WorldWideScience

Sample records for wastewater treatment technologies

  1. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  2. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  3. Low technology systems for wastewater treatment: perspectives.

    Science.gov (United States)

    Brissaud, F

    2007-01-01

    Low technology systems for the treatment of wastewater are sometimes presented as remnants of the past, nowadays supposedly only meant to serve developing countries and remote rural areas. However, considering their advantages and disadvantages together with enhanced treatment requirements and recent research and technological developments, the future of these systems still appears promising. Successful applications of low technology systems require that more care is taken of their design and operation than often observed. Correlatively, more efforts should be made to decipher the treatment mechanisms and determine the related reaction parameters, so as to provide more deterministic approaches of the natural wastewater treatment systems and better predict their performance.

  4. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regard to the removal of heavy metals....

  5. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    , which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms......As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...

  6. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  7. Sustainability assessment of advanced wastewater treatment technologies.

    Science.gov (United States)

    Høibye, L; Clauson-Kaas, J; Wenzel, H; Larsen, H F; Jacobsen, B N; Dalgaard, O

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances and three advanced treatment methods; sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment is the most advantageous advanced treatment methods if the demands are restricted to pathogenic microorganisms. In terms of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals.

  8. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  9. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. Howeve

  10. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  11. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  12. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  13. Micro-electrolysis technology for industrial wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  14. Advances in chemical technologies for water and wastewater treatment: preface

    Institute of Scientific and Technical Information of China (English)

    Xiaochang WANG

    2009-01-01

    @@ Chemical technologies have been applied for water and wastewater treatment since more than 150 year ago, and are still playing the leading role in this field. With the fast development of sciences and technologies especially in the last two decades, chemical technologies which are applicable for solving water quality and water environmental problems underwent a great development not only in traditional areas such as coagulation, solid/liquid separation, oxidation, adsorption etc., but also in the emerging multidisciplinary fields. Nowadays, an increasing number of chemists and chemical engineers has broadened research interests. Biochemical/biological technologies, ecological technologies and process modeling and simulation have become important branches of chemical technologies. Such a tendency has been well reflected in the activities of the Group of Chemists for Water and Wastewater Treatment (GCWWT), a subdivision of Chinese Chemical Society (CCS).

  15. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  16. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  17. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach

    OpenAIRE

    Bansari M. Ribadiya; Mehali J. Mehta

    2014-01-01

    Reed bed system for wastewater treatment has been proven to be effective and sustainable alternative for conventional wastewater treatment technologies. Use of macrophytes to treat wastewater is also categorized in this method. This new approach is based on natural processes for the removal of different aquatic macrophytes such as floating, submerged and emergent. Macrophytes are assumed to be the main biological components of wetlands. These techniques are reported to be cost eff...

  18. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  19. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  20. High rate anaerobic thermophilic technologies for distillery wastewater treatment.

    Science.gov (United States)

    Pérez-García, M; Romero-García, L I; Rodríguez-Cano, R; Sales-Márquez, D

    2005-01-01

    In this paper, performance of two high rate technologies, upflow anaerobic fixed-film reactor and fluidized bed laboratory-scale, treating distillery wastewater (wine vinasses) at anaerobic thermophilic conditions have been compared. The results obtained show that the stationary packed bed, with a corrugated plastic support, operated under stable conditions at organic loading rates (OLR0) around 20 kgCOD/m3/d, gives maximal total CODr of 76% at OLR0 of 6.29 kgCOD/m3/d; the fluidized bed reactor, operated on open pore sintered-glass media, gives total CODr of 96% at OLR0 of 5.88 kgCOD/m3/d. The anaerobic fluidized bed technology is more effective than the upflow anaerobic fixed-film technology due, fundamentally, to this technology favouring the transport of microbial cells from the bulk to the surface and enhancing the contact between the microorganism-substrate phases, In this sense, the stationary packed bed technology is adequate for the treatment of easily biodegradable wastewater, or for the cases where elevated percentages of CODr removal are not required, while the fluidized bed technology is especially suitable for treatment of hazardous wastes with recalcitrant compositions.

  1. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  2. Conditions and technologies of biological wastewater treatment in Hungary.

    Science.gov (United States)

    Tardy, G M; Bakos, V; Jobbágy, A

    2012-01-01

    A survey has been carried out involving 55 Hungarian wastewater treatment plants in order to evaluate the wastewater quality, the applied technologies and the resultant problems. Characteristically the treatment temperature is very wide-ranging from less than 10 °C to higher than 26 °C. Influent quality proved to be very variable regarding both the organic matter (typical COD concentration range 600-1,200 mg l(-1)) and the nitrogen content (typical NH(4)-N concentration range 40-80 mg l(-1)). As a consequence, significant differences have been found in the carbon availability for denitrification from site to site. Forty two percent of the influents proved to lack an appropriate carbon source. As a consequence of carbon deficiency as well as technologies designed and/or operated with non-efficient denitrification, rising sludge in the secondary clarifiers typically occurs especially in summer. In case studies, application of intermittent aeration, low DO reactors, biofilters and anammox processes have been evaluated, as different biological nitrogen removal technologies. With low carbon source availability, favoring denitrification over enhanced biological phosphorus removal has led to an improved nitrogen removal.

  3. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the redu

  4. Assessing the sustainability of wastewater treatment technologies in the petrochemical industry

    OpenAIRE

    Meerholz, A.; A C Brent, A. C.

    2013-01-01

    Selecting the most suitable industrial wastewater treatment technology is not only about providing the best technical solution at the lowest cost: it is also about sustainability (including social and environmental acceptance) and institutional feasibility. This paper demonstrates and evaluates a method that may be used for wastewater treatment technology assessment and selection in an industrial context, with a specific focus on biological wastewater treatment in a petrochemical company. The...

  5. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    OpenAIRE

    Chunyan Chai; Dawei Zhang; Yanling Yu; Yujie Feng; Man Sing Wong

    2015-01-01

    With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs) in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG) emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O), Sequencing Batch Reactor (SBR) and Oxy...

  6. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    large and shallow earthen basins in which wastewater treatment takes place with minimum regulation, practically as natural self-purification. Anaerobic processes The anaerobic treatment process is based on the methane fermentation of organic wastewater pollution, where organic material is converted into a mixture of gases. The use of microorganisms in the absence of oxygen is called anaerobic digestion. Processing products from the wastewater treatment process Waste materials from the wastewater treatment process should have a high proportion of isolated components and a small proportion of the remaining moisture. Sludge treatment methods may include: thickening, stabilization, conditioning, dewatering, drying or oxidation and disposal. In accordance with the applied technology, sludge treatment processes may be biological, technical and mechanical ones. Biological sludge treatment processes are performed for compost production, to improve sludge residue for disposal, for biological stabilization of sludge residue. Composting is the simplest way of processing biodegradable sludge (humus. Compost can be used in agriculture, to revitalize the soil laid bare by fire and to improve the quality of land next to roads. Mechanical-biological treatment of sludge is based on a process of mechanical treatment of sludge, where valuable components are separated from sludge. These components are metal, paper, plastic, nonmetal or harmful substances that cannot be disposed of in landfills. The thermal treatment of sludge is carried out using the following methods: combustion, pyrolysis and gasification.

  7. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  8. Advanced Oxidation Technologies/Photocatalytic Treatment of Wastewater.

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusionsThe last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despit

  9. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.

    Science.gov (United States)

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2016-01-01

    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology.

  10. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  11. Use of nanofiltration membrane technology for ceramic industry wastewater treatment

    Directory of Open Access Journals (Sweden)

    Moliner-Salvador, R.

    2012-04-01

    Full Text Available A study has been undertaken of an advanced wastewater treatment approach using polymer nanofiltration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD and the most representative ions present in the wastewater, such as Na+, Mg2+, Cl- y SO42-. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nanofiltration process using the NanoFlux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

    Este estudio ha sido emprendido con el fin de acercar la nanofiltración a través de membranas poliméricas al tratamiento de las aguas residuales industriales de la industria cerámica, esperando obtener un agua con la suficiente calidad como para ser reutilizada en el propio proceso productivo o, alternativamente, poder verterla. El estudio se ha centrado en la eliminación de materia orgánica (reducción de D.Q.O y algunos iones presentes en las aguas residuales, tales como Na+, Mg2+, Cl- y SO42-. En primer lugar, se ha realizado una simulación del proceso de nanofiltración usando el software Nano

  12. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach

    Directory of Open Access Journals (Sweden)

    Bansari M. Ribadiya

    2014-12-01

    Full Text Available Reed bed system for wastewater treatment has been proven to be effective and sustainable alternative for conventional wastewater treatment technologies. Use of macrophytes to treat wastewater is also categorized in this method. This new approach is based on natural processes for the removal of different aquatic macrophytes such as floating, submerged and emergent. Macrophytes are assumed to be the main biological components of wetlands. These techniques are reported to be cost effective compared to other methods. Various contaminants like total suspended solids, dissolved solids, electrical conductivity, hardness, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, nitrogen, phosphorous, heavy metals, and other contaminants have been minimized using aquatic microphytes. In this paper, role of these plant species, origin and their occurrence, ecological factors and their efficiency in reduction of different water contaminants have been presented.

  13. Advanced Oxidation Technologies/Photocatalytic Treatment of Wastewater.

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusionsThe last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocatalysts, ne...

  14. SEASONAL CHANGES IN THE REDUCTION OF BIOGENIC COMPOUNDS IN WASTEWATER TREATMENT PLANTS BASED ON HYDROPONIC TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Aleksandra Bawiec

    2016-04-01

    Full Text Available The study presents the results of the treatment of domestic and industrial wastewater with respect to the reduction of nitrogen and phosphorus compounds. The analysis encompasses the results of physical and chemical tests of effluents from two facilities based on hydroponic technology: wastewater treatment plants with hydroponic lagoons using the BIOPAX technology – Paczków, Poland and the Organica technology – Szarvas, Hungary. Monthly treatment effectiveness was determined basing on these analyses. The composition of wastewater flowing into the lagoon (after mechanical treatment and wastewater discharged to the collector in 2009–2011 was subject to physical and chemical analysis in both facilities. The effluent quality was determined basing on the concentration of total phosphorus, total nitrogen and ammonium nitrogen. Mean annual results of the operation of both objects were high. For the wastewater treatment plant in Paczkow, operating in the BIOPAX technology, the effectiveness of treatment with respect to total nitrogen throughout the analysed period ranged from 76.9–84.4%. Total phosphorus was eliminated from wastewater with an effectiveness of 96.4–98.0%. Such high reduction level was caused by the application of additional precipitation process in the chambers of activated sludge reactor. The hydroponic plant in Szarvas (Organica technology was characterised by a high effectiveness of reduction with respect to ammonium nitrogen: 92.0–93.0%, while the reduction of total phosphorus fell into the range 49.3–55.3%.

  15. Development and application of some renovated technologies for municipal wastewater treatment in China

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; WEN Xianghua; HUANG Xia

    2007-01-01

    China has been experiencing fast economic development in recent decades at the cost of serious environmental deterioration.Wastewater discharge,especially municipal wastewater discharge,and non-point pollution sources are becoming the major water pollution source and research focus.Great efforts have been made on water pollution control and a number of renovated technologies and processes for municipal wastewater treatment and reclamation as well as non-point pollution control have been developed and applied in China.This paper discusses the development and application of the appropriate technologies,including natural treatment systems,anaerobic biological treatment,biofilm reactors and wastewater reclamation technologies,for water pollution control in the country.

  16. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  17. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries.

  18. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    Directory of Open Access Journals (Sweden)

    Chunyan Chai

    2015-03-01

    Full Text Available With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O, Sequencing Batch Reactor (SBR and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN concentration, mixed-liquor recycle (MLR rates and solids retention time (SRT and operation conditions (i.e., nitrite concentration are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and

  19. Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Yuncheng Xie

    2015-01-01

    Full Text Available There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application.

  20. Wastewater collection and treatment technologies for semi-urban areas of India: a case study.

    Science.gov (United States)

    Sundaravadivel, M; Vigneswaran, S

    2001-01-01

    Sanitation and wastewater management problems in small and medium towns in India (referred to as "semi-urban areas"--SUAs) are distinctly different from those of large cities or rural villages. There is an apparent lack of choices of appropriate sanitation options for these semi-urban areas, leading them to adopt on-site sanitation technologies. A field study of four such small towns in India was conducted to evaluate the suitability of available low-cost wastewater collection and treatment technologies, in light of their current practice. Based on the field study, this paper suggests a system comprising "combined surface sewers" and "reed-bed channel" for collection and treatment of wastewater for semi-urban areas, that can utilize all the existing infrastructure to effect better sanitation at lower costs. The suggested system involves converting the existing open wastewater collection drains on the road sides, as "decentralized" networks of covered drains with simple structural modifications to collect both wastewater and stormwater; and, converting the large open drains on the outskirts of SUAs that carry wastewater to agricultural fields, as gravel media filled beds planted with local reeds. Cost estimates for the towns studied indicate this system to be over 70% cheaper compared to conventional collection and treatment systems.

  1. Wastewater Treatment

    Science.gov (United States)

    ... make water safe. Effects of wastewater pollutants If wastewater is not properly treated, then the environment and human health can be negatively impacted. These impacts can include harm to fish and wildlife ... in wastewater and the potentially harmful effects these substances can ...

  2. ACTIVATED SLUDGE TECHNOLOGY COMBINED WITH HYDROPONIC LAGOON AS A TECHNOLOGY SUITABLE FOR TREATMENT OF WASTEWATER DELIVERED BY SLURRY TANKS

    Directory of Open Access Journals (Sweden)

    Aleksandra Bawiec

    2017-03-01

    Full Text Available The paper presents information related to the use of hydrophytic technology combined with traditional activated sludge solution for wastewater treatment in areas without central sewage system. The analyzed wastewater treatment plant (WWTP was operated in activated sludge technology with hybrid activated sludge reactor where biomass is kept in settled and suspended form. Treatment system was completed with hydroponic lagoon. Hydroponic lagoon has been used as tertiary treatment, in which the self-cleaning processes with the participation of the plant has come to an additional reduction of nutrients. Analyzed three stage treatment plant is located in the municipality of Nowa Sól. Only domestic wastewater delivered by slurry tanks are treated there in amount of 60 m3/d. During the observation high average concentrations of total nitrogen (201.0 mgN/dm3 was observed and organic matter expressed by COD reaching 1341.5 mgO2/dm3 and BOD5 on the level of 246.3 mgO2/dm3 were noted. A characteristic feature of an object designed for wastewater treatment delivered by slurry tanks is high irregularity of wastewater supply and high instantaneous loads of pollutants (the system does not provide expansion tank. The biggest inequality factor of the flow to the reactor was observed in December 2014 (Nd=3.9. During the observations also occurred days with no inflow of sewage. The study shows the dynamics of changes in the amount of delivered domestic wastewater and sewage flowing out of treatment plant including inequality factor. Information about quality of wastewater was used to determine the reduction of concentrations of pollutants like organic matter, suspended solids, nitrogen and phosphorus.

  3. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    Science.gov (United States)

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  4. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    Science.gov (United States)

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling.

  5. Petrochemical wastewater treatment by means of clean electrochemical technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dimoglo, A.; Akbulut, H.Y.; Cihan, F.; Karpuzcu, M. [Gebze Institute of Technology, Kocaeli (Turkey)

    2004-09-01

    The removal of chemical oxygen demand (COD), turbidity, phenol, hydrocarbon and grease from petrochemical wastewater (PCWW) was experimentally done by using electroflotation (EF) and electrocoagulation (EC). In the EF unit, a graphite anode and a stainless steel mesh as cathode were used. In the EC unit, iron and aluminium were used simultaneously as materials for two blocks of alternating electrodes. The reactor voltage was 12 V, current density (CD) was varied from 5 to 15 mA cm{sup -2}, and the residence time varied in the limits of 2-20 min for EF and 1-10 min for EC. The results have shown that EC removes the mentioned contaminants from PCWW more effectively than EF. Turbidity removal in the process of PCWW purification was estimated as 83% for EF and 88% for EC. The yields of phenol, hydrocarbon and grease removal by EC were examined under different values of residence time, CD, and with iron and aluminium as materials for electrodes. (orig.)

  6. Wastewater treatment pilot

    OpenAIRE

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  7. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  8. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    Science.gov (United States)

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. Selection of an appropriate wastewater treatment technology: a scenario-based multiple-attribute decision-making approach.

    Science.gov (United States)

    Kalbar, Pradip P; Karmakar, Subhankar; Asolekar, Shyam R

    2012-12-30

    Many technological alternatives for wastewater treatment are available, ranging from advanced technologies to conventional treatment options. It is difficult to select the most appropriate technology from among a set of available alternatives to treat wastewater at a particular location. Many factors, such as capital costs, operation and maintenance costs and land requirement, are involved in the decision-making process. Sustainability criteria must also be incorporated into the decision-making process such that appropriate technologies are selected for developing economies such as that of India. A scenario-based multiple-attribute decision-making (MADM) methodology has been developed and applied to the selection of wastewater treatment alternative. The four most commonly used wastewater treatment technologies for treatment of municipal wastewater in India are ranked for various scenarios. Six scenarios are developed that capture the regional and local societal priorities of urban, suburban and rural areas and translate them into the mathematical algorithm of the MADM methodology. The articulated scenarios depict the most commonly encountered decision-making situations in addressing technology selection for wastewater treatment in India. A widely used compensatory MADM technique, TOPSIS, has been selected to rank the alternatives. Seven criteria with twelve indicators are formulated to evaluate the alternatives. Different weight matrices are used for each scenario, depending on the priorities of the scenario. This study shows that it is difficult to select the most appropriate wastewater treatment alternative under the "no scenario" condition (equal weights given to each attribute), and the decision-making methodology presented in this paper effectively identifies the most appropriate wastewater treatment alternative for each of the scenarios.

  10. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  11. Upgrading of Wastewater Treatment Plants Through the Use of Unconventional Treatment Technologies: Removal of Lidocaine, Tramadol, Venlafaxine and Their Metabolites

    Directory of Open Access Journals (Sweden)

    Wilhelm Püttmann

    2012-09-01

    Full Text Available The occurrence and removal efficiencies of the pharmaceuticals lidocaine (LDC, tramadol (TRA and venlafaxine (VEN, and their major active metabolites monoethylglycinexylidide (MEGX, O-desmethyltramadol (ODT and O-desmethylvenlafaxine (ODV were studied at four wastewater treatment plants (WWTPs equipped with activated sludge treatment technologies. In parallel to activated sludge treatment, the removal efficiency of the compounds in pilot- and full-scale projects installed at the WWTPs was investigated. Within these projects two different treatment methods were tested: adsorption onto powdered/granulated activated carbon (PAC/GAC and ozonation. The metabolite MEGX was not detected in any sample. The concentrations of the target analytes in wastewater effluents resulting from activated sludge treatment ranged from 55 to 183 (LDC, 88 to 416 (TRA, 50 to 245 (ODT, 22 to 176 (VEN and 77 to 520 ng L−1 (ODV. In the pilot project with subsequent treatment with PAC/GAC, the mean concentrations of the analytes were between

  12. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  13. Effluent characteristics of advanced treatment for biotreated coking wastewater by electrochemical technology using BDD anodes.

    Science.gov (United States)

    Wang, Chunrong; Zhang, Mengru; Liu, Wei; Ye, Min; Su, Fujin

    2015-05-01

    Effluent of biotreated coking wastewater comprises hundreds of organic and inorganic pollutants and has the characteristics of high toxicity and difficult biodegradation; thus, its chemical oxygen demand cannot meet drainage standards in China. A boron-doped diamond anode was selected for advanced treatment of biotreated coking wastewater, and considering the efficiency of the removal of total organic carbon and energy consumption, optimal conditions were obtained as current density of 75 mA cm(-2), electrolysis time of 1.5 h, and an electrode gap of 1.0 cm in an orthogonal test. Effluent characteristics were investigated at different electrolysis times. The ratio of the 5-day biochemical oxygen demand (BOD5) to the chemical oxygen demand increased from an initial value of 0.05 to 0.65 at 90 min. Fluorescence spectra were used to evaluate the evolution of refractory organics. Two fluorescence peaks for raw wastewater, corresponding to an aromatic protein-like substance II and humic acid-like substance, weakened at 30 and at 90 min, only the former was detected. The specific oxygen uptake rate was used to assess effluent toxicity, and an obvious inhibition effect was found at 15 min; then, it was significantly faded at 30 and 45 min. The BOD5/NO3 (-)-N ratio increased from an initial value of 0.48 to 1.25 at 45 min and then gradually dropped to 0.69 at 90 min. According to the above effluent characteristics, it is strongly suggested that electrochemical technology using boron-doped diamond anodes is combined with biological denitrification technology for the advanced treatment of biotreated coking wastewater.

  14. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  15. Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis.

    Science.gov (United States)

    Plakas, K V; Georgiadis, A A; Karabelas, A J

    2016-01-01

    The multi-criteria analysis gives the opportunity to researchers, designers and decision-makers to examine decision options in a multi-dimensional fashion. On this basis, four tertiary wastewater treatment (WWT) technologies were assessed regarding their sustainability performance in producing recycled wastewater, considering a 'triple bottom line' approach (i.e. economic, environmental, and social). These are powdered activated carbon adsorption coupled with ultrafiltration membrane separation (PAC-UF), reverse osmosis, ozone/ultraviolet-light oxidation and heterogeneous photo-catalysis coupled with low-pressure membrane separation (photocatalytic membrane reactor, PMR). The participatory method called simple multi-attribute rating technique exploiting ranks was employed for assigning weights to selected sustainability indicators. This sustainability assessment approach resulted in the development of a composite index as a final metric, for each WWT technology evaluated. The PAC-UF technology appears to be the most appropriate technology, attaining the highest composite value regarding the sustainability performance. A scenario analysis confirmed the results of the original scenario in five out of seven cases. In parallel, the PMR was highlighted as the technology with the least variability in its performance. Nevertheless, additional actions and approaches are proposed to strengthen the objectivity of the final results.

  16. Protozoa and metazoa relations to technological conditions of non-woven textile filters for wastewater treatment.

    Science.gov (United States)

    Spychała, Marcin; Sowińska, Aleksandra; Starzyk, Justyna; Masłowski, Adam

    2015-01-01

    The objective of this study was a preliminary identification of basic groups of micro-organisms in the cross-sectional profile of geotextile filters for septic tank effluent (STE) treatment and their relations to technological conditions. Reactors with textile filters treating wastewater were investigated on a semi-technical scale. Filters were vertically situated and STE was filtered through them under hydrostatic pressure at a wastewater surface height of 7-20 cm. Filters were made of four layers of non-woven TS 20 geotextile of 0.9 mm thickness. Various groups of organisms were observed; the most abundant group comprised free-swimming and crawling ciliates, less abundant were stalked ciliates and the least numerous were nematodes. The individual counts of all groups of micro-organisms investigated during the study were variable according to time and space. The high abundance of Opercularia, a commonly observed genus of stalked ciliates, was related to the high efficiency of wastewater treatment and dissolved oxygen concentration of about 1.0 g/m3. Numbers of free-swimming and crawling ciliates had a tendency to decrease in relation to the depth of filter cross-sectional profile. The variability in counts of particular groups of organisms could be related to the local stress conditions. No correlation between identified organism count and total mass concentration in the cross-sectional filter profile was found.

  17. The role of MBR technology for the improvement of environmental footprint of wastewater treatment.

    Science.gov (United States)

    Lazarova, V; Martin Ruel, S; Barillon, B; Dauthuille, P

    2012-01-01

    This paper aims to demonstrate the relevance of membrane bioreactor (MBR) technology for the reduction of the environmental footprint of wastewater treatment in terms of removal of microbial and organic trace pollutants with increased reliability of operation. The application of a holistic approach using failure mode analysis, life cycle analysis (LCA), water quality fingerprints and environmental impacts underlines the lower environmental footprint of MBRs compared with conventional activated sludge. Several elements of this empirical approach can be included to upgrade the existing LCA tools in order to include the reduction of eco-toxicity, better human health protection and water reuse.

  18. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the

  19. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  20. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  1. Decentralized peri-urban wastewater treatment technologies assessment integrating sustainability indicators.

    Science.gov (United States)

    Mena-Ulecia, Karel; Hernández, Heykel Hernández

    2015-01-01

    Selection of treatment technologies without considering the environmental, economic and social factors associated with each geographical context risks the occurrence of negative impacts that were not properly foreseen, working against the sustainable performance of the technology. The principal aim of this study was to evaluate 12 technologies for decentralized treatment of domestic wastewater applicable to peri-urban communities using sustainability approaches and, at the same time, continuing a discussion about how to address a more integrated assessment of overall sustainability. For this, a set of 13 indicators that embody the environmental, economic and social approach for the overall sustainability assessment were used by means of a target plot diagram as a tool for integrating indicators that represent a holistic analysis of the technologies. The obtained results put forward different degrees of sustainability, which led to the selection of: septic tank+land infiltration; up-flow anaerobic reactor+high rate trickling filter and septic tank+anaerobic filter as the most sustainable and attractive technologies to be applied in peri-urban communities, according to the employed indicators.

  2. Alternative Treatment Technologies for Low-Cost Industrial and Municipal Wastewater Management

    OpenAIRE

    Hodges, Alan J.

    2017-01-01

    Roughly the same volume of water that rushes over the Niagara Falls is produced as wastewater in North America. This wastewater is treated through a variety of means to ensure that it can be safely returned to the natural ecosystem. This thesis examines two novel means for this treatment, one biological and one physical-chemical in nature, namely, Rotating Algae Biofilm Reactor treatment and expanded shale augmented coagulation-flocculation. Rotating algae biofilm reactors (RABRs) support ...

  3. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  4. Development of combined biological technology for treatment of high-strength organic wastewater and results of case studies

    Science.gov (United States)

    Ren, Nanqi; Wang, Aijie; Han, Hongjun; Ma, Fang; Ding, Jie; Shi, Yue; Zhao, Dan

    2006-10-01

    Our study group has developed a unique combined biological technology to treat high-strength organic wastewaters from the industries of dyestuff, pharmaceutical, chemical engineering and zymolysis by using the principles of anaerobic ecological niche and bio-phase separation. The study obtained five national invention patents and eight patent equipments. This technology contains four kernel processes - two-phase anaerobic-aerobic process, hydrolysis-acidification-oxidation process, UASBAF-oxidation process, and internal cycling-hydrolysis-oxidation process. Fifteen pilot projects were accomplished in the basins of Tai Lake, Huai River, Liao River and Songhua River, and their total capital investment reached 185.214 million Yuan (RMB). Compared to conventional wastewater treatment technology, the innovative technology is more cost-effective for high-strength organic wastewater treatment, can save capital investment by 15% 30%, lessen land usage by 20% to 40% and decrease the operating cost by 10% to 25%. The operating cost of treatment per cubic meter industrial wastewater could be below 0.6 to 1.4 Yuan (RMB).

  5. Development of Combined Biological Technology for Treatment of High-strength Organic Wastewater and Results of Case Studies

    Institute of Scientific and Technical Information of China (English)

    REN Nanqi; WANG Aijie; HAN Hongjun; MA Fang; DING Jie; SHI Yue; ZHAO Dan

    2006-01-01

    Our study group has developed a unique combined biological technology to treat high-strength organic wastewaters from the industries of dyestuff, pharmaceutical, chemical engineering and zymolysis by using the principles of anaerobic ecological niche and bio-phase separation. The study obtained five national invention patents and eight patent equipments.This technology contains four kernel processes - two-phase anaerobic-aerobic process, hydrolysis-acidification-oxidation process, UASBAF-oxidation process, and internal cycling-hydrolysis-oxidation process. Fifteen pilot projects were accomplished in the basins of Tai Lake, Huai River, Liao River and Songhua River, and their total capital investment reached 185.214million Yuan (RMB). Compared to conventional wastewater treatment technology, the innovative technology is more costeffective for high-strength organic wastewater treatment, can save capital investment by 15% -30%, lessen land usage by 20% to 40% and decrease the operating cost by 10% to 25%. The operating cost of treatment per cubic meter industrial wastewater could be below 0.6 to 1.4 Yuan (RMB).

  6. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.

  7. Cod Fractions - Methods of Measurement and Use in Wastewater Treatment Technology

    Science.gov (United States)

    Myszograj, Sylwia; Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita

    2017-03-01

    The paper presents the results of studies concerning the designation of COD fraction in raw wastewater. The research was conducted in four municipal mechanical-biological sewage treatment plants and one industrial sewage treatment plant. The following fractions of COD were determined: non-biodegradable (inert) soluble SI, biodegradable soluble fraction SS, particulate slowly degradable XS and particulate non-biodegradable XI. The methodology for determining the COD fraction was based on the ATV-A131 guidelines and Łomotowski-Szpindor methodology. The real concentration of fractions in raw wastewater and the percentage of each fraction in total COD are different from data reported in the literature.

  8. Cod Fractions - Methods of Measurement and Use in Wastewater Treatment Technology

    Directory of Open Access Journals (Sweden)

    Myszograj Sylwia

    2017-03-01

    Full Text Available The paper presents the results of studies concerning the designation of COD fraction in raw wastewater. The research was conducted in four municipal mechanical-biological sewage treatment plants and one industrial sewage treatment plant. The following fractions of COD were determined: non-biodegradable (inert soluble SI, biodegradable soluble fraction SS, particulate slowly degradable XS and particulate non-biodegradable XI. The methodology for determining the COD fraction was based on the ATV-A131 guidelines and Łomotowski-Szpindor methodology. The real concentration of fractions in raw wastewater and the percentage of each fraction in total COD are different from data reported in the literature.

  9. Experimental study on micro-electrolysis technology for pharmaceutical wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    金一中; 张月锋; 李伟

    2002-01-01

    Experiments were conducted to study the role of micro-electrolysis i n removing chromaticity and COD and improving the biodegradability of pharmaceuti cal wastewater. The results showed that the use of micro-electrolysis technolog y could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH co uld be advantageous to the removal of chromaticity. A retention time of 30 minut es was recommended for the process design of micro-electrolysis.

  10. Experimental study on micro-electrolysis technology for pharmaceutical wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    金一中; 张月锋; 李伟

    2002-01-01

    Experiments were conducted to study the role of micro-electrolysis in removng chromaticity and COD and improving the biodegradability of pharmaceutical wastewater.The results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of phamaceutical wastewater.Lower initial pH could be advantageous to the removal of chromaticity .A retention time of 30 minutes was recommended for the process design of micro-electrolysis.

  11. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  12. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    The Arctic nature is vulnerable to environmental contaminants because of low biological diversity, lack of nutrients and extreme seasonal variations in light. In Greenland neither industrial nor domestic wastewater is treated before it is discharged to the recipients, which in most cases is the sea...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...

  13. Anaerobic treatment of protein, lipid and carbohydrate containing wastewaters using the EGSB technology

    NARCIS (Netherlands)

    Petruy, R.

    1999-01-01

    Industries such as margarine, meat packing, dairy, slaughterhouse, edible oil (palm and olive oil) generate large amount of effluents. Strict environment laws in numerous countries has forced these agro-industries to apply suitable wastewater treatment in order to reduce the organic pollution load b

  14. Focus on CSIR research in pollution waste: Technologies for waste and wastewater treatment

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-08-01

    Full Text Available The Pollution and Waste Group of the CSIR specialises in the development of practicable treatment solutions for waste and wastewater arising from numerous industrial sectors. The group’s objective is to resolve potential pollution problems at mines...

  15. Membrane Bioreactor (MBR Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Oliver Terna Iorhemen

    2016-06-01

    Full Text Available The membrane bioreactor (MBR has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  16. Reactive dye house wastewater treatment. Use of hybrid technology: Membrane, sonication followed by wet oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Dhale, A.D.; Mahajani, V.V. [Univ. of Mumbai (India)

    1999-05-01

    To address problems associated with treatment of an aqueous waste stream from a reactive dye house, a model dye, turquoise blue CI25, was studied. A hybrid technology, membrane separation followed by sonication and wet oxidation, has been demonstrated to treat the wastewater for reuse and discharge. Experiments were first performed with the reactive dye solution in water. A nanofiltration membrane (MPT 30) was found to be suitable to concentrate the dye. The concentrate was then treated with a wet oxidation process. Kinetics studies were performed with and without catalyst, in the temperature range of 170--215 C. The color destruction achieved was > 99%. After process parameters were fixed, studies were conducted with the actual dye waste stream. The actual waste stream was found to be refractory for wet oxidation under the above conditions. Sonication of the concentrate obtained after membrane filtration, in the presence of CuSO{sub 4}, made the waste stream amenable to wet oxidation. Sonication followed by wet oxidation was found to be more effective at near neutral conditions as compared to basic conditions.

  17. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Science.gov (United States)

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-01-01

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. PMID:27314394

  18. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  19. Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation.

    Science.gov (United States)

    Feng, Yujie; Liu, Junfeng; Zhu, Limin; Wei, Jinzhi

    2013-01-01

    The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment.

  20. 分散式污水处理技术研究进展%Advances of Decentralized Wastewater Treatment Technologies

    Institute of Scientific and Technical Information of China (English)

    王阳; 石玉敏

    2015-01-01

    The rate of wastewater treatment was only 3%among 580 000 villages of China in 2008 and only reached 8%in 2012.The total amount of untreated decentralized wastewater was as 1.5 times as centralized sewage treatment in the cities and counties.Therefore, the environmental pollution problem of decentralized wastewater has become more and more serious and needs urgently to resolve.The concept and components of decentralized wastewater treatment were described and it was pointed out that biological treatment was mainly used for decentralized wastewater treatment.The research developments, principles and advantages and disadvantages of various wastewater treatment technologies were analyzed from 3 aspects of anaerobic, aerobic and natural biological treatment.Wetland, stabilization pond, earthworm eco-filter, eco-toilets and other natural biological treatment technologies have many advantages with low construction cost, low environmental impact, being suitable for local conditions and flexible, etc, and have become new, economical, environmental friendly and dominant technologies for decentralized wastewater treatment. Finally the research direction of decentralized wastewater treatment technologies was put forward.%2008年我国58万个自然村中污水处理率仅为3%,2012年也仅达8%,未处理的污水总量是城市和县城采用集中式污水处理总量的1.5倍,分散式污水污染控制成为亟待解决的环境问题。阐述了分散式污水处理的概念和系统组成,指出分散式污水处理主要采用生物处理技术。从厌氧生物处理、好氧生物处理和自然生物处理3个方面分析了各种分散式污水处理技术的研究进展、技术原理及优缺点,其中人工湿地、稳定塘、浮床、蚯蚓生态滤池、生态厕所等自然生物处理技术,具有建设费用低、环境影响小、因地制宜、灵活多样等优点,已成为新型、经济、环保的分散式污水处理主导技术

  1. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  2. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  3. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    Science.gov (United States)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  4. 乳化石油污水处理技术研究%Treatment Technologies of Emulsified Oil Wastewater

    Institute of Scientific and Technical Information of China (English)

    潘淑婷

    2015-01-01

    随着水质排放标准要求日益严格,乳化石油污水处理愈来愈受到重视。分别从化学法、物理法和生物法等方面介绍了乳化石油污水处理技术,重点介绍了膜生物反应器处理技术。%With the increasingly stringent requirements on water quality discharge standard, treatment of emulsified oil wastewater has received a lot of attention. In this paper, treatment technologies of emulsified oil wastewater were introduced, including chemical techniques, physical techniques and biotechnology. Membrane bioreactor (MBR) process was mainly discussed.

  5. Assessing the impacts of changes in treatment technology on energy and greenhouse gas balances for organic waste and wastewater treatment using historical data

    DEFF Research Database (Denmark)

    Hansen, Jens Aage; Poulsen, Tjalfe

    2009-01-01

    that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO2-eq. capita ĝ€"1 in 1970 to a net saving of 170 kg CO 2-eq. capitaĝ€"1 in 2005 for management of urban organic wastes.......Historical data on organic waste and wastewater treatment during the period of 1970ĝ€"2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper...... production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes...

  6. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities.

    Science.gov (United States)

    Matamoros, Víctor; Rodríguez, Yolanda; Albaigés, Joan

    2016-01-01

    Ecosystem pollution due to the lack of or inefficient wastewater treatment coverage in small communities is still a matter of great concern, even in developed countries. This study assesses the seasonal performance of 4 different full-scale wastewater technologies that have been used in small communities (constructed wetland (CW) and a waste stabilization pond (WSP)), all located in north-eastern Spain. The studied compounds belonged to the groups of pharmaceuticals, sunscreen compounds, fragrances, antiseptics, flame retardants, surfactants, pesticides and plasticizers. The 25 ECs occurred in wastewater at concentrations ranging from undetectable to 80 μg L(-1). The average removal efficiency was 42% for the CW, 62% for the AS, 63% for the RBC and 82% for the WSP. All the technologies except the WSP system showed seasonal variability in the removal of ECs. The ecotoxicological assessment study revealed that, whilst all the technologies were capable of decreasing the aquatic risk, only the WSP yielded no risk in both seasons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  8. Microalgae and wastewater treatment.

    Science.gov (United States)

    Abdel-Raouf, N; Al-Homaidan, A A; Ibraheem, I B M

    2012-07-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.

  9. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  10. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  11. Experimental Research on the Reusing & Recycling Technology of Oil Extraction Wastewater Treatment in Oil Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    How to use water resource effectively is an important problem in developing industry. Three combined processes which are composed of oil separator+de-emulsification flocculation+sand filtration (SDF), oil separator +hydrolytic acidification+SBR (SAS) and oil separator+de-emulsification flocculation +SBR (SDS) are conducted in laboratory-scale experiment to treat oil extraction wastewater for an oil-field. The experimental results show that the removal rate of COD(chemistry oxygen demand) and oil treated by SDF process are 85% and 95% respectively, the residual oil in effluent can meet the discharge standard, but the residual COD can not. The removal rate of COD and BOD (biological oxygen demand) of the SAS effluent are 85% and 90% respectively, the BOD can meet but the COD can not meet discharge standard. So the further treatment is required in the process. The SDS effluent with removal rate of 95% and 90% are obtained for COD and BOD respectively, which can completely meet the national standards of oil wastewater discharge and refilling (China). The experimental result shows that oil extraction wastewater has turned into water resource after being treated by SDS.

  12. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  13. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically activated sludge models – are introduced since these define...

  14. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically, activated sludge models – are introduced since these define...

  15. A field study of advanced municipal wastewater treatment technology for artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    PI Yun-zheng; WANG Jian-long

    2006-01-01

    Field studies were conducted to investigate the advanced treatment of the municipal secondary effluent and a subsequent artificial groundwater recharge at Gaobeidian Wastewater Treatment Plant, Beijing. To improve the secondary effluent quality, the combined process of powdered activated carbon adsorption, flocculation and rapid sand filtration was applied, which could remove about 40% dissolved organic carbon (DOC) and 70% adsorbable organic halogens. The results of liquid size exclusion chromatography indicate that in the adsorption unit the removed organic fiaction was mainly low molecular weight compounds. The fiactions removed by the flocculation unit were polysaccharides and high molecular weight compounds. The retention of water in summer in the open recharge basins resulted in a growth of algae. Consequently, DOC increased in the polysaccharide and high molecular weight humic substances fiaction. The majority of the DOC removal during soil passage took place in the unsaturated area.A limited reduction of DOC was observed in the aquifer zone.

  16. Study on treatment technology of wastewater from hydrolysis of acid oil

    Science.gov (United States)

    Li, Yuejin; Lin, Zhiyong; Han, Yali

    2017-06-01

    In this paper, the degumming of ferric chloride, calcium hydroxide after the removal of acid acidification hydrolysis of waste oil as raw material, through the treatment process to purify the wastewater. Choose different chemical additives, investigation of different temperature, pH value and other factors, find the best extraction condition. Through the orthogonal test of sodium carbonate, sodium oxalate, barium carbonate, compared with three kinds of chemical additives. The best chemical assistant is sodium carbonate, the best treatment temperature is 80 degrees Celsius, pH value is 8.0. After the reaction, the content of calcium and iron ions were determined by suitable methods. The removal rate of calcium ion is 98%, the removal rate of iron ion is 99%, and the effect of calcium and iron ion precipitation on the subsequent evaporation operation is reduced. Finally, the comparison is made to clarify the Dilute Glycerol water solution.

  17. Ultrasound technology effect on wastewater sludge treatment; Efecto de los ultrasonidos en el tratamiento de lodos de depuradora de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mesas Diaz, J. A.

    2003-07-01

    The ultrasound technology has been used since long time ago in the medicine, food industry, cosmetics and cleaning systems; but during the last few years is when this technology has stated to be used in the wastewater and sludge treatment industry. The application of low frequency and high intensity ultrasound in the wastewater and sludge treatment has numerous benefits. The ultrasound technology improves the aerobic and anaerobic digestion process, increases the biogas production, improves the sludge dewatering, reduces the polymer consumption, reduces the final biosolids production, reduces or removes the bulking and foaming problems,and enhances nutrient removal (N, P). (Author) 7 refs.

  18. 电化学氧化技术处理有机废水的研究%Treatment of Organic Wastewater by Electrochemical Oxidation Technology

    Institute of Scientific and Technical Information of China (English)

    孙萍萍; 隋欣

    2015-01-01

    当今各行各业的快速发展导致大量有机废水的排放,环境受到了越来越严重的破坏,所以如何能够使各种废水达标排放是当今科研领域的研究热点。而以前处理废水的方法,存在着降解效率低、易产生二次污染等问题。电化学氧化技术避免了传统处理方法的弊端,能够高效地深度处理废水。综述了电化学氧化技术在油田污水、染料废水等方面的研究成果以及降解有机废水的影响因素,同时,展望了该技术今后的研究方向。%Today because of rapid development of various industries, a lot of organic wastewater is discharged. The destruction of the environment has been more and more serious. So how to make all kinds of wastewater meet the emission standard has become a research hotspot now. The traditional wastewater treatment methods have many shortcomings, such as low degradation efficiency, secondary pollution and so on. The electrochemical oxidation technology can avoid the disadvantages of traditional treatment methods, and has high wastewater treatment capacity. In this paper, research achievements of the electrochemical oxidation technology for treatment of oilfield wastewater, dye wastewater and other wastewater were summarized. The influence factors of organic wastewater treatment by the electrochemical oxidation technology were analyzed, and the future research direction of the electrochemical oxidation technology was discussed.

  19. Fenton氧化在废水处理中的应用%Application of Fenton Oxidation Technology in Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    王娟; 杨再福

    2011-01-01

    Application status quo of Fenton oxidation technology in wastewater treatment in recent years were reviewed, including reaction mechanism of Fenton reaction and influencing factors such as temperature, pH value, reaction time, dosage of H2O2 and Fe2 + , H2O2/Fe2 +(mg/mg) as well as kinetic models. Deficiency and development trend of Fenton oxidation technology in wastewater treatment were also discussed.%综述了近年来Fenton氧化在废水处理领域的应用状况,对Fenton试剂氧化的机理和主要影响因素:温度、pH、反应时间、H2O2和Fe2+的投加量、H2O2/Fe2+量比以及反应动力学模型进行了简要介绍.最后探讨了Fenton氧化技术在废水处理领域现存不足之处及今后的发展趋势.

  20. A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants.

    Science.gov (United States)

    Mu, Dongyan; Addy, Min; Anderson, Erik; Chen, Paul; Ruan, Roger

    2016-03-01

    This study used life cycle assessment and technical economic analysis tools in evaluating a novel Scum-to-Biodiesel technology and compares the technology with scum digestion and combustion processes. The key variables that control environmental and economic performance are identified and discussed. The results show that all impacts examined for the Scum-to-Biodiesel technology are below zero indicating significant environmental benefits could be drawn from it. Of the three technologies examined, the Scum-to-Biodiesel technology has the best environmental performance in fossil fuel depletion, GHG emissions, and eutrophication, whereas combustion has the best performance on acidification. Of all process inputs assessed, process heat, glycerol, and methanol uses had the highest impacts, much more than any other inputs considered. The Scum-to-Biodiesel technology also makes higher revenue than other technologies. The diesel price is a key variable for its economic performance. The research demonstrates the feasibility and benefits in developing Scum-to-Biodiesel technology in wastewater treatment facilities.

  1. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].

    Science.gov (United States)

    Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi

    2011-01-01

    A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the

  2. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...

  3. Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1 degree C.

    Science.gov (United States)

    Almomani, Fares A; Delatolla, Robert; Ormeci, Banu

    2014-08-01

    The goal of this study was to investigate the potential use ofmoving bed biofilm reactor (MBBR) systems as ammonia removal post-treatment units for wastewater (WW) treatment lagoons that demonstrate large temperature changes throughout their operational year (1 - 20 degrees C). The study was carried out over a six-month period using laboratory-scale MBBR reactors fed with incoming effluent from a full-scale lagoon. The study shows that significant average ammonia removal rates of 0.26 and 0.11 kgN/m . d were achieved at 20 degrees C and 1C. The increase in the ammonia removal rates with increasing temperature from 1 degrees C to 20 degrees C showed a strong correlation to an applied temperature correction coefficient model. No significant accumulation of effluent nitrite was observed at 1 degrees C or after being fed with synthetic wastewater (SWW); indicating that cold temperatures and transitions from real WW to SWW did not stress the nitrifiers. Furthermore, the study demonstrates that changes in temperature or changes from real WW to SWW do not affect the mass of biofilm attached per MBBR carrier. Hence, based on the results of this study, it is concluded that MBBR is a promising technology for post-treatment ammonia removal of WW lagoon effluent.

  4. Evaluation of Technological Content of Wastewater Treatment of Palm Oil Mill in Lampung Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sarono

    2014-01-01

    Full Text Available Palm oil industry is the most important economic sector in Lampung Province, Indonesia. There are 13 units of palm oil mills (POMs operating in Lampung, producing about 1,094,586 tons of palm oil mill effluent (POME a year. So far, the POME has been treated by the ponding system. However, the system has still caused environmental problems due to greenhouse gas emissions. Methane capture technology of which methane is converted to electrical energy is thus proposed. The objective of this study was to evaluate the conditions of POME treatment technology of POMs in Lampung. Technological content analysis was performed to identify the conditions of technoware, humanware, infoware and orgaware (THIO being applied at POMs. The results showed that: (1 technological condition of POME treatment at 13 POM's in Lampung was almost equal among state-owned enterprises (SOE' s, non-public companies, and public companies, (2 the value of technology contribution coefficient of PTPN V Tandun, as a reference POM unit,was higher than that of the technology contribution coefficient of the POMs in Lampung, and (3 enhancing performance technology elements of technoware, humanware, infoware, and orgaware to apply methane capture technology are absolutely needed by all the POMs in Lampung.

  5. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  6. Assessing and simulation of membrane technology for modifying starchy wastewater treatment

    Science.gov (United States)

    Hedayati Moghaddam, Amin; Hazrati, Hossein; Sargolzaei, Javad; Shayegan, Jalal

    2016-11-01

    In this study, a hydrophilic polyethersulfone membrane was used to modify the expensive and low efficient conventional treatment method of wheat starch production that would result in a cleaner starch production process. To achieve a cleaner production, the efficiency of starch production was enhanced and the organic loading rate of wastewater that was discharged into treatment system was decreased, simultaneously. To investigate the membrane performance, the dependency of rejection factor and permeate flux on operative parameters such as temperature, flow rate, concentration, and pH of feed were studied. Response surface methodology (RSM) has been applied to arrange the experimental layout which reduced the number of experiments and also the interactions between the parameters were considered. The maximum achieved rejection factor and permeate flux were 97.5% and 2.42 L min-1 m-2, respectively. Furthermore, a fuzzy inference system was selected to model the non-linear relations between input and output variable which cannot easily explained by physical models. The best agreement between the experimental and predicted data for permeate flux was denoted by correlation coefficient index (R 2) of 0.9752 and mean square error (MSE) of 0.0072 where defuzzification operator was center of rotation (centroid). Similarly, the maximum R 2 for rejection factor was 0.9711 where the defuzzification operator was mean of maxima (mom).

  7. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  8. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  9. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  10. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  11. Use of Ionizing Radiation Technology for Treating Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Firas R. Al-Khalidy

    2006-12-01

    Full Text Available In big cities, the cost of treating wastewater is increasing with more stringent environmental requirements. Ionizing radiation technology for treating municipal wastewater may be an alternative to reduce treatment costs. In this paper, laboratory tests were carried out using different doses of radiation to treat wastewater samples collected from the AL-Rustamia wastewater treatment plant in Baghdad city. According to the results, irradiation by gamma radiation with a dose ranging from 100 to 500 krad was efficient in reducing some of the physical contaminants. The organic contaminants were degraded and reduced to about 12% of their original concentrations. Generally, irradiation technology could effectively modify the characteristics of the wastewater to such levels that are compatible with Iraqi disposal standards. The results of the study also showed that, an experimental pilot plant study is required to optimize the cost of wastewater treatment through the use of this technology.

  12. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell.

    Science.gov (United States)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-03-01

    Development of sustainable technologies for treatment of azo dyes containing wastewaters has long been of great interest. In this study, we proposed an innovative concept of using microbial reverse-electrodialysis electrolysis cell (MREC) based Fenton process to treat azo dye wastewater. In such MREC-Fenton integrated process, the production of H2O2 which is the key reactant of fenton-reaction was driven by the electrons harvested from the exoelectrogens and salinity-gradient between sea water and fresh water in MREC. Complete decolorization and mineralization of 400mgL(-1) Orange G was achieved with apparent first order rate constants of 1.15±0.06 and 0.26±0.03h(-1), respectively. Furthermore, the initial concentration of orange G, initial solution pH, catholyte concentration, high and low concentration salt water flow rate and air flow rate were all found to significantly affect the dye degradation. This study provides an efficient and cost-effective system for the degradation of non-biodegradable pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell

    DEFF Research Database (Denmark)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan

    2017-01-01

    Development of sustanaible technologies for treatment of azo dyes containing wastewaters has long been of great interest. In this study, we proposed an innovative concept of using microbial reverse-electrodialysis electrolysis cell (MREC) based Fenton process to treat azo dye wastewater. In such ...... the dye degradation. This study provides an efficient and cost-effective system for the degradation of non-biodegradable pollutants........ In such MREC-Fenton integrated process, the production of H2O2 which is the key reactant of fenton-reaction was driven by the electrons harvested from the exoelectrogens and salinity-gradient between sea water and fresh water in MREC. Complete decolorization and mineralization of 400 mg L-1 Orange G...... was achieved with apparent first order rate constants of 1.15 ± 0.06 and 0.26 ± 0.03 h-1, respectively. Furthermore, the initial concentration of orange G, initial solution pH, catholyte concentration, high and low concentration salt water flow rate and air flow rate were all found to significantly affect...

  14. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  15. Application of Membrane Bioreactor Technology in Pharmaceutical Wastewater Treatment%MBR技术在制药废水处理的应用

    Institute of Scientific and Technical Information of China (English)

    伍仕芬; 吴小琴; 黄昊; 张云彬

    2012-01-01

    制药废水通常属于难降解的高浓度废水,具有组分复杂、有机物浓度高、毒性大等特点。膜生物反应器(Membrane Bioreactor,MBR)技术是膜分离技术与生物处理技术有机结合的新型废水处理技术,对于制药废水处理有着独特的优势。文章描述了MBR的分类及组成,归纳了MBR在制药废水处理的优势,并列举了MBR在生物制药、化学制药及中成药制药废水处理的多个实例,最后对MBR在制药废水处理领域的发展前景进行了展望。%Pharmaceutical wastewater was a kind of refractory high-strength wastewater which had characteristics as complicated constituents,high organics concentration,highly toxicity.Membrane bioreactor(MBR) technology was a new wastewater treatment technology with a combination of membrane separation technology and biological treatment technology,which had unique advantage on pharmaceutical wastewater treatment.In this paper,the classification and structure was summed up of MBR.And some examples of MBR in biopharmaceutical,chemical pharmaceutical and Chinese patent medicine pharmaceutical wastewater treatment was emphatically analyzed and discussed.Finally,the prospect of MBR in pharmaceutical wastewater treatment was described.

  16. 我国焦化废水处理工业化技术探讨%Industrial Technology Investigation of Coking Wastewater Treatment in China

    Institute of Scientific and Technical Information of China (English)

    金学坤

    2016-01-01

    Coking wastewater generated during coal coking process is a kind of refractory organic wastewater, causing serious environmental pollution. The development status of treatment process in domestic was reviewed, a more mature industrial processing technology of flat membrane bioreactor technology, high phenol ammonia wastewater treatment technology of Harbin institute of technology, "yujie dominant bacterium group" biological treatment technology, bio-contact oxidation wastewater treatment system technology, active semi-coke purification treatment technology and gasification utilization technology in its residual ammonia furnace was mainly introduced. In addition, the problems existing in present treatment technology were analyzed, and the development trends were put forward.%焦化废水是煤焦化过程中产生的一种难处理有机废水,造成了严重的环境污染。本文综述了国内处理工艺发展现状,重点介绍了较成熟的工业化处理技术平板膜生物反应器技术、哈工大高酚氨废水处理技术、“宇洁优势菌群”生物处理技术、生物接触氧化系统废水处理技术、活性半焦净化处理技术及剩余氨水炉内气化资源化利用技术。此外,本文分析了现有处理技术存在问题,并提出了其发展趋势。

  17. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  18. Nutrient Removal in Wastewater Treatment

    Science.gov (United States)

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  19. Technical-economical analysis of selected decentralized technologies for municipal wastewater treatment in the city of Rome.

    Science.gov (United States)

    Gavasci, Renato; Chiavola, Agostina; Spizzirri, Massimo

    2010-01-01

    Several wastewater treatment technologies were evaluated as alternative systems to the more traditional centralized continuous flow system to serve decentralized areas of the city of Rome (Italy). For instance, the following technologies were selected: (1) Constructed wetlands, (2) Membrane Biological Reactor, (3) Deep Shaft, (4) Sequencing Batch Reactor, and (5) Combined Filtration and UV-disinfection. Such systems were distinguished based on the limits they are potentially capable of accomplishing on the effluent. Consequently, the SBR and DS were grouped together for their capability to comply with the standards for the discharge into surface waters (according to the Italian D.Lgs. 152/06, Table 1, All. 5), whereas the MBR and tertiary system (Filtration+UVc-disinfection) were considered together as they should be able to allow effluent discharge into soil (according to the Italian D.Lgs. 152/06, Table 4, All. 5) and/or reuse (according to the Italian D.M. 185/03). Both groups of technologies were evaluated in comparison with the more common continuous flow treatment sequence consisting of a biological activated sludge tank followed by the secondary settlement, with final chlorination. CWs were studied separately as a solution for decentralized urban areas with limited population. After the analysis of the main technical features, an economical estimate was carried out taking into account the investment, operation and maintenance costs as a function of the plant's capacity. The analysis was based on real data provided by the Company who manages the entire water system of the City of Rome (Acea Ato 2 S.p.A.). A preliminary design of the treatment plants using some of the selected technologies was finally carried out.

  20. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment.

    Science.gov (United States)

    Rahman, Sheikh M; Eckelman, Matthew J; Onnis-Hayden, Annalisa; Gu, April Z

    2016-03-15

    Advanced nutrient removal processes, while improving the water quality of the receiving water body, can also produce indirect environmental and health impacts associated with increases in usage of energy, chemicals, and other material resources. The present study evaluated three levels of treatment for nutrient removal (N and P) using 27 representative treatment process configurations. Impacts were assessed across multiple environmental and health impacts using life-cycle assessment (LCA) following the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) impact-assessment method. Results show that advanced technologies that achieve high-level nutrient removal significantly decreased local eutrophication potential, while chemicals and electricity use for these advanced treatments, particularly multistage enhanced tertiary processes and reverse osmosis, simultaneously increased eutrophication indirectly and contributed to other potential environmental and health impacts including human and ecotoxicity, global warming potential, ozone depletion, and acidification. Average eutrophication potential can be reduced by about 70% when Level 2 (TN = 3 mg/L; TP = 0.1 mg/L) treatments are employed instead of Level 1 (TN = 8 mg/L; TP = 1 mg/L), but the implementation of more advanced tertiary processes for Level 3 (TN = 1 mg/L; TP = 0.01 mg/L) treatment may only lead to an additional 15% net reduction in life-cycle eutrophication potential.

  1. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  2. Integrated treatment of tapioca processing industrial wastewater based on environmental bio-technology

    NARCIS (Netherlands)

    Huynh Ngoc Phuong Mai,

    2006-01-01

    Tapioca processing wastewater containing high COD (9,630-13,760 mg/L), BOD (7,280-11,510 mg/L), SS (450-1,850 mg/L), total nitrogen (291-355 mg/L) total phosphorus (39-73 mg/L) and low pH (3.4-4.6) are one of the major causes of severe pollution to receiving source in South Vietnam. Based on the

  3. Prevalence and fate of Giardia cysts in wastewater treatment plants.

    Science.gov (United States)

    Nasser, A M; Vaizel-Ohayon, D; Aharoni, A; Revhun, M

    2012-09-01

    The present study was conducted to review factors affecting the prevalence and concentration of Giardia in raw wastewater. The removal and inactivation efficiency of Giardia by wastewater treatment technologies was also reviewed. Data published for the prevalence of Giardia in wastewater and the removal by wastewater treatment plants was reviewed. Giardia cysts are highly prevalent in wastewater in various parts of the world, which may reflect the infection rate in the population. In 23 of 30 (76.6%) studies, all of the tested raw wastewater samples were positive for Giardia cysts at concentrations ranging from 0.23 to 100 000 cysts l(-1). The concentration of Giardia in raw wastewater was not affected by the geographical region or the socio-economic status of the community. Discharge of raw wastewater or the application of raw wastewater for irrigation may result in Giardia transmission. Activated sludge treatment resulted in a one to two orders of magnitude reduction in Giardia, whereas a stabilization pond with a high retention time removed up to 100% of the cysts from wastewater. High-rate sand filtration, ultrafiltration and UV disinfection were reported as the most efficient wastewater treatment methods for removal and disinfection of Giardia cysts. Wastewater treatment may not totally prevent the environmental transmission of Giardia cysts. The reviewed data show that a combination of wastewater treatment methods may results in efficient removal of Giardia cysts and prevent their environmental transmission.

  4. 柠檬酸生产废水处理技术%Technology for Treatment of Wastewater from Citric Acid Production

    Institute of Scientific and Technical Information of China (English)

    徐怡珊

    2001-01-01

    分析了柠檬酸生产废水的来源及水质特性,综述了厌氧生物法、厌氧-好氧生物组合法、乳状液膜法等在柠檬酸废水处理中的应用,介绍了中和废水回用和利用柠檬酸发酵废液开发糖化酶制剂的技术。%The sources and characteristics of the wastewater from citric acid production are described.The application of the treatment processes,such as anaerobic biological process,anaerobic-aerobic biological combined process,emulsion liquid membrane process in the treatment of the wastewater are reviewed.The technologies for recycling the neutralized wastewater and preparation of saccharifying enzyme from the spent fermentation liquor are presented.

  5. 制革废水集成处理技术研究进展%Research Progress in Integrated Treatment Technology of Tannery Wastewater

    Institute of Scientific and Technical Information of China (English)

    姜虎生; 杨双春; 苏扬扬

    2013-01-01

    Tannery wastewater is a kind of complicated refractory organic wastewater, and contains a lot of toxic and hazardous matters, such as dyestuff, heavy metallic salt, animal oil, feather, silt and so on. CODcr, BOD5, sulfur, ammonia nitrogen, suspended solids in the wastewater are so high that tannery organic wastewater can not be treated by single technology .In this paper, research progress in integrated treatment technology of tannery wastewater was reviewed, such as microelectrolysis, hydrolytic acidification, Fenton, moving bed biofilm reactor,up-flow anaerobic sludge bed/blanket and so on. At last, research direction of tannery wastewater treatment technologies was proposed.%制革废水是一种成分复杂、难生物降解的有机废水,水中含有大量染料、重金属盐类、油脂、以及毛类、皮渣、泥砂等有毒有害物质,CODcr、BOD5、硫化物、氨氮、悬浮物等浓度高,采用单一处理技术难以有效治理。笔者主要介绍了微电解、水解酸化、芬顿(Fenton)、移动床生物膜反应器(MBBR)、上流式厌氧污泥床(UASB)等技术在处理制革废水方面的研究现状,并对今后的研究方向提出了建议。

  6. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  7. Research Progress of Constructed Wetland Treatment Technology for Papermaking Wastewater%造纸废水的人工湿地处理研究进展

    Institute of Scientific and Technical Information of China (English)

    范立维; 卢泽湘; 海热提

    2011-01-01

    The effect of the constructed wetland treatment technology for the papermaking wastewater on the environment and the research and application status of the plants, the microorganisms and the techniques in this treatment system were summarized. The advantages of the constructed wetland treatment technology for the papermaking wastewater and its further development direction were analyzed.%综述了造纸废水人工湿地处理的环境影响以及造纸废水人工湿地处理中植物、微生物及工艺的研究和应用现状,分析了人工湿地技术在造纸废水处理上的优势,提出了该技术有待深入研究的方向.

  8. A novel technology for advanced treatment of ammonium nitrate wastewater%硝酸铵废水深度处理技术

    Institute of Scientific and Technical Information of China (English)

    王方; 王明亚; 王明太

    2012-01-01

    针对目前用电渗析法处理硝酸铵废水的现象,提出以电去离子处理作为硝酸铵废水深度处理,弥补现有电渗析处理的不足,达到硝酸铵废水处理系统“零排放”,做到废水资源化利用,硝酸铵和水全部回收.这种改良型电渗析处理方法,除可使浓水中氨氮的质量分数达10%以上外,系统出水氨氮的质量浓度小于或等于5mg,/L.%In view of the problems existing in the treatment of ammonium nitrate wastewater by electro-dialysis, electrodeionization technology was proposed to be used for the advanced treatment of the said kind of wastewater for the purpose of making up the shortcomings of the electrodialysis, realizing wastewater zero-discharge of the system, achieving resource utilization of wastewater and complete recovery of ammonium nitrate and effluent water. It was indicated that, using the said modified electrodialysis method to treat ammonium nitrate wastewater, the mass fraction of ammonia nitrogen in the concentrated water reached above 10% and the mass concentration of ammonia nitrogen in the effluent water was no higher than 5 mg/L.

  9. Treatment of TFT-LCD wastewater containing ethanolamine by fluidized-bed Fenton technology.

    Science.gov (United States)

    Anotai, Jin; Chen, Chia-Min; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2012-06-01

    The objectives of this study are: (1) to determine the effect of pH, initial concentration of Fe(2+) and H(2)O(2) dosage on the removal efficiency of MEA by fluidized-bed Fenton process and Fenton process, (2) to determine the optimal conditions for the degradation of ethanolamine from TFT-LCD wastewater by fluidized-bed Fenton process. In the design of experiment, the Box-Behnken design was used to optimize the operating conditions. A removal efficiency of 98.9% for 5mM MEA was achieved after 2h under optimal conditions of pH3, [Fe(2+)]=5mM and [H(2)O(2)]=60mM.

  10. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  11. Application of a New Treatment Technology of PCB Wastewater%一种线路板废水处理新技术的应用

    Institute of Scientific and Technical Information of China (English)

    陶琨

    2012-01-01

    线路板废水排放量大、成分复杂,污染物种类多.结合某工程实例介绍了一种新的处理技术:JDL重金属废水处理及资源化技术.该技术可实现废水预处理后综合处理,可操作性强;出水水质稳定,可达到《电子工业污染物排放标准——电子元件》(2009年征求意见稿)三级排放标准;废水再生回用率>65%;污泥产量为传统工艺的1/10,污泥重金属含量高,可实现重金属回收;占地面积减少1/2;吨水处理费用降低30%以上.%The wastewater from printed circuit boards (PCB) industry is characterized by great quantity, complicated components and many kinds of pollutants. A new treatment technology namely JDL heavy metal wastewater treatment and resource utilization is introduced through an engineering project. The technology can realize a comprehensive treatment of the wastewater after pretreatment, with a great maneuverability. The effluent quality meets the third class criteria specified in Discharge Standards for E-lectrical Pollutants from Electrical Unit Industry (Exposure Draft 2009). The wastewater reuse rate is over 65%. Sludge yield is one-tenth of that from traditional process. The high content of heavy metals in sludge is helpful for recovering heavy metals. The area occupied by the treatment system is reduced by 50%. The treatment cost per ton of wastewater is decreased by over 30%.

  12. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology.

    Science.gov (United States)

    Moñino, P; Aguado, D; Barat, R; Jiménez, E; Giménez, J B; Seco, A; Ferrer, J

    2017-02-22

    The aim of this study was to evaluate the feasibility of treating the kitchen food waste (FW) jointly with urban wastewater (WW) in a wastewater treatment plant (WWTP) by anaerobic membrane technology (AnMBR). The experience was carried out in six different periods in an AnMBR pilot-plant for a total of 536days, varying the SRT, HRT and the food waste penetration factor (PF) of food waste disposers. The results showed increased methane production of up to 190% at 70days SRT, 24h HRT and 80% PF, compared with WW treatment only. FW COD and biodegradability were higher than in WW, so that the incorporation of FW into the treatment increases the organic load and the methane production and reduces sludge production (0.142 vs 0.614kgVSSkgremovedCOD(-1), at 70days SRT, 24h HRT and 80% PF, as compared to WW treatment only).

  14. A Review on Advanced Treatment of Pharmaceutical Wastewater

    Science.gov (United States)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  15. Treatment wastewater containing dyestuffs by adsorption technology; Kyuchaku gijutsu ni yoru senryo gan`yu haisui no shori

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1997-04-10

    For treatment of wastewater containing dyestuffs, the adsorption/separation recovery method using chitosan fiber was studied. Acid orange as acid dye and brilliant yellow as direct dye were used in experiment, and the pH, inorganic electrolyte and temperature dependency of dye adsorption into chitosan fiber were studied together with the dissolution curve of dyestuffs by NaOH aqueous solution. The result showed the possibility of adsorption, dissolution and concentrating recovery of dyestuffs. This method has the following features: (1) Efficient separation of dyestuffs and water + dyeing auxiliaries from dyeing wastewater, (2) recycling of water and dyeing auxiliaries in dyeing process, (3) high- concentrating recovery of dyestuffs by NaOH aqueous solution and recycling of fibers, (4) separation of dyestuffs from NaOH aqueous solution by cooling and salting out of desorption solution, (5) recycling of NaOH aqueous solution in desorption process, and (6) the possible closed system discharging no new wastewater in wastewater treatment. 7 refs., 6 figs., 1 tab.

  16. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  17. 洗车废水处理技术现状及发展趋势%The Current Situation and Prospects of Treatment Technology for Car Washing Wastewater

    Institute of Scientific and Technical Information of China (English)

    王晓泳; 卢徐节

    2012-01-01

    洗车废水中含有油污、泥砂、表面活性剂及其他可溶性有机物。在分析中对洗车废水的水质进行了分类,针对不同水质介绍了目前几种典型的洗车废水处理技术,并对洗车废水处理技术进行了展望。%Wastewater originated from car washing contains a number of impurities such as free oil,oil/water emulsion,clay sludge,surfactant and other soluble organic matters.In the paper,the major treatment processes were introduced.Different treatment methods were compared and the problems existing and prospect of the treatment technology of car washing wastewater were analyzed subsequently.

  18. Bioaugmentative Approaches for Dairy Wastewater Treatment

    OpenAIRE

    Irina Schneider; Yana Topalova

    2010-01-01

    Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological sy...

  19. [Recent progress in treatment of aquaculture wastewater based on microalgae--a review].

    Science.gov (United States)

    Meng, Fanping; Gong, Yanyan; Ma, Dongdong

    2009-06-01

    Microalgae enables aquaculture wastewater recycling through a biological conversion. Recently, many studies have been reported on microalgae cultivation and wastewater treatment, including developing various wastewater treatment technologies such as algae pond, activated algae, immobilized algae and algae photo-bioreactor. In this review, we address the mechanisms, progress and application in the purification of aquaculture wastewater, as well as some research perspectives.

  20. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  1. Advance and Utilization of Treatment Technology on Wastewater from Piggery%猪场废水处理技术研究进展与应用

    Institute of Scientific and Technical Information of China (English)

    潘霞; 李双来; 胡诚; 陈云峰; 乔艳

    2011-01-01

    随着人们生活水平的提高,猪场废水排放的危害越来越引起人们的重视.介绍了猪场废水的产生、危害,并从自然生物处理法、厌氧生物处理法、好氧生物处理法、厌氧-好氧联合处理法等方面阐述了猪场废水的处理技术;并进行了沼气、人工湿地与氧化塘组合处理的研究,结果表明污水经组合处理后,出水达到排放标准,并能够循环利用.%The harm of wastewater from piggery was attracting more people's attention with the increasing of living standard.The generationa and damage of wastewater from piggery were introduced and some treatment technologies on wastewater from piggery such as natural bioremediation. aerobic bioremediation. anaerobic bioremediation and aerobic-anaerobic combination bioremediation etc. were elaborated. The treatment effects of combined technology with methane,artificial wetlands, oxidation pond were studied. The water treated by combined technology could meet the sewage discharge standard and could be reused.

  2. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Kusum Lata; Kishore, V.V.N. [Tata Energy Research Institute, New Delhi (India). Darbari Seth Block

    2000-06-01

    Anaerobic digestion is the most suitable option for the treatment of high strength organic effluents. The presence of biodegradable components in the effluents coupled with the advantages of anaerobic process over other treatment methods makes it an attractive option. This paper reviews the suitability and the status of development of anaerobic reactors for the digestion of selected organic effluents from sugar and distillery, pulp and paper, slaughterhouse and dairy units. In addition, modifications in the existing reactor designs for improving the efficiency of digestion has also been suggested. (author)

  3. The Kaldnes Moving Bed biofilm technology for treatment of industrial wastewater; Tecnologia Kaldnes Moving Bed biofilm (KMT) para la depuracion de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, V.; Garcia Carrion, M.; Farre Solsona, C.

    2004-07-01

    The Kaldnes Moving bed biofilm technology is a biofilm process which is very suitable for treatment of industrial wastewaters. Biofilm processes have several acknowledged advantages compared to suspended biomass processes, e. g. resistance to toxicity and load variations. Traditionally biofilm processes have been known to clog at high loads and hence have not been suited for industrial effluents: however, the Kaldnes Moving Bed biofilm process has overcome this problem. This article describes how the process has been used as pre-treatment up front of activated sludge at a dairy in USA, and as sole treatment at pharmaceutical industry in Sweden. (Author)

  4. Bioaugmentative Approaches for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Irina Schneider

    2010-01-01

    Full Text Available Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system specially treated and acclimated activated sludge from Sofia Wastewater Treatment Plant was used. The acclimation and immobilization of initially inoculated biomass, the addition of microbiological preparations and its modification for increase of the biodegradation activity to target pollutants were studied as opportunities for the stimulation of water treatment process in bioreactors and water receiver. Second: self-purification processes in а water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied. Results: The results showed that the most important approaches for achieving high effectiveness of wastewater treatment process were both the acclimation and immobilization of biomass. In that aspect the data for the water receiver confirmed this conclusion. These two processes increased biodegradation effectiveness of the target pollutant (protein with 67%. Conclusion: The effect of the added preparations was smaller (protein biodegradation was increased to 9% for the different biological systems. It was thoroughly related to low improvement of the rate of metabolism and functioning of the biological system mainly on an enzyme level.

  5. Application of Reverse Osmosis Technology in Boron Wastewater Treatment%反渗透技术在含硼废水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    梁松筠

    2015-01-01

    This article discusses the principle of reverse osmosis technology in boron wastewater treatment, and simulation test of the removal effect of boron.The experimental results show that under suitable conditions , boron removal rate of reverse osmosis technology can reach 93%.%本文简单论述了反渗透技术处理含硼废水原理,并对硼的去除效果进行了模拟试验。实验结果表明:在适宜条件下,反渗透技术对硼的去除率可达到93%。

  6. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to

  7. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  8. Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil.

    Science.gov (United States)

    Marcelino, R B P; Queiroz, M T A; Amorim, C C; Leão, M M D; Brites-Nóbrega, F F

    2015-01-01

    Several studies have reported the adverse effects of recalcitrant compounds and emerging contaminants present in industrial effluents, which are not degradable by ordinary biological treatment. Many of these compounds are likely to accumulate in living organisms through the lipid layer. At concentrations above the limits of biological tolerance, these compounds can be harmful to the ecosystem and may even reach humans through food chain biomagnification. In this regard, advanced oxidation processes (AOPs) represent an effective alternative for the removal of the pollutants. This study focused on the AOP involving the use of ultraviolet radiation in homogeneous and heterogeneous systems. Based on the literature review, comparisons between natural and artificial light were established, approaching photoreactors constructive and operational characteristics. We concluded that the high availability of solar power in Brazil would make the implementation of the AOP using natural solar radiation for the decontamination of effluents feasible, thereby contributing to clean production and biodiversity conservation. This will serve as an important tool for the enforcement of environmental responsibility among public and private institutions.

  9. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations.

    Science.gov (United States)

    Risch, Eva; Loubet, Philippe; Núñez, Montserrat; Roux, Philippe

    2014-06-15

    Environmental impact assessment models are readily available for the assessment of pollution-related impacts in life cycle assessment (LCA). These models have led to an increased focus on water pollution issues resulting in numerous LCA studies. Recently, there have been significant developments in methods assessing freshwater use. These improvements widen the scope for the assessment of wastewater treatment (WWT) technologies, now allowing us to apprehend, for the first time, a combination of operational (energy and chemicals use), qualitative (environmental pollution) and quantitative (water deprivation) issues in wastewater treatment. This enables us to address the following question: Is water consumption during wastewater treatment environmentally significant compared to other impacts? To answer this question, a standard life cycle inventory (LCI) was performed with a focus on consumptive water uses at plant level, where several WWT technologies were operating, in different climatic conditions. The impacts of water consumption were assessed by integrating regionalized characterization factors for water deprivation within an existing life cycle impact assessment (LCIA) method. Results at the midpoint level, show that water deprivation impacts are highly variable in relation to the chosen WWT technology (water volume used) and of WWTP location (local water scarcity). At the endpoint level, water deprivation impacts on ecosystem quality and on the resource damage categories are significant for WWT technologies with great water uses in water-scarce areas. Therefore, our study shows the consideration of water consumption-related impacts is essential and underlines the need for a greater understanding of the water consumption impacts caused by WWT systems. This knowledge will help water managers better mitigate local water deprivation impacts, especially in selecting WWT technologies suitable for arid and semi-arid areas.

  10. Application of Membrane Technology in Dairy Wastewater Treatment%乳品废水处理中膜技术的应用研究

    Institute of Scientific and Technical Information of China (English)

    杜艳春; 李祝; 李猷; 吴正奇; 万端极

    2015-01-01

    Membrane technology was applied in the treatment of dairy wastewater.The microfiltration mem-brane,nanofiltration membrane,reverse osmosis membrane were adopted in the filtration of dairy wastewater after pretreatment.The results showed that,the carbohydrate and protein of dairy wastewater could be recy-cled,the water clean production and recycling of dairy wastewater could be realized when using the N130、S30 and RO membranes.The method is simple and energy saving,and provides reference for the industrial process-ing.%采用膜分离技术对乳品废水进行处理。首先对乳品废水进行预处理,再采用微滤膜、纳滤膜和反渗透膜对其进行过滤。结果表明,采用 N130型微滤膜、S30型纳滤膜和 RO 反渗透膜组合时,不仅可以回收乳品废水中的糖类和蛋白质,还可实现乳品废水的清洁生产和循环利用。该处理方法简单、节能,可为工业化处理乳品废水提供参考。

  11. The flocculants applied in the oil refining plant wastewater treatment

    Science.gov (United States)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.

    2017-08-01

    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  12. Electrochemical treatment of industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India); Palanivelu, K. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India)]. E-mail: kpvelu@hotmail.com

    2004-09-10

    This paper presents the results of the treatment of phenolic compounds containing wastewater generated from phenol-formaldehyde resin manufacturing, oil refinery and bulk drug manufacturing industries by electrochemical method. Experiments were conducted at a fixed current density of 5.4 A/dm{sup 2} using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} electrode and an undivided reactor. During the various stages of electrolysis, parameters such as COD and TOC concentrations were determined in order to know the feasibility of electrochemical treatment. Adsorbable organic halogens (AOX) were detected at high concentrations during the electrolytic treatment of the effluents. However, it was observed that increasing the electrolysis time bring down the AOX concentration to lower levels. Energy consumption and current efficiency during the electrolysis were calculated and presented. The present study proves the effectiveness of electrochemical treatment for highly concentrated bio-refractory organic pollutants present in the industrial wastewater.

  13. 制药废水处理技术研究进展%Research progress of pharmaceutical wastewater treatment technology

    Institute of Scientific and Technical Information of China (English)

    王大勇; 陈武; 梅平

    2011-01-01

    制药废水具有成分复杂、浓度高、难降解等特点,针对制药废水的处理难题,本文介绍了国内外近几年来废水处理的一些新技术,如Fenton法、湿式氧化法、光催化氧化法、臭氧氧化法、超声氧化法、微波催化氧化法、超临界水氧化法、电化学法等,并综述了这些高级氧化技术处理制药废水的特点及研究进展.%The characteristics of pharmaceutical wastewater consists of complex ingredients, high concen tration and the difficulty of degradation and so on. In view of those problems, some new technologies at home and abroad were introduced in recent years, such as Fenton, wet oxidation, photocatalytic oxidation, ozone oxidation,ultrasonic oxidation,catalytic oxidation of microwave,supercritical water oxidation,elec trochemical oxidation,and the characteristics and research progress of those advanced oxidation technology in treating pharmaceutical wastewater were summarized.

  14. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  15. 臭氧技术在废水处理中的研究进展%Technology of Ozone Developments in the Research of Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    李军; 刘清毅; 井良宵

    2014-01-01

    The technique of ozonation and combined treatment in the area of wastewater treatment is widelyapplicated, such as,tanker wastewater, aniline wastewater,refinery wastewater, pesticide wastewater,textile wastewater,dyeing wastewater, coke plant wastewater,phenolic compounds wastewater,steroid hormones, low-concentration organic wastewater, pharmaceutical wastewater, petrochemical wastewater, photographic waste water, waste seepage filtrate, micro-polluted source water and drinking waterand so on.There are some analysis and commentary to its application andresearch, andintroducedthe new progress of the technique of ozonation and combined treatmentinrecent years.%对臭氧技术在废水处理领域的文献迚行了跟踪研究,综述了臭氧及其联合处理技术在化工废水、农业废水、生活废水及其他生产废水等多个领域内的国内外技术研究现状和应用迚展。分析幵指出了臭氧在废水处理中存在的问题和今后的主要収展方向。

  16. Wastewater Treatment and Reuse: Past, Present, and Future

    OpenAIRE

    Andreas N. Angelakis; Snyder, Shane A.

    2015-01-01

    This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Colle...

  17. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    Science.gov (United States)

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids.

  18. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps as state-of-the-art technologies for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates...... municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre...

  19. 焦化废水深度处理技术%Advanced treatment technology of coking wastewater

    Institute of Scientific and Technical Information of China (English)

    孟冠华; 刘鹏; 邱菲; 方玲; 司晨浩

    2015-01-01

    焦化废水含有大量有机污染物和有毒无机物,成分十分复杂,污染物色度高,属较难降解的高浓度有机工业废水.经预处理和生化处理后的焦化废水存在COD、氨氮、总氮及氰化物不达标的问题.通过高级氧化法、混凝沉淀法、吸附法、膜分离法、生物化学法以及组合工艺等深度处理方法可以使出水满足新标准的要求.介绍了目前国内焦化废水深度处理的工艺现状以及展望.%The coking-plant wastewater contains lots of organic contaminants and toxic inorganic contaminants. This kind of highly concentrated organic industrial wastewater is hard to be biodegraded due to its complex components and high chroma. COD,NH3-N,total nitrogen and the contents of cyanide can not meet the standard after pretreated and bio-chemical treatment. Advanced oxidation process,coagulation sedimentation method,adsorption method,membrane sepa-ration method,biological chemical method and their combined process can make the effluent meet the requirements of the new standard. In addition,the present status of advanced treatment processes of coking wastewater in China are described and prospected.

  20. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  1. MBR深度处理农药工艺废水的应用%Application of MBR Technology in the Advanced Treatment of Wastewater from Pesticide Production

    Institute of Scientific and Technical Information of China (English)

    李嘉俊

    2016-01-01

    Pretreatment and MBR technology were applied in the treatment of wastewater from pyrethroids pesticide production. Through the advanced treatment, COD of the final effluent was 28 mg/L, P ( NH3-N) was 0. 1 mg/L and SS was 0. 08 mg/L, which came up the primary standard of integrated discharge of the wastewater. The MBR advanced treatment system was run more than two months, and its operation was stabled, and indexes of the final effluent met the requirements of the recovered reusing water. The cost of recovered reusing water, which produced by the pretreatment and MBR technology applied in the treatment of wastewater and were used as the filling water of water cooling system in screw compression refrigeration unit, was 1. 79 yuan/ton, and it was less than the current water fee (2. 2 yuan/ton) .%采用预处理-超滤膜工艺深度处理某农药化工厂拟除虫菊酯类农药生产工艺废水。经过深度处理出水 COD 为28 mg/L, P( NH3-N)为0.1 mg/L, SS为0.08 mg/L,完全达到污水综合排放一级标准要求。 MBR深度处理系统连续运行两个月以上,运行过程稳定,出水水质检测合符回用要求。采用预处理-超滤膜工艺产水回用于螺杆压缩制冷机组水冷却系统补水的成本为每吨产水1.79元,低于现行的自来水每吨2.2元的费用。

  2. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2015-11-01

    Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.

  3. Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: fate of wastewater effluent organic matter (EfOM) and trace organic compounds.

    Science.gov (United States)

    Amy, Gary; Drewes, Jörg

    2007-06-01

    Through the use of innovative analytical tools, the removal/transformation of wastewater effluent organic matter (EfOM) have been tracked through soil aquifer treatment (SAT). While the total amount of EfOM is significantly reduced by SAT, there are trends of shorter term versus longer term removals of specific EfOM fractions. The preferential removal of non-humic components (e.g., proteins, polysaccharides) of EfOM occurs over shorter travel times/distances while humic components (i.e., humic substances) are removed over longer travel times/distances, with the removal of both by sustainable biodegradation. Dissolved organic nitrogen (DON), a surrogate for protein-like EfOM, is also effectively removed over shorter term SAT. There is some background humic-like natural organic matter (NOM), associated with the drinking water source within the watershed, that persists through SAT. While most effluent-derived trace organic compounds are removed to varying degrees as a function of travel time and redox conditions, a few persist even through longer term SAT.

  4. Domestic Wastewater Treatment Miniplan of Institution Using a Combination of “Conetray Cascade Aerator” Technology and Biofilter

    Directory of Open Access Journals (Sweden)

    Naniek Ratni Juliardi A.R

    2016-01-01

    Full Text Available In Indonesia, the contamination from domestic wastewater is becoming the greatest pollutant and reaches up to 85% that goes into the body of water. This might worsen the river water quality. To anticipate this condition, there should be some way out, by making use of wastewater as a source of energy. One of those systems is by employing Cone-tray Cascade Aerator combined with Biofilter by using Hydrilla plant which can be used as an alternative of waste water treatment for both domestic and institutional scale. This research was aimed at determining the system capability of aeration combined with biofilter by using hydrilla plant to reduce or eliminate the pollutant load of BOD, COD, and TSS. This research was conducted in a continuous stream of water at 200L/hour. The result showed that the best system of Conetray Cascade Aerator combined with biofilter could reduce BOD as much as 69,11%, COD at 61,14%, and TSS at 65,45%.

  5. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  6. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-03-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals of membrane process in general, mechanisms of NF process including few basic models. fouling challenges and their control mechanisms adopted.

  7. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-06-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals, mechanisms, fouling challenges and their controls.

  8. Research on micro electrolysis-Fenton oxidation technology for the treatment of glyphosate wastewater%微电解-Fenton氧化技术处理草甘膦废水的研究

    Institute of Scientific and Technical Information of China (English)

    李祥; 豆静茹; 马倩鹤; 李宁; 黄尚顺; 李华峰

    2016-01-01

    According to the characteristics of glyphosate and the wastewater it produced,an appropriate technology for the treatment of glyphosate wastewater has been put forward. By orthogonal test method ,the influences of micro electrolysis-Fenton oxidation technology on the contents of COD and formaldehyde in glyphosate wastewater are studied. It is found that under optimum treatment conditions ,the removing rates of COD and formaldehyde in glyphosate wastewater are 92.1%and 95.3%,respectively,reaching the industrial second class wastewater discharge standard specified in the national Integrated Wastewater Discharge Standard (GB 8978—1996) and reducing the stress in wastewater treatment enterprises.%根据草甘膦的性质及其产生废水的特性,提出了草甘膦废水的适合处理的技术。采用正交实验法,研究了微电解-Fenton氧化技术对草甘膦废水中COD、甲醛含量的影响,发现在最佳处理条件下草甘膦废水的COD、甲醛去除率可达到92.1%、95.3%,达到国家《污水综合排放标准》(GB 8978—1996)工业二类废水排放标准,减轻了污水处理企业的压力。

  9. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  10. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  11. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  12. Fenton-BAF-RO工艺处理电镀前处理废水并回用%Treatment and Reuse of Electroplating Pre-treatment Wastewater by Fenton/BAF/RO Membrane Technology

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Pre-treatment wastewater is an important part of the plating wastewater. It has higher COD but with relatively larger reuse potential. The technology of Fenton-BAF-RO membrane separation process was used to treat electroplating Pre-treatment wastewater from a plant in Guangdong province, the results show that the pre-treatment wastewater can be advanced treated and reused effectively by this technology, and by concentrated water recirculation, zero emission was achieved. Fenton-BAF process ensure the stable operation of the RO system.%  前处理废水是电镀废水的重要组成部分,COD较高但回用潜力相对较大。采用Fenton-BAF-RO膜分离工艺处理广东省某厂电镀前处理废水,运行结果表明,该工艺可有效实现电镀前处理废水的深度处理及回用,并且通过浓水回流达到零排放,Fenton-BAF 工艺保证了 RO 系统的稳定运行。

  13. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  14. Natural systems for wastewater treatment in warm climate regions

    OpenAIRE

    Garcia Gil, Livia

    2014-01-01

    Water scarcity and the high costs of new water supply technologies are the two major factors responsible for the increasing recognition of the importance to conserve water resources by wastewater treatment, reuse or reclamation. Sustainability of sanitation systems should be related to low cost, low energy consumption and operation and maintenance requirements, especially for small communities in developing countries. Hence, natural systems for wastewater treatment seem to be a suitable so...

  15. 絮凝-微纳气泡法处理采油废水%Treatment of oily wastewater using coagulation/nano microbubble technology

    Institute of Scientific and Technical Information of China (English)

    巩翠玉; 杜娜; 侯万国

    2012-01-01

    The oily wastewater from Shengli Oilfield was treated by polyferric silicate sulfate(PFSS) flocculation,nano-microbubble technology and coagulation/nano-microbubble combined technology.The effects of treatment process on the quality of oily wastewater and the viscosity of polymer solution(partially hydrolyzed polyacrylaminde) prepared from treated wastewater were investigated.It demonstrated that the salinity,concentration of oil and suspended substance were reduced effectively after these treatments,meanwhile,the viscosity of polymer solution increased significantly.In particular,the coagulation/nano-microbubble combined technology has more remarkable effect on the studied system than the other two methods.It should be noted that the treated wastewater is expected to replace the fresh water used for preparation of polymer flooding system.Herein,it is not only eliminating oil pollution in the water,but also saving freshwater resources.%对采自胜利油田的采油废水,分别进行了聚硅硫酸铁(PFSS)絮凝法、微纳气泡法和絮凝-微纳气泡联合法处理,考察了处理过程对采油废水水质和所配制聚合物(部分水解聚丙烯酰胺)溶液粘度的影响。结果表明,均可有效降低废水的矿化度、油含量和悬浮物含量,明显提高用其配制的聚合物溶液的粘度;联合处理效果明显高于单独采用絮凝或微纳气泡处理的效果。所处理后的废水可有望代替淡水用于油田现场配制聚合物驱油体系,在消除油田污水环境污染的同时,可节约淡水资源。

  16. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL(-1), respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Technologies of deep-oxidation under high temperature in wastewater treatment%废水高温深度氧化处理技术

    Institute of Scientific and Technical Information of China (English)

    赵国方; 赵红斌

    2001-01-01

    介绍了多种废水高温深度氧化技术,包括湿式空气氧化技术、催化湿式氧化技术、湿式过氧化物氧化技术、超临界水氧化技术和焚烧技术,其中着重比较了焚烧技术中四种炉型的特点。%Some technologies about deep-oxidation under high temperature in wastewater treatment were introduced, including wet air oxidation(WAO),catalyst wet air oxidation(CWAO),wet peroxide oxidation(WPO),supercritical water oxidation(SCWO),and incinerating technology.Four types of incinerators were compared by their features emphatically.

  18. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  19. Floating treatment wetlands for domestic wastewater treatment.

    Science.gov (United States)

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  20. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    Science.gov (United States)

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  1. 偶氮类染料废水处理技术的研究进展%Research Progress in the treatment technology of Azo Dying Wastewater

    Institute of Scientific and Technical Information of China (English)

    李庆云; 韩洪晶

    2016-01-01

    染料的使用伴随着大量有机废水的产生,不但对环境保护带来巨大的威胁还危及人类的身体健康。在印染工艺中,偶氮类染料是应用最广泛的一类合成染料。综述了国内外偶氮类染料废水处理技术的研究现状,对物理法、化学法、生物法在偶氮类染料废水处理中的应用进行了简要介绍,并阐述了各种方法的作用机理。根据绿色化学的要求对现有处理技术进行改进,以提高偶氮类染料废水的处理效率使其达标排放。%A lot of organic waste water is produced in use of dyes,which not only brings great threat to environmental protection, but also endangers the health of human. In printing and dying process, azo dye is a kind of synthetic dye which is most widely used. In this paper,research status of the treatment technology of azo dying wastewater at home and abroad was reviewed. Physical methods, chemical methods and biological methods of azo dyes wastewater treatment were discussed. The mechanisms of various methods were expounded. It's pointed out that the existing treatment technologies should be improved to enhance the treatment efficiency according to the requirements of green chemistry.

  2. Application of ozone technology in wastewater treatment%臭氧技术在污水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    吕娟; 张道方

    2011-01-01

    臭氧作为一种强氧化剂,主要用于污水的深度处理.本文介绍了臭氧氧化的机理,探讨了臭氧及臭氧高级氧化在污水深度处理以及降解痕量有机物方面的应用,并在此基础上对今后的研究方向进行了展望,提出如何避免副产物的产生将是今后的研究重点.%Ozone technology is widely used in advanced wastewater treatment due to the strong oxidation ability. The mechanism of ozonation, and the application of ozone in advanced oxidation process were presented, include advanced wastewater treatment and trace organic compounds degradation. Furthermore , the prospective research was discussed. Avoiding the formation of oxidation by - products need to be researched in the future.

  3. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    Science.gov (United States)

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  4. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.

  5. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  6. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  7. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Science.gov (United States)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  8. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-01-15

    The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies.

  9. Modelling of Activated Sludge Wastewater Treatment

    OpenAIRE

    Kurtanjeka, Ž.; Deverić Meštrović, B.; Ležajić, Z.; Bevetek, A.; Čurlin; M.

    2008-01-01

    Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already b...

  10. Bioelectricity production from various wastewaters through microbial fuel cell technology

    Directory of Open Access Journals (Sweden)

    Abhilasha S Mathuriya

    2009-12-01

    Full Text Available Microbial fuel cell technology is a new type of renewable and sustainable technology for electricity generation since it recovers energy from renewable materials that can be difficult to dispose of, such as organic wastes and wastewaters. In the present contribution we demonstrated electricity production by beer brewery wastewater, sugar industry wastewater, dairy wastewater, municipal wastewater and paper industry wastewater. Up to 14.92 mA current and 90.23% COD removal was achieved in 10 days of operation. Keywords: Bioelectricity, COD, Microbial Fuel Cells, Wastewater Received: 12 November 2009 / Received in revised form: 30 November 2009, Accepted: 30 November 2009, Published online: 10 March 2010

  11. A review of anaerobic treatment of saline wastewater.

    Science.gov (United States)

    Xiao, Yeyuan; Roberts, Deborah J

    2010-01-01

    Large volumes of saline (> 2% w/v NaCl) wastewaters are discharged from many industries; e.g. seafood processing, textile dyeing, oil and gas production, tanneries and drinking water treatment processes. Although anaerobic treatment would be the most cost-effective and sustainable technology for the treatment of many of these saline wastewaters, the salinity is considered to be inhibitory to anaerobic biological treatment processes. The recent applications of salt-tolerant cultures for the treatment of wastewaters from seafood processing and ion-exchange processes suggest that biological systems can be used to treat salty wastewaters. Additionally, organisms capable of anaerobic degradation of contaminants in saline solutions have been observed in marine sediments and have been characterized during the last two decades. This manuscript provides a review of the recent research on anaerobic treatment of saline wastewater and bacterial consortia capable of the anaerobic degradation of pollutants in saline solutions, documenting that the biological treatment of saline wastewaters is promising.

  12. 污水厌氧生物处理监控技术研究进展%Research advance of monitoring technologies of anaerobic biological treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    常佳; 费学宁; 郝亚超; 李彤鲜; 朱慧芳

    2013-01-01

      在厌氧生物处理技术中,通过对各类厌氧菌在工艺运行期间的形态变化及其在污泥中的分布的实时监控,合理把握厌氧工艺进程,充分发挥厌氧菌的各自优势,对废水处理效率的提高具有重要意义。本文介绍了厌氧工艺进程实时监控技术的研究进展,从反应器启动运行中常规指标监测、菌群形态学监测方法及分子生物学监测技术三方面对监控技术加以论述;归纳比较了各方法在监测准确度和灵敏度上的差异,并在此基础上提出了将传统监测方法和分子生物学技术进行结合、将荧光探针标记靶点转移到细胞膜表面等建议,展望了分子生物学技术在污水厌氧生物处理监控领域的应用前景。%  In anaerobic biological treatment of wastewater,real-time monitoring of anaerobic bacteria morphologic change and distribution in the sludge,and process control are important to increase wastewater treatment efficiency. This paper presented the developments of monitoring technologies processing this area. Determination of conventional indicators of reactor start-up,monitoring methods of bacterial communities’ morphology and molecular biology monitoring technologies were stated. The differences in accuracy and sensitivity among the three methods were summarized and compared. Combining the traditional monitoring methods with molecular biology techniques and transferring the target of fluorescent probe to the surface of cell membrane were also suggested as possible improvements. Furthermore,the application prospects of molecular biology techniques in the monitoring fields of anaerobic biological treatment of wastewater were proposed.

  13. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... African Journal of Biotechnology Vol. 7 (15), pp. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ... separate), industrial waste entering the sewer, type of.

  14. Forward osmosis for application in wastewater treatment: a review.

    Science.gov (United States)

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector.

  15. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  16. 一种兼氧 FM BR 技术处理食品废水%A Facultative FMBR Technology for Treatment of Food Processing Wastewater

    Institute of Scientific and Technical Information of China (English)

    廖志民; 刘华琼; 刘宇森; 屈杨; 陶晶晶; 白洁; 余航

    2014-01-01

    文章介绍了一种兼氧膜生物反应器的兼氧FMBR技术处理深圳某食品加工废水.该兼氧膜生物反应器具有工艺简单、同步脱氮、不排放有机剩余污泥、节能高效、出水可回用等优点,适宜处理高浓度有机废水.实验结果表明,该工艺能有效去除CODCr 、N H3-N、T P和SS质量等污染物,处理后出水CODCr 、N H3-N、T P和SS质量浓度分别至50、2、0.5和10 mg/L ,去除率分别达98%、98%、87%和99%,满足GB8579-96污水综合排放标准.该工艺还实现了无人值守,且吨水占地面积小,单位处理成本低,经济实用.%This paper introduces the facultative FMBR technology of a facultative aerobic membrane bioreactor for treating the wastewater resulted by food processing in Shenzhen .The facultative aerobic membrane bioreactor as reported in this article has advantages such as simple processing ,simultaneous nitrogen ,without emitting organic sludge ,energy efficiency ,and the capability of recycling water ,which would be appropriate to be applied to treat high concentration organic wastewater .As the experimental results reveal ,this technology can effectively remove pollutants like CODCr ,NH3 -N ,TP and SS ,with the effluent concentration of 50 mg/L ,2 mg/L ,0 .5 mg/L ,and 10 mg/L respectively after the treatment ,therefore ,the removal rate would be 98% ,98% ,87% ,and 99% respec-tively ,which fully satisfies the "Integrated Wastewater Discharge Standard" (GB 8579 -96) .Additionally ,this technology enables unattended automation ,smaller covering areas for tons of water ,and lower unit processing costs ,w hich are economical and practical .

  17. Wastewater treatment by oxidation with ozone.

    OpenAIRE

    Edna de Almeida; Márcia Regina Assalin; Maria Aparecida Rosa; Nelson Durán

    2004-01-01

    A large variety of organic and inorganic compounds may be found in wastewater which can contribute to environmental contamination. Oxidation processes with ozone (O3; O3/UV; O3/H2O2; O3/TiO2; O3/Mn+2) and the use of ozone in the pre- or post-treatment of wastewater combined with biological processes has been extensively studied for the treatment of effluents. The aim of this work was to evaluate the potential of the ozonation process in the treatment of several industrial wastewaters, namely ...

  18. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  19. Algal biofuels from wastewater treatment high rate algal ponds.

    Science.gov (United States)

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  20. Research and Application of Advanced Treatment Technology for Coking Wastewater%焦化废水深度处理技术研究与应用

    Institute of Scientific and Technical Information of China (English)

    高漫春

    2014-01-01

    对焦化蒸氨废水生化处理工艺优化及深度处理技术进行研究,结合原有生化处理系统工艺特点和生产条件,制定实施优化改造项目方案,并对工程应用情况进行跟踪,分析水处理系统进出水水质达标提升结果。%Research was carried out on the optimization of biochemical treatment process and advanced treatment technology for ammonia distill wastewater of coking plant. According to the characteristics of the original biochemical treatment system process and production conditions, an optimization and modification program was drawn up and implemented and the application results of the project were tracked. Analysis of water at both entry and exit of the treatment system showed that the water quality has reached requirement.

  1. Environmental assessment of urban wastewater reuse: treatment alternatives and applications.

    Science.gov (United States)

    Meneses, Montse; Pasqualino, Jorgelina C; Castells, Francesc

    2010-09-01

    The main function of a Wastewater Treatment Plant is to minimize the environmental impact of discharging untreated water into natural water systems. Also a Wastewater Treatment Plant may get a resource from wastewater carrying out a tertiary treatment on the treated wastewater which can be reused in non-potable applications. Water reuse strategies are intended to address the problem of water scarcity without aggravating other environmental problems, thus reflecting the need of their environmental assessment. In this paper we used Life Cycle Assessment to evaluate different disinfection treatments (chlorination plus ultraviolet treatment, ozonation and ozonation plus hydrogen peroxide) and to assess the environmental advantages and drawbacks of urban wastewater reuse in non-potable applications. To do so, we compared the environmental impacts of producing 1m(3) of water for non-potable uses from reclaimed water, potable water and desalinated water sources. The calculation has used current operating data from a Wastewater Treatment Plant located in the Mediterranean area, although the results can be applied to any other plant with similar technology. The ozonation and ozonation plus hydrogen peroxide disinfection treatment technologies have similar environmental profiles. However most of the indicators are about 50% higher than the ultraviolet disinfection except for the acidification (100% higher) and photochemical oxidation (less than 5%). Non-potable uses (both agricultural and urban uses) of reclaimed water have environmental and economical advantages. Reuse of treated wastewater is particularly beneficial when it can replace desalinated water. Consequently, reclaimed water should be promoted for non-potable uses, when there is scarcity of freshwater.

  2. 生物耦合技术在水处理中的应用%Application of Bio-electrochemical Technology in Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    冯小晏; 冯华军; 汪美贞; 赵芝清; 沈东升

    2012-01-01

    Bio-electrochemical technology is a novel one for wastewater treatment, combining electrochemical and biological methods. Diverse applications were reported to: (1) nitrogen removal in nitrate wastewater using the cathode to generate hydrogen as electron donor; (2) the simultaneous nitrification and denitrification system-producing utilizing the anode to generate oxygen while the cathode to hydrogen, which transfer the ammonia into nitrogen directly; (3) pollutant-degradation in organic toxic wastewater using the reduction system in cathode; (4) degrading-efficiency improvement employing the micro-electric field to promote the permeability of cell membrane or the activities of metabolic enzymes. Base on the analysis of each kind of mechanism in 4-aspect application, we summarized its advantages and disadvantages of the bio-electrochemical technology, [n addition,the prospect of the future research was presented.%电-生物耦合技术是一种结合生物法和电化学法优势的新型水处理技术.目前研究主要集中在:利用阴极产氢作为电子供体实现硝酸盐废水脱氮;利用阳极产氧阴极产氢实现同步硝化反硝化作用进而使氨氮直接转化为氮气;利用阴极还原脱毒实现有毒有机废水的降解;利用微电场改变细胞膜通透性或促进酶的活性强化废水处理效果.本文在分析了各种电-生物耦合技术应用原理的基础上,综述其应用现状与存在的不足,并对该技术的继续深入研究作出了展望.

  3. Performance evaluation of water and wastewater treatment plant in Kathmandu Valley

    OpenAIRE

    Bartaula, Reetu

    2016-01-01

    In this work, assessments of technology of the water and wastewater treatment plants including constructed wetlands in Kathmandu valley are presented. There are nine water treatment plants among which two are not in operation; seven constructed wetlands among which two are under maintenance and one is not in operation. In addition, one conventional wastewater treatment plant is studied in order to highlight the associated benefits and identify challenges of water and wastewater treatment in K...

  4. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  5. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  6. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  7. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  8. Biological flocculation treatment on distillery wastewater and recirculation of wastewater.

    Science.gov (United States)

    Zhang, Wen; Xiong, Rongchun; Wei, Gang

    2009-12-30

    In the present study, a wastewater treatment system for the ethanol fermentation industry was developed by recycling distillery wastewater. The waste was able to be recycled for the next fermentation after being treated with bio-flocculation process. The bio-flocculation process contains three steps: screening, treatment with polyaspartic acid and filtration. When the filtrate from this process was recycled, the average ethanol production yield was very close to that in the conventional process using tap water. In contrast, the recycle of wastewater without flocculation and with chemical flocculation showed negative effects on ethanol yield as recycling was repeated. This new process was confirmed to have stable operation over ten recycles. Hazardous materials influencing distillery wastewater recycles on fermentation were also considered. It was found that the content of suspended solids (SS), volatile acid and Fe ions inhibited fermentation and resulted in a decreased ethanol yield. Bio-flocculation was shown to be an effective way to diminish the content of inhibitory compounds drastically when the waste was recirculated.

  9. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  10. Treatment of wastewater and restoration of aquatic systems through an eco-technology based constructed treatment wetlands - a successful experience in Central India.

    Science.gov (United States)

    Billore, S K; Sharma, J K; Singh, N; Ram, H

    2013-01-01

    In the last couple of decades constructed wetlands (CWs) have drawn considerable interest in Central India. CWs offer an effective means of integrating wastewater treatment and resource enhancement, often at competitive cost in comparison to conventional wastewater treatments, with additional benefits of Green Urban Landscaping and wildlife habitat. This paper describes treatment performances and the design of some Sub Surface Flow CWs (SSFCW) and Artificial Floating Islands (AFIs) in Central India. Central Indian CWs show significant pollution reduction load for total suspended solids (TSS) (62-82%), biochemical oxygen demand (BOD) (40-75%), NH(4)-N (67-78%) and total Kjeldahl nitrogen (TKN) (59-78%). Field scale SSFCWs installed so far in Central India are rectangular, earthen, single/multiple celled having similar depths of 0.60-0.90 m, hydraulic retention capacity 18-221 m(3) with effective size 41.8-1,050 m(2). The major components of CWs incorporate puddled bottom/side walls, sealed with impermeable low-density polyethylene, a bed of locally available river gravel planted with Phragmites karka, and an inlet distribution and outlet collection system. A new variant on CWs are AFIs working under hydroponics. The field scale experimental AFIs installed in-situ in a slowly flowing local river were composed of hollow bamboo, a bed of coconut coir, floating arrangements and Phragmites karka as nutrient stripping plant species. The AFIs polish the aquatic system by reducing 46.6% of TSS, 45-55% of NH(4)-N, 33-45% of NO(3)-N, 45-50% of TKN and 40-50% of BOD. The study established that there is a need for further research and sufficient data to assist the development of CWs by instilling confidence in policymakers, planners and in the public.

  11. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  12. Membrane bioreactors and their uses in wastewater treatments.

    Science.gov (United States)

    Le-Clech, Pierre

    2010-12-01

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field.

  13. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  14. 冷轧含油废水处理技术及工艺现状%Treatment process and technological status of oil-bearing wastewater from cold rolling

    Institute of Scientific and Technical Information of China (English)

    曲余玲; 毛艳丽; 张东丽; 王涿

    2012-01-01

    冷轧含油废水的处理,对于钢铁企业减少污水排放量和新水用量、提高废水循环利用率具有重要的意义.介绍了国内外常用的冷轧含油废水处理技术,如重力分离法、气浮法、絮凝法、吸附法、膜分离法、生物法、膜生物反应器等,描述了冷轧含油废水处理工艺与现状,展望了冷轧含油废水处理的发展趋势.%For iron and steel enterprises,the treatment of oil-bearing wastewater from cold rolling has great significance to reducing the amount of effluent discharge and the dosage of fresh water needed, and improving the cyclic utilization water of wastewater- The commonly used treatment technologies of oil-bearing wastewater from cold rolling in China and abroad, such as gravity separation, air flotation, flocculation, adsorption, membrane separation, biological method and membrane bioreactors are introduced. In addition, the treatment process and present status of oil-bearing wastewater from cold rolling are described. Furthermore, the developing trend of oil-bearing wastewater from cold rolling is forecast.

  15. 电絮凝法进行废水处理的研究进展%Wastewater treatment using electrocoagulation technology:a review

    Institute of Scientific and Technical Information of China (English)

    张峰振; 杨波; 张鸿; 赵绪新; 刘剑洪

    2012-01-01

    The principles and characteristics of the research progress in wastewater treatment by electrocoagulation are summarized. The processes of hydrolyzing and polymerization of Al3+, Fe3+ are analyzed, and the functions of relevant influencing factors are discussed,including electrode materials,pH,current density,etc. In addition,some engineering applications of the electrocoagulation technology are reviewed, including the removal of chromium, phosphorus, fluorine ions,dye pollutants,etc. The existing problems in the above researches and applications and the developing trends of this technology in the future are brought forward.%综述了电絮凝法处理废水的原理和特点,解析Al3+、Fe3+的水解聚合过程,并探讨相关影响因素的作用,包括电极材料、pH、电流密度等,列举了电絮凝法的部分实际应用,包括处理废水中的铬、磷、氟、染料污染物等,并提出目前研究和应用存在的问题及今后该技术的发展方向.

  16. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Modernizing sewers and wastewater systems with new technologies

    DEFF Research Database (Denmark)

    Henze, Mogens; Arnbjerg-Nielsen, Karsten

    2008-01-01

    After continuous problems and challenges with dead fish and oxygen depletion in the waters, Denmark initiated an action plan for Danish waters to reduce pollution in the late 1980s. The action plan puts focus on stricter criteria for wastewater treatment plants. Over the years, the plan has been...... Danish technologies is one of the main contributions to this success. However, education of staff, improved legislation and good cooperation between several stakeholders played an important role as well....

  18. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  19. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  20. Study on ADC sponging agent wastewater treatment technology%ADC发泡剂废水处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    陈丽芳; 党来芳; 徐璐

    2016-01-01

    ADC sponging agent wastewater contains a large amount of sodium chloride,ammonium chloride and a little urea.Researching salting-out law of the wastewater can reduce salt content of wastewater for resource utilization in different temperature isothermal evaporation.It is concluded that sodium chloride is separated out at first and then is ammonium chloride;When the liquid reaches co-saturated point of sodi-um chloride and ammonium chloride in the process of isothermal evaporation,precipitation rate of sodium chloride is 82.42%,which is the maximal at 100 ℃;urea have concentrated during isothermal evapora-tion process and there are no urea solid in the process of cooling crystallization.While 100℃co-saturated solution is cooled to 20 ℃,solid phase only has ammonium chloride and precipitation rate of ammonium chloride is 49 .20%.%ADC发泡剂废水中含有大量的氯化钠、氯化铵以及少量的尿素,通过50,75,100℃下等温蒸发和冷却结晶析盐,可将ADC发泡剂废水资源化利用。在等温蒸发过程中,ADC 发泡剂废水第一阶段析出NaCl,第二阶段为NaCl和NH4 Cl二盐共析;等温蒸发至NaCl和NH4 Cl二盐共析时,100℃等温蒸发过程中氯化钠的析出率达到最大值,为82.42%;整个蒸发过程中尿素不断富集,没有析出;针对100℃的NaCl和NH4 Cl共饱液冷却至20℃时,固相中只有氯化铵,氯化铵的析出率49.20%。

  1. Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

    1996-11-01

    Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

  2. Oxidation pond for municipal wastewater treatment

    Science.gov (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  3. 恩德炉灰水处理系统技术研究%Technology Research of Ash Wastewater Treatment System for Ender Furnace

    Institute of Scientific and Technical Information of China (English)

    李忠海; 苏凤林

    2009-01-01

    通过对除尘灰水处理系统分析,选择高效浓缩压滤脱水的技术方案,解决了污染问题.%Through analyzing ash wastewater treatment system,the technical program of the high efficient concentration pressure filtration dehydration was chosen, pollution problems were solved.

  4. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  5. 化妆品废水 ASBR & SBR 处理出水的芬顿氧化技术研究%After-Treatment of Biochemical Cosmetic Wastewater by Fenton Technology

    Institute of Scientific and Technical Information of China (English)

    蓝俊宏; 吴健良; 曾建新; 成文; 方战强

    2014-01-01

    Cosmetic wastewater is a relatively highly concentrated organic wastewater , which contains different kinds of surfactants .The technology of ASBR&SBR , a kind of wastewater biochemical treatment , can effectively reduce most of contaminants in wastewater .After biochemical treatment , cosmetic wastewater still contains refracto-ry organics, which makes the discharge water still having a COD Cr of 130 -170 mg/L.Therefore, the cosmetic wastewater only treated by ASBR& SBR cannot meet the discharge standard .The Fenton technology was used to treat the discharge water of ASBR& SBR .Based on test and analysis , the CODCr can be reduced to less than 50 mg/L, and the removal rate can reach 70%under the optimized process parameters which were:CODCr/H2 O2 =3/2, Fe2+/H2 O2 =1/2,pH=3.0,t=5 min.%采用芬顿技术对经过ASBR&SBR生化处理的化妆品废水进行生化后处理,进一步降低出水中有机污染物的浓度.通过芬顿各因素试验探究,优化工艺参数,获得ASBR & SBR-芬顿联合技术的最佳工艺:CODCr/H2 O2=3/2、Fe2+/H2 O2=1/2、反应起始pH 3.0、反应时间t=5 min.CODCr去除率可达70%,出水CODCr值达50 mg/L以下,达到一级排放标准.

  6. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis

    DEFF Research Database (Denmark)

    Niero, Monia; Pizzol, Massimo; Gundorph Bruun, Henrik;

    2014-01-01

    Wastewater treatment has nowadays multiple functions and produces both clean effluents and sludge, which is increasingly seen as a resource rather than a waste product. Technological as well as management choices influence the performance of wastewater treatment plants (WWTPs) on the multiple fun...

  7. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    -arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  8. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rita [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)], E-mail: ritamelo@itn.pt; Cabo Verde, Sandra [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Branco, Joaquim [Departamento de Quimica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Botelho, M. Luisa [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)

    2008-01-15

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h{sup -1}. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  9. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-10-06

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  10. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  11. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with

  12. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laborato

  13. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laborato

  14. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters....

  15. Domestic wastewater treatment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Duncan

    2004-09-15

    Details methods of domestic wastewater treatment that are especially suitable in developing countries. The emphasis is on low-cost, low-energy, low-maintenance, high-performance systems that contribute to environmental sustainability by producing effluents that can be safely and profitably used in agriculture for crop irrigation and/or in aquaculture for fish and aquatic vegetable pond fertilization. Modern design methodologies, with worked design examples, are described for waste stabilization ponds (WSPs), wastewater storage and treatment reservoirs, constructed wetlands, upflow anaerobic sludge blanket reactors, biofilters, aerated lagoons and oxidation ditches. (Author)

  16. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.;

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  17. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  18. Research progress on surfactant wastewater treatment technology%表面活性剂废水处理技术应用研究进展

    Institute of Scientific and Technical Information of China (English)

    冯辉霞; 张娟; 张婷

    2011-01-01

    介绍了表面活性剂废水的来源、分类、特点及其危害,对近几年使用的泡沫分离法、膜分离法、吸附法、混凝法、催化氧化法、微电解法、生物法及联合处理技术等处理表面活性剂废水的方法进行了综述,并对各类方法的应用现状和发展方向进行了分析和评价.提出联合处理技术将成为表面活性剂废水处理的主要方法和发展方向.%The sources, categories, character and hazards of surfactant wastewater were introduced. The present research situation of surfactant wastewater treatment by foam separation, membrane separation, adsorption, flocculation, catalytic oxidation, micro-electrolysis, biological and combined treatment process in recent years were reviewed. Application status and development direction of these methods were analysized and evaluated. It was pointed out that combined treatment would become the main method and developing direction of surfactant wastewater treatment.

  19. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    Science.gov (United States)

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  20. 人工湿地污水处理技术在氯碱循环经济园区建设中的应用%Application of artificial wetlands wastewater treatment technology in Chlor-alkali circular economy region

    Institute of Scientific and Technical Information of China (English)

    唐琳

    2011-01-01

    通过对中泰化学阜康工业园污水污染负荷的分析及人工湿地处理与活性污泥法处理技术的比较,建议应用人工湿地处理污水技术就近处理厂前区生活废水。就潜流湿地系统设计参数的计算方法、湿地选址、填料的应用、水生植物的栽种、景观设计等应用问题提出建议。%Fukang,through China and Thailand chemical industrial park wastewater pollution load analysis,artificial wetland treatment and comparison of activated sludge treatment technology,recommends that the application of artificial wetland wastewater treatment technology wastewater treatment plant nearby area before life and determine the calculation method of design parameters of subsurface flow constructed wetland system,wetland site,packing,planting of aquatic plants,landscape design and application of field application issues,such as recommendations.

  1. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    Performance of wastewater treatment plants in Jordan and suitability for reuse. ... for restricted use. Before reuse, effluent wastewater needs advanced treatment to prevent its impact on human health and the environment. ... Article Metrics.

  2. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    user

    The use of anaerobic process for domestic wastewater treatment would achieve lower carbon footprint ... However, its application is still limited to industrial wastewater treatment. ...... Department of Biotechnology, Lund University, Sweden.

  3. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    Among these activities, wastewater treatment plays a crucial role. In this work, a Streeter-Phelps dissolved oxygen model (DO) is implemented in a ... The Olifants River catchment modelled in this study features 9 wastewater treatment plants.

  4. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  5. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  6. Efficiency of domestic wastewater treatment plant for agricultural reuse

    OpenAIRE

    2015-01-01

    The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP) physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic ...

  7. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced.

  8. Constructed wetland: an alternative for wastewater treatment; Humedales construidos: una alternativa a considerar para el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Plaza de los Reyes del Rio, C.; Vidal Saez, G.

    2007-07-01

    Research and trends dealing with sewage and industrial wastewaters treated by constructed wetlands are shown in this paper. Plant and constructed wetlands configurations are also described. Sewage domestic wastewaters from individual houses or villages have used constructed wetlands as wastewater treatment. On the other hand, constructed wetlands as finally treatment working together with conventional technologies could be a good alternative for improving the treated quality wastewater. (Author) 56 refs.

  9. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas product

  10. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  11. 化工区混合废水的膜法处理应用实例%Application Example of Mixed Wastewater Treatment of Chemical Industrial Area by Membrane Technology

    Institute of Scientific and Technical Information of China (English)

    易志强

    2014-01-01

    化工区混合废水一般具有多种多样、成分复杂、多数有剧毒、可生化性差、色度高、盐度高等特性。膜生物反应器技术是将膜分离技术与传统的生化处理技术相结合的一种新型、高效的污水处理方法,具有占地面积小、活性污泥浓度高、抗冲击能力强、出水水质好、剩余污泥量少等特点。通过对某化工区综合废水选用膜技术处理的实际运行情况的分析和讨论,对此类废水采用此种技术的应用给出了指导性的结论。%Mixed wastewater of chemical industrial area was generally varied , complex composition , and most were highly toxic , but poor biochemical characteristics , high chromaticity and high salinity.Membrane bioreactor technology was a new efficient wastewater treatment technology , which combined membrane separation process with traditional biochemical treatment process.This technology was special for cover an area of an area small , high activated sludge concentration , strong shock resistance , better outlet water quality and less quantity of sludge , etc.Through analyzing and discussing the practical operation of treating a mixed wastewater of chemical industrial area using membrane bioreactor , the guidance conclusions of this kind of technology was used on treating wastewater were proposed .

  12. WASTEWATER TREATMENT USING MACROALGAE KELP SP.

    Directory of Open Access Journals (Sweden)

    Suzana Elena BIRIS-DORHOI

    2016-11-01

    Full Text Available In the present study was used the alga Kelp sp. in wastewater collected from a household, in order to experiment its treatment capacities. Every measurement in this study was made using Spectoquant NOVA 60. The results show an decrease in the main parameters when low quantities of algae were used, but an increase when larger quantities were used.

  13. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding are

  14. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  15. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    Lotti, T

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  16. Analysis on Nitrogen Removel Technology in Tannery Wastewater Treatment%制革废水脱氮技术浅析

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    在分析制革废水生物脱氮原理的基础上,提出了常用脱氮技术,如A/O工艺、二级A/O工艺、0/A/O工艺、BardenphoX-E、SBR工艺、A—MBR工艺、曝气生物滤池工艺等,以及在工程设计应用上应注意的技术要点。%Based on the mechanism of bio-nitrogen removel in tannery treatment, the common methods such as A/O process, two A/O process, O/A/O process, Bardenpho process, SBR process, A-MBR process and biological aerated filter process were summarized. And the key points in the engineering design and application were put forward.

  17. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    Science.gov (United States)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and

  18. Simulation study supporting wastewater treatment plant upgrading.

    Science.gov (United States)

    Hvala, N; Vrecko, D; Burica, O; Strazar, M; Levstek, M

    2002-01-01

    The paper presents a study where upgrading of an existing wastewater treatment plant was supported by simulation. The aim of the work was to decide between two technologies to improve nitrogen removal: a conventional activated sludge process (ASP) and a moving bed biofilm reactor (MBBR). To perform simulations, the mathematical models of both processes were designed. The models were calibrated based on data from ASP and MBBR pilot plants operating in parallel on the existing plant. Only two kinetic parameters needed to be adjusted to represent the real plant behaviour. Steady-state analyses have shown a similar efficiency of both processes in relation to carbon removal, but improved performance of MBBR in relation to nitrogen removal. Better performance of MBBR can be expected especially at low temperatures. Simulations have not confirmed the expected less volume required for the MBBR process. Finally, the MBBR was chosen for plant upgrading. The developed process model will be further used to evaluate the final plant configuration and to optimise the plant operating parameters.

  19. Carbon footprint of four different wastewater treatment scenarios

    Science.gov (United States)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  20. Winery and distillery wastewater treatment by anaerobic digestion.

    Science.gov (United States)

    Moletta, R

    2005-01-01

    Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.

  1. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  2. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  3. Advanced treatment of fuel ethanol production wastewater by iron-carbon micro-electrolysis technology%铁炭微电解法深度处理燃料乙醇生产废水

    Institute of Scientific and Technical Information of China (English)

    李涛; 鲍锦磊; 于淼; 袁先艳; 任保增

    2013-01-01

    The fuel ethanol production wastewater was advancedly treated by iron-carbon micro-electrolysis technology. The effects of the initial pH value, hydraulic retention time(HRT) ,iron to carbon quality ratio and aeration rate on the wastewater treatment performance were investigated. And the economy of advanced treatment of fuel ethanol production wastewater with the technology was evaluated. The results showed that the better treatment effects were achieved under following reactor conditions; initial pH value of 3. 5,HRT of 40 min, iron-carbon quality ratio of 2' 1 and aeration rate of 1 m /h. The treated wastewater indexes were COD of 37. 8 mg/L, BOD5 of 13. 9 mg/L,chroma of 10. 1 , turbidity of 1. 2,respectively, which met the national standard of industrial water reuse(GB/T 19923-2005). The treatment cost is about 1. 46 yuan/ton,by using the technology for treatment of fuel ethanol production wastewater with significant social, economic and environmental effect.%采用铁炭微电解法深度处理燃料乙醇生产废水,考察了初始pH、水力停留时间、铁炭质量比和曝气量对废水处理效果的影响,并对该技术应用于燃料乙醇废水深度处理的经济性进行了评价.结果表明,在初始pH值3.5、水力停留时间40 min、铁炭质量比2∶1、曝气量为1 m3/h时,获得了较好的处理效果,废水经处理后,COD均值为37.8 mg/L,BOD5为13.9 mg/L,色度为10.1倍,浊度为1.2 NTU,达到工业用水回用的标准(GB/T 19923-2005).将此工艺应用于燃料乙醇生产废水的处理,处理费用约为1.46元/t,具有较好的社会、经济和环保效益.

  4. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  5. Fenton氧化技术处理含甲醛废水的实验研究%Experimental Study on Treatment of Formaldehyde Wastewater by Fenton Oxidation Technology

    Institute of Scientific and Technical Information of China (English)

    李勇; 朱素芳; 郑定成

    2012-01-01

    Fenton reagent is used for treating H202 and Fe2 ~ , pH value, reaction time and the dosages of H202 is around 4.5 ml/L,n( min and ended the reaction after stewing 5 wastewater are respectively 89% ,82%. The aldehyde wastewater. formaldehyde wastewater, the effects of the concentration of other factors on the treatment effect are investigated. When n2 02 ) : n ( Fe2 + ) = 4, pH value is 3, the stirring time is 30 rain, formaldehyde removal rate and COD removal rate in result showe that fenton reagent had good effect for the form-aldehyde wastewater.%采用Fenton试剂对甲醛废水进行氧化处理,考察了H2O2浓度、Fe2+浓度、pH值、反应时间等因素对处理效果的影响。在H202投加量为4.5ml/L,n(H202):n(Fe2+)=4,pH值为3,反应30rain后,静置5min的条件下,废水中甲醛去除率和COD去除率分别达到89%、82%。结果表明,Fenton试剂对甲醛废水可以取到很好的处理效果。

  6. Large area radiation source for water and wastewater treatment

    Science.gov (United States)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  7. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  8. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  9. 高级氧化技术在印染废水处理中的应用%Application of advanced oxidation technologies in printing and dyeing wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    卢徐节; 刘琼玉; 刘延湘; 刘君侠

    2011-01-01

    Advanced oxidation technology in printing and dyeing wastewater treatment had the advantages of fast reaction rate, complete disposal, pollution-free and wide application, which had caught the attention and have been carrying out research and developments.Advanced oxidation technologies in recent years were reviewed, such as wet oxidation, ultrasonic oxidation, photo-catalytic oxidation, supercritical oxidation, electrochemical oxidation.Fenton oxidation, ozone oxidation and so on.The basic principles of variable advanced oxidation technologies and their application developments in dye wastewater treatment.The development trend of advanced oxidation technologies in dye wastewater treatment was pointed out.%高级氧化技术治理印染废水具有反应速度快、处理完全、无公害、适用范围广等优点,已引起各国重视并相继开展了研发.综述了近几年国内外采用湿式氧化法、超声氧化法、光催化氧化法、超临界氧化法、电化学法、Fenton法、臭氧氧化法等高级氧化技术;介绍了各种高级氧化技术的基本原理及在染料废水处理中的应用进展,并指出了高级氧化技术在染料废水处理中的发展趋势.

  10. Analysis of the aerotanks efficiency in wastewater treatment system

    Directory of Open Access Journals (Sweden)

    Z. R. Shamsutdinova

    2016-01-01

    Full Text Available Тhe problem of wastewater treatment is discussed and the ways of its solution are offered in the given work. We consider the biological method based on the biochemical and physiological laws of self-purification of rivers and other bodies of water. The biological method is promising in wastewater treatment system due to its destructive, because as a result of a partial or complete destruction of the contaminants in the waste water. The intensity and effectiveness of this treatment are investigated in the article. The efficiency of wastewater treatment depends on the degree of maintaining the bacteria in state of physiological activity. For this application cases are compared processes with one, two or more stepwise of purification with differentiated water and sludge movement also structural units for biological purification schemes and the processes that accompany different types of purification. We analyze efficiency in aeration tanks with minimum and maximum regeneration zone. We found that the biological treatment with the maximum regeneration zone is more effective for chemical oxygen demand and oxidation rate higher than mode with the minimum regeneration zone. To solve the problem of efficient wastewater treatment is offered technological scheme of arrangement of aeration with variation of the angle of mixing activated sludge flows from the waste water. This flowsheet complete biological treatment is a complex of sewage treatment plants, which are located in such a way that the liquid waste passing them one after the other, is subject to mechanical, biological treatment and disinfection before lowering it into the reservoir.

  11. Application of Emergy Analysis to the Sustainability Evaluation of Municipal Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    2016-12-01

    Full Text Available Municipal wastewater treatment plants consume much energy and manpower, are expensive to run, and generate sludge and treated wastewater whilst removing pollutants through specific treatment regimes. The sustainable development of the wastewater treatment industry is therefore challenging, and a comprehensive evaluation method is needed for assessing the sustainability of different wastewater treatment processes, for identifying the improvement potential of treatment plants, and for directing policymakers, management measures and development strategies. This study established improved evaluation indicators based on Emergy Analysis that place total wastewater, resources, energy, economic input and emission of pollutants on the same scale compared to the traditional indicators. The sustainability of four wastewater treatment plants and their associated Anaerobic-Anoxic-Oxic (A2O, Constant Waterlevel Sequencing Batch Reactor (CWSBR, Cyclic Activated Sludge Technology (CAST and Biological Aerated Filter (BAF treatment processes were assessed in a city in northeast China. Results show that the CWSBR process was the most sustainable wastewater treatment process according to its largest calculated value of Improved Emergy Sustainable Index (2.53 × 100, followed by BAF (1.60 × 100, A2O (9.78 × 10−1 and CAST (5.77 × 10−1. Emergy Analysis provided improved indicators that are suitable for comparing different wastewater treatment processes.

  12. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    Directory of Open Access Journals (Sweden)

    Francesca Giaccherini

    2017-06-01

    Full Text Available In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent emission for tannery wastewater treatment is 1.49 103 tCO2,eq d−1. Moreover, the energy intensity of tannery wastewater treatment processes are evaluated at 3.9 kWh kg−1bCOD,removed, compared to 1.4 kWh kg−1bCOD,removed of municipal wastewater treatment processes. Based on this work in the field of tannery wastewater treatment, an effort to innovate suitable treatment trains and technologies has the strong potential to reduce the carbon footprint.

  13. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  14. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Institute of Scientific and Technical Information of China (English)

    MOK Young Sun; JO Jin-Oh; LEE Heon-Ju

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  15. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  16. Bio-enzymatic Technology Used in Carrageenan Wastewater Treatment Engineering Practice%生物酶催化技术应用于卡拉胶废水处理工程

    Institute of Scientific and Technical Information of China (English)

    齐爱玖; 林祥进; 孙祥章

    2012-01-01

      卡拉胶废水成分复杂,含有难生化降解的有机污染物种类多,且浓度高,碱性大,含盐量高,按现有的处理工艺,很难达到排放标准。本文以福建省石狮市中科海藻制品发展有限公司卡拉胶废水处理工程为例,阐述了生物酶催化技术在卡拉胶废水处理中的应用。通过在生化系统建立酶体系,利用生物酶催化作用,提高废水中难降解有机物的可生化性与可处理性,从而使出水达到《污水综合排放标准》(GB8978—1996)规定的一级排放标准。%  The complex composition of carrageenan wastewater contains difficult biochemical degradation of many kinds of organic pol utants, and high concentrations, alkaline, high salt content. It is difficult to achieve the emission standards according to the existing treatment process. By taking carrageenan wastewater treatment works of Fujian Shishi City Seaweed Products Development Co., Ltd. as an example, the article describes the application of bio-enzymatic technology in wastewater treatment of carrageenan. Enzyme system is set in bio-chemical system, the article uses bio-enzyme catalysis to improve biochemistry and treatment of in-degradability of organic matter in wastewater, so as to meet the first grade discharge standard stipulated in (GB8978-1996).

  17. Cheese whey wastewater: characterization and treatment.

    Science.gov (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems.

  18. The effects of physicochemical wastewater treatment operations on forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2016-10-24

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  19. 混凝气浮-SBR-CRI组合工艺处理低浓度农药废水%Treatment of low concentration pesticide wastewater by combined technology of coagulation air flotation-SBR-CRI

    Institute of Scientific and Technical Information of China (English)

    郑元武; 彭书传; 胡真虎; 盛国平; 施超

    2012-01-01

    采用混凝气浮-SBR-CRI组合工艺处理合肥循环经济示范园内的农药废水,结果表明:混凝气浮作为预处理措施,能够有效去除悬浮物和部分有机物;在生化池中添加大粪,提高了废水的可生化性,补充了碳源,使CODCr、BOD5、NH3-N和TP的去除率分别在80%、90%、70%、90%以上;CRI作为深度处理工艺,进一步降低废水毒性,确保系统出水达标排放.中试研究证明该组合工艺处理低浓度农药废水经济可行.%A combined technology of coagulation air flotation-SBR-CRI was used to treat low concentration pesticide wastewater from Hefei Circular Economy Demonstration Park. The results showed that: in the pretreatment stage, suspended solids and part of organics could be effectively removed by coagulation air flotation process; adding human excrement into the SBR biochemical pool, the carbon source was supplemented and the biodegradability of the wastewater was improved, the removal rates of CODo, BOD5, NH3-N and TP were above 80%, 90%, 70% and 90% respectively; in the CRI advanced treatment stage, the toxicity of the pesticide wastewater was further reduced and the effluent water quality could meet the discharge standard. The results of the pilot scale test showed that, coagulation air flotation-SBR-CRI combined technology was economical and feasible for low concentration pesticide wastewater treatment.

  20. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    Science.gov (United States)

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology.

  1. Substituted plan analysis in the environmental impact assessment of Yongchuan wastewater treatment project

    Institute of Scientific and Technical Information of China (English)

    FANG Jun-hua

    2006-01-01

    Substituted plan in the environmental impact assessment (EIA) mainly means the treatment technology and the substituted site of plant, and it also includes the many kinds of environment protection measures. This paper will make detailed analysis on the treatment technology, the substituted site of plant, the purpose of discharged water and the dispose of sludge in the Yongchuan wastewater treatment project.

  2. ``Living off the land'': resource efficiency of wetland wastewater treatment

    Science.gov (United States)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  3. "Living off the land": resource efficiency of wetland wastewater treatment.

    Science.gov (United States)

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  4. [The wastewater treatment significance in the control sanitarian and epidemiological state of environment].

    Science.gov (United States)

    Chojecka, Agnieszka; Jakimiak, Bozenna; Podgórska, Marta; Röhm-Rodowald, Ewa

    2009-01-01

    The municipal wastewater consist of organic, inorganic and biological contaminations. The most of human and animals pathogens are found in municipal wastewater responsible for water-borne and waterwashed diseases. Wastewater biological treatment is effective methods to reduce the transmission route of this pathogens. Different kind of methods (microfiltration/coagulation) and technology (aerobic/anaerobic stabilization) treated municipal wastewater, secondary effluent, primary and excess sludge are used to inactivation viruses, bacteria and protozoan. Chemical disinfection with CaO significantly affects inactivation of helminthes eggs during the hygienization of sludge. However the efficiency of pathogens disinfection particularly depend on contact time and concentration of disinfectants.

  5. A/O双膜法处理啤酒废水脱氮工艺研究%Denitrification Technology Study on Beer Wastewater Treatment by A/O Tow-membrane Method

    Institute of Scientific and Technical Information of China (English)

    周意子

    2012-01-01

    文章针对啤酒废水处理工艺技术改造的脱氮工艺进行研究,以开发工艺简单、易于管理、运行成本较低,对COD、TN有较高去除率的工艺流程进行研究,并以脱氮作为重点研究。%The Meizhou branch of the Pearl River beer group is a factory mainly bottling the beer for pack.Most of the wastewater is formed with bottle-washer alkaline liquid and living dirty water.Not only the CODCrvalue of this mixed water is high to 1000 mg/L,the TN value is also 50 mg/L,and it still contains phosphor.In the paper,its mainly studied the denitrification treatment processes which was reformed from producing wastewater treatment processing technique,and developed a technological process which was simple,easy-managed,highly active and low operating cost.The greatly emphasis on the study was to denitrificate from the brewery wastewater.

  6. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca

    2017-01-01

    Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design...

  7. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  8. Wastewater treatment alternatives for a vegetable and seafood cannery

    OpenAIRE

    Grassiano, James W.

    1990-01-01

    Peeled or whole-pack tomatoes, herring roe and oysters are processed at a Virginia Cannery. Wastewater from each food processing effluent was characterized. Treatment alternatives were investigated for tomato and herring roe wastewaters. For herring roe processing wastewater, the discharge requirement for BOD was nearly met through plain settling, while the TSS limitation was easily achieved by settling out the roe particles" Oyster processing wastewater was found to meet effluent guidelines ...

  9. Applications of Immobilized Microorganism Technology in High Concentration Organic Wastewater Treatment%固定化微生物技术在处理高浓度有机废水中的应用

    Institute of Scientific and Technical Information of China (English)

    吴伟

    2011-01-01

    The application development of immobilized microorganism technology in high concentration organic wastewater treatment was analyzed through the introduction of immobilized technology and carrier selections.Through discussing the effects of immobilized microorganism technology on various kinds of organic wastewater treatment,it is concluded that immobilized microorganism technology is a more efficient method than common biological treatments,a research result which is consistent with results reported by researchers from home and abroad.This paper also explains the prospects of this technology.Although application of immobilized technology is wide-spread,there are also several problems in actual operation.Suggestions are provided to these problems.%通过对固定化技术方法以及不同载体选择的介绍,分析评价了固定化微生物在高浓度有机废水处理中应用研究进展。并通过探讨固定化微生物技术对各种有机废水的处理效率,可以看出:与国内外研究者的研究结果一致,固定化微生物技术的确是一种比一般微生物处理法更为有效地废水处理方法。同时,也阐明了该技术的研究前景:虽然固定化技术的应用前景十分广泛,但在实际操作中也存在一些问题。并对这些存在的问题提出建议和意见。

  10. Performance indicators for wastewater treatment plants.

    Science.gov (United States)

    Balmér, P; Hellström, D

    2012-01-01

    The Swedish Water & Wastewater Association has operated a web-based system, VASS, for the collection and compilation of key data from the Swedish water utilities since 2003. The VASS system will now be expanded to include data on operation of individual wastewater treatment plants (WWTP). The objective is to provide performance indicators (PIs) for performance and economy and the use of resources such as energy, chemicals and manpower. A set of PIs has been developed that also includes explanatory factors to compensate for differences in the condition of operation between plants. This paper discusses the data required for the calculation of PI but also for explanatory factors, quality checks and for plant operation context. The discussion is based on the experiences from a test round with the participation of 24 WWTP.

  11. Performance intensification of Prague wastewater treatment plant.

    Science.gov (United States)

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  12. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  13. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.

    1998-12-31

    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  14. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    OpenAIRE

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewater treatments systems. Anaerobic wastewater treatment has gained popularity and is now one of the key technologies in environmental biotechnology. However, knowledge of the microbial community str...

  15. Advances on Pyrethroid Pesticide -contained Wastewater Treatment Technology%拟除虫菊酯类农药废水处理技术研究进展

    Institute of Scientific and Technical Information of China (English)

    庄新文; 姜伟立; 吴海锁; 邹敏

    2011-01-01

    拟除虫菊酯类农药废水COD浓度高、毒性大、污染物成分复杂、较难生物降解。通过系统阐述目前国内外各种针对拟除虫菊酯类农药废水处理技术的最新研究动态,分析了各种方法的优缺点,并对此类农药废水处理技术的发展方向进行了展望,可为此类废水处理工艺选择和工程设计提供有益参考。%Pyrethroid -contained wastewater has characteristics of high concentrations of COD, high toxicity, complicated components, and hard biodegradation. This paper systematically described the latest technological studies concerning pyrethroid pesti- cide - co

  16. Operational energy performance assessment system of municipal wastewater treatment plants.

    Science.gov (United States)

    Yang, Lingbo; Zeng, Siyu; Chen, Jining; He, Miao; Yang, Wan

    2010-01-01

    Based on the statistical analysis of operational energy consumption and its influential factors from data of 599 Chinese WWTPs in 2006, it is noticed that the most influential factors include treatment technology adopted, treated sewage amount, removed pollutants amount, etc. Using the conclusion above, this paper sets up an integrated system of operational energy performance assessment for municipal wastewater treatment plants. Combining with result from on-spot research and model simulation, the calculating method of benchmark value and score of 7 energy efficiency indicators grouped into 3 levels is stated. Applying the assessment system to three plants, its applicability and objectivity are proved and suggestions to improve energy performance are provided.

  17. Effects of Micronutrient Niacin on Treatment Efficiency of Textile Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIANG Wei; HU Hongying; GU Xin; CHE Yuling; WANG Hui; GUO Yufeng; SONG Yudong

    2006-01-01

    Textile wastewater is well known as one of the wastewaters to be most difficultly treated. The effects of niacin on textile wastewater niacin, the physical and chemical indexes of the water samples, such as COD, ammonia and dehydrogenase activities, were analyzed every day with standard methods, and obvious improvement in wastewater treatcould improve the COD removal efficiency signifcantly with removal rates mental condition, addition of niacin had almost no effect on the removal of ase by 130%. It proved that the biological treatment performance of textile wastewater treatment system probably could be optimized through micronutrient niacin supplement.

  18. 膜分离技术在食品废水处理和生产中的应用%The Application of Membrane Separation Technology in Food Wastewater Treatment and Production

    Institute of Scientific and Technical Information of China (English)

    刘娜; 彭黔荣; 杨敏; 汪德祥; 徐龙泉; 曹淑莉

    2014-01-01

    乳制品废水在酸沉和离心预处理后,通过微滤、超滤、纳滤、反渗透截留废水中的微生物、蛋白质和乳糖等物质,即可达到回用或排放要求。大豆乳清废水经沉淀和离心处理后,采用超滤回收废水中的蛋白质,再用纳滤脱盐、回收低聚糖,滤液过反渗透膜即可达到回用或排放要求。味精废水采用超滤和反渗透双膜法,或用陶瓷膜和电渗析结合处理后,得到的滤液既可再次用于工艺生产。在生产酱油和食醋时,采用微滤、纳滤、陶瓷膜、电渗析处理,不仅能够改善酱油和食醋的风味,还能延长其储藏周期。最后,对膜分离技术治理食品工业废水的应用前景进行了展望。%Through acid precipitation and centrifugation pretreatment, dairy wastewater can achieve reuse or discharge requirements after the organis of dairy wastewater, such as microorganism, protein, lactose, are intercepted by microfiltration, ultrafiltration, nanofiltration, reverse osmosis. Though precipitation and centrifugation pretreatment, soybean whey wastewater can achieve reuse or discharge requirements by reverse osmosis after recycling wastewater protein by ultrafiltration and desalting and recycling oligosaccharides by nanofiltration. Monosodium glutamate wastewater can be used again after ultrafiltration and reverse osmosis membrane or combined with ceramic membrane and electrodialysis treatment. In the production of soy sauce and vinegar, soy sauce and vinegar not only can improve the flavor, but also prolong its storage period by microfiltration, nanofiltration, ceramic membrane or electrodialysis treatment. Finally, this paper also outlooks the application prospect of membrane separation technology in treating food industry wastewater.

  19. Photochemical Wastewater Treatment for Potential Agricultural Use

    Directory of Open Access Journals (Sweden)

    Sandra García

    2014-12-01

    Full Text Available The urban wastewaters after advanced primary treatment (APT are again discharged into the river without any use. In the present research in a soilless culture system where maize seedlings were tested three different treatments were planted: 1. Obtained from the effluent water of an APT, 2. Photochemically treated wastewater (PCT and 3. Urban water network (UW. A block randomly distributed design was tested, with five repetitions where the experimental unit was formed by a 36 cavities filled with Peat Moss and the useful plot was considered by 16 central plants for each experimental unit. Irrigations were scheduled since the first time of the planting, employed 27 mL/cavity. The removal of the organic contaminants present into the water was conducted by the employment of a Batch photoreactor, adapted with a recirculation system (UV/H2O2/O3, evaluated to determine UV-Vis spectra, pH, color and turbidity parameters initial and final samples. Measurements of height and percentage of germination in plants, where is determined that the seedlings irrigated with water PCT were reached the highest average compared to APT and UW irrigated; After the 50 cm growing plant, a determination of the presence of heavy metal, via atomic absorption method, were carried on analyzing the leaves, roots and stalks of the samples. Concluding that the presences of heavy metals into the APT were higher than PCT treatments, it can be an impediment for the normal growing of the plants. Therefore, the application of the photochemical treatment using (UV/H2O2/O3 system, represent a viable alternative for the wastewater treatment after the APT process to possible use of irrigation.

  20. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  1. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  2. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  3. A mathematical programming framework for early stage design of wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2015-01-01

    a process flow diagram. Towards this end, a superstructure approach is used to represent the treatment alternatives for reaction and separation. A generic process interval model is used to describe each alternative in terms of inputeoutput mass balances including conversion and separation factors. Next......The increasing number of alternative wastewater treatment technologies and stricter effluent requirements make the optimal treatment process selection for wastewater treatment plant design a complicated problem. This task, defined as wastewater treatment process synthesis, is currently based...... on expert decisions and previous experiences. This paper proposes a new approach based on mathematical programming to manage the complexity of the problem. The approach generates/identifies novel and optimal wastewater treatment process selection, and the interconnection between unit operations to create...

  4. Estimating costs and manpower requirements for conventional wastewater treatment facilities

    National Research Council Canada - National Science Library

    Patterson, W.L; Banker, R.F

    1971-01-01

    Data for estimating average construciton costs, operation and maintenance costs, and manpower staffing requirements, are presented for conventional wastewater treatment plants ranging from 1 to 100...

  5. 碱减量废水处理技术研究%Study of Treatment Technology for Wastewater from Alkali - Decrement

    Institute of Scientific and Technical Information of China (English)

    詹伯君; 戴林富

    2000-01-01

    印染厂排放的碱减量废水,CODcr和碱含量很高。利用工业废酸、废铁屑和电石渣,研究了印染碱减量废水处理新工艺,对酸析pH点、铁炭反应时间、生物膜法SBR和活性污泥SBR处理效果进行了探讨,结果表明:在酸析点pH 3~4时,CODcr去除率大于72%;铁碳反应时间20~30 min,COD去除率大于62%;生物膜法SBR工艺的处理效果比活性污泥法SBR工艺好。%The CODcr and alkali content in the wastewater discharged fion printing and dyeing mills are very high. Anew process was tested for the treatment of the wastewater from alkali - decrement in a printing and dyeing mill usingindustrial spent acid, scrap iron and carbide slag. The pH value range of acid eduction, the iron-carbon reaction time and the results of the treatment using biological membrane SBR (sequencing batch reactor) process and activated sludge SBRprocess were studied. The results showed that the CODcr removal rate exceeded 72% when the pH value range of acideduction was 3~4; the CODcr removal rate exceeded 62% when the iron-carbon reaction time was 20~30 min; thetreatment result by biological mcmbrane SBR process vas better than the result by activated sludge SBR process.

  6. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Wastewater treatment using gamma irradiation: Tetouan pilot station, Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Tahri, Loubna, E-mail: dloubna78@hotmail.co [Pole d' excellence Regional, Centre des Etudes Environnementales Mediterraneennes, Laboratoire de Biologie Appliquee et Sciences de l' Environnement, Faculte des Sciences et Techniques, B.P. 416, Tangier (Morocco); Station d' Ionization de Boukhalef, Institut National de la Recherche Agronomique, Tangier (Morocco); Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed [Station d' Ionization de Boukhalef, Institut National de la Recherche Agronomique, Tangier (Morocco); Azmani, Amina; Sayah, Fouad [Pole d' excellence Regional, Centre des Etudes Environnementales Mediterraneennes, Laboratoire de Biologie Appliquee et Sciences de l' Environnement, Faculte des Sciences et Techniques, B.P. 416, Tangier (Morocco)

    2010-04-15

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co{sup 60} gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  8. Modernizing sewers and wastewater systems with new technologies

    DEFF Research Database (Denmark)

    Henze, Mogens; Arnbjerg-Nielsen, Karsten

    2008-01-01

    After continuous problems and challenges with dead fish and oxygen depletion in the waters, Denmark initiated an action plan for Danish waters to reduce pollution in the late 1980s. The action plan puts focus on stricter criteria for wastewater treatment plants. Over the years, the plan has been...... revised three times to ensure continuity in the work. As a result, Danish waters are significantly cleaner today. Since 1987 the pollution caused by wastewater has been reduced by 80 - 90 % - depending on the type of pollutant. Upgrading the wastewater treatment system with a number of new and innovative...

  9. Economic feasibility study for intensive and extensive wastewater treatment considering greenhouse gases emissions.

    Science.gov (United States)

    Molinos-Senante, M; Hernández-Sancho, F; Sala-Garrido, R; Cirelli, G

    2013-07-15

    Economic feasibility assessments represent a key issue for selecting which wastewater treatment processes should be implemented. The few applications that exist focus on the positive economic value of externalities, overlooking the existence of negative externalities. However, wastewater treatment plants (WWTPs) consume a significant amount of energy, contributing to climate change. In this context, as a pioneering approach, greenhouse gas emissions (GHG) have been incorporated as a negative externality of wastewater treatment. Within this framework, this study aims to compare the economic feasibility of five technologies, both intensive and extensive, for small communities. The results show that both the investment and operation costs are higher for intensive than for extensive technologies. Moreover, significant differences in the value of negative externalities were observed. This study demonstrates that from an economic perspective, constructed wetland is the most suitable option for treating wastewater in small agglomerations.

  10. Halonitromethanes formation in wastewater treatment plant effluents.

    Science.gov (United States)

    Song, Hocheol; Addison, Jesse W; Hu, Jia; Karanfil, Tanju

    2010-03-01

    Halonitromethanes (HNMs) constitute one class of emerging disinfection by-products with high potential health risks. This study investigated the formation and occurrence of HNMs under different disinfection scenarios and the presence of their precursors in municipal wastewater treatment plant (WWTPs) effluents. Formation potential tests performed on WWTP effluents revealed that HNM formation occurred in the order of ozonation-chlorination > ozonation-chloramination > chlorination > chloramination. Ozonation alone did not produce any HNM. Municipal WWTP effluents contained some reactive HNM precursors, possibly the by-products of biological treatment processes and/or some moiety of industry or household origin. No effects of nitrate on the formation of HNMs were observed in this study, and nitrification in WWTPs appears to remove appreciable portion of HNM precursors, especially those reactive to chlorine. UV disinfection using low pressure lamps in municipal WWTPs had negligible impact on HNM formation potential. HNM concentrations in the effluents of selected WWTPs were either non-detectable or less than minimum reporting level, except for one WWTP that gave trichloronitromethane concentrations in the range of 0.9-1.5 microg L(-1). No HNMs were observed in the effluents disinfected with UV radiation. Therefore, it appears the typical wastewater disinfection processes involving chlorination or UV treatment in WWTPs do not produce significant amounts of HNMs.

  11. Effects of reactive filters based on modified zeolite in dairy industry wastewater treatment process

    Directory of Open Access Journals (Sweden)

    Kolaković Srđan

    2013-01-01

    Full Text Available Application of adsorbents based on organo-zeolites has certain advantages over conventional methods applied in food industry wastewater treatment process. The case study presented in this paper examines the possibilities and effects of treatment of dairy industry wastewater by using adsorbents based on organo-zeolites. The obtained results indicate favorable filtration properties of organo-zeolite, their high level of adsorption of organic matter and nitrate nitrogen in the analyzed wastewater. This paper concludes with recommendations of optimal technical and technological parameters for the application of these filters in practice.

  12. Appropriate technology for domestic wastewater management in under-resourced regions of the world

    Science.gov (United States)

    Oladoja, Nurudeen Abiola

    2016-11-01

    Centralized wastewater management system is the modern day waste management practice, but the high cost and stringent requirements for the construction and operation have made it less attractive in the under-resourced regions of the world. Considering these challenges, the use of decentralized wastewater management system, on-site treatment system, as an appropriate technology for domestic wastewater treatment is hereby advocated. Adopting this technology helps save money, protects home owners' investment, promotes better watershed management, offers an appropriate solution for low-density communities, provides suitable alternatives for varying site conditions and furnishes effective solutions for ecologically sensitive areas. In the light of this, an overview of the on-site treatment scheme, at the laboratory scale, pilot study stage, and field trials was conducted to highlight the operational principles' strength and shortcomings of the scheme. The operational requirements for the establishing and operation of the scheme and best management practice to enhance the performance and sustenance were proffered.

  13. Emergy evaluations for constructed wetland and conventional wastewater treatments

    Science.gov (United States)

    Zhou, J. B.; Jiang, M. M.; Chen, B.; Chen, G. Q.

    2009-04-01

    Based on emergy synthesis, this study presents a comparative study on constructed wetland (CW) and conventional wastewater treatments with three representative cases in Beijing. Accounting the environmental and economic inputs and treated wastewater output based on emergy, different characteristics of two kinds of wastewater treatments are revealed. The results show that CWs are environment-benign, less energy-intensive despite the relatively low ecological waste removal efficiency (EWRE), and less cost in construction, operation and maintenance compared with the conventional wastewater treatment plants. In addition, manifested by the emergy analysis, the cyclic activated sludge system (CASS) has the merit of higher ecological waste elimination efficiency.

  14. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...... and heavy metals has been developed during the past two years. The concept is based on guidelines that are made according to considerations of me environment and the treatment plant system, and that encourage the introduction of a cleaner technology and integrated preventive measures. For most organic...

  15. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  16. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  17. Treatment of tannery wastewater by electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel electrodes were more effective for the removal of sulfide, with a removal efficiency of over 90%. But during the treatment process, black color precipitate typical to iron(II) sulfides was produced. While aluminum electrodes were effective to eliminate the colority of the effluent, the removal efficiency of sulfide was lower than 12%. The mechanisms of the removal of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority with different soluble electrodes (mild steel electrodes and aluminum electrodes) were discussed in detail. In order to exert the predominance of diffenent types of electrodes, the tannery wastewater was treated using mild steel electrodes first (electrocoagulation time: 20 min, cell current: 1 A) followed by the filter and finally by the aluminum electrodes (electrocoagulation time: 20 min, cell current: 1 A), the elimination rates of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority were 68.0%, 43.1%, 55.1%, 96.7% and 84.3%, respectively, with the initial concentrations 2413.1 mg/L, 223.4 mg/L, 1000.4 mg/L, 112.3 mg/L and 256 dilution times, respectively. The absorbance spectra and energy consumption during electrocoagulation process were also discussed.

  18. Olive mill wastewater treatment: an experimental study.

    Science.gov (United States)

    Bettazzi, E; Morelli, M; Caffaz, S; Caretti, C; Azzari, E; Lubello, C

    2006-01-01

    Olive oil production, one of the main agro-industries in Mediterranean countries, generates significant amounts of olive mill wastewaters (OMWs), which represent a serious environmental problem, because of their high organic load, the acidic pH and the presence of recalcitrant and toxic substances such as phenolic and lipidic compounds (up to several grams per litre). In Italy, traditional disposal on the soil is the most common way to discharge OMWs. This work is aimed at investigating the efficiency and feasibility of AOPs and biological processes for OMW treatment. Trials have been carried out on wastewaters taken from one of the largest three-phase mills of Italy, located in Quarrata (Tuscany), as well as on synthetic solutions. Ozone and Fenton's reagents applied both on OMWs and on phenolic synthetic solutions guaranteed polyphenol removal efficiency up to 95%. Aerobic biological treatment was performed in a batch reactor filled with raw OMWs (pH = 4.5, T = 30 degrees C) without biomass inoculum. A biomass rich of fungi, developed after about 30 days, was able to biodegrade phenolic compounds reaching a removal efficiency of 70%. Pretreatment of OMWs by means of oxidation increased their biological treatability.

  19. Wastewater and sludge control-technology options for synfuels industries

    Energy Technology Data Exchange (ETDEWEB)

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  20. Development of technology for organic wastewater treatment by microorganisms and production of materials for conserving environment. Part 1. ; Organic wastewater treatment by photoshynthetic bacteria and microalgae. Biseibutsu ni yoru yukikei haisui shori to yojo biseibutsu no shigenka ni kansuru kenkyu. 1. ; Kogosei saikin to sorui ni yoru haisui shori ni kansuru kihonteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Kato, A.; Kita, D.; Kubotera, T.; Tsuji, H. (Obayashi Corp., Tokyo (Japan))

    1994-02-10

    The present report introduces a system which simultaneously executes the purification of organic wastewater and recovery of recyclable matters. The system uses photosynthetic bacteria and microalgae as well as the conventionally used activated sludge bacteria. Environmental maintenance use agents are produced by processing bacteria and algae generated during the wastewater treatment. The photosynthetic bacteria are purple non-sulfuric bacteria, which also contain amino acid, vitamin and other useful physiologically activated matter. The wastewater treatment which utilizes them has the advantage of miniaturizing the plant and lowering the power. As algae, chlorella and spirulina are used in order to remove the nitrogen and phosphorus in the water to be treated. The following is an actual result of wastewater treatment in a beancurd maker's plant: if purple non-sulfuric bacteria are used, high concentration organic wastewater can be treated without dilution so that the plant can be miniaturized. The chlorella culture is so effective that the nitrogen and phosphorus remaining in the wastewater are absorbed and removed by the chlorella with its increasing. 9 refs., 13 figs., 2 tabs.

  1. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  2. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The tr

  3. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  4. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  5. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2016-11-24

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD7) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  6. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    sludge (Scenario 1), and anaerobic removal of organic matter by a continuous stirred tank reactor (Scenario 2). Both technologies were applied to wastewater coming from a fish meals industry and a pet food industry discharging about 250 to 260 thousand cubic meters of wastewater per year. The methodology...... comprises three major steps: (i) Data gathering regarding wastewater characteristics and discharge, (ii) Simulation of the wastewater treatment plant’s operation by dedicated process engineering models in Matlab/Simulink, (iii) Classification and calculation of life cycle inventory data: removal...... boundaries were limited from the influent entering the wastewater treatment plant until the disposal of the effluents generated, i.e. wastewater, sludge, and biogas (for Scenario 2). Main differences between Scenario 1 & Scenario 2 were: (i) Effluent quality was 65% better when pet food wastewater was fed...

  7. Miniaturized Temperature-Controlled Planar Chromatography (Micro-TLC) as a Versatile Technique for Fast Screening of Micropollutants and Biomarkers Derived from Surface Water Ecosystems and During Technological Processes of Wastewater Treatment.

    Science.gov (United States)

    Ślączka-Wilk, Magdalena M; Włodarczyk, Elżbieta; Kaleniecka, Aleksandra; Zarzycki, Paweł K

    2017-07-01

    There is increasing interest in the development of simple analytical systems enabling the fast screening of target components in complex samples. A number of newly invented protocols are based on quasi separation techniques involving microfluidic paper-based analytical devices and/or micro total analysis systems. Under such conditions, the quantification of target components can be performed mainly due to selective detection. The main goal of this paper is to demonstrate that miniaturized planar chromatography has the capability to work as an efficient separation and quantification tool for the analysis of multiple targets within complex environmental samples isolated and concentrated using an optimized SPE method. In particular, we analyzed various samples collected from surface water ecosystems (lakes, rivers, and the Baltic Sea of Middle Pomerania in the northern part of Poland) in different seasons, as well as samples collected during key wastewater technological processes (originating from the "Jamno" wastewater treatment plant in Koszalin, Poland). We documented that the multiple detection of chromatographic spots on RP-18W microplates-under visible light, fluorescence, and fluorescence quenching conditions, and using the visualization reagent phosphomolybdic acid-enables fast and robust sample classification. The presented data reveal that the proposed micro-TLC system is useful, inexpensive, and can be considered as a complementary method for the fast control of treated sewage water discharged by a municipal wastewater treatment plant, particularly for the detection of low-molecular mass micropollutants with polarity ranging from estetrol to progesterone, as well as chlorophyll-related dyes. Due to the low consumption of mobile phases composed of water-alcohol binary mixtures (less than 1 mL/run for the simultaneous separation of up to nine samples), this method can be considered an environmentally friendly and green chemistry analytical tool. The described

  8. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  9. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  10. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A. [Oak Ridge National Lab., TN (United States)

    1995-12-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL`s Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation.

  11. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...... framework to manage the multi-criteria WWTP design/retrofit problem for domestic wastewater treatment. The design space (i.e. alternative treatment technologies) is represented in a superstructure, which is coupled with a database containing data for both performance and economics of the novel alternative...

  12. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.

  13. Cotton-textile wastewater management: investigating different treatment methods.

    Science.gov (United States)

    Georgiou, D; Aivasidis, A

    2012-01-01

    The cotton-textile industry consumes significant amounts of water during manufacturing, creating high volumes of wastewater needing treatment. The organic-load concentration of cotton-textile wastewater is equivalent to a medium-strength municipal wastewater; the color of the water, however, remains a significant environmental issue. This research, in cooperation with a cotton-textile manufacturer, investigated different treatment methods and different combinations of methods to identify the most cost-effective approaches to treating textile wastewater. Although activated-sludge is economical, it can only be used as part of an integrated wastewater management system because it cannot decolorize wastewater. Coagulation/flocculation methods are able to decolorize cotton-wastewater; however, this process creates high amounts of wastewater solids, thus significantly increasing total treatment costs. Chemical oxidation is an environmentally friendly technique that can only be used as a polishing step because of high operating costs. Anaerobic digestion in a series of fixed-bed bioreactors with immobilized methanogens using acetic acid as a substrate and a pH-control agent followed by activated-sludge treatment was found to be the most cost-effective and environmentally safe cotton-textile wastewater management approach investigated.

  14. 重金属废水处理中磁分离技术的应用现状研究%Application of Magnetic Separation Technology in Heavy Metals Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    黄付平; 莫雅圆

    2016-01-01

    This paper discusses the sources and danger of heavy metals, overviews the current methods that have been used to treat heavy metal wastewater briefly, elucidates the basic principle and practical application of magnetic separation in the treat-ment of heavy metals wastewater, than points out the magnetic separation technology is a very promising technology and it has many advantages such as high efficiency, short process time, less land occupation, low cost, high capacity of resisting impact load, without second pollution, etc. Finally, the problems of magnetic separation technology in the treatment of heavy metal wastewater are discussed, and three trends of the technology are prospected. The first trend is to prepare the efficiency, renewable magnetic seeds, the second trend is to develop the magnetic recovery process, and the third trend is to research the mechanism of the magnetic seeds reaction with heavy metals and other pollutants.%论述了重金属废水的来源及危害,简要概述了当前重金属废水的处理技术,着重阐述了磁分离技术的基本原理及其在重金属废水处理中的应用情况,指出磁分离技术具有高效、短时、占地少、成本低、耐冲击负荷能力强及不产生二次污染等优点,是一项极具发展前景的技术。最后还指出了磁分离技术在重金属废水处理中面临的问题,针对这些问题展望了磁分离技术在废水处理领域的三个主要研究趋势,一是制备高效、可再生磁种;二是开发磁回收工艺;三是研究磁种与重金属及其他污染物的作用机理。

  15. Treatment of wastewater by natural systems.

    Science.gov (United States)

    Ayaz, S C; Akça, L

    2001-01-01

    Experimental results from a pilot-scale constructed wetland (CW) treatment plant have been described. The study was conducted at two different systems: continuous and batch. In the continuous system, the treatment yields were monitored in different loading conditions in 1-year period. The pilot plant consists of two serially connected tanks settled up with fillers; Cyperus was used as treatment media and wastewater between the two tanks was recycled periodically. Chemical oxygen demand (COD) and suspended solid (SS) removal efficiencies were obtained as 90% and 95%, respectively. The effluent COD concentration at an average loading of 122 g COD/m2 day was satisfactory for the Turkish Water Pollution Control Regulation. This means that a 0.8 m2 of garden area per person is required. Other removal values for the same conditions were as follows: total Kjeldahl nitrogen (TKN) was 77%, total nitrogen (TN) was 61%, and PO4(3-) -P was 39%. The batch experimental systems consist of 12 pairs of serially connected tanks, with each pair having a surface area of 1 m2. Each set was filled with sewage once a day, and the wastewater between the paired tanks was recycled periodically by the pump. Each pair of tanks was filled with materials such as gravel, peat, and perlite. Seven of them were vegetated with Phragmites, Cyperus, Rush, Iris, Lolium, Canna, and Paspalum, while the other five were not seeded. The best performances were obtained by Iris for COD (% 94), by Canna for ammonia nitrogen (% 98), and by Iris for total nitrogen (% 90) and phosphorus (% 55) removal.

  16. Development of a Technology for Treating Wastewater Contaminated with Nitric Acid

    Directory of Open Access Journals (Sweden)

    Liz Mabel Ríos Hidalgo

    2013-01-01

    Full Text Available The production process of nitroaromatic hazardous compounds, with the generation of acidic wastewater, represents a significant danger for the health and safety of the workers and the environment. The present study is focused on the development of an efficient installation to treat acidic wastewater resulting from the synthesis process of nitroaromatic compound, considering workers safety and environmental criteria. In this research, a detailed study of the different alternatives that can be used for effective and safe treatment of acidic wastewater was performed. The analysis of several technological schemes for the acidic wastewaters neutralization and the selection of the most feasible alternative from a technical-economic point of view were carried out. The simulation and mathematical modeling developed in this research represent a significant advance in the knowledge of this process for working in a much more secure form. The technological scheme of the process was defined, and the design of the main and auxiliary equipment as well as the piping system was carried out using different computational programs. Finally, this paper proposes a technological design for the treatment of acidic wastewater generated by the production process of nitroaromatic compound, which represents the basic criteria for the further design, construction, and equipment installation of the plant.

  17. Integrated design of sewers and wastewater treatment plants.

    Science.gov (United States)

    Vollertsen, J; Hvitved-Jacobsen, T; Ujang, Z; Talib, S A

    2002-01-01

    Sewer system design must be integrated with wastewater treatment plant design when moving towards a more sustainable urban wastewater management. This integration allows an optimization of the design of both systems to achieve a better and more cost-effective wastewater management. Hitherto integrated process design has not been an option because the tools to predict in-sewer wastewater transformations have been inadequate. In this study the WATS model--being a new and validated tool for in-sewer microbial process simulations--is presented and its application for integrated sewer and treatment plant design is exemplified. A case study on a Malaysian catchment illustrates this integration. The effects of centralization of wastewater treatment and the subsequently longer transport distances are addressed. The layout of the intercepting sewer is optimized to meet the requirements of different treatment scenarios.

  18. Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment.

    Science.gov (United States)

    Rodriguez, Jackson; Stopić, Srećko; Krause, Gregor; Friedrich, Bernd

    2007-11-01

    Electrocoagulation (EC) may be a potential answer to environmental problems dealing with water reuse and rational waste management. The aim of this research was to assess the feasibility of EC-process for industrial contaminated effluents from copper production, taking into consideration technical and economical factors. EC-technology claims to offer efficient removal rates for most types of wastewater impurities at low power consumption and without adding any precipitating agents. Real wastewater from Saraka stream with high concentrations of heavy metals was provided by RTB-BOR, a Serbian copper mining and smelting complex. Runs were performed on a 10 l EC-reactor using aluminum plates as sacrificial electrodes and powered by a 40 A supply unit. Results concerning key factors like pH, conductivity and power consumption were measured in real time. Analysis of dissolved metal concentrations before and after treatment were carried out via ICP-OES and confirmed by an independent test via AAS. Several aspects were taken into account, including current density, conductivity, interfacial resistivity and reactor settings throughout the runs, in order to analyze all possible factors playing a role in neutralization and metal removal in real industrial wastewater. Electrode configurations and their effects on energy demand were discussed and exemplified based on fundamentals of colloidal and physical chemistry. Based on experimental data and since no precipitating agents were applied, the EC-process proved to be not only feasible and environmentally-friendly, but also a cost-effective technology The EC-technology provides strategic guidelines for further research and development of sustainable water management processes. However, additional test series concerning continuous operation must be still performed in order to get this concept ready for future large-scale applications.

  19. Application of Anaerobic Digestion Technologies to Organic Wastewater and Organic Wastes Treatment in Japan%厌氧消化技术在日本有机废水和废弃物处理中的应用

    Institute of Scientific and Technical Information of China (English)

    池勇志; 习钰兰; 薛彩红; 小林拓朗; 李玉友

    2011-01-01

    In Japan, anaerobic sewage sludge digestion began in 1932, and is now used in over 300 sewage treatment plants with a total digester volume of 210 × 104 m3. Over 300 upflow anaerobic sludge bed ( UASB) and expanded granular sludge bed (EGSB) full-scale plants are now in operation for the treatment of industrial wastewaters with high concentration from beer, soft drink, liquor, food and chemicals production. The applications and parameters of anaerobic digestion technologies in Japan for organic wastewater and organic wastes treatment are summarized. Recent developments of anaerobic digestion technologies including anaerobic membrane bioreactor, hydrogen-methane fermentation and biological desulfurization of biogas are introduced.%日本污泥厌氧消化始于1932年,目前污泥厌氧消化工程已超过300个,消化池总容积达210×10m.目前,全日本共有300多座升流式厌氧污泥床反应器(upflow anaerobic sludgebed,UASB)和膨胀颗粒污泥床(expanded granular sludge bed,EGSB)处理厂,主要用于包括啤酒废水、软饮料废水、酿酒废水、食品加工废水和化工废水在内的高浓度有机工业废水的处理.总结了厌氧消化技术在日本有机废水和有机废弃物处理中的应用状况,以及运行参数.此外,对日本厌氧消化技术在厌氧膜生物反应器、产氢产甲烷两段发酵和沼气生物脱硫等方面的新进展也进行了介绍.

  20. Sequential anaerobic-aerobic treatment for domestic wastewater - A review

    NARCIS (Netherlands)

    Kassab, G.; Halalsheh, M.; Klapwijk, A.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    Introduction, consolidation and even standardization of expensive conventional aerobic systems for domestic wastewater treatment imposed significant financial constraints on the expansion of sanitary services including treatment in developing countries. A viable alternative is the sequential anaerob

  1. Sequential anaerobic-aerobic treatment for domestic wastewater - A review

    NARCIS (Netherlands)

    Kassab, G.; Halalsheh, M.; Klapwijk, A.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    Introduction, consolidation and even standardization of expensive conventional aerobic systems for domestic wastewater treatment imposed significant financial constraints on the expansion of sanitary services including treatment in developing countries. A viable alternative is the sequential anaerob

  2. Hydrodynamics research of wastewater treatment bioreactors

    Institute of Scientific and Technical Information of China (English)

    REN Nan-qi; ZHANG Bing; ZHOU Xue-fei

    2009-01-01

    To optimize the design and improve the performance of wastewater treatment bioreactors, the review concerning the hydrodynamics explored by theoretical equations, process experiments, modeling of the hydrody-namics and flow field measurement is presented. Results of different kinds of experiments show that the hydro-dynamic characteristics can affect sludge characteristics, mass transfer and reactor performance significantly. A-long with the development of theoretical equations, turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numericalsimulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrody-namics very well.

  3. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  4. 臭氧活性炭联用工艺处理甲基橙废水试验研究%The experimental study of the ozone and activated carbon combined technology on methyl orange wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    孙同亮; 成功

    2015-01-01

    在印染废水处理中,废液浓度不同,臭氧、活性炭、臭氧—活性炭三种工艺对甲基橙的脱色效果不同。相同臭氧浓度条件下,不同浓度的甲基橙脱色率—时间曲线近似重合;活性炭在吸附饱和的情况下,能够催化空气降解甲基橙;溶液的浓度对臭氧—活性炭脱色效果有一定影响,甲基橙浓度越大,pH 越高,脱色速率越大。%In printing and dyeing wastewater treatment,the decolorized effect of the waste water processing is different from three technologies of ozone,activated carbon,ozone-activated carbon,with the different concentration of the waste water.Test results show:the decolorized rate and time curves of the different concentration wastewater coincide at the same ozone concentration conditions;the methyl orange can be degraded by the catalyzed air,with the activated carbon saturated adsorption;the decolorized effect of ozone activated carbon is influenced by the concentration of the wastewater;the greater concentration of methly orange,the higher of the pH value,and the greater of the decolorized rate.

  5. 生物活性炭技术在工业废水处理中的研究进展%Research Progress in BAC Technology for Industrial Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    胡顺莹; 赵翠; 施岩

    2014-01-01

    Industrial wastewater is a kind of complex and refractory organic wastewater, and contains a lot of matters, such as heavy metals, solid contaminants, sediment and other toxic substances. It can’t be treated with single technology. In this paper, research status of BAC technology was introduced in the field of dyeing wastewater, papermaking wastewater, wastewater, tannery waste water, refinery wastewater;And future research direction of BAC technology was suggested.%工业废水是一种成分复杂、难降解的有机废水,水中含有大量的氨氮、重金属、固体污染物、泥沙等有毒有害物质。采用单一的生物处理技术难以进行有效治理。主要介绍了生物活性炭技术在处理印染废水、造纸废水、焦化废水、制革废水、炼油废水方面的研究现状,并对今后的研究方向提出了建议。

  6. Treatment of Chinese Traditional Medicine Wastewater by Photosynthetic Bacteria

    Institute of Scientific and Technical Information of China (English)

    WANG You-zhi; WANG Feng-jun; BAO Li

    2005-01-01

    The influence factors treating wastewater of Chinese traditional medicine extraction by photosynthetic bacteria are tested and discussed. The results indicate that the method of photosynthetic bacteria can eliminate COD and BCD from wastewater in high efficiency. And it also has high load shock resistance. On the conditions of slight aerobic and semi-darkness, treating wastewater of Chinese traditional medicine extraction, the method has better efficiency to eliminate COD and BOD from the wastewater than those by anaerobic illumination and aerobic darkness treatments. After pretreatment of hydrolytic acidization, the removal rate of COD in the wastewater reached more than 85 %, and that rate of BOD reached more than 90% in the treating system of photosynthetic bacteria. It may be more feasible and advantageous than traditional anaerobic biological process to treat organic wastewater using PSB system.

  7. 铜冶炼含砷污水处理%Treatment of Arsenic -Bearing Wastewater from Copper Smelting

    Institute of Scientific and Technical Information of China (English)

    龙大祥

    2000-01-01

    简述铜冶炼企业工业污水中砷的来源,讨论含砷工业污水的处理工艺及处理指标,结合生产实际分析污水处理工艺运行中的影响因素及解决办法,总结在污水处理设计工作的经验。提出污水处理工艺的发展思路。%Sources of arsenic in the industrial wastewater from copper smelting enterprises are briefly de-scribed.Technologies and indexes for the treatment of arsenic - bearing wastewater are discussed.Factors affecting theoperation of wastewater treatment processes are analysed in the light of productive practices. Experiences in the designingof wastewater treatment are summarised.Train of thought on the development of wastewater treatment technologies is ad-vanced.

  8. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Efficiency Solutions, LLC (United States); Goetzler, W. [Navigant Consulting, Inc. (United States); Foley, K. J. [Navigant Consulting, Inc. (United States); Sutherland, T. A. [Navigant Consulting, Inc. (United States)

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  9. Application of Fluidized-pellet-bed Bioreactor as a Short-cut Distributed Wastewater Treatment Technology%生物造粒流化床分散式污水处理技术的应用研究

    Institute of Scientific and Technical Information of China (English)

    韦亮; 王晓昌; 宋雅琼; 金鹏康

    2013-01-01

    在集中式污水处理技术的使用受到限制的地区,生物造粒流化床作为一种短流程分散式污水处理技术得到了应用.经过对中试生物造粒流化床出水水质的长期监测,结果显示其出水水质良好,对SS、COD、TP、NH3-N、TN的平均去除率分别达到了86%、89%、88%、63%、44%.生物造粒流化床在绿地世纪城居住小区和陕鼓动力股份有限公司被成功应用于处理生活污水和生产废水,后续工艺的再生水可用于补充景观湖水、浇洒道路和草坪,其总运行成本分别为0.89和1.01元/m3.%As a short-cut distributed technology for wastewater treatment, the fluidized-pellet-bed (FPB) bioreactor finds application in some areas where the usage of centralized wastewater treatment technology is restricted. The results of long-term monitoring of effluent quality of a pilot-scale FPB bioreactor showed that the effluent quality was good. The average removal rates of SS, COD, TP, NH3 -N and TN were 86% , 89% , 88% , 63% and 44% , respectively. The FPB bioreactor was successfully applied in the Lyudi residential community and the Shaangu Power Co. Ltd. for domestic and industrial wastewater treatment. The post-FPB bioreactor effluent could be used for landscape water supplement, road watering and gardening. The whole operation costs for Lyudi and Shaangu were 0. 89 yuan/m3 and 1. 01 yuan/m3, respectively.

  10. Application of immobilized cells to the treatment of cyanide wastewater.

    Science.gov (United States)

    Chen, C Y; Kao, C M; Chen, S C; Chien, H Y; Lin, C E

    2007-01-01

    Cyanide is highly toxic to living organisms, particularly in inactivating the respiration system by tightly binding to terminal oxidase. To protect the environment and water bodies, wastewater containing cyanide must be treated before discharging into the environment. Biological treatment is a cost-effective and environmentally acceptable method for cyanide removal compared with the other techniques currently in use. Klebsiella oxytoca (K. oxytoca), isolated from cyanide-containing industrial wastewater, has been shown to be able to biodegrade cyanide to non-toxic end products. The technology of immobilized cells can be applied in biological treatment to enhance the efficiency and effectiveness of biodegradation. In this study, potassium cyanide (KCN) was used as the target compound and both alginate (AL) and cellulose triacetate (CTA) techniques were applied for the preparation of immobilized cells. Results from this study show that KCN can be utilized as the sole nitrogen source by K. oxytoca. The free suspension systems reveal that the cell viability was highly affected by initial KCN concentration, pH, and temperature. Results show that immobilized cell systems could tolerate a higher level of KCN concentration and wider ranges of pH and temperature, especially in the system with CTA gel beads. Results show that a longer incubation period was required for KCN degradation using immobilized cells compared to the free suspended systems. This might be due to internal mass transfer limitations. Results also indicate that immobilized systems can support a higher biomass concentration. Complete KCN degradation was observed after the operation of four consecutive degradation experiments with the same batch of immobilized cells. This suggests that the activity of the immobilized cells can be maintained and KCN can be used as the nitrogen source throughout KCN degradation experiments. Results reveal that the application of immobilized cells of K. oxytoca is advantageous

  11. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  12. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  13. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  14. Effects of oxide nanomaterials used in flotation process in wastewater treatment.

    Directory of Open Access Journals (Sweden)

    CRISTINA COVALIU

    2017-05-01

    Full Text Available Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. For this purpose, highly advanced nanotechnology offers new opportunities in technological developments for advanced water and wastewater technology processes. This paper presents an important method used in the wastewater treatment and in the mineral separation, named the flotation. Also, this paper presents the factors that influence the froth flotation process, such as: nanoparticle hydrophobicity, nanoparticle diameter, particle softness etc.

  15. Petrochemical wastewater treatment with a pilot-scale bioaugmented biological treatment system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures,bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-stage anoxic-oxic (A/O)process based on previous lab-scale study. Experimental results showed that when the concentrations of COD and NH4+-N of the influent were 370~910 mg/L and 10~70 mg/L, the corresponding average concentrations of those of effluent were about 80 mg/L and 8 mg/L respectively, which was better than the Level I criteria of the Integrated Wastewater Discharge Standard (GB8978-1996). According to GC-MS analysis of the effluents from both the wastewater treatment plant (WWTP) and the pilot system, there were 68 kinds of persistent organic pollutants in the WWTP effluent, while there were only 32 in that of the pilot system. In addition, the amount of the organics in the effluent of the pilot system reduced by almost 50% compared to that of the WWTP. As a whole, after bioaugmentation, the organic removal efficiency of the wastewater treatment system obviously increased.

  16. APPLICATION OF INDIVIDUAL WASTEWATER TREATMENT PLANTS IN A DIFFICULT SOIL AND WATER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Beata Karolinczak

    2014-11-01

    Full Text Available The article presents technological and economic aspects of application of individual wastewater treatment plans in difficult soil and water conditions which include impermeable soils and a high level of groundwater. Technical analysis reviews available information around possible technologies applicable to sewage treatment and its discharge. Economic analysis highlights additional outlays that are associated with a construction of the treatment plant in such difficult conditions. In summary, a cost-effectiveness analysis is carried out.

  17. Treatment of emulsified oily wastewater by commercial scale electrocoagulation at Vancouver shipyards

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.J.; Tennant, B.D. [McKay Creek Technologies Ltd., North Vancouver, BC (Canada); Hartle, D.R. [Vancouver Shipping Co. Ltd., BC (Canada); Stuckert, B. [Quantum Environmental Group, Richmond, BC (Canada)

    2002-06-01

    Some of the emulsified oily wastewater generated by the Washington Marine Group fleet and the Vancouver shipyards are from sources such as bilge water, tank wash water from gas freeing operations, ballast water, and wastewater from pressure washing equipment. The Washington Marine Group is the largest shipbuilding, ship maintenance and repair, and marine transportation company in Canada, a group to which McKay Creek Technologies belongs. A investigation was performed in an attempt to find commercially viable means of treating this wastewater. McKay Creek Technologies developed its own cleaning process. Electrocoagulation is a process based on the use of an electrical current in an electrochemical cell to coagulate contaminants in wastewater. With three years of experience gained by treating the wastewater of the Washington Marine Group operations at Vancouver shipyards using this technology, McKay Creek Technologies has found ways to treat emulsified oily wastewater simply and effectively. It has been determined that electrocoagulation is an effective treatment method for emulsified oils, poly-nuclear aromatic hydrocarbons (PAHs), poorly settling solids, poorly soluble organics, contaminants which add turbidity to water, and negatively charged metal species like arsenic, molybdenum, and phosphate. A brief history of electrocoagulation was provided, and the authors explained the process and how it was applied to the situation at Vancouver shipyards. 2 refs., 5 tabs., 1 fig.

  18. High-rate anaerobic wastewater treatment: diversifying from end-of the pipe treatment to resource oriented conversation techniques

    NARCIS (Netherlands)

    Lier, van J.B.

    2008-01-01

    Decades of developments and implementations in the field of high-rate anaerobic wastewater treatment have put the technology at a competitive level. With respect to sustainability and cost-effectiveness, anaerobic treatment has a much better score than many alternatives. Particularly, the energy con

  19. A review of organic UV-filters in wastewater treatment plants.

    Science.gov (United States)

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2016-01-01

    UV-filters are a group of compounds which have been massively used in the past years due to the recent concerns with sunburns, premature skin ageing and the risk of developing skin cancer, related to sun exposure. At the moment, these compounds have been identified by the scientific community as emerging pollutants, due to their persistence in the environment, potential to accumulate in biota and potential threat as endocrine disruptors. At some point, the majority of sunscreens will find their way into wastewater (due to bathing and washing activities) and because wastewater treatment plants (WWTPs) are not able to remove and/or degrade them, consequently they find their way into rivers, lakes and ocean, so it is not surprising that UV-filters are found in the environment. Therefore, wastewater treatment plants should be the focus of the scientific community aiming to better understand the fate of the UV-filters and develop new technologies to remove them from wastewater and sludge. This review, aims to provide the current state of the art in the occurrence and fate of UV-filters in wastewater treatment plants and how the technologies that are being used are successfully removing these compounds from both wastewater and sludge.

  20. [Analysis of novel style biological fluidized bed A/O combined process in dyeing wastewater treatment].

    Science.gov (United States)

    Wei, Chao-Hai; Huang, Hui-Jing; Ren, Yuan; Wu, Chao-Fei; Wu, Hai-Zhen; Lu, Bin

    2011-04-01

    A novel biological fluidized bed was designed and developed to deal with high-concentration refractory organic industrial wastewater. From 12 successful projects, three cases of dyeing wastewater treatment projects with the scale of 1200, 2000 and 13000 m3/d respectively were selected to analyze the principle of treating refractory organic wastewater with fluidized bed technology and discuss the superiority of self-developed biological fluidized bed from the aspects of technical and economic feasibility. In the three cases, when the hydraulic retention time (HRT) of biological system were 23, 34 and 21. 8 h, and the volume loading of influents (COD) were 1.75, 4.75 and 2.97 kg/(m3 x d), the corresponding COD removal were 97.3%, 98.1% and 95.8%. Furthermore the operating costs of projects were 0.91, 1.17 and 0.88 yuan per ton of water respectively. The index of effluent all met the 1st grade of Guangdong Province wastewater discharge standard. Results showed that the biological fluidized bed had characteristics of shorter retention time, greater oxygen utilization rate, faster conversion rate of organic pollutants and less sludge production, which made it overcome the shortcomings of traditional methods in printing and dyeing wastewater treatment. Considering the development of technology and the combination of ecological security and recycling resources, a low-carbon wastewater treatment process was proposed.

  1. Factorial experimental design of winery wastewaters treatment by heterogeneous photo-Fenton process.

    Science.gov (United States)

    Mosteo, Rosa; Ormad, Peña; Mozas, Engracia; Sarasa, Judith; Ovelleiro, José Luis

    2006-05-01

    Winery wastewaters are difficult to treat by conventional biological processes because they are seasonal and experience a substantial flow variations. Photocatalytic advanced oxidation is a promising technology for wastewaters containing high amounts of organic matter. In this work, the photo-Fenton process in heterogeneous phase is presented as an alternative methodology for the treatment of winery wastewaters. As a consequence of the great number of existing variables, an experimental design methodology has been used in order to study the influence and interaction of various variables and to obtain a reduced empirical model which describes the organic matter degradation process. Applying photo-Fenton treatment in heterogeneous phase under energetic conditions for synthetic samples simulating winery wastewaters results in purification levels of up to 50% (measured as total organic carbon). Different reduced models are obtained and their utilization depends mainly on the degree of degradation of organic matter required.

  2. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant......The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...

  3. Nutrients valorisation via duckweed-based wastewater treatment and aquaculture

    OpenAIRE

    El-Shafai, S.A.A.M.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The treatment system was efficiënt in organic matter removal during the entire year, while nitrogen, phosphorus and faecal coliform removal were negatively affected by the decline in temperature in winter...

  4. Applications of nano-TiO2 photocatalytic technology to the treatment of industrial wastewater%工业废水处理中纳米TiO2光催化技术的应用

    Institute of Scientific and Technical Information of China (English)

    张浩; 朱庆明

    2011-01-01

    Photocatalytic reaction mechanism of nano-TiO2 is introduced. The progress in the research on the application of nano-TiO2 photocatalytic technology to the degradation of wastewater containing oil stain, pesticides, dyeing , surfactant, other organic compounds and heavy metals, and wastewater from paper making is reviewed. The five factors that has limited the practical application of nano-TiO2 photocatalytic technology,such as the modification, immobility, preparation method, and application mechanism of nano-Ti02 and their negative influences on the application of nano-Ti02 are pointed out. Researchers should make continuous improvements on nano-TiO2 photocatalytic technology, so as to make its application to the treatment of industrial wastewater become broader and more effective.%介绍了纳米TiO2的光催化反应机理,概述了纳米TiO2光催化技术在降解油污废水、农药废水、染料废水、表面活性剂废水、造纸废水、其他有机物废水,以及含重金属废水中的应用研究进展.指出限制纳米TiO2光催化技术实际应用的5个因素:纳米TiO2的改性、纳米TiO2的固定化、纳米TiO2的制备方法、纳米TiO2的应用机理和纳米TiO2的负面影响.科研工作者需不断完善纳米TiO2光催化技术,才能使其在工业废水处理领域得到更广泛和有效的应用.

  5. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  6. On-site wastewater technologies in Australia.

    Science.gov (United States)

    Ho, G; Dallas, S; Anda, M; Mathew, K

    2001-01-01

    Domestic wastewater reuse is currently not permitted anywhere in Australia but is widely supported by the community, promoted by researchers, and improvised by up to 20% of householders. Its widespread implementation will make an enormous contribution to the sustainability of water resources. Integrated with other strategies in the outdoor living environment of settlements in arid lands, great benefit will be derived. This paper describes six options for wastewater reuse under research by the Remote Area Developments Group (RADG) at Murdoch University and case studies are given where productive use is being made for revegetation and food production strategies at household and community scales. Pollution control techniques, public health precautions and maintenance requirements are described. The special case of remote Aboriginal communities is explained where prototype systems have been installed by RADG to generate windbreaks and orchards. New Australian design standards and draft guidelines for domestic greywater reuse produced by the Western Australian State government agencies for mainstream communities are evaluated. It is recommended that dry composting toilets be coupled with domestic greywater reuse and the various types available in Australia are described. For situations where only the flushing toilet will suffice the unique 'wet composting' system can be used and this also is described. A vision for household and community-scale on-site application is presented.

  7. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  8. Study and Application of United-Incineration Treatment Technology on the Organic Wastewater and Exhaust Gas%有机废液和废气联合焚烧处理技术的研究与应用

    Institute of Scientific and Technical Information of China (English)

    张绍坤

    2012-01-01

    针对医药企业产生的有机废液和废气必须进行无害化处理的问题,提出了一种联合焚烧处理工艺,对废液和废气同时进行处理,并将该工艺在工程中进行了应用.应用实践表明,该工艺能够同时对废液和废气进行无害化处理,初投资较低.且该工艺对废液和废气焚烧产生的热量进行了回收再利用,运行成本较低,在危险废物处置领域具有广阔的应用前景.%The organic waste water and exhaust gas produced in the medicine company must be harmlessly treated. Aiming at this problem, an united-incineration treatment technology for both the organic waslewater and exhaust gas were put forward. The application of the united-incineration in the project showed that this craft could do harmless treatment for wastewater and exhaust gas at the same time and has lower riginal investment. The craft could also recycle and reuse the generated heat from the incineration of the wastewater and exhaust gas, the lower running cost is lower. It had a broad application prospects in the field of hazardous waste treatment.

  9. 糠醛生产废水循环利用新工艺分析%Study on novel technology of furfural wastewater recycling

    Institute of Scientific and Technical Information of China (English)

    乔建芬; 郭朝华; 赵耀武

    2011-01-01

    Sources and production of furfural wastewater were investigated. The economic technological analysis on different wastewater treatments were carried out. Novel technology of furfural wastewater recycling was provided.%通过分析糠醛生产废水的产生,比较不同废水处理工艺的经济技术性,提出了废水循环利用新工艺方案。

  10. Reliability analysis of wastewater treatment plants.

    Science.gov (United States)

    Oliveira, Sílvia C; Von Sperling, Marcos

    2008-02-01

    This article presents a reliability analysis of 166 full-scale wastewater treatment plants operating in Brazil. Six different processes have been investigated, comprising septic tank+anaerobic filter, facultative pond, anaerobic pond+facultative pond, activated sludge, upflow anaerobic sludge blanket (UASB) reactors alone and UASB reactors followed by post-treatment. A methodology developed by Niku et al. [1979. Performance of activated sludge process and reliability-based design. J. Water Pollut. Control Assoc., 51(12), 2841-2857] is used for determining the coefficients of reliability (COR), in terms of the compliance of effluent biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and fecal or thermotolerant coliforms (FC) with discharge standards. The design concentrations necessary to meet the prevailing discharge standards and the expected compliance percentages have been calculated from the COR obtained. The results showed that few plants, under the observed operating conditions, would be able to present reliable performances considering the compliance with the analyzed standards. The article also discusses the importance of understanding the lognormal behavior of the data in setting up discharge standards, in interpreting monitoring results and compliance with the legislation.

  11. Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals

    Science.gov (United States)

    Balcom, Ian N.; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  12. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  13. 利用植物复合床技术处理工业污水%Treatment of industrial wastewater with plant composite bed technology

    Institute of Scientific and Technical Information of China (English)

    朱倩倩; 何先湧; 胡章立; 徐宏

    2012-01-01

    选取风车草、蝴蝶兰、吊兰、小纸莎、菖蒲、香根草6种植物作为人工湿地植物,砾石、活性炭、河沙、砾石+河沙、活性炭+河沙、活性炭+砾石共6种填料作为人工湿地填料,进行不同植物和不同填料组合处理某胶水厂洗釜过程产生的工业废水能力的实验研究.结果表明,在相同的进水水质和水力负荷条件下,从经济成本角度考虑,蝴蝶兰与活性炭+河沙组合较好,对CODCr、氨氮的去除率分别达到95%、99%,出水水质符合DB44/26—2001广东省地方标准水污染物排放限制标准一级标准.该技术处理效果好,操作简单,易维护,适合推广.%This work aimed at research on treatment of high concentration industrial wastewater using the combination method of different plant and padding.Cyperus alternifolius,moth orchid,chlorophytum comosum,small papyrus,calamus and chrysopogon zizanioides were chosen as wetland plants.And several kinds of paddings were utilized as filter media in the system,including gravel,activated carbon,river sand,mixture of gravel and river sand,mixture of activated carbon and river sand as well as the mixture of gravel and activated carbon.The results showed that economically the combination of moth orchid and mixture of activated carbon and river sand was the best one under the same experimental condition,and its average CODCr removal efficiency and NH+4-N removal efficiency were 95% and 99% respectively,which meet the first class standard of DB44/26—2001.

  14. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible?

    Institute of Scientific and Technical Information of China (English)

    LI Jie; XIONG Bi-yong; ZHANG Shu-de; YANG Hong; ZHANG Jie

    2005-01-01

    Anaerobic ammonium oxidation(ANAMMOX) is a recently developed process to treat ammonia-rich wastewater. There were numerous articles about the new technology with focus on the ammonium-rich wastewater treatment, but few on advanced municipal wastewater treatment. The paper studied the anaerobic ammonium oxidation(ANAMMOX) process with a down flow anoxic biofilter for nitrogen removal from secondary clarifier effluent of municipal wastewater with low COD/N ratio. The results showed that ANAMMOX process is applicable to advanced wastewater treatment with normal temperature as well as ammonia-rich high temperature wastewater treatment. The results indicated that ammonia removal rate was improved by raising the nitrite concentration, and the reaction rate reached a climax at 118.4 mgN/L of the nitrite nitrogen concentration. If the concentration exceeds 118.4 mgN/L, the ANAMMOX process was significantly inhibited although the ANAMMOX bacteria still showed a relatively high reactivity. The data also indicated that the ratio of NO2- -N:NH4 + -N = 1.3:1 in the influent was appropriate for excellent nitrogen removal. The pH increased gradually along the ANAMMOX biofilter reactor. When the ANAMMOX reaction was ended, the pH was tend to calm. The data suggested that the pH could be used as an indicator to describe the course of ANAMMOX reaction.

  15. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  16. Bacteriophages-potential for application in wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Withey, S. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Cartmell, E. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)]. E-mail: e.cartmell@cranfield.ac.uk; Avery, L.M. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Stephenson, T. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2005-03-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction.

  17. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  18. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    Lipase-producing fungi for potential wastewater treatment and bioenergy production. ... as well as for the production of biodiesel from oil and residual grease, due to its greater stability, possibility of reuse, and lower cost. ... Article Metrics.

  19. efficiency of wastewater treatment by a mixture of sludge and ...

    African Journals Online (AJOL)

    H. Khaldi

    2017-09-01

    Sep 1, 2017 ... Environmental Health and Biotechnology Research Group, Division of ... Urbanisation and other factors have resulted in dramatic increases in volumes of industrial ... microalgae-sludge system in wastewater treatment.

  20. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  1. Cost of phosphate removal in municipal wastewater treatment plants

    Science.gov (United States)

    Schuessler, H.

    1983-01-01

    Construction and operating costs of advanced wastewater treatment for phosphate removal at municipal wastewater treatment plants have been investigated on orders from the Federal Environmental Bureau in Berlin. Particular attention has been paid to applicable kinds of precipitants for pre-, simultaneous and post-precipitation as well as to different phosphate influent and effluent concentrations. The article offers detailed comments on determination of technical data, investments, capital costs, operating costs and annual costs as well as potential cost reductions resulting from precipitation. Selected results of the cost investigation are shown in graphical form as specific investments, operating and annual costs depending on wastewater flow.

  2. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena......, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol....

  3. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  4. 电化学法处理工业有机废水新技术研究进展%Research Progress of New Technologies for Industrial Organic Wastewater Treatment by Electrochemical Method

    Institute of Scientific and Technical Information of China (English)

    林文鹏

    2016-01-01

    Electrochemical method is an advanced technology for treatment of industrial organic wastewater. It has many characteristics of high efficiency, energy saving, automation and environmental friendliness. In this paper, research and development of new technologies for treating industrial organic waste water were introduced, such as the three-dimensional electrode method,microelectrolysis,electrical Fenton,electro-catalysis. Some suggestions about further research of industrial organic waste water treatment were also put forward.%电化学是一种先进的工业有机废水处理技术,具有高效、节能、易于自动化和环境友好的特点。论述了三维电极法、微电解法、电Fenton法、电催化法等新型电化学工艺治理工业有机废水的研究进展,并指出了今后的研究方向。

  5. 电厂脱硫废水正渗透膜浓缩零排放技术的应用%Application of MBC zero liquid discharge technology to desulfurization wastewater treatment in a power plant

    Institute of Scientific and Technical Information of China (English)

    邵国华; 方棣

    2016-01-01

    介绍了膜浓缩(MBC)零排放技术在长兴电厂脱硫废水深度处理项目中的应用情况。系统可将22 m3/h含盐水浓缩至1.5~2 m3/h,盐分浓缩至200 g/L左右后进入蒸发结晶系统,最终生成结晶盐,经过浓缩处理后的清洁产水作为电厂锅炉补给水回用。运行结果表明,MBC零排放系统运行良好,有效地保证了电厂的稳定运行,带来良好的社会和经济效益。%The application of membrane brine concentrator(MBC) zero liquid discharge technology to the advanced treatment project for desulfurization wastewater in Changxing Power Plant is introduced. 22 m3/h of wastewater containing salt is concentrated to 1.5-2 m3/h. After the salinity is concentrated to about 200 g/L ,it goes to evaporative crystal system,and finally forms crystal salt. After the concentration treatment,the produced clean water can be reused as boiler make-up water for the power plant. The results show that the MBC zero discharge system runs well,and guarentees stable running of Changxing Power Plant,bringing good social and economic benefits.

  6. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  7. Mobile Nitrite Wastewater Treatment System (NWTS) User Data Package

    Science.gov (United States)

    1997-09-01

    NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 USER DATA PACKAGE UDP-2003-ENV MOBILE NITRITE WASTEWATER TREATMENT ...TITLE AND SUBTITLE MOBILE NITRITE WASTEWATER TREATMENT SYSTEMS (NWTS) USER DATA PACKAGE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...SYSTEM (NWTS) USER DATA PACKAGE by T. Richard Lee, Ph.D R. T. Kudo Joseph McGillian* *Naval Surface Warfare Center Cardcrock Division Pmladclpma, PA

  8. Time difference based measurement of ultrasonic cavitations in wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    朱昌平

    2016-01-01

    Intensity of cavitation is significant in ultrasonic wastewater treatment, but is complicated to measure.A time difference based method of ultrasonic cavitation measurement is proposed.The time differences at different powers of 495kHz ultrasonic are measured in experiment in comparison with conductimetric method.Simulation results show that time difference and electrical conductivity are both approximately positive proportional to the ultrasonic power.The degradation of PNP solution verifies the availability in wastewater treatment by using ultrasonic.

  9. Treatment of Wastewater Containing RDX by Fenton's Reagent

    Institute of Scientific and Technical Information of China (English)

    XU Hang; ZHANG Dong-xiang; XU Wen-guo

    2008-01-01

    Fenton's reagent was employed to treat the wastewater containing RDX. The effects of FeSO4 concentration, H2O2 concentration, pH value, reaction time, temperature and initial COD of wastewater on residual COD of wastewater were investigated. The results show that the optimum FeSO4 concentration and pH are 700mg/L and 2.5, respectively, and the residual COD of wastewater decreases with the rise in H2O2 concentration, but increases with the rise in temperature. After Fenton's reagent treatment, the initial COD of less than 874 mg/L wastewater can meet effluent standard. Under conditions of 100 mg/L H2O2, 437 mg/L initial COD and 15 ℃ temperature, the lowest residual COD is obtained at 83.80 mg/L in 5 min.

  10. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.

  11. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  12. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  13. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    Science.gov (United States)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  14. Research on Wastewater Treatment Technology of Lead Acid Battery Production%铅酸蓄电池生产废水治理技术应用研究

    Institute of Scientific and Technical Information of China (English)

    王健

    2011-01-01

    We treated wastewater of waste storage battery recycle and battery making factory with combined processes of oxidation reduction, neutralization and effective coacervation. Total water amount was 208m3/d. Original wastewater indexes were: pH 1 -2, total lead 13. 5mg/L, SS 450mg/L. Total lead, pH and SS in treated wastewater could reach discharge standard.%采用“氧化还原+中和反应+高效凝聚”工艺处理废蓄电池回收和电池制造企业生产废水。总处理水量为208m^3/d;进水水质:pH:1-2、总铅:13.5mg/L、SS:450mg/L。经该工艺处理后,废水中的总铅、pH、SS等指标均能达标排放。

  15. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  16. Wastewater Treatment After Improved Scourings of Raw Wool

    Directory of Open Access Journals (Sweden)

    Pernar, E.

    2007-11-01

    Full Text Available Textile industry processes need high amounts of water for wet treatment of textiles. Therefore, high amounts of wastewater also appear containing different inorganic and organic substances depending on the used materials and processes. Raw wool is contaminated with wool wax, suint, skin flakes, dirt, sand, vegetable matter, urine and various microorganisms. The methods for raw wool scouring and cleaning today often in use are: scouring in the suint, scouring with soaps or tenside in alkaline, extraction by organic solvents and freezing. The different methods for wastewater purification after scouring in use are: settling/floculation, biological treatment, adsorptionand catalytic oxidation. In this work, wastewater treatments after improved raw wool scouring with enzymes and EDTA have been investigated. Isothermal adsorption on zeolite A, active carbon and a natural and H+ type of bentonite for removal of the obtained wastewater impurities was used. The results were determined by means of different physical-chemical test methods.

  17. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa

    2017-01-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization...... positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area....... Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific...

  18. Pre-study for the development of R and D-program for the plant DEPRA (demonstration and testing of technologies for wastewater and sludge treatment). Final report; Voruntersuchung zur Ausarbeitung der F und E-Konzeption der DEPRA. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.

    2002-07-01

    The purpose of the planned demonstration and testing plant (DEPRA) in Bremerhaven is to have a possibility to demonstrate and test new or further developed wastewater and sludge treatments in industrial scale. With that DEPRA will contribute to transfer attained results of research and development as soon as possible in to practice. The plant DEPRA will provide extensive possibilities of process control of different stages of wastewater and sludge treatment as well as the operation of additional process stages. The demonstration and testing plant should be open for research institutes and commercial users in Germany as well as for European countries in order to offer a possibility for projects concerning water purification. The aim of this study was to compile the framework of research projects for DEPRA. This report indicates trends of development for purification of municipal and industrial wastewater and sludge treatment whereas the potential of innovation for short, middle and long time implementation is considered. (orig.)

  19. Sustainable operation of a biological wastewater treatment plant

    Science.gov (United States)

    Trikoilidou, E.; Samiotis, G.; Bellos, D.; Amanatidou, E.

    2016-11-01

    The sustainable operation of a biological wastewater treatment plant is significantly linked to its removal efficiency, cost of sludge management, energy consumption and monitoring cost. The biological treatment offers high organic removal efficiency, it also entails significant sludge production, which contains active (live) and inactive (dead) microorganisms and must be treated prior to final disposal, in order to prevent adverse impact on public health and environment. The efficiency of the activated sludge treatment process is correlated to an efficient solid-liquid separation, which is strongly depended on the biomass settling properties. The most commonly encountered settling problems in a wastewater treatment plant, which are usually associated with operating conditions and specific microorganisms growth, are sludge bulking, floating sludge, pin point flocs and straggler flocs. Sustainable management of sludge and less energy consumption are the two principal aspects that determine the operational cost of wastewater treatment plants. Sludge treatment and management accumulate more than 50% of the operating cost. Aerobic wastewater treatment plants have high energy requirements for covering the needs of aeration and recirculations. In order to ensure wastewater treatment plants’ effective operation, a large number of physicochemical parameters have to be monitored, thus further increasing the operational cost. As the operational parameters are linked to microbial population, a practical way of wastewater treatment plants’ controlling is the microscopic examination of sludge, which is proved to be an important tool for evaluating plants’ performance and assessing possible problems and symptoms. This study presents a biological wastewater treatment plant with almost zero biomass production, less energy consumption and a practical way for operation control through microbial manipulation and microscopic examination.

  20. Soil amendment using poplar woodchips to enhance the treatment of wastewater-originated nutrients

    NARCIS (Netherlands)

    Meffe, Raffaella; Miguel Garcia, de Angel; Martínez Hernández, Virtudes; Lillo, Javier; Bustamante, de Irene

    2016-01-01

    Vegetation filters, a nature based wastewater regeneration technology, have been reported as a feasible solution for small municipalities and scattered populations with limited access to sewage networks. However even when such a treatment is properly planned, the leaching of contaminants through

  1. Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Gernaey, Krist; Sin, Gürkan

    2015-01-01

    technologies. The superstructure optimization problem is formulated as a Mixed Integer (non)Linear Programming problem and solved for different scenarios - represented by different objective functions and constraint definitions. A full-scale domestic wastewater treatment plant (265,000 PE) is used as a case...

  2. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    Science.gov (United States)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  3. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  4. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  5. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  6. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...... technologies. Incineration is used as the reference process, as it is the only existing well-developed technology, while other techniques like pyrolysis and gasification are relatively new, and only exist at lab-scale or pilot-plant scale....

  7. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  8. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  9. Performance of up flow anaerobic sludge fixed film bioreactor for the treatment of high organic load and biogas production of cheese whey wastewater

    OpenAIRE

    Tehrani Nazila Samimi; Najafpour Ghasem D.; Rahimnejad Mostafa; Attar Hossein

    2015-01-01

    Among various wastewater treatment technologies, biological wastewater treatment appears to be the most promising method. A pilot scale of hybrid anaerobic bioreactor was fabricated and used for the whey wastewater treatment. The top and bottom of the hybrid bioreactor known as up flow anaerobic sludge fixed film (UASFF); was a combination of up flow anaerobic sludge blanket (UASB) and up flow anaerobic fixed film reactor (UAFF), respectively. The effects o...

  10. 基于超滤处理工艺的洗车废水循环利用技术%Recycling and Reuse Technology of Car Washing Wastewater Based on Ultrafiltration Treatment Process

    Institute of Scientific and Technical Information of China (English)

    马传军; 牟桂芹; 郭亚逢; 周志国

    2013-01-01

    As pretreatment processes,coagulation and sedimentation-sand filtration and single sand filtration were compared by using ultrafiltration as key treatment process of car washing wastewater.Removal rates of turbidity from both processes were 99.4 % and 99.1%.Removal rates of COD were 69.5 % and 53.4 %.Removal rates of anionic surfactant were 69.2 % and 27.6 %.The results showed that the recycling method of car washing wastewater based on ultrafiltration technology was feasible under the condition of reasonable pretreatment processes.%以超滤为核心工艺处理洗车废水,对比了采用混凝沉淀-砂滤和单独采用砂滤作为预处理时的出水指标,两种工艺对浊度的去除率分别为99.4%和99.1%,对COD的去除率为69.5%和53.4%,对阴离子表面活性剂(Anionic surfactant,AS)的去除率为69.2%和27.6%.结果表明,采用适合的预处理单元,以超滤为核心的处理工艺在洗车废水循环回用方面具有可行性.

  11. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  12. WASTEWATER TREATMENT CENTER BENEFIT OF OR SLAUGHTER OF LIVESTOCK

    OpenAIRE

    Salas C., Gilberto; Facultad de Química e Ingeniería Química. Universidad Nacional Mayor de San Marcos. Lima-Perú; Condorhuamán C., Cesario; Facultad de Química e Ingeniería Química. Universidad Nacional Mayor de San Marcos. Lima-Perú

    2014-01-01

    The meat processing industry is believed to produce highly polluted wastewater. Analysis of such wastewater indicated that the waste was highly contaminated with organic compounds as indicated by DQO (mg/L), DBO (mg/L ), and TSS (mg/L ). Moreover, oil and grease concentrations reached mg/L treatment of raw wastewater using Dissolved Air Flotation (DAF) was studied. Efficiency of the DAF for the removal of DBO, DQO, and oil and grease was 80%, 75% y 95 % .The overall efficiency of the treatmen...

  13. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Hu, Zhen; Liu, Hai

    2015-10-01

    Constructed wetlands (CWs) have been used as an alternative to conventional technologies for wastewater treatment for more than five decades. Recently, the use of various modified CWs to improve treatment performance has also been reported in the literature. However, the available knowledge on various CW technologies considering the intensified and reliable removal of pollutants is still limited. Hence, this paper aims to provide an overview of the current development of CW strategies and techniques for enhanced wastewater treatment. Basic information on configurations and characteristics of different innovations was summarized. Then, overall treatment performance of those systems and their shortcomings were further discussed. Lastly, future perspectives were also identified for specialists to design more effective and sustainable CWs. This information is used to inspire some novel intensifying methodologies, and benefit the successful applications of potential CW technologies.

  14. Occurrence and fate of organic contaminants during onsite wastewater treatment.

    Science.gov (United States)

    Conn, Kathleen E; Barber, Larry B; Brown, Gregory K; Siegrist, Robert L

    2006-12-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments.

  15. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  16. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  17. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    Science.gov (United States)

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted.

  18. Optimum municipal wastewater treatment plant design with consideration of uncertainty

    Institute of Scientific and Technical Information of China (English)

    ZENG Guang-ming; LIN Yu-peng; QIN Xiao-sheng; HUANG Guo-he; LI Jian-bing; JIANG Ru

    2004-01-01

    A newly developed model for the optimum municipal wastewater treatment plant (MWTP) design is presented. Through introducing the interval variables, the model attempts to consider the effects of uncertainties caused by the fluctuation of the wastewater quality and quantity during the design of MWTP. The model solution procedure is illustrated in detail, and a numerical example is given to verify the feasibility and advantage of the model. Furthermore, the possibility of the model application is briefly outlined.

  19. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  20. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rusli Ummi Nadiah

    2016-01-01

    Full Text Available Production of industrial wastewater is increasing as the oil and gas industry grows rapidly over the years. The constituents in the industrial wastewater such as organic and inorganic matters, dispersed and lubricant oil and metals which have high toxicity become the major concern to the environment and ecosystem. There are many technologies are being used for oil removal from industrial wastewater. However, there are still needs to find an effective technology to treat oily wastewater before in can be discharge safely to the environment. Membrane technology is an attractive separation technology to treat oily wastewater. The aim of this study is to fabricate polyvinylidene/titanium dioxide (PVDF/TiO2 composite membrane with further treatment using hot pressed method to enhance the adhesion between TiO2 with the membrane surfaces. In this study the structural and physical properties of fabricated membrane were conducted using X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR respectively. The photocatalytic degradation of oil was measured using UV-Vis Spectroscopy. The FTIR results confirmed that, hot pressed PVDF/TiO2 membrane TiO2 was successfully deposited onto PVDF membranes surface and XRD results shows that the XRD pattern of PVDF//TiO2 found that the crystalline structure was remained unchanged after hot pressed. Clear water was obtained after synthetic oily wastewater was exposed to visible light for at least 6 hours. In conclusion, PVDF/TiO2 composite membrane can be a potential candidate to degrade oil in oily wastewater and suggested to possess an excellent performance if perform simultaneously with membrane separation process.

  1. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    Science.gov (United States)

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  2. Regulating industrial wastewater discharged to public wastewater treatment plants - A conceptual approach

    DEFF Research Database (Denmark)

    Grüttner, Henrik

    1997-01-01

    The paper describes some of the basic principles behind the DEPA Guidelines for discharge of industrial wastewater to public sewers set in operation in 1995 and evaluates some of the experiences with the implementation. It is described how such guidelines support the approach of pollution...... along with its combination with available technology. Finally expression of the environmental requirements are discussed in relation to environmental and technological considerations....

  3. Yannawa wastewater treatment plant (Bangkok, Thailand): design, construction and operation.

    Science.gov (United States)

    Kirkwood, S

    2004-01-01

    Yannawa Wastewater Treatment plant (Phase 1) serves a population equivalent of 500,000 and is located on a restricted site within the city of Bangkok, Thailand. Secondary treatment is based on the CASS sequencing batch reactor (SBR) process and the plant is one of the largest multi-storey SBRs in the world. The limitation of available site area, the ground conditions and the characteristics of the wastewater to be treated set a series of challenges for the designers, contractors and commissioning and operational staff. This paper briefly describes the collection system, the process selection and the treatment streams of the wastewater treatment plant. The SBR secondary treatment plant is described in more detail. The problems that arose during commissioning and operation and the solutions made possible by the use of an SBR type of process are discussed. Details of plant performance during performance testing and during the first three years of plant operation are provided.

  4. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa; Vogel, Jörg; Madsen, Henrik Tækker; Hélix-Nielsen, Claus; Jansen, Jes la Cour; Jönsson, Karin

    2017-02-22

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration and forward osmosis have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small and medium-sized wastewater treatment plants at full scale: 1) direct microfiltration and 2) direct forward osmosis with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct microfiltration and forward osmosis, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.

  5. Toxicity evaluation of wastewater collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant.

    Science.gov (United States)

    Ma, Ke; Qin, Zhe; Zhao, Zhongqing; Zhao, Chunxia; Liang, Shuxuan

    2016-09-01

    The toxicity of water-receiving bodies, the effluent and other treatment stages in wastewater treatment plants has recently been of interest to the public due to the lack of a regulated toxicity-based index for wastewater discharge in China. This study aimed to evaluate the conventional pollution parameters and toxicities of wastewaters collected at different treatment stages from a pharmaceutical industrial park wastewater treatment plant through dehydrogenase activity (DHA) and bioluminescent bacteria (Vibrio qinghaiensis) tests. The results of an analysis of conventional parameters indicated that the total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3N), and total phosphorus (TP) were largely removed after various treatments. However, the TN, NH3N and COD still exceeded the regulated standards. The tested pharmaceutical park effluents were mainly polluted with organic pollutants and nitrogenous. The toxicity test results indicated that the toxicities could be markedly reduced after treatment, with the toxicities of two out of the six effluent samples at different treatment stages being greater than the influent toxicity. Spearman's rank correlation coefficients indicated a significantly positive correlation between the toxicity values obtained using the DHA and Vibrio qinghaiensis tests. Compared with the DHA measurement, the Vibrio qinghaiensis test was faster and more sensitive. Meanwhile, the toxicity indicators were significantly and positively correlated with the TSS, TN, TP and COD concentrations. These results may aid the understanding of the toxicity of pharmaceutical industrial park wastewaters and toxicity removal using the treatment techniques that are currently utilized in China.

  6. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  7. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    Science.gov (United States)

    Lopez-Vazquez, C M; Kubare, M; Saroj, D P; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2014-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.

  8. 势能增氧生态净化工艺在高浓度有机废水处理中的应用%Application of potential energy increasing oxygen ecological purification technology in treatment of high concentration organic wastewater

    Institute of Scientific and Technical Information of China (English)

    陈鸣钊; 商卫纯; 冯骞; 肖玉冰

    2015-01-01

    Comparing the advantages and shortcomings of two wastewater treatment methods, aerobic process biological rotary method and trickling filter method, a new process,potential energy increasing oxygen ecological purification technology( PIEP) ,was designed by combining the advantages of the two wastewater treatment methods. PIEP was applied in the treatment of high concentration organic wastewater in Nanjing Lamei Food Factory.The results show that PIEP is simple in design and dosen’ t need blast aeration.The effluent of wastewater flowing into the wastewater treatment system meet the required water quality standards, and the whole process is under automatic control management.PIEP has characteristics that the wastewater treatment effect is good and the operation expenses are lower.%比较污水处理好氧工艺生物转盘法和滴滤池法的优缺点,并结合两种废水处理方法的优点,设计新的工艺———势能增氧生态净化工艺,对南京市腊梅食品厂高浓度有机废水进行处理。结果表明,势能增氧生态净化工艺设计简单,不需鼓风曝气,污水进入废水处理系统后出水即达到所要求的水质标准,且全部自控管理,具有废水处理效果佳、运行费用低的特点。

  9. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    receiving the discharge. The EU has decided on regulation of wastewater treament by enforcing effluent standards. This is interpreted in relation to basic EU-principles and discussed with regard to an ethical framework of thinking. The conclusion is that basically different concepts are difficult...

  10. [Selection of Suitable Microalgal Species for Sorption of Uranium in Radioactive Wastewater Treatment].

    Science.gov (United States)

    Li, Xin; Hu, Hong-ying; Yu, Jun-yi; Zhao, Wen-yu

    2016-05-15

    The amount of radioactive wastewater discharge was increasing year by year, with the quick development of nuclear industry. Therefore, the proper treatment and disposal of radioactive wastewater are essentially important for environmental safety and human health. Microalgal biosorption of nuclide has drawn much attention in the area of radioactive wastewater treatment recently, and the selection of a proper microalgal species for uranium biosorption is the basis for the research and application of this technology. The selection principle was set up from the view of practical application, and 11 species of microalgae were prepared for the selection work. Scenedesmus sp. LX1 has the highest biosorption capacity of 40.7 mg · g⁻¹ for uranium; and its biomass production in mBG11 medium (simulating the nitrogen and phosphorus limits in the first-class A discharge standard of pollutants for municipal wastewater treatment plant) was 0.32 g · L⁻¹, which was relatively high among the 11 microalgal species; when grown into stable phase it also showed a good precipitation capability with the precipitation ratio of 45.3%. Above all, in our selection range of the 11 microalgal species, Scenedesmus sp. LX1 could be considered as the suitable species for uranium biosorption in radioactive wastewater treatment.

  11. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  12. Treatment and desalination of domestic wastewater for water reuse in a four-chamber microbial desalination cell.

    Science.gov (United States)

    Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen

    2016-09-01

    Microbial desalination cells (MDCs) have been studied for contaminant removal from wastewater and salinity reduction in saline water. However, in an MDC wastewater treatment and desalination occurs in different streams, and high salinity of the treated wastewater creates challenges for wastewater reuse. Herein, a single-stream MDC (SMDC) with four chambers was developed for simultaneous organic removal and desalination in the same synthetic wastewater. This SMDC could achieve a desalination rate of 12.2-31.5 mg L(-1) h(-1) and remove more than 90 % of the organics and 75 % of NH4 (+)-N; the pH imbalance between the anode and cathode chambers was also reduced. Several strategies such as controlling catholyte pH, increasing influent COD concentration, adopting the batch mode, applying external voltage, and increasing the alkalinity of wastewater were investigated for improving the SMDC performance. Under a condition of 0.4 V external voltage, anolyte pH adjustment, and a batch mode, the SMDC decreased the wastewater salinity from 1.45 to below 0.75 mS cm(-1), which met the salinity standard of wastewater for irrigation. Those results encourage further development of the SMDC technology for sustainable wastewater treatment and reuse.

  13. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants.

    NARCIS (Netherlands)

    Mels, A.R.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainabilityMost of the currently applied municipal wastewater treatment plants in The Netherlands are based on the activated sludge process and include

  14. Treatment of coking wastewater by using manganese and magnesium ores.

    Science.gov (United States)

    Chen, Tianhu; Huang, Xiaoming; Pan, Min; Jin, Song; Peng, Suchuan; Fallgren, Paul H

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD)(,) and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  15. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    Science.gov (United States)

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system.

  16. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  17. Study on Naphthenic Acid Sodium Wastewater Treatment by Flocculation Magnetic Separation Technology%絮凝磁分离技术处理环烷酸钠废水的研究

    Institute of Scientific and Technical Information of China (English)

    鲁风芹; 李兴盼; 孙文

    2011-01-01

    环烷酸钠是导致炼油废水不能达标排放的主要原因,文章采用絮凝磁分离技术处理环烷酸钠废水,研究各因素对实验结果的影响,确定最佳处理条件,并对实际废水进行了实验研究,结果表明该技术可有效去除炼油废水中的CODcr.%The naphthenic acid sodium is the main reason causing the refinery wastewater failed to meet the requirement of discharging. This paper adopts flocculation magnetic separation technology to treat naphthenic acid sodium wastewater through studying the influence of each factor on the experiment to determine the optimum conditions. Then the actual wastewater was treated. The resuhs show that this technology can remove the COD or of refinery wastewater effectively.

  18. Kinetic study for aerobic treatment of phenolic wastewater

    Directory of Open Access Journals (Sweden)

    Athar Hussain

    2015-09-01

    Full Text Available Conventional physico-chemical treatment of industrial wastewater containing compounds such as phenol encounters difficulties due to low substrate level, additional use of chemicals, and generation of hazardous by products along with increased process cost. Biological treatment appears to be a solution for treatment of such industrial wastewater. In the present study an aerobic sequential batch reactor (SBR has been used for treatment of synthetic wastewater containing phenol. The effects of increasing phenol concentrations on the sludge characteristic have been also investigated. It was observed that, activity of activated sludge for acclimatization of phenol decreases at concentrations above 2000 mg L−1. It may be attributed to toxicity of phenol to active biomass at higher concentrations. Kinetics of phenol degradation has also been studied using Haldane model.

  19. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  20. 采用汽提燃烧方法处理甲醇生产废水%Research on the methanol industrial wastewater treatment technology by high-temperature steam stripping and incineration

    Institute of Scientific and Technical Information of China (English)

    张学勇

    2009-01-01

    Based on the analysis data of the distillation wastewater of the 100 000 t/a device at the Methanol Branch, in Daqing Oilfield Chemical Co., through analyzing the physical properties of the main components in methanol wastewater, and studying various wastewater treatment methods, the feasibility of using medium pressure steam stripper for strip and incinerate methanol wastewater is explored. A new approach and method for treating methanol distillation wastewater is put forward.%以大庆油田化工有限公司甲醇分公司10万t/a甲醇装置的精馏生产废水的分析数据为基础,通过对甲醇废水中主要组成物的物理性质分析和各种污水处理方法的研究,探讨了利用中压汽提塔采用汽提焚烧法处理甲醇生产废水的可行性,并提出了甲醇精馏废水处理的新途经和方法.

  1. Environmental Technology Verification Report: Grouts for Wastewater Collection Systems, Avanti International AV-118 Acrylic Chemical Grout

    Science.gov (United States)

    Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to the infiltration of water from the surrounding environments. Wastewater facilities are not only wet, but also experience hydrostatic pressure conditions un...

  2. Predication of Fhhh potential in PTA wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    CHENG Shu-pei; SHI Lei; ZHANG Xu-xiang; YAN Jun; DING Zhong-hai; HAO Chun-bo

    2004-01-01

    Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status. The parameter, as the objective function for the judgment, is the minimum reactor volume ( Vmin ) calculated by Ebis for microorganism required in wastewater treatment. The rationality and the universality of Ebis were demonstrated in the domestic sewage treatment system(DSTS) with the data published in USA and China at first, then Fhhh strain's potential for treating the purified terephthalic acid(PTA) was proved. It suggests that Ebis would be useful and universal for predicating the technique effectiveness in both DSTS and IWTS.

  3. General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review

    Directory of Open Access Journals (Sweden)

    Aleksandar Kolev Slavov

    2017-01-01

    Full Text Available The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified.

  4. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    Science.gov (United States)

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. General Characteristics and Treatment Possibilities of
Dairy Wastewater – A Review

    Science.gov (United States)

    2017-01-01

    Summary The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified. PMID:28559730

  6. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  7. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects

    Science.gov (United States)

    Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.

    2017-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567

  8. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects.

    Science.gov (United States)

    Puyol, Daniel; Batstone, Damien J; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O

    2016-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.

  9. Immersed membrane bioreactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm.

    Science.gov (United States)

    Bick, A; Tuttle, J G P; Shandalov, S; Oron, G

    2005-01-01

    In many regions dairy farms and milk processing industries discharge large quantities of their wastes to the surroundings posing serious environmental risks. This problem is mostly faced in small dairy farms and isolated communities lacking both central collection and conventional wastewater treatment systems. Dairy wastewater is characterized by high concentrations of organic matter, solids, nutrients, as well as fractions of dissolved inorganic pollutants, exceeding those levels considered typical for high strength domestic wastewaters. With the purpose of treating the combined dairy and domestic wastewater from a small dairy farm in the Negev Desert of Israel, the use of a recent emerging technology of Immersed Membrane BioReactor (IMBR) was evaluated over the course of 500 test hours, under a variety of wastewater feed quality conditions (during the test periods, the feed BOD5 ranged from 315 ppm up to 4,170 ppm). The overall performance of a pilot-scale Ultrafiltration (UF) IMBR process for a combined domestic and dairy wastewater was analyzed based on the Data Envelopment Analysis (DEA) method. The IMBR performance in terms of membrane performance (permeate flux, transmembrane pressure, and organic removal) and DEA model (Technical Efficiency) was acceptable. DEA is an empirically based methodology and the research approach has been found to be effective in the depiction and analysis for complex systems, where a large number of mutual interacting variables are involved.

  10. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    Science.gov (United States)

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  11. Biological treatment and nanofiltration of denim textile wastewater for reuse

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Dilek, Filiz B. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)], E-mail: fdilek@metu.edu.tr

    2008-05-30

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 {+-} 2% and 84 {+-} 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 {+-} 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 {mu}m pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m{sup 2}/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria.

  12. Optimal flow sensor placement on wastewater treatment plants.

    Science.gov (United States)

    Villez, Kris; Vanrolleghem, Peter A; Corominas, Lluís

    2016-09-15

    Obtaining high quality data collected on wastewater treatment plants is gaining increasing attention in the wastewater engineering literature. Typical studies focus on recognition of faulty data with a given set of installed sensors on a wastewater treatment plant. Little attention is however given to how one can install sensors in such a way that fault detection and identification can be improved. In this work, we develop a method to obtain Pareto optimal sensor layouts in terms of cost, observability, and redundancy. Most importantly, the resulting method allows reducing the large set of possibilities to a minimal set of sensor layouts efficiently for any wastewater treatment plant on the basis of structural criteria only, with limited sensor information, and without prior data collection. In addition, the developed optimization scheme is fast. Practically important is that the number of sensors needed for both observability of all flows and redundancy of all flow sensors is only one more compared to the number of sensors needed for observability of all flows in the studied wastewater treatment plant configurations.

  13. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    Energy Technology Data Exchange (ETDEWEB)

    Batt, Angela L. [Department of Chemistry, State University of New York at Buffalo, 608 Natural Sciences Complex, Buffalo, NY 14260-3000 (United States)]. E-mail: abatt@hotmail.com; Bruce, Ian B. [Department of Geography, Buffalo State College, Buffalo, NY (United States)]. E-mail: ianbbruce@gmail.com; Aga, Diana S. [Department of Chemistry, State University of New York at Buffalo, 608 Natural Sciences Complex, Buffalo, NY 14260-3000 (United States)]. E-mail: dianaaga@buffalo.edu

    2006-07-15

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 {mu}g/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 {mu}g/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 {mu}g/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants.

  14. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  15. Integration of energy and environmental systems in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Suzanna Long, Elizabeth Cudney

    2012-01-01

    Full Text Available Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  16. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  17. Wastewater treatment high rate algal ponds for biofuel production.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Membrane bio-reactors for decentralized wastewater treatment and reuse.

    Science.gov (United States)

    Meuler, S; Paris, S; Hackner, T

    2008-01-01

    Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops. IWA Publishing 2008.

  19. The anaerobic treatment of low strength soluble wastewaters.

    NARCIS (Netherlands)

    Kato, M.T.

    1994-01-01

    Low strength soluble wastewaters with chemical oxygen demand (COD) of less than 2000 mg/I are mostly from food processing industries. They commonly contain simple substrates such as short- chain fatty acids, alcohols and carbohydrates. The application of anaerobic technology has been mostly directed

  20. Green Technology for the Removal of Chloro-Organics from Pulp and Paper Mill Wastewater.

    Science.gov (United States)

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya; Kumar, Vivek

    2015-07-01

    This study evaluates the treatment efficiency of a horizontal subsurface-flow constructed wetland (HSSF-CW) for the removal of chloro-organic compounds from pulp and paper mill wastewater. The surface area of the HSSF-CW unit was 5.25 m² and was planted with Colocasia esculenta. The wastewater was characterized for different chloro-organic compounds, that is, adsorbable organic halides (AOX), chlorophenolics, and chlorinated resin and fatty acids (cRFAs). Under a hydraulic retention time of 5.9 days, the average AOX, chlorophenolics, and cRFA removal from wastewater was 87, 87, and 93%, respectively. Some of the chlorophenolics were found to accumulate in the plant biomass and soil material. The mass balance studies show that a significant fraction of chlorophenolics and cRFA was degraded in the constructed wetland system. Modeling studies were carried out to estimate the first-order area-based removal rate constants (k) for chemical oxygen demand removal. The HSSF-CW was found to be an effective treatment technology for the remediation of pulp and paper mill wastewater.

  1. Solar Photocatalytic Treatment of Synthetic Municipal Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Poulios, I.; Malato, S.; Caceres, J.; Campos, A.

    2002-07-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater (SYMAWE), using heterogeneous and homogeneous photocatalytic methods under solar irradiation, has been studied at pilot plant scale at the Plataforma Solar de Almeria. In the case of heterogenous photocatalysis the effect of catalysts concentration, pH values and oxidants on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 KJ I''-1 the synergetic effect of TiO{sub 2} P-25 with H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} leads to a 55% and 73% reduction of the initial organic carbon content respectively. The Photo-Fenton process shows to be more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation energy of 20 KJ I''-1 leads to 80% reduction of the organic content. The presence of oxalate in the Fe''+3/H{sub 2}O{sub 2} system leads to an additional improvement of the photocatalytic efficiency. (Author) 11 refs.

  2. Solar photocatalytic treatment of synthetic municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Poulios, I. [University of Thessaloniki (Greece). Department of Chemistry, Lab. Physical Chemistry; Malato, S.; Caceres, J.; Campos, A. [Plataforma Solar de Almeria, Tabernas (Spain)

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJ L{sup -1} the synergetic effect of 0.2 g L{sup -1} TiO{sub 2} P-25 with hydrogen peroxide (H{sub 2}O{sub 2}) and Na{sub 2}S{sub 2}O{sub 8} leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation energy of 20 kJ L{sup -1} leads to 80% reduction of the organic content. The presence of oxalate in the Fe{sup 3+}/H{sub 2}O{sub 2} system leads to an additional improvement of the photocatalytic efficiency. (author)

  3. Identification of potential toxicity caused by O3 and ClO2 treatment of pharmaceuticals in wastewater

    DEFF Research Database (Denmark)

    Furuhagen, S. M.; Hörsing, Maritha; Ledin, Anna

    2011-01-01

    Chemical oxidation treatment is an effective innovative technology in wastewater treatment plants for removal of micro-pollutants in the effluent. In particular, ozonation (O3) and chlorine dioxide (ClO2) treatments are commonly used to degrade organic pollutants. By oxidation, the micro-pollutants...

  4. IMPACT OF INFLUENT MICROORGANISMS UPON POOR SOLIDS SEPARATION IN THE QUIESCENT ZONE OF AN INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    Science.gov (United States)

    One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...

  5. Latest developments in biofilm technologies for wastewater treatment: Twenty five years of research of the environmental engineering group (University of Cantabria, Spain); Tecnologias de biopelicula innovadoras para la depuracion de aguas residuales: veinticinco anos de investigacion del Grupo de Ingenieria Ambiental de la Universidad de Camtabria

    Energy Technology Data Exchange (ETDEWEB)

    Tejero Monzon, J. I.; Esteban-Garcia, A. L.; Florio, L. del; Diez Montero, R.; Lobo Garcia de Cortazar, A.; Rodriguez-Hernandez, L.

    2012-07-01

    Biological wastewater treatments are based on the use of active biomass, or set of organisms, in charge of carrying out the removal of contaminants. the biomass can be dispersed in suspension within the bulk liquid (activated sludge processes) or attached to a support media (biofilm processes). Biofilm technology was historically the first to be spread and applied. Nevertheless, since the 1950s, activated sludge technology gained more and more popularity given the supposed operation simplicity and higher quality of the effluent. Recently, new developments pushed forward the biofilm technology again. In this context, the Environmental Engineering Group of the University of Cantabria, since its foundation more than 2 decades ago, has been working on research and development of innovative wastewater treatment technologies based on biofilm. In this article, the know-how of the Group is illustrated, including the development of innovative submerged fixed bed reactors with and without (micro) filtration membranes, processes of biofilm supported by and aerated through membranes, as well as integrated systems (hybrid or combined) aimed at nutrient removal. submerged aerated fixed technologies, especially in hybrid configuration, as much as sludge blanket reactors (combined with biofilm processes) allow for increasing biomass concentration and may provide an attractive solution to upgrade existing WWTP. In combination with membrane filtration, they produce an effluent suitable for reuse o discharge in sensitive areas. On the other, hand, the possibility of aerating (diffusing the gas) directly through the membrane lumen into the biomass thereby grown, without need of oxygenating the whole wastewater flow to be treated, may be a real energetic paradigm shift. The developed technologies are here described alongside their experimental and modeling assessment, ranging from laboratory and bench scale up to pilot scale systems treating real municipal wastewater. (Author)

  6. Toxicity Tests for Ensuring Succesful Industrial Wastewater Treatment Plant Operation

    Science.gov (United States)

    Cěbere, B.; Faltiņa, E.; Zelčāns, N.; Kalniņa, D.

    2009-01-01

    Industrial wastewaters are complex and can be polluted by non-biodegradable end toxic organic compounds and are a serious threat to the environment. Chemical procedure alone cannot provide sufficient information. A complete evaluation of wastewaters should include ecotoxicological tests too, especially concerning the complex wastewaters. In the literature review the authors attempted to establish which is the more promising and suitable aquatic toxicology test for sewage treatment plant influent toxicity monitoring. A variety of types of organisms representing different trophic levels and many different species are used for aquatic toxicity testing. Toxicity characterization would be needed both for influents and effluents of wastewater treatment plant. For the purpose of screening biological wastewater treatment influent, toxicity to activated sludge microorganisms is important and toxicology tests here used are respirometry and bioluminescence toxicology tests. Respirometry toxicity tests are easy, fast and inexpensive compared to other approaches. Bioluminescence has been widely used, the most thoroughly investigated test system is the Microtox. The toxicity tests have also been compared by different authors. International, national and regional authorities use these tools to meet various regulatory and legislative requirements. Importance of biotesting has been emphasized also in EU legislation.

  7. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  8. Electrospun nylon 6 microfiltration membrane for treatment of brewery wastewater

    Science.gov (United States)

    Islam, Md. Shahidul; Sultana, Sormin; Rahaman, Md. Saifur

    2016-07-01

    Nylon 6 microfiltration membrane, for the treatment of brewery wastewater, was fabricated using an electrospinning technique, followed by hot-pressing. The fabricated membrane was robust and demonstrated highly hydrophilic property (water contact angle 39° at the touching point to the membrane surface and the water droplet was completely immersed into the membrane in 7 seconds), and higher porosity (65%) with pore sizes of 100 to 210 nm. The electrospun nylon 6 membrane showed higher pure water flux (850 LMH) at an applied pressure of 4 psi. The same membrane also demonstrated a 95% rejection rate of suspended solids (SS) in brewery wastewater treatment.

  9. Study on industrial wastewater treatment using superconducting magnetic separation

    Science.gov (United States)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  10. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  11. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    Energy Technology Data Exchange (ETDEWEB)

    Oller, I., E-mail: isabel.oller@psa.es [Plataforma Solar de Almeria (CIEMAT), Carretera Senes, Km 4. 04200 Tabernas (Almeria) (Spain); Malato, S. [Plataforma Solar de Almeria (CIEMAT), Carretera Senes, Km 4. 04200 Tabernas (Almeria) (Spain); Sanchez-Perez, J.A. [Department of Chemical Engineering, University of Almeria, Crta de Sacramento s/n, 04120 Almeria (Spain)

    2011-09-15

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  12. Toxicity of solid residues resulting from wastewater treatment with nanomaterials.

    Science.gov (United States)

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Gonçalves, Fernando; Pereira, Ruth

    2015-08-01

    Nanomaterials (NMs) are widely recommended for wastewater treatments due to their unique properties. Several studies report the different advantages of nanotechnology in the remediation of wastewaters, but limited research has been directed toward the fate and potential impacts of the solid residues (SRs) produced after the application of such technologies. The present work aimed at investigating the ecotoxicity of SRs resulting from the treatment of three effluents (OOMW, kraft pulp mill, and mining drainage) with two NMs (TiO2 and Fe2O3). The invertebrate Chironomus riparius was selected as test organism and exposed to the residues. The effect on percentage of survival and growth was assessed. Results showed that the SRs from the treatments nano-TiO2(1.0gL(-1))/H2O2(0.5M) and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) from OOMW and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) from kraft pulp mill effluent exhibited lethal toxicity to C. riparius. Only the exposure to SRs resulting from the treatment with nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) applied to the kraft pulp mill effluent significantly affected the growth rate based on the head capsule width. In terms of growth rate, based on the body length, it decreased significantly after exposure to the SRs from the treatments nano-TiO2 (1.0gL(-1)) and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) of kraft paper mill effluent and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) of OOMW. According to our study the SRs can promote negative effects on C. riparius. However, the effects are dependent on the type of effluent treated as well as on the organic and inorganic compounds attached to the NMs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  14. Photo-Fenton processes assisted by solar light used as preliminary step to biological treatment applied to winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Ormad, M P; Ovelleiro, J L

    2007-01-01

    Winery wastewaters are difficult to treat by conventional biological processes, because they are seasonal and experience substantial flow variations. Photocatalytic advanced oxidation is a promising technology for wastewaters containing high amounts of organic matter. In this research work, solar assisted photo-Fenton processes of both heterogeneous and homogeneous phase are used in the pre-treatment of winery wastewaters. The results of these experiments have confirmed the suitability of the photo-Fenton processes, due to these treatments achieving purification levels of up to 50% (measured as total organic carbon). The intermediate effluents are treated adequately by aerobic biological treatment (activated sludge process), due to the decrease in organic matter concentration present in winery wastewaters. The possibility of a combined photo-Fenton process, based on the use of sunlight, and aerobic biological treatment (activated sludge) is suggested.

  15. WASTEWATER

    African Journals Online (AJOL)

    acid in the ozonized wastewater were degraded completely by ... wastewater from pulp and paper plants pose serious environmental problems when they are ... support aquatic life (Stern & Gasner 1974), Gupta and Battacharya 1985).

  16. Stochastic modeling to identify requirements for centralized monitoring of distributed wastewater treatment.

    Science.gov (United States)

    Hug, T; Maurer, M

    2012-01-01

    Distributed (decentralized) wastewater treatment can, in many situations, be a valuable alternative to a centralized sewer network and wastewater treatment plant. However, it is critical for its acceptance whether the same overall treatment performance can be achieved without on-site staff, and whether its performance can be measured. In this paper we argue and illustrate that the system performance depends not only on the design performance and reliability of the individual treatment units, but also significantly on the monitoring scheme, i.e. on the reliability of the process information. For this purpose, we present a simple model of a fleet of identical treatment units. Thereby, their performance depends on four stochastic variables: the reliability of the treatment unit, the respond time for the repair of failed units, the reliability of on-line sensors, and the frequency of routine inspections. The simulated scenarios show a significant difference between the true performance and the observations by the sensors and inspections. The results also illustrate the trade-off between investing in reactor and sensor technology and in human interventions in order to achieve a certain target performance. Modeling can quantify such effects and thereby support the identification of requirements for the centralized monitoring of distributed treatment units. The model approach is generic and can be extended and applied to various distributed wastewater treatment technologies and contexts.

  17. Fecal contamination of wastewater treatment plants in Portugal.

    Science.gov (United States)

    Oliveira, Manuela; Serrano, Isa; Van Harten, Sofia; Bessa, Lucinda J; Bernardo, Fernando; da Costa, Paulo Martins

    2016-07-01

    Reutilization of effluents from wastewater treatment plants (WWTP) for non-potable applications is increasing due to the reduction of sustainable water resources. These products mostly come from municipal WWTP and also from slaughterhouses effluents. The microbiological certification of these products is mandatory before their discharge into the environment. This study evaluates if the treatment applied in WWTP to municipal waters or to poultry slaughterhouse effluents distributed over the Portuguese continental territory is efficient in reducing the microbiological risk associated with the reutilization of those wastewaters and sludges. Fecal indicators Escherichia coli and enterococci were evaluated in 42 and 24 wastewater samples from 14 municipal WWTP and 8 poultry slaughterhouse treatment plants, respectively, by the conventional culture method and a rapid Fluorescent in situ hybridization (FISH) technique. Bacterial enumeration in inflow water from most WWTP was rather high (generally >10(5) cells/ml), for both E. coli and Enterococcus spp., and the bacterial quantification by FISH was generally higher than enumeration by the conventional culture method. In both types of treatment plants studied, bacterial load from effluents and sludges was not statistically different from the inflows, indicating that the treatment applied seems to be equally unable to reduce the microbiological load of the effluents. These findings may jeopardize the safe reuse of treated wastewaters in agriculture and the quality of the water environment. Therefore, products like water, sewage sludge, and biosolids originated from the municipal and slaughterhouse WWTP studied should not be reutilized, and effluents treatment should be urgently reviewed.

  18. Treatment of wastewater from dyes manufacture using adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Rathi, A.K.A.; Puranik, S.A. [Govt. of Gujarat, Gandhinagar (India). Industries Commissionerate

    2003-11-01

    In a typical wastewater treatment flow sheet used by several industrial units in India, various stages of treatment include the primary treatment-oil/grease removal and neutralization, followed by the secondary treatment-chemical/biological oxidation and clarification, and the tertiary treatment-adsorption onto activated carbon. The neutralization of the wastewater with acid/milk of lime increases the concentration of total dissolved solids, which adversely affects the activity of microorganisms during biological oxidation process. To overcome this limitation, adsorption is proposed in the first stage of treatment and other stages could follow depending on the quality of the wastewater. Experiments were carried out on wastewater samples from different plants manufacturing dyes using various adsorbents - activated carbon, fly ash, bentonite and lignite. The effectiveness of adsorbents in reducing chemical oxygen demand (COD) and colour was evaluated. The results of COD reduction are fitted into different models available in the literature. A model for predicting COD equilibrium values is proposed. Sorption kinetics and rate of reduction of COD over time are also discussed.

  19. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  20. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  1. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  2. MBR pilot plant for textile wastewater treatment and reuse.

    Science.gov (United States)

    Lubello, C; Caffaz, S; Mangini, L; Santianni, D; Caretti, C

    2007-01-01

    An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.

  3. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions.

    Science.gov (United States)

    Chang, Michelle

    2015-12-15

    Microplastics (microplastics entering a wastewater stream. Through inquiry, I learned the practices of two local wastewater treatment facilities. My findings show that consumer decisions and treatment protocols both play crucial parts in minimizing microplastic pollution.

  4. Fate and behaviour of ZnO engineered nanoparticles in a simulated domestic wastewater treatment plant

    CSIR Research Space (South Africa)

    Chaúquea, EFC

    2013-08-01

    Full Text Available adversely impacting on the wastewater biological treatment processes. Among the increasing emerging contaminants into wastewater are engineered nanoparticles (ENPs). However, the impacts of these contaminants including metal oxides ENPs on the treatment...

  5. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment.

    Science.gov (United States)

    Arvaniti, Olga S; Stasinakis, Athanasios S

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4-C14, C16, C18 carboxylates; C4-C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and anaerobic

  6. Treatment of Municipal Wastewater by using Rotating Biological Contractors (Rbc’s

    Directory of Open Access Journals (Sweden)

    Prashant A.Kadu

    2013-01-01

    Full Text Available The rotating biological contactor process offers the specific advantages of a biofilm system in treatment of wastewater for removal of soluble organic substances. It is a unique adaptation of the movingmedium biofilm system which facilitates easy and effective oxygen transfer. Media in the form of several large flat or corrugated discs with biofilm attached to the surface is mounted on a common shaft partially submerged in the wastewater and rotated through contoured tanks in which wastewater flows on a continuous basis. The compactness of the system and its economical operation makes it a viable option specially suited for decentralized wastewater treatment technologies. The process optimisation and adaptability under different environmental conditions and influent characteristics remain challenging tasks for the efficient use of this technology. Oxygen is accepted to be one of the most important and often limiting substrates in an aerobic treatment process. Oxygen transfer through the water film developed on a rotating disc revealed that the oxygen transfer coefficient varies with the rotational speed and the location on the exposed disc surface. Increase of ambient temperature resulted in decrease of the oxygen mass transfer rate. The biofilm model was implemented for a three stage rotating biological contactor based on a laboratory-scale experimental set-up. The process kinetics was adopted from the Activated Sludge which represents a mixed culture biomass environment.

  7. Assessment of endotoxin activity in wastewater treatment plants.

    Science.gov (United States)

    Guizani, Mokhtar; Dhahbi, Mahmoud; Funamizu, Naoyuki

    2009-07-01

    Endotoxic material, commonly associated to biological reactions, is thought to be one of the most important constituents in water. This has become a very important topic because of the common interest in microbial products governed by the possible shift to water reuse for drinking purposes. In this light, this study was conducted to provide an assessment of endotoxic activity in reclaimed wastewater. A bacterial endotoxin test (LAL test) was applied to water samples from several wastewater treatment plants (WWTP) in Sapporo, Japan keeping in view the seasonal variation. Samples were taken from several points in WWTP (influent, effluent, return sludge, advanced treatment effluent). The findings of this study indicated that wastewater shows high endotoxin activity. The value of Endotoxin (Endo) to COD ratio in the effluent is usually higher than that of the influent. Moreover, it is found that wastewater contains initially endotoxic active material. Some of those chemicals are biodegradable and but most of them are non-biodegradable. Batch scale activated sludge studies were undertaken to understand the origin of endotoxic active material in the effluent. This study showed that those chemicals are mainly produced during biological reactions, more precisely during decay process. Moreover, raw wastewater (RWW) contains high amounts of organic matter having endotoxicity which remains in the effluent.

  8. Integrated Technology of Ozone Catalysis Oxidation -Modified Biological Aeration Filter -Ultrafiltration and Reverse Osmosis for Deep Treatment of Coking-Plant Wastewater%臭氧催化氧化-MBAF-UF-RO处理焦化废水

    Institute of Scientific and Technical Information of China (English)

    文志军; 赵爱国; 郎晓政

    2014-01-01

    China Energy Conservation and Reduction Co., LTD Construct the wastewatert reatment plant for a coking –plant by BT mode. Through analysis and argumentation, the main treatment process is a integrated technology of ozone catalysis oxidation – modified biological aeration filter – ultrafiltration and reverse os⁃mosis. The result shows that the treated water of water treatment system can meet the requirement of make-up water requirement, and the ozone catalytic oxidation reactor makes effective degradation of small molecule organic matter, at the same time, it can effectively improve the biodegradability of wastewater, which is subse⁃quent for the aeration biological filter (MBAF) and the deep desalting system (UF + RO).%中国节能减排有限公司以BT模式承建焦化废水深度处理工程。经过分析和论证,确定以臭氧催化氧化反应器+MBAF反应器+UF+RO作为水处理主体工艺。项目建成后,系统出水水质优于循环冷却补给水要求,特别是臭氧催化氧化反应器在降解小分子有机物的同时,有效改善废水可生化性,为后续改良曝气生物滤池(MBAF)进一步生物降解有机物提供了有利条件,从而确保深度脱盐系统(UF+RO)的高效、稳定运行。

  9. An optimization based framework for design and retrofit of municipal wastewater treatment plants: Case study on side-stream nitrogen removal technologies

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    effluents gave rise to development of innovative nitrogen removal technologies mostly used for water strea ms resulting fro m sludge t reatment. In this study we propose a superstructure optimization concept based on mathematica l progra mming to manage the multi - criteria WWTP design /retrofit problem...

  10. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  11. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  12. Treatemnt of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removel of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor,The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purifeid water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%,Application of this feeding and draining mode leads to the reduction of the cycle time,the increase of the utilization of the reactor volume and the simplification of the reactor structure.The treatment of a synthetic wastewater containing COD and nitrogen was investigated.The operation mode of F(D)-O(i.e.,simultaneous feeding and draining followed by the aerobic condition)was adopted.It was found that COD was degraded very fast in the initial reaction period of time,then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively,while the nitrite nitrogen level increased first and then reduced.The relationship between the COD or ammonia nitrogen loading and its removal rate was examined,and the removal of COD,ammonia nitrogen and total nitrogen could exceed 95%,90%and 80% respectively,The fact that nitrogen could e removed more completely under constant aeration(aerobic condition)of the SBBR operation mode is very interesting and could be explained in several respects.

  13. STUDY ON THE TREATMENT OF 3—PHENOXY—BENZALDEHYDE INDUSTRIAL WASTEWATER WITH POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    ZhuShiyun; ChenJinlong; 等

    1998-01-01

    In this paper,the two effluents from PBA (3-phenoxy-benzaldehyde) production process were treated by polymeric adsorbent CHA-111.PBA or PBC (3-phenoxy-benzoic acid) was recovered from the wastewater in the process of neutralization.As a secondary treatment method,adsorption with CHA-111 showed better efficiency than photocatolytic decomposition and solvent extraction.The optimal technological parameters were:adsorption:current velocity:2.0BV/hr(bed volume per hour),room temperature;desorption:current velocity:2.0BV/hr(bed volume per hour),room temperature;desorption:current velocity:1.0 BV/hr,80℃,8% sodium hydroxide aqueous solutions.In conclusion,99.9% COD in the neutralizing wastewater and 98.4% COD in the hydrolysis wastewater are removed successfully.

  14. TREATMENT OF DOMESTIC WASTEWATER IN SHALLOW WASTE STABILIZATION PONDS FOR AGRICULTURAL IRRIGATION REUSE

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2009-12-01

    Full Text Available Waste stabilization ponds are a well established wastewater treatment system being considered by World Health Organization as one of the most appropriated technology for domestic wastewater when agricultural reuse is considered, especially in developing countries. This study was performed in a series of pilot-scale stabilization ponds, being one facultative and three maturation ponds, with depths varying from 0.44 to 0.57 m. The substrate to be treated was composed of a mixture of domestic wastewater and previously anaerobicaly treated leachate. The experimental system was monitored in two different phases, in which the hydraulic retention times were 15 (phase 1 and 10 days (phase 2. Termotolerant coliform removal efficiencies were 3.8 log10 units in both phases while organic matter (BOD5 removal was 87 and 68% for phases 1 and 2, respectively.

  15. Research on the characteristic of wastewater from high-sulfur crude oil processing and its treatment technology%加工高硫原油产生污水的性质及其处理工艺

    Institute of Scientific and Technical Information of China (English)

    巫明娟; 卞玉涛

    2013-01-01

    Based on the processing of Western Canada crude oil in a refinery,the properties of the industrial wastewater generated during the processing course are analyzed. The wastewater is characterized by high pH,low sulfide content,low ammonia-nitrogen content,low oil content,and high COD content. It is found that by using the original facilities in the wastewater treatment plant, all of the wastewater generated during the course of high-sulfur Western Canada crude oil processing reaches the emission standard, through adjusting the pH, increasing flocculent dosage and glucose dosage in biochemical pool, and adjusting the temperature of biochemical pool.%对加西原油加工过程产生污水的性质进行分析,该污水具有pH大、硫化物含量低、氨氮含量低、含油量低、COD含量高的特点.在污水处理场原有设施上,通过调节pH、增加絮凝剂投加量、增加生化池葡萄糖投加量、调节生化池温度等措施,使加西原油加工期间所产生的污水全部达标排放.

  16. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  17. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  18. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  19. Operation of Wastewater Treatment Plants: A Home Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater treatment plant operators to provide a home study course to develop new qualified workers and expand the abilities of existing workers. The objective of this manual is to provide the knowledge and skills necessary for certification. Participants learn the basic operational aspects of treatment…

  20. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    Science.gov (United States)

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.