WorldWideScience

Sample records for water areas

  1. Water Service Areas - Public Water Supplier's (PWS) Service Areas

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Boundaries of current public water supplier's (PWS) service areas. This data set contains the present service area boundary of the water system and does not contain...

  2. Water Service Areas - MDC_WaterServiceArea

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The Water and Sewer Service Area layer was derived from the original paper based sketches which contained both water and sewer utility boundary information. This...

  3. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    Science.gov (United States)

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  4. Water resources of the Pittsburgh area, Pennsylvania

    Science.gov (United States)

    Noecker, Max; Greenman, D.W.; Beamer, N.H.

    1954-01-01

    The per capita use of water in the Pittsburgh area in 1951 was 2, 000 gallons per day fgpd) or twice the per capita use in Pennsylvania as a whole. An average of about 3, 040 million gallons of water was withdrawn from the streams and from the ground each day. Of this amount, nearly 190 million gallons per day (mgd), or 6 percent, was for domestic public water supply. Industry, including public utilities generating steam for electric energy, used approximately 2, 900 mgd, of which about 42 mgd was purchased from public supply sources. In spite of this tremendous demand for water, a sufficient quantity was available to satisfy the needs of the area without serious difficulty. Acid mine drainage presents the greatest single pollution problem in the Pittsburgh area at the present time (1953) because no practical means has been found for its control. The waters of several of the rivers are strongly acid for this reason. Of the three major rivers in the area, Monongahela River waters have the greatest acid concentration and Allegheny River waters the least. Untreated domestic and industrial wastes are additional sources of stream pollution in the area. Much of the water is hard and corrosive, and occasionally has objectionable color, odor, and taste. The treatment used by public water-supply systems using river water is adequate at all times for removal of water-borne causes of disease. Attention is being concentrated on improving the quality of present supplies rather than developing new supplies from upstream tributaries. Present supplies are being improved by providing treatment facilities for disposal of wastes,, by reduction of acid mine drainage discharged into the streams, and by providing storage to augment low flows. The underground water resources are vitally important to the area. The use of ground water in the Pittsburgh area has doubled in the past two decades and in 1951 more ground water was used in Allegheny County than in any other county in

  5. Water leakage management by district metered areas at water distribution networks.

    Science.gov (United States)

    Özdemir, Özgür

    2018-03-01

    The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.

  6. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  7. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  8. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  9. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  10. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  11. Water control at certain karst U-mining area

    International Nuclear Information System (INIS)

    Lei Mingxin; Xu Qiang

    2010-01-01

    To ensure mining security, water control for certain mining area is designed. Hydrogeological conditions in the studied area are analyzed. Four methods were used to calculate the inflow of water at mineral area, such as 'bigwell' method and 'groundwater isostatic' method according to the karst development. The calculated data for average inflow of water for the 100 m middle section are mainly compared with the data for the inflow of spring water in this deposit observed during the last five years. The difference between them is found minor. This indicates that the parameters selected for the calculation of inflow of water are reasonable and the methods used are suitable. Taking into account the above, it is decided to use the combination of surface water control and groundwater control Surface water control first,and groundwater control second, Five methods are used for surface water control such as plugging, filling, stopping, draining and dredging. Three methods for groundwater control such as curtain grouting, drainage in advance and blocking. The implimentation of this program will greatly reduce the threat of groundwater in ming area to mining operation and the cost of treatment of water discharge in mining pits and wells ,and effectively protect the environment and ensure the local people's living and production. (authors)

  12. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  13. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  14. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  15. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  16. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    Science.gov (United States)

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  17. Water resources of the Park City area, Utah, with emphasis on ground water

    Science.gov (United States)

    Holmes, Walter F.; Thompson, Kendall R.; Enright, Michael

    1986-01-01

    The Park City area is a rapidly growing residential and recreational area about 30 miles east of Sal t Lake City (fig. 1). The area of study is about 140 square miles in which the principle industries are agriculture, skiing, and other recreational activities. The area once was a major lead- and silver-mining district, but no mines were active in 1984. A resumption in mining activity, however, could take place with an increase in the price of metals.The population of the Park City area is expected to increase rapidly in the near future; and the provision of an adequate water supply for the growing population, while avoiding harmful affects of development, is a major concern for local municipalities, developers, and the Utah Division of Water Rights. In addition, agricultural interests in and below the area are concerned about the effects of increased ground-water withdrawals on streamflow, which is fully appropriated by downstream users. The area also contains the proposed site for the Jordanelle dam, a part of the Bonneville unit of the central Utah Project. The damsite is near an historic mining area; and mining companies are concerned that if mining is resumed, the reservoir may create some additional dewatering problems in the mines.

  18. Geohydrology and ground-water quality beneath the 300 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Bond, F.W.

    1979-06-01

    Ground water enters the 300 Area from the northwest, west, and southwest. However, throughout most of the 300 Area, the flow is to the east and southeast. Ground water flows to the northeast only in the southern portion of the 300 Area. Variations in level of the Columbia River affected the ground-water system by altering the level and shape of the 300 Area watertable. Large quantities of process waste water, when warmed during summer months by solar radiation or cooled during winter months by ambient air temperature, influenced the temperature of the ground water. Leaking pipes and the intentional discharge of waste water (or withdrawal of ground water) affected the ground-water system in the 300 Area. Water quality tests of Hanford ground water in and adjacent to the 300 Area showed that in the area of the Process Water Trenches and Sanitary Leaching Trenches, calcium, magnesium, sodium, bicarbonate, and sulfate ions are more dilute, and nitrate and chloride ions are more concentrated than in surrounding areas. Fluoride, uranium, and beta emitters are more concentrated in ground water along the bank of the Columbia River in the central and southern portions of the 300 Area and near the 340 Building. Test wells and routine ground-water sampling are adequate to point out contamination. The variable Thickness Transient (VTT) Model of ground-water flow in the unconfined aquifer underlying the 300 Area has been set up, calibrated, and verified. The Multicomponent Mass Transfer (MMT) Model of distribution of contaminants in the saturated regime under the 300 Area has been set up, calibrated, and tested

  19. Water resources development in the Molai area, Greece

    International Nuclear Information System (INIS)

    1981-01-01

    The first volume of this report describes the work, carried out by the Government of Greece, with the assistance of UNDP and FAO, to assess the availability of groundwater for the irrigation of up to 6000 km in the Molai plain, located in the southern Peloponnese. The limestone reservoir of groundwater is restricted to the area 10 km 2 . Its groundwater is of rather poor quality (EC more than 2.0 mmho/cm) and it has a low head 3-7 m above sea level, which is 77-150 m below land surface. A water balance is presented which has been confirmed on a groundwater model. The fresh water of the limestone aquifer is characterised by the admixture of a variable amount of sea-water. The water of the Neogene aquifer is of much better quality. Combining the available resources, the irrigated area in the Molai plain can be tripled to cover half the net irrigable area. The economic feasibility of such a project has been studied

  20. Diffusion of tritiated water in coastal areas

    International Nuclear Information System (INIS)

    Fukuda, M.; Kasai, A.; Imai, T.; Amano, H.; Yanase, N.

    1980-01-01

    The diffusion of tritiated water discharged by Japan Atomic Energy Research Institute at shore line has been investigated. In continuous discharge, the concentration of tritiated water in samples taken at a point downstream fluctuates largely. To reveal the cause, dye diffusion experiments were made in the coastal area. The shapes of dye cloud were photographed by a remote-control camera suspended from a captive balloon as color pictures. The movement of dye is so complex that a three-dimensional model must be employed to assess the diffusion in coastal areas

  1. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  2. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2013–2015

    Science.gov (United States)

    Macy, Jamie P.; Mason, Jon P.

    2017-12-07

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 16 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2013 to December 2015. The monitoring program includes measurements of (1) groundwater withdrawals (pumping), (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In 2013, total groundwater withdrawals were 3,980 acre-feet (ft), in 2014 total withdrawals were 4,170 acre-ft, and in 2015 total withdrawals were 3,970 acre-ft. From 2013 to 2015 total withdrawals varied by less than 5 percent.From 2014 to 2015, annually measured water levels in the Black Mesa area declined in 9 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 3 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.6 feet. From the prestress period (prior to 1965) to 2015, the median water-level change for 34 wells in both the confined and unconfined areas was -13.2 feet; the median water-level changes were -1.7 feet for 16 wells measured in the unconfined areas and -42.3 feet for 18 wells measured in the confined area.Spring flow was measured at four springs in 2014. Flow fluctuated during the

  3. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 2011-2012

    Science.gov (United States)

    Macy, Jamie P.; Unema, Joel A.

    2014-01-01

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2011 to September 2012. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2011, total groundwater withdrawals were 4,480 acre-ft, industrial withdrawals were 1,390 acre-ft, and municipal withdrawals were 3,090 acre-ft. Total withdrawals during 2011 were about 39 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a slurry. From 2010 to 2011 total withdrawals increased by 11 percent; industrial withdrawals increased by approximately 19 percent, and total municipal withdrawals increased by 8 percent. From 2011 to 2012, annually measured water levels in the Black Mesa area declined in 8 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 9 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.0 feet. From the prestress period (prior to 1965) to 2012, the median water-level change for 34 wells in both

  4. Water resources of the Flint area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Vanlier, K.E.; Krieger, Robert A.

    1964-01-01

    . The April 1947 flood, the largest on record, caused nearly $4 million flood damage in Flint. A proposed flood-control plan for Flint calls for channel, floodwall, and levee improvements and the removal or modification of some bridges.Analyses of water samples taken from selected streams and lakes in the Flint area indicate that the waters are of the calcium bicarbonate type and generally hard to very hard. Flint River water is relatively uniform in quality although a progressive increase in iron, sodium, and chloride concentrations was noted between Otisville and Montrose. Downstream from Flint, the dissolved oxygencontent may be low during low flows. At times, concentrations of iron, manganese, phenols, color, and turbidity in Flint River water exceed the limits recommended in drinking water standards. Water temperatures ranged from freezing to 86°F in a 4-year period. The finished water supplied by the Flint water-treatment plant is fairly uniform in quality, moderately soft, alkaline, and low in color and turbidity. The pH is nearly always above 10. Further softening and removal of iron and related minerals would be desirable for certain industrial uses.The quality of the water sampled in the Flint River tributaries was generally similar to that of the Flint River. However, no phenols or oils and waxes were found. Softening and other treatment dependent upon use would be required if these streams were developed for water supply.Waters sampled in the Shiawassee River and selected lakes were generally less mineralized than Flint River water. Water from the lakes showed the lowest concentrations of dissolved solids. Softening would be required for nearly all uses. Additional treatment would depend upon contemplated use.Shallow deposits of sand and gravel deposited as outwash along glacial meltwater streams and as deltas in the glacial lakes that covered the northwestern part of the county are sources of water to moderate- and large-capacity wells. Thick deposits of

  5. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  6. Water levels in the Yucca Mountain Area, Nevada, 1996

    International Nuclear Information System (INIS)

    Graves, R.P.

    1998-01-01

    Water levels were monitored in 24 wells in the Yucca Mountain area, Nevada, during 1996. Twenty-two wells representing 28 depth intervals were monitored periodically, generally on a monthly basis, and 2 wells representing 3 depth intervals were monitored both hourly and periodically. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in paleozoic carbonate rocks. Water levels were measured using either calibrated steel tapes or a pressure sensor. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 727.86 to about 1,034.58 meters above sea level during 1996. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 752.57 meters above sea level during 1996. Mean water-level altitudes for 1996 were an average of about 0.06 meter lower than 1995 mean water-level altitudes and 0.03 meter lower than 1985--95 mean water-level altitudes. During 1996, water levels in the Yucca Mountain area could have been affected by long-term pumping at the C-hole complex that began on May 8, 1996. Through December 31, 1996, approximately 196 million liters were pumped from well UE-25 c number-sign 3 at the C-hole complex. Other ground-water pumpage in the Yucca Mountain area includes annual pumpage from water-supply wells UE-25 J-12 and UE-25 J-13 of approximately 163 and 105 million liters, respectively, and pumpage from well USW G-2 for hydraulic testing during February and April 1996 of approximately 6 million liters

  7. Application of isotopic techniques for study of ground water from karstic areas. 1. Origin of waters

    International Nuclear Information System (INIS)

    Feurdean, Victor; Feurdean, Lucia

    2000-01-01

    Environmental stable isotope method was used for study of ground water from karst of NE Dobrogea. Study area is in the vicinity of Danube Delta (declared in 1990 by UNESCO the Reserve of Biosphere) and presents scientific and ecological interest. Measurements of deuterium content of ground water show that waters are meteoric in origin, but at the same time the results showed that the water from two sampling points could not originate from local ground water and have their recharge area at high altitude and a considerable distance. According to the δD values the following categories of waters were established: - waters depleted in deuterium (δD 0 / 00 ) relative to δD values of surface and ground water in the geographic area from which they were collected. They represent most probably the intrusion of isotopically light water from high altitude sites (higher than 1000 m) through network of highly permeable karst channels. The discharge of this component of aquifer occurs both by conduct flow and by diffuse flow; - Waters tributaries to the Danube River (δD > -75 0 / 00 ) that have a small time variability of δD values; - Local infiltration waters, situated in the West side of the investigated area towards the continental platform of the Dobrogea (δD > -70 0 / 00 ). They present high time variability of δD values, due to distinct seasonal effects; - Waters originated in mixing processes between the waters with different isotopic content. The endmember one is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) while the other endmember is the isotopically light water. (authors)

  8. Water resources of the Hartford-New Britain area, Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum; Tanski, D.; Thomas, M.P.

    1964-01-01

    The Hartford-New Britain area includes the metropolitan areas of Hartford and New Britain and parts of several adjoining towns. Water used in the area is withdrawn from the principal streams and aquifers at an average rate of 463.5 mgd (million gallons per day). Sufficient water is available from these sources to meet present requirements and those for many years to come, although local shortages may develop in some areas as the result of problems of distribution and treatment. About 98 percent of all water used in 1957 was from surface sources. More than 425 mgd was required by industry, and about 23 mgd was for domestic water supply. The Farmington River upstream from Collinsville is the chief source of water for public supply in the Hartford-New Britain area, whereas the Connecticut River is the chief source of water for industry. An average of about 40 mgd is withdrawn from the upper Farmington River for public supply, and about 404 mgd is withdrawn by industry from the Connecticut River for nonconsumptive use and returned directly to the stream. The Connecticut River is the source of the largest quantity of water in the area. The flow of the stream at Thompsonville may be expected to equal or exceed about 2,000 mgd 95 percent of the time, and the flow should not be less than this amount for periods longer than 12 days. The flow below Thompsonville is increased by additions from the Scantic, Farmington, Park, and Hockanum Rivers and from numerous smaller tributary streams. The available streamflow data for the aforementioned rivers have been summarized graphically in the report. The chemical quality of water in the Connecticut River is good, except for short periods when the iron concentration is high. In addition to the removal of iron some other treatment may be necessary if water from the Connecticut River is used for special purposes. The chemical quality of the tributary streams is good, except the quality of the Park River, which is poor. Thus the

  9. Climate change and the water cycle in newly irrigated areas.

    Science.gov (United States)

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  10. Stormwater harvesting: Improving water security in South Africa's urban areas

    Directory of Open Access Journals (Sweden)

    Lloyd Fisher-Jeffes

    2017-01-01

    Full Text Available The drought experienced in South Africa in 2016 one of the worst in decades has left many urbanised parts of the country with limited access to water, and food production has been affected. If a future water crisis is to be averted, the country needs to conserve current water supplies, reduce its reliance on conventional surface water schemes, and seek alternative sources of water supply. Within urban areas, municipalities must find ways to adapt to, and mitigate the threats from, water insecurity resulting from, inter alia, droughts, climate change and increasing water demand driven by population growth and rising standards of living. Stormwater harvesting (SWH is one possible alternative water resource that could supplement traditional urban water supplies, as well as simultaneously offer a range of social and environmental benefits. We set out three position statements relating to how SWH can: improve water security and increase resilience to climate change in urban areas; prevent frequent flooding; and provide additional benefits to society. We also identify priority research areas for the future in order to target and support the appropriate uptake of SWH in South Africa, including testing the viability of SWH through the use of real-time control and managed aquifer recharge.

  11. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A regional water balance for the WIPP site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1987-01-01

    A water balance or budget is developed as an accounting of the components of a closed hydrologic system. In the WIPP study area, water-budget techniques have previously been used to compute leakage from Lake Avalon and from potash refinery spoil ponds. A general expression for a closed hydrologic system is presented. In a developed area like the WIPP region, the water budget must include many usage factors, such as municipal or industrial pumpage. In the WIPP water-budget study area, inflows are precipitation, surface- and ground-water inflow, and the artificial addition of surface and ground water. Outflows are surface runoff, evaporation and transpiration, and ground-water outflow. Changes in storage in the WIPP region have also been documented. The WIPP water balance described here is based on a combination of long-term averages and figures for 1980. 12 refs., 5 figs., 1 tab

  13. Design principles of water sensitive in settlement area on the river banks

    Science.gov (United States)

    Ryanti, E.; Hasriyanti, N.; Utami, W. D.

    2018-03-01

    This research will formulate the principle of designing settlement area of Kapuas River Pontianak with the approach of water sensitive concept of urban design (WSUD) the densely populated settlement area. By using a case study the approach that is a dense settlement area located on the banks of the river with literature study techniques to formulate the aspects considered and components that are set in the design, descriptive analysis with the rationalistic paradigm for identification characteristics of the settlement in the river banks areas with consideration of WSUD elements and formulate the principles of designing water-sensitive settlement areas. This research is important to do because the problems related to the water management system in the existing riverside settlement in Pontianak has not been maximal to do. So the primary of this research contains several objectives that will be achieved that is identifying the characteristics of riverside settlement area based on consideration of design aspects of the area that are sensitive to water and the principle of designing the area so that the existing problem structure will be formulated in relation to the community’s need for infrastructure in settlement environment and formulate and develop appropriate technology guidelines for integrated water management systems in riverside settlement areas and design techniques for water-sensitive settlements (WSUD).

  14. Water quality assessment of the rivers in bauxite mining area at ...

    African Journals Online (AJOL)

    Water quality assessment of the rivers in bauxite mining area at Kuantan Pahang. ... mining area. Water samples were collected at Kuantan River, Riau River, Pinang River and Pandan Rivers. ... All these rivvers were classified into class II based on INWQS and required conventional treatment for water supply purposes.

  15. Groundwater, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona—2012–2013

    Science.gov (United States)

    Macy, Jamie P.; Truini, Margot

    2016-03-02

    The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 14 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2012 to September 2013. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In calendar year 2012, total groundwater withdrawals were 4,010 acre-ft, industrial withdrawals were 1,370 acre-ft, and municipal withdrawals were 2,640 acre-ft. Total withdrawals during 2012 were about 45 percent less than total withdrawals in 2005 because of Peabody Western Coal Company’s discontinued use of water to transport coal in a coal slurry pipeline. From 2011 to 2012 total withdrawals decreased by 10 percent; industrial withdrawals decreased by approximately 1 percent, and total municipal withdrawals decreased by 15 percent.From 2012 to 2013, annually measured water levels in the Black Mesa area declined in 6 of 16 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was 0.8 feet. Water levels declined in 5 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.3 feet. From the prestress period (prior to 1965) to 2013, the median water

  16. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications

  17. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  18. Ground-water hydrology and glacial geology of the Kalamazoo area, Michigan

    Science.gov (United States)

    Deutsch, Morris; Vanlier, K.E.; Giroux, P.R.

    1960-01-01

    The Kalamazoo report area includes about 150 square miles of Kalamazoo County, Mich. The area is principally one of industry and commerce, although agriculture also is of considerable importance. It has a moderate and humid climate and lies within the Lake Michigan “snow belt”. Precipitation averages about 35 inches per year. Snowfall averages about 55 inches. The surface features of the area were formed during and since the glacial epoch and are classified as outwash plain, morainal highlands, and glaciated channels or drainageways. The area is formed largely on the remnants of an extensive outwash plain, which is breached by the Kalamazoo River in the northeastern part and is dissected elsewhere by several small tributaries to the river. Most of the land drained by these tributaries lies within the report area. A small portion of the southern part drains to the St. Joseph River. The Coldwater shale, which underlies the glacial deposits throughout the area, and the deeper bedrock formations are not tapped for water by wells and they have little or no potential for future development. Deposits of glacial drift, which are the source of water to all the wells in the area, have considerable potential for future development. These deposits range in thickness from about 40 feet along the Kalamazoo River to 350 feet where valleys were eroded in the bedrock surface. Permeable outwash and channel deposits are the sources of water for wells of large capacity. The moraines are formed dominantly by till of lower permeability which generally yields small supplies of water, but included sand and gravel beds of higher permeability yield larger supplies locally. The aquifers of the Kalamazoo area are recharged by infiltration of rainfall and snowmelt and by infiltration of surface waters induced by pumping of wells near the surface sources. Water pumped from most of the municipal well fields is replenished in part by such induced infiltration. Many of the industrial wells

  19. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  20. Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gregolin Grisotto

    2010-12-01

    Full Text Available This paper presents the history of occupation in the water source areas in São Paulo Metropolitan Region (hereinafter SPMR and the evolution of the legislation related to this issue, from the point of view of the environmental and water management. A descriptive methodology was used, with searches into bibliographical and documental materials, in order to present the main laws for the protection of the water supply areas of SPMR and environmental and water management. It was possible to observe some progress in the premises of the both legislation and the format proposed for the management of the water source areas. However, such progress is limited due to the lack of a more effective mechanism for metropolitan management. The construction of the metropolitan management in SPMR would enlarge the capacity of integration between municipalities and sectors. The integration between the management of water and the land use management showed to be fundamental for the protection of the water sources. The new law for protection of the water sources, State Law nº 9.866/97, is decentralized and participative, focusing on non-structural actions and integrated management. However, the effective implementation of the law still depends on the harmonization of sectoral public policies, extensive coordination and cooperation among municipalities and the progress in the degree of the commitment of the governments.

  1. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  2. Ground-water in the Teresina-Campo Maior area, Piaui, Brazil

    Science.gov (United States)

    Rodis, Harry G.; Suszczynski, Edison F.

    1972-01-01

    The Teresina-Campo Maior area lies in a presently developing farming and grazing region near the margin of drought-prone northeast Brazil where irrigated farming offers the best potential for economic development. The area comprises 9,700 square kilometers largely of catinga-covered tabular uplands which are drained by the perennial Rio Parnatba. The climate is hot and humid most of the year but with distinct wet and dry seasons. Temperature extremes range from 20?C to 39?C and the annum rainfall averages 1,200 millimeters. The area's ground-water reservoir is contained chiefly in sandstone aquifers of six westward-dipping sedimentary rock formations, all part of the Maranhao sedimentary basin. The youngest of these formations, namely the Piaut (Pennsylvarian), Poti (Mississippian), Longa (Upper Devonian), and Cabecas (Middle Devoniar), contain the principal aquifers. Precipitation is the primary source of recharge to these aquifers and is more than sufficient to replenish current withdrawals from wells. Underlying the principal aquifers are the untapped Pimenteiras and Serra Grande Formations (both Lower Devonian) which in areas adjacent to the report area are moderately good to excellent water producers. These aquifers are recharged principally by lateral inflow from the east. Water also occurs in the alluvial deposits (Quaternary) underlying the flood plain of the Rio Parnatba but recurrent and uncontrolled flooding at present (1966) precludes their development. Of little economic importance, because they lie above the zone of saturation, are the thin erosional remnants of the Pastos Bons (Upper Triassic), Matuca, and Pedra de Fogo (both Permian) Formations. There are in the report area about 200 drilled wells most of which are pumped with power-driven engines. The wells range from 40 to 500 meters deep but most do not exceed 150 meters, and practically all are completed open hole. Yields range from 500 liters per day for 6-inch-diameter domestic wells to 240

  3. Quality of surface-water supplies in the Triangle area of North Carolina, water years 2010-11

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-02-02

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2009 through September 2010 (water year 2010) and October 2010 through September 2011 (water year 2011). Major findings for this data-collection effort include Annual precipitation was approximately 4 percent above the long-term mean (average) annual precipitation in 2010 and approximately 6 percent below the long-term mean in 2011.

  4. Legal study on water environmental protection of Three Gorges Reservoir Area

    Institute of Scientific and Technical Information of China (English)

    DENG He

    2007-01-01

    Water environment security of the Three Gorges Reservoir Area has become a more extensive concern since the impoundment of the reservoir. This paper describes the existing water environmental hazards and defects in current legal system for water environmental protection in this area, and also discusses their possible causes and potential problems in the future based on first hand materials and other literature. According to the theories of integrated river basin management and environmental equity principle, legal proposals are put forward, which include building an unitary legal system dedicated to the Reservoir Area, setting up a basin authority of the Yangtze River to preside over the resources protection and development, using interests' compensation system to solve interest conflicts among different reaches, and making concrete regulations to direct public participation in water environmental security protection of the Three Gorges Reservoir Area.

  5. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  6. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    Science.gov (United States)

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  7. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  8. Wide-area service water information management system; Koiki suido joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A wide-area service water system is required to be more resistant to emergency situations, e.g., drought and hazards, and meet consumers' diversifying needs in each area, while stably supplying water at ordinary times by utilizing purification plants located in places within its system and piping networks in the water area. Fuji Electric is providing information management systems for wide-area service water systems, developed based on the company's abundant system know-hows accumulated for a long time and latest techniques. They are characterized by (1) Web monitoring, aided by an intranet system, (2) high-speed data transmission by a digital transmission system, (3) open network environments, and (4) emergency calling of the staff, and management of stock materials. The system allows to monitor operating conditions within the area on real time, needless to say, and business administration with civil minimum taken into consideration, e.g., stabilizing water quality by coordinating the purification plants within the system. (translated by NEDO)

  9. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  10. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  11. Geology and ground water of the Luke area, Maricopa County, Arizona

    Science.gov (United States)

    Stulik, Ronald S.; Twenter, F.R.

    1964-01-01

    Luke Air Force Base, in the Salt River Valley in central Arizona. is within an intermontane basin--the Phoenix basin--in the Basin and Range lowlands province. The Luke area, the subject of this study, extends beyond the limits of the base. Ground-water resources of the Luke area were studied to determine the possibility of developing a water supply of optimum quantity and quality to supplement the base supply. Several wells drilled for this purpose, prior to the study, either produced an inadequate supply of water or produced ware-that had a high dissolved-solids content. The Phoenix basin is filled with unconsolidated to semiconsolidated Tertiary and Quaternary sedimentary rocks that are referred to as valley fill. Although its total thickness is unknown, 2,784 feet of valley fill--primarily consisting of clay, silt, sand, and gravel--has been penetrated. Percentage-distribution maps of fine-grained materials indicate a gross-facies pattern and a selective depositional area of the valley-fill materials. The maps also indicate that the areal distribution of fine-grained materials increases with depth. In general, the better producing wells, regardless of depth, are in areas where tee valley fill is composed of less than 60 percent fine-grained materials. The water table in the area is declining because large quantities of water are withdrawn and recharge is negligible. The decline near Luke Air Force Base during the period 1941-61 was about 150 feet. Ground water was moving generally southwest in the spring of 1961. Locally, changes in the direction of movement indicate diversion toward two major depressions. The dissolved-solids content of the ground water ranged from about 190 to 6,300 ppm. The highest concentration of dissolved solids is in water from the southern part of the area and seems to come from relatively shallow depths; wells in the northern part generally yield water of good quality. After a reconnaissance of the area, the U.S. Geological Survey

  12. Estimation of solar collector area for water heating in buildings of Malaysia

    Science.gov (United States)

    Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.

    2018-04-01

    Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.

  13. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Science.gov (United States)

    2010-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  14. Small Water System Management Program: 100 K Area

    International Nuclear Information System (INIS)

    Hunacek, G.S. Jr.

    1995-01-01

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site's 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410

  15. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  16. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    Science.gov (United States)

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  17. Studies on characteristics of water sources around Kaiga project area

    International Nuclear Information System (INIS)

    Prakash, T.R.; Krishna Bhat, D.; Thimme Gowda, B.; Sherigara, B.S.; Abdul Khadar, A.M.

    1995-01-01

    A systematic and detailed study of characteristics of ground water, Kali river water and rain water samples around Kaiga project area has been undertaken. The analysis of a large number of parameters revealed that the ground waters and Kali river water are of calcium-bicarbonate type as indicated by Romani's modified Hill Piper diagram. The ionic impurities in ground waters and Kali river water are well within the Indian Drinking Water Specifications. The results obtained would serve as base line data for future impact studies. (author). 6 refs., 1 tab

  18. Status of ground water in the 1100 Area

    International Nuclear Information System (INIS)

    Law, A.G.

    1990-12-01

    This document contains the results of monthly sampling of 1100 Area Wells and ground water monitoring. Included is a table that presents all of the results of monthly sampling and analyses between April 1989 and May 1990, for four constituents selected to be most indicative of the potential for contamination from US Department of Energy facilities. The samples were collected from the three wells near the city of Richland well field. Also included is a table that presents a listing of the analytical results from sampling and analyses of five wells between April 1989, and May 1990 in the 1100 Area. The detection limit and drinking water standards or maximum contaminant level are also listed in the tables for each constituent

  19. Stalagmite water content as a proxy for drip water supply in tropical and subtropical areas

    Directory of Open Access Journals (Sweden)

    N. Vogel

    2013-01-01

    Full Text Available In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite. Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.

  20. Isotopic investigations of the waters from the Movile Cave - Mangalia area

    International Nuclear Information System (INIS)

    Feurdean, Lucia; Feurdean, Victor

    2001-01-01

    As a conservative tracer in carbonate rocks deuterium was used to determine the unelucidated problems of water origin in the Movile Cave-Mangalia, which is the unique ecosystem from the world based on chemoautotrophic conditions. According to the δD values the water from Movile Cave is meteoric in origin but can not originate from local site. The groundwater from neighboring area of cave has their recharge area at high altitude and considerable distance. δD values of water samples present time variations with a distinct seasonal effect. The seasonal δD values are shifted with a half meteoric cycle vs. normal succession of seasonal maximum and minimum values. Water seems to be originated from the Prebalkan Plateau situated in the south of Dobrogea. The study indicates that the intrusion of water in the karst occurs by conduit flow and hydrostatic pressure. The geometry of conduit controls the movement of the water. The cave and the Karaoban Lake is the discharge area of two main components of groundwater: the first is coming from southwest and has isotope characteristic similar to lower altitude water (500 m) and the second is moving from southeast and has the isotope composition similar to high altitude water (>1000 m). The Movile Cave and Karaoban Lake are connected and the cave water is discharged by overflow mechanism isolating the cave from atmosphere. (authors)

  1. Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas

    Directory of Open Access Journals (Sweden)

    George C. Zalidis

    2009-08-01

    Full Text Available Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendly interface, in order to facilitate its operational use.

  2. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2017-10-01

    Full Text Available The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”. However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1 model, and build a new GM (1,1 model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1 model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  3. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Science.gov (United States)

    Huang, Shuaijin; Qu, Xuexin

    2017-01-01

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006

  4. Management of water resources in the Cantareira Water Producer System area: a look at the rural context

    Directory of Open Access Journals (Sweden)

    Rafael Eduardo Chiodi

    2013-12-01

    Full Text Available The National Water Resources Policy established the principles of participation, integration and decentralization, as well as new instruments for the management of water resources in Brazil. The implementation of this policy created several challenges, such as establishing effective management within the framework of rural territorial structure. The example of the Cantareira’s System in Piracicaba river watershed is conducive to the understanding of this challenge. In this scenario, we analyzed the effective implementation of principles, and of two instruments of water resource management from the perspective of farmers’ participation: the integration of water management and rural land use, and public policies for rural areas. To accomplish this, we reviewed documents and literature, and considered conclusions drawn from meetings at the Technical Chamber of Use and Water Conservation in Rural Areas (CT-Rural. We identified a lack of participation by farmers’ representatives in the CT-Rural Chamber and little concern to increase their participation in the management practices. However, the support payments for environmental services projects (PES are stimulating farmers and calling attention to the Cantareira area, in addition to promoting the integration of water resource management and rural land use. However, even though this support acknowledges the importance of the farmers, we emphasize the low priority given by the Piracicaba, Capivari and Jundiaí Watershed Committee to the rural context of the area studied.

  5. Impact of war, precipitation, and water management on quantity of water resources in the Tigris/Euphrates area

    Science.gov (United States)

    Hasan, Mejs; Moody, Aaron

    2017-04-01

    The fast-paced conflicts in the Middle East have the potential to disrupt management and supply of water resources in the region. In this research, we use the normalized difference water index (NDWI) in order to monitor changes in the extent of various water bodies over the time span of the Landsat 4, 5, 7, and 8 satellites (1984-present). We focused on Mosul and Haditha dam lakes, located on the Tigris and Euphrates Rivers, respectively, each of which has experienced changes in sovereignty over the last few years of conflict. We established two areas, one land and one water, on each image, plotted the distributions of all NDWI values for each area, and used the number of standard deviations between the two distributions in order to set a dynamic NDWI threshold for each image. Using this threshold, we determined water pixels and lake surface area, and computed daily percent change in lake extent between images. Furthermore, we took account of explanatory water resource variables, such as upstream dam management (via surface extent of upstream Turkish dams), precipitation (via globally-compiled databases), evaporation (based on surface area decreases during non-rainy months), and irrigation withdrawals (based on MODIS Enhanced Vegetation Indices). We used these explanatory variables in order to build a general model of expected dam lake surface extent, and we looked to see if anomalies from expected surface area corresponded with periods of conflict. We found that the recent years of conflict do not appear to have had as much impact on the Mosul and Haditha dam lakes as did the conflicts related to the earlier Gulf Wars. The dam lakes have recorded an overall decrease in surface area simultaneous to increases of upstream dams. A strong seasonal signal driven by springtime Turkish snowmelt and summer evaporation is also evident.

  6. Accessibility levels to potable Water Supply in Rural Areas of Akwa ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    1987-09-23

    Sep 23, 1987 ... number of water boreholes in the communities were collected and analyzed. The population of the communities provided a basis for evolving an index that measured the levels of access to potable water supply in the study area. The use of GIS was subsequently employed to map out the study area on the ...

  7. Feasibility of water purification technology in rural areas of developing countries.

    Science.gov (United States)

    Johnson, Dana M; Hokanson, David R; Zhang, Qiong; Czupinski, Kevin D; Tang, Jinxian

    2008-08-01

    Water scarcity is threatening social and economic growth in rural areas of developing countries. There are potential markets for water purification technologies in these regions. The main focus of this article is to evaluate the social, economic and political feasibilities of providing water purification technologies to rural areas of developing countries. The findings of this research can serve as the basis for private investors interested in entering this market. Four representative regions were selected for the study. Economic, demographic, and environmental variables of each region were collected and analyzed along with domestic markets and political information. Rural areas of the developing world are populated with poor people unable to fulfill the basic needs for clean water and sanitation. These people represent an important group of potential users. Due to economic, social, and political risks in these areas, it is difficult to build a strong case for any business or organization focusing on immediate returns on capital investment. A plausible business strategy would be to approach the water purification market as a corporate responsibility and social investing in the short term. This would allow an organization to be well positioned once the economic ability of individuals, governments, and donor agencies are better aligned.

  8. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  9. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  10. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  11. R and D areas for next generation desalination and water purification technologies

    International Nuclear Information System (INIS)

    Raha, A.; Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    By 2020, desalination and water purification technologies are expected to contribute significantly to ensure a safe, sustainable, affordable and adequate water supply. The cost of producing water from the current generation desalination technologies has declined over time at a rate of only approximately 4% per year. So we need to accelerate our research and development (R and D) activities with a near and long term objective for evolution of current generation desalination technology and to create revolutionary next generation advanced desalination and water purification technologies which will offer a promise of step reduction in cost of producing water. There are five broad technological areas-thermal technologies, membrane technologies, alternate technologies, concentrate management technologies, reuse and recycle technologies that encompass the spectrum of desalination technology. In this paper high priority research areas in all the above technologies areas are discussed to make decision about research direction that will help to mitigate our nation's future water supply challenges. (author)

  12. Radon in water samples around Ningyo Toge area

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Sadaaki [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works

    1997-02-01

    Radon concentrations of river water and drinking water were surveyed. Water samples were collected from the region around Ningyo-Toge Works which were positioned on a granitic layer having uranium deposit. Each sample was taken using a separating funnel and the radioactivity was counted by liquid scintillation counter (ALOKA, LB-2). Since there were old working places of mine in the region, mine drainages from them were also analyzed. The radon concentration of drinking water from the region ranged from 0.1 to 230 Bq/l. The samples with a higher activity than 100 Bq/l were water from springs or wells and the area of the highest Rn concentration was on a typical granitic layer, suggesting some geographic effects on Rn concentration. Some samples of drinking water had slightly higher levels of Rn, probably due to the utilization of underflow as its source. The mean concentration of Rn became higher in the order; river water, drinking water, mine drainage in the region. In addition, a negative correlation between Rn concentration of water and the river flow rate was observed in this region. (M.N.)

  13. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Huaiyu; Huang, Shanqian [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Zhou, Sen [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Bi, Peng [Discipline of Public Health, University of Adelaide, Adelaide (Australia); Yang, Zhicong, E-mail: yangzc@gzcdc.org.cn [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Li, Xiujun [School of Public Health, Shandong University, Jinan (China); Chen, Lifan [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Cazelles, Bernard [UMMISCO, UMI 209 IRD – UPMC, 93142 Bondy (France); Eco-Evolutionary Mathematic, IBENS UMR 8197, ENS, 75230 Paris Cedex 05 (France); Yang, Jing [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Luo, Lei; Jing, Qinlong [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Yuan, Wenping [State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Pei, Yao; Sun, Zhe [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Yue, Tianxiang [State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences, Beijing (China); Kwan, Mei-Po [Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 (United States); and others

    2016-10-15

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  14. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    International Nuclear Information System (INIS)

    Tian, Huaiyu; Huang, Shanqian; Zhou, Sen; Bi, Peng; Yang, Zhicong; Li, Xiujun; Chen, Lifan; Cazelles, Bernard; Yang, Jing; Luo, Lei; Jing, Qinlong; Yuan, Wenping; Pei, Yao; Sun, Zhe; Yue, Tianxiang; Kwan, Mei-Po

    2016-01-01

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  15. Providing Public Space Continuities in Post-Industrial Areas through Remodelling Land/Water Connections

    Science.gov (United States)

    Burda, Izabela M.; Nyka, Lucyna

    2017-10-01

    This article examines the problem of urban transformation strategies applied in recent years which are based on the creation of new water areas and modification of existing ones. The research is an attempt to prove that modifications of plans of water areas and forms of their borders may play an important role in achieving the best quality public spaces in post-industrial territories. The basis for demonstrating the importance of modifying water borders, and introducing new forms of water-based structures in cities, are theoretical surveys, comparative studies and in-field analyses. It can be seen that post-industrial areas, which used to create voids in the urban fabric, can be perceived as unique but isolated places that should be integrated into the layout of cities. Thus, creating continuity of public spaces that will relate converted areas to their surroundings is a well-known objective of many transformation strategies. This research proves that an effective strategy toward achieving this goal can be based on the modification of relationships between land and water. Namely, the introduction of new water areas, designing new pieces of land that protrude into the water, softening the boundaries of water lines or the opposite, like structuring smaller water flows into well-defined canals, may significantly contribute to the quality of public spaces. As such, all of this fosters the development of sustainable cities and contributes significantly to the emergence of high-quality urban landscapes.

  16. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    drinking water treatment practices in the areas, which in turn have important human health implications. This study, therefore, recommends the government and other responsible authorities to take appropriate corrective measures. Key words: Drinking water quality, Heavy metals, Maximum admissible limit, World health.

  17. Water resources development and management: an experience in rural hilly area.

    Science.gov (United States)

    Khadse, G K; Talkhande, A V; Andey, S P; Kelkar, P S

    2010-01-01

    The Himalayan region of Tehri Garhwal in India has scattered habitations in the villages with scanty, non-perennial and unsafe water resources like springs and streams. Poor environmental conditions arising from unsafe drinking water, inadequate sanitary measures, unhygienic disposal of excreta, sullage and accumulation of solid wastes have resulted in poor public health. The experiences gained through water supply and sanitation studies carried out especially in this rural area have been shared in this paper so as to enable adoption of relevant practices and technologies developed by the National Environmental Engineering Research Institute (NEERI, India) in the affected areas. Environmental protection of the streams and springs for sustained water availability and safe drinking water supply was ensured with active public participation, training, and awareness programs. Various surface rainwater harvesting structures were constructed at suitable sites along with ferro-cement roofwater harvesting tanks in selected villages. The activities related to designing and commissioning of a small slow sand filtration unit were carried out at Chhati (Nakot) village for safe drinking water supply. Chlorination pots were demonstrated and installed in rainwater harvesting tanks for disinfection of water for drinking purpose. Water quality assessment and health survey (parasitic and hemoglobin investigation) in the affected villages were carried out before and after technological intervention. The training and awareness programs were organised for people of 23 villages in the study area covering water and sanitation related topics. The beneficiary's opinions, perceptions, apprehensions, as well as expectations reflected positive approach towards the achievement of anticipated benefits and impacts.

  18. Quantitative analysis on the environmental impact of large-scale water transfer project on water resource area in a changing environment

    Directory of Open Access Journals (Sweden)

    D. H. Yan

    2012-08-01

    Full Text Available The interbasin long-distance water transfer project is key support for the reasonable allocation of water resources in a large-scale area, which can optimize the spatio-temporal change of water resources to secure the amount of water available. Large-scale water transfer projects have a deep influence on ecosystems; besides, global climate change causes uncertainty and additive effect of the environmental impact of water transfer projects. Therefore, how to assess the ecological and environmental impact of megaprojects in both construction and operation phases has triggered a lot of attention. The water-output area of the western route of China's South-North Water Transfer Project was taken as the study area of the present article. According to relevant evaluation principles and on the basis of background analysis, we identified the influencing factors and established the diagnostic index system. The climate-hydrology-ecology coupled simulation model was used to simulate and predict ecological and environmental responses of the water resource area in a changing environment. The emphasis of impact evaluation was placed on the reservoir construction and operation scheduling, representative river corridors and wetlands, natural reserves and the water environment below the dam sites. In the end, an overall evaluation of the comprehensive influence of the project was conducted. The research results were as follows: the environmental impacts of the western route project in the water resource area were concentrated on two aspects: the permanent destruction of vegetation during the phase of dam construction and river impoundment, and the significant influence on the hydrological situation of natural river corridor after the implementation of water extraction. The impact on local climate, vegetation ecology, typical wetlands, natural reserves and the water environment of river basins below the dam sites was small.

  19. Quantitative analysis on the environmental impact of large-scale water transfer project on water resource area in a changing environment

    Science.gov (United States)

    Yan, D. H.; Wang, H.; Li, H. H.; Wang, G.; Qin, T. L.; Wang, D. Y.; Wang, L. H.

    2012-08-01

    The interbasin long-distance water transfer project is key support for the reasonable allocation of water resources in a large-scale area, which can optimize the spatio-temporal change of water resources to secure the amount of water available. Large-scale water transfer projects have a deep influence on ecosystems; besides, global climate change causes uncertainty and additive effect of the environmental impact of water transfer projects. Therefore, how to assess the ecological and environmental impact of megaprojects in both construction and operation phases has triggered a lot of attention. The water-output area of the western route of China's South-North Water Transfer Project was taken as the study area of the present article. According to relevant evaluation principles and on the basis of background analysis, we identified the influencing factors and established the diagnostic index system. The climate-hydrology-ecology coupled simulation model was used to simulate and predict ecological and environmental responses of the water resource area in a changing environment. The emphasis of impact evaluation was placed on the reservoir construction and operation scheduling, representative river corridors and wetlands, natural reserves and the water environment below the dam sites. In the end, an overall evaluation of the comprehensive influence of the project was conducted. The research results were as follows: the environmental impacts of the western route project in the water resource area were concentrated on two aspects: the permanent destruction of vegetation during the phase of dam construction and river impoundment, and the significant influence on the hydrological situation of natural river corridor after the implementation of water extraction. The impact on local climate, vegetation ecology, typical wetlands, natural reserves and the water environment of river basins below the dam sites was small.

  20. Regional water balance for the Waste Isolation Pilot Plant (WIPP) site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1985-12-01

    The WIPP water-balance study area defined here comprises approx.2000 mi 2 in Eddy and Lea Counties, southeastern New Mexico. Inflows to the study area are precipitation (roughly 1.47 x 10 6 ac-ft/y), surface water (roughly 1.1 x 10 5 ac-ft/y), water imported by municipalities and industries (roughly 3 x 10 4 ac-ft/y), and ground water (volume not estimated). Outflows from the area are evapotranspiration (roughly 1.5 x 10 6 ac-ft/y), surface water (roughly 1.2 x 10 5 ac-ft/y), and possibly some ground water. The volume of surface and ground water in storage in Nash Draw has increased since the beginning of potash refining. Regional ground-water flow in aquifers above the Salado Formation is from the northeast to the southwest, although this pattern is interrupted by Clayton Basin, Nash Draw, and San Simon Swale. The Pecos River is the only important perennial stream. Most of the area has no integrated surface-water drainage. The available data suggest that approx.1600 mi 2 of the study area are hydrologically separate from Nash Draw and the WIPP site. Ground water north of Highway 180 apparently discharges into Clayton Basin and evaporates. Water in San Simon Swale apparently percolates downward and flows to the southeast. Data are inadequate to create a water budget for the Nash Draw-WIPP site hydrologic system alone, although an attempt to do so can provide guidance for further study

  1. Inequalities in microbial contamination of drinking water supplies in urban areas: the case of Lilongwe, Malawi.

    Science.gov (United States)

    Boakye-Ansah, Akosua Sarpong; Ferrero, Giuliana; Rusca, Maria; van der Zaag, Pieter

    2016-10-01

    Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.

  2. Ground-water status report, Pearl Harbor area, Hawaii, 1978

    Science.gov (United States)

    Soroos, Ronald L.; Ewart, Charles J.

    1979-01-01

    Increasing demand for freshwater in Hawaii has placed heavy stress on many of the State 's basal aquifer systems. The most heavily stressed of these systems is the Pearl Harbor on Oahu. The Pearl Harbor basal aquifer supplies as much as 277 million gallons per day. Since early in this century, spring discharge has been declining while pumpage has been increasing. Total ground-water discharge has remained steady despite short-term fluctuations. Some wells show general increases in chloride concentration while others remain steady. Chloride concentrations throughout the area show no apparent increase since 1970. Basal water head maps of the Pearl Harbor area clearly reflect the natural discharge points, which are the springs located along the shore near the center of Pearl Harbor. Basal-water hydrographs show a general decline of about 0.09 foot per year. This implies depletion of storage at a rate of about 25 million gallons per day. (USGS).

  3. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    Science.gov (United States)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  4. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  5. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  6. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    Science.gov (United States)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  7. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  8. Ground-water resources of the Laura area, Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Hamlin, S.N.; Anthony, S.S.

    1987-01-01

    The water system that supplies the heavily populated Dalap-Uliga-Darrit (DUD) area of Majuro atoll, Marshall Island, relies almost entirely upon airstrip catchment of rain water. Droughts cause severe water supply problems and water rationing is required, even during periods of normal rainfall. The Laura area contains a substantial lens of fresh groundwater that could be developed for export to the DUD area 30 mi to the east. Study of the groundwater resource at Laura involved a survey of existing wells, installation of monitoring wells and test holes, compilation of continuous records of rainfall and water level fluctuations, and collection of water quality data. Test hole data permitted the definition of three geohydrologic units which correlate well with similar units in Bikini and Enewetak atolls. The units consist of two layers of unconsolidated reef and lagoon sediments resting on a dense, highly permeable limestone. The potable water zone, or freshwater nucleus, of the lens is contained mostly within the unconsolidated layers, which are much less permeable than the basal limestone. Recharge to the Laura freshwater lens is estimated to be 1.8 mil gal/day, based on an average annual rainfall of 140 in. Sustainable yield is estimated to be about 400,000 gal/day. Shallow skimming wells or infiltration galleries similar to those used on Kwajalein atoll would be appropriate to develop the freshwater lens. The impact of development on the lens can be determined by monitoring the salinity in developed water and in a network of monitor wells. (Author 's abstract)

  9. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  10. ASSESSMENT OF GROUND WATER POLLUTION IN PARKING AREAS

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2014-12-01

    Full Text Available Creation of rain sewer is connected with dehydration of roads and coexisting objects. The paper presents a discussion upon the issue of groundwater contamination by petroleum compounds and other pollutants from transport based on studies of groundwater within the parking lots. The study included 9 parking areas, including 7 in Bialystok, 1 in a residential area outside of Bialystok in Ignatki, and one in Kleosin. The tested waters were subject to determination of COD, total suspension, and petroleum substances expressed as a mineral oil index. The studies have shown that the concentrations of determined parameters were in most cases proportional to the larger runoffs and concentration of petroleum compounds increased with the increase of suspension. It has been shown that from part of the parking lots, the meteoric water was discharged directly into watercourses and exceeds the permissible limits regulated by the Decree.

  11. Water budget for SRP burial ground area

    International Nuclear Information System (INIS)

    Hubbard, J.E.; Emslie, R.H.

    1984-01-01

    Radionuclide migration from the SRP burial ground for solid low-level waste has been studied extensively. Most of the buried radionuclides are fixed on the soil and show negligible movement. The major exception is tritium, which when leached from the waste by percolating rainfall, forms tritiated water and moves with the groundwater. The presence of tritium has been useful in tracing groundwater flow paths to outcrop. A subsurface tritium plume moving from the southwest corner of the burial ground toward an outcrop near Four Mile Creek has been defined. Groundwater movement is so slow that much of the tritium decays before reaching the outcrop. The burial ground tritium plume defined to date is virtually all in the uppermost sediment layer, the Barnwell Formation. The purpose of the study reported in this memorandum was to investigate the hypothesis that deeper flow paths, capable of carrying substantial amounts of tritium, may exist in the vicinity of the burial ground. As a first step in seeking deeper flow paths, a water budget was constructed for the burial ground site. The water budget, a materials balance used by hydrologists, is expressed in annual area inches of rainfall. Components of the water budget for the burial ground area were analyzed to determine whether significant flow paths may exist below the tan clay. Mean annual precipitation was estimated as 47 inches, with evapotranspiration, run-off, and groundwater recharge estimated as 30, 2, and 15 inches, respectively. These estimates, when combined with groundwater discharge data, suggest that 5 inches of the groundwater recharge flow above the tan clay and that 10 inches flow below the tan clay. Therefore, two-thirds of the groundwater recharge appears to follow flow paths that are deeper than those previously found. 13 references, 10 figures, 5 tables

  12. Development Of A Surveillance System For Potability Of Water In Rural Areas

    Directory of Open Access Journals (Sweden)

    Gandotra V.K

    1998-01-01

    Full Text Available Research question: Whether establishment of a water surveillance system in rural areas and concomitant action in event of detection of contamination will have an impact on diarrhoea related morbidity and mortality. Hypothesis: 1. It is possible to establish water testing laboratories in selected schools in rural areas. 2. If water samples are found contaminated, immediate corrective action will result in reduction of diarrhoea related morbidity and mortality. Objectives: 1. To study the feasibility of establishing water testing facility in the science laboratories of schools. 2. To study the impact of preventive measures in the community if immediate steps for household purification of water and treatment of diarrhoea cases are taken. Study design: Interventional study. Setting: A rural block. Participants: Science teachers of high schools and field workers. Interventions: 1. Training of schoolteachers for water testing and field workers for collection of water samples and diarrhoea control measures. 2. Establishing of water testing laboratories in schools. 3. In case of detection of water contamination, corrective action at different levels. 4. Propagation of ORS for management of diarrhoeas. Statistical analysis: Percentages, Paired ‘t’ test, Chi square test. Results: Reduction in diarrhoea related morbidity and mortality was observed. Conclusions: It is feasible to develop a water surveillance system in rural areas utilizing local resources. If combined with educational measures, it will significantly reduce diarrhoea related morbidity and mortality.

  13. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  14. LEVEL OF TOXICITY WATER AREA «TULENIY» AS A RESULT OF BIOASSAY

    Directory of Open Access Journals (Sweden)

    A. F. Sokolsky

    2014-01-01

    Full Text Available Aim. To determine the toxicity of marine waters area " tuleniy ".Location. Area " tuleniy ".Methods. Determining the level of toxicity of marine waters area "seal" method for biological testing was conducted according tothe guidelines approved by the Ministry of natural resources (guidance on the definition of ..., 2002; Dolzhenko, 1978. Guide prepared by the Center for Russian register of hydraulic structures and the state water cadastre of the MNR of Russia jointly with specialists of the Institute Committee of Russia and the UNION of ecological problems of the Ministry of Ukraine. The basis of the proposed system of marine toxicity biotests based on the results of generalization of experimental research based on the problem of pollution of water bodies and numerous literature data, making it possible to identify features of the response of aquatic organisms of different taxonomic groups to toxic impurities of different nature and origin. Experimental studies were conducted on the culture of marine unicellular algae Phaeodactylum tricornutum on planktonic crustacea Acartia tonsa, the larvae of the chironomid Chironomus gr.salinarius and juvenile guppies Poecillia reticulata Peters.Results. Comparative analysis of the results of research from 2001 to 2006 showed no acute toxic effect on the test object zooplankton and phytoplanton.Main conclusions. Throughout the study period (2001-2003, 2005-2006, you must allocate the spring of 2002, when it was recorded,the average of the lowest five years of research, the level of toxicity of water for the analyzed area.Considering the results of biological testing of the surveyed area by periods, it should be noted that the average level of toxicity of the waters did not undergo significant changes and were on the same level, not exceeding 17,6% (table. 1. According to the classification shown in table 2, the water in the surveyed area is assessed as "non-toxic".

  15. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  16. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  17. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  18. Underground storage of imported water in the San Gorgonio Pass area, southern California

    Science.gov (United States)

    Bloyd, Richard M.

    1971-01-01

    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  19. Accessibility levels to potable Water Supply in Rural Areas of Akwa ...

    African Journals Online (AJOL)

    ... of 50 rural communities were sampled using table of random numbers. Community heads or their spokesmen/women in the sampled areas were target respondents and data on major sources of water supply, distance to the nearest major source of water supply and the number of water boreholes in the communities were ...

  20. Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983-2012

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 2001 through September 2012, water years (WYs) 2002-12, were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1982 through September 2012 (WYs 1983-2012). Water samples were collected and analyzed by the Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli), and orthophosphate were calculated for WYs 2003-12 for all 37 monitoring stations. Instantaneous loads and yields (loads per unit area) of total coliform bacteria and E. coli, chloride, nitrite, nitrate, and orthophosphate were calculated for all sampling dates during WYs 2003-12 for 23 monitoring stations with streamflow data. Values of physical properties and concentrations of constituents were compared with State and Federal water-quality standards and guidelines and were related to streamflow, land-use characteristics, varying classes of timber operations, and impervious surface areas.

  1. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  2. Map showing ground-water conditions in the House Rock area, Coconino County, Arizona-- 1976

    Science.gov (United States)

    Levings, G.W.; Farrar, C.D.

    1978-01-01

    The House Rock area includes about 1,500 sq mi in north-central Arizona. Ground water is present in several aquifers that are made up of one or more formations. In the Paria Plateau and Wahweap areas ground water is obtained from the N aquifer, which includes the Navajo Sandstone, Kayenta Formation, and Moenave Formation. Reported static water levels in wells range from 515 to 1,500 ft below the land surface. The chemical quality of the water in the N aquifer varies with location, and dissolved solids generally are less than 850 milligrams per liter. Several wells and test holes in the Lees Ferry area penetrate either the alluvium, Chinle Formation, Moenkopi Formation, or a combination of these. As of 1976, water from these wells was not being used because of poor chemical quality. In the southern and western parts of the area many springs discharge from te Kaibab, Redwall , and Muav Limestones. The quality of water from these formations generally is excellent. Information on the map (scale 1:125,000) includes the principal aquifer that furnishes water to individual wells and springs, depth to water, altitude of the water level, and chemical quality of the water. (Woodard-USGS)

  3. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  4. Water Resources And Geomorphologic Characteristics Of Tushka Area, West Of Lake Nasser, Egypt

    International Nuclear Information System (INIS)

    Elewa, H.H.

    2003-01-01

    The main geomorphologic and drainage characteristics of the Tushka area were delineated through the interpretation of Landsat TM image. The study area displays physiographic features indicative of previous wet climatic conditions. The Nubia aquifer system in the region has a wide extension in the study area and rests un conformably on the Precambrian rocks. The River Nile has its own bearing on the hydrogeological regime of the Tushka and neighbouring areas of Lake Nasser. Comparison of the available data concerning the water levels of Lake Nasser above its submerged bottom (which involves elevations ranging from 50 to 90 m. (a. s. 1.) according to the recorded data between 1964 and 1996), with the static water levels of the groundwater wells reaching the deeper horizons of the Nubia Sandstone aquifer system in the Tushka basin area, suggests that the River Nile acts mostly as an influent stream. However, in some cases, when the static water levels of some deep water-bearing horizons reaches levels above those of the bottom of the lake, water flows from the groundwater reservoirs towards the river which acts as an effluent stream. Other wells have low static water levels compared to those of the bottom of the lake, and the waters of the River Nile most probably recharge the groundwater of these deeper water-bearing horizons of the Nubian aquifer. The prepared equi potentiometric contour map confirms this conclusion as it indicates that the maximum potentiometric level is attained in the north western part of Lake Nasser (at contour 80, near Well No. 12) whereas the minimum potentiometric level is encountered in a small area around Well No. 6 (at contour 50). Hence, the groundwater flow is generally towards Lake Nasser. However, in some instances, it is also moving in an adverse direction. The hydrogeological condition of the study area was conducted based on the variation in lithology, areal extent, recharge and productivity. The study revealed that the Nubia

  5. Preliminary report on the geology and ground-water supply of the Newark, New Jersey, area

    Science.gov (United States)

    Herpers, Henry; Barksdale, Henry C.

    1951-01-01

    In the Newark area, ground water is used chiefly for industrial cooling, air-conditioning, general processing, and for sanitary purposes. A small amount is used in the manufacture of beverages. Total ground-water pumpage in Newark is estimated at not less than 20,000,000 gallons daily. The Newark area is underlain by formations of Recent, Pleistocene and Triassic age, and the geology and hydrologic properties of these formations are discussed. Attention is called to the important influence of a buried valley in the rock floor beneath the Newark area on the yield of wells located within it. Data on the fluctuation of the water levels and the variation in pumpage are presented, and their significance discussed. The results of a pumping test made during the investigation were inconclusive. The beneficial results of artificially recharging the aquifers in one part of the area are described. The intrusion of salt water into certain parts of the ground-water body is described and graphically portrayed by a map showing the chloride concentration of the ground water in various parts of the City. Insofar as available data permit, the chemical quality of the ground water is discussed and records are given of the ground-water temperatures in various parts of the City. There has been marked lowering of the water table in the eastern part of the area, accompanied by salt water intrusion, indicating that the safe yield of the formations in this part of Newark has probably been exceeded. It is recommended that the study of the ground-water resources of this area be continued, and that artificial recharging of the aquifers be increased over as wide an area as possible.

  6. Relevance and Benefits of Urban Water Reuse in Tourist Areas

    Directory of Open Access Journals (Sweden)

    Gaston Tong Sang

    2012-01-01

    Full Text Available Urban water reuse is one of the most rapidly growing water reuse applications worldwide and one of the major elements of the sustainable management of urban water cycle. Because of the high probability of direct contact between consumers and recycled water, many technical and regulatory challenges have to be overcome in order to minimize health risks at affordable cost. This paper illustrates the keys to success of one of the first urban water reuse projects in the island Bora Bora, French Polynesia. Special emphasis is given on the reliability of operation of the membrane tertiary treatment, economic viability in terms of pricing of recycled water and operating costs, as well as on the benefits of water reuse for the sustainable development of tourist areas.

  7. Bank filtered water quality characteristics in Okgog-Ri area of Youngsan-River, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee-Youl; Kim, Hyoung-Soo [Korea Water Resources Corp., Taejeon(Korea)

    2001-02-28

    Preliminary artificial recharge groundwater intake method using bank filtering had been conducted in Okgog-Ri of Youngsan-River to evaluate the possibility of substitution of surface water intake method in the area. In order to investigate the characteristics of bank filtered groundwater, we examined the hydrogeological properties of alluvium and water quality of stream and groundwater. It is observed that nitrate in stream water from synthetic fertilizer and poultry manure is almost consumed during bank filtering in this area. This implies that denitrification of organic carbon and the oxidation of pyrite present in the alluvium aquifer. Groundwater samples from bank filtering show high Mn concentration. This high Mn concentration may be resulted from decreasing redox potential due to denitrification and increasing mobility due to redox reaction of Mn-oxide. In the study area, there is a typical tendency that Al concentrations of water samples decrease according to increasing pH. This tendency is interpreted as forming of amorphous Al(OH){sub 3} precipitates by reducing the Al{sup 3+} solubilities. It is revealed that the bank filtered groundwater in the area is not edible because color, turbidity, heterotrophic bacteria, coliform and Mn of the groundwater exceed the guideline of drinking water. Even though the bank filtered groundwater without treatment does not satisfy the guideline of drinking water, the groundwater shows a good water quality compared with stream water. So, the water treatment method using bank filtered groundwater can be more economical and efficient than the treatment using direct intake of stream water in the aspect of water quality. (author). 15 refs., 2 tabs., 7 figs.

  8. COMPUTER MODELING OF HYDRODYNAMIC PARAMETERS AT BOUNDARIES OF WATER INTAKE AREA WITH FILTERING INTAKE

    Directory of Open Access Journals (Sweden)

    Boronina Lyudmila Vladimirovna

    2012-12-01

    Full Text Available Improvement of water intake technologies are of great importance. These technologies are required to provide high quality water intake and treatment; they must be sufficiently simple and reliable, and they must be easily adjustable to particular local conditions. A mathematical model of a water supply area near the filtering water intake is proposed. On its basis, a software package designated for the calculation of parameters of the supply area along with its graphical representation is developed. To improve the efficiency of water treatment plants, the authors propose a new method of their integration into the landscape by taking account of velocity distributions in the water supply area within the water reservoir where the plant installation is planned. In the proposed relationship, the filtration rate and the scattering rate at the outlet of the supply area are taken into account, and they assure more precise projections of the inlet velocity. In the present study, assessment of accuracy of the mathematical model involving the scattering of a turbulent flow has been done. The assessment procedure is based on verification of the mean values equality hypothesis and on comparison with the experimental data. The results and conclusions obtained by means of the method developed by the authors have been verified through comparison of deviations of specific values calculated through the employment of similar algorithms in MathCAD, Maple and PLUMBING. The method of the water supply area analysis, with the turbulent scattering area having been taken into account, and the software package enable to numerically estimate the efficiency of the pre-purification process by tailoring a number of parameters of the filtering component of the water intake to the river hydrodynamic properties. Therefore, the method and the software package provide a new tool for better design, installation and operation of water treatment plants with respect to filtration and

  9. The influence of supply and sewerage area characteristics on water and sewerage companies responses to the Water Framework Directive.

    Science.gov (United States)

    Spiller, M; McIntosh, B S; Seaton, R A F

    2009-01-01

    Using the example of raw water quality this paper examines the relationship between different spatial characteristics (geographical and physical properties) of Water and Sewerage Companies (WaSCs) supply and sewage areas and response to the Water Framework Directive. Results were obtained from thematic analysis and content analysis of 14 interviews with WaSCs representatives. Principal component analysis and cluster analysis of 51 WaSCs business function characteristics was employed to derive groups of similar WaSCs. Results indicate that there is difference in how WaSCs approach raw water quality issues. It appears that small WaSCs with relatively large agricultural areas in their supply catchments are more likely to seek managerial solutions to raw water quality problems.

  10. The role of the water tankers market in water stressed semi-arid urban areas:Implications on water quality and economic burden.

    Science.gov (United States)

    Constantine, Kinda; Massoud, May; Alameddine, Ibrahim; El-Fadel, Mutasem

    2017-03-01

    Population growth and development are associated with increased water demand that often exceeds the capacity of existing resources, resulting in water shortages, particularly in urban areas, where more than 60% of the world's population resides. In many developing communities, shortages often force households to depend on water tankers amongst other potential sources for the delivery of water for domestic and/or potable use. While water tankers have become an integral part of the water supply system in many countries, the sector is often unregulated and operates with little governmental supervision. Users are invariably unaware of the origin or the quality of purchased water. In an effort to better assess this sector, a field survey of water vending wells and tankers coupled with a water quality sampling and analysis program was implemented in a pilot semi-arid urban area (Beirut, Lebanon) to shed light on the environmental and socio-economic impacts of the water tanker sector. Total dissolved solids (TDS), chloride (Cl - ), and microbial loads exceeded drinking water quality standards. While TDS and Cl - levels were mostly due to saltwater intrusion in coastal wells, tankers were found to be a significant source of total coliforms. Delivered water costs varied depending on the tanker size, the quality of the distributed water, and pre-treatment used, with a markup of nearly 8-24 folds of the public water supply and an equivalent economic burden of 16% of the average household income excluding environmental externalities of water quality. The study concludes with a management framework towards consumer protection under integrated supply and demand side measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Standard, Intervention Measures and Health Risk for High Water Iodine Areas

    Science.gov (United States)

    Liu, Peng; Liu, Lixiang; Shen, Hongmei; Jia, Qingzhen; Wang, Jinbiao; Zheng, Heming; Ma, Jing; Zhou, Dan; Liu, Shoujun; Su, Xiaohui

    2014-01-01

    Our study aims to clarify the population nutrient status in locations with different levels of iodine in the water in China; to choose effective measurements of water improvement(finding other drinking water source of iodine not excess) or non-iodised salt supply or combinations thereof; to classify the areas of elevated water iodine levels and the areas with endemic goiter; and to evaluate the risk factors of water iodine excess on pregnant women, lactating women and the overall population of women. From Henan, Hebei, Shandong and Shanxi province of China, for each of 50∼99 µg/L, 100∼149 µg/L, 150∼299 µg/L, and ≥300 µg/L water iodine level, three villages were selected respectively. Students of 6–12 years old and pregnant were sampled from villages of each water-iodine level of each province, excluded iodized salt consumer. Then the children's goiter volume, the children and pregnant's urinary iodine and water iodine were tested. In addition, blood samples were collected from pregnant women, lactating women and other women of reproductive age for each water iodine level in the Shanxi Province for thyroid function tests. These indicators should be matched for each person. When the water iodine exceeds 100 µg/L; the iodine nutrient of children are iodine excessive, and are adequate or more than adequate for the pregnant women. It is reasonable to define elevated water iodine areas as locations where the water iodine levels exceed 100 µg/L. The supply of non-iodised salt alone cannot ensure adequate iodine nutrition of the residents, and water improvement must be adopted, as well. Iodine excess increases the risk of certain thyroid diseases in women from one- to eightfold. PMID:24586909

  12. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  13. Wind energy for water pumping in rural areas of China

    International Nuclear Information System (INIS)

    Dechang, S.

    1991-01-01

    After 1980, as the supply of conventional energy has not been able to follow the tremendous increase of the production demand in rural areas of China, a renewed interest for the application of wind energy was shown in many places. Therefore, the Chinese government began to pay more attention to wind energy utilization in rural areas. During the last ten years, several R ampersand D tasks for new modern wind pumps were carried out. Among them, three projects are the developments of wind energy screw pump systems (FDG-5 wind pump, FDG-7 wind pump and TFS-5 wind pump). At present, 50 of these wind pumps are working successfully in the rural areas for farmland drainage, salt ponds water lifting and aquatic product breeding, etc. The field tests show that these wind energy screw pump systems are suitable for low lifting head (< 3 meter) and large water flow (50 m/hr to 120 m/hr) operation in the coastal areas. Because the wind energy resource in many rural areas is sufficient for attractive application of wind pumps, and the supply of electricity as well as fuels is insufficient in these areas, the wind pumps will be spread on a rather large scale in the near future. 7 figs., 2 tabs., 3 refs

  14. North Putrajaya Catchment Area Putrajaya, Malaysia-Challenges in Water Quality Management

    International Nuclear Information System (INIS)

    Mohd Zamri Daud; Pereira, J.J.; Mazlin Mokhtar

    2011-01-01

    The Putrajaya Administrative area covers 70 % of the Putrajaya Lake catchment area. Development work carried out within the Putrajaya area abides by the rules and regulations set by the Putrajaya Corporation to ensure that the quality of the lake water and wetland within the Putrajaya area meets the stipulated benchmark standards. However, 30 % of the Putrajaya lake and wetland catchment area is located outside of administration and prerogative of the Putrajaya Corporation. The North Putrajaya catchment area which originates from the Sg. Chuau River contributes the bulk of the water that flows into the lake and wetlands of Putrajaya. Water quality data collected by the Putrajaya Corporation for the period of 2002 to 2005 has been analysed to identify major issues in the Putrajaya Wetland North Catchment area. Data from 2002 shows average percentage parameter of non-compliance Putrajaya Standard for ammoniacal nitrogen (NH 3 -N) at 43.7 %, E. coli at 31.3 % and TSS at 12.5 % while the DO and COD are both 6.2 %. For 2003, the average percentage parameter of non compliance for NH 3 -N was at 23.7 %, E. coli at 18.4 %, total coliform at 18.4 %, TSS at 2.6 %, DO at 13.2 %, COD at 13.2 % and BOD at 10.5 %. For 2004, the average percentage parameter of non complying for NH 3 -N was at 35.5 %, E. coli at 22.6 %, total coliform at 12.9 %, TSS at 9.7 %, COD at 3.2 % and BOD at 16.1 %. For 2005, the average percentage parameter of non compliance were at is 36.4 % for E. coli, 22.7 % for NH 3 -N, 18.2 % for total coliform, 13.6 % for BOD and 4.5 % for both DO and COD. In conclusion the analysed data within the four year period showed that the NH 3 -N and E. coli discharge from the north catchment area did not comply with the Putrajaya Standard. The main factors of water quality issues in the Putrajaya Wetland North Catchment area include the failure of integrating the management of the catchment areas and the stake holders attitude of total disregard of the management and

  15. Well Head Protection Areas For Public Non-Community Water Supply Wells In New Jersey

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Well Head Protection Area for a Public Non-Community Water Supply Well (PNCWS) in New Jersey is a map area calculated around a Public Non-Community Water Supply...

  16. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    International Nuclear Information System (INIS)

    Yokoyama, F

    2015-01-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area

  17. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    Science.gov (United States)

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface

  18. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  19. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    Science.gov (United States)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  20. Economic burden of diarrhoea in the Olifants Water Management Area, South Africa

    CSIR Research Space (South Africa)

    Steyn, M

    2011-07-01

    Full Text Available This presentation highlights the economic burden of diarrhoea in the Olifants Water Management Area, South Africa. It concludes that water pollution prevention is cheaper than diarrhoea treatment....

  1. Occurrence and distribution of antibiotic resistance genes in water supply reservoirs in Jingjinji area, China.

    Science.gov (United States)

    Zhang, Kai; Niu, Zhi-Guang; Lv, Zhiwei; Zhang, Ying

    2017-11-01

    Jingjinji area occupies important position in developing of the Chinese economy, while there exists a sharp conflict between economic growth and limited water resources in this area. To ensure the safety of water consumption of cities in Jingjinji area, we investigated the abundance of three classes of antibiotic resistance genes (ARGs) in water and sediment of six water supply reservoirs in this area. The results showed that the detection frequency of sul1, tetM and ermB were 100%. However, the content ranges of these genes were different (10 -5 to 10 -2 /16S gene copies for sul1, 10 -5 to 10 -3 /16S gene copies for ermB, and 10 -5 to 10 -3 /16S gene copies for tetM). The content of ribosome protection proteins (RPP) genes were the highest in all selected tet genes. The highest abundance of ARGs in water and sediment samples was sampled from Panjiakou reservoir and Guanting reservoir, respectively. Except COD, chla and tetM, there are no significant correlation between water quality parameters and ARGs. Overall, this study provides integrated profiles of the three types of ARGs in water supply reservoirs of Jingjinji area and thus helps to re-evaluate the effects of human activities to water supply reservoirs.

  2. Chemicalization in water treatment in peat production areas

    International Nuclear Information System (INIS)

    Madekivi, O.; Marja-Aho, J.; Selin, P.; Jokinen, S.

    1995-01-01

    Chemicalization of runoff waters of peat production has been studied since 1989, first in laboratory and since 1990 in practice. The methods have been developed as cooperation between Vapo Oy and Kemira Chemicals Oy. In chemicalization the dissolved substances are coagulated and they settle after that into sedimentation basins. Good purification results require rapid and effective mixing, so the formed particles are combined to larger particles, and they form settleable flock. The coagulation efficiency depends on the properties of the water to be purified, such as alkalinity and pH, the quality and the quantity of humic substances, and the quality and the quantity of the flocking chemicals. Chemicalization is at present the most effective, but also the most expensive method for purification of drying waters of peat production areas. The chemicalized water is on the basis of most quality factors cleaner than water running off a virgin bog. The most visible change is the clarification of the water which is due to the coagulation of the colouring humic substances and iron. The colorimetric value is decreased by over 70 %, the best results being over 90 %. The colorimetric value of the purified water (30-100 mg Pt/l) is below the values of the runoff water of a virgin bog (100-200 mg Pt/l). The chemicalization process and the results of the researches are presented in the article. (3 refs., 6 figs., 2 tabs.)

  3. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Science.gov (United States)

    2010-07-01

    ... responsible for the Underground Injection Control Program. You may call the Safe Drinking Water Hotline at 1... INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells § 144.87 How does... Water Source Assessment and Protection Program in your area. You may call the Safe Drinking Water...

  4. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Ground-water quality in the Anoka Sand Plain aquifer was studied as part of the multiscale Management Systems Evaluation Area (MSEA) study by collecting water samples from shallow wells during August through November 1990. The sampling was conducted to: (1) aid in selection of the MSEA research area; (2) facilitate comparison of results at the MSEA research area to the regional scale; and (3) evaluate changes in ground-water quality in the Anoka Sand Plain aquifer since a previous study during 1984 through 1987. Samples were collected from 34 wells screened in the upper 6 meters of the surficial aquifer and located in cultivated agricultural areas. Water temperature, pH, specific conductance, and presence or absence of triazine herbicides were determined at all sites and samples from selected wells were analyzed for concentrations of dissolved oxygen, alkalinity, major cations and anions, nutrients, and selected herbicides and herbicide metabolites. The results of the study indicate that the water-quality of some shallow ground water in areas of predominantly agricultural land use has been affected by applications of nitrogen fertilizers and the herbicide atrazine.

  5. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Science.gov (United States)

    2010-07-01

    ... THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.71 Delaware Water Gap National... route begins at the Smithfield Beach parking area and is in two loops. Loop One is a small trail... number of axles and wheels on a vehicle, regardless of load or weight, as follows: (i) Two-axle car, van...

  6. Microbiology of the surface water samples in the high background radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Motamedifar, Mohammad; Zamani, Khosrow; Sedigh, Hadi; Mortazavi, Seyed Mohammad Javad; Taeb, Shahram; Haghani, M.; Mortazavi, Seyed Ali Reza; Soofi, Amir

    2014-01-01

    Residents of high background radiation areas of Ramsar have lived in these areas for many generations and received radiation doses much higher than the dose limit recommended by ICRP for radiation workers. The radioactivity of the high background radiation areas of Ramsar is reported to be due to 226 Ra and its decay products, which have been brought to the surface by the waters of hot springs. Over the past years the department has focused on different aspects of the health effects of the elevated levels of natural radiation in Ramsar. This study was aimed to perform a preliminary investigation on the bioeffects of exposure to elevated levels of natural radiation on the microbiology of surface water samples. Water samples were collected from surface water streams in Talesh Mahalleh district, Ramsar as well as a nearby area with normal levels of background radiation. Only two strains of bacteria, that is, Providencia stuartii and Shimwellia blattae, could be isolated from the water samples collected from high background radiation areas, while seven strains (Escherichia coli, Enterobacter asburiae, Klebsiella pneumoniae, Shigella dysenteriae, Buttiauxella agerstis, Tatumella punctuata and Raoultella ornithinolytica) were isolated from the water samples collected from normal background radiation areas. All the bacteria isolated from water samples of high and normal background radiation areas were sensitive to ultraviolet radiation, heat, betadine, alcohol, and deconex. Although other investigators have reported that bacteria isolated from hot springs show radioresistance, the results reported here do not reveal any adaptive response. (author)

  7. Performance of a water defluoridation plant in a rural area in South ...

    African Journals Online (AJOL)

    osmosis processes are both processes that can be very effectively applied for water defluoridation. The activated alumina process, however, is considered to be a more simple and robust process for water defluoridation, especially in a rural area. Therefore, the activated alumina process was selected for water defluoridation ...

  8. Flow and geochemistry along shallow ground-water flowpaths in an agricultural area in southeastern Wisconsin

    Science.gov (United States)

    Saad, D.A.; Thorstenson, D.C.

    1998-01-01

    Water-quality and geohydrologic data were collected from 19 monitor wells and a stream in an agricultural area in southeastern Wisconsin. These sites were located along a 2,700-ft transect from a local ground-water high to the stream. The transect is approximately parallel to the horizontal direction of ground-water flow at the water table. Most of the wells were installed in unconsolidated deposits at five locations along the transect and include an upgradient well nest, a midgradient well nest, a downgradient well nest, wells in the lowland area near the stream, and wells installed in the stream bottom. The data collected from this study site were used to describe the water quality and geohydrology of the area and to explain and model the variations in water chemistry along selected ground-water flowpaths.

  9. Mississippi National River and Recreation Area Water Trail Plan.

    Science.gov (United States)

    2017-05-05

    The Water Trail Plan describes the current conditions of and future plans for the Mississippi National River and Recreation Area (NRRA), a 72-mile stretch of the Mississippi River running through the Twin Cities region of Minnesota. In 2012, the NRRA...

  10. Hyperspectral water quality retrieval model: taking Malaysia inshore sea area as an example

    Science.gov (United States)

    Cui, Tingwei; Zhang, Jie; Ma, Yi; Li, Jing; Lim, Boonleong; Roslinah, Samad

    2007-11-01

    Remote sensing technique provides the possibility of rapid and synchronous monitoring in a large area of the water quality, which is an important element for the aquatic ecosystem quality assessment of islands and coastal zones, especially for the nearshore and tourism sea area. Tioman Island of Malaysia is regarded as one of ten of the best islands in the world and attracts tourists from all over the world for its clear sea, beautiful seashore and charming scenery. In this paper, on the basis of in situ dataset in the study area, distribution discipline of water quality parameters is analyzed to find that phytoplankton pigment, rather than suspended sediment is the main water quality parameter in the study area; seawater there is clean but not very oligotrophic; seawater spectra contains distinct features. Then water quality hyperspectral retrieval models are developed based on in situ data to calculate the chlorophyll a concentration ([chl-a]), transparency (SD) with satisfactory performance. It's suggested that model precision should be validated further using more in-situ data.

  11. Using analytic element models to delineate drinking water source protection areas.

    Science.gov (United States)

    Raymond, Heather A; Bondoc, Michael; McGinnis, John; Metropulos, Kathy; Heider, Pat; Reed, Allison; Saines, Steve

    2006-01-01

    Since 1999, Ohio EPA hydrogeologists have used two analytic element models (AEMs), the proprietary software GFLOW and U.S. EPA's WhAEM, to delineate protection areas for 535 public water systems. Both models now use the GFLOW2001 solution engine, integrate well with Geographic Information System (GIS) technology, have a user-friendly graphical interface, are capable of simulating a variety of complex hydrogeologic settings, and do not rely upon a model grid. These features simplify the modeling process and enable AEMs to bridge the gap between existing simplistic delineation methods and more complex numerical models. Ohio EPA hydrogeologists demonstrated that WhAEM2000 and GFLOW2000 were capable of producing capture zones similar to more widely accepted models by applying the AEMs to eight sites that had been previously delineated using other methods. After the Ohio EPA delineated protection areas using AEMs, more simplistic delineation methods used by other states (volumetric equation and arbitrary fixed radii) were applied to the same water systems to compare the differences between various methods. GIS software and two-tailed paired t-tests were used to quantify the differences in protection areas and analyze the data. The results of this analysis demonstrate that AEMs typically produce significantly different protection areas than the most simplistic delineation methods, in terms of total area and shape. If the volumetric equation had been used instead of AEMs, Ohio would not have protected 265 km2 of critical upgradient area and would have overprotected 269 km2 of primarily downgradient land. Since an increasing number of land-use restrictions are being tied to drinking water protection areas, this analysis has broad policy implications.

  12. Grey water characteristics and treatment options for rural areas in Jordan.

    Science.gov (United States)

    Halalsheh, M; Dalahmeh, S; Sayed, M; Suleiman, W; Shareef, M; Mansour, M; Safi, M

    2008-09-01

    Low water consumption in rural areas in Jordan had resulted in the production of concentrated grey water. Average COD, BOD and TSS values were 2568mg/l, 1056mg/l and 845mg/l, respectively. The average grey water generation was measured to be 14L/c.d. Three different treatment options were selected based on certain criterions, and discussed in this article. The examined treatment systems are septic tank followed by intermittent sand filter; septic tank followed by wetlands; and UASB-hybrid reactor. Advantages and disadvantages of each system are presented. It was concluded that UASB-hybrid reactor would be the most suitable treatment option in terms of compactness and simplicity in operation. The volume of UASB-hybrid reactor was calculated to be 0.268m(3) with a surface area of 0.138m(2) for each house having 10 inhabitants on average. Produced effluent is expected to meet Jordanian standards set for reclaimed water reuse in irrigating fruit trees.

  13. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  14. Evaluation of Water Resource Security Based on an MIV-BP Model in a Karst Area

    Directory of Open Access Journals (Sweden)

    Liying Liu

    2018-06-01

    Full Text Available Evaluation of water resource security deserves particular attention in water resource planning and management. A typical karst area in Guizhou Province, China, was used as the research area in this paper. First, based on data from Guizhou Province for the past 10 years, the mean impact value–back propagation (MIV-BP model was used to analyze the factors influencing water resource security in the karst area. Second, 18 indices involving five aspects, water environment subsystem, social subsystem, economic subsystem, ecological subsystem, and human subsystem, were selected to establish an evaluation index of water resource security. Finally, a BP artificial neural network model was constructed to evaluate the water resource security of Guizhou Province from 2005 to 2014. The results show that water resource security in Guizhou, which was at a moderate warning level from 2005 to 2009 and a critical safety level from 2010 to 2014, has generally improved. Groundwater supply ratio, industrial water utilization rate, water use efficiency, per capita grain production, and water yield modulus were the obstacles to water resource security. Driving factors were comprehensive utilization rate of industrial solid waste, qualifying rate of industrial wastewater, above moderate rocky desertification area ratio, water requirement per unit gross domestic product (GDP, and degree of development and utilization of groundwater. Our results provide useful suggestions on the management of water resource security in Guizhou Province and a valuable reference for water resource research.

  15. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    Full Text Available Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion in 2025. Agriculture as the only industry that has ability to produce food is consuming 90 percent of fresh water globally. Despite of increasing for food demand, appropriate agricultural land and fresh water resources are restricted. To solve this problem, one is to increase water productivity which can be obtain by irrigation. Iran is not only exempted from this situation but also has more critical situation due to its dry climate and inappropriate precipitation distribution spatially and temporally, also uneven distribution of population which is concentrate in small area. The only reasonable solution by considering water resources limitation and also restricted crop area is changing crop pattern to reach maximum or at least same amount of income by using same or less amount of water. The purpose of this study is to assess financial water productivity and optimize farmer’s income by changing in each crop acreage at basin and sub-basin level with no extra groundwater withdrawals, also in order to repair the damages which has enforce to groundwater resources during last decades a scenario of using only 80percent of renewable water were applied and crop area were optimize to provide maximum or same income for farmers. Materials and methodsThe Neyshabour basin is located in northeast of Iran, the total geographical area of basin is 73,000 km2 consisting of 41,000 km2 plain and the rest of basin is mountains. This Basin is a part of Kalshoor catchment that is located in southern part of Binaloud heights and northeast of KavirMarkazi. In this study whole Neyshabour basin were divided into 199 sub-basins based on pervious study.Based on official

  16. Rn-222 concentrations in private well water and in river water around Ningyo Toge area

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Eiji [Okayama, Prefectural Inst. for Environmental Science and Public Health (Japan)

    1997-02-01

    The Ningyo-Toge Works of Power Reactor and Nuclear Fuel Development Corporation have started the pilot plant for uranium refining and conversion in 1984 and thereafter been producing 6-uranium fluoride, which is a raw material for an uranium concentration plant. The operation of prototype reactor has started since 1989. In this study, radioactive contamination around the works under these circumstances has been monitored in the respects of Rn concentrations in well water and river one for more than 10 years. The radioactivities of well water sampled at 4 points in this area were in a range of 0.6-82.9 Bq/l. The differences in the activities seemed to be depending on petrological properties. For the river water, the Rn concentration was determined at 13 points in the area. Seasonal changes in the Rn concentrations were not significant (p<0.05) but there were significant changes among years during 1985-1995. Further, the radioactive levels of soils collected from riverbed at 5 points were significantly different both for {sup 238}U and {sup 226}Ra, but the ratios of {sup 238}U/{sup 226}Ra were consistent. Furthermore, there was no correlation between {sup 226}Ra and {sup 222}Rn concentrations in the river water. (M.N.)

  17. Water quality in gravel pits in the Bratislava area

    International Nuclear Information System (INIS)

    Flakova, R.; Rohacikova, A.; Zenisova, Z.

    1999-01-01

    The gravel pits around Bratislava have an esthetic, urban and recreational function. Open water table areas are in a direct contact with the air and acquire some characteristics of the surface water. The quality of open water table is much more susceptible to pollution than that of groundwater. Wet and dry deposition, water inflow from the surrounding surface, unmanageable sewerage effluents, solid and liquid wastes, but also the water birds contribute to the pollution. The Department of Hydrogeology has monitored the water quality in six gravel pits (Cunovo, Drazdiak, Strkovec, Pasienky, Zlate Piesky, Vajnory) since 1976 with an an interruption between 1988 - 1993. Two sampling per year have been made since 1994 and after 1998 the analyses have been supplemented by Na, K, Fe, Mn, by oxygen regime parameters, by trace elements (As, Ag, Cd, Co, Cu, Cr, Hg, Ni, Pb, V, Zn) and by organic pollutants. As regards the oxygen regime, the water quality pits is very good. The anthropogenic influence is expressed mainly by the increased contents of sulfates and chlorides. Most problematic trace elements are the mercury and vanadium (Drazdiak, Zlate Piesky and Vajnory). (authors)

  18. Water levels in the Yucca Mountain area, Nevada, 1995

    International Nuclear Information System (INIS)

    Graves, R.P.; Goemaat, R.L.

    1998-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT number-sign 12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  19. Strategic water source areas for urban water security: Making the connection between protecting ecosystems and benefiting from their services

    CSIR Research Space (South Africa)

    Nel, JL

    2017-01-01

    Full Text Available Strategic water source areas are those areas that have a relatively high natural runoff in the region of interest, which is made accessible for supporting the region’s population or economy. These areas contribute substantially to development needs...

  20. The structure of water quality monitoring in the disaster area

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    2012-01-01

    Described are monitoring systems of water environment at usual times and after the 2011 Tohoku Earthquake and Tsunami Disaster, and measures taken by the Ministry of the Environment (ME) for radioactive substances in the water environment. At usual times, the monitoring of hazardous substance in water environment is conducted by local governments. At/after the Disaster, ME conducted the monitoring investigation concerning the environmental quality standards and toxicants like dioxins in the river, sea and groundwater from late May to late July, 2011 because undesirable effects on health and life of the residents had been feared due to possible leak of hazardous substances in public water area and underground water of victim prefectures, Aomori, Iwate, Miyagi, Fukushima and Ibaraki. As the results, no high contamination due to the Disaster was found, and a part of regions exhibited the slight chemical contamination, where continuous and additional monitoring was to be kept locally with guidance of drinking the concerned well water. ME measured radioactive iodine and cesium at 29 places of Fukushima rivers to find <65 and <30,000 Bq/kg, respectively, of 4 spots of river bed material alone (late May); then Cs 32 Bq/L in water at 1 spot and <26,000 Bq/kg in bed at all places after rain (early July). In groundwater, no radioactive nuclides above were detected in any of 111 places of Fukushima Prefecture (late June to early August). Cs was not found in sea water of 9 places of concerned prefectures, but was in the sea bottom soil, <1,380 Bq/kg (middle June). As well, local governments measured those two radioactive nuclides in water and ambient dose rate of 551 sea bathing beaches (late May to early Oct.) and found only one beach (Iwaki City, Fukushima) inappropriate for swimming play. Hereafter, ME is still to investigate the bed material of public water area and to continue to monitor the marine environment in cooperation with related authorities. (T.T.)

  1. The chemical composition of sea water and pore water in the manganese nodule area of the Central Pacific

    International Nuclear Information System (INIS)

    Marchig, V.; Gundlach, H.; Schnier, C.

    1981-11-01

    Analyses for the following elements were made on 118 samples of pore water and 23 samples of sea water from the radiolarian ooze area of the Central Pacific: Na, Ca, Br, Sr (major elements) and Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Ag, Sb, Cs, Eu, Ta, Hg, U. The average concentration of most of the elements analyzed is higher in the pore water than in the sea water. The enrichment of elements in both the pore water and the bottom near sea water relative to the average composition of the sea water depends on the residence times of the elements in the sea water - the shorter the residence time the greater the enrichment. The enrichment of an element in these sea and pore waters is also dependant on the chemical species in which it occurs in the sea water. The enrichment seems to be greater for hydroxides, less for complex chloride ions and there is no enrichment for simple ions. The enrichment of the elements occuring as hydroxides (Fe, Cu, Cr, Sc, Eu) or complex chlorides (Mn, Ni, Co, Zn, Ag, Hg, Se) results in precipitation from the sea water, which contributes to the growth of the manganese nodules as well as to the genesis of metalliferous sediments in this area. The greater enrichment in the pore water relative to the sea water accounts for the remobilization of these elements from the sediment as the main source of the material for the growth of the manganese nodules. (orig.) [de

  2. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  3. [Algal community structure and water quality assessment on drawdown area of Kaixian waters in Three Gorges Reservoir during winter storage period].

    Science.gov (United States)

    Guo, Jing-Song; Xie, Dan; Li, Zhe; Chen, Yuan; Sun, Zhi-Yu; Chen, Yong-Bo; Long, Man

    2012-04-01

    The old town area of Kaixian county was flooded and showed reservoir characteristics after the water level of Three Gorges Reservoir got 172. 8 m in December 2008. The aquatic ecology and nutritional status of Kaixian drawdown area after water storage are still rarely reported. To understand the current water environment and changes in algal community structure of Kaixian drawdown area after 172.8 m water level, the algal composition, abundance, biomass distribution and changes of its sampling spots including Hanfeng Lake were observed twice during winter storage period in January and December 2009. The trends in phytoplankton community structure were analyzed and the water quality assessment of nutritional status was carried out. The results indicated that 6 phylums, 37 genera, 69 species of phytoplankton in total were identified in the two sampling, and the dominant species were Dinophyta and Cryptophyta. The cell density and biomass in December 2009 were lower than those in January 2009. The evaluation results of algal population structure and pollution indicators showed that the nutrition level of Kaixian drawdown area during the winter storage period was mesotrophic to eutrophic type, while diversity analysis result indicated moderate pollution.

  4. Loads and yields of deicing compounds and total phosphorus in the Cambridge drinking-water source area, Massachusetts, water years 2009–15

    Science.gov (United States)

    Smith, Kirk P.

    2017-09-12

    The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154

  5. The heightened activity of radon in water analysis from Lounovice area, Czech Republic

    International Nuclear Information System (INIS)

    Thinova, L.; Berka, Z.; Fridrichova, L.; Kaderova, J.; Cernohorska, E.; Pokorna, T.; Kosar, V.; Patak, M.; Kracmarova, I.

    2004-01-01

    The Lounovice area is located approximately 20 km south-east of Prague. Radon activity in fresh water from drilled-wells, used for village water supply, ranges between 700 and 900 Bq/l, which exceeds the standard for drinkable water by a factor higher than 100. Therefore, water is treated by aeration before use. Some residents, however, use drinking water from their own wells. A comprehensive radon and natural radioactivity survey was therefore conducted in this area. Secondary school students were engaged in this survey within the 'Physics Week' scientific program for young physicists, run by the Czech Technical University in Prague every year. in year 2004. The program included the following items: Laboratory gamma spectrometric measurement of the bedrock; Radon activity measurement in water before and after the aeration process; Radon monitoring at workplaces of the water company (the values provided by ionization chamber instruments and semiconductor detector instruments were compared); Radon daughters measurement at workplaces of the water company; In situ gamma spectrometry; In situ effective dose rate measurement; and Determination of a 'radon index' in the neighborhood of a drilled well

  6. Wood ash or dolomite treatment of catchment areas - effects of mercury in runoff water

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H; Munthe, J [Swedish Environmental Research Inst., Stockholm (Sweden)

    1996-11-01

    A future increased use of biomass as a source of energy, and the planned restoration of mineral nutrient balance in the forest soils by returning the wood ashes, has led to concern for new environmental disturbances. The objectives of the present study were to investigate if the outflow of total mercury (TotHg) and methyl mercury (MeHg) from catchment areas treated with granulated wood ash (1988, 2.2 tons/ha, `ashed area`) or dolomite (1985, 5 tons/ha, `limed area`) differed from the outflow from an untreated (reference) area, and if variations in Hg outflow were correlated with changes in the outflow of organic substances or pH. The study areas are situated in Vaermland, Sweden. Samples of run-off water were taken weekly or monthly (depending on water-flow) during on year (1993-94). The outflow of MeHg, TotHg as well as H+ and dissolved organic material (DOC) was lower from the limed area compared to the other two areas, which did not differ significantly. There was a strong covariation between concentrations of DOC and MeHg and a weaker relation between DOC and TotHg in the run-off waters. MeHg also covaried with temperature while TotHg covaried with pH and water-supply. No difference was found when comparing Hg-data from the limed area before, directly after and eight years after the liming event. 13 refs, 12 figs, 1 tab

  7. Water management for a megacity: Mexico City Metropolitan Area.

    Science.gov (United States)

    Tortajada, Cecilia; Castelán, Enrique

    2003-03-01

    The paper presents an overview of the present situation of the Mexico City Metropolitan Area (MCMA). The analysis indicates an urgent need to radically improve the current water supply and wastewater management practices, to become sustainable. The MCMA is one of the most rapidly growing urban centers of the world, with a population of about 21 million people, a very high rate of immigration and numerous illegal settlements. In order to meet the increasing water demand, successive governments have focused almost exclusively on supply management and engineering solutions, which have resulted in investments of hundreds of millions of USD and the construction of major infrastructure projects for interbasin water transfer. Environmental, economic and social policies associated with water management are mostly inadequate and insufficient, which is resulting in increasing deterioration in the environment, health and socioeconomic conditions of a population living in one of the largest urban agglomerations of the world. Surprisingly, however, no long-term strategies on demand-management, reuse, conservation, and improved water-management practices have been developed so far.

  8. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  9. REUSE OF TREATED WASTEWATER IN AGRICULTURE: SOLVING WATER DEFICIT PROBLEMS IN ARID AREAS (REVIEW

    Directory of Open Access Journals (Sweden)

    Faissal AZIZ

    2014-12-01

    Full Text Available In the arid and semiarid areas, the availability and the management of irrigation water have become priorities of great importance. The successive years of drought, induced by climate change and population growth, increasingly reduced the amount of water reserved for agriculture. Consequently, many countries have included wastewater reuse as an important dimension of water resources planning. In the more arid areas wastewater is used in agriculture, releasing high resource of water supplies. In this context, the present work is a review focusing the reuse of treated wastewater in agriculture as an important strategy for solving water deficit problems in arid areas. Much information concerning the wastewater reuse in different regions of the world and in Morocco, the different wastewater treatment technologies existing in Morocco were discussed. The review focused also the fertilizing potential of wastewater in agriculture, the role of nutrients and their concentrations in wastewater and their advantages effects on plant growth and yield.

  10. The Hydro-Economic Interdependency of Cities: Virtual Water Connections of the Phoenix, Arizona Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Richard R. Rushforth

    2015-06-01

    Full Text Available Water footprinting has revealed hydro-economic interdependencies between distant global geographies via trade, especially of agricultural and manufactured goods. However, for metropolitan areas, trade not only entails commodity flows at many scales from intra-municipal to global, but also substantial intra-metropolitan flows of the skilled labor that is essential to a city’s high-value economy. Virtual water flows between municipalities are directly relevant for municipal water supply policy and infrastructure investment because they quantify the hydro-economic dependency between neighboring municipalities. These municipalities share a physical water supply and also place demands on their neighbors’ water supplies by outsourcing labor and commodity production outside the municipal and water supply system boundary to the metropolitan area. Metropolitan area communities span dense urban cores to fringe agricultural towns, spanning a wide range of the US hydro-economy. This study quantifies water footprints and virtual water flows of the complete economy of the Phoenix Metropolitan Area’s municipalities. A novel approach utilized journey to work data to estimate virtual water flows embedded in labor. Commodities dominate virtual water flows at all scales of analysis, however labor is shown to be important for intra-metropolitan virtual water flows. This is the first detailed water footprint analysis of Phoenix, an important city in a water-scarce region. This study establishes a hydro-economic typology for communities to define several niche roles and decision making points of view. This study’s findings can be used to classify communities with respect to their relative roles, and to benchmark future improvements in water sustainability for all types of communities. More importantly, these findings motivate cooperative approaches to intra-metropolitan water supply policy that recognize the hydro-economic interdependence of these

  11. Surface water and groundwater interaction in selected areas of Indus basin

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Tariq, J.A.; Latif, Z.; Malik, M.R.

    2011-08-01

    Isotope hydrological investigations were carried out in Marala-Khanki Area of Punjab for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water (Chenab River) samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no significant contribution of surface water to groundwater recharge in Marala-Khanki Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of Tarbala lake are higher than those of main lake. Indus river meaning that there is significant contribution of base flow in this pocket. Isotopic data of Indus river showed an increase at Tunsa as compared to Chashma in flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  12. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  13. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  14. Effect of land area on average annual suburban water demand ...

    African Journals Online (AJOL)

    AADD) in South Africa are based on residential plot size. This paper presents a novel, robust method for estimating suburban water demand as a function of the suburb area. Seventy suburbs, identified as being predominantly residential, were ...

  15. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA...

  16. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  17. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    Science.gov (United States)

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  18. Geostatistical analysis of space variation in underground water various quality parameters in Kłodzko water intake area (SW part of Poland

    Directory of Open Access Journals (Sweden)

    Namysłowska-Wilczyńska Barbara

    2016-09-01

    Full Text Available This paper presents selected results of research connected with the development of a (3D geostatistical hydrogeochemical model of the Kłodzko Drainage Basin, dedicated to the spatial variation in the different quality parameters of underground water in the water intake area (SW part of Poland. The research covers the period 2011-2012. Spatial analyses of the variation in various quality parameters, i.e., contents of: iron, manganese, ammonium ion, nitrate ion, phosphate ion, total organic carbon, pH redox potential and temperature, were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial variation in the parameters was analyzed on the basis of data obtained (November 2011 from tests of water taken from 14 existing wells with a depth ranging from 9.5 to 38.0 m b.g.l. The latest data (January 2012 were obtained (gained from 3 new piezometers, made in other locations in the relevant area. A depth of these piezometers amounts to 9-10 m.

  19. Management and Area-wide Evaluation of Water Conservation Zones in Agricultural Catchments for Biomass Production, Water Quality and Food Security

    International Nuclear Information System (INIS)

    2016-04-01

    Global land and water resources are under threat from both the agricultural and urban development to meet increased demand for food and from the resulting degradation of the environment. Poor crop yields due to water stress is one of the main reasons for the prevailing hunger and rural poverty in parts of the world. The Green Revolution of the 1960s and 1970s particularly in Latin America and Asia resulted in increased agricultural production and depended partly on water management. In the future, most food will still need to come from rain-fed agriculture. Water conservation zones in agricultural catchments, particularly in rainfed areas, play an important role in the capture and storage of water and nutrients from farmlands and wider catchments, and help improve crop production in times of need in these areas. Water conservation zones are considered to be an important part of water resource management strategies that have been developed to prevent reservoir siltation, reduce water quality degradation, mitigate flooding, enhance groundwater recharge and provide water for farming. In addition to making crop production possible in dry areas, water conservation zones minimize soil erosion, improve soil moisture status through capillary rise and enhance soil fertility and quality. These water conservation zones include natural and constructed wetlands (including riparian wetlands), farm ponds and riparian buffer zones. The management of water conservation zones has been a challenge due to the poor understanding of the relationship between upstream land use and the functions of these zones and their internal dynamics. Knowledge of sources and sinks of water and redefining water and nutrient budgets for water conservation zones are important for optimizing the capture, storage and use of water and nutrients in agricultural landscapes. The overall objective of this coordinated research project (CRP) was to assess and enhance ecosystem services provided by wetlands, ponds

  20. Water levels in wells J-11 and J-12, 1989-91, Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water levels have been measured in the Yucca Mountain area, Nevada, since 1981 in order to gain a better understanding of the ground-water flow system in the area. Water levels in wells J-11 and J-12 have been periodically measured using calibrated reeled steel tapes since 1989, however, calculation of water-level altitude was not possible prior to 1993 due to missing reference elevations. These elevations were determined in 1993 by the U.S. Geological Survey. During 1989-91, water-level altitudes for well J-11 ranged from 732.09 to 732.40 meters and the mean water-level altitude was 732.19 meters. During 1989-91, water-level altitudes for well J-12 ranged from 727.84 to 728.03 meters, and the mean water-level altitude was 727.95 meters

  1. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  2. Conceptual model for simulating the water cycle of the Copenhagen area, Denmark

    DEFF Research Database (Denmark)

    Jeppesen, Jan; Christensen, Steen; Ladekarl, Ulla Lyngs

    2008-01-01

    A complete water cycle model has been constructed for the Copenhagen area (966 km2) in order to study the development of the water cycle during the period 1850-2003. The urban water cycle is quantified in terms of root zone water balance, water supply, waste water, storm water, groundwater flow......, and the interactions between these systems. The water cycle is simulated by combining a root-zone model, a grid distribution tool, and a modified Modflow-2000 model using existing flow packages and a new sewer package that simulates the interactions between ground water and sewers (or rain drains). Long time series...... cycle. It is also the hope that the model will provide a better and more complete overview of the consequences of different water management scenarios. The model concept and selected simulation results is presented....

  3. [Water quality evaluation in rural areas of Lavras, Minas Gerais, Brazil, 1999-2000].

    Science.gov (United States)

    Rocha, Christiane Maria Barcellos Magalhães da; Rodrigues, Luciano Dos Santos; Costa, Claudionor C; de Oliveira, Paulo Roberto; da Silva, Israel José; de Jesus, Eder Ferreira Moraes; Rolim, Renata G

    2006-09-01

    In addition to personal interviews, laboratory analyses were performed using 80 water samples from 45 rural areas that are crossed by the Agua Limpa and Santa Cruz streams close to the city of Lavras, southern Minas Gerais State. The results allowed comparing the quality of water used for agriculture and the identification of determinant factors. The Agua Limpa stream mostly crosses an area used primarily for housing and characterized by low schooling. Many houses are supplied by shallow water wells and have ordinary cesspits for human waste disposal. All springs are polluted. The Santa Cruz stream displays a different scenario. The land is used mostly for agricultural purposes. Most owners live in town, with widely varied levels of school, from none to university. The houses are supplied by surface water. Most of the springs are polluted. The perception by both home and land owners concerning quality of the drinking water is determined solely by the water's physical and organoleptic characteristics. Sanitary parameters are not taken into account. Moreover, there is no relationship between fecal contamination and the type of spring. Land use and anthropic activity are far more important than the type of spring for water quality.

  4. [Effects of large-area planting water hyacinth on macro-benthos community structure and biomass].

    Science.gov (United States)

    Liu, Guo-Feng; Liu, Hai-Qin; Zhang, Zhi-Yong; Zhang, Ying-Ying; Yan, Shao-Hua; Zhong, Ji-Cheng; Fan, Cheng-Xin

    2010-12-01

    The effects on macro-benthos and benthos environment of planting 200 hm2 water hyacinth (E. crassipens) in Zhushan Bay, Lake Taihu, were studied during 8-10 months consecutive surveys. Results indicated that average densities of mollusca (the main species were Bellamya aeruginosa) in far-planting, near-planting and planting area were 276.67, 371.11 and 440.00 ind/m2, respectively, and biomass were 373.15, 486.57 and 672.54 g/m2, respectively, showed that average density and biomass of planting area's were higher than those of others. However, the average density and biomass of Oligochaeta (the main species was Limodrilus hoffmeisteri) and Chironomidae in planting area were lower than that of outside planting area. The density and biomass of three dominant species of benthic animal increased quickly during 8-9 months, decreased quickly in October inside and outside water hyacinth planting area. The reason of this phenomenon could be possible that lots of cyanobacteria cells died and consumed dissolve oxygen in proceed decomposing. Algae cells released lots of phosphorus and nitrogen simultaneously, so macro-benthos died in this environment. The indexes of Shannon-Weaver and Simpson indicated that water environment was in moderate polluted state. On the basis of the survey results, the large-area and high-density planting water hyacinth haven't demonstrated a great impact on macrobenthos and benthos environment in short planting time (about 6 months planting time).

  5. Climate change in urban areas. Green and water storage in relation to soils

    International Nuclear Information System (INIS)

    Dirven-van Breemen, E.M.; Claessens, J.W.; Hollander, A.

    2011-08-01

    One of the possible effects of climate change in urban areas is an increased frequency of periods of extreme heat and extreme rainfall events. Public green areas provide shadow and therefore have a cooling effect during periods of extreme heat. Sufficient water storage capacity of the soil may reduce the overburdening of the public water system during extreme rainfall events. Governments do well by taking measures for climate-proofing of their towns. Also citizens may contribute to these climate issues. Governments and citizens should realize that investing in climate-proofing of their towns at this moment will pay off in the future. These are the outcomes of an inventory carried out by the National Institute for Public Health and the Environment, RIVM, ordered by the ministry of Infrastructure and the Environment. With measures for public green areas and water storage capacity local governments should link with other policy areas like infrastructure, public health, safety and sustainability. An example of more public green is a green infrastructure like parks and public gardens. An other advantage of public green is the unsealed soil; that is the soil not covered by roads, buildings, etc. The presence of unsealed soil increases the possibility for water infiltration. For favorable water storage local governments may construct wadis that prevent public water systems for being overburdened by extreme rainfall events. A wadi is a lowering of the surface level mostly covered with plants. During heavy rainfall the wadi is flooded, due to rainwater from the roofs of the surrounding buildings which drains away to the wadi. Citizens may construct green roofs or city gardens with unsealed soil. To promote this, subsidies for private initiatives are an additional boost. [nl

  6. Evaluation and proposed study of potential ground-water supplies, Gallup area, New Mexico

    Science.gov (United States)

    Hiss, William L.

    1975-01-01

    The ground-water potential of 5 areas in central-western New Mexico within 85 miles (135 km) of Gallup, N. Mex. was evaluated by reviewing the published literature, inspecting aerial and space photographs, and interviewing ranchers and personnel employed by well-drilling and mineral-exploration companies by telephone. The San Andres Limestone and underlying Glorieta Sandstone of Permian age are the oldest aquifers capable of yielding water of a quality suitable for municipal use. Extreme local variations in hydraulic conductivity and water quality reflect a karstic topography developed on the San Andres Limestone prior to burial by Upper Triassic sediments. The San Andres Limestone and Glorieta Sandstone form an important aquifer in the Grants-Bluewater area where yields of as much as 2,200 gallons per minute (140 l/s) have been obtained. Yields from wells completed in the San Andres-Glorieta aquifer on the Chaco slope and in the Gallup sag-Mogollon slope on the northeast and southeast flanks, respectively, of the Zuni uplift will be much less than those prevailing in the Grants-Bluewater area. Water quality in the San Andres Limestone and Glorieta Sandstone deteriorates with distance away from the axis of the Zuni uplift. Sandstones of Triassic, Jurassic, and Cretaceous age are potential aquifers wherever they are present. Yields to wells tapping these aquifers are generally less than 200 gallons per minute (13 l/s) due to the relatively low hydraulic conductivity. Wells tapping alluvium of Late Cenozoic age along the Rio San Jose and Puerco River and interbedded volcanics and alluvium elsewhere in the area generally yield less than 100 gallons per minute (6 l/s) of water. Tributaries ,of the Rio San Jose that have eroded canyons into Paleozoic and Mesozoic rocks east of the Continental Divide and south of the eastern part of the Zuni uplift have been repeatedly displaced and (or) covered by Quaternary volcanic rocks. The exact location, extent, and depth of

  7. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen

    2012-01-01

    In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.

  8. Application of water quality index for the assessment of suitability of natural sources of water for drinking in rural areas of east Sikkim, India

    OpenAIRE

    Shubra Poonia; T Shantikumar Singh; Dechen C Tsering

    2015-01-01

    In Sikkim, especially in the rural areas where there is no supply of treated water for drinking and other domestic uses, natural surface water is the only source. The objective was to assess the water quality of natural sources of water in the rural areas of East Sikkim using a water quality index (WQI) for different seasons. A total of 225 samples, that is, 75 in winter, 75 in summer, and 75 in monsoon were collected from different sources for physicochemical analysis, and a WQI was calculat...

  9. Radiological risk assessment for an urban area: Focusing on a drinking water contamination

    International Nuclear Information System (INIS)

    Jeong, Hyo-Joon; Hwang, Won-Tae; Kim, Eun-Han; Han, Moon-Hee

    2009-01-01

    This paper specifically discusses a water quality modeling and health risk assessment for cesium-137 to assess the potential and actual effects on human health from drinking water contaminated by a radiological terrorist attack in the Seoul metropolitan area, Korea. With respect to the source term caused by a terrorist attack, it was assumed that 50 TBq of cesium-137 was introduced into the Paldang Lake which is a single water resource for the Seoul metropolitan area. EFDC (Environmental Fluid Dynamics Code) model was used to calculate the hydrodynamic and water quality for the model domain, Paldang Lake. Mortality risk and morbid risk coefficients caused by the ingestion of tap water were used to assess a human health risk due to cesium-137. The transport of cesium-137 in the Paldang water system was mainly dependent on the flow streamlines and the effect of the dilution from the other branches. The mortality and morbidity risks due to the drinking water contamination by cesium-137 were 4.77 x 10 -7 and 6.92 x 10 -7 , respectively. Accordingly, it is very important to take appropriate countermeasures when radiological terrorist attacks have occurred at water resources to prevent radiological risks by radionuclides.

  10. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  11. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  12. 75 FR 26967 - Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water...

    Science.gov (United States)

    2010-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0236] Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water Advisory; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug...

  13. Ground water investigations in connection with planned energy wells in the Lena area, Melhus centre

    International Nuclear Information System (INIS)

    Storroe, Gaute

    2000-01-01

    In March 2000 the Norwegian Geologic Survey (NGU) was requested to carry out ground water investigations in the Lena area at Melhus centre by the firms E-Tek AS and Statoil. The background for the investigations was the plans of exploiting ground heat connected to a housing project lead by Selmer Bolig AS. The aim of the project was to document the possibilities for extracting ground heat from loose soil well(s) in the selected construction area. The needed amount of water is in the size of 50 m 3 /hour (14l/s). In addition the conditions of currents, ground water quality and possibilities for refiltering of the ground water was to be mapped. In conclusion it may be said that it most likely will be possible to meet the stipulated water requirements (50 m 3 /hour) by establishing a full scale production well within the construction area. The ground water currents in the Lena area run from north to south. The ground water surface is relatively flat with an incline of 0.1 - 0.2 % (1-2 mm/m). The possibilities for refiltering pumped water seem to be good. The conditions should be mapped more closely through refiltering tests. All of the collected ground water samples exceed the limiting values stipulated by the drinking water regulations as to alkalinity, sulphate, calcium, potassium and manganese. The tests from Obs2 and from the ''municipal well'' exceed the limits for chloride and sodium as well. This indicates that unwanted precipitations of both chalk and manganese may occur. Large quantities of sea salts (chloride and sodium) may also have a corrosive effect. Through calculations using the Ryznar's Stability Index (RSI) it is evident that the tests from Obs1 and Obs2 are in the limiting area between ''problem free water'' and ''corrosive water'', while the water from the municipal well must be characterised as very corrosive. According to information from the managing personnel there have not been registered problems with precipitations or corrosion in heat

  14. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    Science.gov (United States)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  15. Observations of Drinking Water Access in School Food Service Areas Before Implementation of Federal and State School Water Policy, California, 2011

    Science.gov (United States)

    Chandran, Kumar; Hampton, Karla E.; Hecht, Kenneth; Grumbach, Jacob M.; Kimura, Amanda T.; Braff-Guajardo, Ellen; Brindis, Claire D.

    2012-01-01

    Introduction Recent legislation requires schools to provide free drinking water in food service areas (FSAs). Our objective was to describe access to water at baseline and student water intake in school FSAs and to examine barriers to and strategies for implementation of drinking water requirements. Methods We randomly sampled 24 California Bay Area public schools. We interviewed 1 administrator per school to assess knowledge of water legislation and barriers to and ideas for policy implementation. We observed water access and students’ intake of free water in school FSAs. Wellness policies were examined for language about water in FSAs. Results Fourteen of 24 schools offered free water in FSAs; 10 offered water via fountains, and 4 provided water through a nonfountain source. Four percent of students drank free water at lunch; intake at elementary schools (11%) was higher than at middle or junior high schools (6%) and high schools (1%). In secondary schools when water was provided by a nonfountain source, the percentage of students who drank free water doubled. Barriers to implementation of water requirements included lack of knowledge of legislation, cost, and other pressing academic concerns. No wellness policies included language about water in FSAs. Conclusion Approximately half of schools offered free water in FSAs before implementation of drinking water requirements, and most met requirements through a fountain. Only 1 in 25 students drank free water in FSAs. Although schools can meet regulations through installation of fountains, more appealing water delivery systems may be necessary to increase students’ water intake at mealtimes. PMID:22765930

  16. Preliminary classification of water areas within the Atchafalaya Basin Floodway System by using landsat imagery

    Science.gov (United States)

    Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

    2008-01-01

    The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

  17. Geostatistical Characteristic of Space -Time Variation in Underground Water Selected Quality Parameters in Klodzko Water Intake Area (SW Part of Poland)

    Science.gov (United States)

    Namysłowska-Wilczyńska, Barbara

    2016-04-01

    This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed

  18. Settlement to Improve Water Quality in Delaware River, Philadelphia-Area Creeks

    Science.gov (United States)

    EPA and the U.S. Department of Justice have reached agreement with a major water utility in the greater Philadelphia area to significantly reduce sewage discharges to the Delaware River and local creeks.

  19. 36 CFR 294.2 - Navigation of aircraft within airspace reservation over the Boundary Waters Canoe Area Wilderness...

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Navigation of aircraft within airspace reservation over the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota... Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. (a) Description of areas...

  20. Statistical analysis of fluoride levels in human urine and drinking water samples of fluorinated area of punjab (pakistan)

    International Nuclear Information System (INIS)

    Qayyum, M.; Zaman, W.U.; Rehman, R.; Ahmad, B.; Ahmad, M.; Ali, S.; Murtaza, S

    2013-01-01

    Increasing fluoride levels in drinking water of fluorinated areas of world leading to fluorosis. For bio-monitoring of fluorosis patients, fluoride levels were determined in drinking water and human urine samples of different individuals having dental fluorosis and bony deformities from fluorotic area of Punjab (Sham Ki Bhatiyan, Pakistan) and then compared with reference samples of non fluorotic area (Queens Road, Lahore, Pakistan) using ion selective electrode methodology. Fluoride levels in fluorinated area differ significantly from control group (p < 0.05). In drinking water and human urine samples, fluoride levels in fluorinated areas were: 136.192 +- 67.836 and 94.484 +- 36.572 micro molL/sup -1/ respectively, whereas in control samples, fluoride concentrations were: 19.306 +- 2.109 and 47.154 +- 22.685 micro molL/sup -1/ in water and urine samples correspondingly. Pearson's correlation data pointed out the fact that that human urine and water fluoride concentrations have a significant positive dose response relationship with the prevalence of dental and skeletal fluorosis in fluorotic areas having higher fluoride levels in drinking water. (author)

  1. Risk Assessment of Aluminum in Drinking Water between Two Residential Areas

    Directory of Open Access Journals (Sweden)

    Aizat I. Syazwan

    2011-09-01

    Full Text Available A cross-sectional study was conducted at Sungai Lembing (SL and Bukit Ubi (BU, Kuantan, Malaysia. The main objectives of this epidemiological study were to determine the aluminum concentration in drinking water, to compare with the government standard and to perform health risk assessment prediction among respondents from these two residential areas. A total of 100 respondents were selected from the study areas based on a few inclusive and exclusive criteria. Two duplicates of treated water samples were taken from each respondent's house using a 200 mL high-density polyethylene (HDPE bottle and 0.4 mL (69% pure concentrated nitric acid added as preservative. Aluminum concentrations were analyzed using Lambda 25 UV/V spectrophotometer. The result showed that the mean concentration of aluminum in drinking water from SL was 0.11 ± 0.0634 mg/L and 0.12 ± 0.0462 mg/L for BU. The mean value of Chronic Daily Intake (CDI in SL (0.0035 ± 0.0028 mg/kg/day was lower compared to BU (0.0037 ± 0.0021 mg/kg/day. The Hazard Index (HI calculation showed all respondents had HI less than 1. In conclusion, there was unlikely potential for adverse health effects from aluminum intake in drinking water. However, it was necessary for some action to be taken in order to reduce aluminum levels found in drinking water in both locations.

  2. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  3. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  4. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  5. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  6. Boundary Waters Canoe Area Wilderness - A long history of management guided by science

    Science.gov (United States)

    David Cole

    2016-01-01

    The Boundary Waters Canoe Area Wilderness (BWCAW) in northern Minnesota is one of the most iconic and cherished wilderness areas in the United States. One of the original wilderness areas established in 1964, the BWCAW protects a glaciated landscape of about 1,175 lakes, connected by several hundred miles of streams. Located adjacent to Canada's Quetico Provincial...

  7. Ecological Compensation Mechanism in Water Conservation Area: A Case Study of Dongjiang River

    Directory of Open Access Journals (Sweden)

    Kong Fanbin

    2015-07-01

    Full Text Available The appropriate economic compensation from downstream to upstream watershed is important to solve China’s social and economic imbalances between regions and can potentially enhance water resources protection and ecological security. The study analyzes the implementation of ecological compensation policy and related legal basis under ecological compensation mechanism theory and practice patterns, based on current natural environment and socio-economic development of national origin in Dongjiang water conservation areas. Under the principle of “Users pay”, the Dongjiang River is the subject of ecological compensation and recipient. By using the “cost-benefit analysis” and “cost method of industrial development opportunity”, we estimate that the total ecological compensation amounted to 513.35 million yuan. When estimated by the indicators such as water quantity, water quality and water use efficiency, we establish the “environmental and ecological protection cost sharing model” and measure the total cost of protecting downstream watershed areas, the Guangdong Province, is about 108.61 million yuan. The implementation of the Dongjiang source region that follows the principles of ecological compensation and approaches are also designed

  8. Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil.

    Science.gov (United States)

    Medeiros, Adaelson Campelo; Faial, Kleber Raimundo Freitas; do Carmo Freitas Faial, Kelson; da Silva Lopes, Iris Danielly; de Oliveira Lima, Marcelo; Guimarães, Raphael Mendonça; Mendonça, Neyson Martins

    2017-10-15

    In this study was to evaluate the waters quality of the Murucupi River, located in urban agglomerate area and intense industrial activity in Barcarena City, Pará State. The Arapiranga River in Abaetetuba City was used as control area (Background), next to Barcarena. Was used the Water Quality Index (WQI) based on nine variables analized. Waters quality of the Arapiranga and Murucupi rivers were regular to good and bad to good, respectively. Anthropogenic influence on the Murucupi River was higher, mainly by the disposal of domestic effluents from the urban agglomerate and of the industrial waste tailing basins upstream of this river. Due to its less inhabited environment and further away from the area urban and industrial, the Arapiranga River was more preserved. Waters pollution of around these area is increasingly intense, and restricted its uses for various purposes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Sinkhole development resulting from ground-water withdrawal in the Tampa area, Florida

    Science.gov (United States)

    Sinclair, William C.

    1982-01-01

    The area of municipal well fields on the Gulf Coastal Plain north of tampa, Fla., is densely pitted with natural sinkholes and sinkhole lakes that have resulted from collapse of surficial sand and clay into solution cavities in the underlying carbonate rocks of the Floridan aquifer. Although solution of the underlying rocks is the ultimate cause of sinkholes, some have been induced by abrupt changes in ground-water levels caused by pumping. Declines in water levels cause loss of support to the bedrock roofs over cavities and to surficial material overlying openings in the top of bedrock. The volume of calcium, magnesium , and carbonate (the constituents of limestone and dolomite) in solution in the water withdrawn from four well fields near Tampa totaled about 240,000 cubic feet in 1978. Most induced solution takes place at the limestone surface however, and the area of induced recharge is so extensive that the effect of induced limestone solution on sinkhole development is negligible. Alinement of established sinkholes along joint patterns in the bedrock suggests that a well along these lineations might have direct hydraulic connection with a zone of incipient sinkholes. Therefore, pumping of large-capacity wells along such lineations would increase the probability of sinkhole development. Although sinkholes generally form abruptly in the study area, local changes such as vegetative stress, ponding of rainfall, misalinement of structures, and turbidity in well water are all indications that percollapse subsidence may be taking place. (USGS)

  10. 33 CFR 334.635 - Hillsborough Bay and waters contiguous to MacDill Air Force Base, Fla.; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hillsborough Bay and waters... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.635 Hillsborough Bay and waters contiguous to MacDill Air Force Base, Fla.; restricted area...

  11. Projected land use changes impacts on water yields in the karst mountain areas of China

    Science.gov (United States)

    Lang, Yanqing; Song, Wei; Deng, Xiangzheng

    2018-04-01

    Human-induced land use changes over short time scales have significant impacts on water yield, especially in China because of the rapid social economic development. As the biggest developing country of the world, China's economy is expected to continuously grow with a high speed in the next few decades. Therefore, what kind of land use changes will occur in the future in China? How these changes will influence the water yields? To address this issue, we assessed the water yields in the karst mountain area of China during the periods of 1990-2010 and 2010-2030 by coupling an Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and a Conversion of Land Use and its Effects (CLUE) model. Three different land use scenarios i.e. natural growth, economic development, and ecological protection, were developed in 2030 using the CLUE model. It was concluded that, given land use changes between 1990 and 2010, total water yields in the karst mountain area are characterized by a trend towards fluctuating reduction. However, total water yields of 2030 in the economic development scenario revealed an increase of 1.25% compared to the actual water yields in 2010. The economy development in karst mountain areas of China in the future has a slight positive influence on water yields.

  12. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    Science.gov (United States)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  13. Radon concentrations in the water of Misasa area (Tottori Pref.)

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko; Inagaki, Masayo [Kinki Univ., Higashi-Osaka, Osaka (Japan); Mifune, Masaaki

    1997-02-01

    UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Report (1988, 1993) indicated that the internal exposure dose of absorption of radon (Rn-222) and the short-lived decay product nucleus occupied about half of 2.4 m Sv of the global average of annual dose of natural radiation source. It is said to be the largest factor of radiation dose of natural radiation. Sample collection and the method, the elution properties by the concentration of Rn-222 in water and the comparison of characteristics among the different methods are explained. The detection limit of concentration of radon in water by OPTI-FLUOR direct method using the liquid scintillator spectrometer was 1.5 Bq/l for 20 mins counting. The maximum radon concentrations determined by this method showed 1700 Bq/l of the spring water in Misasa area, 400 Bq/l of the small water supply system and well and 18 Bq/l of Mitoku river. (S.Y.)

  14. 36 CFR 13.1178 - Closed waters, islands and other areas.

    Science.gov (United States)

    2010-07-01

    ... southeast of Flapjack Island; or Eider Island; or Boulder Island; or Geikie Rock; or Lone Island; or the... islands) of the easternmost point of Russell Island; or Graves Rocks (on the outer coast); or Cormorant... and Preserve Vessel Operating Restrictions § 13.1178 Closed waters, islands and other areas. The...

  15. Importance of bottom-up approach in water management - sustainable development of catchment areas in Croatia

    Science.gov (United States)

    Pavic, M.; Cosic-Flajsig, G.; Petricec, M.; Blazevic, Z.

    2012-04-01

    Association for preservation of Croatian waters and sea SLAP is a non-governmental organization (NGO) that gathers more than 150 scientist, hydrologist and civil engineers. SLAP has been established in 2006 and since then had organized many conferences and participated in projects dealing with water management. We have started our work developing plans to secure water supply to the 22 (21) villages in the rural parts of Dubrovnik (Pozega) area and trough the years we have accumulated knowledge and experience in dealing with stakeholders in hydrology and water management. Within this paper we will present importance of bottom-up approach to the stakeholders in water management in Croatia on two case studies: (1) Management of River Trebizat catchment area - irrigation of the Imotsko-Bekijsko rural parts; (2) Development of multipurpose water reservoirs at the River Orljava catchment area. Both projects were designed in the mid and late 1980's but due to the war were forgotten and on halt. River Trebizat meanders between Croatia and Bosnia and Herzegovina and acquires joint management by both countries. In 2010 and 2011 SLAP has organized conferences in both countries gathering all the relevant stakeholders from representatives of local and state governments, water management companies and development agencies to the scientist and interested NGO's. The conferences gave firm scientific background of the topic including presentation of all previous studies and measurements as well as model results but presented in manner appropriate to the stakeholders. The main result of the conference was contribution to the development of joint cross-border project sent to the EU Pre-Accession funds in December 2011 with the aim to strengthen capacities of both countries and prepare larger project dealing with management of the whole Trebizat catchment area to EU structural funds once Croatia enters EU in 2013. Similar approach was taken for the Orljava catchment in the northern

  16. Chemical and isotopic composition of natural waters in the Jizuki-yama landslide area, Nagano Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Ryuma; Mashima, Kiyotaka; Koizumi, Naoji

    1988-10-01

    A large-scale landslide took place at a southeastern slope of Mt. Jizuki, Nagano Prefecture, on July 26, 1985. It has been said that landslide is closely related to the hydrological and hydrogeochemical nature of groundwater involved. To investigate the weathering mechanism and the origin of groundwater, we collected and analyzed water samples from the large-scale landslide area. The following facts can be pointed out: (1) weather-rock interaction is remarkably active in the landslide area, (2) most of the waters from the landslide area are in equilibrium with Na-montmorillonite (3) immediately after the landslide occurred bicarbonate and sodium ions are dominant, but sulfate and sodium ions become dominant with time, and (4) groundwater passing through horizontally drilled holes dose not effectively drain off to stabilize a slope in the landslide area. And our hypothesis on the mechanism for the formation of sodium sulfate type water is also presented.

  17. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  18. How to Improve Water Usage Efficiency? Characterization of Family Farms in A Semi-Arid Area

    Directory of Open Access Journals (Sweden)

    Laura Piedra-Muñoz

    2017-10-01

    Full Text Available Water scarcity in Spain is partly due to poor management of this resource in the agricultural sector. The main aim of this study is to present the major factors related to water usage efficiency in farming. It focuses on the Almería coast, southeast Spain, which is one of the most arid areas of the country, and in particular, on family farms as the main direct managers of water use in this zone. Many of these farms are among the most water efficient in Spanish agriculture but this efficiency is not generalized throughout the sector. This work conducts a comprehensive assessment of water performance in this area, using on-farm water-use, structural, socio-economic, and environmental information. Two statistical techniques are used: descriptive analysis and cluster analysis. Thus, two groups are identified: farms that are less and farms that are more efficient regarding water usage. By analyzing both the common characteristics within each group and the differences between the groups with a one-way ANOVA analysis, several conclusions can be reached. The main differences between the two clusters center on the extent to which innovation and new technologies are used in irrigation. The most water efficient farms are characterized by more educated farmers, a greater degree of innovation, new irrigation technology, and an awareness of water issues and environmental sustainability. The findings of this study can be extended to farms in similar arid and semi-arid areas and contribute to fostering appropriate policies to improve the efficiency of water usage in the agricultural sector.

  19. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    Science.gov (United States)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

  20. HYDROCHEMICAL CONDITIONS OF THE ŁOSOSINA RIVER WATER MANAGEMENT IN THE AREA OF TYMBARK

    OpenAIRE

    Agnieszka Policht-Latawiec; Włodzimierz Kanownik

    2015-01-01

    Sustainable use of waters requires not only determining the amount, but primarily the quality of the available water resources and developing a long-term programme of their protection. The analysis of the Łososina river water in the area of Tymbark city was presented in the paper. The water was tested in a view of the requirements as the natural fish habitat and its potential use for people supply in potable water. The river water samples were taken in 2014 at randomly selected dates, once a ...

  1. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    NARCIS (Netherlands)

    Rozemeijer, J.; Siderius, C.; Verheul, M.; Pomarius, H.

    2012-01-01

    Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain

  2. Sachet drinking water in Ghana's Accra-Tema metropolitan area: past, present, and future.

    Science.gov (United States)

    Stoler, Justin; Weeks, John R; Fink, Günther

    2012-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana's Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision.

  3. Use of isotopic tools to delimit areas of harnessing for drinking water supply - Final report

    International Nuclear Information System (INIS)

    Gourcy, L.; Petelet-Giraud, E.

    2011-03-01

    Within the frame of an action of the ONEMA-BRGM convention (Methodological approaches and tools for the protection of drinking water harnessing against diffuse pollutions), this study aims at developing a synthesis of isotopic geochemical tools to obtain the information required for the delimitation of harnessing supply areas. The report first describes the conventional tools: water molecule steady isotopes, radioactive isotopes, water dating tools, tools developed for another use, and artificial tracers. It presents the possible uses of natural and artificial tracers to determine parameters like flow directions, water residence duration, exchanges between aquifers and water sheet-river interactions. It gives an overview of knowledge on the use of isotopic methods to determine the origin of contaminants. It proposes a brief overview of a previous study of water sheets-rivers relationships. It finally discusses the use of geochemical and isotopic tools when delimiting supply areas for harnessing aimed at drinking water supply

  4. Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome.

    Science.gov (United States)

    Lopes, Fabyano Alvares Cardoso; Catão, Elisa Caldeira Pires; Santana, Renata Henrique; Cabral, Anderson de Souza; Paranhos, Rodolfo; Rangel, Thiago Pessanha; de Rezende, Carlos Eduardo; Edwards, Robert A; Thompson, Cristiane C; Thompson, Fabiano L; Kruger, Ricardo Henrique

    2016-01-01

    The Caatinga is a semi-arid biome in northeast Brazil. The Paraguaçú River is located in the Caatinga biome, and part of its course is protected by the National Park of Chapada Diamantina (PNCD). In this study we evaluated the effect of PNCD protection on the water quality and microbial community diversity of this river by analyzing water samples obtained from points located inside and outside the PNCD in both wet and dry seasons. Results of water quality analysis showed higher levels of silicate, ammonia, particulate organic carbon, and nitrite in samples from the unprotected area compared with those from protected areas. Pyrosequencing of the 16S rRNA genes revealed that Burkholderiales was abundant in samples from all three sites during both seasons and was represented primarily by the genus Polynucleobacter and members of the Comamonadaceae family (e.g., genus Limnohabitans). During the dry season, the unprotected area showed a higher abundance of Flavobacterium sp. and Arthrobacter sp., which are frequently associated with the presence and/or degradation of arsenic and pesticide compounds. In addition, genes that appear to be related to agricultural impacts on the environment, as well as those involved in arsenic and cadmium resistance, copper homeostasis, and propanediol utilization, were detected in the unprotected areas by metagenomic sequencing. Although PNCD protection improves water quality, agricultural activities around the park may affect water quality within the park and may account for the presence of bacteria capable of pesticide degradation and assimilation, evidencing possible anthropogenic impacts on the Caatinga.

  5. [Distribution of polycyclic aromatic hydrocarbons in water and sediment from Zhoushan coastal area, China].

    Science.gov (United States)

    Jiang, Min; Tuan, Le Huy; Mei, Wei-Ping; Ruan, Hui-Hui; Wu, Hao

    2014-07-01

    The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.

  6. Effects of uranium mining on ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1979-01-01

    This paper discusses the impact of mining on the principal aquifer in the Ambrosia Lake area, the Westwater Canyon Member of the Morrison Formation. Loss of potentiometric head has resulted in interformational migration of ground water. This migration has produced local deterioration in chemical quality of the ground water. 7 refs

  7. A STUDY OF BRACKISH WATER MEMBRANE WITH ULTRAFILTRATION PRETREATMENT IN INDONESIA´S COASTAL AREA

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-01-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30--61 L/m2·hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF--PS (Polysulfone-UF with total dissolved solid rejection about 96--98% and color rejection about 99--100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF--air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  8. A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area

    Directory of Open Access Journals (Sweden)

    Elis Hastuti

    2012-06-01

    Full Text Available Water pollution and sea water intrusion to water sources in coastal areas result lack of provision safe drinking water by the drinking water regional company or coastal community. The existing water treatment plant that operated on brackish surface water or groundwater feed requires improving process. Membrane process could be a choice to treat the quality of brackish water to the level of potable water that designed to lower cost with high stabil flux and longer lifetime. This research focus on application of pilot plant of brackish water treatment using Ultrafiltration (UF membrane-air lift system as pretreatment of Reverse Osmosis (RO membrane-low pressure. Brackish water sources contain high colloidal and suspended solids that can cause fouling load of RO membranes and impair its performance. UF pretreatment operation tested by addition of compressed air into the feed (air lift system, resulted stable flux, reduces membrane fouling and low feed pressure. A flux of RO with UF pretreatment can produce drinking water of 30–61 L/m2∙hour. It was observed, the good quality of RO permeate resulted by using a pretreatment of UF–PS (Polysulfone-UF with total dissolved solid rejection about 96–98% and color rejection about 99–100% at 5 or 8 bars of operation pressure. This paper concludes that performance of membrane technology with UF–air lift system pretreatment and RO membrane-low pressure could be accepted as condition of brackish water source in Indonesia coastal areas in producing drinking water.

  9. Ground-water resources of the El Paso area, Texas

    Science.gov (United States)

    Sayre, Albert Nelson; Livingston, Penn Poore

    1945-01-01

    El Paso, Tex., and Ciudad Juarez, Chihuahua, Mexico, and the industries in -that area draw their water supplies from wells, most of which are from 600 to 800 feet deep. In 1906, the estimated average pumpage there was about 1,000,000 gallons a day, and by 1935 it had increased to 15,400,000 gallons a day. The water-bearing beds, consisting of sand and gravel interbedded wire clay, tie in the deep structural trough known as the Hueco bolson, between the Organ and Franklin Mountains on the west, the Hueco, Finlay, and Malone Mountains on the east, the Tularosa Basin on the north, and the mountain ranges of Mexico on the south. From the gorge above El Paso to that beginning near Fort Quitman, about 90 miles southeast .of El Paso, the Rio Grande has eroded a flat-bottomed, steepwalled valley, 6 to 8 miles wide and 225 to 350 feet deep. No other large drainage channels have been developed on the bolson. The valley is known as the El Paso Valley, and the uneroded upland part of the bolson is called the Mesa. In the lowest parts of the El Paso Valley, the water-table is nearly at the surface. The quality of the underground water in the valley varies greatly both vertically and laterally. To a depth of about 400 to 500 feet it is in general too highly mineralized for municipal use, but between about. 500 and 900 feet good water may be obtained from several beds. In the beds between 500 and 900 feet the water level in wells is in places as. much as 20 feet lower than that in the shallow beds. Beneath the Mesa the water level .varies from about 200 feet beneath the surface, where the ground elevation is least, to about 400 feet. where it is highest. The water beneath the Mesa in general is of satisfactory quality and contains less than 500 parts per million of dissolved solids. Two cones of depression in the water table have been formed by the pumping near El Paso--one m the vicinity of the Mesa well field, the other around the Montana well field in the valley. The water

  10. Comparative study of physico-chemical parameters of drinking water from some longevity and non-longevity areas of China.

    Science.gov (United States)

    Du, Yajun; Luo, Kunli; Hussain, Rahib

    2017-06-01

    There is an obvious regional longevity phenomenon in China and many longevity counties are located in South China. This study was carried out to find the characteristics of elemental contents of drinking water in longevity areas in South China and the differences to non-longevity areas in China. A total of 128 drinking water samples were collected from longevity areas in South China (n = 40), non-longevity areas in South China (n = 74) and non-longevity areas in North China (n = 14) and 46 parameters of water were determined or calculated. The results showed that drinking water in longevity areas of South China had a high ratio of sum concentration of essential micro-elements in sum concentration of micro-elements (SCME) and a low ratio of sum concentration of hazardous micro-elements in SCME. The concentration of total hardness (TH) and strontium in drinking water was 157.82 mg/L and 82.1 μg/L, respectively, and they were 14.61 mg/L, 7.45 μg/L and 291.69 mg/L, 748.65 μg/L in the non-longevity areas of South and North China, respectively. The study concluded that drinking water containing 157.82 mg/L TH and 82.1 μg/L strontium in South China may be optimum to human health.

  11. WATER RESOURCES IN THE CONTEXT OF REGIONAL PLANNING. CASE STUDY: CLUJ-NAPOCA METROPOLITAN AREA

    Directory of Open Access Journals (Sweden)

    PAULA OLIVIA CIMPOIEŞ

    2012-04-01

    Full Text Available The issue of water resources is controversial because it reveals the complex needs of the population on a certain territory, depending on the analysis scale. Public utilities or water surfaces in the surrounding rural areas of a city are rarely paid much attention to in comparison to the urban centre, though they could provide comfort attributes, aesthetic value and leisure activities. Is it a matter of social fairness, political orientation or funding accessibility for a community to benefit from the water resources in the vicinity? The present study propos ed to analyse the metropolitan area of Cluj and explain why the distribution of resources varies according to physical conditions, distance or localities’ economic statute.

  12. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought.

    Science.gov (United States)

    Tipple, Brett J; Jameel, Yusuf; Chau, Thuan H; Mancuso, Christy J; Bowen, Gabriel J; Dufour, Alexis; Chesson, Lesley A; Ehleringer, James R

    2017-08-01

    Water availability and sustainability in the Western United States is a major flashpoint among expanding communities, growing industries, and productive agricultural lands. This issue came to a head in 2015 in the State of California, when the State mandated a 25% reduction in urban water use following a multi-year drought that significantly depleted water resources. Water demands and challenges in supplying water are only expected to intensify as climate perturbations, such as the 2012-2015 California Drought, become more common. As a consequence, there is an increased need to understand linkages between urban centers, water transport and usage, and the impacts of climate change on water resources. To assess if stable hydrogen and oxygen isotope ratios could increase the understanding of these relationships within a megalopolis in the Western United States, we collected and analyzed 723 tap waters across the San Francisco Bay Area during seven collection campaigns spanning 21 months during 2013-2015. The San Francisco Bay Area was selected as it has well-characterized water management strategies and the 2012-2105 California Drought dramatically affected its water resources. Consistent with known water management strategies and previously collected isotope data, we found large spatiotemporal variations in the δ 2 H and δ 18 O values of tap waters within the Bay Area. This is indicative of complex water transport systems and varying municipality-scale management decisions. We observed δ 2 H and δ 18 O values of tap water consistent with waters originating from snowmelt from the Sierra Nevada Mountains, local precipitation, ground water, and partially evaporated reservoir sources. A cluster analysis of the isotope data collected in this study grouped waters from 43 static sampling sites that were associated with specific water utility providers within the San Francisco Bay Area and known management practices. Various management responses to the drought, such as

  13. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    Directory of Open Access Journals (Sweden)

    J. Rozemeijer

    2012-08-01

    Full Text Available Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain a spatial image of the diverted river water propagation into a hydrologically complex polder area, the polder Quarles van Ufford in The Netherlands. We used anthropogenic gadolinium (Gd-anomaly as a tracer for river water that was diverted into the polder. A clear reduction in the river water contribution was found between very dry conditions on 5 August 2010 and very wet conditions on 22 October. Despite the large river water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate an integrated nutrient transport model.

  14. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  15. Water analysis from wells in Ezeiza and surrounding areas. Dissolved uranium

    International Nuclear Information System (INIS)

    Santagata, D.M.; Arguelles, Maria G.; Barbaro, Nestor O.

    2006-01-01

    In order to give an answer to the different social sectors, we sampled water from previously existing wells that reaches the Puelche aquifer. The uranium concentration was determined in these samples to obtain a preliminary checkup of water quality situation. For the analysis we considered the samples obtained inside the CAE as well as those sampled in the surrounding areas as Monte Grande, Claypole and Burzaco. The results show a correlation between the amount of dissolved salts and the presence of dissolved uranium. (author) [es

  16. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  17. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  18. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    Directory of Open Access Journals (Sweden)

    Hu Xueting

    2016-01-01

    Full Text Available Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that the water-dispersible TiO2 nanoparticles possess excellent adsorption capacities for Congo red, orange II, and methyl orange, which could be attributed to their good water-dispersibility and large specific surface area.

  19. Alternative Intake Station in Saguling Reservoir for The Needs of Raw Water in Bandung Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Marselina Mariana

    2018-01-01

    Full Text Available Bandung Metropolitan Area (BMA region is the upper watershed of Citarum with an area of ± 2338 km2. The status carried by BMA as a National Strategic Area from the perspective of economic encourage the increasing migration flows to BMA. These circumstances lead to an imbalance between supply and demand, in which on the one hand, demand for clean water is increasing. The potency of Saguling Reservoir as an alternative of raw water of BMA region in terms of quantity in this research was determined based on the determination of mainstay discharge. In this study, the intake site selection 11 monitoring posts will be carried out by reviewing the concentration of all parameters in Government Regulation No. 82 Year 2001 on any division of discharge grade using 5-grade Makov Discrete method (very dry, dry, normal, wet and very wet. In addition, the calculation of the value of Water Quality Index (WQI was done at each monitoring station for each division of discharge grade that has been done. The series of data flow and concentration parameters used in this study start from the year 1999 to 2014. The allocation of raw water discharge calculation for Saguling Reservoir in order to fulfill the needs of raw water in Bandung Metropolitan Area is 46,92m3/second (R5 dry for irrigation raw water supply and 29,53 92 m3/second (R10 dry for drinking water supply. Based on the assessment of the concentration of measured parameters and determination of Water Quality Index, it can be found that around Muara Ciminyak location is the most qualified location to be used as drinking raw water intake for Bandung Metropolitan Area. Based on this study, it also notes that the determination of the concentration of pollutant parameters needs to be done on the each division of discharge grade occurred.

  20. Assessment of Carbon Status in Marine Protected Area of Payung Island Waters, South Sumatera Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Anna Ida Sunaryo Purwiyanto

    2017-03-01

    Full Text Available CO2 is a greenhouse gas that receive more attention than the other gases because the properties of carbon easily deformed and diffuseed. Changes in the concentration of CO2 in the water will impact on changes in the amount of CO2 in the atmosphere that affect sea surface temperatures. It continuously will result in a change of marine capture fisheries. Payung Island is one of the important areas in South Sumatra that acts as the provider of the fishery. This because Payung Island is located in the mouth of Musi and Telang River covered by mangrove, has a very important ecological function. However, the condition of the carbon in the waters of the Payung Island has not explored further. This elementary study is to determine status on Payung Island waters as a sink or source of CO2. The study was conducted in June until August 2015. The research stages include surface water sampling, measurement of the CO2 in the atmosphere, the analysis of the concentration of Dissolved Inorganic Carbon (DIC and Total Alkalinity (TA, and partial pressure of carbon dioxide (pCO2 calculation.  Atmospheric CO2 were measured insitu, while the DIC and TA were analyzed using titration methods. Partial pressure of carbon dioxide (pCO2 obtained from the calculation using the software CO2Calc using data of  DIC, TA, nutrients and atmospheric CO2. The results showed that the content of DIC and TA on the Payung Island waters has similar distribution pattern  i.e. high in areas close to the river, and getting lower in the area which were closer to the sea. The comparisons between pCO2 atmosphere and pCO2 waters showed that Payung Island waters generally act as a carbon sink in area towards the sea but however, in the territorial waters adjacent to the river as a source of carbon.   Keywords: carbon, marine protected area, Payung Island waters

  1. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area

    Science.gov (United States)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.

    2018-04-01

    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  2. Environmental protection: private vegetable gardens on water protected areas in Ljubljana

    Directory of Open Access Journals (Sweden)

    Sara Strajnar

    2008-12-01

    Full Text Available The areas of allotment gardens and private vegetable gardens are two types of ‘small-scale agriculture’ on water protected areas in Ljubljana and surroundings. From the environmental protection point of view, these gardens are important for the intensity of production and large number of gardeners. In author’s graduation thesis the gardening habits have been investigated in detail. We combined data from fi eld work with numerous measurements of phytopharmaceutical products and nutrients in soil and vegetables.

  3. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988--1990

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the US Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suit-ability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988--90

  4. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  5. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  6. Water quality in the coastal area of Santa Marta (Colombia)

    International Nuclear Information System (INIS)

    Garcia Francisco; Palacio Carlos; Garcia Uriel

    2012-01-01

    Multivariate statistical techniques were used to investigate the temporal and spatial variations of water quality at the Santa Marta coastal area where a submarine out fall that discharges 1 m3/s of domestic wastewater is located. Two-way analysis of variance (ANOVA), cluster and principal component analysis and Krigging interpolation were considered for this report. Temporal variation showed two heterogeneous periods. From December to April, and July, where the concentration of the water quality parameters is higher; the rest of the year (May, June, August-November) were significantly lower. The spatial variation reported two areas where the water quality is different, this difference is related to the proximity to the submarine out fall discharge. Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  7. An appraisal of ground water for irrigation in the Wadena area, central Minnesota

    Science.gov (United States)

    Lindholm, F.G.

    1970-01-01

    The Wadena area is part of a large sandy plain in central Minnesota whose soils have low water-holding capacity. Drought conditions which adversely affect plant growth frequently occur in the summer when moisture is most needed. To reduce the risk of crop failure in the area supplemental irrigation is on the increase.

  8. Arsenic in drinking water and adverse pregnancy outcome in a arseniasis-endemic area in northeastern Taiwan

    International Nuclear Information System (INIS)

    Yang, C.-Y.; Chang, C.-C.; Tsai, S.-S.; Chuang, H.-Y.; Ho, C.-K.; Wu, T.-N

    2003-01-01

    The well water in Lanyang Basin, which is located in the northeaster portion of Taiwan island, was found to have high levels of arsenic rangin from undetectable levels (<0.15 ppb) to 3.59 ppm. We performed a study to compare the risk of adverse pregnancy outcomes (preterm delivery an birthweight) between an area with historic high well water arsenic level (arsenic-exposed area (AE)) and a comparison area with no historic evidence of arsenic water contamination (non-arsenic-exposed area (NAE)). The mea birth weight in the AEs and NAEs were 3132.6 and 3162.6 g, respectively Babies born in AEs were on average 30 g lighter than those born in NAEs. AE had a higher rate of preterm delivery than NAEs (3.74% vs 3.43%). The result of this study suggest that, after adjustment for potential confounders arsenic exposure from drinking well water was associated, although not significantly, with the risk of preterm delivery, with an odds ratio of 1.1 (0.91-1.33). The estimated reduction in birth weight was 29.05 g (95 CI=13.55-44.55). The findings from this investigation provide evidence for potential role for arsenic exposure through drinking water in increasing th risk of low birthweight

  9. Providing Longitudinal Connection In Case Of Cross Sluicing On Water Bodies In Banat Hydrographic Area

    Directory of Open Access Journals (Sweden)

    Hoancă Diana

    2014-10-01

    Full Text Available On Banat Hydrographic Area level, there are a series of works which put hydrological pressures on bodies of water: accumulations, damming, water diversions, regulations, shore protection, etc. These works were created in order to ensure water demand, defend against floods, regulate discharges, and combat humidity excess. Speaking justly, they have an important socioeconomic role. Among the negative effects of longitudinal connection interruption of water bodies we can mention, the risk of not achieving the positive ecological potential of water bodies in accordance with the Water Framework Directive, the reduction of the aquatic biodiversity, the reduction or even extinction of certain aquatic species and the alteration of the flow process. Because the negative effects of the hydromorphological alterations, especially those due to the interruption of the longitudinal connection, have a significant impact on the aquatic biodiversity. At Banat Hydrographic Area level, a series of measures, have been identified for the rehabilitation of the affected water courses: the removal of the hydrotechnical constructions from the water body if they have lost their functional features, building of passages for the migration of the ichthyofauna, reconnecting of the affluents and the disconnected arms as well as other measures intended to bring things back to their natural state. The implementation of these measures is made according to the importance and the extent of their positive impact as opposed to the negative effect that might occur as a consequence of their application. Analyzing the measures aforementioned and taking into consideration the characteristics of the hydromorphological pressures on water bodies in Banat Hydrographic Area, a number of measures regarding control are supplied in this paper.

  10. Towards a New Policy for Climate Adaptive Water Management in Flanders: The Concept of Signal Areas

    Directory of Open Access Journals (Sweden)

    Peter De Smedt

    2014-05-01

    Full Text Available In Flanders, the Government has recently established an innovative policy framework to preserve the water storage capacity in flood-prone areas. In this context, the concept of ‘Signal Areas’ (signaalgebieden has been created. These areas are still undeveloped areas with a hard planning destination (residential and industrial areas located in flood-prone areas. The framework outlines in what way one needs to deal with the flood risk in these areas. The intention is to work with tailor-made solutions for each separate area. For this purpose, a comprehensive tool-box is available, such as land reparcelling, spatial destination or zoning swapping (bestemmingsruil, regulations regarding appropriate construction methods and land use in urban planning regulations or in public utility servitudes, and the application of a sharpened Water Test. The final objective is to create an efficacious, area-oriented adaptation strategy for climate-proof spatial planning. In this contribution, the author will provide an insight into the legal design of the above-mentioned concepts and instruments, how they can contribute to a stronger linkage between water management and spatial planning and therefore to a solid climate change adaptation strategy, as well as the factors of success and failure of this new policy framework.

  11. Map showing selected surface-water data for the Alton-Kolob coal-fields area, Utah

    Science.gov (United States)

    Price, Don

    1982-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Alton-Kolob coal-fields area, Utah. Streamflow records used to compile the map and the following table were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas were delineated form a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964).

  12. Geochemistry of ground water and the source of contamination of fluoride in the drinking water of the Naranji area, district Swabi, NWFP, Pakistan

    International Nuclear Information System (INIS)

    Danishwar, S.; Shah, M.T.

    1997-01-01

    Inhabitants of the Naranji village are known for their yellow coloration of teeth throughout the Mardan division. A general survey of the area shows prevalence of dental and skeletal fluorosis of varied degree in the village. A detailed geochemical analysis of ground water of the village indicates fluoride concentration of 13.5 mg l-1 which is about 9 times more than WHO's maximum contaminant level. The source of high fluoride in drinking water is considered to be the alkaline rocks of Koga Complex. Tube well water should be supplied to the area in order to avoid the fluoride contamination. (author)

  13. Radioecological state of some surface water systems of contaminated areas of both Gomel and Mogilev Regions

    International Nuclear Information System (INIS)

    Datskevich, P. I.; Komissariv, F. D.; Khvale', O. D.; Basharina, L. P.; Lobach, I. L.

    1997-01-01

    The radioecological situation of different ecosystems of Belarus and their components has been analysed. Such components of the surface water ecosystems as water, suspensions, sediments and soils of water-collection areas were used for the investigation of the content of cesium 137 and strontium 90. The received data were given since 1990. The content of cesium 137 and strontium 90 in the components of water ecosystems was counted in the laboratory conditions by means of standard methods of beta radiometry, semiconductor gamma spectrometry and radiochemistry. The error of measurement of radioactivity was not higher than 25 and 35% for cesium 137 and strontium 90 accordingly. Water ecosystems were distinguished by the state of contamination of water-collection areas and hydrological parameters. These and some other reasons considered in the article influence on the character of cesium 137 and strontium 90 behaviour in water ecosystems

  14. Ten-month recolonization of the k-area cooling water system by the Asiatic clam Corbicula fluminea

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1978-01-01

    The Asiatic clam Corbicula fluminea was found in the Savannah River near Augusta, Georgia, in 1973. In 1975, Corbicula clogged heat exchangers and caused a shutdown of P Reactor, one of three operating nuclear production reactors (P, K, and C) at the Savannah River Plant (SRP). Clams were subsequently removed from K-Area and C-Area cooling water systems. At K Area, large volumes of river water are discharged into three 23-megaliter basins (Figure 1) where some settling occurs before the water is pumped through heat exchangers in the reactor area. The deposited silt provides a suitable substrate for Corbicula growth and reproduction. The silt must be removed at regular inervals to prevent heat exchanger pluggage arising from high populations of clams in the basins. The 186 basins at K Area were sampled to determine: the buildup of the Corbicula population since the basins were last cleaned, the size/age distribution of the clam population, and the occurrence of clam larvae. In addition, debris from flushes of Emergency Cooling Water Headers CW-39 and RW-1 were analyzed to determine: the relative abundance of live and dead clams, the size/age distribution of clams, and the volume of individual debris components

  15. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  16. Focus on CSIR research in water resources: conservation planning for river and estuarine biodiversity in the Fish to Tsitsikamma water management area

    CSIR Research Space (South Africa)

    Roux, D

    2007-08-01

    Full Text Available for river and estuarine biodiversity in the Fish- to-Tsitsikamma water management area Project Aims To put in practice and refine, through a pilot study in the Eastern Cape Province, the policy and planning tools developed for systematic conservation... engagement in developing the technical approach to river prioritization and selection, as well as the reviewing of results to facilitate buy-in and ownership of the product. Project Description The Fish to Tsitsikamma Water Management Area is one...

  17. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Science.gov (United States)

    Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m. PMID:28903191

  18. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Directory of Open Access Journals (Sweden)

    Jacob Sharvit

    2007-09-01

    Full Text Available The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primarypurpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960.A magnetic map of the survey area (3.5 km2 on a 0.5 m grid was created revealing theanomalies at sub-meter accuracy. For each investigated target location a correspondingferro-metallic item was dug out, one of which turned to be very similar to a part of thecrashed airplane. The accuracy of location was confirmed by matching the position of theactual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m.

  19. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  20. Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA

    Science.gov (United States)

    Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.

    2014-04-01

    We investigate relationships between environmental governance and water quality in two adjacent growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many common biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining how differences in governance might affect environmental quality. We conceptualize possible linkages in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly by using the change in the sale price of single-family residential properties. Governance may then influence water quality directly through riparian restoration resulting from monitoring results and indirectly through land use policy. We investigate evidence to substantiate these linkages. Our results showed that changes in monitoring regimes and land development patterns differed in response to differences in growth management policy and environmental governance systems. Our results also showed similarities in environmental quality responses to varying governance systems. For example, we found that sales prices responded positively to improved water quality (e.g., increases in DO and reductions in bacteria counts) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in water temperature over time, despite an expansion of these urban areas of more than 20 % over 24 years. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefited indirectly from land use policy. A combination of long-term legacy effects of land development, and a

  1. Assessment of the dynamics of the radioactivity contents in surface waters in contaminated areas

    International Nuclear Information System (INIS)

    Komissarov, F.D.; Datskevich, P.I.; Golikov, Y.N.; Basharina, L.P.; Churack, T.N.; Khvaley, O.D.

    1997-01-01

    In the connection with Chernobyl APS accident, since 1988 a network of sites was established for radioecological monitoring of surface water systems, mainly, small rivers on all Belarus territory. Small rivers are the principal way of radionuclides run off in liquid and solid discharges during rains and high-floods and their re-distribution in landscapes. The components of water systems radio-monitoring were water and water suspensions, area water-collection, bottom deposits and biota. In the paper the data are cited of radioecological studies of water systems components. Their analysis is done and some conclusions made which may be used for the development of radioecological prognosis and for taking environmental measures

  2. Nitrate and nitrite contamination of sub-surface water in some areas of North West Frontier Province (N.W.F.P.) Pakistan

    International Nuclear Information System (INIS)

    Khan, M.; Khawaja, M.A.; Imdadullah

    1998-01-01

    Over the past few years, nitrate and nitrite contamination of sub-surface water samples from Peshawar, Charsada, Mardan and Nowshera districts of NWFP has been studied. In all the areas under study, nitrate concentration of sub-surface water was found to be below WHO approved limit of 45 mg/l. Whereas city area after 1987 showed a decreasing level of nitrate contamination of sub-surface water, it appeared to be on the increase in water samples from the outskirts of Peshawar-Charsada road. No uniform increasing or decreasing patterns of nitrate contamination were observed for water samples from cantonment, University and Hayatabad, areas of Mardan, Charsada and Nowshera under study. The nitrate contamination of sub-surface water appeared to be due to both the agricultural activities as well as human and animal wastes. A few sub-surface water samples from Peshawar city, Mardan and Nowshera areas indicated high concentration of nitrite, which is alarming in view of the earlier reports showing absence of nitrite in water samples from these areas. However, since 1993, nitrite presence has not been detected in sub-surface water samples from all the areas under present investigation. (author)

  3. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  4. Sachet drinking water in Ghana’s Accra-Tema metropolitan area: past, present, and future

    Science.gov (United States)

    Weeks, John R.; Fink, Günther

    2013-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana’s Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision. PMID:24294481

  5. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    International Nuclear Information System (INIS)

    1996-01-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility

  6. Implementation of Water Safety Plans (WSPs): A Case Study in the Coastal Area in Semarang City, Indonesia

    Science.gov (United States)

    Budiyono; Ginandjar, P.; Saraswati, L. D.; Pangestuti, D. R.; Martini; Jati, S. P.

    2018-02-01

    An area of 508.28 hectares in North Semarang is flooded by tidal inundation, including Bandarharjo village, which could affect water quality in the area. People in Bandarharjo use safe water from deep groundwater, without disinfection process. More than 90% of water samples in the Bandaharjo village had poor bacteriological quality. The aimed of the research was to describe the implementation of Water Safety Plans (WSPs) program in Bandarharjo village. This was a descriptive study with steps for implementations adopted the guidelines and tools of the World Health Organization. The steps consist of introducing WSPs program, team building, training the team, examination of water safety before risk assessment, risk assessment, minor repair I, examination of water safety risk, minor repair II (after monitoring). Data were analyzed using descriptive methods. WSPs program has been introduced and formed WSPs team, and the training of the team has been conducted. The team was able to conduct risks assessment, planned the activities, examined water quality, conduct minor repair and monitoring at the source, distribution, and households connection. The WSPs program could be implemented in the coastal area in Semarang, however regularly supervision and some adjustment are needed.

  7. Naturally occurring radionuclides in food and drinking water from a thorium-rich area

    International Nuclear Information System (INIS)

    Costa Lauria, Dejanira da; Rochedo, Elaine R.R.; Godoy, Maria Luisa D.P.; Santos, Eliane E.; Hacon, Sandra S.

    2012-01-01

    This paper focuses on a survey of uranium and thorium decay chain radionuclides in food and drinking water from the thorium-rich (monazite-bearing) region of Buena, which is located in the state of Rio de Janeiro, Brazil. The radionuclide concentration values in the food and drinking water from Buena reached values higher than 100-fold the international reference values. The daily intake of radionuclides by the local population is similar to that of another high background radiation area in Brazil, but the intake is higher than that of residents from a normal background radiation area. Approximately 58 % of the food consumed by Buena inhabitants is produced locally. Based on that figure, locally produced food and the dilution of total radionuclides in the diet of residents caused by food importation are both highly relevant to a population's intake of radionuclides. The concentration values for 210 Pb and the radium isotopes in drinking water from Buena are among the highest values to be reported in the literature. 228 Ra is the most important radionuclide ingested with both food and water among the inhabitants of Buena. (orig.)

  8. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 1993

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Rivera-Dirks, C.; Coriz, F.

    1995-07-01

    Area G, in Technical Area 54, has been the principle facility at Los Alamos National Laboratory for the storage and disposal of low-level and transuranic (TRU) radioactive wastes since 1957. The current environmental investigation consisted of ESH-19 personnel who collected soil and single-stage water samples around the perimeter of Area G to characterize possible contaminant movement through surface-water runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241 (soil only), and cesium 137. The metals, mercury, lead, and barium, were analyzed using x-ray fluorescence

  9. Cholera outbreak secondary to contaminated pipe water in an urban area, West Bengal, India, 2006.

    Science.gov (United States)

    Bhunia, Rama; Ramakrishnan, Ramachandran; Hutin, Yvan; Gupte, Mohan D

    2009-01-01

    Outbreaks of cholera are common in West Bengal. In April 2006, Garulia municipality reported a cluster of diarrhea cases. We investigated this cluster to identify the etiological agent, source of transmission and propose control measures. We defined a case of diarrhea as occurrence of > or =3 loose/watery stools a day among the residents of Garulia since April 2006. We searched for cases of diarrhea in health care facilities and health camp. We conducted a gender- and age-matched case-control study to identify risk factors. We inspected the sanitation and water supply system. We collected rectal swabs from diarrhea patients and water specimens from the affected areas for laboratory investigation. Two hundred and ninety-eight cases of diarrhea were reported to various health care facilities (attack rate: 3.5/1000, no deaths). The attack rate was highest among children (6.4/1000). Vibrio cholerae El Tor O1 Inaba was isolated from two of 7 rectal swabs. The outbreak started on 10 April 2006, peaked on 26 April and lasted till 6 May. Cases clustered in an area distal to leaking water pipelines. Drinking municipal water exclusively was significantly associated with the illness (OR 13, 95% CI=6.5-27). Eight of the 12 water specimens from the affected area had fecal contamination and poor chlorine content. This outbreak was due to a contaminated municipal piped water supply and V. cholera 01 Inaba was possibly the causative organism.

  10. Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California

    Science.gov (United States)

    Lamb, Charles E.

    1980-01-01

    The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)

  11. Water quality and hydrology in the Fort Belvoir area, Virginia, 1954-55

    Science.gov (United States)

    Durfor, Charles N.

    1961-01-01

    This report summarizes the results of an investigation of water quality and hydrology in the Fort Belvoir, Va., area for the period August 1954 to September 1955. It summarizes and evaluates information about the water resources of this area that are pertinent to the choice of location and operation of an Army nuclear power reactor. The quantity, quality, nature, and use of the local water that might be affected by the location and operation of a reactor in the area were subjects of investigation. Variations in the quality of the water caused by variation in streamflow, tidal effects, and pollution were important facets of the investigation. During extended periods of low streamflow in the Potomac River (usually in the late summer months), salty water moves upstream from Chesapeake Bay and increases the dissolved solids content of the surface waters adjacent to Fort Belvoir. When the streamflow is low the concentration of dissolved solids in the water near the river bottom exceeds that near the surface. The waters in Gunston Cove usually contain more dissolved oxygen than those in the Potomac River. During the summer, the content of dissolved oxygen in the cove waters frequently exceeds 100 percent of saturation. Surface floats that were released on a flood tide in Gunston Cove moved toward the inner portion of the cove in the same direction as the wind and the tide. The maximum average velocity of these floats was 0.65 feet per second. On an ebb tide, many surface floats that were released in Gunston Cove moved toward the inner portion of the cove in the direction of the wind, in opposition to the direction of the tidal movement. Floats released near the mouth of the cove on the same tide, moved with the tide out of the cove through a narrow pass at the end of a submerged sandbar extending from the Fort Belvoir shoreline. The maximum average velocity of the floats in the pass on this ebb tide was 0.85 feet per second. Measurements of subsurface flow direction

  12. Research for Preseismic Phenomena on the Underground Water Level and Temperature in Selected Areas of Greece

    Science.gov (United States)

    Contadakis, M. E.; Asteriadis, G.

    1997-08-01

    A comprehensive study of the tectonic activity require the contribution of a variety of methods, geological, seismic, geodetic, satellite etc., being currently available in our days. On the other hand, the risk evaluation in areas of high seismicity, like this one of the South Balkan Peninsula, is of vital importance. To this purpose an interdisciplinary following up of the tectonic activity in the area may provide the best provision to the administration for an effective confrontation and intervention for the elimination of the possible disastrous effects in human life cost, financial and social cost of the communities, to which may result a strong earthquake. Among the various methods of indirect monitoring of the tectonic activity in an area, which in addition is of a low cost, is that of the following up of the underground water level and temperature changes in the area of interest. This method is based on the fact that tectonic activity is expected to result to tectonic stresses producing alterations to the local water table which in its turn is expected is expected to be observed as variation of the underground water level and temperature. The method of the following up of the underground water and temperature changes has been applied, among others by the Department of Geodesy and Surveying of the University of Thessaloniki in two areas of high seismicity in Greece: (a) The seismic zone of the lake Volvi in North Greece (40.5 deg N and 23.5 deg E) for ten years (1983-1992) and (b) the area of South Thessaly (39.2 deg N and 21 deg E) for three years (1994-1996). The statistical analysis of the observations, shows that the low frequency constituent (Sa,Ssa,Mf,Mm) of the earth tides and the barometric pressure have a small influence on the water level measurements. The shallow underground water network of South Thessaly is more sensitive to the non tectonic factors than the network of Volvi. Tentative correlation of the underground wat! er and temperature

  13. Availability of ground water in the Blackstone River area Rhode Island and Massachusetts

    Science.gov (United States)

    Johnston, Herbert E.; Dickerman, David C.

    1974-01-01

    The Blackstone River study area covers 83 square miles of northern Rhode Island and 5 square miles of adjacent Massachusetts (fig. 1). It includes parts of the Blackstone, Moshassuck, and Tenmile River basins, and a coastal area that drains to the brackish Seekonk and Providence Rivers. In Rhode Island, all or parts of the suburban towns of Cumberland, Lincoln, North Smithfield, and Smithfield and all or parts of the cities of Central Falls, East Povidence, Pawtucket, Providence, and Woonsocket are within the study area. Also included are parts of the towns Attleboro and North Attleborough in Massachusetts. In 1970, total population was about 240,000, which was equivalent to about one-fourth of the total population of Rhode Island. Fresh water usage in 1970 by public-supply systems and self-supplied industry was about 33 mgd (million gallons per day), which was equal to 22 percent of total fresh water use in Rhode Island for all purposes except generation of electric power (fig. 2). Anticipated increases in population and per capita water requirements are likely to cause the demand for water to more than double within the next 50 years. A significant part of this demand can be met from wells that tap the principal streams. This aquifer yielded an average of 10 mgd in 1970 and is capable of sustaining a much higher yield. The primary objectives of the study were to determine and map the saturated thickness and transmissivity of the stratified-drift aquifer and to assess the potential sustained yield of those parts of the aquifer favorable for large-scale development of water. A secondary objective was to describe ground-water quality and to evaluate the impact of induced infiltration of polluted stream water on the quality of native ground water. This report is based on analysis of drillers' records of more than 700 wells and borings which include 462 lithologic logs; 35 specific-capacity determinations; 12 aquifer tests, including detailed tests at two sites to

  14. Development of Historical Water Table Maps of the 200 West Area of the Hanford Site (1950-1970)

    International Nuclear Information System (INIS)

    Kinney, Teena M.; McDonald, John P.

    2006-01-01

    A series of detailed historical water-table maps for the 200-West Area of the Hanford Site was made to aid interpretation of contaminant distribution in the upper aquifer. The contaminants are the result of disposal of large volumes of waste to the ground during Hanford Site operations, which began in 1944 and continued into the mid-1990s. Examination of the contaminant plumes that currently exist on site shows that the groundwater beneath the 200-West Area has deviated from its pre-Hanford west-to-east flow direction during the past 50 years. By using historical water-level measurements from wells around the 200-West Area, it was possible to create water-table contour maps that show probable historic flow directions. These maps are more detailed than previously published water-table maps that encompass the entire Hanford Site.

  15. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    Science.gov (United States)

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    Low dissolved oxygen concentrations in the waters of Hood Canal threaten marine life in late summer and early autumn. Oxygen depletion in the deep layers and landward reaches of the canal is caused by decomposition of excess phytoplankton biomass, which feeds on nutrients (primarily nitrogen compounds) that enter the canal from various sources, along with stratification of the water column that prevents mixing and replenishment of oxygen. Although seawater entering the canal is the largest source of nitrogen, ground-water discharge to the canal also contributes significant quantities, particularly during summer months when phytoplankton growth is most sensitive to nutrient availability. Quantifying ground-water derived nutrient loads entering an ecologically sensitive system such as Hood Canal is a critical component of constraining the total nutrient budget and ultimately implementing effective management strategies to reduce impacts of eutrophication. The amount of nutrients entering Hood Canal from ground water was estimated using traditional and indirect measurements of ground-water discharge, and analysis of nutrient concentrations. Ground-water discharge to Hood Canal is variable in space and time because of local geology, variable hydraulic gradients in the ground-water system adjacent to the shoreline, and a large tidal range of 3 to 5 meters. Intensive studies of ground-water seepage and hydraulic-head gradients in the shallow, nearshore areas were used to quantify the freshwater component of submarine ground-water discharge (SGD), whereas indirect methods using radon and radium geochemical tracers helped quantify total SGD and recirculated seawater. In areas with confirmed ground-water discharge, shore-perpendicular electrical resistivity profiles, continuous electromagnetic seepage-meter measurements, and continuous radon measurements were used to visualize temporal variations in ground-water discharge over several tidal cycles. The results of these

  16. Water pollution in relation to mineral exploration: a case study from Alayi-Ovim area of southeastern Nigeria.

    Science.gov (United States)

    Ibe, Kalu K; Akaolisa, Casmir C Zanders

    2012-05-01

    Water samples from rivers, streams, springs, and shallow wells in Alayi-Ovim area of southeast Nigeria have been analyzed for Pb, Ca, Mg, Fe, Mg, PO(4), NO(3), CO(3), SO(4), Cl, and pH. The analyses were carried out using atomic absorption spectrometer and Hach Direct Reading Equipment. Results of the analyses from the area conform to the WHO (1995) standards for drinking water. However, the results show relative enrichment of Ca, pH, Mg, CO(3), and Cl. Low values were obtained for Fe, SO(4), and NO(3). While the Cl and Pb enrichment in the area north of Alayi-Ovim axis is attributed to proximity to the lead-zinc and chloride-rich formations of the Turonian Eze-Aku and the Albian Asu River; the Ca, Mg, SO(4), and CO(3) enrichment in Southern part of Alayi-Ovim is due to the limestone-bearing Late Maastrichtian Nsukka Formation. Furthermore, the very low values of less than 5 ppm for these characters in water in the central region correlate well with the relatively clean Maastrichtian quartz arenite Ajali Sandstone Formation. The Pb-Zn and Cl incursions into the water system from the Older Albian Asu River/Turonian Eze-Aku Formations in the northern part of Alayi-Ovim area and the leaching of Mg, and Ca into the water system in the Maastrichtian limestone area in the south thus constitute geochemical indices for chemical pollution and mineral exploration for brine and dolomitic limestone in the area.

  17. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Statistical analysis of lake levels and field study of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015: Chapter A of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Diekoff, Aliesha L.; Rosenberry, Donald O.; White, Eric A.; Erickson, Melinda L.; Morel, Daniel L.; Heck, Jessica M.

    2016-10-19

    Water levels declined from 2003 to 2011 in many lakes in Ramsey and Washington Counties in the northeast Twin Cities Metropolitan Area, Minnesota; however, water levels in other northeast Twin Cities Metropolitan Area lakes increased during the same period. Groundwater and surface-water exchanges can be important in determining lake levels where these exchanges are an important component of the water budget of a lake. An understanding of groundwater and surface-water exchanges in the northeast Twin Cities Metropolitan Area has been limited by the lack of hydrologic data. The U.S. Geological Survey, in cooperation with the Metropolitan Council and Minnesota Department of Health, completed a field and statistical study assessing lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes. This report documents the analysis of collected hydrologic, water-quality, and geophysical data; and existing hydrologic and geologic data to (1) assess the effect of physical setting and climate on lake-level fluctuations of selected lakes, (2) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (3) estimate general ages for waters extracted from the wells, and (4) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Statistical analyses of lake levels during short-term (2002–10) and long-term (1925–2014) periods were completed to help understand lake-level changes across the northeast Twin Cities Metropolitan Area. Comparison of 2002–10 lake levels to several landscape and geologic characteristics explained variability in lake-level changes for 96 northeast Twin Cities Metropolitan Area lakes. Application of several statistical methods determined that (1) closed-basin lakes (without an active outlet) had larger lake-level declines than flow-through lakes with an outlet; (2

  19. Individual treatment of hotel and restaurant waste water in rural areas.

    Science.gov (United States)

    Van Hulle, S W H; Ghyselbrecht, N; Vermeiren, T J L; Depuydt, V; Boeckaert, C

    2012-01-01

    About 25 hotels, restaurants and pubs in the rural community Heuvelland are situated in the area designated for individual water treatment. In order to meet the legislation by the end of 2015, each business needs to install an individual waste water treatment system (IWTS). To study this situation, three catering businesses were selected for further research. The aim of the study was to quantify the effluent quality and to assess IWTS performance for these catering businesses. First of all, the influence of discharging untreated waste water on the receiving surface water was examined. The results showed a decrease in water quality after the discharge point at every business. With the collected data, simulations with the software WEST were performed. With this software two types of IWTSs with different (buffer) volumes were modelled and tested for each catering business. The first type is a completely mixed activated sludge reactor and the second type is a submerged aerobic fixed-bed reactor. The results of these simulations demonstrate that purification with an IWTS is possible if the capacity is large enough and if an adequate buffer volume is installed and if regular maintenance is performed.

  20. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Directory of Open Access Journals (Sweden)

    Oszczapińska Katarzyna

    2018-01-01

    Full Text Available The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll “a”, reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake and 2014/2015 (Dojlidy. The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  1. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Science.gov (United States)

    Oszczapińska, Katarzyna; Skoczko, Iwona; Szczykowska, Joanna

    2018-02-01

    The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll "a", reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake) and 2014/2015 (Dojlidy). The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  2. Estimation of area and income elasticities of water demand in a number of cities and towns in Gauteng

    OpenAIRE

    2012-01-01

    M.Ing. Water demand prediction can be useful for future planning and has a significant economic effect on a city, town or suburb. There are numerous factors influencing water demand and therefore influencing the prediction thereof. The effect of each of these factors on the water demand is called the elasticity of that factor. The main aim of this study is to determine area and income elasticities of demand. This will enable the reader to predict water demand by taking stand size (area) an...

  3. Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island

    Science.gov (United States)

    Masterson, John P.; Granato, Gregory E.

    2013-01-01

    The Rhode Island Water Resources Board is considering use of groundwater resources from the Big River Management Area in central Rhode Island because increasing water demands in Rhode Island may exceed the capacity of current sources. Previous water-resources investigations in this glacially derived, valley-fill aquifer system have focused primarily on the effects of potential groundwater-pumping scenarios on streamflow depletion; however, the effects of groundwater withdrawals on wetlands have not been assessed, and such assessments are a requirement of the State’s permitting process to develop a water supply in this area. A need for an assessment of the potential effects of pumping on wetlands in the Big River Management Area led to a cooperative agreement in 2008 between the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island. This partnership was formed with the goal of developing methods for characterizing wetland vegetation, soil type, and hydrologic conditions, and monitoring and modeling water levels for pre- and post-water-supply development to assess potential effects of groundwater withdrawals on wetlands. This report describes the hydrogeology of the area and the numerical simulations that were used to analyze the interaction between groundwater and surface water in response to simulated groundwater withdrawals. The results of this analysis suggest that, given the hydrogeologic conditions in the Big River Management Area, a standard 5-day aquifer test may not be sufficient to determine the effects of pumping on water levels in nearby wetlands. Model simulations showed water levels beneath Reynolds Swamp declined by about 0.1 foot after 5 days of continuous pumping, but continued to decline by an additional 4 to 6 feet as pumping times were increased from a 5-day simulation period to a simulation period representative of long-term average monthly conditions. This continued decline in water levels with

  4. Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US

    Directory of Open Access Journals (Sweden)

    Amira Oun

    2014-11-01

    Full Text Available Most of the waterborne disease outbreaks observed in North America are associated with rural drinking water systems. The majority of the reported waterborne outbreaks are related to microbial agents (parasites, bacteria and viruses. Rural areas are characterized by high livestock density and lack of advanced treatment systems for animal and human waste, and wastewater. Animal waste from livestock production facilities is often applied to land without prior treatment. Biosolids (treated municipal wastewater sludge from large wastewater facilities in urban areas are often transported and applied to land in rural areas. This situation introduces a potential for risk of human exposure to waterborne contaminants such as human and zoonotic pathogens originating from manure, biosolids, and leaking septic systems. This paper focuses on waterborne outbreaks and sources of microbial pollution in rural areas in the US, characterization of the microbial load of biosolids and manure, association of biosolid and manure application with microbial contamination of surface and groundwater, risk assessment and best management practice for biosolids and manure application to protect water quality. Gaps in knowledge are identified, and recommendations to improve the water quality in the rural areas are discussed.

  5. The economic value of detailed soil survey in a drinking water collection area in the Netherlands

    NARCIS (Netherlands)

    Knotters, M.; Vroon, H.R.J.

    2015-01-01

    In large parts of the Netherlands crop growth depends on the water table. If groundwater is withdrawn the water table is lowered and agricultural crop production may be reduced. Farmers in drinking water collection areas are legally compensated for these crop yield reductions. Soil maps are used to

  6. Investigations for heavy metals pollution in the Nile water in Khartoum area using XRF

    International Nuclear Information System (INIS)

    Salih, Saadia Elsir

    1998-06-01

    The purpose of this study was to perform measurements for heavy metals pollution in the Nile water in Khartoum area. Ten locations were selected for the study on the white Nile, the Blue Nile and the Nile. Standard methods were used for samples collection and preparation for the measurements using XRF. Nine elements were observed and their concentrations determined in the various locations. These Ti, Cr, Fe, Cu, Zn, As, Pb, Zr, and Se. From the performed measurements for heavy metals pollution in the Nile water in Khartoum area using the XRF method the following conclusions can be made: There is no heavy metal pollution in the Nile water in Khartoum area resulting from industrial activities. However, there are indications for possible Pb pollution resulting from automobile emission. - The concentrations for the observed heavy metals, except Fe, were much below the maximum permissible international levels provided by the USA, EEC and WHO. - The origin for the observed concentrations of heavy metals, except for Pb, was considered to be soil and silt carried by river in it's journey from the Ethiopian Highlands and lake Victoria. (Author)

  7. Evaluation of treated sewage reuse potential and membrane-based water reuse technology for the Bangkok Metropolitan area.

    Science.gov (United States)

    Chiemchaisri, Chart; Chiemchaisri, Wilai; Prasertkulsak, Sirilak; Hamjinda, Nutta Sangnarin; Kootatep, Thammarat; Itonaga, Takanori; Yamamoto, Kazuo

    2015-01-01

    Only 3.4% of total water use in the Bangkok Metropolitan area is reused treated sewage. This study anticipates that further treated-sewage reuse in industrial sectors, commercial buildings and public parks, in addition to present in-plant and street cleaning purposes, would increase total water reuse to about 10%. New water reuse technologies using membrane bioreactor (MBR) and microfiltration (MF) as tertiary treatment were implemented to assess their potential for their application in the Bangkok Metropolitan area. The MBR was applied to the treatment of raw sewage in a central treatment plant of the Bangkok Metropolitan area. The MF membrane was used for polishing the effluent of the treatment plant. The results show the quality of treated water from MBR and tertiary MF treatment could meet stringent water reuse quality standard in terms of biochemical oxygen demand, suspended solids and biological parameters. Constant permeate flux of the membrane was achieved over long-term operation, during which inorganic fouling was observed. This is due to the fact that incoming sewage contains a considerable amount of inorganic constituents contributed from storm water and street inlet in the combined sewerage systems. The total cost of the MBR for sewage treatment and production of reuse water is estimated to be about USD1.10/m3.

  8. Effects of 1992 farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota

    Science.gov (United States)

    Delin, G.N.; Landon, M.K.; Lamb, J.A.; Dowdy, R.H.

    1995-01-01

    The Management Systems Evaluation Area (MSEA) program was a multiscale, interagency initiative to evaluate the effects of agricultural systems on water quality in the midwest corn belt. The primary objective of the Minnesota MSEA was to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The 65-hectare Minnesota MSEA was located in the Anoka Sand Plain near the town of Princeton, Minnesota. Three fanning systems were evaluated: corn-soybean rotation with ridge-tillage (areas B and D), sweet corn-potato rotation (areas A and C), and field corn in consecutive years (continuous corn; area E). Water samples were collected four different times per year from a network of 22 multiport wells and 29 observation wells installed in the saturated zone beneath and adjacent to the cropped areas.

  9. Scientific information in support of water resource management of the Big River area, Rhode Island

    Science.gov (United States)

    Armstrong, David S.; Masterson, John P.; Robinson, Keith W.; Crawley, Kathleen M.

    2015-01-01

    The Rhode Island Water Resources Board (RIWRB) is concerned that the demand for water may exceed the available public water supply in central and southern Rhode Island. Although water is often assumed to be plentiful in Rhode Island because of abundant rainfall, an adequate supply of water is not always available everywhere in the state during dry periods. Concerns that water demand may exceed supply are greatest during the summer, when lower water levels and increased drought potential combine with seasonal increases in peak water demand (Rhode Island Water Resources Board, 2012). High summer water demands are due to increases in outdoor water use, such as lawn watering and agricultural irrigation, and to increased summer population in coastal areas. Water-supply concerns are particularly acute in central and southern Rhode Island, where groundwater is the primary source of drinking water.

  10. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    Science.gov (United States)

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  11. Peculiarities of plant contamination in the right-bank area of the Kyiv water reservoir

    International Nuclear Information System (INIS)

    Shirokaya, Z.O.; Klenus, V.G.; Kaglyan, A.E.; Gudkov, D.I.; Yurchuk, L.P.

    2008-01-01

    Paper contains the results of study the peculiarities of radionuclide accumulation by higher aquatic plants of the Kyiv water reservoir from 1991 to 2008. Content of the Cs 137 radionuclide in higher aquatic plants of the right-bank area of Kyiv water reservoir were analyzed. The modern state of vegetation coverage of Kyiv reservoir are estimated. (authors)

  12. The behaviour of water discharged into the subsoil in a dolomitic mining area

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1989-01-01

    Water extracted from the underground works, at a depth of approximately 1 000 m, in a mine situated in a dolomitic area was being discharged into a series of boreholes on the surface. It was, however, presumed, that some recirculation was occurring. A tracer investigation was carried out to assess whether at least some of the water was reaching the underground works and the transit times involved. Since indium can be determined by means of neutron activation analysis at concentration levels as low as 10 -11 g/l water, this element was selected as tracer. The results are discussed. 9 refs., 5 figs

  13. Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.

    Science.gov (United States)

    N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer

    2003-01-01

    The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...

  14. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir Drainage Area, Rhode Island, water year 2015

    Science.gov (United States)

    Smith, Kirk P.

    2018-05-11

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2015 (October 1, 2014, through September 30, 2015) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 36 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2015 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2015.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 25 cubic feet per second to the reservoir during WY 2015. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.38 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,500,000 kilograms of sodium and 2,400,000 kilograms of chloride to the Scituate Reservoir during WY 2015; sodium and chloride yields for the tributaries ranged from 8,000 to 54,000 kilograms per square mile and from 12,000 to 91

  15. Salinity of irrigation water in the Philippi farming area of the Cape ...

    African Journals Online (AJOL)

    Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, ... Isotope analysis was done for the summer samples so as to assess effects of ... It is concluded that the accumulation of salts in groundwater and soil in the ...

  16. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  17. Geohydrology and effects of water use in the Black Mesa area, Navajo and Hopi Indian Reservations, Arizona

    Science.gov (United States)

    Eychaner, James H.

    1983-01-01

    The N aquifer is the main source of water in the 5,400-square-mile Black Mesa area in the Navajo and Hopi Indian Reservations in northeastern Arizona. The N aquifer consists of the Navajo Sandstone and parts of the underlying Kayenta Formation and Wingate Sandstone of Jurassic and Triassic age. Maximum saturated thickness of the aquifer is about 1,050 feet in the northwestern part of the area, and the aquifer thins to extinction to the southeast. Water is under confined conditions in the central 3,300 square miles of the area. To the east, north, and west of Black Mesa, the aquifer is exposed at the surface, and water is unconfined. The aquifer was in equilibrium before about 1965. Recharge of about 13,000 acre-feet per year was balanced primarily by discharge near Moenkopi Wash and Laguna Creek and by evapotranspiration. At least 180 million acre-feet of water was in storage. The estimated average hydraulic conductivity of the aquifer is 0.65 foot per day. The confined storage coefficient is estimated to be about 0.0004 where the aquifer is thickest, and the estimated unconfined storage coefficient ranges from 0.10 to 0.15. Ground-water withdrawals that averaged 5,300 acre-feet per year from 1976 to 1979 have caused water levels to decline in wells in the confined part of the aquifer. Withdrawals include an average of 3,700 acre-feet per year to supply a coal-slurry pipeline from a coal mine on Black Mesa. Six observation wells equipped with water-level recorders have been used to monitor aquifer response. The water level in one well 32 miles south of the mine declined 17 feet from 1972 through 1979 and 3.5 feet during 1979. A mathematical model of the N aquifer was developed and calibrated for equilibrium and nonequilibrium conditions. The model was used in part to improve estimates of aquifer characteristics and the water budget, and it successfully reproduced the observed response of the aquifer through 1979. The model results indicate that about 95 percent of

  18. 7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...

  19. Land area change and fractional water maps in the Chenier Plain, Louisiana, following hurricane Rita

    Science.gov (United States)

    Palaseanu-Lovejoy, M.; Kranenburg, C.; Brock, J. C.

    2009-12-01

    The objective of this study is to develop a fractional water map at 30-m resolution scale using QuickBird and/or IKONOS high-resolution imagery as dependent variable to investigate the impact of hurricane Rita in the Chenier Plain, Louisiana. Eleven different indices were tested to obtain a high-resolution land / water classification on QuickBird (acquired on 05/23/2003) and IKONOS (acquired on 03/25/2006) images. The percent area covered by water in the high resolution images varied from 22 to 26% depending on the index used , with the simple ratio index (red band / NIR band) accounting for the lowest percent and the blue ratio index (blue band / sum(all bands)) for the highest percent. Using the ERDAS NLCD (National Land Cover Data) Mapping tool module, 100, 000 stratified random sample points with minimum 1000 points per stratum were selected from the high resolution dependent variable as training information for the independent variable layers. The rules for the regression tree were created using the data mining software Rulequest Cubist v. 2.05. This information was used to generate a fractional water map for the entire Landsat scene. The increase in water areas of about 10 - 15% between 2003 to 2006, as well as temporary changes in the water - land configurations are attributed to remnant flooding and removal of aquatic vegetation caused by hurricane Rita, and water level variations caused by tidal and / or meteorological variations between the acquisition dates of the satellite images. This analysis can assist in monitoring post-hurricane wetland recovery and assess trends in land loss due to extreme storm events, although estimation of permanent land loss cannot be made until wetland areas have the opportunity to recover from hurricane impacts.

  20. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  1. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  2. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  3. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  4. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  5. Area G perimeter surface-soil and single-stage water sampling. Environmental surveillance for fiscal year 95. Progress report

    International Nuclear Information System (INIS)

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area

  6. Interactions of water with energy and materials in urban areas and agriculture. IWRM. Integrated water resources management. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Steusloff, Hartwig (ed.)

    2012-07-01

    The current rationale, range and significance of Integrated Water Resources Management (IWRM) are subject to increasing dimensionality, such as systemic conflicts between water users, increasing regulatory influences, and the growing energy requirements for providing the appropriate water resources. The competition between urban and agricultural consumers for water is dealt with as are regulatory, technological and socio-economic aspects of IWRM. The conference proceedings of IWRM Karlsruhe 2012 impart knowledge and relate practical experience in three key areas of IWRM: 1. Challenges for Future Cities and Efficient Agricultural Production Satisfying the growing demand for fresh water for a growing population as well as for agriculture bears the risk of aggravating the conflict between economic and ecological needs. Providing a reliable and secure supply of water for our future cities requires appropriate technical infrastructure systems coupled with environmentally optimized management. In this context it is essential to have greater awareness of the relationship of water and energy and of the overall water usage including the re-use of water 2. Competing Water Uses Water must be shared between domestic/municipal, industrial, agricultural, and hydropower users as well as between regions. This competition is intensified by the vulnerability of supply and sanitation systems to increasing climate extremes and to terrorism. 3. Regulatory and Policy Framework Using water is associated with a great number of externalities. For this reason a proper legislative and regulatory framework is prerequisite for proper management of the water supply, sewerage and storm-water services as well as water usage, all of which are essential for public health, economic development and environmental protection.

  7. STUDY ON THE IMPACT OF OIL EXTRACTION ON WATERS FROM TICLENI AREA, GORJ COUNTY

    Directory of Open Access Journals (Sweden)

    CĂPĂŢÎNĂ CAMELIA

    2017-12-01

    Full Text Available Surface and groundwater pollution can be direct and indirect. In the extraction activity, oil and sewage are potential sources of groundwater pollution in the area. Petroleum is extracted from the deposit through methods that constitute both primary and secondary exploatation. The pollution in the areas of petroleum extraction is caused by leaks from the transport pipes. In the majority of the cases , the damages of the transport pipes are caused by the corrosive effect of salt water, which constitute the liquid impurity of the petroleum extract. A large quantity of petroleum products penetrate into the hydrosphere from industrial leaks and refineries, either directly in the sea or via the continental hydrographic network. It is estimated that via all these routes a quantity of 5-10 million tons of oilpenetrate into the ocean waters annually. In the area of Ţicleni, surface and groundwater quality indicators were monitored: pH, sulphates, chlorides, conductivity, hardness and oxygen content. The main water course draining under study in the area is the Amaradia River, a tributary of the Jiu River.Here samples were taken for analysis. Comparing the obtained results with the limits stipulated by the Order 161/2006 it is found that the groundwater samples analyzed from the section located at the confluence of Strâmba brook with Cioiana brook corresponds to the third grade in terms of salinity (chlorides, class II for sulphates and class I for the oxygen regime (chemical oxygen demand.

  8. Radon concentration in drinking water and supplementary exposure in Baita-Stei mining area, Bihor county (Romania).

    Science.gov (United States)

    Moldovan, Mircea; Nita, Dan Constantin; Cucos-Dinu, Alexandra; Dicu, Tiberius; Bican-Brisan, Nicoleta; Cosma, Constantin

    2014-03-01

    The radon concentration was measured in the drinking water of public water supply and private wells located in the mining area of BăiŢa-Ştei, Bihor County, Romania. The measurements were performed using the LUK-VR system based on radon gas measurement with Lucas cell. The results show that the radon concentrations are within the range of 1.9-134.3 kBq m(-3) with an average value of 35.5 kBq m(-3) for well water, 18.5 kBq m(-3) for spring water and 6.9 kBq m(-3) for tap water. Comparing with previous data from the whole of Transylvania, the average value is two times higher, proving this zone to be a radon-prone area. From the results of this study the effective dose to the population is between 4.78 and 338.43 µSv y(-1). These doses are within the recommended limits of the world organisations.

  9. Removal of mercury (Hg) from contaminated water at traditional gold mining area in Central Kalimantan

    OpenAIRE

    Wilopo, Wahyu; Rahman, Denizar; Eka Putra, Doni Prakasa; Warmada, I Wayan

    2015-01-01

    There are many traditional gold mining and processing in Murung Raya Regency, Central Kalimantan. The processing of gold mostly uses mercury (Hg) and produces a lot of waste water. It just throws to the river without any treatment. Therefore the concentration of mercury (Hg) in the river water is over than the standard of drinking water and reach up to 0.346 mg dm-3. This situation is very dangerous because almost of the people in the downstream area depend on the river water for their daily ...

  10. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012

    Science.gov (United States)

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.

    2016-09-14

    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  11. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing.

    Science.gov (United States)

    Romanova, Tamara E; Shuvaeva, Olga V; Belchenko, Ludmila A

    2016-01-01

    The ability of water hyacinth (Eichhornia crassipes) to uptake Ag, Ba, Cd, Mo, and Pb from waters in gold mine tailing area was studied. All experiments were carried out in the field conditions without using of model system. Bioconcentration (BCF) and translocation factors (TF) as well as elements accumulation by plant in different points of tailings-impacted area were evaluated. It has been shown that water hyacinth demonstrates high ability to accumulate Mo, Pb, and Ba with BCF values 24,360 ± 3600, 18,800 ± 2800 and 10,040 ± 1400, respectively and is efficient in translocation of Mo and Cd. The general trend of the plant accumulation ability in relation to the studied elements corresponds to their concentration in the medium. As the distance from tailings increases, concentration of Ag, Ba and Pb in plant decreases more clearly than that of Cd, while the amount of Mo accumulated by plant doesn't drop significantly in accordance with its concentration in water. Under the conditions of the confluence of river Ur and drainage stream Ba and Ag can be considered as potential candidates for phytomining.

  12. Study on waste waters of metal finishing industries around Lahore metropolitan area

    International Nuclear Information System (INIS)

    Khan, Izhar-ul-Haq; Mahmood, F.; Tufail, S.; Naeem, M.

    2002-01-01

    Study was undertaken on the waste water samples from metal finishing industries of Lahore metropolitan area for the evaluation of metallic impurities. The metal finishing industry was classified into three categories i. e. medium scale, small scale and cottage scale industry. About 93 wastewater samples were collected from various metal finishing industries around Lahore metropolitan area. In addition to toxic elements like cadmium, nickel and zinc the other parameters such as hydrogen ion concentration (pH), Electrical conductivity (EC) and Total Dissolved Salts (TDS) were also determined. (author)

  13. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  14. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  15. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  16. Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas

    Science.gov (United States)

    Räsänen, Aleksi; Juhola, Sirkku; Monge Monge, Adrián; Käkönen, Mira; Kanninen, Markku; Nygren, Anja

    2017-07-01

    Water-related risks and vulnerabilities are driven by variety of stressors, including climate and land use change, as well as changes in socio-economic positions and political landscapes. Hence, water governance, which addresses risks and vulnerabilities, should target multiple stressors. We analyze the institutional perceptions of the drivers and strategies for managing water-related risks and vulnerabilities in three regionally important river basin areas located in Finland, Mexico, and Laos. Our analysis is based on data gathered through participatory workshops and complemented by qualitative content analysis of relevant policy documents. The identified drivers and proposed risk reduction strategies showed the multidimensionality and context-specificity of water-related risks and vulnerabilities across study areas. Most of the identified drivers were seen to increase risks, but some of the drivers were positive trends, and drivers also included also policy instruments that can both increase or decrease risks. Nevertheless, all perceived drivers were not addressed with suggested risk reduction strategies. In particular, most of the risk reduction strategies were incremental adjustments, although many of the drivers classified as most important were large-scale trends, such as climate change, land use changes and increase in foreign investments. We argue that there is a scale mismatch between the identified drivers and suggested strategies, which questions the opportunity to manage the drivers by single-scale incremental adjustments. Our study suggests that for more sustainable risk and vulnerability reduction, the root causes of water-related risks and vulnerabilities should be addressed through adaptive multi-scale governance that carefully considers the context-specificity and the multidimensionality of the associated drivers and stressors.

  17. Effects of solar collecting area and water flow rate on the performance of a sand bed solar collector

    International Nuclear Information System (INIS)

    Maganhar, A.L.; Memon, A.H.; Panhwar, M.I.

    2005-01-01

    The often discussed renewable sources of energy have been great interest to energy researchers and planners for quite some time. The primary of renewing all sources of energy is the sun. There have been two main problems not yet fully resolved. One is the large scale production of energy and other is the cost factor. In the present study, the cost factor is under consideration. In this regard a non-conventional solar collector using indigenous material (pit sand) as solar absorber is designed and manufactured. This paper presents the results of an investigation of the effect of solar collecting area and water flow rate on the performance of a pit sand bed solar collector especially in terms of rise in water temperature. Three pit sand solar collectors of area 1m/sup 2/ each were connected in series to enhance the collecting area and the system was tested for different flow rates. Experimental results proved that there was increase in water temperature with increase in solar collecting area an decreases in water temperature with increase in flow rate. (author)

  18. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    Science.gov (United States)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and

  19. Occurrence and distribution of color and hydrogen sulfide in water of the principal artesian aquifers in the Valdosta area, Georgia

    Science.gov (United States)

    Krause, Richard E.

    1976-01-01

    Hydrogen sulfide and color occur in objectionable amounts in ground water from the principal artesian aquifer in the Valdosta , Ga., area. Generally, water from wells south of Valdosta is high in hydrogen sulfide; water from wells north of the city is high in color. Water with high sulfate is likely to be a problem in wells deeper than about 540 ft. Heavy pumpage concentrated in a small area may cause high-sulfate water to migrate vertically upward into shallower wells. (Woodard-USGS)

  20. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  1. Analysis of environmental setting, surface-water and groundwater data, and data gaps for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Oklahoma, through 2011

    Science.gov (United States)

    Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.

    2013-01-01

    The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than

  2. Radon-222 in ground water in the German Rhine-Nahe-Area

    International Nuclear Information System (INIS)

    Raff, O.; Haberer, K.

    1998-01-01

    Investigations of the radon-222 activity concentrations of 129 raw water samples from wells, springs and galeries used by public water supply in the surrounding areas of Mainz and Wiesbaden showed a clear dependence on the lithology of the aquifers. Whereas the arithmetic mean value of 27 samples from alluvial aquifers was 0.9 Bq/l (maximum values 3.5 Bq/l) and of 90 samples from different sedimentary rock aquifers approximately 17 Bq/l (maximum value 93 Bq/l), the mean value of 12 samples from rhyolitic aquifers of the Saar-Nahe-Basin was 141 Bq/l (461 Bq/l in maximum). The values of all 129 samples show roughly a lognormal distribution with a geometric mean value of 6.4 Bq/l and a median of 10 Bq/l. The determined values are compared with values from other investigations in Europe and the USA. Reasons for the big differences of the water radon concentrations are explained on the basis of the geological situation. (orig.) [de

  3. EQUILIBRIUM OF WATER BALANCE AS A BASIC PRECONDITION OF PROGRESSIVE DEVELOPMENT OF LAND AREA

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2005-04-01

    Full Text Available The proportion of water balance components – precipitation, transpiration, evaporation, underground waters and surface runoff – is a determining factor of stabile development of land area. But this proportion can be considerably disturbed and is permanently changing. Certain many-year averages are usually accepted as a stable state. That is why, in the presented work, we have tried to defi ne water balance on symmetry and invariance principles, to express it as a limit state, which would characterize it as a natural principle and enable comparison with the present balance.

  4. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  5. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    Science.gov (United States)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  6. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    International Nuclear Information System (INIS)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-01-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed

  7. Isotopic and chemical studies of geothermal waters of Northern Areas in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Dildar Hussain, S; Ahmad, M; Akram, W; Sajjad, M I [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan); Gonfiantini, R [International Atomic Energy Agency, Vienna (Austria). Isotope Hydrology Section; Tasneem, M A

    1995-02-01

    Northern Areas is one of the major thermal fields of Pakistan with more than two dozen known hot springs having discharge temperature ranging from 35 deg. C to 94 deg. C. Isotopic and chemical techniques applied to study the geothermal fields show that thermal waters are of meteoric origin and can be classified as Na-HCO{sub 3}, Na-SO{sub 4} and mixed type on the basis of their chemical contents. At some places cooling of thermal waters seems to be due to steam separation whereas mixing with fresh cold water is prominent at the remaining sites. The temperatures estimated by isotopic and chemical geothermometers for the two major fields i.e. Tatta Pani and Murtazabad are 83-257 deg. C and 65-296 deg. C respectively. (author). 24 refs, 11 figs, 3 tabs.

  8. Siting study for Test Area North potable water deep well project

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Wylie, A.H.

    1993-05-01

    This study was conducted to evaluate the suitability of various locations for a new potable ground water well at Test Area North (TAN). The new well is proposed to replace two existing wells located within a trichloroethylene (TCE) plume. Several locations were evaluated using computer simulations based on the hydrogeology of the site. The modeling effort involved: (1) producing a water table map, (2) superimposing the effects of pumping the proposed new production well on the water table map using the model CAPZONE, and (3) calculating the capture zone for these wells using the GWPATH model. A three dimensional contaminant transport model was used to evaluate siting a well in a deeper horizon of the aquifer. The following scenarios were investigated: (1) placing a new well 500 ft north of the existing wells; (2) locating a well 3,000 ft northwest of the existing wells; (3) deepening one of the existing wells 100 to 150 ft to produce water from beneath an interbed that acts as a hydraulic barrier; and (4) drilling a new well about 500 ft northwest of the existing wells to produce water from beneath the interbed. The recommended new well site (fourth scenario) is northwest of the existing wells, with the well completed from 500 to 600 ft below land surface to produce water from beneath the Q-R interbed. Locating the well northwest of the existing wells places the new well out of the TCE plume and reduces the possibility of transporting contaminated water across the interbed

  9. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    OpenAIRE

    Jacob Sharvit; Nizan Salomonski; Roger Alimi; Hovav Zafrir; Tsuriel Ram Cohen; Boris Ginzburg; Eyal Weiss

    2007-01-01

    The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of ...

  10. Improved or Unimproved Urban Areas Effect on Soil and Water Quality

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-04-01

    Full Text Available Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without the negative impact of nutrient loss in runoff. Four sets of lawns were compared, with or without compost plus aeration, as a paired comparison. Surface bulk density was significantly reduced in the treated lawns (1.32 versus 1.42 Mg·m−3. Visual evaluation of soil structure showed improvement in the treated lawns. Of fifteen measurement dates over four years, four dates showed significantly higher surface soil water contents in the treated lawns compared with the untreated lawns. When compared over time, three of the four treated lawns had significantly higher soil water content than the untreated lawns. Nutrient concentrations in rainfall simulator runoff were not significantly different between treated and control lawns, which showed that compost did not negatively impact water quality. Compost and aeration helped restore soil quality for urban soils of recent construction.

  11. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2006

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2006 (October 1, 2005, to September 30, 2006). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2006 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2006. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 42 cubic feet per second (ft3/s) to the reservoir during WY 2006. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.60 to 26 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kilograms (kg) of sodium and 2,500,000 kg of chloride to the Scituate Reservoir during WY 2006; sodium and chloride yields for the tributaries ranged from 15,000 to 100,000 kilograms per square mile (kg/mi2) and from 22,000 to 180,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.6 milligrams per liter

  12. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2003 (October 1, 2002, to September 30, 2003). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2003 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2003. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 31 cubic feet per second (ft3/s) to the reservoir during WY 2003. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.44 to 20 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2003; sodium and chloride yields for the tributaries ranged from 10,000 to 61,000 kilograms per square mile (kg/mi2) and from 15,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 21.3 milligrams per liter

  13. Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2005

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island’s largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2005 (October 1, 2004, to September 30, 2005). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2005 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2005. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 30 cubic feet per second (ft3/s) to the reservoir during WY 2005. For the same time period, annual mean streamflows1 measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,300,000 kilograms (kg) of sodium and 2,000,000 kg of chloride to the Scituate Reservoir during WY 2005; sodium and chloride yields for the tributaries ranged from 13,000 to 77,000 kilograms per square mile (kg/mi2) and from 19,000 to 130,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 25.3 milligrams per

  14. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004

    Science.gov (United States)

    Breault, Robert F.; Campbell, Jean P.

    2010-01-01

    Streamflow and water-quality data were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board, Rhode Island's largest drinking-water supplier. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgage stations; 10 of these stations were also equipped with instrumentation capable of continuously monitoring specific conductance. Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate instantaneous (15-minute) loads of sodium and chloride during water year (WY) 2004 (October 1, 2003, to September 30, 2004). Water-quality samples were also collected at 37 sampling stations in the Scituate Reservoir drainage area by the Providence Water Supply Board during WY 2004 as part of a long-term sampling program. Water-quality data are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2004. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed about 27 cubic feet per second (ft3/s) to the reservoir during WY 2004. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.42 to 19 ft3/s. Together, tributary streams (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,700,000 kg of chloride to the Scituate Reservoir during WY 2004; sodium and chloride yields for the tributaries ranged from 12,000 to 61,000 kilograms per square mile (kg/mi2) and from 17,000 to 100,000 kg/mi2, respectively. At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24.8 milligrams per liter

  15. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-05-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  16. The Gas-Absorption/Chemical-Reaction Method for Measuring Air-Water Interfacial Area in Natural Porous Media

    Science.gov (United States)

    Lyu, Ying; Brusseau, Mark L.; El Ouni, Asma; Araujo, Juliana B.; Su, Xiaosi

    2017-11-01

    The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (Aia). Coefficients of variation for Aia were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (Am) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the Am for the glass beads is 29 (±1) cm-1, compared to 32 (±3), 30 (±2), and 31 (±2) cm-1 determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, Aias of 47 and 44 cm-1 were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.

  17. Strontium 90 activity in drinking water of Paris area from 1963 to 1972

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Patti, F.; Gros, R.

    1976-01-01

    Strontium 90 was determined in drinking water of the Southern Paris area from 1963 to 1972. Activities usually below 1pCi/l were related to the Seine river flow and decreased with a half-life of about five years [fr

  18. Development of a Web-based tool to collect and display water system customer service areas for public health action.

    Science.gov (United States)

    Wong, Michelle; Wolff, Craig; Collins, Natalie; Guo, Liang; Meltzer, Dan; English, Paul

    2015-01-01

    Significant illness is associated with biological contaminants in drinking water, but little is known about health effects from low levels of chemical contamination in drinking water. To examine these effects in epidemiological studies, the sources of drinking water of study populations need to be known. The California Environmental Health Tracking Program developed an online application that would collect data on the geographic location of public water system (PWS) customer service areas in California, which then could be linked to demographic and drinking water quality data. We deployed the Water Boundary Tool (WBT), a Web-based geospatial crowdsourcing application that can manage customer service boundary data for each PWS in California and can track changes over time. We also conducted a needs assessment for expansion to other states. The WBT was designed for water system operators, local and state regulatory agencies, and government entities. Since its public launch in 2012, the WBT has collected service area boundaries for about 2300 individual PWS, serving more than 90% of the California population. Results of the needs assessment suggest interest and utility for deploying such a tool among states lacking statewide PWS service area boundary data. Although the WBT data set is incomplete, it has already been used for a variety of applications, including fulfilling legislatively mandated reporting requirements and linking customer service areas to drinking water quality data to better understand local water quality issues. Development of this tool holds promise to assist with outbreak investigations and prevention, environmental health monitoring, and emergency preparedness and response.

  19. 33 CFR 334.778 - Pensacola Bay and waters contiguous to the Naval Air Station, Pensacola, FL; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pensacola Bay and waters... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.778 Pensacola Bay and waters contiguous to the Naval Air Station, Pensacola...

  20. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China

    International Nuclear Information System (INIS)

    Wang Junying; Da Liangjun; Song Kun; Li Bailian

    2008-01-01

    As the economic and financial center of China, Shanghai has experienced an extensive urban expansion since the early 1980s, with an attendant cost in environmental degradation. We use an integrated pollution index to study the temporal variations of surface water quality in urban, suburban and rural areas between 1982 and 2005. Data on monitored cross-sections were collected from the Shanghai Environmental Monitoring Center. The results indicated that the spatial pattern of surface water quality was determined by the level of urbanization. Surface water qualities in urban and suburban areas were improved by strengthening the environmental policies and management, but were worsening in rural areas. The relationship between economic growth and surface water quality in Shanghai showed an inversed-U-shaped curve, which reflected a similar pattern in most developed countries. This research suggests that decision makers and city officials should be more aware of the recent pollution increases in Shanghai. - An integrated pollution index documents the deterioration of water quality in greater Shanghai, recently most serious in rural sections

  1. Karst water control and management in the Hanxing mining area of North China

    Energy Technology Data Exchange (ETDEWEB)

    Wanfang, Z. [P.E. LaMoreaux and Associates, Inc., Oak Ridge, TN (United States)

    1997-04-01

    The Hanxing mining area of North China includes three coalfields: Fengfeng, Handan and Xingtai. Six or seven coal seams can be commercially mined in Permo-Carboniferous strata, among which the lower three, accounting for 37% of the total reserves, are threatened with karst water from the underlain Ordovician limestone. Hundreds of water inrush accidents have occurred and over 30 mines have been flooded, resulting in heavy economic losses and casualties. In order to avoid water inrushes and keep the mines safely operational, dewatering in the karst aquifer was considered an essential measure. Unfortunately, this practice has caused serious environmental problems such as surface subsidence (sinkhole), dry spring, and water supply shortage. On the basis of a series of investigations and tests in the last 20 years, an alternative method, mining with water pressure, has been proposed and is the main focus of this paper. By using this method, the karst water in the limestone can be preserved to some extent and the coals can be mined in a relatively safe way. (orig.)

  2. Detection of Entamoeba sp. and Helmith Eggs From Water Sources in Urban Slum Area in Bandung Municipality

    Directory of Open Access Journals (Sweden)

    Sri Yusnita Irda Sari

    2017-09-01

    Full Text Available Diarrhea is a waterborne disease due to consumption of contaminated food/water. People in urban slum area have highest risk to get diarrhea because of poor hygiene and sanitation as well as limited access to uncontaminated water. This study aimed to identify conta­mination in watersources by Entamoeba Sp and helmint eggs (Anchylostoma duodenale, Ascaris lumbricoides, Trichuris trichuria in one of urban slum area in Bandung municipality. Samples were taken from 123 watersources (74 tap water, 21 borehole, 22 dugwell and 6 spring water which was randomly selected in 10 RW along the Cikapundung river basin in Tamansari subdistrict during period of July-September 2015. Water samples were examined by PCR to detect Entamoeba Sp and microscopic identification for helminth eggs. 90 out of 123 samples were positive for Entamoeba Sp (59 tap water, 16 dugwell, 11 borehole and 4 spring water. Helminth egg of Ascaris lumbricoides was detected from unimproved common dugwell which had very high risk of contamination. Appropriate of water treatment prior to consumption is vastly important. Physical improvement to construct improved dugwell should be done to prevent contamination from helminth eggs in watersources.

  3. Recharge and discharge areas of the Floridan Aquifer in the St. Johns River Water Management District and vicinity, Florida

    Science.gov (United States)

    Phelps, G.G.

    1984-01-01

    The Floridan aquifer is the principal source of most of the freshwater used in the St. Johns River Water Management District. An important step in managing water resources is the delineation of recharge and discharge areas. Geohydrologic factors to be considered when delineating recharge and discharge areas include: altitude and configuration of the potentiometric surface; direction and magnitude of the gradient between the water table and the potentiometric surface; and thickness and permeability of the overlying sediments. Recharge to the aquifer comes almost entirely from rainfall within the Water Management District. Significant recharge occurs where the aquifer is at or very near land surface, and where the overlying sediments are very permeable sand so that recharge takes place downward leakage. Recharge also occurs through sinkholes, sinkhole lakes, and other lakes that have a good connection to the aquifer. Major recharge areas are delineated on the map. Discharge occurs in areas of artesian flow (where the potentiometric surface is above land surface), primarily by diffuse upward leakage and by discharge from springs. Fifty-five springs, with total discharge of about 1,600 million gallons per day, are in the Water Management District. Areas of discharge and the location of springs are shown on the map. In 1980, total pumpage in the Water Management District was about 1,000 million gallons per day. Under predevelopment conditions, discharge by springs and upward leakage approximately balanced recharged. Additional discharge by pumpage may or may not be balanced by decreased spring discharge of increased downward leakage. Examination of long-term water level trends can indicate if recharge and discharge balance. Graphs of rainfall, water levels, and municipal pumpage for Jacksonville, Orlando, and Daytona Beach are shown on the map. (USGS)

  4. Spatio-Temporal Analysis of MODIS Retrieved Precipitable Water Vapor over Urban and Rural Areas in the Philippines

    Science.gov (United States)

    Galvez, M. C. D.; Castilla, R. M.; Catenza, J. L. U.; Soronio, H.; Vallar, E. A.

    2016-12-01

    Precipitable water vapor (PWV) is a component of the atmosphere that significantly influences many atmospheric processes. It plays a dominant role in the high-energy thermodynamics of the atmosphere, notably, the genesis of storm systems. Remote sensing of the atmosphere using MODerate resolution Imaging Spectroradiometer (MODIS) offers a relatively inexpensive method to estimate atmospheric water vapour in the form of columnar measurements from its 936 nm near-infrared band. Daily Level 3 data with 1 degree grid spatial resolution from MODIS was used in order to determine the temporal and spatial variability of precipitable water between urban and rural areas in the Philippines. The PWV values were rasterized and spatially interpolated to be stored in a 1 kilometer grid resolution using the nearest-neighbor algorithm. General Linear Models were established to determine the main and interaction effects on PWV values of several categorical factors e.g. time, administrative region, and geographic classification. Comparison between the urban and rural areas in the Philippines showed that there is a significant difference between the values between these demographic dimensions. The mean PWV in the urban areas was found to be 0.0473 cm greater than the mean PWV of the rural areas. Lower levels of precipitable water vapour in rural places can be attributed to the low humidity as a result of a deficit of precipitation; while higher levels in urban areas can be accounted for by vehicle exhaust, industrial emissions, and irrigation of parks and gardens. In general, PWV varies depending on the season when solar insolation affects surface temperature, thus influencing the rate of evaporation. Using the regression line algorithm, the PWV values for rural areas have increased to 0.904 cm and 0.434 cm for urban areas from the year 2005 to 2015.

  5. A Hierarchical Approach for Measuring the Consistency of Water Areas between Multiple Representations of Tile Maps with Different Scales

    Directory of Open Access Journals (Sweden)

    Yilang Shen

    2017-08-01

    Full Text Available In geographic information systems, the reliability of querying, analysing, or reasoning results depends on the data quality. One central criterion of data quality is consistency, and identifying inconsistencies is crucial for maintaining the integrity of spatial data from multiple sources or at multiple resolutions. In traditional methods of consistency assessment, vector data are used as the primary experimental data. In this manuscript, we describe the use of a new type of raster data, tile maps, to access the consistency of information from multiscale representations of the water bodies that make up drainage systems. We describe a hierarchical methodology to determine the spatial consistency of tile-map datasets that display water areas in a raster format. Three characteristic indices, the degree of global feature consistency, the degree of local feature consistency, and the degree of overlap, are proposed to measure the consistency of multiscale representations of water areas. The perceptual hash algorithm and the scale-invariant feature transform (SIFT descriptor are applied to extract and measure the global and local features of water areas. By performing combined calculations using these three characteristic indices, the degrees of consistency of multiscale representations of water areas can be divided into five grades: exactly consistent, highly consistent, moderately consistent, less consistent, and inconsistent. For evaluation purposes, the proposed method is applied to several test areas from the Tiandi map of China. In addition, we identify key technologies that are related to the process of extracting water areas from a tile map. The accuracy of the consistency assessment method is evaluated, and our experimental results confirm that the proposed methodology is efficient and accurate.

  6. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    OpenAIRE

    Weiss, Eyal; Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km sout...

  7. The inner Danish waters as suitable seaweed cultivation area- evaluation of abiotic factors

    DEFF Research Database (Denmark)

    Grandorf Bak, Urd; Holdt, Susan Løvstad

    conditions showed, that light conditions are sufficient to meet the light saturation level of both algae, but large seasonal and a site specific variations in light attenuation determine optimal cultivation depth. Water temperatures were found to exceed the tolerance level for P. palmata in July, August......Increased production of macroalgae may contribute to solving e.g. the demand for food globally. Palmaria palmata and Saccharina latissima are at present demanded and cultivated in European waters, and can potentially be cultivated at even larger scale. The present study investigated suitable...... cultivation areas in Danish waters for these two algal species in regard to a variation in the abiotic conditions: light, temperature, and the unusual salinity gradient through the inner Danish waters towards the Baltic Sea. Published tolerance levels of the abiotic conditions of the species were reviewed...

  8. Water Monitoring Report for the 200 W Area Tree Windbreak, Hanford Site Richland, Washington

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Carr, Jennifer S.; Goreham, John O.; Strickland, Christopher E.

    2002-01-01

    Water inputs to the vadose zone from irrigation of a tree windbreak in the 200 W Area of the Hanford Site were monitored during the summer of 2002. Water flux and soil-water contents were measured within the windbreak and at two locations just east of the windbreak to assess the impact of the irrigation on the vadose zone and to assist in optimizing the irrigation applications. In May 2002, instrumentation was placed in auger holes and backfilled with local soil. Sensors were connected to a data acquisition system (DAS), and the data were telemetered to the laboratory via digital modem in late June 2002. Data files and graphics were made web accessible for instantaneous retrieval. Precipitation, drip irrigation, deep-water flux, soil-water content, and soil-water pressures have been monitored on a nearly continuous basis from the tree-line site since June 26, 2002.

  9. Analysis of PAEs contaminants in water sources for agriculture, industrial and residential areas from local city district

    Science.gov (United States)

    Chen, Qidan; Chen, Qixian; Wu, Fei; Liao, Jia; Zhao, Xi

    2018-02-01

    The technology of DEHP and DBP detection by high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV) was developed and applied in analysis of local water sources from agriculture, industrial and residential areas. Under the optimized sample pretreatment and detection conditions, DEHP and DBP were well separated and detected in 4 mins. The detection limit of DBP was 0.002 mg/L and DEHP was 0.006 mg/L, and it meets the Chinese National Standard limitations for drinking water quality. The linear correlation coefficient of DBP and DEHP standard calibration curves was 0.9998 and 0.9995. The linear range of DBP was 0.020 mg/L ∼20.0 mg/L, with the standard deviation of 0.560% ∼5.07%, and the linear range of DEHP was 0.060 mg/L ∼15.0 mg/L, with the standard deviation of 0.546% ∼5.74%. Ten water samples from Jinwan district of Zhuhai in Guangdong province of China were analyzed. However, the PAEs amounts found in the water sources from industrial areas were higher than the agriculture and residential areas, industries grow incredibly fast in the district in recently years and more attention should be paid to the increasing risks of water sources pollution.

  10. Danube quality water assessment from the microbiological point of view in Cernavoda nuclear plant area

    International Nuclear Information System (INIS)

    Sundri, Mirela Iuliana

    2003-01-01

    Herein are analysed the following microbiological parameters: total viable count, total coliforms and faecal coliforms, which represent a standard indicator for water quality. The study has been done during 1998-2002 upon the water in the Danube River and in the channels for cooling water used by Cernavoda Nuclear Power Plant condensers. In this area, based on these values of evaluated parameters, the water feature is placed in the quality classes II and III (moderate and critical pollution), in conformity with European Community Directives. Bacterial communities, component part of aquatic biocenoses, are very important for matter and energy flux. Their contribution to self-purification processes of rivers is of great interest related to the water quality assessment. Microorganisms are ideal sensors, because they respond fast to the fluctuation of environmental conditions by specific changes, detectable physiologically and metabolically. The temperature is a major factor, which directly affects the intensity of all microbial processes. Because the microorganisms are interconnected with the other living organisms, the qualitative or quantitative changes of their activity will affect the functions of the whole ecosystem. Bacterial indicators such as total viable count (colony count), total coliforms or faecal coliforms (thermo-tolerant coliforms) are widely applied to the assessment of water quality. Because of their mostly allochthonus origin, these are used as indicators of changes in the natural water conditions; they point out an organic matter or faecal water pollution. Although the water quality can be considered acceptable from the chemical or biological point of view, the bacteriological parameters might be detected in critical concentration. The objectives of this microbiological assessment are analysis of the variation of bacteriological indicators in some sampling points of Cernavoda aquatic ecosystems area, and monitoring the manner of using the water by

  11. Impact of agricultural and industrial activities on ground water quality in Kasur area

    International Nuclear Information System (INIS)

    Tasneem, M.A.; Latif, Z.; Butt, S.; Afzal, M.; Ali, M.; Afzal, M.; Khan, I.H.; Sajjad, M.I.

    1999-01-01

    This paper focuses on the impact of agricultural and industrial activities on groundwater quality. Kasur area was selected to study the influence of chemical fertilizers and tannery effluents on groundwater with the help of /sup 15/N of water nitrates. Bremner and keeney methods with certain modifications ware adopted for extraction of nitrate nitrogen in the form of ammonium ions. Ammonium concentrates were converted to nitrogen gas using potassium hypo bromide solution and analyzed on GD-150 mass spectrometer. /sup 15/N of nitrates from groundwater (n=14), pond water and Kisan urea were determined. There is a pronounced difference in the /sup 15/N values of nitrates from various sources. /sup 15/N of pond water (mixture of tannery effluents, sewerage and rainwater) was found to be +31.99% and +21.26% for the first and the second samplings respectively. /sup 15/N of Kisan urea sample was determined to be - 1.00%. The nitrate concentration of groundwater ranged from 1-171 ppm and / sup 15/N was found to be -0.40 to WHO permissible limits (45 ppm). Temporal variation was also observed but the values were still above the WHO limits. It is concluded that the major source of nitrates pollution in the Kasur area is due to chemical fertilizers and +37.10%. Out of 14 drinking water samples six have nitrate contents above biological wastes but not due to the tannery effluents. (author)

  12. Exploring links between water quality and E. coli O157:H7 survival potential in well waters from a rural area of southern Changchun City, China.

    Science.gov (United States)

    Ding, Meiyue; Li, Jiahang; Liu, Xiaodan; Li, Huiru; Zhang, Rui; Ma, Jincai

    2018-04-01

    Waterborne infectious disease outbreak associated with well water contamination is a worldwide public health issue, especially for rural areas in developing countries. In the current study, we characterized 20 well water samples collected from a rural area of southern Changchun city, China, and investigated the survival potential of Escherichia coli O157:H7 in those water samples. The results showed that nitrate and ammonia concentrations in some well water samples exceed the corresponding China drinking water standards, indicating potential contamination by local agricultural farms. Our results also revealed that the average survival time (ttd) of E. coli O157:H7 in all well water samples was 30.09 days, with shortest and longest ttd being 17.95 and 58.10 days, respectively. The ttds were significantly correlated with pH and the ratio of total nitrogen to total phosphorus. In addition, it was found that the shape parameter (p) and first decimal reduction parameter (δ) were negatively (P well water, suggesting that this pathogen could constitute a great public health risk.

  13. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Due to growing population of Pakistan, there is a tremendous pressure on our agriculture sector to increase its production to meet the food and fiber requirement. Water is a basic need to increase the agriculture production and to bring more areas under cultivation. The exploitation of groundwater resources is increasing because of limited surface water availability. Statistics indicated that number of public and private tube-wells have increased to more than 5 lacs. Over exploitations of groundwater caused a number of environmental problems including salt water intrusion and increase in the soil and groundwater salinity. A large number of fresh water tube-wells have started pumping saline groundwater in various parts of Pakistan indicating up-coning of saline groundwater in the relatively fresh water aquifers. Use of poor quality groundwater for irrigation is considered as one of the major causes of salinity in the areas of irrigated agriculture. Indiscriminate pumping of the groundwater of marginal quality through skimming fresh water overlain by saline groundwater can not be helpful in the long run. It can add to the root zone salinity and ultimately reduction of crops yield. Mona Reclamation Experimental Project (MREP) is conducting a collaborative research study on 'Root Zone Salinity Management using Fractional Skimming Wells with Pressurized Irrigation' under a research and studies portfolio of the country wide National Drainage Programme (NDP) MREP, IWMI Pakistan and Water Resources Research Institute of PARC are collaborators in this joint research effort. MREP is responsible to specifically address the objective of the study to identify and test a limited number of promising skimming well techniques in the shallow fresh water aquifers which could control the saline water up-coning phenomenon as a consequence of groundwater pumping. Detailed investigations have been done at various locations in the north-central part of Chaj Doab (Sargodha Region) in the

  14. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  15. Vplivi turizma v slovenskem alpskem svetu na vode = Impacts of tourism in Slovenian Alpine areas on water

    Directory of Open Access Journals (Sweden)

    Dejan Cigale

    2007-01-01

    Full Text Available Tourism is not only an important economic activity but also a source of pressures on environment,including water. On the other hand appropriate water quality is of great importancefor tourism development. The contribution of tourism to pressures on water is important,but not dominant. Exceptions are impacts of tourism on the uninhabited areas, where tourismand recreation are the main sources of pressures on water resources. Nonetheless, quantitiesof used and sewage water are relatively modest.

  16. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  17. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  18. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    Science.gov (United States)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  19. Water erosion on areas planted to potato in Tucumán by climate change.

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  20. Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)

    Science.gov (United States)

    El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed

    2016-04-01

    In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.

  1. LITHOLOGIC CONDITIONS OF THE WATER TABLE LOGGING IN THE AREA OF HAĆKI VILLAGE IN THE BIELSKA PLAIN

    Directory of Open Access Journals (Sweden)

    Krzysztof Micun

    2016-05-01

    Full Text Available The aim of the study was to examine lithological conditions of the water table in the area of Haćki village located in the Bielska Plain. The study involved the measurements of water level in dug wells, hand drill probing to a depth of 5 m, acquiring the samples of water-bearing deposits and analysing their granulation. The results of analyses allowed to calculate the permeability coefficient. The geological structure of the area is dominated by dusty deposits of various origins. Such deposits’ formation directly affects the conditions of filtration and depth of the water table. Groundwater logging near Haćki village in the Bielska Plain appears at a depth of several tens of centimeters to 2 meters in the depressions field and up a little over 5 meters in the case of higher ground surfaces. The presence of perched water was revealed on the hills, periodic leachates at the foot of the hills and scarps and one periodic spring. Water-bearing deposits are medium sands, fine sands and loamy fine sands or fine sands with silt. Consequently, the permeability coefficient is low or even very low. Its values range from 0,001 m·d-1 to 3,8 m·d-1 (d – 24 hours. The widespread presence of dusty deposits in the area affects the limited efficiency of the water table.

  2. Visual Analytics for the Food-Water-Energy Nexus in the Phoenix Active Management Area

    Science.gov (United States)

    Maciejewski, R.; Mascaro, G.; White, D. D.; Ruddell, B. L.; Aggarwal, R.; Sarjoughian, H.

    2016-12-01

    The Phoenix Active Management Area (AMA) is an administrative region of 14,500 km2 identified by the Arizona Department of Water Resources with the aim of reaching and maintaining the safe yield (i.e. balance between annual amount of groundwater withdrawn and recharged) by 2025. The AMA includes the Phoenix metropolitan area, which has experienced a dramatic population growth over the last decades with a progressive conversion of agricultural land into residential land. As a result of these changes, the water and energy demand as well as the food production in the region have significantly evolved over the last 30 years. Given the arid climate, a crucial role to support this growth has been the creation of a complex water supply system based on renewable and non-renewable resources, including the energy-intensive Central Arizona Project. In this talk, we present a preliminary characterization of the evolution in time of the feedbacks between food, water, and energy in the Phoenix AMA by analyzing secondary data (available from water and energy providers, irrigation districts, and municipalities), as well as satellite imagery and primary data collected by the authors. A preliminary visual analytics framework is also discussed describing current design practices and ideas for exploring networked components and cascading impacts within the FEW Nexus. This analysis and framework represent the first steps towards the development of an integrated modeling, visualization, and decision support infrastructure for comprehensive FEW systems decision making at decision-relevant temporal and spatial scales.

  3. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    Science.gov (United States)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  4. CORRELATION BETWEEN RAINFALL PATTERNS AND THE WATER TABLE IN THE GENERAL SEPARATIONS AREA OF THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Smith, C.

    2009-01-01

    The objective of the study was to evaluate rainfall and water table elevation data in search of a correlation that could be used to understand and predict water elevation changes. This information will be useful in placing screen zones for future monitoring wells and operations of groundwater treatment units. Fifteen wells in the General Separations Area (GSA) at Savannah River Site were evaluated from 1986 through 2001. The study revealed that the water table does respond to rainfall with minimal delay. (Water level information was available monthly, which restricted the ability to evaluate a shorter delay period.) Water elevations were found to be related to the cumulative sum (Q-Delta Sum) of the difference between the average rainfall for a specific month and the actual rainfall for that month, calculated from an arbitrary starting point. Water table elevations could also be correlated between wells, but using the right well for correlation was very important. The strongest correlation utilized a quadratic equation that takes into account the rainfall in a specific area and the rainfall from an adjacent area that contributes through a horizontal flow. Specific values vary from well to well as a result of geometry and underground variations. R2's for the best models ranged up to 0.96. The data in the report references only GSA wells but other wells (including confined water tables) on the site have been observed to return similar water level fluctuation patterns

  5. Investigation of Geochemical Characteristics and Controlling Processes of Groundwater in a Typical Long-Term Reclaimed Water Use Area

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    2017-10-01

    Full Text Available The usage of reclaimed water can efficiently mitigate water crises, but it may cause groundwater pollution. To clearly understand the potential influences of long-term reclaimed water usage, a total of 91 samples of shallow and deep groundwater were collected from a typical reclaimed water use area during the dry and rainy seasons. The results suggest both shallow and deep groundwater are mainly naturally alkaline freshwater, which are composed mainly of Ca-HCO3, followed by mixed types such as Ca-Na-HCO3 and Ca-Mg-HCO3. A seasonal desalination trend was observed in both shallow and deep aquifers due to dilution effects in the rainy season. Groundwater chemical compositions in both shallow and deep aquifers are still dominantly controlled by natural processes such as silicate weathering, minerals dissolution and cation exchange. Human activities are also the factors influencing groundwater chemistry. Urbanization has been found responsible for the deterioration of groundwater quality, especially in shallow aquifers, because of the relative thin aquitard. Reclaimed water usage for agricultural irrigation and landscape purposes has nearly no influences on groundwater quality in rural areas due to thick aquitards. Therefore, reclaimed water usage should be encouraged in arid and semiarid areas with proper hydrogeological condition.

  6. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  7. Lake Storage Measurements For Water Resources Management: Combining Remotely Sensed Water Levels and Surface Areas

    Science.gov (United States)

    Brakenridge, G. R.; Birkett, C. M.

    2013-12-01

    Presently operating satellite-based radar altimeters have the ability to monitor variations in surface water height for large lakes and reservoirs, and future sensors will expand observational capabilities to many smaller water bodies. Such remote sensing provides objective, independent information where in situ data are lacking or access is restricted. A USDA/NASA (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) program is performing operational altimetric monitoring of the largest lakes and reservoirs around the world using data from the NASA/CNES, NRL, and ESA missions. Public lake-level products from the Global Reservoir and Lake Monitor (GRLM) are a combination of archived and near real time information. The USDA/FAS utilizes the products for assessing international irrigation potential and for crop production estimates; other end-users study climate trends, observe anthropogenic effects, and/or are are involved in other water resources management and regional water security issues. At the same time, the Dartmouth Flood Observatory (http://floodobservatory.colorado.edu/), its NASA GSFC partners (http://oas.gsfc.nasa.gov/floodmap/home.html), and associated MODIS data and automated processing algorithms are providing public access to a growing GIS record of the Earth's changing surface water extent, including changes related to floods and droughts. The Observatory's web site also provide both archival and near real time information, and is based mainly on the highest spatial resolution (250 m) MODIS bands. Therefore, it is now possible to provide on an international basis reservoir and lake storage change measurements entirely from remote sensing, on a frequently updating basis. The volume change values are based on standard numerical procedures used for many decades for analysis of coeval lake area and height data. We provide first results of this combination, including prototype displays for public access and data retrieval of water storage

  8. Biochemical and microbiological evaluation of the water samples collected from different areas of district Kohat and Mohamand Agency, Pakistan.

    Directory of Open Access Journals (Sweden)

    Ayaz Ali

    2013-09-01

    Full Text Available Contamination of drinking water sources mainly due to microorganisms is the major problem in many areas of Pakistan. Pakistan is also facing the problem of contamination of drinking water which greatly affects human health and quality of life. The most important component of human beings for living is water. Therefore, it is important to analyze drinking water quality mostly in developing countries as the local people are mostly unaware of the water pollution. In this study, twenty three samples of water were analyzed during a 3-month period from the well and lake water supplies of different areas of Kohat and Mohamand Agency. The bacteriological evaluation was done and several tests were performed such as Total Plate Count, Coliform, Feacal coliform, Escherichia coli (E. coli and Biochemical test. In this study, thirteen samples were in the normal range and 10 samples were out of safety ranges fixed by World Health Organization (WHO. The water which was not fit for drinking can be a consistent risk of the infectious diseases and continuous assessment and purification strategies should be developed in these areas to reduce the microbial contamination. The proper training by the local public authorities is required to educate the local community about water pollution, their causes and preventive measures in order to improve the health status of the people in the regions.

  9. Closure plan for the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units

    International Nuclear Information System (INIS)

    Smith, P.J.; Van Brunt, K.M.

    1992-11-01

    This document describes the proposed plan for closure of the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act interim status closure requirements. The location, size, capacity, and history of the units are described, and their current status is discussed. The units will be closed by treating remaining waste in storage, followed by thorough decontamination of the systems. Sufficient sampling and analysis, and documentation of all activities will be performed to demonstrate clean closure

  10. Measurement of Rn-222 concentration in underground water in Osaka stratum group in Sennan area

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kosuke

    1977-01-01

    The Rn-222 concentration in underground water is reported as follows, which is the result obtained when the ground inspection was carried out in the Research Reactor Institute of Kyoto University located at Kumatori area in Osaka stratum group. Underground water, at different depth, well water and rain water were taken, and the contained Rn-222 was extracted with toluene to measure by liquid scintillation technique. Rn-222 concentration in rain water was 3.5 - 8.0 pCi/l, while the concentration in well water was 130 - 250 pCi/l, and that in underground water was 240 - 313 pCi/l. The seasonal change, geographical difference and variation according to depth of Rn-222 concentration were examined. Rn-222 behavior in soil should be investigated more in detail in reference to Rn-222 dispersion, transport and equilibrium problems in soil-water system in the future. (Kobatake, H.)

  11. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    Directory of Open Access Journals (Sweden)

    Hairong Li

    2013-03-01

    Full Text Available Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators.

  12. 36 CFR 293.16 - Special provisions governing the Boundary Waters Canoe Area Wilderness, Superior National Forest...

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Special provisions governing the Boundary Waters Canoe Area Wilderness, Superior National Forest, Minnesota. 293.16 Section 293.16 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS...

  13. [Evaluation of environmental conditions: air, water and soil in areas of mining activity in Boyacá, Colombia].

    Science.gov (United States)

    Agudelo-Calderón, Carlos A; Quiroz-Arcentales, Leonardo; García-Ubaque, Juan C; Robledo-Martínez, Rocío; García-Ubaque, Cesar A

    2016-02-01

    Objectives To determine concentrations of PM10, mercury and lead in indoor air of homes, water sources and soil in municipalities near mining operations. Method 6 points were evaluated in areas of influence and 2 in control areas. For measurements of indoor air, we used the NIOSH 600 method (PM10), NIOSH 6009 (mercury) and NIOSH 7300 (lead). For water analysis we used the IDEAM Guide for monitoring discharges. For soil analysis, we used the cold vapor technique (mercury) and atomic absorption (lead). Results In almost all selected households, the average PM10 and mercury concentrations in indoor air exceeded applicable air quality standards. Concentrations of lead were below standard levels. In all water sources, high concentrations of lead were found and in some places within the mining areas, high levels of iron, aluminum and mercury were also found. In soil, mercury concentrations were below the detection level and for lead, differences between the monitored points were observed. Conclusions The results do not establish causal relationships between mining and concentration of these pollutants in the evaluated areas because of the multiplicity of sources in the area. However, such studies provide important information, useful to agents of the environmental health system and researchers. Installation of networks for environmental monitoring to obtain continuous reports is suggested.

  14. Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Laura Essl

    2012-09-01

    Full Text Available Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands, and (vermi-composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation, however, is

  15. Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Tiemen A. Nanninga

    2012-09-01

    Full Text Available Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands, and (vermi-composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation

  16. Piper-PCA-Fisher Recognition Model of Water Inrush Source: A Case Study of the Jiaozuo Mining Area

    Directory of Open Access Journals (Sweden)

    Pinghua Huang

    2018-01-01

    Full Text Available Source discrimination of mine water plays an important role in guiding mine water prevention in mine water management. To accurately determine water inrush source from a mine in the Jiaozuo mining area, a Piper trilinear diagram based on hydrochemical experimental data of stratified underground water in the area was utilized to determine typical water samples. Additionally, principal component analysis (PCA was used for dimensionality reduction of conventional hydrochemical variables, after which mutually independent variables were extracted. The Piper-PCA-Fisher water inrush source recognition model was established by combining the Piper trilinear diagram and Fisher discrimination theory. Screened typical samples were used to conduct back-discriminate verification of the model. Results showed that 28 typical water samples in different aquifers were determined through the Piper trilinear diagram as a water sample set for training. Before PCA was carried out, the first five factors covered 98.92% of the information quantity of the original data and could effectively represent the data information of the original samples. During the one-by-one rediscrimination process of 28 groups of training samples using the Piper-PCA-Fisher water inrush source model, 100% correct discrimination rate was achieved. During the prediction and discrimination process of 13 samples, one water sample was misdiscriminated; hence, the correct prediscrimination rate was 92.3%. Compared with the traditional Fisher water source recognition model, the Piper-PCA-Fisher water source recognition model established in this study had higher accuracy in both rediscrimination and prediscrimination processes. Thus it had a strong ability to discriminate water inrush sources.

  17. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    OpenAIRE

    Hu Xueting; Zhang Dongyun; Zhao Siqin; Asuha Sin

    2016-01-01

    Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase) with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange) with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that th...

  18. Domestic Water Utilization and Its Determinants in the Rural Areas of Oyo State, Nigeria Using Multivariate Analysis

    OpenAIRE

    T. O. Ogunbode; I. P. Ifabiyi

    2017-01-01

    Investigation into water utilization and its determinants in the rural areas is salient to a result-oriented management of this resource. Thus, a research was conducted to assess the pattern of domestic water uses and its determinant in the rural areas of Oyo State, Nigeria. A multistage sampling technique was applied to select 124 villages from 25 out of the 33 LGAs in Oyo State, Nigeria with 5 villages from each. Ten structured questionnaire were administered in each of the selected village...

  19. Physical characteristics and quality of water from selected springs and wells in the Lincoln Point-Bird Island area, Utah Lake, Utah

    Science.gov (United States)

    Baskin, R.L.; Spangler, L.E.; Holmes, W.F.

    1994-01-01

    From February 1991 to October 1992, the U.S. Geological Survey, in cooperation with the Central Utah Water Conservancy District, investigated the hydrology of the Lincoln Point - Bird Island area in the southeast part of Utah Lake, Utah. The investigation included measurements of the discharge of selected springs and measurements of the physical and chemical characteristics of water from selected springs and wells in the LincolnPoint - Bird Island area. This report contains data for twenty-one distinct springs in the study area including two springs beneath the surface of Utah Lake at Bird Island. Data from this study, combined with data from previous studies, indicate that the location of springs in the Lincoln Point - Bird Island area probably is controlled by fractures that are the result of faulting. Measured discharge of springs in the Lincoln Point - Bird Island area ranged from less than 0.01 cubic foot per second to 0.84 cubic foot per second. Total discharge in the study area, including known unmeasured springs and seeps, is estimated to be about 5 cubic feet per second. Reported and measured temperatures of water from springs and wells in the Lincoln Point - Bird Island area ranged from 16.0 degrees Celsius to 36.5 degrees Celsius. Dissolved-solids con-centrations ranged from 444 milligrams per liter to 7,932 milligrams per liter, and pH ranged from 6.3 to 8.1. Physical and chemical characteristics of spring and well water from the west side of Lincoln Point were virtually identical to the physical and chemical characteristics of water from the submerged Bird Island springs, indicating a similar source for the water. Water chemistry, isotope analyses, and geothermometer calculations indicate deep circulation of water discharging from the springs and indicate that the source of recharge for the springs at Lincoln Point and Bird Island does not appear to be localized in the LincolnPoint - Bird Island area.

  20. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran.

    Science.gov (United States)

    Mohammadi, Ali Akbar; Yousefi, Mahmood; Yaseri, Mehdi; Jalilzadeh, Mohsen; Mahvi, Amir Hossein

    2017-12-11

    Skeletal fluorosis resulting from high fluoride level in drinking water is a major public health problem. The present study evaluated the association between exposures to drinking water fluoride and skeletal fluorosis in 5 villages of Poldasht County, Iran. All the data and information on the prevalence of bone diseases were obtained from the Health Record Department, Poldasht Health Centre. To obtain the odds ratio of bone disease problem in different risk factors, when considering the cluster effect of rural area, logistic regression in a multilevel model was used. Results showed that skeletal fluorosis of people who live in areas with high fluoride concentration is 18.1% higher than that of individuals who live in areas with low fluoride concentration. Skeletal fluorosis (54.5%) was observed in the age group of 71 years and above, and was more commonly found in females than males. According to Unadjusted, individuals who consume ≤3 unit milk and dairy products per week have almost the same level of bone diseases as compared to those that consume more than 3 units. This study indicated that, skeletal fluorosis is a general health problem in these rural areas because the results revealed that high percentage of the studied population had symptoms of skeletal fluorosis.

  1. Examination Of The Physicochemical Characteristics Of Domestic Water Sources In Ebonyi Local Government Area Of Ebonyi State Nigeria.

    Directory of Open Access Journals (Sweden)

    Nwidembia

    2015-08-01

    Full Text Available Lack of good drinking water due to contamination by chemicals has been a global menace. It is one of the most serious environmental problems that have greatly impacted human health. Basic quality parameters of domestic water sources in Ebonyi Local Government Area were studied in the months of September 2014 and October 2014. Samples were randomly collected from common water sources well stream borehole and pond across four communities in the Local Government Area. The physicochemical characteristics of the collected water samples were investigated using standard procedures. The results showed mean pH values of 7.3 7.8 6.8 and 7.0 for well stream borehole and pond water samples respectively. The colour examination showed 13 HU 11 HU 13 HU and 16 HU for well stream borehole and pond water samples respectively. The turbidity were recorded as 103 NTU well 90 NTU stream 0.8 NTU borehole and 92 NTU pond. Total dissolved solids TDS showed a record of 595 mgL 386mgL 76 mgL and 563 mgL for well stream borehole and pond respectively. Well water recorded 78 mgL stream 112 mgL borehole 42 mgL and pond 795 mgL for Total Suspended Solids respectively. Also the total hardness showed 525 mgL 779 mgL 44 mgL and 837 mgL for well stream borehole and pond water samples respectively. The results show that most of the common sources of water in the studied areas are not good for drinking since the physicochemical variables evaluated mostly exceeded WHO permissible limits. We therefore recommend that water treatment should be paramount as alternative sources of drinking water in the communities should be considered.

  2. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    Science.gov (United States)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  3. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  4. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    Science.gov (United States)

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  5. THE VULNERABILITY TO WATER HAZARDS OF URBAN AREA TURDA– CÂMPIA TURZII

    Directory of Open Access Journals (Sweden)

    IOANA URCAN

    2012-12-01

    Full Text Available The vulnerability to water hazards of urban area Turda – Câmpia Turzii. The risk was defined as a social object whose primary component is vulnerability. This paper examines the way in which vulnerability was defined by highlighting its three aspects: physical, technical and social. The vulnerability involves a complex systematic approach especially when cities are analyzed. The economic, social heritage, the environmental elements can all become factors of vulnerability. In this paper the urban areas vulnerable towaterborne hazards, especially floods were mentioned. The means to reduce urban vulnerability were analyzed, highlighting the measures taken by the local communities to mitigate the crisis.

  6. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water years 1993--94

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1996-09-01

    The Yucca Mountain area is being evaluated by the US Department of Energy for its suitability to store high-level nuclear waste in a mined, underground repository. Hydrologic data are being collected by the US Geological Survey throughout a 150 Km{sup 2} study area about 15- Km northwest of Las Vegas in southern Nevada for site characterization studies. Ongoing hydrologic studies are investigating atmospheric precipitation, stream-flow, movement of water through the unsaturated zone, movement of water through the saturated zone, and paleohydrology. This study at Fortymile Wash involves some components of each of these studies. Fortymile Wash is an ephemeral stream near Yucca Mountain with tributaries draining the east side of Yucca Mountain and then forming a distributary system in the Amargosa Desert. An objective of the study is to determine the amount of recharge from Fortymile Wash to the ground-water flow system that has been proposed. Understanding the ground-water flow system is important because it is a possible mechanism for radionuclide migration from the repository to the accessible environment. An adequate understanding of the ground-water flow system is necessary for an evaluation of the safety issues involved in siting the potential repository.

  7. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature.

    Science.gov (United States)

    Mohammadi, Ali Akbar; Yousefi, Mahmood; Mahvi, Amir Hossein

    2017-08-01

    Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river) was in the range mg/l 0.28-10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7-16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.

  8. Quality of underground water and hydro-geological situation caused by oil exploitation in the area of Kikinda

    Directory of Open Access Journals (Sweden)

    Pašić Milana

    2010-01-01

    Full Text Available Numerous oil fields were discovered in the area of North Banat and its regional centre, the city of Kikinda. These oil fields were explored and exploited in the second half of the XX century. Oil rigs in the area of the city zone can endanger the environment, as well as the quality of life of the citizens. In order to discover the presence of polycyclic aromatic hydrocarbon we have applied GC/MSD technique, whereas we have applied GC/MSD Purge and trap. technique to discover the presence of aromatic hydrocarbon. Chemical analyses of water samples from the area of Kikinda did nit prove that underground water was polluted with oil. .

  9. Natural radioactivity of ground water in some areas in Aden governorate South of Yemen region

    International Nuclear Information System (INIS)

    Harb, S.; El-Kamel, A.H.; Zahran, A.M.; Abbady, A.A.; Ahmed, F.A.

    2013-01-01

    This paper presents the concentrations of naturally occurring radionuclides 226 Ra, 232 Th and 40 K measured in groundwater samples collected from Aden governorate South of Yemen region using gamma spectroscopy. A total of 37 groundwater samples were collected from four areas in Aden governorate. The average activity concentrations for groundwater from Beer Ahmed area were 1.60 Bq/L, 1.25 Bq/L and 16.90 Bq/L for 226 Ra, 232 Th and 40 K respectively and from Beer Fadle area were 1.45 Bq/L, 0.87 Bq/L and 19.8 Bq/L for 226 Ra, 232 Th and 40 K, respectively, while that for groundwater samples from Daar-saad area were 1.27 Bq/L, 1.18 Bq/L and 18.28 Bq/L for 226 Ra, 232 Th and 40 K, respectively and Al-Masabian area were 1.55 Bq/L, 1.421 Bq/L and 19.03 Bq/L for 226 Ra, 232 Th and 40 K respectively. Furthermore, annual effective dose equivalent of ingestion of these waters was calculated. The results showed that the annual dose obtained in the present study was much higher than the recommended value (0.1 mSv/year) as reported by WHO. The results were compared with those for drinking water. (author)

  10. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  11. Environmental protection and management: A water pollution case study within the Greater Blue Mountains World Heritage Area, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.A.; Wright, S.; Graham, K.; Burgin, S. [University of Western Sydney, Penrith, NSW (Australia)

    2011-01-15

    The Grose River is contained almost entirely within a World Heritage Area. While sewage pollution in the area has been addressed, pollution at damaging levels continues from a disused coal mine, closed in 1997. Despite some surface rehabilitation, no action has occurred to remediate zinc polluted waters emanating from the mine. We examine the historical regulation and management of the Australian Commonwealth and New South Wales governments and highlight gaps in both regulatory systems. We conclude that there is an urgent need to improve regulation of water pollution, mining and management of the environment in highly valued world heritage areas.

  12. Experimental justification of indicative microbiological values for the safety of water bodies in the recreation areas

    Directory of Open Access Journals (Sweden)

    Е.V. Drozdova

    2015-03-01

    Full Text Available The article provides the assessment of the microbiological values of water bodies if they are used for recreational purposes and distinguishes the epidemiologically significant parameters. In order to validate the indicative safety values taking into account the existing conditions of the recreational use of water we conducted the hygienic assessment of water in the water bodies used for recreational purposes under the indicative microbiological values (total microbial count, thermotolerant coliform bacteria, E. coli; enterococcus, spores of sulfite-reducing Clostridia; coliphages; Ps. aeruginosa and the content of pathogenic microorganisms; also the microbiological profile of water was identified. The obtained data will be used to improve the system for monitoring of water bodies in the recreation areas.

  13. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    Science.gov (United States)

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  14. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario.

    Science.gov (United States)

    Rajendran, A; Mansiya, C

    2015-11-01

    The study of changes in ground water quality on the east coast of chennai due to the December 26, 2004 tsunami and other subsequent disturbances is a matter of great concern. The post-Tsunami has caused considerable plant, animal, material and ecological changes in the entire stretch of chennai coastal area. Being very close to sea and frequently subjected to coastal erosion, water quality has been a concern in this coastal strip, and especially after the recent tsunami this strip seems to be more vulnerable. In the present investigation, ten ground water samples were collected from various parts of south chennai coastal area. Physico-chemical parameters such as pH, temperature, Biochemical oxygen demand (BOD), Dissolved oxygen (DO), total solids; turbidity and fecal coliform were analyzed. The overall Water quality index (WQI) values for all the samples were found to be in the range of 68.81-74.38 which reveals a fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment. The long term adverse impacts of tsunami on ground water quality of coastal areas and the relationships that exist and among various parameters are carefully analyzed. Local residents and corporation authorities have been made aware of the quality of their drinking water and the methods to conserve the water bodies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012

    Science.gov (United States)

    Smith, Kirk P.

    2014-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft3/s) to the reservoir during WY 2012. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi2) and from 14,000 to 87,000 kg/mi2, respectively. At the stations where water-quality samples were collected

  16. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011

    Science.gov (United States)

    Smith, Kirk P.

    2013-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2011 (October 1, 2010, to September 30, 2011), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were also equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples also were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2011 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Water-quality data collected by PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2011. The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 37 cubic feet per second (ft3/s) to the reservoir during WY 2011. For the same time period, annual mean1 streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.5 to about 21 ft3/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,600,000 kg (kilograms) of sodium and 2,600,000 kg of chloride to the Scituate Reservoir during WY 2011; sodium and chloride yields for the tributaries ranged from 9,800 to 53,000 kilograms per square mile (kg/mi2) and from 15,000 to 90,000 kg/mi2, respectively. At the stations where water-quality samples were

  17. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    Science.gov (United States)

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  18. Optimal choice: assessing the probability of additional damage to buildings caused by water level changes of larger areas

    Science.gov (United States)

    Bijnagte, J. L.; Luger, D.

    2012-12-01

    In the Northern parts of the Netherlands exploration of natural gas reservoirs causes subsidence over large areas. As a consequence, the water levels in canals and polders have to be adjusted over time in order to keep the groundwater levels at a constant depth relative to the surface level. In the middle of the subsidence area it is relatively easy to follow the settlements by a uniform lowering of the water level. This would however result in a relative lowering of the groundwater table at the edges of the subsidence area. Given the presence of soft compressible soils, this would result in induced settlements. For buildings in these areas this will increase the chance of damage. A major design challenge lies therefore in the optimisation of the use of compartments. The more compartments the higher the cost therefore the aim is to make compartments in the water management system that are as large as possible without causing inadmissible damage to buildings. In order to asses expected damage from different use of compartments three tools are needed. The first is a generally accepted method of damage determination, the second a method to determine the contribution to damage of a new influence, e.g. a groundwater table change. Third, and perhaps most importantly, a method is needed to evaluate effects not for single buildings but for larger areas. The first need is covered by established damage criteria like those of Burland & Wroth or Boscardin & Cording. Up until now the second and the third have been problematic. This paper presents a method which enables to assign a contribution to the probability of damage of various recognised mechanisms such as soil and foundation inhomogeneity, uneven loading, ground water level changes. Shallow subsidence due to peat oxidation and deep subsidence due to reservoir depletion can be combined. In order to address the third issue: evaluation of effects for larger areas, the method uses a probabilistic approach. Apart from a

  19. Primordial radionuclides in drinking water from former tin-mining area elevated activity

    International Nuclear Information System (INIS)

    Adekoya, O. I.; Adewoyin, K. A.; Olaleru, S. A.

    2014-01-01

    The activity concentrations of the primordial radionuclides in drinking water from two former mining areas (Bisichi and Bukuru) in Jos, Plateau State in Nigeria have been studied. The activities were determined by a non-destructive analysis using a computerized gamma ray spectrometry system with high purity germanium (HPGe). The result show the average activity concentration for 226 Ra, 232 Th and 40 K for Bukuru and Bisichi to be respectively 1.20±0.02 Bq/l, 1.93±0.01 Bq/l, 4.75±0.14 Bq/l and 2.03±0.14 Bq/l, 2.20±0.13 Bq/l, 3.26±0.06 Bq/l. The annual effective doses due to the intake of drinking water from both locations approximately 2.80 mSv and 3.32 mSv respectively. These results are much higher then the reference level of a dose of 0.1 mSv/year from the intake of drinking water.

  20. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sobeih

    2017-10-01

    Full Text Available The present study was initiated with the objective of simulating and predicting the effect of future development on the groundwater flow and levels. This supports applications for future planning and wise management of water resources. The study area extends south of El Nubariya canal including Sadat City area and its vicinities in the western Nile delta region. A numerical groundwater flow model (MODFLOW has been employed to simulate flow and get the budget of groundwater in the study area. The model showed that about 28,101,041 m3/day of surface water is infiltrated to groundwater dominantly from canals and excess irrigation water. About the same quantity (28,101,052 m3/day, is discharged from groundwater through production wells, open drains and through some reaches of canals. Three development scenarios were simulated to give predictions of the impact of future increasing recharge, construction of new canal and new open drains, and also increased pumping on the groundwater levels in the study area.

  1. An isotope-aided study on the interaction between surface water and groundwater in the KAERI area

    International Nuclear Information System (INIS)

    Ahn, Jong Sung; Kim, Jong Hoon; Yun, Si Tae; Jeong, Chan Ho; Kim, Kae Nam

    1988-01-01

    The basement rocks of the KAERI area are compose421d of two mica granite and schistose granite. The groundwater in these fresh crystalline rocks appears to be restricted within the zones developing the fractures. The groundwater in this area occurs mainly in the weathered zones of granitic rocks, with a thickness of 5-20 m. On the results of environmental isotopes analyses, it was proved that surface water and precipitation infiltrated rapidly through the subsurface media into the weathered zone. The high environmental isotopes level found in some groundwater samples are ascribed to the impermeable layer such as clay and silt around the sampling points. Consequently, the groundwater flow in this area is controlled by the heterogeneity of weathered materials. The water types classified by the piper diagram are attributed to the Ca-Cl and Ca-HCO 3 types

  2. The physical and aesthetic quality of ground water in rural areas of Lahore district

    International Nuclear Information System (INIS)

    Salik, M.; Mahmood, K.; Sadiq, M.

    2009-01-01

    Physical and aesthetic parameters of drinking water include total dissolved solids, electrical conductivity (EC), taste, odour, colour and turbidity, Although these parameters are not considered to be harmful for health, but they do effect the look and taste of the water, and may cause it to be undrinkable by some people. Addressing these water quality problems is therefore important and all have relatively simple solutions. A study was conducted in twenty villages of Lahore district to, assess the physical and aesthetic quality of ground water. It was observed that in rural area ground water is used for domestic and drinking purpose. Therefore, tube wells water samples were twenty villages were collected, Bore depths .ranged from 60 to 380 feet. Three water samples were collected from each of twenty villages and were analyzed for total dissolved solids, electrical conductivity (EC), taste, odour, colour and turbidity, Analysis showed that regarding colour, odour and taste all, water samples were fit. Considering World Health Organization permissible limit for turbidity (5 Nephlometric Turbidity Unit) all the water samples were fit. Regarding total dissolved solids, 33.3 % water samples were unfit while, 64.7 % were fit considering the WHO criteria (1000 mill). Regarding pH. 7.5 % of water samples were unfit for drinking and only 25 % water samples fall within safe limit. Considering all the parameters, 10 samples (16.6 %) were fit and remaining 50 samples were unfit out of total 60 water samples. (author)

  3. Comparative study of fluoride concentration in human serum and drinking water in fluorinated endemic and non endemic areas of pakistan

    International Nuclear Information System (INIS)

    Qayyum, M.; Ahmad, B.; Ahmad, M.

    2013-01-01

    For comparing the human blood serum and drinking water fluoride levels of subjects with dental fluorosis and bony deformities, this study is carried out with individuals ranging 8-17 age group fluorinated Sham Ki Bhatiyan, Punjab (endemic) and Queens Road, Lahore, Punjab (non-endemic) areas. Fluoride concentrations were determined using ion selective electrode methodology and statistically compared. Both the groups showed a significant difference (p < 0.05). Subjects from fluorotic area showed high concentration of fluoride in water and blood serum samples (mean value: 135.587+-77.435 and 2.765+-0.469 micro molL/sup -1/ in water and blood serum samples respectively) as compared to controls (mean value: 19.509+-2.432 and 2.364+- 0.667 micro molL -1). These findings indicate that serum and water fluoride concentrations have a significant positive dose response relationship with the prevalence of dental fluorosis in an area associated with high fluoride level in drinking water. (author)

  4. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines

    International Nuclear Information System (INIS)

    San Diego-McGlone, Maria Lourdes; Azanza, Rhodora V.; Villanoy, Cesar L.; Jacinto, Gil S.

    2008-01-01

    The coastal waters of Bolinao, Pangasinan, Philippines experienced environmental changes over a 10-year period (1995-2005), the most significant effect of which was the major fish kill event in 2002 that coincided with the first reported Philippine bloom of a dinoflagellate Prorocentrum minimum. Days before the bloom, dissolved oxygen was <2.0 mg/l in the waters that were stratified. These conditions may be linked to the uncontrolled proliferation of fish pens and cages to more than double the allowable limit of 544 units for Bolinao waters. Mariculture activities release organic matter from unconsumed feed and fecal material that accumulate in the water and sediments. In over 10 years, water quality conditions have become eutrophic with ammonia increasing by 56%, nitrite by 35%, nitrate by 90%, and phosphate by 67%. The addition of more fish pens and cages placed additional stress to this poorly flushed, shallow area that affected water quality due to changes in the water residence time

  5. Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the Three Gorges Reservoir Area, China.

    Science.gov (United States)

    Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu

    2016-02-01

    In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).

  6. Enviromental Health Risks on Community in Coastal Area As a Results The Presence of Pb in Sea Water and Drinking Water.

    Science.gov (United States)

    Malem Indirawati, Sri; Pandia, Setiaty; Mawengkang, Herman; Hasan, Wirsal

    2018-01-01

    The burden of pollution due to industrial waste, ports, community activities and marine intrusion further exacerbate environmental quality. This pollution causes drinking water sources polluted. This study aims to analyze Pb contamination in marine, and drinking water from wellbores and measure the magnitude of health risks. This is cross sectional study and quantitative research that analyzes Pb concentrations in marine and drinking water. The sample are 250 people who live in coastal area and drink water from wellbores. Water samples were examined in certified laboratories by using Atomic Absorbstion Spectrophotometer method, health risk was analyzed by the environmental health risk (EHRA) method. Pb concentrations average in marine is 52 μgl-1 . Pb concentration from 92 samples of drinking water average is 4.5 μgl-1 and range 5.4 - 26.2 μgl-1. The amount of health risk RQ <1, which means that it has not shown risk yet. Pb exceeded the environmental quality standard in marine, There are 14.7% of people consuming Pb contaminated drinking water. Community complaints found at the study sites were diarrhea 22.8% and dizziness 17.2% and skin disease 17.2%, upper respiratory tract infection, rheumatism and hypertension.

  7. The installation of a multiport ground-water sampling system in the 300 Area

    International Nuclear Information System (INIS)

    Gilmore, T.J.

    1989-06-01

    In 1988, the Pacific Northwest Laboratory installed a multiport groundwater sampling system in well 399-1-20, drilled north of the 300 Area on the Hanford Site in southwestern Washington State. The purpose of installing the multiport system is to evaluate methods of determining the vertical distribution of contaminants and hydraulic heads in ground water. Well 399-1-20 is adjacent to a cluster of four Resource Conservation and Recovery Act (RCRA) ground-water monitoring wells. This proximity makes it possible to compare sampling intervals and head measurements between the multiport system and the RCRA monitoring wells. Drilling and installation of the multiport system took 42 working days. Six sampling ports were installed in the upper unconfined aquifer at depths of approximately 120, 103, 86, 74, 56, and 44 feet. The locations of the sampling ports were determined by the hydrogeology of the area and the screened intervals of adjacent ground-water monitoring wells. The system was installed by backfilling sand around the sampling ports and isolating the ports with bentonite seals. The method proved adequate. For future installation, however, development and evaluation of an alternative method is recommended. In the alternative method suggested, the multiport system would be placed inside a cased and screened well, using packers to isolate the sampling zones. 4 refs., 8 figs., 1 tab

  8. Water quality studied in areas of unconventional oil and gas development, including areas where hydraulic fracturing techniques are used, in the United States

    Science.gov (United States)

    Susong, David D.; Gallegos, Tanya J.; Oelsner, Gretchen P.

    2012-01-01

    Domestic oil and gas production and clean water are critical for economic growth, public health, and national security of the United States. As domestic oil and gas production increases in new areas and old fields are enhanced, there is increasing public concern about the effects of energy production on surface-water and groundwater quality. To a great extent, this concern arises from the improved hydraulic fracturing techniques being used today, including horizontal drilling, for producing unconventional oil and gas in low-permeability formations.

  9. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  10. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    International Nuclear Information System (INIS)

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway

  11. Stable Isotopic Analysis on Water Utilization of Two Xerophytic Shrubs in a Revegetated Desert Area: Tengger Desert, China

    OpenAIRE

    Lei Huang; Zhishan Zhang

    2015-01-01

    Stable isotope studies on stable isotope ratios of hydrogen and oxygen in water within plants provide new information on water sources and water use patterns under natural conditions. In this study, the sources of water uptake for two typical xerophytic shrubs, Caragana korshinskii and Artemisia ordosica, were determined at four different-aged revegetated sites (1956, 1964, 1981, and 1987) in the Tengger Desert, a revegetated desert area in China. Samples from precipitation, soil water at dif...

  12. Polybrominated diphenyl ethers in water, sediment, soil, and biological samples from different industrial areas in Zhejiang, China

    International Nuclear Information System (INIS)

    Wang, Junxia; Lin, Zhenkun; Lin, Kuangfei; Wang, Chunyan; Zhang, Wei; Cui, Changyuan; Lin, Junda; Dong, Qiaoxiang; Huang, Changjiang

    2011-01-01

    Highlights: ► We examined PBDE concentrations in various matrices from different industrial areas. ► Elevated PBDE levels were found in areas with low-voltage electrical manufactures. ► Areas with e-waste recycling activities also had higher PBDE concentrations. ► PBDE content and composition in water samples varied from one area to another. ► PBDE composition in sediment/soil and biological samples was predominated by BDE-209. - Abstract: Polybrominated diphenyl ethers (PBDEs) have been used extensively in electrical and electronic products, but little is known about their distribution in the environment surrounding the manufacturing factories. This study reports PBDE contamination in various matrices from the location (Liushi, Zhejiang province) that produces more than 70% of the low-voltage electrical appliances in China. Additionally, PBDE contamination was compared with other industries such as the e-waste recycling business (Fengjiang) in the same region. Specifically, we measured seven PBDE congeners (BDEs – 47, 99, 100, 153, 154, 183, and 209) in water, sediment, soil, plant, and animal tissues from four different areas in this region. The present study revealed elevated PBDE concentrations in all matrices collected from Liushi and Fengjiang in comparison with highly industrialized areas without significant PBDE contamination sources. In water samples, there were large variations of PBDE content and composition across different areas. In sediment/soil and biological samples, BDE-209 was the predominant congener and this could be due to the abundant usage of deca-BDE mixtures in China. Our findings provide the very first data on PBDE contamination in the local environments surrounding the electronics industry, and also reveal widespread PBDE contamination in highly industrialized coastal regions of China.

  13. Effect of fluoride in drinking water on children′s intelligence in high and low fluoride areas of Delhi

    Directory of Open Access Journals (Sweden)

    Hansa Kundu

    2015-01-01

    Full Text Available Introduction: Fluoride is one of the indispensable elements for the living being. However, the intake of F above the threshold level can affect the central nervous system even before causing dental or skeletal fluorosis. Aim: The aim was to assess the effect of fluoride in drinking water on the intelligence quotient (IQ of 8-12 years old school going children residing in high and low Fluoride (F areas of Delhi. Materials and Methods: A total of 200 school children were selected, 100 from low F area and 100 from high F area. The IQ of the children was assessed using Ravens Standardized Progressive Matrices Test. Information for each child′s sociodemographic data, mother′s diet during pregnancy, duration of residency in the village, source of drinking water, and duration of drinking water from the source was entered on a specially designed proforma from mothers of children. Height and weight were also recorded for each child to assess the nutritional status. Independent t-test and Chi-square test was used to compare mean IQ scores in high and low fluoridated areas. Pearson′s correlation and multivariate linear regression were used to appraise the issue of all the study variables on IQ. Results: Comparison of mean IQ of children in both high (76.20 ± 19.10 and low F (85.80 ± 18.85 areas showed a significant difference (P = 0.013. Multiple regression analysis between child IQ and all other independent variables revealed that mother′s diet during pregnancy (P = 0.001 along with F in drinking water (P = 0.017 were the independent variables with the greatest explanatory power for child IQ variance (r2 = 0.417 without interaction with other variables. Conclusion: Fluoride in the drinking water was significantly related with the IQ of children. Along with fluoride, mother′s diet during pregnancy was also found to be significantly related with IQ of children. Researches in the same field are further advocated with large sample size and over a

  14. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China

    Science.gov (United States)

    Yang, Pingheng; Cheng, Qun; Xie, Shiyou; Wang, Jianli; Chang, Longran; Yu, Qin; Zhan, Zhaojun; Chen, Feng

    2017-06-01

    Many geothermal reservoirs in Chongqing in southwestern China are located in carbonate rock aquifers and exploited through drilling. Water samples from 36 geothermal wells have been collected in the main urban area of Chongqing. Chemical types of the thermal water samples are Ca·Mg-SO4 and Ca-SO4. High contents of Ca2+ and SO42- in the thermal water samples are derived from the dissolution of evaporates. Furthermore, the HCO3- concentration is constrained by the common ion effect. Drilling depth has no effect on the physical and chemical characteristics according to the results of a t-test. The geothermal reservoir's temperature can be estimated to be 64.8-93.4 °C (average 82 °C) using quartz and improved SiO2 geothermometers. Values of δD and δ18O for the thermal water samples indicate that the thermal water resources originate from local precipitation with a recharge elevation between 838 and 1130 m and an annual air temperature between 10.4 and 13.9 °C. A conceptual model of regional scale groundwater flow for the thermal water is proposed. The thermal water mainly originates from the meteoric water recharged in the elevated areas of northeastern Tongluoshan and Huayingshan by means of percolation through exposed carbonate before becoming groundwater. The groundwater is heated at depth and moves southwest along the fault and the anticlinal core in a gravity-driven regime. The thermal water is exposed in the form of artesian hot springs in river cutting and low-elevation areas or in wells.

  15. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  16. The effects of water filtration systems on fluoride: Washington, D.C. metropolitan area.

    Science.gov (United States)

    Jobson, M D; Grimm, S E; Banks, K; Henley, G

    2000-01-01

    According to the U.S. Environmental Protection Agency (EPA), approximately one in eight Americans is exposed to potentially harmful microbes, pesticides, lead, or radioactive radon whenever they drink a glass of tap water or take a shower. One reason for this exposure is that the water plants are aging or ill equipped to process the huge amounts of raw sewage and agricultural pollutants that are still being discharged into our drinking-water sources. Other compounds such as fluoride and chloride have been added to the community water supplies for health benefits. Water filtration systems are becoming more popular as people become concerned with pollutants in the public water supply and questions are being raised as to whether fluoride is affected by these filters. The aim of this pilot study was to assess the efficacy of three types of water filtration systems and to determine their impact on fluoride content of the water in the Washington, D.C. metropolitan area. One sample of water was collected daily for fourteen days, from one location. The sample was divided to use as a control and the test samples which were processed through various filter systems. With the use of a fluoride ion specific electrode, the fluoride concentration level was tested in all samples in order to determine the percentage of fluoride removed. This study was intended to prove that the water filtration systems did not affect the advantage offered by optimum water fluoride levels. The experimental samples were ascertained and compared to the control group, resulting in three of the four carbon filters showing statistically significant amounts of fluoride removed from the water. Both Reverse Osmosis and Distillation, as expected, removed the fluoride at a high rate.

  17. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    International Nuclear Information System (INIS)

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-01-01

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs

  18. Projecting water resources changes in potential large-scale agricultural investment areas of the Kafue River Basin in Zambia

    Science.gov (United States)

    Kim, Y.; Trainor, A. M.; Baker, T. J.

    2017-12-01

    Climate change impacts regional water availability through the spatial and temporal redistribution of available water resources. This study focuses on understanding possible response of water resources to climate change in regions where potentials for large-scale agricultural investments are planned in the upper and middle Kafue River Basin in Zambia. We used historical and projected precipitation and temperature to assess changes in water yield, using the Soil and Water Assessment Tool (SWAT) hydrological model. Some of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios project a temperature warming range from 1.8 - 5.7 °C over the region from 2020 to 2095. Precipitation projection patterns vary monthly but tend toward drier dry seasons with a slight increase in precipitation during the rainy season as compared to the historical time series. The best five calibrated parameter sets generated for the historical record (1965 - 2005) were applied for two future periods, 2020 - 2060 and 2055 - 2095, to project water yield change. Simulations projected that the 90th percentile water yield would be exceeded across most of the study area by up to 800% under the medium-low (RCP4.5) CO2 emission scenario, whereas the high (RCP8.5) CO2 emission scenario resulted in a more spatially varied pattern mixed with increasing (up to 500%) and decreasing (up to -54%) trends. The 10th percentile water yield indicated spatially varied pattern across the basin, increasing by as much as 500% though decreasing in some areas by 66%, with the greatest decreases during the dry season under RCP8.5. Overall, available water resources in the study area are projected to trend toward increased floods (i.e. water yields far exceeding 90th percentile) as well as increasing drought (i.e. water yield far below 10th percentile) vulnerability. Because surface water is a primary source for agriculture

  19. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  20. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    Science.gov (United States)

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH contact under ambient conditions.

  1. Effects of uranium mining of ground water in Ambrosia Lake area, New Mexico

    International Nuclear Information System (INIS)

    Kelly, T.E.; Link, R.L.; Schipper, M.R.

    1980-01-01

    The principal ore-bearing zone in the Ambrosia Lake area of the Grants uranium district is the Westwater Canyon Member of the Morrison Formation (Jurassic). This unit is also one of the major artesian aquifers in the region. Significant declines in the potentiometric lead within the aquifer have been recorded, although cones of depression do not appear to have spread laterally more than a few miles. Loss of potentiometric head in the Westwater Canyon Member has resulted in the interformational migration of ground water along fault zones from overlying aquifers of Cretaceous age. This migration has produced local deterioration in chemical quality of the ground water

  2. WATER RETENTION OPTION OF DRAINAGE SYSTEM FOR DRY SEASON CORN CULTIVATION AT TIDAL LOWLAND AREA

    Directory of Open Access Journals (Sweden)

    Bakri

    2015-10-01

    Full Text Available Farming constraint at tidal lowland area is about water management related to the nature of excessive water during wet season and insufficient water during dry season. This field research objectives was to find out the corn crop cultivation in August 2014 which entered dry season. The installation of subsurface drainage that previously had functioned as water discharge was converted into water retention. The research results showed that corn had grown well during peak dry season period (October in which water table was at –50 cm below soil surface, whereas water table depth was dropped to –70 cm below soil surface in land without subsurface drainage. This condition implied that installation of subsurface drainage at dry season had function as water retention, not as water discharge. Therefore, network function was inverted from water discharge into water retention. It had impact on the development of optimum water surface that flow in capillary mode to fulfill the crop’s water requirement. Corn production obtained was 6.4 t ha-1. This condition was very promising though still below the maximum national production. The applications of subsurface drainage was still not optimum due to the supply of water from the main system was not the same because of the soil physical properties diversity and topography differences.

  3. Stream-water and groundwater quality in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area, Pottawatomie County, Oklahoma, 2012-13

    Science.gov (United States)

    Becker, Carol J.

    2014-01-01

    The Citizen Potawatomi Nation needs to characterize their existing surface-water and groundwater resources in and near their tribal jurisdictional area to complete a water-resource management plan. Water resources in this area include surface water from the North Canadian and Little Rivers and groundwater from the terrace and alluvial aquifers and underlying bedrock aquifers. To assist in this effort, the U.S. Geological Survey (USGS), in cooperation with the Citizen Potawatomi Nation, collected water-quality samples at 4 sites on 3 streams and from 30 wells during 2012 and 2013 in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area in central Oklahoma. Stream samples were collected eight times on the North Canadian River at the upstream USGS streamflow-gaging station North Canadian River near Harrah, Okla. (07241550); at the downstream USGS streamflow-gaging station North Canadian River at Shawnee, Okla. (07241800); and on the Little River at the USGS streamflow-gaging station Little River near Tecumseh, Okla., (07230500). Stream samples also were collected three times at an ungaged site, Deer Creek near McLoud, Okla. (07241590). Water properties were measured, and water samples were analyzed for concentrations of major ions, nutrients, trace elements, counts of fecal-indicator bacteria, and 69 organic compounds.

  4. Research on the surface water quality in mining influenced area in north-western part of Romania

    Directory of Open Access Journals (Sweden)

    Smical Irina

    2015-01-01

    Full Text Available The paper highlights the current situation of the quality of surface water in the areas influenced by mining activities in the north-western part of Romania. In this respect a series of investigations have been conducted regarding the contamination with heavy metals of the water of the Someş and Tisa hydro- graphic Basins, which cover the northern part of Maramures County and the south-western area of Maramures County, respectively. The results of the comparative research refer to the period between 1999 and 2011 and reveal the specific heavy metal ions of mining activity: Fe, Mn, Zn, Cu, Pb Cd and Ni, as well as the water pH. The presented values as annual average values reveal an increase in several heavy metals after the closure of mines, which is due to the lack of effectiveness of the closure and of the conservation of the mine galleries, as well as of the impaired functioning of the mining wastewater treatment plants.

  5. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  6. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  7. Radioactivity and natural radionuclides distribution in river water, coastal water, sediment and Eichornia Crassipes (Mart) solms and their accumulation factor at Surabaya area

    International Nuclear Information System (INIS)

    Agus Taftazani; Sumining; Muzakky

    2002-01-01

    Distributions of radioactivity and natural radionuclides in water, sediment and eichornia crassipes (mart) solms from Surabaya River and coastal area have been evaluated. Five sampling locations were selected to represent fresh water and coastal water environment. The samples consist of water (fresh & coastal), bottom surface sediment and eichornia crassipes (mart) solms. The result showed that the gross-β activity from water environment were lower than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (1000 mBq/L) and indicated that β-radio ecological quality of water were still good. But the activity of the gross-α of water environment were higher than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (100 mBq/L). The eichornia crassipes (mart) solms (gross) activity were higher than water and sediment activities and indicated that transfer of radio nuclides from water to sediment and organism can be detected in water environment. Two natural radionuclide can be identified by γ-Spectrometric technique, they were K"4"0 and Tl"2"0"8. Generally the distribution factors F_D were smaller than bioaccumulation factor F_B. (author)

  8. Effects of changing irrigation practices on the ground-water hydrology of the Santa Isabel-Juana Diaz area, south central Puerto Rico

    Science.gov (United States)

    Ramos-Gines, Orlando

    1994-01-01

    Prior to 1930, the principal source of water for irrigation in the Santa Isabel-Juana Diaz area was surface water from outside the study area, which was delivered by a complex channel-pond system. Recharge from water applied to the fields, estimated to be 18.7 million of gallons per day, and discharge by ground-water flow to sea, estimated to be 17 million of gallons per day, were the major water- budget components prior to intensive development of the ground-water resources. Development of the ground-water resources after 1930 resulted in a substantial increase in irrigation, primarily furrow irrigation. The surface water supplied by the complex channel-pond system continued to be used and ground-water withdrawals increased sub- stantially. By 1966-68, ground-water recharge from irrigation water applied to the fields, estimated to be 37 million of gallons per day, and discharge by pumpage for irrigation, estimated to be 77 million of gallons per day, were the two major components of the ground-water budget. By 1987, drip irrigation had become the principal method of irrigation in the study area, and surface-water irrigation had, for the most part, been discontinued. The estimated aquifer recharge from irrigation water in 1987 was about 6.6 million of gallons per day, which occurred primarily in the remaining fields where furrow irrigation was still practiced. Although aquifer recharge had been reduced as a result of the conversion from furrow to drip irrigation, water levels in the aquifer were higher in 1987 than in 1968 because of the large reduction in ground-water withdrawals and subsequent recovery of ground-water levels.

  9. The composition of the ground water in bedrock in the precambrian shield areas of Finland and other countries

    International Nuclear Information System (INIS)

    Hyyppae, J.

    1986-11-01

    The main properties of the composition of the ground water contained in the Precambrian bedrock of Finland are presented on the basis of the results of analyses of some 1750 water samples taken from bored wells and a few mines. They show that, with a few exceptions, the waters of bored wells are bicarbonate waters, in which the average total amount of dissolved substances diminishes according to their geographical location as one moves from the coastal areas toward estern and northern Finland. The influence of the mineral composition of the bedrock appears most distinctly in the rapakivi areas, where the average fluoride content of the ground water varies between 1.5 and 2.0 mg/l and is thus ten times the corresponding content prevailing in areas characterized by other types of rocks. Ground waters containing from 439 to 18.000 mg/l of chloride have also been met with in Finnish bedrock and the location of the sampling site of 38 samples is given together with the general nature of their chemical composition as well as the results of the determinations of the stable (δ ''2H, δ ''1''8O, δ ''3''4S, δ ''1''3C) and radioactive (''3H, ''1''4C) isotopes of a number of samples. The saline waters are mostly located in the region covered 6000-7500 years ago by the Littorina Sea. On the other hand, the isotopic composition of many saline waters corresponds to that of rainwater fallen during climatic conditions colder than the present. The most saline waters have been met with deep down in mines and deep boreholes, also, for example, far from the region covered by the Littorina Sea. The saline waters contained in Finnish bedrock usually release gas, which in some cases consists mainly of nitrogen but in some places includes significant amounts of methane. In addition, helium is one of the constituents

  10. Polybrominated diphenyl ethers in water, sediment, soil, and biological samples from different industrial areas in Zhejiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junxia; Lin, Zhenkun [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Lin, Kuangfei [School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); Wang, Chunyan [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Zhang, Wei [School of Resources and Environmental Engineering, East China University of Science and Technology/State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); Cui, Changyuan [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Lin, Junda [Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We examined PBDE concentrations in various matrices from different industrial areas. Black-Right-Pointing-Pointer Elevated PBDE levels were found in areas with low-voltage electrical manufactures. Black-Right-Pointing-Pointer Areas with e-waste recycling activities also had higher PBDE concentrations. Black-Right-Pointing-Pointer PBDE content and composition in water samples varied from one area to another. Black-Right-Pointing-Pointer PBDE composition in sediment/soil and biological samples was predominated by BDE-209. - Abstract: Polybrominated diphenyl ethers (PBDEs) have been used extensively in electrical and electronic products, but little is known about their distribution in the environment surrounding the manufacturing factories. This study reports PBDE contamination in various matrices from the location (Liushi, Zhejiang province) that produces more than 70% of the low-voltage electrical appliances in China. Additionally, PBDE contamination was compared with other industries such as the e-waste recycling business (Fengjiang) in the same region. Specifically, we measured seven PBDE congeners (BDEs - 47, 99, 100, 153, 154, 183, and 209) in water, sediment, soil, plant, and animal tissues from four different areas in this region. The present study revealed elevated PBDE concentrations in all matrices collected from Liushi and Fengjiang in comparison with highly industrialized areas without significant PBDE contamination sources. In water samples, there were large variations of PBDE content and composition across different areas. In sediment/soil and biological samples, BDE-209 was the predominant congener and this could be due to the abundant usage of deca-BDE mixtures in China. Our findings provide the very first data on PBDE contamination in the local environments surrounding the electronics industry, and also reveal widespread PBDE contamination in highly industrialized coastal regions of China.

  11. Total mercury in water and sediment from Honda Bay area in Palawan

    International Nuclear Information System (INIS)

    Kapauan, A.F.; Kapauan, P.A.; Tan, E.O.; Verceluz, F.P.

    1980-01-01

    This project is intended to pinpoint the sources of mercury contamination from the Honda Bay area in Palawan. Sampling sites were pinpointed which water and sediment samples were to be taken and kept in virgin polyethylene liter bottles. Analytical procedures were applied. The results of the analysis for total mercury content vary cosiderably from ml, less than 0.003 ng/9 to high of 0.419 ng/g with a considerable number of the sample going above the 0.100 ng/g level. Sediment samples also gave similar results, from a low of 0.004 ng/g to value higher than 2 ng/g round the jetty. It can be concluded, therefore, that the area surveyed is contaminated with mercury but not severely so. (author)

  12. Water level measurements for modeling hydraulic properties in the 300-FF-5 and 100 Aggregate Area Operable units

    International Nuclear Information System (INIS)

    Campbell, M.D.; McMahon, W.J.; Simpson, K.R.

    1993-04-01

    Pressure transducers connected to dataloggers were used to measure ground water and Columbia River water elevations simultaneously and hourly at 35 locations in the 300-FF-5 Operable Unit and 16 locations in the 100 Aggregate Area Operable Unit on the Hanford Site. Water temperatures were also measured at 12 of these locations. This report details the findings of these studies

  13. Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran

    Directory of Open Access Journals (Sweden)

    Mahmood Yousefi

    2017-12-01

    Full Text Available Public health is at risk from physical and chemical contaminants in the drinking water which may have immediate health consequences. The data from the current study was evaluated for groundwater quality in the rural villages of Neyshabur County in Iran. For determination of the essential physicochemical parameters, water samples were collected from 30 randomly-selected water wells during 2013 and 2014. The samples were tested in situ to measure physical parameters of pH and electrical conductivity and chemical parameters of total dissolved solids, total hardness and levels of calcium, magnesium, carbonates, bicarbonates, sodium, potassium, chloride and sulfates. The APHA method was applied to determine the physicochemical parameters of the water samples. Keywords: Ground water quality index, Rural area, Neyshabur, Iran

  14. Factors influencing sustainability of communally-managed water facilities in rural areas of Zimbabwe

    Science.gov (United States)

    Kativhu, T.; Mazvimavi, D.; Tevera, D.; Nhapi, I.

    2017-08-01

    Sustainability of point water facilities is a major development challenge in many rural settings of developing countries not sparing those in the Sub-Saharan Africa region. This study was done in Zimbabwe to investigate the factors influencing sustainability of rural water supply systems. A total of 399 water points were studied in Nyanga, Chivi and Gwanda districts. Data was collected using a questionnaire, observation checklist and key informant interview guide. Multi-Criteria analysis was used to assess the sustainability of water points and inferential statistical analysis such as Chi square tests and Analysis of Variance (ANOVA) were used to determine if there were significant differences on selected variables across districts and types of lifting devices used in the study area. The thematic approach was used to analyze qualitative data. Results show that most water points were not functional and only 17% across the districts were found to be sustainable. A fusion of social, technical, financial, environmental and institutional factors was found to be influencing sustainability. On technical factors the ANOVA results show that the type of lifting device fitted at a water point significantly influences sustainability (F = 37.4, p planning stage of water projects was also found to be critical for sustainability although field results showed passive participation by communities at this critical project stage. Financial factors of adequacy of financial contributions and establishment of operation and maintenance funds were also found to be of great importance in sustaining water supply systems. It is recommended that all factors should be considered when assessing sustainability since they are interrelated.

  15. Environmental protection management by monitoring the surface water quality in Semenic area

    Directory of Open Access Journals (Sweden)

    Dana SÂMBOTIN

    2011-08-01

    Full Text Available Environment seems to have been the war against all. In fact recently most people polluted the environment and those few are cared for his cleaning. Today, the relationship evolvedas societies have changed in favour of ensuring environmental protection. With modern technology, performance, monitoring the environment becomes part of human activity ever more necessary, more possible and more efficient. The quality of the environment, its components: air, water, soil, plants, vegetable and animal products, is a condition "sine qua non" for the life of the modern man. The consequences of environmental pollution areso dangerous that modern man cannot afford considering them. Through this paper I will study the environmental quality by monitoring the surfaces waters from the Semenic- Gărâna area.

  16. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas.

    Science.gov (United States)

    Mansilha, C; Carvalho, A; Guimarães, P; Espinha Marques, J

    2014-01-01

    Water quality alterations due to forest fires may considerably affect aquatic organisms and water resources. These impacts are cumulative as a result of pollutants mobilized from fires, chemicals used to fight fire, and postfire responses. Few studies have examined postfire transport into water resources of trace elements, including the polycyclic aromatic hydrocarbons (PAH), which are organic pollutants produced during combustion and are considered carcinogenic and harmful to humans. PAH are also known to adversely affect survival, growth, and reproduction of many aquatic species. This study assessed the effects of forest wildfires on groundwater from two mountain regions located in protected areas from north and central Portugal. Two campaigns to collect water samples were performed in order to measure PAH levels. Fifteen of 16 studied PAH were found in groundwater samples collected at burned areas, most of them at concentrations significantly higher than those found in control regions, indicating aquifer contamination. The total sum of PAH in burned areas ranged from 23.1to 95.1 ng/L with a median of 62.9 ng/L, which is one- to sixfold higher than the average level measured in controls (16.2 ng/L). In addition, in control samples, the levels of light PAH with two to four rings were at higher levels than heavy PAH with five or six rings, thus showing a different profile between control and burned sites. The contribution of wildfires to groundwater contamination by PAH was demonstrated, enabling a reliable assessment of the impacts on water quality and preparation of scientifically based decision criteria for postfire forest management practices.

  17. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  18. Water-rock interactions in discharge areas of Xiangshan Fossil hydrothermal system

    International Nuclear Information System (INIS)

    Zhou, Wenbin

    1992-01-01

    Xiangshan Fossil hydrothermal system is located within a volcanic basin of south-eastern China. The fact that most metal mineralizations were found in the discharge areas of the fossil hydrothermal system shows that the discharge areas were special geochemical fields. This paper discusses some important water-rock interactions in the discharge areas of Xiangshan fossil hydrothermal system. When the fluids circulating in the deep section of the hydrothermal system went upward to the discharge area, the physico-chemical conditions under which the fluids were saturated changed so considerably that the original physico-chemical equilibria were broken. Consequently, the fluids tended to move to new equilibrium by means of regulating their chemical compositions. Temperature and pressures of the fluids could be declined greatly in discharge area; the difference of temperature and pressure are determined to be 100--150 C and 1--2 x 10 7 Pa. As a result, a large amount of CO 2 in solution escaped from the fluids in the discharge area, and UO 2 (CO 3 ) n 2(1-n) , stable in CO 2 -rich solutions, could be decomposed into UUO 2 2+ , which could be easily reduced into pitchblende associated by calcite and hematite. The pH values for the fluids tended to increase with the CO 2 escaping, however, the interactions between the hydrothermal fluids and the wall rocks (dominantly aluminosilicate) served as the buffers for the pH, and regulated the pH value around neutral point. The buffer effect was of great importance to uranium mineralization. In addition, isotope exchangements between the fluids and rocks took place extensively

  19. Green roofs as contributors for water management schemes within urban areas – a pilot study in Porto

    OpenAIRE

    Monteiro, C. M.; Calheiros, C. S. C.; Pimentel-Rodrigues, C.; Palha, P.; Silva-Afonso, A.; Castro, P. M. L.

    2016-01-01

    Water scarcity is an issue of worldwide concern and a holistic approach to water management is needed to overcome the potential threats that climate change brings to water availability and security in many parts of the globe. Societal and economic challenges need to be addressed when implementing technological solutions to environmental problems. The fact that green areas in the cities have been reduced and replaced by impervious buildings and paved streets has caused a number of problems, su...

  20. Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India.

    Science.gov (United States)

    Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C

    2012-08-01

    This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.

  1. PBC Triggers in Water Reservoirs, Coal Mining Areas and Waste Disposal Sites: From Newcastle to New York

    Directory of Open Access Journals (Sweden)

    Daniel Smyk

    2010-01-01

    Full Text Available Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC, a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis.

  2. Presence and viability of V. Cholerae in the waters of rural Bangladesh (Matlab area)

    Science.gov (United States)

    Righetto, L.; Islam, S.; Mahmud, Z. H.; Bertuzzo, E.; Mari, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Blokesch, M.; Rinaldo, A.

    2012-04-01

    We utilize a portable flow cytometer, which allows for absolute counts of particle concentration, along with specific staining to analyze the waters of the rural area of Matlab, Bangladesh, where cholera is endemic, in the month of January 2012. Such period is interepidemic, as conditions for V. cholerae survival are less apt, because of low temperature; the presence of the bacterium in surface waters of inland reservoirs is debated and has been acknowledged rarely in literature. The hydrologic system is composed by a river and a succession of ponds; the latter constitute the basic water reservoir of each human community. We run a survey of each possible habitat to understand whether local reservoirs can host V. cholerae populations in interepidemic periods, which contrasts the common hypothesis which assumes that bacteria are brought inland by coastal water intrusion. We also analyze the relation of bacteria survival with environmental quantities and the variations in bacterial community structure in different samples.

  3. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    Science.gov (United States)

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  4. A GIS based watershed information system for water resources management and planning in semi-arid areas

    Science.gov (United States)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study

  5. Water quality management of contaminated areas and its effects on doses from aquatic pathways

    International Nuclear Information System (INIS)

    Voitsekhovitch, O.; Sansone, U.; Zhelesnyak, M.; Bugai, D.

    1996-01-01

    A critical analysis of remedial actions performed in the Chernobyl close zone are presented in term of effectiveness to dose reduction and money expenditure. The Chernobyl experience proved the need to consolidate the international water protection capacity on the basis of scientific knowledge which should exclude inefficient use of national resource. Strategical and technological interventions on water quality management need to be revised on the base of the experience gained after the 1986 accident. The lesson learned from the Chernobyl experience has to be used as a key element in the adoption of a strategy of water bodies management. Remedial actions have to be based with an integrated approach considering: dose reduction, secondary environmental effects of countermeasures, synergisms of radionuclides and countermeasure applications with other toxicants, social and economical factors of the contaminated areas

  6. Sewerage Service Areas - MDC_SewerServiceArea

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The Water and Sewer Service Area layer was derived from the original paper based sketches which contained both water and sewer utility boundary information. This...

  7. Salt-water encroachment into aquifers of the Raritan Formation in the Sayreville Area, Middlesex County, New Jersey

    Science.gov (United States)

    Appel, Charles A.

    1962-01-01

    The principal sources of ground water in the Sayreville area are the Old Bridge Sand and Farrington Sand Members of the Raritan Formation of Late Cretaceous age. These aquifers yielded about 32.3 mgd (million gallons per day) for public and industrial water supplies in 1958; about 24.5 mgd was withdrawn from the Old Bridge Sand Member.

  8. Environmental impact monitoring of U exploration activity in river water at Kalan Area West Kalimantan 2008

    International Nuclear Information System (INIS)

    AS Soediro; A Dedi; A Djuhara; T Wismawati; A Nugroho; S Widarti

    2010-01-01

    U exploration at Kalan (Eko Remaja, Lemajung, Semut) will produce the environment impact of flora, fauna and society. The objective monitoring is to detect and measure the environmental change quality component caused by U exploration activity in river water at Kalan area. The monitoring were done by analyze river water sample were taken at the same place previously year. Analysis river water sample such as Ca, Mg, Fe, Ni, Zn, radioactivity U at Eko Remaja, Lemajung, Semut have shown nearly equal to the result of previous years and still below the limited value. Water quality Kalan (that scale 4.9 for Eko Remaja, Lemajung and 4.8 for Semut, it means, that's safe for environment. (author)

  9. Demand Supply Gap in Urban Water Supply and Sanitary Services- A Case Study of Mangalore City Corporation Area

    OpenAIRE

    Nagendra; Suresh

    2009-01-01

    Today, some 1.1 billion people in developing countries have inadequate access to water, and 2.6 billion lack basic sanitations. These twin deficits were rooted in institutions and political choices, not in water’s availability. Household water requirements represent a tiny fraction of water use, usually less than 5% of the total, but there is tremendous inequality in access to clean water and to sanitation at a household level. In high-income areas of cities in Asia, Latin America and Sub-Sah...

  10. Mapping of spatial and temporal variations of' water quality in an industrial area: a remote sensing and GIS approach

    International Nuclear Information System (INIS)

    Lakshmi, T.V.; Reddy, M.A.; Anjaneyulu, Y.

    2005-01-01

    This paper illustrate the impact of industrialization on water quality in and around Nakkavagu Watershed, due to unplanted industrial development. The study area falls between 78 deg. 05' - 78 deg. 25'E. longitude and 17 deg. 25'-17 deg. 45'N latitude, the catchment area extends 734 sq. km in Medak district, Andhra Predesh, India. The study area lies in the Godavari Basin. Remote sensing and GIS techniques are used to map the spatial and temporal distribution of water quality with respect to land use / land cover (Lu /Lc) changes for a period of three decades. Spatial database consisting of drainage network and geomorphology and land use / land cover change detection maps (1970-2004) have been generated for the entire watershed using remote sensing satellite data. Attribute database consisting of (water quality analysis is carried out and corresponding water quality index is calculated on a five point scale: 0- 25 Excellent, 26 -50 Good, 51 -75 Poor, 76 -100 Very poor, and> 100 Unfit for Drinking. Integrated study to establish the impact of Lu / Lc on water quality is carried out using GIS Analysis. Maps showing Lu / Lc changes and corresponding spatial distribution of water quality index were generated for the years 1979, 1989,2004. The results indicate that the water quality index in the entire Nakkavagu watershed during 1979 is excellent and good and by 2004, the entire watershed is rated in to poor, very poor and unfit for drinking. Best environmental management plans were suggested for restoration of the Nakkavagu watershed. (author)

  11. The Effect of Aquatic Vegetation on Water Quality in the Everglades Agricultural Area Canals

    Science.gov (United States)

    Gomez, S. M.; Bhadha, J. H.; Lang, T. A.; Josan, M. S.; Daroub, S. H.

    2011-12-01

    The canals in the Everglades Agricultural Area contain an abundance of floating aquatic vegetation (FAV) and submerged aquatic vegetation (SAV). These FAV flourish in waters with high phosphorus (P) concentrations and prevent the co-precipitation of P with the limestone bedrock (CaCO3). To test the effects of FAV and SAV and the presence of sediments on water quality in the canals, a lysimeter study was set up and stocked with FAV (water lettuce) and SAV (filamentous algae). There were four treatments with four replicates Treatment one contained limerock, sediment from the canals, and FAV. Treatment two contained limerock, sediment, and SAV. Treatment three contained limerock and FAV, while treatment four had limerock and SAV. After 7 days, the buckets were drained and replaced the water with new, high P canal water. Water samples were taken at 0, 0.25, 1, 3, and 7 days after each weekly water exchange. To test water quality soluble reactive P, total P, total dissolved P, Ca, and total organic carbon were analyzed. The impact of FAV and SAV and canal sediments on water quality will be discussed. We hypothesize water lettuce treatments will initially result in a reduction in P-concentration in all species, but will only serve as a short-term sink because of their high turn-over rate and production of labile high-P sediment (floc). In addition, we hypothesize the treatments with no sediment will have more P reduction because of the availability for P to co-precipitate with CaCO3.

  12. Identification of Suitable Water Harvesting Zones Based on Geomorphic Resources for Drought Areas: A Case Study of Una District, Himachal Pradesh, India.

    Science.gov (United States)

    Prakasam, D. C., Jr.; Zaman, B.

    2014-12-01

    Water is one of the most vital natural resource and its availability and quality determine ecosystem productivity, both for agricultural and natural systems. Una district is one of the major potential agricultural districts in Himachal Pradesh, India. More than 70% of the population of this district is engaged in agriculture and allied sectors and major crops grown are maize, wheat, rice, sugarcane, pulses and vegetables. The region faces drought every year and about 90 per cent of the area is water stressed. This has resulted in crop loss and shortage of food and fodder. The sources of drinking water, small ponds and bowlies dry-up during summer season resulting in scarcity of drinking water. Una district receives rainfall during monsoons from June to September and also during non-monsoon period (winter). The annual average rainfall in the area is about 1040 mm with 55 average rainy days. But due to heavy surface run-off the farmers not able to cultivate the crops more than once in a year. Past research indicate that the geomorphology of the Una district might be responsible for such droughts as it controls the surface as well as ground water resources. The research proposes to develop a water stress model for Una district using the geomorphic parameters, water resource and land use land cover data of the study area. Using Survey of India topographical maps (1:50000), the geomorphic parameters are extracted. The spatial layers of these parameters i.e. drainage density, slope, relative relief, ruggedness index, surface water body's frequency are created in GIS. A time series of normalized remotely sensed data of the study area is used for land use land cover classification and analyses. Based on the results from the water stress model, the drought/water stress areas and water harvesting zones are identified and documented. The results of this research will help the general population in resolving the drinking water problem to a certain extent and also the

  13. Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94

    Science.gov (United States)

    Oblinger, C.J.; Treece, M.W.

    1996-01-01

    The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly

  14. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    Science.gov (United States)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can

  15. Adapted hydropower-driven water supply system: assessment of an underground application in an Indonesian karst area

    Science.gov (United States)

    Oberle, P.; Ikhwan, M.; Stoffel, D.; Nestmann, F.

    2016-09-01

    Populated karst landscapes can be found all over the world, although their natural boundary conditions mostly lead to distinct challenges regarding a sustainable water supply. Especially in developing and emerging countries, this situation aggravates since appropriate technologies and water management concepts are rarely available. Against this background, the interdisciplinary, German-Indonesian joint project " Integrated Water Resources Management (IWRM) Indonesia", funded by the German Federal Ministry of Education and Research (BMBF), focused on the development and exemplary implementation of adapted techniques to remedy the partly severe water scarcity in the region Gunung Sewu. This karst area, widely known as " Java's poorhouse", is located on the southern coast of Java Island and distinctly suffers from the mentioned constraints. Under the aegis of the Karlsruhe Institute of Technology (KIT), the conceptual and technical achievements of the "IWRM Indonesia" joint research project are characterized by a high potential for multiplication not only for karst areas but also for non-karst regions. One of the project's major accomplishments is the erection of an innovative hydropower-driven water supply facility located in a karst cave 100 m below ground and continuously supplying tens of thousands of people with fresh water. Referring to the plant's innovative character and the demanding conditions on-site, the implementation was a highly iterative process leading to today's autonomous operation by an Indonesian public authority. Based on the experiences gained during design, construction, operation and monitoring phase, this paper introduces an implementation approach for adapted technologies as well as a comprising technical and economical assessment of the plant's operation.

  16. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    Science.gov (United States)

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  17. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  18. Sources of water to wells in updip areas of the Wenonah-Mount Laurel aquifer, Gloucester and Camden Counties, New Jersey

    Science.gov (United States)

    Watt, Martha K.; Voronin, Lois M.

    2006-01-01

    Since 1996, when the New Jersey Department of Environmental Protection (NJDEP) restricted ground-water withdrawals from the Potomac-Raritan-Magothy aquifer system in the southern New Jersey Coastal Plain as a result of excessive drawdown, Coastal Plain communities have been interested in developing alternate sources of water supply for their residents. The use of ground water from areas near the updip parts of the overlying confined aquifers where withdrawals are not restricted is being considered to meet the demand for drinking water. Concerns have arisen, however, regarding the potential effects of increased withdrawals from these areas on ground-water flow to streams and wetlands as well as to the deeper, confined parts of the aquifers. Therefore, the U.S. Geological Survey, in cooperation with the NJDEP, conducted a study to investigate the sources of water to currently inactive wells in the updip part of the Wenonah-Mount Laurel aquifer in Gloucester and Camden Counties, New Jersey. Of particular interest is whether the primary source of the increased withdrawals is likely to be the aquifer outcrop or the downdip, confined part of the aquifer. The outcrop of the Wenonah-Mount Laurel aquifer covers nearly 8 mi2 (square miles), or about 46 percent of Deptford Township's 17.56-mi2 area. The Deptford Township Municipal Utilities Authority owns six currently (2005) inactive wells in the Wenonah-Mount Laurel aquifer at the southeastern boundary of Deptford Township, 1.25 mi (miles) from the outcrop. For the purposes of this study, an existing ground-water-flow model of the New Jersey Coastal Plain aquifers was used to simulate ground-water-flow conditions in Gloucester and Camden Counties in 1998. Two alternative withdrawal scenarios were superimposed on the results of the 1998 simulation. In the first (the 'full-allocation' scenario), full-allocation withdrawal rates established by the NJDEP were applied to 45 existing wells in the Deptford Township area. In the

  19. Management of water balance in mining areasWaterSmart: Final Report

    OpenAIRE

    Krogerus, Kirsti; Pasanen, Antti

    2016-01-01

    Although mining companies have long been conscious of water related risks, they still face environmental management challenges. Several recent environmental incidents in Finnish mines have raised questions regarding mine site environmental and water management practices. This has increased public awareness of mining threats to the environment and resulted in stricter permits and longer permitting procedures. Water balance modelling aids in predictive water management and reduces risks caused ...

  20. Assessment of natural radioactivity and heavy metals in water and soil around seismically active area

    International Nuclear Information System (INIS)

    Oktay Baykara; Mahmut Dogru; Firat University, Elazig

    2010-01-01

    The natural radioactivity concentration and some heavy metals in various water and soil samples collected from seismically active area have been determined. Gross-alpha and beta concentrations of different 33 water samples and some heavy metal (Fe, Pb, Cu, K, Mn, Cr and Zn) concentration in 72 soil samples collected from two major fault systems (North and East Anatolian Active Fault Systems) in Turkey have been studied. This survey regarding gross-alpha and beta radioactivity and some heavy metals concentrations was carried out by means of Krieger method using a gross-alpha and beta-counting system and atomic absorption spectrometry (AAS), respectively. Also, gross annual effective dose from the average gross-alpha activity in waters were calculated. (author)

  1. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    NARCIS (Netherlands)

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This

  2. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.

    Science.gov (United States)

    Simonin, K; Kolb, T E; Montes-Helu, M; Koch, G W

    2006-04-01

    Ponderosa pine (Pinus ponderosa Dougl. ex P. Laws) forest stand density has increased significantly over the last century (Covington et al. 1997). To understand the effect of increased intraspecific competition, tree size (height and diameter at breast height (DBH)) and leaf area to sapwood area ratio (A(L):A(S)) on water relations, we compared hydraulic conductance from soil to leaf (kl) and transpiration per unit leaf area (Q(L)) of ponderosa pine trees in an unthinned plot to trees in a thinned plot in the first and second years after thinning in a dense Arizona forest. We calculated kl and Q(L) based on whole- tree sap flux measured with heat dissipation sensors. Thinning increased tree predawn water potential within two weeks of treatment. Effects of thinning on kl and Q(L) depended on DBH, A(L):A(S) and drought severity. During severe drought in the first growing season after thinning, kl and Q(L) of trees with low A(L):A(S) (160-250 mm DBH; 9-11 m height) were lower in the thinned plot than the unthinned plot, suggesting a reduction in stomatal conductance (g(s)) or reduced sapwood specific conductivity (K(S)), or both, in response to thinning. In contrast kl and Q(L) were similar in the thinned plot and unthinned plot for trees with high A(L):A(S) (260-360 mm DBH; 13-16 m height). During non-drought periods, kl and Q(L) were greater in the thinned plot than in the unthinned plot for all but the largest trees. Contrary to previous studies of ponderosa pine, A(L):A(S) was positively correlated with tree height and DBH. Furthermore, kl and Q(L) showed a weak negative correlation with tree height and a strong negative correlation with A(S) and thus A(L):A(S) in both the thinned and unthinned plots, suggesting that trees with high A(L):A(S) had lower g(s). Our results highlight the important influence of stand competitive environment on tree-size-related variation in A(L):A(S) and the roles of A(L):A(S) and drought on whole-tree water relations in response to

  3. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    International Nuclear Information System (INIS)

    Kim, Hyungdae; Park, Youngjae; Buongiorno, Jacopo

    2013-01-01

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT sub = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF

  4. Water value and demand for multiple uses in the rural areas of South Africa: The case of Ga-Sekororo

    OpenAIRE

    Kanyoka, P.

    2008-01-01

    The provision of free basic water for domestic uses and a more equal distribution of water for productive uses are seen as important instruments to redress inequities from the past and eradicate poverty in South Africa (SA). Although the government committed itself to providing free basic water for all, this result is still far to be reached, particularly in rural areas. Financing of multiple use water services was identified as an important ingredient to insure improved access to water for r...

  5. Nitrate concentrations in drainage water in marine clay areas : exploratory research of the causes of increased nitrate concentrations

    NARCIS (Netherlands)

    Boekel, van E.M.P.M.; Roelsma, J.; Massop, H.T.L.; Hendriks, R.F.A.; Goedhart, P.W.; Jansen, P.C.

    2013-01-01

    The nitrate concentrations measured in drainage water and groundwater at LMM farms (farms participating in the National Manure Policy Effects Measurement Network (LLM)) in marine clay areas have decreased with 50% since the mid-nineties. The nitrate concentrations in marine clay areas are on average

  6. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); others, and

    2014-07-15

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling.

  7. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd

    2014-01-01

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling

  8. Radioactivity and Natural Radio nuclides Distribution in River Water, Coastal Water, Sediment and Eichornia Crassipes (Mart) Sloms and Their Accumulation Factor at Surabaya Area

    International Nuclear Information System (INIS)

    Agus Taftazani; Sumining; Muzakky

    2002-01-01

    Distribution of radioactivity and natural radionuclide in water, sediment and eichornia crassipes (mart) sloms from Surabaya river and coastal area have been evaluated. Five sampling locations were selected to represent fresh water and coastal water environment. The samples consist of water (fresh and coastal), bottom surface sediment and eichornia crassipes (mart) sloms The result showed that the gross-β activity from water environment were lower than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (1000 mBq/L) and indicated that β-radioecological quality of water were still good. But the activity of the gross-α of water environment were higher than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (100 mBq/L). The eichornia crassipes (mart) sloms (gross) activity were higher than water and sediment activities and indicated that transfer of radionuclides from water to sediment and organism can be detected in water environment. Two natural radionuclides can be identified by γ-Spectrometric technique, they were K-40 and TI-208. Generally the distribution factor F D were smaller than bioaccumulation factor F B . (author)

  9. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    International Nuclear Information System (INIS)

    Hinic, V; Grzetic, A; Ljubotina, M; Rubinic, J; Ruzic, I; Volf, G; Vuckovic, I; Kvas, N

    2008-01-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  10. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    Science.gov (United States)

    Hinić, V.; Rubinić, J.; Vučković, I.; Ružić, I.; Gržetić, A.; Volf, G.; Ljubotina, M.; Kvas, N.

    2008-11-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  11. Adapting enzyme-based microbial water quality analysis to remote areas in low-income countries.

    Science.gov (United States)

    Abramson, Adam; Benami, Maya; Weisbrod, Noam

    2013-09-17

    Enzyme-substrate microbial water tests, originally developed for efficiency gains in laboratory settings, are potentially useful for on-site analysis in remote settings. This is especially relevant in developing countries where water quality is a pressing concern and qualified laboratories are rare. We investigated one such method, Colisure, first for sensitivity to incubation temperatures in order to explore alternative incubation techniques appropriate for remote areas, and then in a remote community of Zambia for detection of total coliforms and Escherichia coli in drinking-water samples. We sampled and analyzed 352 water samples from source, transport containers and point-of-use from 164 random households. Both internal validity (96-100%) and laboratory trials (zero false negatives or positives at incubation between 30 and 40 °C) established reliability under field conditions. We therefore recommend the use of this and other enzyme-based methods for remote applications. We also found that most water samples from wells accessing groundwater were free of E. coli whereas most samples from surface sources were fecally contaminated. We further found very low awareness among the population of the high levels of recontamination in household storage containers, suggesting the need for monitoring and treatment beyond the water source itself.

  12. Safe drinking water production in rural areas: a comparison between developed and less developed countries.

    Science.gov (United States)

    Cotruvo, J A; Trevant, C

    2000-01-01

    At the fundamental level, there are remarkable parallels between developed and less developed countries in problems of providing safe drinking water in rural areas, but of course, they differ greatly in degree and in the opportunities for resolution. Small water supplies frequently encounter difficulty accessing sufficient quantities of drinking water for all domestic uses. If the water must be treated for safety reasons, then treatment facilities and trained operating personnel and finances are always in short supply. Ideally, each solution should be sustainable within its own cultural, political and economic context, and preferably with local personnel and financial resources. Otherwise, the water supply will be continuously dependent on outside resources and thus will not be able to control its destiny, and its future will be questionable. The history of success in this regard has been inconsistent, particularly in less developed but also in some developed countries. The traditional and ideal solution in developing countries has been central water treatment and a piped distribution network, however, results have had a mixed history primarily due to high initial costs and operation and maintenance, inadequate access to training, management and finance sufficient to support a fairly complex system for the long term. These complete systems are also slow to be implemented so waterborne disease continues in the interim. Thus, non-traditional, creative, cost-effective practical solutions that can be more rapidly implemented are needed. Some of these options could involve: small package central treatment coupled with non piped distribution, e.g. community supplied bottled water; decentralized treatment for the home using basic filtration and/or disinfection; higher levels of technology to deal with chemical contaminants e.g. natural fluoride or arsenic. These technological options coupled with training, technical support and other essential elements like community

  13. HYDROCHEMICAL CONDITIONS OF THE ŁOSOSINA RIVER WATER MANAGEMENT IN THE AREA OF TYMBARK

    Directory of Open Access Journals (Sweden)

    Agnieszka Policht-Latawiec

    2015-11-01

    Full Text Available Sustainable use of waters requires not only determining the amount, but primarily the quality of the available water resources and developing a long-term programme of their protection. The analysis of the Łososina river water in the area of Tymbark city was presented in the paper. The water was tested in a view of the requirements as the natural fish habitat and its potential use for people supply in potable water. The river water samples were taken in 2014 at randomly selected dates, once a month in 5 measurement points. 21 physicochemical indices were assessed in the samples. The assessment of the Łososina river water quality was made on the basis of the results of both: on site and laboratory testing, which were compared with the Regulation of the Minister of Environment of 23 October 2014. The utility values were assessed on the basis of the Regulations of the Minister of Environment of 27 November and 04 October 2014. The analysis of the results demonstrated that the Łososina river water met the requirements of quality class I water in points 1, 2 and 3. Below Tymbark the Łososina river water was polluted, so due to high BOD5 in points 4 and 5, and phosphate concentrations in point 4, it was classified as class II, i.e. good state. Pollution coefficients computed according to Burchard and Dubaniewicz classify the Łososina river water as clean along the whole investigated stretch. Below Tymbark city (points 4 and 5 the Łososina river water cannot be used for drinking water supply because of high BOD5 and iron concentrations. In the other points it could be used for water supply following appropriate physical and chemical treatment. The water does not meet the requirements for salmonid or cyprinid fish along the whole stretch because of high nitrite concentrations, except point 3, where the Łososina river water provided a proper natural habitat for carp.

  14. Triangle Area Water Supply Monitoring Project, North Carolina—Summary of monitoring activities, quality assurance, and data, October 2013–September 2015

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2017-09-27

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2013 through September 2014 (water year 2014) and October 2014 through September 2015 (water year 2015). Major findings for this period include:More than 5,500 individual measurements of water quality were made at a total of 15 sites—4 in the Neuse River Basin and 11 in the Cape Fear River Basin. Thirty water-quality properties or constituents were measured; State water-quality thresholds exist for 11 of these.All observations met State water-quality thresholds for temperature, hardness, chloride, fluoride, sulfate, and nitrate plus nitrite.North Carolina water-quality thresholds were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, pH, turbidity, and chlorophyll a.

  15. The Prognosis of Influence of The Oder River Waters Dammed by Malczyce Barrage on Left Bank Areas

    Directory of Open Access Journals (Sweden)

    Chalfen Mieczysław

    2014-07-01

    Full Text Available The finalisation of the construction of the Malczyce barrage is planned for 2015. Damming of the river will cause a change in the water and ground conditions in the adjoining areas. The paper analyses the influence of the water level in the Oder River dammed by the barrage on groundwater table level in the left bank valley.

  16. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  17. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  18. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  19. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  20. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  1. Quantitative Analysis on the Influence Factors of the Sustainable Water Resource Management Performance in Irrigation Areas: An Empirical Research from China

    Directory of Open Access Journals (Sweden)

    Hulin Pan

    2018-01-01

    Full Text Available Performance evaluation and influence factors analysis are vital to the sustainable water resources management (SWRM in irrigation areas. Based on the objectives and the implementation framework of modern integrated water resources management (IWRM, this research systematically developed an index system of the performances and their influence factors ones of the SWRM in irrigation areas. Using the method of multivariate regression combined with correlation analysis, this study estimated quantitatively the effect of multiple factors on the water resources management performances of irrigation areas in the Ganzhou District of Zhangye, Gansu, China. The results are presented below. The overall performance is mainly affected by management enabling environment and management institution with the regression coefficients of 0.0117 and 0.0235, respectively. The performance of ecological sustainability is mainly influenced by local economic development level and enable environment with the regression coefficients of 0.08642 and −0.0118, respectively. The performance of water use equity is mainly influenced by information publicity, administrators’ education level and ordinary water users’ participation level with the correlation coefficients of 0.637, 0.553 and 0.433, respectively. The performance of water use economic efficiency is mainly influenced by the management institutions and instruments with the regression coefficients of −0.07844 and 0.01808, respectively. In order to improve the overall performance of SWRM in irrigation areas, it is necessary to strengthen the public participation, improve the manager’ ability and provide sufficient financial support on management organization.

  2. Terrestrial water flux responses to global warming in tropical rainforest areas

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  3. Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): Pollution of raw drinking water

    Science.gov (United States)

    Luque-Espinar, Juan Antonio; Navas, Natalia; Chica-Olmo, Mario; Cantarero-Malagón, Samuel; Chica-Rivas, Lucía

    2015-12-01

    This piece of research deals with the monitoring of a group of emerging contaminants (ECs) in the metropolitan area of Granada, a city representative of the South of Spain, in order to evaluate the environmental management of the wastewater system. With that aim, the spatial and seasonal occurrence and distribution of a group of ECs in groundwater, surface and irrigation water resources from the aquifer "Vega de Granada" (VG) have been investigated for the first time. A set of the most prescribed drugs in Spain (ibuprofen, loratadine, pantoprazole and paracetamol), a pesticide widely used in agriculture (atrazine) and a typical anthropogenic contaminant (caffeine) were included in the study. Water samples were taken from the metropolitan area of the city of Granada inside of the zone of the aquifer, from the downstream of two waste water treatment plants (WWTPs) and from the two main irrigation channels where surface and wastewater are mixed before distribution for irrigation purposes in the crops of the study area. A total of 153 water samples were analyzed through liquid chromatography coupled with mass spectrometry (LC-MS/MS) throughout the study that took place over a period of two years, from July 2011 to July 2013. Results demonstrated the occurrence of four of the six target pollutants. Ibuprofen was detected several times, always in both channels with concentration ranges from 5.3 to 20.8 μg/L. The occurrence of paracetamol was detected in rivers and channels up to 34.3 μg/L. Caffeine was detected in all the water resources up to 39.3 μg/L. Pantoprazole was detected twice in the surface water source near to a WWPT ranging from 0.02 to 0.05 μg/L. The pesticide atrazine and the drug loratadine were not detected in any of the water samples analyzed. These results show evidence of poor environmental management of the wastewater concerning the water quality of the aquifer studied. The groundwater sources seem to receive a very continuous input of wastewater

  4. Geomembranes as an interim measure to control water infiltration at a low-level radioactive waste disposal area

    International Nuclear Information System (INIS)

    Weishan, M.R.; Sonntag, T.L.; Shehane, W.D.

    1997-01-01

    Using an exposed geomembrane an interim measure to cover a closed, Low-Level Radioactive Waste Disposal Area requires unique design and construction considerations. In response to a Resource Conservation and Recovery Act Administrative Consent Order, the New York State Energy Research and Development Authority (NYSERDA) used very low-density polyethylene (VLDPE) geomembrane as an interim measure to cover two soil-capped, grass-covered waste trenches to address a rapid increase in water accumulation in the trenches. Two years later, NYSERDA covered the remaining grass-covered trench caps with a reinforced ethylene interpolymer alloy (EIA-R) geomembrane to reduce water accumulation in these trenches. This paper addresses the differences in geomembrane materials and discusses the lessons learned during design, construction, and operation since installation of the covers. Discussed are the successes and obstacles regarding the use of both geomembrane materials as an exposed cover, selecting the geomembrane materials, anchoring the geomembrane from wind uplift, and mitigating the increased surface water runoff from the geomembrane covered area

  5. Effects of two stormwater management methods on the quality of water in the upper Biscayne aquifer at two commercial areas in Dade County, Florida

    Science.gov (United States)

    McKenzie, D.J.; Irwin, G.A.

    1988-01-01

    This study is part of a continued effort to assess the effects of urban stormwater recharge on the water quality of the Biscayne aquifer in southeast Florida. In this report, the water-quality effects on shallow ground water resulting from stormwater disposal by exfiltration trench and grassy swale were investigated at two small commercial areas in Dade County, Florida. One study area (airport ) was located near the Miami International Airport and had a drainage area of about 10 acres overlying a sandy soil; the other study area ( free zone ) was located at the Miami International Free Trade Zone and had a drainage area of about 20 acres overlying limestone. The monitoring design for each study area consisted of seven sites and included water-quality sampling of the stormwater in the catch basin of the exfiltration trench, ground water from two wells 1 foot from the trench (trench wells), two wells 20 feet from the trench, and ground water from two wells at the swale from April 1985 through May 1986. Eleven water-quality variables (target variables) commonly found in high levels in urban stormwater runoff were used as tracers to estimate possible changes in ground-water quality that may have been caused by stormwater recharge. Comparison of the distribution of target variables indicated that the concentrations tended to be greater in the stormwater in the exfiltration trench than in water from the two wells 1 foot from the trench at both study areas. The concentration difference for several target variables was statistically significant at the 5-percent level. Lead, for example, had median concentrations of 23 and 4 micrograms per liter, respectively, in stormwater and water from the two trench wells at the airport study area, and 38 and 2 micrograms per liter, respectively, in stormwater and groundwater at the free zone. Similar reductions in concentrations between stormwater and water from the two trench wells were indicated for zinc at both study areas and also

  6. Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13

    Science.gov (United States)

    Mashburn, Shana L.; Smith, S. Jerrod

    2014-01-01

    Streamflows, springs, and wetlands are important natural and cultural resources to the Caddo Nation. Consequently, the Caddo Nation is concerned about the vulnerability of the Rush Springs aquifer to overdrafting and whether the aquifer will continue to be a viable source of water to tribal members and other local residents in the future. Interest in the long-term viability of local water resources has resulted in ongoing development of a comprehensive water plan by the Caddo Nation. As part of a multiyear project with the Caddo Nation to provide information and tools to better manage and protect water resources, the U.S. Geological Survey studied the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. The Caddo Nation Tribal Jurisdictional Area is located in southwestern Oklahoma, primarily in Caddo County. Underlying the Caddo Nation Tribal Jurisdictional Area is the Permian-age Rush Springs aquifer. Water from the Rush Springs aquifer is used for irrigation, public, livestock and aquaculture, and other supply purposes. Groundwater from the Rush Springs aquifer also is withdrawn by domestic (self-supplied) wells, although domestic use was not included in the water-use summary in this report. Perennial streamflow in many streams and creeks overlying the Rush Springs aquifer, such as Cobb Creek, Lake Creek, and Willow Creek, originates from springs and seeps discharging from the aquifer. This report provides information on the evaluation of groundwater and surface-water resources in the Caddo Nation Jurisdictional Area, and in particular, information that describes the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. This report also includes data and analyses of base flow, evidence for groundwater and surface-water interactions, locations of springs and wetland areas, groundwater flows interpreted from potentiometric-surface maps, and hydrographs of water levels

  7. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  8. Geology and ground-water hydrology of the Mokelumne area, California

    Science.gov (United States)

    Piper, A.M.; Gale, H.S.; Thomas, H.E.; Robinson, T.W.

    1939-01-01

    The Mokelumne River basin of central California comprises portions of the California Trough and the Sierra Nevada section of the Pacific Mountain system. The California Trough is divisible into four subsections-the Delta tidal plain, the Victor alluvial plain, tlie river flood plains and channels, and the Arroyo Seco dissected pediment. These four subsections comprise the land forms produced by the Mokelumne River and other streams since the Sierra Nevada attained its present height in the Pleistocene epoch. The Victor alluvial plain rises eastward from the Delta plain and abuts on the dissected Arroyo Seco pediment; in the Mokelumne area it is 12 to 16 miles wide and slopes between 5 and 8 feet in a mile. It includes relatively extensive tracts that are intensively cultivated and irrigated with water pumped from wells. The Victor plain has been compounded of overlapping alluvial fans along the western base of the Sierra Nevada. It is prolonged eastward into the pediment by tongues of alluvium along several of the present streams; thus it seems likely that the present stream pattern in the eastern part of the area has been fixed since dissection of the pediment began. Three of the four major streams-the Mokelumne and Cosumnes Rivers and Dry Creek-traverse the Victor plain in trenches which are 15 to 40 feet deep at the heads of their respective alluvial fans but which die out toward the west. The floors of these trenches, the historic flood plains, are from 100 yards to a mile wide. The exceptional major stream, which has not entrenched itself, is the Calaveras River. The Arroyo Seco pediment, which lies east of the Victor plain, was initially at least 8 to 15 miles wide and lay along the western foot of the Sierra Nevada entirely .across the Mokelumne area. Its numerous remnants decline 15 to 35 feet in a mile toward the west. The Sierra Nevada section adjoins and lies east of the California Trough. Its major ridge crests define a volcanic plain whose westward

  9. Microbiological water quality monitoring in a resource-limited urban area: a study in Cameroon, Africa

    Directory of Open Access Journals (Sweden)

    Andrew W. Nelson

    2012-10-01

    Full Text Available In resource-limited developing nations, such as Cameroon, the expense of modern water-quality monitoring techniques is prohibitive to frequent water testing, as is done in the developed world. Inexpensive, shelf-stable 3M™ Petrifilm™ Escherichia coli/Coliform Count Plates potentially can provide significant opportunity for routine water-quality monitoring in the absence of infrastructure for state-of-the-art testing. We used shelf-stable E. coli/coliform culture plates to assess the water quality at twenty sampling sites in Kumbo, Cameroon. Culture results from treated and untreated sources were compared to modern bacterial DNA pyrosequencing methods using established bioinformatics and statistical tools. Petrifilms were reproducible between replicates and sampling dates. Additionally, cultivation on Petrifilms suggests that treatment by the Kumbo Water Authority (KWA greatly improves water quality as compared with untreated river and rainwater. The majority of sequences detected were representative of common water and soil microbes, with a minority of sequences (<40% identified as belonging to genera common in fecal matter and/or causes of human disease. Water sources had variable DNA sequence counts that correlated significantly with the culture count data and may therefore be a proxy for bacterial load. Although the KWA does not meet Western standards for water quality (less than one coliform per 100 mL, KWA piped water is safer than locally available alternative water sources such as river and rainwater. The culture-based technology described is easily transferrable to resource-limited areas and provides local water authorities with valuable microbiological safety information with potential to protect public health in developing nations.

  10. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  11. Where does blue water go in the semi-arid area of northern China under changing environments?

    Directory of Open Access Journals (Sweden)

    L. Ren

    2014-09-01

    Full Text Available River flow regimes in the semi-arid region of northern China show a decreasing trend in terms of quantity. River runoff (i.e. blue water reduction within the Laohahe catchment, the source area of the Liaohe River basin, manifests the aridity that exists widely in northern China. According to the water balance equation, during the past half-century, observed streamflow records in the Laohahe catchment show that blue water was re-directed to green water flow (i.e. evapotranspiration over annual and decadal time scales, whereas precipitation did not vary much. Human activities and land-use/land-cover changes are the fundamental reasons for such runoff change. In the studied catchment, extensive land reclamation for agriculture, water withdrawal from streams, and abstraction from aquifers for irrigation are the direct and main causes leading to the decrease in observed blue water. These factors further demonstrate that a land-use decision is also a decision about water. Therefore, there is a need for an integrated modelling framework to intrinsically link climate, hydrological, and agricultural models with social and economic analyses.

  12. Living in an oasis: Rapid transformations, resilience, and resistance in the North Water Area societies and ecosystems.

    Science.gov (United States)

    Jeppesen, Erik; Appelt, Martin; Hastrup, Kirsten; Grønnow, Bjarne; Mosbech, Anders; Smol, John P; Davidson, Thomas A

    2018-04-01

    Based on lake sediment data, archaeological findings, and historical records, we describe rapid transformations, resilience and resistance in societies and ecosystems, and their interactions in the past in the North Water area related to changes in climate and historical events. Examples are the formation of the polynya itself and the early arrival of people, ca. 4500 years ago, and later major human immigrations (different societies, cultural encounters, or abandonment) from other regions in the Arctic. While the early immigrations had relatively modest and localised effect on the ecosystem, the later-incoming culture in the early thirteenth century was marked by extensive migrations into and out of the area and abrupt shifts in hunting technologies. This has had long-lasting consequences for the local lake ecosystems. Large natural transformations in the ecosystems have also occurred over relatively short time periods related to changes in the polynya. Finally, we discuss the future perspectives for the North Water area given the many threats, but also opportunities.

  13. Predicted high-water elevations for selected flood events at the Albert Pike Recreation Area, Ouachita National Forest

    Science.gov (United States)

    D.A. Marion

    2012-01-01

    The hydraulic characteristics are determined for the June 11, 2010, flood on the Little Missouri River at the Albert Pike Recreation Area in Arkansas. These characteristics are then used to predict the high-water elevations for the 10-, 25-, 50-, and 100-year flood events in the Loop B, C, and D Campgrounds of the recreation area. The peak discharge and related...

  14. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    Science.gov (United States)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles

  15. Impact of water supply, domiciliary water reservoirs and sewage on faeco-orally transmitted parasitic diseases in children residing in poor areas in Juiz de Fora, Brazil.

    Science.gov (United States)

    Teixeira, J C; Heller, L

    2006-08-01

    The objectives of this study were to characterize faeco-orally transmitted parasitic diseases and to identify the factors associated with these diseases, with emphasis on environmental factors, in children ranging from 1 up to 5 years old residing in substandard settlement areas. A population-based cross-sectional epidemiological design was used in a non-random selection of 29 out of the 78 substandard settlement areas in the municipality of Juiz de Fora, Brazil. A sample of 753 children were assessed from the target population consisting of all children of the appropriate age range residing in the selected areas. Data were collected by means of domiciliary interviews with their mothers or with the person responsible for them. The Hoffmann-Pons-Janer method was used in the parasitological examination of faeces. Binary logistic regression models were used to identify the factors associated with the diseases. A total of 319 sample children presented faeco-orally transmitted parasitic diseases. The factors associated with these parasitic diseases included the children's age, family income, number of dwellers in the domicile, consumption of water from shallow wells, consumption of water from natural sources, absence of covered domiciliary water reservoirs, and the presence of sewage flowing in the street.

  16. Ground-water geology of the coastal zone, Long Beach-Santa Ana area, California

    Science.gov (United States)

    Poland, J.F.; Piper, A.M.

    1956-01-01

    This paper is the first chapter of a comprehensive report on the ground-water features in the southern part of the coastal plain in Los Angeles and Orange Counties, Calif., with special reference to the effectiveness of the so-called coastal barrier--the Newport-Inglewood structural zone--in restraining landwar,-1 movement of saline water. The coastal plain in Los Angeles and Orange Counties, which covers some 775 square miles, sustains a large urban and rural population, diverse industries, and intensive agricultural developments. The aggregate ground-water withdrawal in 1945 was about 400,000 acre-feet a year, an average of about 360 million gallons a day. The dominant land-form elements are a central lowland plain with tongues extending to the coast, bordering highlands and foothills, and a succession of low hills and mesas aligned northwestward along the coastal edge of the central low- land plain. These low hills and mesas are the land-surface expression of geologic structure in the Newport-Inglewood zone. The highland areas that border the inland edge of the coastal plain are of moderate altitude and relief; most of the ridge crests range from 1,400 to 2,500 feet in altitude, but Santiago Peak in the Santa Ana Mountains attains a height of 5,680 feet above sea level. From these highlands the land surface descends across foothills and aggraded alluvial aprons to the central lowland, Downey Plain, here defined as the surface formed by alluvial aggradation during the post-Pleistocene time of rising base level. The Newport-Inglewood belt of hills and plains (mesas) has a maximum relief of some 500 feet but is widely underlain at a depth of about 30 feet by a surface of marine plantation. As initially formed in late Pleistocene time that surface was largely a featureless plain. Thus the present land-surface forms within the Newport-Inglewood belt measure the earth deformation that has occurred there since late Pleistocene time and so are pertinent with respect to

  17. Exploring the Spatial-Seasonal Dynamics of Water Quality, Submerged Aquatic Plants and Their Influencing Factors in Different Areas of a Lake

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-09-01

    Full Text Available The degradation of water quality in lakes and its negative effects on freshwater ecosystems have become a serious problem worldwide. Exploring the dynamics in the associated factors is essential for water pollution management and control. GIS interpolation, principal component analysis (PCA and multivariate statistical techniques were used to identify the main pollution sources in different areas of Honghu Lake. The results indicate that the spatial distribution of the concentrations of total nitrogen (TN, total phosphate (TP, ammonia nitrogen (NH4+–N, and permanganate index (CODMn have similar characteristics and that their values gradually increased from south to north during the three seasons in Honghu Lake. The major influencing factors of water quality varied across the different areas and seasons. The relatively high concentrations of TN and TP, which might limit the growth of submerged aquatic plants, were mainly caused by anthropogenic factors. Our work suggests that spatial analyses combined with PCA are useful for investigating the factors that influence water quality and submerged aquatic plant biomass in different areas of a lake. These findings provide sound information for the future water quality management of the lake or even the entire lake basin.

  18. Evaluation of organic endocrine disruptors in water at Brazilian Multipurpose Reactor - RMB installation area

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Larissa L.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F., E-mail: larissa.limeira07@gmail.com, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The study of pollutants with organic and inorganic characteristics in groundwater and surface waters of a given region is an important tool in the assessment of pollution. Endocrine interferers are synthetic or natural chemicals that have the ability to act on the endocrine system of humans and animals by mimetizing natural hormones and may produce adverse effects on organisms, even in low concentrations (μg or ng.L{sup -1}). Anthropic activities are the major source of input of endocrine disruptors into the environment. The Brazilian government has a project to construct a multipurpose reactor, Brazilian Multipurpose Reactor (RMB), at the Iperó city, to improve the nuclear research Brazilian capacity. The object of this research in to analyze 14 organic compounds that may be present in the groundwater and surface waters of the RMB installation area. This is an unprecedented and extremely important study for the evaluated region; since it will provide guidance on the degree of contamination of the local waters before the construction begins. The study will also make it possible to verify if the construction of the RMB will offer environmental issues to the place. For the determination of the compounds of interest, a developed and validated analytical method was used. This methodology consists of the concentration of the samples by solid phase extraction (SPE) followed by quantification by gas chromatography coupled to the mass spectrometry detector (GC/MS). The water column particulate was also evaluated by ultrasonic extraction, followed by quantification by GC/MS. The results reveal that some of the compounds were found and it was due to anthropic activities in the vicinity of the regions. By initial analysis it was possible verify river that cross the RMB area present values below 0.05 μg L{sup -1}. (author)

  19. Evaluation of organic endocrine disruptors in water at Brazilian Multipurpose Reactor - RMB installation area

    International Nuclear Information System (INIS)

    Silva, Larissa L.; Martins, Elâine A.J.; Cotrim, Marycel E.B.; Pires, Maria A.F.

    2017-01-01

    The study of pollutants with organic and inorganic characteristics in groundwater and surface waters of a given region is an important tool in the assessment of pollution. Endocrine interferers are synthetic or natural chemicals that have the ability to act on the endocrine system of humans and animals by mimetizing natural hormones and may produce adverse effects on organisms, even in low concentrations (μg or ng.L -1 ). Anthropic activities are the major source of input of endocrine disruptors into the environment. The Brazilian government has a project to construct a multipurpose reactor, Brazilian Multipurpose Reactor (RMB), at the Iperó city, to improve the nuclear research Brazilian capacity. The object of this research in to analyze 14 organic compounds that may be present in the groundwater and surface waters of the RMB installation area. This is an unprecedented and extremely important study for the evaluated region; since it will provide guidance on the degree of contamination of the local waters before the construction begins. The study will also make it possible to verify if the construction of the RMB will offer environmental issues to the place. For the determination of the compounds of interest, a developed and validated analytical method was used. This methodology consists of the concentration of the samples by solid phase extraction (SPE) followed by quantification by gas chromatography coupled to the mass spectrometry detector (GC/MS). The water column particulate was also evaluated by ultrasonic extraction, followed by quantification by GC/MS. The results reveal that some of the compounds were found and it was due to anthropic activities in the vicinity of the regions. By initial analysis it was possible verify river that cross the RMB area present values below 0.05 μg L -1 . (author)

  20. WaterSMART-The Colorado River Basin focus-area study

    Science.gov (United States)

    Bruce, Breton W.

    2012-01-01

    Increasing demand for the limited water resources of the United States continues to put pressure on water-resource agencies to balance the competing needs of ecosystem health with municipal, agricultural, and recreational uses. In 2007, the U.S. Geological Survey (USGS) identified a National Water Census as one of six pivotal future science directions for the USGS in the following decade. The envisioned USGS National Water Census would evaluate large-scale effects of changes in land use and land cover, water use, and climate on water availability, water quality, and human and aquatic ecosystem health. The passage of the SECURE (Science and Engineering to Comprehensively Understand and Responsibly Enhance) Water Act in 2009 was a key step towards implementing the USGS National Water Census. Section 9508 of the Act authorizes a "national water availability and use assessment program" within the USGS (1) to provide a more accurate assessment of the status of the water resources of the United States; and (2) to develop the science for improved forecasts of the availability of water for future economic, energy production, and environmental uses. Initial funding for the USGS to begin working on the National Water Census came with the approval of the U.S. Department of the Interior's WaterSMART (Sustain and Manage America's Resources for Tomorrow) Initiative. The WaterSMART Initiative provides funding to the USGS, Bureau of Reclamation, and U.S. Department of Energy to achieve a sustainable water strategy to meet the Nation's water needs. WaterSMART funding also allowed the USGS to begin the national Water Availability and Use Assessment, as called for under the SECURE Water Act.

  1. PRELIMINARY ANALYSIS ON SOME PHYSICO-CHEMICAL RIVERS WATER FEATURES IN PRICOP-HUTA CERTEZE AND TISA SUPERIOARĂ PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    R. BĂTINAŞ

    2016-03-01

    Full Text Available The present study is focused on the evaluation of river’s water quality from two Natura 2000 protected areas located in Maramureş County, on the northern border between Romania and Ukraine. The field period deployed for the 8 water sampling points was carried out on October 31 – November 1st 2015. Each water sample was analyzed to determinate several features, using a portable multiparameter HI 9828 and a portable turbidimeter HI 98713. Also for geolocation reference has been used a GPS Magellan Explorist 600 device. The investigated parameters were: pH, water temperature and conductivity, total dissolved solids, salinity and water turbidity. The obtained results will be integrated into a more complex study on water quality, regarding the mentioned Natura 200 sites.

  2. Application of natural isotopes ("1"8O, "2H and "1"4C) to study the dynamics of ground water in connection with river water in Bandung area

    International Nuclear Information System (INIS)

    Evarista Ristin Pujiindiyati and Satrio

    2013-01-01

    Water table in the center of Bandung basin has been decreased around 1-2 m/year since 1990 whereas in the slope has been decreased at higher level of 15 m. Water level decreasing are going to increase continuously because of increasing number of deep wells (>40 m). In 1970, there were 96 deep wells which have been registered, but now number of deep wells is estimated of more than 4700. Therefore, a study of interrelationship between groundwater and surface water, and determination of recharge area for Bandung basin are crucial research to be conducted. Stable isotopes in nature such as "2H and "1"8O, and radioactive isotope of "1"4C can give important information about groundwater dynamic pattern. In this research, 24 deep groundwater samples, 28 shallow groundwater and river water samples (Citarum, Cikapundung, Cikeruh and Citarik rivers) and shallow groundwater along the rivers were collected. Results from plotting δ"1"8O and δ"2H showed that most of shallow groundwater did not relate to river water except three locations, they are Loteng Sumbersari and Bojong Mas groundwater near to Citarum river, and groundwater near to Cikapundung river. Isotope "1"4C analysis indicated that deep groundwater of Bandung basin did not show relationship either by shallow groundwater or river water. Its iso-age line contour determined that dynamic pattern of deep groundwater in Bandung basin comes from northern and southern hills to direction of north-west area such that both areas are suggested as conservation zone. Rate of deep groundwater movement predicted from iso-age contour is around 0.25 to 3 m/year. (author)

  3. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  4. Water Quality and Environmental Flow Management in Rapidly Urbanizing Shenzhen Estuary Area, China

    Science.gov (United States)

    Qin, H.; Su, Q.

    2011-12-01

    Shenzhen estuary is located in a rapidly urbanizing coastal region of Southeast China, and forms the administrative border between mainland China and Hong Kong. It receives the waters of the Shenzhen River, where it enters the Deep Bay. The estuary has great ecological importance with the internationally recognized mangrove wetlands, which provides a habitat for some rare and endangered waterfowl and migratory birds.Water quality in the esturay has deteriorated not only due to increasing wastewater discharges from domestic and industrial sources, but also as a consequence of decreasing base environmental flow during rapid urbanization in the Shenzhen River catchment since 1980s. Measures to improve water quality of the estuary include not only reducing pollutant inputs by intercepting wastewater, but also increasing environmental flow by reusing reclaimed wastewater or withdrawing nearshore seawater into the river. However, salinity alternation due to flow increase is deemed to have impacts on the mangrove wetland ecosystem. In this paper, Environmental Fluid Dynamics Code (EFDC) is used to simulate hydrodynamics, salinity, and water quality condition in the Shenzhen estuary. After calibration and validation, the model is used to evaluate effects of various control measures on water quality improvement and salinity alteration in the estuary. The results indicate that implementing different measures independently does not reach the goals of water quality improvement; furthermore, increasing environmental flow by importing nearshore seawater may greatly increase the salinity in the Shenzhen River, destroy the fresh ecosystem of the river and have non-negligible impacts on the mangrove wetland ecosystem. Based on the effectiveness and impacts of the measures, an integrated measure, which combine pollutant loads reduction and environmental flow increase by reusing reclaimed wastewater, is proposed to achieve water environmental sustainability in the study area.

  5. Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

    2011-03-07

    The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

  6. The movement of water, arsenic, and radium at a Chalk River waste management area

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Myrand, D.

    1985-05-01

    Area F is a storage site at CRNL for 119 000 tonnes of soil contaminated with low levels of arsenic and radium-226. The site was closed in 1979, and a clayey silt cover was installed in an attempt to minimize infiltration of available precipitation. Results of studies in 1980 and 1983 are used to show that the low-permeability cover has been largely ineffective in reducing infiltration. Radium has remained immobile, but arsenic is being transported by infiltrating waters into unsaturated sands beneath the contaminated soil. Iron oxyhydroxide coatings on the sand grains are sorbing the transported arsenic, and have reduced dissolved arsenic concentrations in pore waters in the sands to natural background levels

  7. GC/MS analysis of pesticides in the Ferrara area (Italy) surface water: a chemometric study.

    Science.gov (United States)

    Pasti, Luisa; Nava, Elisabetta; Morelli, Marco; Bignami, Silvia; Dondi, Francesco

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides--determined by GC-MS on samples from 11 points along the Ferrara area rivers--have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content.

  8. GC/MS Analysis of Pesticides in the Ferrara Area (Italy) Surface Water: A Chemometric Study

    International Nuclear Information System (INIS)

    Pasti, L.; Dondi, F.; Nava, E.; Morelli, M.; Bignami, S.

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides - determined by GC-MS on samples from 11 points along the Ferrara area rivers - have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content

  9. Management of an Underground River to Overcome Water Scarcity in the Gunung Sewu Karst Area, Indonesia

    Directory of Open Access Journals (Sweden)

    Choirul Amin

    2017-07-01

    Full Text Available Since people living in a karst area periodically face a crisis due to a lack of fresh water, it is necessary to re-evaluate the ability to use water resources. An appropriate and effective management is required to use available water resource sustainably. We describe a management process of exploring underground river in karst region as water resources. The activities completed included four phases, namely exploration, pre-lifting activities, the water lifting and post-lifting activities. The exploration phase included speleological surveys and data collection for the cave mouth using remote sensing instrument. The pre-lifting was done to prepare various requirements before the lifting process was completed. The water lifting phase consisted of the construction of an underground river dam, the installation of submersible pumps, the construction of reservoirs and the installation of piping to connect to the public hydrant. The post-lifting phase was mainly conducted to organise water distribution evenly. This management model was evidenced to successfully overcome drought in Pucung village by providing fresh water to the local community. Moreover, this model promoted residents’ cost savings by reducing their expenses for buying water from IDR 50,000/m3 to IDR 3,500/m3 (1,300 percent.

  10. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area

    Science.gov (United States)

    Lan, C. W.; Lo, M. H.; Kumar, S.

    2016-12-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  11. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  12. Diffusion of Nitrogen and Phosphorus Across the Sediment-Water Interface and In Seawater at Aquaculture Areas of Daya Bay, China

    Directory of Open Access Journals (Sweden)

    Xiangju Cheng

    2014-01-01

    Full Text Available With the yearly increasing marine culture activities in floating cages in Daya Bay, China, the effects of pollution may overlap and lead to more severe water environmental problems. In order to track the impacts of the marine culture in floating cages on water environment, sediments and overlying water were sampled by cylindrical samplers at three representative aquaculture areas of Daya Bay. The water content, porosity, density of sediments as well as the vertical distributions of ammonia nitrogen and active phosphate in pore water along sediments depth were measured. The release rate and annual released quantity of the nutrients across sediment-water interface were calculated using Fick’s Law. A horizontal two-dimensional mathematical model was developed to compute the spatial and temporal distributions of the nutrients in seawater after being released across the sediment-water interface. The results showed that the sediments, with a high content and a large annual released quantity of nitrogen and phosphorus, constitute a potential inner source of seawater pollution. Influenced by tide and water depth, the scope of diffusion and migration of the nutrients appears as a long belt which is about 1 km long and 50 m wide. Seawater in this area is vulnerable to eutrophication.

  13. Effect of climatic change and afforestation on water yield in the Rocky Mountain Area of North China

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-04-01

    Full Text Available Aim of study: We studied effects of climatic variability and afforestation on water yield to make a quantitative assessment of the hydrological effects of afforestation on basin water yield in the Rocky Mountain Area of North China. Area of study: Seven typical forest sub-watersheds in Chaobai River watershed, located near Beijing’s Miyun Reservoir, were selected as our study object. Material and methods: Annual water yield model and Separate evaluation method were applied to quantify the respective contributions of changes in climate and different vegetation types on variations in runoff. Main results: Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased significantly in the past decades. Although forest increased significantly in the late 20th century, climatic variations have the strongest contribution to the reductions in runoff, with the average contribution reaching 63.24%, while the remainder caused by human activities. Afforestation has a more positive impact on the reduction in runoff, with a contribution of 65.5%, which was more than the grassland of 17.6% and the farmland of 16.9%. Research highlights: Compared to the impact of climatic change, we believe the large-scale afforestation may not be the main reason for the reductions in basin water yield.

  14. Cumulative effects of restoration efforts on ecological characteristics of an open water area within the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Shi, W.; Houser, J.N.; Rogala, J.T.; Guan, Z.; Cochran-Biederman, J. L.

    2011-01-01

    Ecological restoration efforts in large rivers generally aim to ameliorate ecological effects associated with large-scale modification of those rivers. This study examined whether the effects of restoration efforts-specifically those of island construction-within a largely open water restoration area of the Upper Mississippi River (UMR) might be seen at the spatial scale of that 3476ha area. The cumulative effects of island construction, when observed over multiple years, were postulated to have made the restoration area increasingly similar to a positive reference area (a proximate area comprising contiguous backwater areas) and increasingly different from two negative reference areas. The negative reference areas represented the Mississippi River main channel in an area proximate to the restoration area and an open water area in a related Mississippi River reach that has seen relatively little restoration effort. Inferences on the effects of restoration were made by comparing constrained and unconstrained models of summer chlorophyll a (CHL), summer inorganic suspended solids (ISS) and counts of benthic mayfly larvae. Constrained models forced trends in means or in both means and sampling variances to become, over time, increasingly similar to those in the positive reference area and increasingly dissimilar to those in the negative reference areas. Trends were estimated over 12- (mayflies) or 14-year sampling periods, and were evaluated using model information criteria. Based on these methods, restoration effects were observed for CHL and mayflies while evidence in favour of restoration effects on ISS was equivocal. These findings suggest that the cumulative effects of island building at relatively large spatial scales within large rivers may be estimated using data from large-scale surveillance monitoring programs. Published in 2010 by John Wiley & Sons, Ltd.

  15. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    Science.gov (United States)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE

  16. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  17. Assessment of water quality in a border region between the Atlantic forest and an urbanised area in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Miagostovich, Marize Pereira; Guimarães, Flávia Ramos; Vieira, Carmen Baur; Fumian, Tulio Machado; da Gama, Nilson Porto; Victoria, Matias; de Oliveira, Jaqueline Mendes; Mendes, Anna Carolina de Oliveira; Gaspar, Ana Maria Coimbra; Leite, José Paulo Gagliardi

    2014-06-01

    The preservation of water resources is one of the goals of the designation of parks that act as natural reservoirs. In order to assess the impact of the presence of humans in an environmental preservation area bordering urban areas, the presence of four pathogenic enteric viruses [group A rotavirus (RV-A), norovirus (NoV), human adenoviruses (HAdV), and hepatitis A virus (HAV)], as well as the physico-chemical parameters, and Escherichia coli levels were assessed in riverine water samples. From June 2008 to May 2009, monthly monitoring was performed along the Engenho Novo River. RV-A, NoV, and HAdV were observed in 29% (31/108) of the water samples, with concentrations of up to 10(3) genome copies/liter. The natural occurrence of infectious HAdV was demonstrated by Integrated Cell Culture-PCR (ICC-PCR). This study confirms the suitability of using the detection of fecal-oral transmitted viruses as a marker of human fecal contamination in water matrices and indicates the spread of pathogenic viruses occurring in an alleged area of environmental protection.

  18. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    Science.gov (United States)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    The lake of Massaciuccoli (7 km2 wide and about 2 m deep) and its palustrine nearby areas (about 13 km2 wide) constitute a residual coastal lacustrine and marshy area largerly drained by 1930. In terms of hydrological boundaries, the lake watershed is bordered by carbonate to arenaceous reliefs on the east, by a sandy coastal shallow aquifer on the west (preventing groundwater salinisation), while south and north by the Serchio River and the Burlamacca-Gora di Stiava channels alignment respectively. Since reclamation of the peaty soils started, subsidence began (2 to 3 m in 70 years), leaving the lake perched and central respect the low drained area, now 0 to -3 m below m.s.l., and requiring 16 km embankment construction. During the dry summer season, the lake undergoes a severe water stress, that, along with nutrients input, causes the continuous ecosystem degradation resulting in water salinisation and eutrophication. Water stress results in a head decrease below m.s.l., causing seawater intrusion along the main outlet, and reaching its highest point at the end of the summer season (common head values between -0.40 and -0.5 a.m.s.l.). The water budget for an average dry season lasting about 100 days was computed, considering a 10% error, in order to understand and evaluate all the components leading to the above mentioned water stress by means of several multidisciplinary activities during the years 2008-2009. They started with a thoroughly literature review, continued with hydrological, hydrogeochemical monitoring and testing (both for surface water and the shallow aquifer) and agronomical investigations (to characterize cropping systems, evapotranspiration rates and irrigation schemes). All the collected data were then processed by means of statistical methods, time series analysis, numerical modelling of the shallow aquifer and hydrological modelling. The results demonstrate the presence of two interrelated hydrological sub-systems: the lake and the reclaimed

  19. Climate influences the leaf area/sapwood area ratio in Scots pine.

    Science.gov (United States)

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  20. Flux footprints for a tall tower in a land–water mosaic area: A case study of the area around the Risø tower

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Dellwik, Ebba

    2017-01-01

    in the area surrounding the 122-m tower at Risø (Denmark), which is a mosaic of water, agricultural areas and forests. These heterogeneities are clearly reflected in the tower-based observations of the turbulence statistics from a profile of six sonic anemometers and are also reproduced by the flow model....... Using the two-dimensional mode of the model, in combination with the footprint estimator, we calculate the scalar flux footprints for the 122m eddy-covariance location and compare these results to analytical footprint estimators, which are only valid for homogeneous terrain, but are commonly applied...... also for heterogeneous terrain. Whereas the results by the analytical footprint estimator indicate smooth source areas regardless of the surface heterogeneities, the footprint estimator based on the micro-scale model indicates source hotspots, which have a stronger weight in the footprint. The hotspots...