology, and greater numbers of lamellar bodies relative to control on Day 8 in culture. AECs treated with KGF from Day 4 or 6 exhibit a decrease in AQP5 expression through subsequent days in culture, as well as an increase in expression of surfactant apoproteins. These data, showing that KGF both prevents and reverses the increase in AQP5 (and decrease in surfactant apoprotein) expression that accompanies progression of the AT2 toward the AT1 cell phenotype, support the concepts that transdifferentiation between AT2 and AT1 cell phenotypes is at least partially reversible and that KGF may play a major role in modulating AEC phenotype.

  5. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes.

    Science.gov (United States)

    Rossi, Andrea; Moritz, Tobias J; Ratelade, Julien; Verkman, A S

    2012-09-15

    Aquaporin-4 (AQP4) is a water channel expressed in astrocytes, skeletal muscle and epithelial cells that forms supramolecular aggregates in plasma membranes called orthogonal arrays of particles (OAPs). AQP4 is expressed as a short isoform (M23) that forms large OAPs, and a long isoform (M1) that does not form OAPs by itself but can mingle with M23 to form relatively small OAPs. AQP4 OAPs were imaged with ~20 nm spatial precision by photoactivation localization microscopy (PALM) in cells expressing chimeras of M1- or M23-AQP4 with photoactivatable fluorescent proteins. Native AQP4 was imaged by direct stochastic optical reconstruction microscopy (dSTORM) using a primary anti-AQP4 antibody and fluorescent secondary antibodies. We found that OAP area increased from 1878±747 to 3647±958 nm(2) with decreasing M1:M23 ratio from 1:1 to 1:3, and became elongated. Two-color dSTORM indicated that M1 and M23 co-assemble in OAPs with a M1-enriched periphery surrounding a M23-enriched core. Native AQP4 in astrocytes formed OAPs with an area of 2142±829 nm(2), which increased to 5137±1119 nm(2) with 2-bromopalmitate. PALM of AQP4 OAPs in live cells showed slow diffusion (average ~10(-12) cm(2)/s) and reorganization. OAP area was not altered by anti-AQP4 IgG autoantibodies (NMO-IgG) that cause the neurological disease neuromyelitis optica. Super-resolution imaging allowed elucidation of novel nanoscale structural and dynamic features of OAPs.

  6. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production.

    Science.gov (United States)

    Zhang, Duo; Vetrivel, L; Verkman, A S

    2002-06-01

    Aquaporin (AQP) water channels are expressed in the eye at sites of aqueous fluid production and outflow: AQP1 and AQP4 in nonpigmented ciliary epithelium, and AQP1 in trabecular meshwork endothelium. Novel methods were developed to compare aqueous fluid dynamics in wild-type mice versus mice lacking AQP1 and/or AQP4. Aqueous fluid production was measured by in vivo confocal microscopy after transcorneal iontophoretic introduction of fluorescein. Intraocular pressure (IOP), outflow, and anterior chamber compliance were determined from pressure measurements in response to fluid infusions using micropipettes. Aqueous fluid volume and [Cl(-)] were assayed in samples withdrawn by micropipettes. In wild-type mice (CD1 genetic background, age 4-6 wk), IOP was 16.0 +/- 0.4 mmHg (SE), aqueous fluid volume 7.2 +/- 0.3 microl, fluid production 3.6 +/- 0.2 microl/h, fluid outflow 0.36 +/- 0.06 microl/h/mmHg, and compliance 0.036 +/- 0.006 microl/mmHg. IOP was significantly decreased by up to 1.8 mmHg (P fluid production by up to 0.9 microl/h in age/litter-matched mice lacking AQP1 and/or AQP4 (outbred CD1 and inbred C57/bl6 genetic backgrounds). However, AQP deletion did not significantly affect outflow, [Cl(-)], volume, or compliance. These results provide evidence for the involvement of AQPs in intraocular pressure regulation by facilitating aqueous fluid secretion across the ciliary epithelium. AQP inhibition may thus provide a novel approach for the treatment of elevated IOP.

  7. The evaluation of steam-water heat transfer in vertical channel using Trac code

    Energy Technology Data Exchange (ETDEWEB)

    Sang Won, Lee; Han Gon, Kim; Byong Sup, Kim; Seung, Jong [Korea Electric Power Co., Taejon (Korea, Republic of)

    2001-07-01

    The safety injection system(SIS) of the Korean Next Generation Reactor (KNGR) injects water into the reactor vessel directly for the effective usage of ECC water. The injection location is 83 inches higher than cold leg centerline. Due to this geometrical characteristics, during late reflood phase in large break LOCA, complicate thermal-hydraulic phenomena different from existing cold-leg injection plant could be occurred. Among these phenomena, the steam-water heat transfer is evaluated in this paper. We have selected TRAC code for the evaluation tool because it can handle the reactor vessel in three-dimensional coordinates and is has been validated using UPTF experiments. For this evaluation, we performed steam-water interaction experiments in vertical rectangular channel. The experiments have been performed for co-current and counter-current flow, various steam velocity, various water flow rate. Water is injected from the top of the channel as a thin film. Steam is injected from the top or the bottom of channel. All the experiments are performed in the condition of atmospheric pressure and that void fraction is ranged from 0.9 to 0.95. Therefore, it can be treated as annular-mist flow regime. TRAC model has been developed for the simulation of these experiments. As a result of simulation, it can be concluded that TRAC code predicts heat transfer coefficients as much as 10 times compared to experimental results. In order to correct these differences, we modified the heat transfer correlation for annular-mist flow in TRAC code. This modified correlation can be used heat transfer in the downcomer only. We will perform the larger break LOCA sensitivity analyses for the effect of heat transfer in the downcomer. (authors)

  8. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    Science.gov (United States)

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.

    2015-11-01

    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  9. A central-upwind scheme with artificial viscosity for shallow-water flows in channels

    Science.gov (United States)

    Hernandez-Duenas, Gerardo; Beljadid, Abdelaziz

    2016-10-01

    We develop a new high-resolution, non-oscillatory semi-discrete central-upwind scheme with artificial viscosity for shallow-water flows in channels with arbitrary geometry and variable topography. The artificial viscosity, proposed as an alternative to nonlinear limiters, allows us to use high-resolution reconstructions at a low computational cost. The scheme recognizes steady states at rest when a delicate balance between the source terms and flux gradients occurs. This balance in irregular geometries is more complex than that taking place in channels with vertical walls. A suitable technique is applied by properly taking into account the effects induced by the geometry. Incorporating the contributions of the artificial viscosity and an appropriate time step restriction, the scheme preserves the positivity of the water's depth. A description of the proposed scheme, its main properties as well as the proofs of well-balance and the positivity of the scheme are provided. Our numerical experiments confirm stability, well-balance, positivity-preserving properties and high resolution of the proposed method. Comparisons of numerical solutions obtained with the proposed scheme and experimental data are conducted, showing a good agreement. This scheme can be applied to shallow-water flows in channels with complex geometry and variable bed topography.

  10. Antenna Array Structures Effect on Water-Filling Capacity of Indoor NLOS MIMO Channel

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-gang; L(U) Ying-hua; DU Juan; LI Yun-zhuang; WANG Xu-ying

    2005-01-01

    A 2-D Shooting and Bouncing Ray-tracing method (SBR) is used to analyze the different antenna array structure effect on the water-filling Capacity Complementary Cumulative Distribution Functions (CCDFS) of indoor Non-Line-of-Sight (NLOS) Multiple-Input Multiple-Output (MIMO) channel. The results have shown that in NLOS indoor environment different antenna array structures affect on the CCDFS differently. The CCDFS of MIMO systems with antenna spacing 5λ change slightly with antenna array structures and all approach the in independent and identically distribution (i.i.d.) rayleigh channel water-filling capacity. When antenna spacing decreased to 0.5λ, the capacities of MIMO systems drop also, and change with antenna array structures greatly. The results on outage water-filling capacity also show that there exist a fixed relationship that i.i.d. rayleigh channel capacity is larger than the capacity equipped with linear antenna array which is larger than the capacity equipped with rectangular antenna array and the capacity equipped with circular antenna array.

  11. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Nozomi Yabuuchi

    2016-12-01

    Full Text Available High mortality of acute kidney injury (AKI is associated with acute lung injury (ALI, which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS, in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5, in bilateral nephrectomy (BNx-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr, blood urea nitrogen (BUN and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  12. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    DEFF Research Database (Denmark)

    Jo, Andrew O; Ryskamp, Daniel A; Phuong, Tam T T

    2015-01-01

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor...... potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4(-/-) and Aqp4......(-/-) mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca(2+)]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1...

  13. A charge-driven molecular water pump

    Science.gov (United States)

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  14. Lovastatin-induced cholesterol depletion affects both apical sorting and endocytosis of aquaporin-2 in renal cells.

    Science.gov (United States)

    Procino, G; Barbieri, C; Carmosino, M; Rizzo, F; Valenti, G; Svelto, M

    2010-02-01

    Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.

  15. Decreases in rat brain aquaporin-4 expression following intracerebroventricular administration of an endothelin ET B receptor agonist.

    Science.gov (United States)

    Koyama, Yutaka; Tanaka, Kazuhiro

    2010-01-29

    Aquaporins (AQPs) comprise a family of water channel proteins, some of which are expressed in brain. Expressions of brain AQPs are altered after brain insults, such as ischemia and head trauma. However, little is known about the regulation of brain AQP expression. Endothelins (ETs), vasoconstrictor peptides, regulate several pathophysiological responses of damaged nerve tissues via ET(B) receptors. To show possible roles of ET(B) receptors in the regulation of brain AQP expression, the effects of intracerebroventricular administration of an ET(B) agonist were examined in rat brain. In the cerebrum, the copy numbers of AQP4 mRNAs were highest among AQP1, 3, 4, 5 and 9. Continuous administration of 500 pmol/day Ala(1,3,11,15)-ET-1, an ET(B) selective agonist, into rat brain for 7 days decreased the level of AQP4 mRNA in the cerebrum, but had no effect on AQP1, 3, 5 and 9 mRNA levels. The level of AQP4 protein in the cerebrum decreased by the administration of Ala(1,3,11,15)-ET-1. Immunohistochemical observations of Ala(1,3,11,15)-ET-1-infused rats showed that GFAP-positive astrocytes, but not neurons, activated microglia or brain capillary endothelial cells, had immunoreactivity for AQP4. These findings indicate that activation of brain ET(B) receptors causes a decrease in AQP4 expression, suggesting that ET down-regulates brain AQP4 via ET(B) receptors.

  16. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa.

    Science.gov (United States)

    Werner, M; Uehlein, N; Proksch, P; Kaldenhoff, R

    2001-08-01

    A subtractive suppression hybridization technique was used to identify genes that were induced during early phases of the interaction between Cuscuta reflexa, a phanerogamic plant parasite and the incompatible host tomato (Lycopersicon esculentum Mill.). One of the identified genes encodes a new aquaporin (LeAqp2) from tomato. Its function was concluded from the swelling kinetics of LeAqp2-expressing Xenopus laevis oocytes under hypo-osmotic conditions. It was shown that, 6 h after attachment of the plant parasite, the corresponding mRNA accumulated in cells at and adjacent to the attachment site of Cuscuta, while artificial wounding did not modify steady-state LeAqp2- RNA levels. Expression of a close homologue named TRAMP (tomato-ripening-associated protein) was not affected by the plant-plant interaction. Levels of indole-3-acetic acid (IAA) in tomato tissue after infection by Cuscuta have been found to increase at a similar stage of infection. In contrast to the different behavior with respect to infection, IAA induced both LeAqp2 and TRAMP expression. The observed pattern of LeAqp2 expression during the interaction at a stage where cell elongation occurs together with the water-channel activity in the heterologous expression system suggest a function for LeAqp2 during the tomato-Cuscuta interaction.

  17. Efficacy of Polyvalent Human Immunoglobulins in an Animal Model of Neuromyelitis Optica Evoked by Intrathecal Anti-Aquaporin 4 Antibodies

    Science.gov (United States)

    Grünewald, Benedikt; Bennett, Jeffrey L.; Toyka, Klaus V.; Sommer, Claudia; Geis, Christian

    2016-01-01

    Neuromyelitis Optica Spectrum Disorders (NMOSD) are associated with autoantibodies (ABs) targeting the astrocytic aquaporin-4 water channels (AQP4-ABs). These ABs have a direct pathogenic role by initiating a variety of immunological and inflammatory processes in the course of disease. In a recently-established animal model, chronic intrathecal passive-transfer of immunoglobulin G from NMOSD patients (NMO-IgG), or of recombinant human AQP4-ABs (rAB-AQP4), provided evidence for complementary and immune-cell independent effects of AQP4-ABs. Utilizing this animal model, we here tested the effects of systemically and intrathecally applied pooled human immunoglobulins (IVIg) using a preventive and a therapeutic paradigm. In NMO-IgG animals, prophylactic application of systemic IVIg led to a reduced median disease score of 2.4 on a 0–10 scale, in comparison to 4.1 with sham treatment. Therapeutic IVIg, applied systemically after the 10th intrathecal NMO-IgG injection, significantly reduced the disease score by 0.8. Intrathecal IVIg application induced a beneficial effect in animals with NMO-IgG (median score IVIg 1.6 vs. sham 3.7) or with rAB-AQP4 (median score IVIg 2.0 vs. sham 3.7). We here provide evidence that treatment with IVIg ameliorates disease symptoms in this passive-transfer model, in analogy to former studies investigating passive-transfer animal models of other antibody-mediated disorders. PMID:27571069

  18. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells.

    Science.gov (United States)

    Hara-Chikuma, Mariko; Watanabe, Sachiko; Satooka, Hiroki

    2016-03-18

    Aquaporin 3 (AQP3), a water/glycerol channel protein, is capable of transporting hydrogen peroxide (H2O2). Here, we show that AQP3-mediated intracellular H2O2 is involved in epidermal growth factor (EGF)-induced cell signaling and its dependent cell function in the EGF receptor (EGFR)-positive cancer cell lines A431 and H1666. AQP3 knockdown suppressed the transport into the cells of extracellular H2O2 produced in response to EGF in A431 and H1666 cells. EGF-induced Erk and Akt activation, which occurred through SHP2 and/or PTEN modulation, was impaired by AQP3 knockdown. Cell growth and migration induced by EGF stimulation were attenuated in AQP3 knockdown cells compared with those in control cells. Coincidentally, tumor growth of A431 cell xenografts in immunodeficient mice was decreased by AQP3 knockdown. Accordingly, a xenograft with AQP3 knockdown A431 cells significantly enhanced the survival of recipient mice compared with the transplantation with control cells. In addition, AQP3 associated with EGFR and NADPH oxidase 2, which we propose is linked to AQP3 producing a localized increase in intracellular H2O2 to function as a second messenger during EGFR cell signaling. Therefore, our findings suggest that AQP3 is required for EGF-EGFR cell signaling in cancer cells and is a therapeutic target for cancer progression.

  19. Efficacy of Polyvalent Human Immunoglobulins in an Animal Model of Neuromyelitis Optica Evoked by Intrathecal Anti-Aquaporin 4 Antibodies

    Directory of Open Access Journals (Sweden)

    Benedikt Grünewald

    2016-08-01

    Full Text Available Neuromyelitis Optica Spectrum Disorders (NMOSD are associated with autoantibodies (ABs targeting the astrocytic aquaporin-4 water channels (AQP4-ABs. These ABs have a direct pathogenic role by initiating a variety of immunological and inflammatory processes in the course of disease. In a recently-established animal model, chronic intrathecal passive-transfer of immunoglobulin G from NMOSD patients (NMO-IgG, or of recombinant human AQP4-ABs (rAB-AQP4, provided evidence for complementary and immune-cell independent effects of AQP4-ABs. Utilizing this animal model, we here tested the effects of systemically and intrathecally applied pooled human immunoglobulins (IVIg using a preventive and a therapeutic paradigm. In NMO-IgG animals, prophylactic application of systemic IVIg led to a reduced median disease score of 2.4 on a 0–10 scale, in comparison to 4.1 with sham treatment. Therapeutic IVIg, applied systemically after the 10th intrathecal NMO-IgG injection, significantly reduced the disease score by 0.8. Intrathecal IVIg application induced a beneficial effect in animals with NMO-IgG (median score IVIg 1.6 vs. sham 3.7 or with rAB-AQP4 (median score IVIg 2.0 vs. sham 3.7. We here provide evidence that treatment with IVIg ameliorates disease symptoms in this passive-transfer model, in analogy to former studies investigating passive-transfer animal models of other antibody-mediated disorders.

  20. Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize.

    Science.gov (United States)

    Durbak, Amanda R; Phillips, Kimberly A; Pike, Sharon; O'Neill, Malcolm A; Mares, Jonathan; Gallavotti, Andrea; Malcomber, Simon T; Gassmann, Walter; McSteen, Paula

    2014-07-01

    The element boron (B) is an essential plant micronutrient, and B deficiency results in significant crop losses worldwide. The maize (Zea mays) tassel-less1 (tls1) mutant has defects in vegetative and inflorescence development, comparable to the effects of B deficiency. Positional cloning revealed that tls1 encodes a protein in the aquaporin family co-orthologous to known B channel proteins in other species. Transport assays show that the TLS1 protein facilitates the movement of B and water into Xenopus laevis oocytes. B content is reduced in tls1 mutants, and application of B rescues the mutant phenotype, indicating that the TLS1 protein facilitates the movement of B in planta. B is required to cross-link the pectic polysaccharide rhamnogalacturonan II (RG-II) in the cell wall, and the percentage of RG-II dimers is reduced in tls1 inflorescences, indicating that the defects may result from altered cell wall properties. Plants heterozygous for both tls1 and rotten ear (rte), the proposed B efflux transporter, exhibit a dosage-dependent defect in inflorescence development under B-limited conditions, indicating that both TLS1 and RTE function in the same biological processes. Together, our data provide evidence that TLS1 is a B transport facilitator in maize, highlighting the importance of B homeostasis in meristem function.

  1. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    Science.gov (United States)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  2. Incipient ferroelectricity of water molecules confined to nano-channels of beryl.

    Science.gov (United States)

    Gorshunov, B P; Torgashev, V I; Zhukova, E S; Thomas, V G; Belyanchikov, M A; Kadlec, C; Kadlec, F; Savinov, M; Ostapchuk, T; Petzelt, J; Prokleška, J; Tomas, P V; Pestrjakov, E V; Fursenko, D A; Shakurov, G S; Prokhorov, A S; Gorelik, V S; Kadyrov, L S; Uskov, V V; Kremer, R K; Dressel, M

    2016-09-30

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  3. Correlation of aquaporin-4 expression to blood-brain barrier permeability in rats with focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Pengcheng Xu; Haorong Feng; Jinbu Xu; Yongping Wu

    2008-01-01

    BACKGROUND: Ischemic cerebrovascular disease causes injury to the blood-brain barrier. The occurrence of brain edema is associated with aquaporin expression following cerebral ischemia/reperfusion. OBJECTIVE: To analyze the correlation of aquaporin-4 expression to brain edema and blood-brain barrier permeability in brain tissues of rat models of ischemia/reperfusion. DESIGN, TIME AND SETTING: The randomized control experiment was performed at the Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, China from December 2006 to October 2007. MATERIALS: A total of 112 adult, male, Sprague-Dawley rats, weighing 220-250 g, were used to establish rat models of middle cerebral artery occlusion and reperfusion by the suture method. Rabbit anti-aquaporin-4 (Santa Cruz, USA) and Evans blue (Sigma, USA) were used to analyze the tissue. METHODS: The rats were randomized into sham-operated (n = 16) and ischemia/reperfusion (n = 96) groups. There were 6 time points in the ischemia/reperfusion group, comprising 4, 6, 12, 24, 48, and 72 hours after reperfusion, with 16 rats for each time point. Rat models in the sham-operated group at 4 hours after surgery and rat models in the ischemia/reperfusion group at different time points were equally and randomly assigned into 4 different subgroups. MAIN OUTCOME MEASURES: Brain water content on the ischemic side and the control side was measured using the dry-wet weight method. Blood-brain barrier function was determined by Evans Blue. Aquaporin-4 expression surrounding the ischemic focus, as well as the correlation of aquaporin-4 expression with brain water content and Evans blue staining, were measured using immunohistochemistry and Western blot analysis. RESULTS: Brain water content on the ischemic side significantly increased at 12 hours after reperfusion, reached a peak at 48 hours, and was still high at 72 hours. Brain water content was greater on the ischemic hemispheres, compared with the control hemispheres

  4. Expression of aquaporin-1 in rat pleural mesothelial cells and its specific inhibition by RNA interference in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; XIE Can-mao; LI Zhi-ping

    2007-01-01

    Background The discovery of water channel aquaporins(AQPs)has greatly expanded the understanding of the regulation of the water permeability of biological membranes.Aquaporin-1(AQP1)may be involved in fluid transport in numerous pathological conditions.The objective of the present study was to examine whether AQP1 is present in cultured rat pleural mesothelial cells(PMCs)and to investigate the specific inhibitory effect of RNA interference(RNAi) on AQP1 expression in PMCs,which may provide a new method for the further studies on the relation between expression of AQP1 in PMCs and pleural fluid removal in vivo.Methods PMCs were isolated and cultured from rat pleura.The expression of AQP1 in PMCs was confirmed by immunocytochemical staining and reverse transcriptase-polymerase chain reaction(RT-PCR).Two eukaryotic expression plasmid vectors of short hairpin RNA(shRNA)specific for the AQP1 gene of rat sapien were designed and constructed.The recombinant plasmid vectors were transfected into cultured rat PMCs by cation liposomes.Flow cytometry was used to screen the most effective shRNA at 48 hours after transfection.The expressions of AQP1 mRNA and protein were detected by RT-PCR and Western blotting method at 48 hours after transfection.Results RT-PCR and immunostaining revealed that AQP1 mRNA and protein were present in cultured rat PMCs.Two effective eukaryotic expression plasmid vectors of shRNA specific for the AQP1 gene were constructed successfully.The levels of the expression of AQP1 were inhibited by 83.45%,90.93%,respectively,at mRNA level and 41.24%,67.60%,respectively at protein level by two recombinant plasmids at 48 hours after transfection.The expression of AQP1 in PMCs transfected with plasmid was significantly lower than that of the cells transfected with the control plasmid HK and that of the untransfected cells(P<0.01).There was no significant difference in AQP1 expression between the control group and the group transfected with AQP1 nonspecific sh

  5. Symbiotic interaction between dinoflagellates and the demosponge Lubomirskia baicalensis: aquaporin-mediated glycerol transport.

    Science.gov (United States)

    Müller, Werner E G; Belikov, Sergey I; Kaluzhnaya, Oxana V; Chernogor, L; Krasko, Anatoli; Schröder, Heinz C

    2009-01-01

    Lake Baikal is rich in endemic sponge species, among them the arborescently growing species Lubomirskia baicalensis. During winter when the lake is covered by ice, this species reproduces sexually, reflecting a high metabolic activity. Throughout the year, L. baicalensis lives in association with dinoflagellates, which - according to the data presented herein - are symbiotic. The dinoflagellates have been determined on the basis of their rDNA/ITS characteristics and were found to display high sequence similarity to Gymnodinium sanguineum. The dinoflagellates give the sponge its characteristic green color, reflecting the high chlorophyll content (chlorophyll-a content in March and September of 3.2 +/- 0.6 microg/g and 1.9 +/- 0.5 microg/g of protein, respectively). With the in vitro cell culture system for sponges, the primmorphs, it could be demonstrated that [(14)C] glycerol is readily taken up by sponge cells; this process can be inhibited by phloretin, an aquaporin channel blocker. In order to prove the effect of cholesterol on the intermediate metabolism of the sponge cells, molecule probes, cDNAs for key enzymes in gluconeogenesis, glycolysis, and citric acid, have been applied in Northern blot studies. The data revealed that the genes coding for the enzymes citrate synthase and fructose-1,6-bisphosphatase are strongly upregulated after exposure of primmorphs to glycerol. This effect is abolished by phloretin. The genes encoding the phosphoglucose isomerase and pyruvate dehydrogenase do not respond to glycerol supply, suggesting that their expression is not under genetic control in L. baicalensis. To prove the assumption that the aquaporin channel is involved in the influx of glycerol in sponge cells, this cDNA was cloned and applied for in situ hybridization studies. The results obtained show that cells surrounding the dinoflagellates become brightly stained after hybridization with the aquaporin this probe. This demonstrates that L. baicalensis cells respond

  6. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes

    DEFF Research Database (Denmark)

    Holm, Lars M.; Jahn, Thomas Paul; Møller, Anders Laurell Blom;

    2005-01-01

    We have shown recently, in a yeast expression system, that some aquaporins are permeable to ammonia. In the present study, we expressed the mammalian aquaporins AQP8, AQQP9, AQP3, AQP1 and a plant aquaporin TIP2;1 in Xenopus oocytes to study the transport of ammonia (NH3) and ammonium (NH4+) under...... opencircuit and voltage-clamped conditions. TIP2;1 was tested as the wild-type and in a mutated version (tip2;1) in which the water permeability is intact. When AQP8-, AQP9-, AQP3- and TIP2;1-expressing oocytes were placed in a well-stirred bathing medium of low buffer capacity, NH3 permeability was evident...... from the acidification of the bathing medium; the effects observed with AQP1 and tip2;1 did not exceed that of native oocytes. AQP8, AQP9, AQP3, and TIP2;1 were permeable to larger amides, while AQP1 was not. Under voltage-clamp conditions, given sufficient NH3, AQP8, AQP9, AQP3, and TIP2;1 supported...

  7. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species

    Directory of Open Access Journals (Sweden)

    Barbara Amann

    2016-07-01

    Full Text Available Aquaporins (AQPs are small integral membrane proteins with 13 members in mammals and are essential for water transport across membranes. They are found in many different tissues and cells. Currently, there are conflicting results regarding retinal aquaporin expression and subcellular localization between genome and protein analyses and among various species. AQP4, 7, 9 and 11 were described in the retina of men; whereas AQP6, 8 and 10 were earlier identified in rat retinas and AQP4, 5 and 11 in horses. Since there is a lack of knowledge regarding AQP expression on protein level in retinas of different animal models, we decided to analyze retinal cellular expression of AQP4, 5 and 11 in situ with immunohistochemistry. AQP4 was detected in all 15 explored species, AQP5 and AQP11 in 14 out of 15. Interestingly, AQP4 was unambiguously expressed in Muller glial cells, whereas AQP5 was differentially allocated among the species analyzed. AQP11 expression was Muller glial cell-specific in 50% of the animals, whereas in the others, AQP11 was detected in ganglion cell layer and at photoreceptor outer segments. Our data indicate a disparity in aquaporin distribution in retinas of various animals, especially for AQP5 and 11.

  8. Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients.

    Science.gov (United States)

    Barandika, Olatz; Ezquerra-Inchausti, Maitane; Anasagasti, Ander; Vallejo-Illarramendi, Ainara; Llarena, Irantzu; Bascaran, Lucia; Alberdi, Txomin; De Benedetti, Giacomo; Mendicute, Javier; Ruiz-Ederra, Javier

    2016-10-01

    In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate.

  9. Aquaporin expression and cell volume regulation in the SV40 immortalized rat submandibular acinar cell line.

    Science.gov (United States)

    Hansen, Ann-Kristin; Galtung, Hilde Kanli

    2007-03-01

    The amount of aquaporins present and the cellular ability to perform regulatory volume changes are likely to be important for fluid secretions from exocrine glands. In this work these phenomena were studied in an SV40 immortalized rat submandibular acinar cell line. The regulatory cell volume characteristics have not previously been determined in these cells. Cell volume regulation following hyposmotic exposure and aquaporin induction was examined with Coulter counter methodology, radioactive efflux studies, fura-2 fluorescence, and polymerase chain reaction and Western blot techniques. Cell volume regulation was inhibited by the K(+) channel antagonists quinine and BaCl(2) and the Cl(-) channel blocker 5-nitro-2-(3-phenypropylamino)benzoic acid. A concomitant increase in cellular (3)H-taurine release and Ca(2+) concentration was also observed. Chelation of both intra- and extracellular Ca(2+) with EGTA and the Ca(2+) ionophore A23187 did not, however, affect cell volume regulation. Aquaporin 5 (AQP5) mRNA and protein levels were upregulated in hyperosmotic conditions and downregulated upon return to isosmotic solutions, but were reduced by the mitogen-activated ERK-activating kinase (MEK) inhibitor U0126. A 24-h MEK inhibition also diminished hyposmotically induced cell swelling and cell volume regulation. In conclusion, it was determined that regulatory volume changes in this immortalized cell line are due to KCl and taurine efflux. In conditions that increased AQP5 levels, the cells showed a faster cell swelling and a more complete volume recovery following hyposmotic exposure. This response could be overturned by MEK inhibition.

  10. Modeling of replenishment of sediments on a water-worked gravel bed channel

    Science.gov (United States)

    Juez, Carmelo; Battisacco, Elena; Schleiss, Anton J.; Franca, Mário J.

    2016-04-01

    The presence of dams causes a sediment deficit downstream. Hence, the surface structure of the riverbeds is altered by this interruption in the sediment continuity and The presence of dams causes a sediment deficit downstream. The surface structure of the riverbed is altered by this interruption in the sediment continuity and becoming water-worked. The main morphological effects verified in these cases are thus the generation of armored layers, bank instability, riverbed incision, changes in the channel width and coarsening of the bed particles. These results impact on the riverbed topographic variability and structure of the bedforms. Surface complexity is thus reduced with further ecological implications. The lack of fine material and surface complexity leads to the loss of aquatic and riparian habitats, limiting the possibilities for fish spawning. Nowadays, the revitalization of disturbed river reaches forms an integral part of river management. Sediment transport and associated channel morphology are understood as key processes for recreating and maintaining aquatic ecosystems. For this purpose several replenishment techniques have been considered in order to supply sediments lacking in the downstream reaches. The replenishment techniques can be seen as a pulse-like addition of sedimentary material that initially disturbs the channel. In this work, the response of the flow to the complementary material which is added in the channel is studied by means of the 2D shallow water equations in combination with the Exner equation. The numerical scheme is built by means of a weakly-coupled treatment between the hydrodynamic and morphodynamic equations leading to an efficient and robust solution. Computational outcomes are compared with experimental data obtained from several replenishment configurations studied in the laboratory. The results are analyzed by means of: (i) temporal evolution of the material spreading, (ii) occupational ratio along the channel which is

  11. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron

    OpenAIRE

    1993-01-01

    The sites of water transport along the nephron are well characterized, but the molecular basis of renal water transport remains poorly understood. CHIP28 is a 28-kD integral protein which was proposed to mediate transmembrane water movement in red cells and kidney (Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. 1992. Science [Wash. DC]. 256:385-387). To determine whether CHIP28 could account for renal epithelial water transport, we used specific polyclonal antibodies to quantitate...

  12. Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension

    Directory of Open Access Journals (Sweden)

    Graffe Carolina

    2012-03-01

    Full Text Available Abstract Background Dysregulation of the expression/shuttling of the aquaporin-2 water channel (AQP2 and the epithelial sodium channel (ENaC in renal collecting duct principal cells has been found in animal models of hypertension. We tested whether a similar dysregulation exists in essential hypertension. Methods We measured urinary excretion of AQP2 and ENaC β-subunit corrected for creatinine (u-AQP2CR, u-ENaCβ-CR, prostaglandin E2 (u-PGE2 and cyclic AMP (u-cAMP, fractional sodium excretion (FENa, free water clearance (CH2O, as well as plasma concentrations of vasopressin (AVP, renin (PRC, angiotensin II (Ang II, aldosterone (Aldo, and atrial and brain natriuretic peptide (ANP, BNP in 21 patients with essential hypertension and 20 normotensive controls during 24-h urine collection (baseline, and after hypertonic saline infusion on a 4-day high sodium (HS diet (300 mmol sodium/day and a 4-day low sodium (LS diet (30 mmol sodium/day. Results At baseline, no differences in u-AQP2CR or u-ENaCβ-CR were measured between patients and controls. U-AQP2CR increased significantly more after saline in patients than controls, whereas u-ENaCβ-CR increased similarly. The saline caused exaggerated natriuretic increases in patients during HS intake. Neither baseline levels of u-PGE2, u-cAMP, AVP, PRC, Ang II, Aldo, ANP, and BNP nor changes after saline could explain the abnormal u-AQP2CR response. Conclusions No differences were found in u-AQP2CR and u-ENaCβ-CR between patients and controls at baseline. However, in response to saline, u-AQP2CR was abnormally increased in patients, whereas the u-ENaCβ-CR response was normal. The mechanism behind the abnormal AQP2 regulation is not clarified, but it does not seem to be AVP-dependent. Clinicaltrial.gov identifier NCT00345124.

  13. Novel treatment for lithium-induced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene.

    Science.gov (United States)

    Suga, Hidetaka; Nagasaki, Hiroshi; Kondo, Taka-Aki; Okajima, Yoshiki; Suzuki, Chizuko; Ozaki, Nobuaki; Arima, Hiroshi; Yamamoto, Tokunori; Ozaki, Noriyuki; Akai, Masaro; Sato, Aiko; Uozumi, Nobuyuki; Inoue, Makoto; Hasegawa, Mamoru; Oiso, Yutaka

    2008-11-01

    Congenital nephrogenic diabetes insipidus (NDI) is a chronic disorder involving polyuria and polydipsia that results from unresponsiveness of the renal collecting ducts to the antidiuretic hormone vasopressin. Either of the genetic defects in vasopressin V2 receptor or the water channel aquaporin 2 (AQP2) cause the disease, which interfere the water reabsorption at the epithelium of the collecting duct. An unconscious state including a perioperative situation can be life threatening because of the difficulty to regulate their water balance. The Sendai virus (SeV) vector system deleting fusion protein (F) gene (SeV/DeltaF) is considered most suitable because of the short replication cycle and nontransmissible character. An animal model for NDI with reduced AQP2 by lithium chloride was used to develop the therapy. When the SeV/DeltaF vector carrying a human AQP2 gene (AQP2-SeV/DeltaF) was administered retrogradely via ureter to renal pelvis, AQP2 was expressed in the renal collecting duct to reduce urine output and water intake by up to 40%. In combination with the retorograde administration to pelvis, this system could be the cornerstone for the applicable therapies on not only NDI patients but also other diseases associate with the medullary collecting duct.

  14. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents.

    Science.gov (United States)

    Singhal, V; Rai, J P N

    2003-02-01

    The paper reports on the biogas production from water hyacinth (Eichhornia crassipes) and channel grass (Vallisneria spiralis) employed separately for phytoremediation of lignin and metal-rich pulp and paper mill and highly acidic distillery effluents. These plants eventually grow well in diluted effluent up to 40% (i.e., 2.5-times dilution with deionized water) and often take up metals and toxic materials from wastewater for their metabolic use. Slurry of the two plants used for phytoremediation produced significantly more biogas than that produced by the plants grown in deionized water; the effect being more marked with plants used for phytoremediation of 20% pulp and paper mill effluent. Biogas production from channel grass was relatively greater and quicker (maximum in 6-9 days) than that from water hyacinth (in 9-12 days). Such variation in biogas production by the two macrophytes has been correlated with the changes in C, N and C/N ratio of their slurry brought by phytoremediation.

  15. Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream

    Science.gov (United States)

    Kim, Byeong-Hoon; Lee, Choon-Ki; Seo, Ki-Weon; Lee, Won Sang; Scambos, Ted

    2016-12-01

    We identify two previously unknown subglacial lakes beneath the stagnated trunk of the Kamb Ice Stream (KIS). Rapid fill-drain hydrologic events over several months are inferred from surface height changes measured by CryoSat-2 altimetry and indicate that the lakes are probably connected by a subglacial drainage network, whose structure is inferred from the regional hydraulic potential and probably links the lakes. The sequential fill-drain behavior of the subglacial lakes and concurrent rapid thinning in a channel-like topographic feature near the grounding line implies that the subglacial water repeatedly flows from the region above the trunk to the KIS grounding line and out beneath the Ross Ice Shelf. Ice shelf elevation near the hypothesized outlet is observed to decrease slowly during the study period. Our finding supports a previously published conceptual model of the KIS shutdown stemming from a transition from distributed flow to well-drained channelized flow of subglacial water. However, a water-piracy hypothesis in which the KIS subglacial water system is being starved by drainage in adjacent ice streams is also supported by the fact that the degree of KIS trunk subglacial lake activity is relatively weaker than those of the upstream lakes.

  16. Formation of the chemical composition of water in channel head in postglacial areas (West Pomerania, Poland)

    Science.gov (United States)

    Mazurek, Małgorzata; Kruszyk, Robert; Szpikowska, Grażyna

    2016-04-01

    The channel head is a zone of hydrological changes determining the hydrochemical features of water in the final stage of groundwater flow and the start of the surface cycle. The chemistry of water flowing out of a channel head reflects not only the characteristics of groundwater feeding the zone, but also changes it undergoes in this area during the organisation of channel flow. Groundwater interacts with surface water in the hyporheic zone where water from different environments is mixed and exchanged due to high hydraulic and chemical gradients. The goal of this study was to assess spatial differences in the concentrations of nutrients and compounds produced by chemical weathering in a channel head and to establish the role of the hyporheic zone in the transformation of the chemical composition of groundwater supplying a 1st-order stream. The research area was the channel head Żarnowo, located on the southern slope of the upper Parsęta valley. Three hydrochemical mappings were conducted in the headwater alcove consisting of three parts developed in a glaciofluvial plain and an erosional-accumulative alluvial terrace. Water was sampled in places of groundwater outflow in the footslope zone (9 sites), the hyporheic zone (14 sites), and outflows in the individual alcove parts and the rivulet they formed (5 sites). Water temperature, pH, and electrical conductivity were measured in the field. Concentrations of K, Ca, Mg, Na, Fe, Mn, HCO3, Cl, NO3, PO4, SO4 and SiO2 were determined in the laboratory. The chemical composition of ground- and surface water shows the concentration of geogenic components like K, Ca, Mg, Na, HCO3, and SiO2 to be an effect of chemical weathering and the leaching of its products taking place in a zero-discharge catchment. Those ions display little spatial variability and a stability of concentration in individual measurement periods, while the greatest disproportions in their concentrations among the alcove parts were recorded for Cl, NO3

  17. Effects of exogenous 5-aminolevulinic acid on PIP1 and NIP aquaporin gene expression in seedlings of cucumber cultivars subjected to salinity stress.

    Science.gov (United States)

    Yan, F; Qu, D; Zhao, Y Y; Hu, X H; Zhao, Z Y; Zhang, Y; Zou, Z R

    2014-01-22

    Aquaporins play a direct role in plant water relation under salt stress, but the effects of 5-aminolevulinic acid (ALA) on aquaporin gene expression in salt-treated plants remain unknown. This study investigated the potential effects of exogenous ALA (50 mg/dm3) on aquaporin expression levels under salt stress (75 mM NaCl) in the salt-sensitive (Jinchun No.4) and the relatively salt-tolerant cucumber (Jinyou No.1) seedlings. The expressions of cucumber PIP aquaporin gene (CsPIP1:1) and cucumber NIP aquaporin gene (CsNIP) were analyzed in 20-day-old seedling leaves at 2, 4, 8, 16, and 24 h after ALA treatment. After treatment with saline alone and ALA alone, CsPIP1:1 and CsNIP gene expression levels in the 2 cucumber cultivars increased to maximum at 2 h. The aquaporin gene expression in salt-treated cucumber seedling leaves was considerably higher than that in leaves subjected to exogenous ALA. Further, the aquaporin expression levels in Jinchun No.4 were higher than those in Jinyou No.1, reaching 5.20- and 2-fold induction levels, respectively. After treatment with both ALA and NaCl, the CsNIP gene expression was downregulated in both the cucumber cultivars, while that of CsPIP1:1 decreased at 2 h and then increased to 3.8-fold in Jinchun No.4. In Jinyou No.1, CsPIP1:1 gene expression gradually increased to 2.3-fold at 4 h, followed by a decline in expression. The results indicated that ALA might delay and counteract the upregulated expression of CsPIP1:1 and CsNIP genes in cucumber seedlings under NaCl stress. Thus, salt tolerance of cucumber seedlings might be enhanced by ALA application.

  18. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    Science.gov (United States)

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  19. News and views on mitochondrial water transport.

    Science.gov (United States)

    Gena, Patrizia; Fanelli, Elena; Brenner, Catherine; Svelto, Maria; Calamita, Giuseppe

    2009-01-01

    The osmotic movement of water into and out of the mitochondrial matrix underlies the extraordinary plasticity that characterizes mitochondria, a feature of pivotal importance to cell bioenergetics and signaling, and of critical relevance to life-and-death cell decision. However, the biophysics and identity of mitochondrial water transport had remained mostly unexplored, until recent works suggesting high water permeability and the presence of multiple facilitated pathways of water diffusion in liver mitochondria. Here, we attempt to summarize our current view of the mechanisms of mitochondrial water transport and possible relevance of the channel-mediated pathways created by mitochondrial permeability transition, aquaporins and protein/lipid specializations. Assessing the molecular bases and dynamics of mitochondrial water permeability will help to answer the much-debated question over the role of mitochondria.

  20. The English Channel: Contamination status of its transitional and coastal waters.

    Science.gov (United States)

    Tappin, A D; Millward, G E

    2015-06-30

    The chemical contamination (organic compounds, metals, radionuclides, microplastics, nutrients) of English Channel waters has been reviewed, focussing on the sources, concentrations and impacts. River loads were only reliable for Pb, whereas atmospheric loads appeared robust for Cd, Pb, Hg, PCB-153 and γ-HCH. Temporal trends in atmospheric inputs were decreasing. Contaminant concentrations in biota were relatively constant or decreasing, but not for Cd, Hg and HBCDD, and deleterious impacts on fish and copepods were reported. However, data on ecotoxicological effects were generally sparse for legacy and emerging contaminants. Intercomparison of activity concentrations of artificial radionuclides in sediments and biota on both Channel coasts was hindered by differences in methodological approaches. Riverine phosphate loads decreased with time, while nitrate loads remained uniform. Increased biomass of algae, attributable to terrestrial inputs of nutrients, has affected benthic production and shellfisheries. A strategic approach to the identification of contaminant impacts on marine biota is recommended.