WorldWideScience

Sample records for wastewater treatment system

  1. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  2. Low technology systems for wastewater treatment: perspectives.

    Science.gov (United States)

    Brissaud, F

    2007-01-01

    Low technology systems for the treatment of wastewater are sometimes presented as remnants of the past, nowadays supposedly only meant to serve developing countries and remote rural areas. However, considering their advantages and disadvantages together with enhanced treatment requirements and recent research and technological developments, the future of these systems still appears promising. Successful applications of low technology systems require that more care is taken of their design and operation than often observed. Correlatively, more efforts should be made to decipher the treatment mechanisms and determine the related reaction parameters, so as to provide more deterministic approaches of the natural wastewater treatment systems and better predict their performance.

  3. Treatment of wastewater by natural systems.

    Science.gov (United States)

    Ayaz, S C; Akça, L

    2001-01-01

    Experimental results from a pilot-scale constructed wetland (CW) treatment plant have been described. The study was conducted at two different systems: continuous and batch. In the continuous system, the treatment yields were monitored in different loading conditions in 1-year period. The pilot plant consists of two serially connected tanks settled up with fillers; Cyperus was used as treatment media and wastewater between the two tanks was recycled periodically. Chemical oxygen demand (COD) and suspended solid (SS) removal efficiencies were obtained as 90% and 95%, respectively. The effluent COD concentration at an average loading of 122 g COD/m2 day was satisfactory for the Turkish Water Pollution Control Regulation. This means that a 0.8 m2 of garden area per person is required. Other removal values for the same conditions were as follows: total Kjeldahl nitrogen (TKN) was 77%, total nitrogen (TN) was 61%, and PO4(3-) -P was 39%. The batch experimental systems consist of 12 pairs of serially connected tanks, with each pair having a surface area of 1 m2. Each set was filled with sewage once a day, and the wastewater between the paired tanks was recycled periodically by the pump. Each pair of tanks was filled with materials such as gravel, peat, and perlite. Seven of them were vegetated with Phragmites, Cyperus, Rush, Iris, Lolium, Canna, and Paspalum, while the other five were not seeded. The best performances were obtained by Iris for COD (% 94), by Canna for ammonia nitrogen (% 98), and by Iris for total nitrogen (% 90) and phosphorus (% 55) removal.

  4. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  5. Natural systems for wastewater treatment in warm climate regions

    OpenAIRE

    Garcia Gil, Livia

    2014-01-01

    Water scarcity and the high costs of new water supply technologies are the two major factors responsible for the increasing recognition of the importance to conserve water resources by wastewater treatment, reuse or reclamation. Sustainability of sanitation systems should be related to low cost, low energy consumption and operation and maintenance requirements, especially for small communities in developing countries. Hence, natural systems for wastewater treatment seem to be a suitable so...

  6. Mobile Nitrite Wastewater Treatment System (NWTS) User Data Package

    Science.gov (United States)

    1997-09-01

    NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370 USER DATA PACKAGE UDP-2003-ENV MOBILE NITRITE WASTEWATER TREATMENT ...TITLE AND SUBTITLE MOBILE NITRITE WASTEWATER TREATMENT SYSTEMS (NWTS) USER DATA PACKAGE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...SYSTEM (NWTS) USER DATA PACKAGE by T. Richard Lee, Ph.D R. T. Kudo Joseph McGillian* *Naval Surface Warfare Center Cardcrock Division Pmladclpma, PA

  7. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  8. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  9. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  10. Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

    1996-11-01

    Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

  11. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  12. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  13. Integration of energy and environmental systems in wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Suzanna Long, Elizabeth Cudney

    2012-01-01

    Full Text Available Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  14. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  15. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    user

    The use of anaerobic process for domestic wastewater treatment would achieve lower carbon footprint ... However, its application is still limited to industrial wastewater treatment. ...... Department of Biotechnology, Lund University, Sweden.

  16. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  17. Analysis of the aerotanks efficiency in wastewater treatment system

    Directory of Open Access Journals (Sweden)

    Z. R. Shamsutdinova

    2016-01-01

    Full Text Available Тhe problem of wastewater treatment is discussed and the ways of its solution are offered in the given work. We consider the biological method based on the biochemical and physiological laws of self-purification of rivers and other bodies of water. The biological method is promising in wastewater treatment system due to its destructive, because as a result of a partial or complete destruction of the contaminants in the waste water. The intensity and effectiveness of this treatment are investigated in the article. The efficiency of wastewater treatment depends on the degree of maintaining the bacteria in state of physiological activity. For this application cases are compared processes with one, two or more stepwise of purification with differentiated water and sludge movement also structural units for biological purification schemes and the processes that accompany different types of purification. We analyze efficiency in aeration tanks with minimum and maximum regeneration zone. We found that the biological treatment with the maximum regeneration zone is more effective for chemical oxygen demand and oxidation rate higher than mode with the minimum regeneration zone. To solve the problem of efficient wastewater treatment is offered technological scheme of arrangement of aeration with variation of the angle of mixing activated sludge flows from the waste water. This flowsheet complete biological treatment is a complex of sewage treatment plants, which are located in such a way that the liquid waste passing them one after the other, is subject to mechanical, biological treatment and disinfection before lowering it into the reservoir.

  18. IMPACT OF INFLUENT MICROORGANISMS UPON POOR SOLIDS SEPARATION IN THE QUIESCENT ZONE OF AN INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    Science.gov (United States)

    One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...

  19. Operational energy performance assessment system of municipal wastewater treatment plants.

    Science.gov (United States)

    Yang, Lingbo; Zeng, Siyu; Chen, Jining; He, Miao; Yang, Wan

    2010-01-01

    Based on the statistical analysis of operational energy consumption and its influential factors from data of 599 Chinese WWTPs in 2006, it is noticed that the most influential factors include treatment technology adopted, treated sewage amount, removed pollutants amount, etc. Using the conclusion above, this paper sets up an integrated system of operational energy performance assessment for municipal wastewater treatment plants. Combining with result from on-spot research and model simulation, the calculating method of benchmark value and score of 7 energy efficiency indicators grouped into 3 levels is stated. Applying the assessment system to three plants, its applicability and objectivity are proved and suggestions to improve energy performance are provided.

  20. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  1. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  2. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  3. Dairy farm wastewater treatment by an advanced pond system.

    Science.gov (United States)

    Craggs, R J; Tanner, C C; Sukias, J P S; Davies-Colley, R J

    2003-01-01

    Waste stabilisation ponds (WSPs) have been used for the treatment of dairy farm wastewater in New Zealand since the 1970s. The conventional two pond WSP systems provide efficient removal of wastewater BOD5 and total suspended solids, but effluent concentrations of other pollutants including nutrients and faecal bacteria are now considered unsuitable for discharge to waterways. Advanced Pond Systems (APS) provide a potential solution. A pilot dairy farm APS consisting of an Anaerobic pond (the first pond of the conventional WSP system) followed by three ponds: a High Rate Pond (HRP), an Algae Settling Pond (ASP) and a Maturation Pond (which all replace the conventional WSP system facultative pond) was evaluated over a two year period. Performance was compared to that of the existing conventional dairy farm WSP system. APS system effluent quality was considerably higher than that of the conventional WSP system with respective median effluent concentrations of BOD5: 34 and 108 g m(-3), TSS: 64 and 220 g m(-3), NH4-N: 8 and 29 g m(-3), DRP: 13 and 17 g m(-3), and E. coli: 146 and 16195 MPN/100 ml. APS systems show great promise for upgrading conventional dairy farm WSPs in New Zealand.

  4. Wastewater Treatment

    Science.gov (United States)

    ... make water safe. Effects of wastewater pollutants If wastewater is not properly treated, then the environment and human health can be negatively impacted. These impacts can include harm to fish and wildlife ... in wastewater and the potentially harmful effects these substances can ...

  5. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  6. Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment

    National Research Council Canada - National Science Library

    Xu, Dong; Liu, Sitong; Chen, Qian; Ni, Jinren

    2017-01-01

    The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated...

  7. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  8. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    The Arctic nature is vulnerable to environmental contaminants because of low biological diversity, lack of nutrients and extreme seasonal variations in light. In Greenland neither industrial nor domestic wastewater is treated before it is discharged to the recipients, which in most cases is the sea...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...

  9. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  10. Nitrous Oxide Production in a Sequence Batch Reactor Wastewater Treatment System Using Synthetic Wastewater

    Institute of Scientific and Technical Information of China (English)

    MAO Jian; JIANG Xiao-Qin; YANG Lin-Zhang; ZHANG Jian; QIAO Qing-Yun; HE Chen-Da; YIN Shi-Xue

    2006-01-01

    The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as indicated by rhythmic changes of total N, dissolved oxygen,chemical oxygen demand, NO2-, NO3-, NH4+, pH, and N2O. Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05%of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase.

  11. Integrated airlift bioreactor system for on-site small wastewater treatment.

    Science.gov (United States)

    Chen, S L; Li, F; Qiao, Y; Yang, H G; Ding, F X

    2005-01-01

    An integrated airlift bioreactor system was developed, which mainly consists of a multi-stage loop reactor and a gas-liquid-solid separation baffle and possesses dual functions as bioreactor and settler. This integrated system was used for on-site treatment of industrial glycol wastewater in lab-scale. The strategy of gradually increasing practical wastewater concentration while maintaining the co-substrate glucose wastewater concentration helped to accelerate the microbial acclimation process. Investigation of microbial acclimation, operation parameters evaluation and microbial observation has demonstrated the economical and technical feasibility of this integrated airlift bioreactor system for on-site small industrial wastewater treatment.

  12. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  13. Wastewater treatment pilot

    OpenAIRE

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  14. Assessment of the Possibility of Improvement of Dairy Wastewater Treatment System Operation

    OpenAIRE

    Hercog, Jernej

    2009-01-01

    The thesis deals with the issue of dairy wastewater from the viewpoint of successful elimination of organic and inorganic components in physical and biological treatment processes in pre-treatment systems. Theoretically, the thesis covers the definitions and explanations of biological wastewater treatment, and deals with treatment processes in the sequencing batch reactor as well as the tertiary treatment level for the removal of nitrogen and phosphorus compounds. Furthermore, the thesis cove...

  15. Petrochemical wastewater treatment with a pilot-scale bioaugmented biological treatment system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In solving the deterioration of biological treatment system treating petrochemical wastewater under low temperatures,bioaugmentation technology was adopted by delivering engineering bacteria into a pilot-scale two-stage anoxic-oxic (A/O)process based on previous lab-scale study. Experimental results showed that when the concentrations of COD and NH4+-N of the influent were 370~910 mg/L and 10~70 mg/L, the corresponding average concentrations of those of effluent were about 80 mg/L and 8 mg/L respectively, which was better than the Level I criteria of the Integrated Wastewater Discharge Standard (GB8978-1996). According to GC-MS analysis of the effluents from both the wastewater treatment plant (WWTP) and the pilot system, there were 68 kinds of persistent organic pollutants in the WWTP effluent, while there were only 32 in that of the pilot system. In addition, the amount of the organics in the effluent of the pilot system reduced by almost 50% compared to that of the WWTP. As a whole, after bioaugmentation, the organic removal efficiency of the wastewater treatment system obviously increased.

  16. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    Science.gov (United States)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  17. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  18. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  19. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  20. Control of Sewer systems and Wastewater treatment plants using pollutant concentration profiles

    DEFF Research Database (Denmark)

    Bechmann, Henrik; Nielsen, Marinus K.; Madsen, Henrik

    1998-01-01

    On-line measurements of pollutants in the wastewater combined with grey-box modelling are used to estimate the amount of deposits in the sewer system. The pollutant mass flow at the wastewater treatment plant is found to consist of a diurnal profile minus the deposited amount of pollutants...

  1. COMBINED ANAEROBIC-AEROBIC SYSTEM FOR TREATMENT OF TEXTILE WASTEWATER

    Directory of Open Access Journals (Sweden)

    MAHDI AHMED

    2007-04-01

    Full Text Available Textile manufacturing consumes a considerable amount of water in its manufacturing processes. The water is primarily utilized in the dyeing and finishing operations of the textile establishments. Considering both the volume generated and the effluent composition, the textile industry wastewater is rated as the most polluting among all industrial sectors. In this study a combined anaerobic-aerobic reactor was operated continuously for treatment of textile wastewater. Cosmo balls were used to function as growth media for microorganisms in anaerobic reactor. Effect of pH, dissolved oxygen, and organic changes in nitrification and denatrification process were investigated. The results indicated that over 84.62% ammonia nitrogen and about 98.9% volatile suspended solid (VSS removal efficiency could be obtained. Dissolved oxygen (DO, pH were shown to have only slight influences on the nitrification process; and for each 10% removal of nitrogen, only 3% of pH changes were achieved.

  2. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers

    Science.gov (United States)

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  3. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  4. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  5. A heat transfer model for biological wastewater treatment system

    Science.gov (United States)

    Lin, S. H.

    A heat transfer model for predicting the water temperature of aeration tank in a biological wastewater treatment plant is presented. The heat transfer mechanisms involved in the development of the heat transfer model include heat gains from solar radiation and biochemical reaction and heat losses from evaporation, aeration, wind blowing and conduction through tank walls. Several empirical correlations were adopted and appropriate assumptions made to facilitate the model development. Experiments were conducted in the biological wastewater treatment plant of a chemical fiber company over a year's period. The operational, weather and temperature data were registered. The daily water temperature data were averaged over a month period and compared with the theoretical prediction. Excellent agreement has been obtained between the predicted and measured temperatures, verifying the proposed heat transfer model. Zusammenfassung Es wird ein Wärmeübergangsmodell zur Berechnung der Wassertemperatur im Belüftungstank einer Anlage zur biologischen Abwasserbehandlung vorgestellt. Die in das Modell eingehenden Wärmeübergangsmechanismen umfassen: solare Wärmeeinstrahlung, biochemische Reaktion, Wärmeverluste durch Verdampfung, Belüftung, Windeinfluß und Leitung durch die Behälterwände. Mehrere empirische Beziehungen sowie vertretbare Annahmen tragen zur Modellvereinfachung bei. An der biologischen Abwasser-Kläranlage einer Chemiefaserfirma wurden ein Jahr lang Experimente durchgeführt und dabei Betriebs-, Wetter- und Temperaturdaten aufgezeichnet. Die täglichen Wassertemperaturen, gemittelt über einen Monat, zeigten ausgezeichnete Übereinstimmung mit den theoretischen Vorausberechnungen und bestätigten so die Brauchbarkeit des vorgeschlagenen Wärmeübergangsmodells.

  6. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically activated sludge models – are introduced since these define...

  7. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically, activated sludge models – are introduced since these define...

  8. Treatment of turtle-breeding wastewater and domestic fecal sewage with soil cultivating system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Turtle-breeding wastewater and domestic fecal sewage were treated by means of soil cultivating system. Results indicated that more than 50% CODcr and BOD5 of wastewaters were removed, removal rates of NH4+ -N could reach about 70%-80%, but PO34- could not be removed. The thesis analyzed functional mechanisms for pollutants and put forward main elements affecting treatment efficiencies, thus provided conditions for further research.

  9. An Integrated System for the Treatment of Coal Conversion Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Henry Y. Wang; Keeran R. Srinivasan

    1999-02-25

    Treatment of mixed waste from coal conversion wastewaters involves the degradation of toxic organics and the removal of heavy metals. An integrated and cost-effective treatment scheme that can implement such a process is considered essential to promote continued development and growth of coal conversion processes without any deleterious effects on our ecosystem. We have recently developed a pH-dependent, reversible heavy metal adsorption/desorption process which promises to be a cost-effective alternative to the treatment and disposal options currently in place for these inorganic contaminants. Our work shows that: (1) Polydisperse, industrial-grade surfactants can be used in the development of novel, surfactant-coated smectitic clays containing up to 50% by weight of adsorbed surfactant, (2) Reversible adsorption and resorption of cationic (CU(II) and Cd(II)) and anionic (Cr(VI)) heavy metals from their respective aqueous solutions onto these surfactant-modified smectites can be effected using pH of the medium as a switch, and (3) These surfactant-modified smectites can be repeatedly used (up to 5 times) with only a minimal loss in their adsorption potency and with very little leaching of the adsorbed surfactants.

  10. Integrated constructed wetland systems: design, operation, and performance of low-cost decentralized wastewater treatment systems.

    Science.gov (United States)

    Behrends, L L; Bailey, E; Jansen, P; Houke, L; Smith, S

    2007-01-01

    Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84% +) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.

  11. The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Herto Dwi Ariesyady

    2016-02-01

    Full Text Available The Bojongsoang Wastewater Treatment Plant (WWTP serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease wastewater treatment performance. More knowledge about the relationship between the nutrients concentration and algae blooming conditions, such as microalgae diversity, is needed to control and maintain the performance of the wastewater treatment plant. Therefore this study was conducted, in order to reveal the diversity of microalgae in the stabilization pond system and its relationship with the water characteristics of the comprising ponds. The results showed that the water quality in the stabilization pond system of Bojongsoang WWTP supported rapid growth of microalgae, where most rapid microbial growth occurred in the anaerobic pond. The microalgae diversity in the stabilization ponds was very high, with various morphologies, probably affiliated with blue-green algae, green algae, cryptophytes, dinoflagellates and diatoms. This study has successfully produced information on microalgae diversity and abundance profiles in a stabilization pond system.

  12. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    Science.gov (United States)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery

  13. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  14. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  15. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  16. Technical Innovation of Land Treatment Systems for Municipal Wastewater in Northeast China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qi-Xing; ZHANG Qian-Ru; SUN Tie-Heng

    2006-01-01

    On the basis of ecological principles including holistic optimization, cycling and regeneration, and regional differen tiation, land treatment systems (LTSs) for municipal wastewater were continuously explored and updated in the western Shenyang area and the Huolinhe area, China. Intensified pretreatment, addition of a man-made soil filtration layer, and use of an ecologically diversified secondary plant cover were proved to be technically feasible. Hydraulic loading was de termined according to the assimilation capacity of soil ecosystems, thus ensuring safe operation of wastewater treatment.This modernized and alternative approach to wastewater treatment had been widely applied in middle-sized and small cities and towns of Northeast China, and these innovative systems in some areas had indicated favorable ecological, social,and economic benefits.

  17. A Review of On-Site Wastewater Treatment Systems in Western Australia from 1997 to 2011

    Directory of Open Access Journals (Sweden)

    Maria Gunady

    2015-01-01

    Full Text Available On-site wastewater treatment systems (OWTS are widely used in Western Australia (WA to treat and dispose of household wastewater in areas where centralized sewerage systems are unavailable. Septic tanks, aerobic treatment units (ATUs, and composting toilets with greywater systems are among the most well established and commonly used OWTS. However, there are concerns that some OWTS installed in WA are either performing below expected standards or failing. Poorly performing OWTS are often attributed to inadequate installation, inadequate maintenance, poor public awareness, insufficient local authority resources, ongoing wastewater management issues, or inadequate adoption of standards, procedures, and guidelines. This paper is to review the installations and failures of OWTS in WA. Recommendations to the Department of Health Western Australia (DOHWA and Local Government (LG in regard to management strategies and institutional arrangements of OWTS are also highlighted.

  18. A review of on-site wastewater treatment systems in Western Australia from 1997 to 2011.

    Science.gov (United States)

    Gunady, Maria; Shishkina, Natalia; Tan, Henry; Rodriguez, Clemencia

    2015-01-01

    On-site wastewater treatment systems (OWTS) are widely used in Western Australia (WA) to treat and dispose of household wastewater in areas where centralized sewerage systems are unavailable. Septic tanks, aerobic treatment units (ATUs), and composting toilets with greywater systems are among the most well established and commonly used OWTS. However, there are concerns that some OWTS installed in WA are either performing below expected standards or failing. Poorly performing OWTS are often attributed to inadequate installation, inadequate maintenance, poor public awareness, insufficient local authority resources, ongoing wastewater management issues, or inadequate adoption of standards, procedures, and guidelines. This paper is to review the installations and failures of OWTS in WA. Recommendations to the Department of Health Western Australia (DOHWA) and Local Government (LG) in regard to management strategies and institutional arrangements of OWTS are also highlighted.

  19. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    OpenAIRE

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewater treatments systems. Anaerobic wastewater treatment has gained popularity and is now one of the key technologies in environmental biotechnology. However, knowledge of the microbial community str...

  20. How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production.

    Science.gov (United States)

    Chen, Hong; Chen, Yinguang; Zheng, Xiong; Li, Xiang; Luo, Jingyang

    2014-10-15

    Usually the studies regarding the effect of engineered nanoparticles (NPs), which are released to wastewater treatment plant, on sludge anaerobic treatment in the literature have been conducted by directly adding NPs to sludge treatment system. Actually, NPs must enter into the wastewater treatment facility from influent before sludge being treated. Thus, the documented results can not reflect the real situations. During sludge anaerobic treatment for producing volatile fatty acids (VFA, the preferred carbon source for wastewater biological nutrient removal), it was found in this study that the entering of CuNPs to biological wastewater treatment system had no significant effect on sludge-derived VFA generation, while direct addition of CuNPs to sludge fermentation reactor caused a much lower VFA production, when compared to the control test. Further investigation revealed that the entering of CuNPs into wastewater biological treatment system improved sludge solubilization due to the decline of sludge particle size and the increase of sludge microorganism cells breakage. In addition, there was no obvious influence on hydrolysis, while significant inhibition was observed on acidification, resulting in the final VFA production similar to the control. When CuNPs were directly added to the fermentation system, the solubilization was little influenced, however the hydrolysis and acidification were seriously inhibited, causing the ultimate VFA generation decreased. Therefore, selecting proper method close to the real situation is vital to accurately assess the toxicity of nanoparticles on sludge anaerobic fermentation.

  1. TREATMENT OF TEXTILE WASTEWATER USING A CONTINUOUS FLOW ACTIVATED SLUDGE SYSTEM AT PILOT-SCALE

    Directory of Open Access Journals (Sweden)

    M. A. ABOULHASSAN

    2014-11-01

    Full Text Available Textile industry wastewaters contain high concentrations of organic matter, toxic substances and dyes and pigments, and are harmful to receiving environment. Activated sludge system at pilot scale with continuous feeding, was used for the treatment of a dyeing unit effluent. The results showed that treatment allows a removal rate of 40-56 % of chemical oxygen demand (COD, and 13 to 30 % of color. The adsorption on sludge appears to be the main process responsible for the color removal of wastewater generated by textile industry.

  2. Net environmental benefit: introducing a new LCA approach on wastewater treatment systems.

    Science.gov (United States)

    Godin, D; Bouchard, C; Vanrolleghem, P A

    2012-01-01

    Life cycle assessment (LCA) allows evaluating the potential environmental impacts of a product or a service in relation to its function and over its life cycle. In past LCAs applied to wastewater treatment plants (WWTPs), the system function definition has received little attention despite its great importance. This has led to some limitations in LCA results interpretation. A new methodology to perform LCA on WWTPs is proposed to avoid those limitations. It is based on net environmental benefit (NEB) evaluation and requires assessing the potential impact of releasing wastewater without and with treatment besides assessing the impact of the WWTP's life cycle. The NEB allows showing the environmental trade-offs between avoided impact due to wastewater treatment and induced impact by the WWTP's life cycle. NEB is compared with a standard LCA through the case study of a small municipal WWTP consisting of facultative aerated lagoons. The NEB and standard LCA show similar results for impact categories solely related to the WWTP's life cycle but differ in categories where wastewater treatment environmental benefit is accounted for as NEB considers influent wastewater quality whereas standard LCA does not.

  3. Micropollutant removal in an algal treatment system fed with source separated wastewater streams

    NARCIS (Netherlands)

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Hernandez Leal, Lucia; Fernandes, T.V.; Langenhoff, Alette; Zeeman, Grietje

    2016-01-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceu

  4. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    Science.gov (United States)

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    Science.gov (United States)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  6. Cleaning Process Research of MVR High Concentration Salty Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Wang Na

    2015-01-01

    Full Text Available A mechanical vapor re-compression (MVR evaporation system for the treatment of the highly-concentrated inorganic salt wastewater was investigated, and its process characteristics were analyzed taking sodium chloride salt wastewater as the treated solution. In this paper, by adding “H2O2 oxidation + filter +flash evaporation + hot filter” technology on the basis of original traditional MVR treatment system, the optimum technological conditions were determined through the experiment: The pH value is 8.5; the oxidation time is 24.0h; H2O2 amount accounting for 1% of the total wastewater under the condition of outlet test MVR system respectively fell 88.5% and 90.1% than the traditional process of effluent COD and NH3-N removal rate. MVR system for the sodium chloride salt qualified rate was increased from 83.2% to 98.2%. On the other hand, this process avoided the highly-concentrated outside of mother liquor by flashing evaporation recycling volatile solvent; the optimization process results were found to be consistent with published practical industrial data. Compared with the new process MVR system, the operation load of MVR system was lower. Therefore, the system can be used to treat the highly-concentrated inorganic salt wastewater and save energy. Therefore, the cleaning process can achieve remarkable energy saving and consumption, and reduce the pollution and the pollution and environmental protection effect.

  7. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet.

    Science.gov (United States)

    Bernard, O; Chachuat, B; Hélias, A; Le Dantec, B; Sialve, B; Steyer, J-P; Lardon, L; Neveu, P; Lambert, S; Gallop, J; Dixon, M; Ratini, P; Quintabà, A; Frattesi, S; Lema, J M; Roca, E; Ruiz, G; Rodriguez, J; Franco, A; Vanrolleghem, P; Zaher, U; De Pauw, D J W; De Neve, K; Lievens, K; Dochaine, D; Schoefs, O; Fibrianto, H; Farina, R; Alcaraz Gonzalez, V; Gonzalez Alvarez, V; Lemaire, P; Martinez, J A; Esandi, F; Duclaud, O; Lavigne, J F

    2005-01-01

    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem.

  8. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    Science.gov (United States)

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  9. Mathematical Modeling of Hollow-Fiber Membrane System in Biological Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jian PENG

    2006-02-01

    Full Text Available A set of mathematical models were derived based on the bio-kinetics and material balance principles to describe the performance of membrane system in this research. A synthetic wastewater and a meat packing wastewater were processed through a lab-scale membrane bioreactor system to generate experimental data for calibration and verification of the derived models. For the synthetic wastewater treatment, a high and stable Total Organic Carbon (TOC removal was achieved with volumetric organic loading from 0.2 to 24.2 kg TOC/m3ƒ(d. It was found that the derived system models fit the experimental data well. The bio-kinetic coefficients of k, Ks, Y and kd in the models were found to be 0.16 d-1, 1.0 mg/L, 1.75 mg Mixed Liquor Volatile Suspended Solids (MLVSS/mg TOC and 0.11 d-1, respectively. For the meat packing wastewater treatment, the bio-kinetic coefficients of k, Ks, Y and kd were found to be 0.48 d-1, 56.3 mg/L, 0.53 mg MLVSS/mg COD and 0.04 d-1, respectively. F/M ratio of 0.08 was found to be the proper operating condition for the system. Based on the proposed system models, the optimum MLSS concentration and F/M ratio can be computed to yield minimum cost of a membrane bioreactor system without excess biomass production.

  10. Potential of Decentralised Wastewater Treatment Systems Applicable to India

    Directory of Open Access Journals (Sweden)

    Jitesh Arora

    2016-08-01

    Full Text Available Appropriate sanitation facilities are still a challenge in many parts of the world, particularly in developing countries. With regard to almost 950 million people defecating in the open, the question arises whether the existing treatment facilities are sufficient to provide for a healthy sanitation in the world. This paper mainly emphasizes on developing countries (particularly, India where cost is generally a very important parameter of judgment for choosing the appropriate system. This makes decentralized treatment systems much more suitable for installation as they are easier to build and operate, both financially and technically. This paper includes basic differences and fundamental explanations about the processes involved in different decentralized treatment systems and their comparison on the basis of installation cost carried out by using a technology ranking method. It is concluded that waste stabilisation ponds would be most cost effective solution from capital investment point of view. However, Multi Criteria Analysis (MCA should be carried out for appropriate technology selection in different scenarios on the basis of different criteria. New developments in sanitation technologies can play an important role in selecting appropriate sanitation technology for a particular scenario.

  11. Combined sulphur cycle based system of hydrogen production and biological treatment of wastewater.

    Science.gov (United States)

    Hua, Li Wei; Lei, Lei; Ningbo, Yang; Wei, Yan

    2009-11-01

    The experiment was conducted to investigate continuous hydrogen production with lower cost and sulphate-rich wastewater treatment. In this paper, both anaerobic bio-treatment of sulphate-rich wastewater and hydrogen production were applied to construct a laboratory-scale combined sulphur cycle based system. The system consisted of two reactors, which were a photocatalytic reactor and an anaerobic bioreactor, respectively. In the anaerobic bioreactor, sulphate-reducing bacteria (SRB) converted SO4(2-) to S(2-). The produced S(2-) yielded by SRB was further used as a sacrificial reagent to produce H2 in the photocatalytic reactor. Then, S(2-) was changed into SO4(2-), which returned to the anaerobic bioreactor for treatment again. The present study highlighted an advantage compared with the conventional method, in that no extra S(2-) was added to the photocatalytic reactor, which reduced the total cost and realized continuous hydrogen production. The average COD removal efficiency was 79.6%.

  12. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    Science.gov (United States)

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  13. Distribution of free-living amoebae in a treatment system of textile industrial wastewater.

    Science.gov (United States)

    Ramirez, Elizabeth; Robles, Esperanza; Martinez, Blanca; Ayala, Reynaldo; Sainz, Guadalupe; Martinez, Maria Elena; Gonzalez, Maria Elena

    2014-11-01

    Free-living amoebae have been found in soil, air and a variety of aquatic environments, but few studies have been conducted on industrial wastewater and none on wastewater from the textile industry. The aim of this study was to determine the presence and distribution of free-living amoebae in a biological treatment system that treats textile industrial wastewater. Samples were taken from input, aeration tank, sedimentation tank and output. Samples were centrifuged at 1200g for 15min, the sediment was seeded on non-nutritive agar with Enterobacter aerogenes (NNE) and the plates were incubated at 30 and 37°C. Free-living amoebae were present in all stages of the treatment system. The highest number of amoebic isolates was found in the aeration tank and no seasonal distribution was observed during the year. A total of 14 amoeba genera were isolated: Acanthamoeba, Echinamoeba, Korotnevella, Mayorella, Naegleria, Platyamoeba, Saccamoeba, Stachyamoeba, Thecamoeba, Vahlkampfia, Vannella, Vermamoeba, Vexillifera and Willaertia. The most frequently found amoebae were Acanthamoeba and Vermamoeba which were found in all treatment system stages. The constant presence and diversity of free-living amoebae in the treatment system were important findings due to the characteristics of the wastewater from the textile plant in terms of the residue content from colorants, fixers, carriers, surfactants, etc., used in fabric dyeing and finishing processes. The factors that determined the presence and distribution of amoebae in the activated sludge system were their capacity to form cysts, which allowed them to resist adverse conditions; food availability; an average temperature of 27-33°C; dissolved oxygen in average concentrations above 2mg/L, and pH in a range of 5.9-7.1.

  14. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  15. The effects of operational and environmental variations on anaerobic wastewater treatment systems: a review

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R.C. [Embrapa Agroindustria Tropical (Brazilian Agricultural Research Corporation, Inst. of Tropical Agroindustry), Fortaleza (Brazil); Haandel, A.C. van [Federal University of Campina Grande (Brazil); Zeeman, G.; Lettinga, G. [Wageningen Univ. (Netherlands)

    2006-06-15

    With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in external factors, but the severity of the effect is dependent upon the type, magnitude, duration and frequency of the imposed changes. The typical responses include a decrease in performance, accumulation of volatile fatty acids, drop in pH and alkalinity, change in biogas production and composition, and sludge washout. This review summarises the causes, types and effects of operational and environmental variation on anaerobic wastewater treatment systems. However, there still remain some unclear technical and scientific aspects that are necessary for the improvement of the stability and reliability of anaerobic processes. (author)

  16. The Comparative Evaluation of the Performance of Two Phytoremediation Systems for Domestic Wastewater Treatment.

    Science.gov (United States)

    Valipour, A; Azizi, Sh; Raman, V K; Jamshidi, S; Hamnabard, N

    2014-07-01

    The constructed wetlands as well engineered techniques have been used effectively for phytoremediation of wastewater and pollution control during the last decades. In these technologies, the naturally occurring processes of plants alongside micro-organisms present in the bio-film attached to the roots, soil substrate and water column degrade the organic pollutants. The study seeks to compare the potential use of Phragmites sp. reed bed and floating macrophyte water hyacinth (Eichhornia crassipes) system for domestic wastewater treatment. The sewage treatment performance is evaluated as 80% & 76% chemical oxygen demand (COD), 90% & 87% biological oxygen demand (BOD5), 24% & 18% total dissolved solids (TDS), 69% & 67% total suspended solids (TSS), 12% & 5% Chlorides, 73% & 69% ammonia nitrogen (NH3-N), 42% & 31% phosphate (PO4-P), 93% & 91% most probable number (MPN) and 95% & 92% total viable count (TVC) reduction at optimum hydraulic retention time (HRT) of 24 & 43 h in Phragmites sp. and water hyacinth systems, respectively. Likewise, the floating macrophyte pond contrary to reed bed process shows insignificant pollutant diminution at 24 h HRT. This paper also highlights the microbial population present through the wetland systems by estimation of total viable count (TVC). The botanical aspect with reference to the plant growth is shown a significant increase in vegetation yield. The overall studies indicate the better treatment efficiency by preferred Phragmites sp. root zone system at low foot print area for domestic wastewater.

  17. A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.

    Science.gov (United States)

    Wang, Hangyao; Zhou, Qin; Zhang, Guangming; Yan, Guokai; Lu, Haifeng; Sun, Liyan

    A novel process coupling photosynthetic bacteria (PSB) with electrodeionization (EDI) treatment was proposed to treat high ammonia wastewater and recover bio-resources and nitrogen. The first stage (PSB treatment) was used to degrade organic pollutants and accumulate biomass, while the second stage (EDI) was for nitrogen removal and recovery. The first stage was the focus in this study. The results showed that using PSB to transform organic pollutants in wastewater into biomass was practical. PSB could acclimatize to wastewater with a chemical oxygen demand (COD) of 2,300 mg/L and an ammonia nitrogen (NH4(+)-N) concentration of 288-4,600 mg/L. The suitable pH was 6.0-9.0, the average COD removal reached 80%, and the biomass increased by an average of 9.16 times. The wastewater COD removal was independent of the NH4(+)-N concentration. Moreover, the PSB functioned effectively when the inoculum size was only 10 mg/L. The PSB-treated wastewater was then further handled in an EDI system. More than 90% of the NH4(+)-N was removed from the wastewater and condensed in the concentrate, which could be used to produce nitrogen fertilizer. In the whole system, the average NH4(+)-N removal was 94%, and the average NH4(+)-N condensing ratio was 10.0.

  18. An analysis of the market potential of water hyacinth-based systems for municipal wastewater treatment

    Science.gov (United States)

    Robinson, A. C.; Gorman, H. J.; Hillman, M.; Lawhon, W. T.; Maase, D. L.; Mcclure, T. A.

    1976-01-01

    The potential U.S. market for tertiary municipal wastewater treatment facilities which make use of water hyacinths was investigated. A baseline design was developed which approximates the "typical" or "average" situation under which hyacinth-based systems can be used. The total market size for tertiary treatment was then estimated for those geographical regions in which hyacinths appear to be applicable. Market penetration of the baseline hyacinth system when competing with conventional chemical and physical processing systems was approximated, based primarily on cost differences. A limited analysis was made of the sensitivity of market penetration to individual changes in these assumptions.

  19. Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Watari, Takahiro; Thanh, Nguyen Thi; Tsuruoka, Natsumi; Tanikawa, Daisuke; Kuroda, Kyohei; Huong, Nguyen Lan; Tan, Nguyen Minh; Hai, Huynh Trung; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Yamaguchi, Takashi

    2015-11-21

    Natural rubber processing wastewater contains high concentrations of organic compounds, nitrogen, and other contaminants. In this study, a treatment system composed of a baffled reactor (BR), an upflow anaerobic sludge blanket (UASB) reactor, and a downflow hanging sponge (DHS) reactor was used to treat natural rubber processing wastewater in Vietnam. The BR showed good total suspended solids removal of 47.6%, as well as acidification of wastewater. The UASB reactor achieved a high chemical oxygen demand (COD) removal efficiency of 92.7% ± 2.3% and energy recovery in the form of methane with an organic loading rate of 12.2 ± 6.6 kg-COD·m(-3)·day(-1). The DHS reactor showed a high performance in residual organic matter removal from UASB effluent. In total, the system achieved high-level total COD removal of 98.6% ± 1.2% and total suspended solids removal of 98.0% ± 1.4%. Massive parallel 16S rRNA gene sequencing of the retained sludge in the UASB reactor showed the predominant microbial phyla to be Bacteroidetes, Firmicutes, Proteobacteria, WWE1, and Euryarchaeota. Uncultured bacteria belonging to the phylum Bacteroidetes and Phylum WWE1 were predominant in the UASB reactor. This microbial assemblage utilizes the organic compounds contained in natural rubber processing wastewater. In addition, the methane-producing archaea Methanosaeta sp. and Methanolinea sp. were detected.

  20. Application of recovered magnesium hydroxide from a flue gas desulfurization system for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.L.; Wu, Q.; Keener, T.; Zhuang, L.A.; Gurusamy, R.; Pehkonen, S.

    1999-07-01

    Magnesium hydroxide, reclaimed from the flue gas desulfurization system (FGD) at the Zimmer Power Plant, Cincinnati, Ohio, is a weak base, in the form of either a slurry or powder. It has many potential applications for wastewater treatment. The objectives of this research are (1) to characterize the reclaimed magnesium hydroxide, e.g., purity, particle size distribution, dissolution kinetics; (2) to evaluate neutralization capacity and buffering intensity of the reclaimed magnesium hydroxide; (3) to study the efficacy of the reclaimed magnesium hydroxide for nutrient removal in wastewater treatment processes; (4) to investigate whether and how the magnesium hydroxide influences the characteristics of the activated sludge floc; (5) to determine whether magnesium hydroxide improves the anaerobic sludge digestion process and associated mechanisms; and (6) to conduct a cost-benefit analysis for the application of the reclaimed magnesium hydroxide in wastewater treatment and the possibility of marketing this product. Research results to date show that the purity of the reclaimed magnesium hydroxide depends largely on the recovery hydroxide slurry. This product proved to be very effective for wastewater neutralization, compared with other commonly used chemicals, both for its neutralization capacity and its buffering intensity. Due to its relatively low solubility in water and its particle size distribution characteristics, magnesium hydroxide behaves like a weak base, which will be very beneficial for process control. The authors also found that nitrogen and phosphorus could be removed from the wastewater using magnesium hydroxide due to their complexation and precipitation as magnesium ammonium phosphate (struvite). Magnesium hydroxide also greatly enhanced the settleability of the activated sludge. Intensive research on the mechanisms associated with these phenomena reveals that sweep flocculation and magnesium ion bridging between exopolymeric substances (EPS) of

  1. Treatment of coke plant wastewater by A/O fixed biofilm system

    Institute of Scientific and Technical Information of China (English)

    YU; Zhaoxiang; QI; Rong; YIN; Yanjun

    2005-01-01

    Coke plant wastewater was treated by an anaerobic-aerobic (A/O) biofilm system. A lab-scale experiment, during which semi-soft media were packed in both the anaerobic and the aerobic reactors, was carried out. The influence parameters, such as HRT, C/N ratio, OLR, and the recycling flow rate on the performance of the system, were studied. The results showed that a sufficient carbon source was important to the performance of bio-degradation system. The COD removal rate increased from 64.15% to 83.28% by raising C/N in wastewater from 2.5 (no external carbon source) to 5. But the effluent COD concentration was still a little higher than the discharge standard. In order to make it meet the discharge standard, a deep treatment, coagulation, was applied, which was proved as an effective method. Then the effluent COD concentration can be brought to lower than 200 mg·L-1. The NH4-N removal rate in this system was satisfactory, being higher than 99%. In addition, it was almost not affected by both C/N ratio and coagulation treatment. The results show that the system is feasible to treat coke plant wastewater.

  2. High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development.

    Science.gov (United States)

    Kuroda, Kyohei; Chosei, Tomoaki; Nakahara, Nozomi; Hatamoto, Masashi; Wakabayashi, Takashi; Kawai, Toshikazu; Araki, Nobuo; Syutsubo, Kazuaki; Yamaguchi, Takashi

    2015-11-01

    Molasses wastewater contains high levels of organic compounds, cations, and anions, causing operational problems for anaerobic biological treatment. To establish a high organic loading treatment system for industrial molasses wastewater, this study designed a combined system comprising an acidification tank, a thermophilic multi-stage (MS)-upflow anaerobic sludge blanket (UASB) reactor, mesophilic UASB reactor, and down-flow hanging sponge reactor. The average total chemical oxygen demand (COD) and biochemical oxygen demand removal rates were 85%±3% and 95%±2%, respectively, at an organic loading rate of 42kgCODcrm(-3)d(-1) in the MS-UASB reactor. By installation of the acidification tank, the MS-UASB reactor achieved low H2-partial pressure. The abundance of syntrophs such as fatty acid-degrading bacteria increased in the MS-UASB and 2nd-UASB reactors. Thus, the acidification tank contributed to maintaining a favorable environment for syntrophic associations. This study provides new information regarding microbial community composition in a molasses wastewater treatment system. Copyright © 2015. Published by Elsevier Ltd.

  3. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  4. Microalgae and wastewater treatment.

    Science.gov (United States)

    Abdel-Raouf, N; Al-Homaidan, A A; Ibraheem, I B M

    2012-07-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.

  5. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  6. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  7. Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater

    Science.gov (United States)

    Toor, G.

    2014-12-01

    The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (advanced system was extremely effective as it removed >95% N from wastewater, but was less effective at removing P. This presentation will conclude with

  8. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  9. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  10. Potential integration of wetland wastewater treatment with space life support systems.

    Science.gov (United States)

    Nelson, M; Alling, A; Dempster, W F; Van Thillo, M; Allen, J P

    2002-01-01

    Subsurface-flow constructed wetlands for wastewater treatment and nutrient recycling have a number of advantages in planetary exploration scenarios: they are odorless, relatively low labor and low energy, assist in purification of water and recycling of atmospheric CO2, and can directly grow some food crops. This article presents calculations for integration of wetland wastewater treatment with a prototype ground-based experimental facility ("Mars on Earth") supporting four people showing that an area of 4-6 m2 may be sufficient to accomplish wastewater treatment and recycling. Discharge water from the wetland system can be used as irrigation water for the agricultural crop area, thus ensuring complete reclamation and utilization of nutrients within the bioregenerative life support system. Because the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems can be integrated into space life support systems because heat from the lights may be used for temperature maintenance in the human living environment. Subsurface-flow wetlands can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in situ materials, such as gravel from the Mars surface. Because the technology does not depend on machinery and chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements (e.g., pumps, aerators, and chemicals) are minimized, and systems may have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars base, and determination of wetland water quality efficiency under varying temperature and light regimes.

  11. Design and operation of an eco-system for municipal wastewater treatment and utilization.

    Science.gov (United States)

    Wang, L; Peng, J; Wang, B; Yang, L

    2006-01-01

    An eco-system consisting of integrated ponds and constructed wetland systems is employed in Dongying City, Shandong Province for the treatment and utilization of municipal wastewater with design capacity of 100,000 m(3)/d. The total capital cost of this system is 680 Yuan (RMB) or US dollars 82/m(3)/d, or about half that of the conventional system based on activated sludge process, and the O/M cost is 0.1 Yuan (RMB) or US dollars 0.012/m(3), only one fifth that of conventional treatment systems. The performance of the wastewater treatment and utilization eco-system is quite good with a final effluent COD, BOD, SS, NH3-N and TP of 45-65 mg/l, 7-32 mg/l, 12-35 mg/l, 2-13 mg/l and 0.2-1.8mg/l respectively and the annual average removals of COD, BOD, SS, NH3-N and TP are 69.1%, 78.3%, 76.4%, 62.1% and 52.9%o respectively, which is much better than that of conventional pond system or constructed wetland used separately and illustrates that the artificial and integrated eco-system is more effective and efficient than the simple natural eco-system.

  12. Treatment of mountain refuge wastewater by fixed and moving bed biofilm systems.

    Science.gov (United States)

    Andreottola, G; Damiani, E; Foladori, P; Nardelli, P; Ragazzi, M

    2003-01-01

    Tourists visiting mountain refuges in the Alps have increased significantly in the last decade and the number of refuges and huts at high altitude too. In this research the results of an intensive monitoring of a wastewater treatment plant (WWTP) for a tourist mountain refuge located at 2,981 m a.s.l. are described. Two biofilm reactors were adopted: (a) a Moving Bed Biofilm Reactor (MBBR); (b) a submerged Fixed Bed Biofilm Reactor (FBBR). The aims of this research were: (i) the evaluation of the main parameters characterising the processes and involved in the design of the wastewater plants, in order to compare advantages and disadvantages of the two tested alternatives; (ii) the acquisition of an adequate knowledge of the problems connected with the wastewater treatment in alpine refuges. The main results have been: (i) a quick start-up of the biological reactors obtainable thanks to a pre-colonization before the transportation of the plastic carriers to the refuge at the beginning of the tourist season; (ii) low volume and area requirement; (iii) significantly higher removal efficiency compared to other fixed biomass systems, such as trickling filters, but the energy consumption is higher.

  13. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  14. Tech-IA floating system introduced in urban wastewater treatment plants in the Veneto region - Italy.

    Science.gov (United States)

    Mietto, Anna; Borin, Maurizio; Salvato, Michela; Ronco, Paolo; Tadiello, Nicola

    2013-01-01

    The performance of three integrated wetland treatment plants (horizontal sub-surface flow (h-SSF) and floating treatment wetland (FTW) with differentiated primary treatments) designed for treating domestic wastewater was investigated, monitoring total (TN), nitrate (NO3-N), nitrite (NO2-N) and ammonia nitrogen (NH4-N), total (TP) and phosphate phosphorus (PO4-P), chemical (COD) and biological oxygen demand (BOD5), and dissolved oxygen (DO) at the inlet and outlet of each wetland section from February 2011 to June 2012. Sediments settled in the FTW were collected and analyzed. The growth of plants in each system was also monitored, observing their general conditions. The chemical-physical characteristics of the pretreated domestic wastewater depended on the primary treatment installed. During the monitoring period we observed different reduction performance of the wetland sector in the three sites. In general, the wetland systems demonstrated the capacity to reduce TN, COD, BOD5 and Escherichia coli, whereas NO3-N and NH4-N removal was strictly influenced by the chemical conditions, in particular DO concentration, in the h-SSF and FTW. Vegetation (Phragmites australis, Alnus glutinosa and Salix eleagnos) was well established in the h-SSF as well as in the floating elements (Iris pseudacorus), although there were some signs of predation. FTW is a relatively novel wetland system, so the results obtained from this study can pave the way for the application of this technology.

  15. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  16. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater

    Institute of Scientific and Technical Information of China (English)

    Changfu Han; Junxin Liu; Hanwen Liang; Xuesong Guo; Lin Li

    2013-01-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment,which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery.Because the system operates without a storage battery,which can reduce the cost of the PV system,the solar radiation intensity affects the amount of power output from the PV system.To ensure that the power output is sufficient in all different weather conditions,the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study,and a step power output mode was used to utilize the solar energy as well as possible.The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night.Therefore,anaerobic,anoxic and aerobic conditions could periodically appear in the oxidation ditch,which was favorable to nitrogen and phosphate removal from the wastewater.The experimental results showed that the system was efficient,achieving average removal efficiencies of 88% COD,98% NH4+-N,70% TN and 83% TP,under the loading rates of 140 mg COD/(g MLSS·day),32 mg NH4+-N/(g MLSS·day),44 mg TN/(g MLSS·day) and 5mg TP/(g MLSS·day).

  17. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    Science.gov (United States)

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  18. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    Science.gov (United States)

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-06

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP.

  19. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent.

    Science.gov (United States)

    Du, Bowen; Price, Amy E; Scott, W Casan; Kristofco, Lauren A; Ramirez, Alejandro J; Chambliss, C Kevin; Yelderman, Joe C; Brooks, Bryan W

    2014-01-01

    A comparative understanding of effluent quality of decentralized on-site wastewater treatment systems, particularly for contaminants of emerging concern (CECs), remains less understood than effluent quality from centralized municipal wastewater treatment plants. Using a novel experimental facility with common influent wastewater, effluent water quality from a decentralized advanced aerobic treatment system (ATS) and a typical septic treatment system (STS) coupled to a subsurface flow constructed wetland (WET) were compared to effluent from a centralized municipal treatment plant (MTP). The STS did not include soil treatment, which may represent a system not functioning properly. Occurrence and discharge of a range of CECs were examined using isotope dilution liquid chromatography-tandem mass spectrometry during fall and winter seasons. Conventional parameters, including total suspended solids, carbonaceous biochemical oxygen demand and nutrients were also evaluated from each treatment system. Water quality of these effluents was further examined using a therapeutic hazard modeling approach. Of 19 CECs targeted for study, the benzodiazepine pharmaceutical diazepam was the only CEC not detected in all wastewater influent and effluent samples over two sampling seasons. Diphenhydramine, codeine, diltiazem, atenolol, and diclofenac exhibited significant (ptreatment systems was generally not influenced by season. However, significant differences (pwater quality indicators were observed among the various treatment technologies. For example, removal of most CECs by ATS was generally comparable to MTP. Lowest removal of most CECs was observed for STS; however, removal was improved when coupling the STS to a WET. Across the treatment systems examined, the majority of pharmaceuticals observed in on-site and municipal effluent discharges were predicted to potentially present therapeutic hazards to fish.

  20. Meta-omics approaches to understand and improve wastewater treatment systems

    NARCIS (Netherlands)

    Rodríguez, E.; García-Encina, P.A.; Stams, A.J.M.; Maphosa, F.; Sousa, D.Z.

    2015-01-01

    Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughp

  1. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    Science.gov (United States)

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter.

  2. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.

    Science.gov (United States)

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.

  3. Fate of Malathion in an Activated Sludge Municipal Wastewater Treatment System

    Science.gov (United States)

    2013-03-01

    treatment plant ( WWTP ). There have been few studies to document the fate of these CWAs when subjected to a municipal wastewater treatment process. This...municipal activated sludge (AS) WWTP . Results show that v malathion may degrade in an AS WWTP as approximately 90% of an initial concentration of 4.25 mg...the decontamination wastewater must be disposed of as hazardous waste or possibly treated at a WWTP . There are no studies that document the fate of

  4. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.

    Science.gov (United States)

    Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo

    2014-01-01

    Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.

  5. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  6. Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor.

    Science.gov (United States)

    Caixeta, Cláudia E T; Cammarota, Magali C; Xavier, Alcina M F

    2002-01-01

    The anaerobic treatment of the wastewater from the meat processing industry was studied using a 7.2 1 UASB reactor. The reactor was equipped with an unconventional configuration of the three-phase separation system. The effluent was characterized in terms of pH (6.3-6.6), chemical oxygen demand (COD) (2,000-6,000 mg l(-1)), biochemical oxygen demand BOD5 (1,300-2,300 mg 1(-1)), fats (40-600 mg l(-1)) and total suspended solids (TSS) (850-6,300 mg l(-1)) The reactor operated continuously throughout 80 days with hydraulic retention time of 14, 18 and 22 h. The wastewater from Rezende Industrial was collected after it had gone through pretreatment (screening, flotation and equalization). COD, BOD and TSS reductions and the biogas production rate were the parameters considered in analyzing the efficiency of the process. The average production of biogas was 111 day(-1) (STP) for the three experimental runs. COD removal varied from 77% to 91% while BOD removal was 95%. The removal of total suspended solids varied from 81% to 86%. This fact supports optimal efficiency of the proposed three-phase separation system as well as the possibility of applying it to the treatment of industrial effluents.

  7. When Bioelectrochemical Systems Meet Forward Osmosis: Accomplishing Wastewater Treatment and Reuse through Synergy

    Directory of Open Access Journals (Sweden)

    Yaobin Lu

    2014-12-01

    Full Text Available Bioelectrochemical systems (BES and forward osmosis (FO are two emerging technologies with great potential for energy-efficient water/wastewater treatment. BES takes advantage of microbial interaction with a solid electron acceptor/donor to accomplish bioenergy recovery from organic compounds, and FO can extract high-quality water driven by an osmotic pressure. The strong synergy between those two technologies may complement each other and collaboratively address water-energy nexus. FO can assist BES with achieving water recovery (for future reuse, enhancing electricity generation, and supplying energy for accomplishing the cathode reactions; while BES may help FO with degrading organic contaminants, providing sustainable draw solute, and stabilizing water flux. This work has reviewed the recent development that focuses on the synergy between BES and FO, analyzed the advantages of each combination, and provided perspectives for future research. The findings encourage further investigation and development for efficient coordination between BES and FO towards an integrated system for wastewater treatment and reuse.

  8. Risk-Cost Estimation of On-Site Wastewater Treatment System Failures Using Extreme Value Analysis.

    Science.gov (United States)

    Kohler, Laura E; Silverstein, JoAnn; Rajagopalan, Balaji

    2017-05-01

      Owner resistance to increasing regulation of on-site wastewater treatment systems (OWTS), including obligatory inspections and upgrades, moratoriums and cease-and-desist orders in communities around the U.S. demonstrate the challenges associated with managing risks of inadequate performance of owner-operated wastewater treatment systems. As a result, determining appropriate and enforceable performance measures in an industry with little history of these requirements is challenging. To better support such measures, we develop a statistical method to predict lifetime failure risks, expressed as costs, in order to identify operational factors associated with costly repairs and replacement. A binomial logistic regression is used to fit data from public records of reported OWTS failures, in Boulder County, Colorado, which has 14 300 OWTS to determine the probability that an OWTS will be in a low- or high-risk category for lifetime repair and replacement costs. High-performing or low risk OWTS with repairs and replacements below the threshold of $9000 over a 40-year life are associated with more frequent inspections and upgrades following home additions. OWTS with a high risk of exceeding the repair cost threshold of $18 000 are further analyzed in a variation of extreme value analysis (EVA), Points Over Threshold (POT) where the distribution of risk-cost exceedance values are represented by a generalized Pareto distribution. The resulting threshold cost exceedance estimates for OWTS in the high-risk category over a 40-year expected life ranged from $18 000 to $44 000.

  9. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  10. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China.

    Science.gov (United States)

    Chen, Hong; Zhang, Mingmei

    2013-08-06

    This study aimed at quantifying the concentration and removal of antibiotic resistance genes (ARGs) in three municipal wastewater treatment plants (WWTPs) employing different advanced treatment systems [biological aerated filter, constructed wetland, and ultraviolet (UV) disinfection]. The concentrations of tetM, tetO, tetQ, tetW, sulI, sulII, intI1, and 16S rDNA genes were examined in wastewater and biosolid samples. In municipal WWTPs, ARG reductions of 1-3 orders of magnitude were observed, and no difference was found among the three municipal WWTPs with different treatment processes (p > 0.05). In advanced treatment systems, 1-3 orders of magnitude of reductions in ARGs were observed in constructed wetlands, 0.6-1.2 orders of magnitude of reductions in ARGs were observed in the biological aerated filter, but no apparent decrease by UV disinfection was observed. A significant difference was found between constructed wetlands and biological filter (p constructed wetlands and UV disinfection (p constructed wetlands, significant correlations were observed in the removal of ARGs and 16S rDNA genes (R(2) = 0.391-0.866; p Constructed wetlands not only have the comparable ARG removal values with WWTP (p > 0.05) but also have the advantage in ARG relative abundance removal, and it should be given priority to be an advanced treatment system for further ARG attenuation from WWTP.

  11. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    are the parameters that have the greatest influence on the potential environmental impacts of the systems analyzed. In this study, we present a systematic methodology for the analysis of the operation of two modern wastewater treatment technologies: Biological removal of nitrogen and organic matter by activated......Feasibility evaluation of wastewater treatment plants’ designs & operation strategies is nowadays done in a plant-wide perspective. Environmental concerns regarding energy consumption and sludge disposal are the main drivers to consider pre/post-treatment units in these evaluations. Existing...... criteria involve sludge disposal strategies and electrical energy consumption. However, there is a need to develop a systematic methodology to quantify relevant environmental indicators; comprising information of the wastewater treatment system in a life cycle perspective. Also, to identify which...

  12. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics.

    Science.gov (United States)

    Chen, Jun; Liu, You-Sheng; Zhang, Jin-Na; Yang, Yong-Qiang; Hu, Li-Xin; Yang, Yuan-Yuan; Zhao, Jian-Liang; Chen, Fan-Rong; Ying, Guang-Guo

    2017-08-01

    This study aimed to investigate the removal efficiency and mechanism for antibiotics in swine wastewater by a biological aerated filter system (BAF system) in combination with laboratory aerobic and anaerobic incubation experiments. Nine antibiotics including sulfamonomethoxine, sulfachloropyridazine, sulfamethazine, trimethoprim, norfloxacin, ofloxacin, lincomycin, leucomycin and oxytetracycline were detected in the wastewater with concentrations up to 192,000ng/L. The results from this pilot study showed efficient removals (>82%) of the conventional wastewater pollutants (BOD5, COD, TN and NH3-N) and the detected nine antibiotics by the BAF system. Laboratory simulation experiment showed first-order dissipation kinetics for the nine antibiotics in the wastewater under aerobic and anaerobic conditions. The biodegradation kinetic parameters successfully predicted the fate of the nine antibiotics in the BAF system. This suggests that biodegradation was the dominant process for antibiotic removal in the BAF system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Net energy production and emissions mitigation of domestic wastewater treatment system: a comparison of different biogas-sludge use alternatives.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin

    2013-09-01

    Wastewater treatment systems are increasingly designed for the recovery of valuable chemicals and energy in addition to waste stream disposal. Herein, the life-cycle energy production and emissions mitigation of a typical domestic wastewater treatment system were assessed, in which different combinations of biogas use and sludge processing lines for industrial or household applications were considered. The results suggested that the reuse of biogas and sludge was so important in the system's overall energy balance and environmental performance that it may offset the cost in the plant's installation and operation. Combined heat and power and household utilization were two prior options for net energy production, provided an ideal power conversion efficiency and biogas production. The joint application of household biogas use and sludge nutrient processing achieved both high net energy production and significant environmental remediation across all impact categories, representing the optimal tradeoff for domestic wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mesquite wood chips (Prosopis) as filter media in a biofilter system for municipal wastewater treatment.

    Science.gov (United States)

    Sosa-Hernández, D B; Vigueras-Cortés, J M; Garzón-Zúñiga, M A

    2016-01-01

    The biofiltration system over organic bed (BFOB) uses organic filter material (OFM) to treat municipal wastewater (MWW). This study evaluated the performance of a BFOB system employing mesquite wood chips (Prosopis) as OFM. It also evaluated the effect of hydraulic loading rates (HLRs) in order to achieve the operational parameters required to remove organic matter, suspended material, and pathogens, thus meeting Mexican and US regulations for reuse in irrigation. Two biofilters (BFs) connected in series were installed; the first one aerated (0.62 m(3)air m(-2)h(-1)) and the second one unaerated. The source of MWW was a treatment plant located in Durango, Mexico. For 200 days, three HLRs (0.54, 1.07, and 1.34 m(3)m(-2)d(-1)) were tested. The maximum HLR at which the system showed a high removal efficiency of pollutants and met regulatory standards for reuse in irrigation was 1.07 m(3)m(-2)d(-1), achieving removal efficiencies of biochemical oxygen demand (BOD5) 92%, chemical oxygen demand (COD) 78%, total suspended solids (TSS) 95%, and four log units of fecal coliforms. Electrical conductivity in the effluent ensures that it would not cause soil salinity. Therefore, mesquite wood chips can be considered an innovative material suitable as OFM for BFs treating wastewaters.

  15. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System

    Directory of Open Access Journals (Sweden)

    Alireza Valipour

    2015-01-01

    Full Text Available onstructed wetland applications have been limited by a large land requirement and capital investment. This study aimed to improve a shallow pond water hyacinth system by incorporating the advantages of engineered attached microbial growth technique (termed Bio-hedge for on-site domestic wastewater treatment. A laboratory scale continuous-flow system consists of the mesh type matrix providing an additional biofilm surface area of 54 m2/m3. Following one year of experimentation, the process showed more stability and enhanced performance in removing organic matter and nutrients, compared to traditional water hyacinth (by lowering 33%–67% HRT and facultative (by lowering 92%–96% HRT ponds. The wastewater exposed plants revealed a relative growth rate of 1.15% per day, and no anatomical deformities were observed. Plant nutrient level averaged 27 ± 1.7 and 44 ± 2.3 mg N/g dry weight, and 5 ± 1.4 & 9±1.2 mg P/g dry weight in roots and shoots, respectively. Microorganisms immobilized on Bio-hedge media (4.06 × 107 cfu/cm2 and plant roots (3.12 × 104 cfu/cm were isolated and identified (a total of 23 strains. The capital cost was pre-estimated for 1 m3/d wastewater at 78 US$/m3inflow and 465 US$/kg BOD5 removed. This process is a suitable ecotechnology due to improved biofilm formation, reduced footprint, energy savings, and increased quality effluent.

  16. A soil biotechnology system for wastewater treatment: technical, hygiene, environmental LCA and economic aspects.

    Science.gov (United States)

    Kamble, Sheetal Jaisingh; Chakravarthy, Yogita; Singh, Anju; Chubilleau, Caroline; Starkl, Markus; Bawa, Itee

    2017-05-01

    Soil biotechnology (SBT) is a green engineering approach for wastewater treatment and recycling. Five SBT units located in the Mumbai region were under consideration of which holistic assessment of two SBT plants was carried out considering its technical, environmental and economic aspects and was compared with published research of other three. LCA has been done to evaluate the environmental impacts of construction and operation phase of SBT. Chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal of more than 90% can be achieved using this technology. Also, the nutrient removal proficiency (nitrate, nitrite, ammoniacal nitrogen, TKN, total nitrogen and phosphates) of this technique is good. On the other hand, SBT has low annual operation and maintenance cost, comparable to land-based systems and lower than conventional or advanced technologies. From the life cycle impact assessment, the main contributors for overall impact from the plant were identified as electricity consumption, discharges of COD, P-PO4(3-) and N-NH4(+) and disposal of sludge. The construction phase was found to have significantly more impact than the operation phase of the plant. This study suggests plant I is not relatively as efficient enough regarding sanitation. SBT provides several benefits over other conventional technologies for wastewater treatment. It is based on a bio-conversion process and is practically maintenance free. It does not produce any odorous bio-sludge and consumes the least energy.

  17. Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems.

    Science.gov (United States)

    Pérez-Uz, Blanca; Arregui, Lucía; Calvo, Pilar; Salvadó, Humbert; Fernández, Natividad; Rodríguez, Eva; Zornoza, Andrés; Serrano, Susana

    2010-09-01

    Three full-scale advanced biological systems for nitrogen removal showing different efficiencies were assessed during one year, to investigate the protist communities supported in these wastewater treatment plants (WWTP). The main goal of this research was to explore the differences of these communities from those observed in conventional activated sludge systems. The final objective was to provide background support for the proposal of bioindicators in this type of biological systems, where scarce information was available until now, since only conventional systems had been previously studied from this point of view. Results obtained indicate that, in fact, protist population density and diversity in advanced systems for N-elimination are quite different from other wastewater systems studied before. A statistical approach through multivariate analysis was developed to search for association between protist species and physical-chemical system performance, and specifically N-removal efficiencies. The original hypothesis proposing that previous indicators from conventional systems are not adequate in advanced N-removal mechanisms was proved to be correct. Efficient processes on N-removal, despite what it had been usually found in conventional systems, show important flagellate and amoeba populations and these populations tend to reduce their abundances as nitrogen removal performance decreases (moderate to low). Ciliates are however less abundant in these N-removal efficient systems. Certain groups and genera of protist such as flagellates and small amoebae are thus proposed as indicative of high performance N-removal, while in this case the appearance of certain ciliates were indicative of low performance on N- or high organic matter removal (as COD) efficiencies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  19. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  20. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  1. Life cycle assessment applied to wastewater treatment; Analyse de cycle de vie appliquee aux systemes de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Renou, S.

    2006-01-15

    Nowadays, the environmental performances of wastewater treatment systems are not properly analyzed. Thus, the development of an exhaustive and reliable method is needed to help stakeholders to choose the best environmental solutions. Life cycle assessment (LCA) was selected as a starting point to answer this problem. LCA has been tested. This tool is essential to analyze the environmental performances of wastewater treatment systems. In order to fulfill our goal, the best compromise seems to be the association of LCA, to assess global impacts, with others methodologies, to assess local impacts. Finally, a software has been developed to compare urban sludge treatment and recovering process trains. Two impacts, energy and greenhouse effect, are currently included in. The software and its development steps are described and illustrated through two case studies. This tool has made LCA easier to apply and more useful to wastewater field stakeholders. (author)

  2. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    Science.gov (United States)

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A.; Khamis, Mustafa; Karaman, Rafik

    2013-01-01

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43−, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment. PMID:23823802

  3. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    Directory of Open Access Journals (Sweden)

    Mohannad Qurie

    2013-07-01

    Full Text Available The reverse osmosis (RO brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF membrane filters (20 kD and 100 kD cutoffs followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012. At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC, PO43−, chemical oxygen demand (COD and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment.

  4. Inland treatment of the brine generated from reverse osmosis advanced membrane wastewater treatment plant using epuvalisation system.

    Science.gov (United States)

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A; Khamis, Mustafa; Karaman, Rafik

    2013-07-03

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43-, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment.

  5. Formal Design and Analysis of a Wastewater Treatment Control System based on Petrinet

    Directory of Open Access Journals (Sweden)

    Seno D. Panjaitan

    2012-04-01

    Full Text Available This paper proposes a new control design approach for industrial wastewater treatment where its logic control is verifiable. In this research, a treatment control design in a lab-scale was controlled by a microcontroller circuit. The developed system combined anaerobic digestion, aeration and filtration process. Its logic control algorithm was designed by using Signal Interpreted Petri Net. In the logic verification, six analysis properties were satisfied: conflict free (logical process had no conflict behavior, termination (the process could be terminated from any state, non-contradictory outputs, live (any process state could always be reached from other state, deadlock-free, and reversible (the process could always back to initial condition. In the design evaluation, the average value of transparency metrics was 0.984 close to 1 as the best value. The system performance was evaluated by pollutant removal efficiency. The highest removal efficiencies were obtained when each anaerobic and aeration treatment were performed for three days respectively and followed by filtration. Within this condition, the system obtained average removal efficiency 91.7% of Chemical Oxygen Demand and 95.4% of Total Suspended Solids. In terms of electricity consumption, the system needed only 1,857.6 Watt-hour for a batch treatment process.

  6. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  7. Evaluation of operating characteristics for a chabazite zeolite system for treatment of process wastewater at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kent, T.E.; Perona, J.J.; Jennings, H.L.; Lucero, A.J.; Taylor, P.A.

    1998-02-01

    Laboratory and pilot-scale testing were performed for development and design of a chabazite zeolite ion-exchange system to replace existing treatment systems at the Process Waste Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL). The process wastewater treatment systems at ORNL need upgrading to improve efficiency, reduce waste generation, and remove greater quantities of contaminants from the wastewater. Previous study indicated that replacement of the existing PWTP systems with an ion-exchange system using chabazite zeolite will satisfy these upgrade objectives. Pilot-scale testing of the zeolite system was performed using a commercially available ion-exchange system to evaluate physical operating characteristics and to validate smaller-scale column test results. Results of this test program indicate that (1) spent zeolite can be sluiced easily and completely from a commercially designed vessel, (2) clarification followed by granular anthracite prefilters is adequate pretreatment for the zeolite system, and (3) the length of the mass transfer zone was comparable with that obtained in smaller-scale column tests. Laboratory studies were performed to determine the loading capacity of the zeolite for selected heavy metals. These test results indicated fairly effective removal of silver, cadmium, copper, mercury, nickel, lead, and zinc from simple water solutions. Heavy-metals data collected during pilot-scale testing of actual wastewater indicated marginal removal of iron, copper, and zinc. Reduced effectiveness for other heavy metals during pilot testing can be attributed to the presence of interfering cations and the relatively short zeolite/wastewater contact time. Flocculating agents (polyelectrolytes) were tested for pretreatment of wastewater prior to the zeolite flow-through column system. Several commercially available polyelectrolytes were effective in flocculation and settling of suspended solids in process wastewater.

  8. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  9. Diminished Wastewater Treatment: Evaluation of Septic System Performance Under a Climate Change Scenario

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2015-12-01

    The effects of climate change are expected to reduce the ability of soil-based onsite wastewater treatment systems (OWTS), to treat domestic wastewater. In the northeastern U.S., the projected increase in atmospheric temperature, elevation of water tables from rising sea levels, and heightened precipitation will reduce the volume of unsaturated soil and oxygen available for treatment. Incomplete removal of contaminants may lead to transport of pathogens, nutrients, and biochemical oxygen demand (BOD) to groundwater, increasing the risk to public health and likelihood of eutrophying aquatic ecosystems. Advanced OWTS, which include pre-treatment steps and provide unsaturated drainfields of greater volume relative to conventional OWTS, are expected to be more resilient to climate change. We used intact soil mesocosms to quantify water quality functions for two advanced shallow narrow drainfield types and a conventional drainfield under a current climate scenario and a moderate climate change scenario of 30 cm rise in water table and 5°C increase in soil temperature. While no fecal coliform bacteria (FCB) was released under the current climate scenario, up to 109 CFU FCB/mL (conventional) and up to 20 CFU FCB/mL (shallow narrow) were released under the climate change scenario. Total P removal rates dropped from 100% to 54% (conventional) and 71% (shallow narrow) under the climate change scenario. Total N removal averaged 17% under both climate scenarios in the conventional, but dropped from 5.4% to 0% in the shallow narrow under the climate change scenario, with additional leaching of N in excess of inputs indicating release of previously held N. No significant difference was observed between scenarios for BOD removal. The initial data indicate that while advanced OWTS retain more function under the climate change scenario, all three drainfield types experience some diminished treatment capacity.

  10. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Li, Xueling; Wang, Zhe; Xu, Ying; Ren, Siwei; Chen, Xuanyu; Xu, Yuanyuan; Hao, Hongxin; Wang, Hailei

    2013-02-01

    The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated.

  11. A Self Sustaining Solar- Bio- Nano Based Wastewater Treatment System for Forward Operating Bases

    Science.gov (United States)

    2017-06-21

    per day including drinking water and non-portable water are consumed [2], and the same amount of wastewater are generated. The wastewater management...Operator None Other expense Maintenance Pumps, chemicals, and filters Bioenergy and water Bioenergy On-site uses to compensate the energy demand...and water savings. A net positive revenue of $7,195 per year is realized after considering the annual maintenance cost. The PV-AD-EC-Aeration system

  12. Nutrient Removal in Wastewater Treatment

    Science.gov (United States)

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  13. Evaluation of virus reduction efficiency in wastewater treatment unit processes as a credit value in the multiple-barrier system for wastewater reclamation and reuse.

    Science.gov (United States)

    Ito, Toshihiro; Kato, Tsuyoshi; Hasegawa, Makoto; Katayama, Hiroyuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-12-01

    The virus reduction efficiency of each unit process is commonly determined based on the ratio of virus concentration in influent to that in effluent of a unit, but the virus concentration in wastewater has often fallen below the analytical quantification limit, which does not allow us to calculate the concentration ratio at each sampling event. In this study, left-censored datasets of norovirus (genogroup I and II), and adenovirus were used to calculate the virus reduction efficiency in unit processes of secondary biological treatment and chlorine disinfection. Virus concentration in influent, effluent from the secondary treatment, and chlorine-disinfected effluent of four municipal wastewater treatment plants were analyzed by a quantitative polymerase chain reaction (PCR) approach, and the probabilistic distributions of log reduction (LR) were estimated by a Bayesian estimation algorithm. The mean values of LR in the secondary treatment units ranged from 0.9 and 2.2, whereas those in the free chlorine disinfection units were from -0.1 and 0.5. The LR value in the secondary treatment was virus type and unit process dependent, which raised the importance for accumulating the data of virus LR values applicable to the multiple-barrier system, which is a global concept of microbial risk management in wastewater reclamation and reuse.

  14. Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system.

    Science.gov (United States)

    Arora, Sudipti; Rajpal, Ankur; Bhargava, Renu; Pruthi, Vikas; Bhatia, Akansha; Kazmi, A A

    2014-08-01

    The present study investigated microbial community diversity and antibacterial and enzymatic properties of microorganisms in a pilot-scale vermifiltration system during domestic wastewater treatment. The study included isolation and identification of diverse microbial community by culture-dependent method from a vermifilter (VF) with earthworms and a conventional geofilter (GF) without earthworms. The results of the four months study revealed that presence of earthworms in VF could efficiently remove biochemical oxygen demand (BOD), chemical oxygen demand (COD), total and fecal coliforms, fecal streptococci and other pathogens. Furthermore, the burrowing activity of earthworms promoted the aeration conditions in VF which led to the predominance of the aerobic microorganisms, accounting for complex microbial community diversity. Antibacterial activity of the isolated microorganisms revealed the mechanism behind the removal of pathogens, which is reported for the first time. Specifically, cellulase, amylase and protease activity is responsible for biodegradation and stabilization of organic matter.

  15. Effect of macroporous adsorption resin-membrane bioreactor hybrid system against fouling for municipal wastewater treatment.

    Science.gov (United States)

    Chen, Weiwei; Luo, Jing; Cao, Ruyi; Li, Yuting; Liu, Jinrong

    2017-01-01

    Membrane bioreactor (MBR) displays significant advantages in effluent quality, sludge production, footprint, and operation. However, membrane fouling limits the application of MBR. This study investigated membrane fouling in a macroporous adsorption resin-membrane bioreactor hybrid system established by adding macroporous adsorption resin (MAR) into MBR. MAR addition increased the critical flux by 27.97%, indicating that membrane fouling was successfully mitigated. Consequently, comparative experiments were designed to analyze the pathway. MAR addition mitigated external fouling development and improved mixed liquor characteristics, thereby mitigating gel layer formation and sludge floc deposition on the membrane surface. MAR effectively reduced the supernatant viscosity and dissolved COD by adsorbing soluble microbial products. Sludge production decreased because the sludge activity in MAR-MBR was inhibited. The fouled MAR could be regenerated effectively by deionized water and chemical cleaning. This work demonstrated the feasibility of using MAR-MBR to mitigate fouling in municipal wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. CONCEPTUAL BASES OF THE ENERGY EFFICIENT SYSTEM OF MANAGEMENT OF COMBINED UNITS OF WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    V. N. Shtepa

    2016-01-01

    Full Text Available A critical analysis of the shortcomings of the existing water purification systems is conducted. In order to ensure environmental safety and energy savings it is proposed to use the combined units, including physical, chemical, physical-and-chemical and biological methods. The attention is driven to the fact that the most effective way to maintain current water purification is an adaptive control system. The shortcomings of the management of water treatment units were revealed and it was proposed to produce their synthesis based on the mathematical apparatus of artificial intelligence systems. Taking into account the requirements of the environmental safety and the need in the energy savings, the energy efficiency criteria of combined system functioning has been developed. At an industrial plant (slaughterhouse wastewater treatment the compliance of the production conditions of the criterion has been undertaken that confirmed the criterion relevance and usefulness as applied to the synthesis of energy-efficient control systems. A synthetic control system combined the water treatment plants. Having based on the preliminary research and analysis of the current work in the subject area the architecture of a control system of combined water treatment units that use intelligent technology was developed. The key functional of the unit – information-analytical subsystem of the formation control actions including: multilayer perceptrons self-organization Kohonen network, fuzzy cognitive map. The basic difference between the developed design and its analogues is the ability to adjust the settings of equipment adaptively on the basis of processing sensor data, information on the price of consumables, volley discharges of pollutants, a sudden change in the flow and other force majeure. Adjustment of the parameters of the control system is carried out with the use of experimental and analytical data stored in the knowledge base of technological

  17. Application of the MIAS methodology in design of the data acquisition system for wastewater treatment plant

    Science.gov (United States)

    Ćwikła, G.; Krenczyk, D.; Kampa, A.; Gołda, G.

    2015-11-01

    This paper presents application of MIAS (Manufacturing Information Acquisition System) methodology to develop customized data acquisition system supporting management of the Central Wastewater Treatment Plant (CWWTP) in Gliwice, Poland, being example of production systems leading continuous flow, automated production processes. Access to current data on the state of production system is a key to efficient management of a company, allowing fast reaction or even anticipation of future problems with equipment and reduction of waste. Overview of both analysis and synthesis of organisational solutions, data sources, data pre-processing and communication interfaces, realised according to proposed MIAS methodology, had been presented. The stage of analysis covered i.e.: organisational structure of the company, IT systems used in the company, specifics of technological processes, machines and equipment, structure of control systems, assignments of crew members, materials used in the technological processes. This paper also presents results of the stage of synthesis of technical and organisational solutions of MIAS for CWWTP, including proposed solutions covering MIAS architecture and connections with other IT systems, data sources in production system that are currently available and newly created, data preprocessing procedures, and necessary communication interfaces.

  18. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  19. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    Science.gov (United States)

    2016-08-01

    including organics and ammonia , into harvestable products for energy production . The system aims to combine sustainable materials with recent technological ...wastewater contaminants, including organics and ammonia , into harvesta- ble products for energy production . The system aims to combine sustaina- ble...AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels

  20. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    Science.gov (United States)

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch.

  1. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is use

  2. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.; Zandt, M.H. In 't; Guerrero-Cruz, S.; Dutilh, B.E.; Jetten, M.S.M

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  3. Floating treatment wetlands for domestic wastewater treatment.

    Science.gov (United States)

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  4. A collection and treatment system for organic waste and wastewater in a sensitive rural area.

    Science.gov (United States)

    Malmén, L; Palm, O; Norin, E

    2003-01-01

    In the municipality of Sund, located in a sensitive rural area in Aland, a demonstration project is now carried out with the overall objective to move the most concentrated fractions of wastewater from the coastal area to a treatment plant situated close to arable land. Blackwater and greywater septic sludge from about twenty households and two tourist camps are treated together with energy rich organic material from a nearby potato-chip factory. The collection concept is based on the use of extremely efficient water-saving toilets, with separate systems for the blackwater and greywater in the households. The collected materials are co-treated in a batchwise aerobic thermophilic treatment process (wet composting process), where the materials reach at least 55 degrees C during a minimum of 10 hours. The dry matter content of the collected material was about 2%. After stabilisation and sanitation (by the temperature rise caused by microbial activity during the treatment process), the compost slurry is utilized as a liquid organic fertilizer on arable land.

  5. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m(2)) and biogas storage (35m(3)), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m(2) and 105m(3), respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  7. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  8. Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment.

    Science.gov (United States)

    Fan, Yan; Ai, Zhihui; Zhang, Lizhi

    2010-04-15

    In this study, we demonstrate an electro-Fenton (E-Fenton) system constructed with a novel sandwich film cathode (SFC). For the fabrication of SFC, Fe(2+)-chitosan (Fe-CHI) was first deposited on foam nickel (Fe-CHI/Ni). Then two pieces of Fe-CHI/Ni was used to fasten one piece of activated carbon fiber (ACF) to obtain a Fe-CHI/Ni|ACF|Fe-CHI/Ni sandwich film cathode. We interestingly found that this SFC based E-Fenton system could effectively degrade rodamine B with in situ generating both hydrogen peroxide and iron ions. Its degradation efficiency was significantly higher than those of the E-Fenton systems constructed with composite cathodes of carbon nanotubes with Fe@Fe(2)O(3) core-shell nanowires or Cu(2)O nanocubes reported in our previous studies. Hydrogen peroxide electrogenerated through the reduction of O(2) adsorbed on the sandwich film cathode and the iron ions produced by the leakage from Fe(2+)-chitosan film during the E-Fenton reaction were, respectively, monitored, providing clues to understand the high efficiency of this novel SFC based E-Fenton system. More importantly, this low-cost sandwich film cathode was very stable and could be reused without catalytic activity decrease, suggesting its potential application in the wastewater treatment.

  9. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams.

  10. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  11. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...

  12. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Setback distances between small biological wastewater treatment systems and drinking water wells against virus contamination in alluvial aquifers.

    Science.gov (United States)

    Blaschke, A P; Derx, J; Zessner, M; Kirnbauer, R; Kavka, G; Strelec, H; Farnleitner, A H; Pang, L

    2016-12-15

    Contamination of groundwater by pathogenic viruses from small biological wastewater treatment system discharges in remote areas is a major concern. To protect drinking water wells against virus contamination, safe setback distances are required between wastewater disposal fields and water supply wells. In this study, setback distances are calculated for alluvial sand and gravel aquifers for different vadose zone and aquifer thicknesses and horizontal groundwater gradients. This study applies to individual households and small settlements (1-20 persons) in decentralized locations without access to receiving surface waters but with the legal obligation of biological wastewater treatment. The calculations are based on Monte Carlo simulations using an analytical model that couples vertical unsaturated and horizontal saturated flow with virus transport. Hydraulic conductivities and water retention curves were selected from reported distribution functions depending on the type of subsurface media. The enteric virus concentration in effluent discharge was calculated based on reported ranges of enteric virus concentration in faeces, virus infectivity, suspension factor, and virus reduction by mechanical-biological wastewater treatment. To meet the risk target of fast-flow alluvial aquifers like coarse gravels, the calculated setback distances were too large to achieve practically. Therefore, for this category of aquifer, a high level of treatment is recommended before the effluent is discharged to the ground surface. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Investigation of dissolved N2O production processes during wastewater treatment system in Ulaanbaatar

    Directory of Open Access Journals (Sweden)

    Tumendelger A

    2017-02-01

    Full Text Available Nitrous oxide (N2O is an increasing greenhouse gas in the troposphere and a potential destroyer of stratospheric ozone layer. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrifcation processes in WWTP. These major processes can be distinguished by isotopocule analysis. In order to reveal production mechanisms of N2O in a standard wastewater treatment, we made water sampling at the central WWTP in Ulaanbaatar. The water samples collected from seven stations including biological reaction tanks were measured for concentration and isotopocule ratios of dissolved N2O and other inorganic nitrogen. Dissolved N2O concentration was extremely higher than that expected under atmospheric equilibrium (about 9 nmol/l at all stations, indicating that this system is a potential source of N2O. It showed a gradual increase with the progress of biological reaction and the highest concentration (335.7 nmol/l was observed at station N5-4 of the aeration tank when the DO was 5.7 mg/l. Nitrification by nitrifying bacteria could actively occur by the concentration of NH4+ decreased whereas NO2- and NO3- showed a temporal and monotonic increase, respectively, under high DO concentration. Although the reported values of site preference (SP of N2O, the difference in 15N/14N ratio between central (α and terminal (β nitrogen, produced via NO2- reduction (SP(ND, including both nitrifier and denitrifier denitrification, and NH2OH oxidation (SP(HO ranged from -10.7‰ to 0‰ and 31.4‰ to 36.3‰, respectively, the observed SP at aeration tank was close to SP(ND rather than SP(HO. It was ranged from 0.4‰ to 13.3‰ when N2O concentration was high, implying that the NO2- reduction made a greater contribution to N2O production. Slightly elevated SP (13.3‰ only at

  15. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  16. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  17. General design, construction, and operation guidelines: Constructed wetlands wastewater treatment systems for small users including individual residences. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, G.R.; Watson, J.T.

    1993-05-01

    One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology in 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.

  18. Sustainable treatment of rubber latex processing wastewater : The UASB-system combined with aerobic post-treatment

    NARCIS (Netherlands)

    Nguyen Trung Viet,

    1999-01-01

    The main objective of this PhD-thesis is to assess the applicability of UASB-process for treating RLP wastewater and the feasibility of some adequate post-treatment processes for the effluent of the anaerobic treatment process.The studies were carried out in The Netherlands during November 1990-May

  19. Sustainable treatment of rubber latex processing wastewater : the UASB-system combined with aerobic post-treatment

    NARCIS (Netherlands)

    Viet Nguyen Trung,

    1999-01-01

    The main objective of this PhD-thesis is to assess the applicability of UASB-process for treating RLP wastewater and the feasibility of some adequate post-treatment processes for the effluent of the anaerobic treatment process.

    The studies were carried out in The Netherlands during

  20. Increasing significance of advanced physical/chemical processes in the development and application of sustainable wastewater treatment systems

    NARCIS (Netherlands)

    Rulkens, W.H.

    2008-01-01

    The awareness of the problem of the scarcity of water of high quality has strongly changed the approach of wastewater treatment. Currently, there is an increasing need for the beneficial reuse of treated wastewater and to recover valuable products and energy from the wastewater. Because microbiologi

  1. Appropriate wastewater treatment systems for developing countries: criteria and indictor assessment in Thailand.

    Science.gov (United States)

    Singhirunnusorn, W; Stenstrom, M K

    2009-01-01

    This paper presents a comprehensive approach with factors to select appropriate wastewater treatment systems in developing countries in general and Thailand in particular. Instead of focusing merely on the technical dimensions, the study integrates the social, economic, and environmental concerns to develop a set of criteria and indicators (C&I) useful for evaluating appropriate system alternatives. The paper identifies seven elements crucial for technical selection: reliability, simplicity, efficiency, land requirement, affordability, social acceptability, and sustainability. Variables are organized into three hierarchical elements, namely: principles, criteria, and indicators. The study utilizes a mail survey to obtain information from Thai experts-academicians, practitioners, and government officials-to evaluate the C&I list. Responses were received from 33 experts on two multi-criteria analysis inquiries-ranking and rating-to obtain evaluative judgments. Results show that reliability, affordability, and efficiency are among the most important elements, followed by sustainability and social acceptability. Land requirement and simplicity are low in priority with relatively inferior weighting. A number of criteria are then developed to match the contextual environment of each particular condition. A total of 14 criteria are identified which comprised 64 indicators. Unimportant criteria and indicators are discarded after careful consideration, since some of the indicators are local or site specific.

  2. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility.

  3. [Simultaneously removal of COD, nitrogen and phosphorus from wastewater by coupling treatment system with immobilized algae-bacteria].

    Science.gov (United States)

    Deng, Xu; Wei, Bin; Hu, Zhang-Li

    2011-08-01

    A coupling treatment system was developed by employing immobilized Chlamydomonas reinhardti and activated sludge to simultaneously remove COD, nitrogen and phosphorus from wastewater. The amount of wastewater treated by the system was 6 m3 per day, and hydraulic retention time was 12 h. For activated sludge section, as stirring rate of anaerobic tank was 15 r x min(-1) and DO value of aerobic tank was 5 mg x L(-1), COD decreased from about 150 mg x L(-1) to 50 mg x L(-1) and NH4+-N from 20-30 mg x L(-1) to 0.5 mg x L(-1), whereas TP only dropped from 2-3 mg x L(-1) to 1.0 mg x L(-1). For immobilized C. reinhardti section, the suitable conditions were: DO 5 mg x L(-1), illumination intensity 2000 lx, the loading ratio of immobilization pellets 20%, respectively. Under the appropriate conditions of the coupling treatment system, COD, NH4+-N and TP of the effluent were about 15 mg x L(-1), 0.5 mg x L(-1) and 0.5 mg x L(-1), respectively. During 2 months period of continuous treatment, COD, NH4+-N and TP of the effluent kept fairly constant, showing the stability of the coupling wastewater treatment system.

  4. Algal Biofilm Production and Harvesting System for Wastewater Treatment with Biofuels By-Products

    OpenAIRE

    Christenson, Logan

    2011-01-01

    Excess nitrogen and phosphorus in discharged wastewaters can lead to downstream eutrophication, ecosystem damage, and impaired water quality that may affect human health. Chemical-based and physical-based technologies are available to remove these nutrients; however, they often consume significant amounts of energy and chemicals, greatly increasing treatment costs. Algae are capable of removing these pollutants through biomass assimilation, and if harvested, can be utilized as a feedstock for...

  5. Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.; Danmowa, N.

    2012-12-01

    The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 d

  6. Comparative overview of primary sedimentation-based mechanical stage in some Romanian wastewater treatment systems

    Science.gov (United States)

    Zaharia, C.

    2017-08-01

    Nowadays, wastewater (WW) treatment facilities are considered significant exposure pathways for solid particles, and also significant concerns of any quality conscious manufacturer. Most solid particles have some forms of organic coating either used as active material or to suspend and/or stabilize different present solid materials, having increase in toxicity that must be reduced, or sometimes even totally eliminated, especially if effluent is either discharged directly to surface water, or distributed through industrial water supplies. Representatives providing innovative technologies, comprehensive supports and expertise in wastewater and sludge treatment field are known, each one using modern treatment technology and facilities. Mechanical treatment is indispensable in primary treatment steps of both municipal and industrial WW applications, its main goal being separation of floating, settling and suspended materials (especially into a primary sedimentation-based treatment step). The aim of this work is to present comparatively the performance in solids removal of conventional mechanical WW treatment stages, especially those based on primary sedimentation, or sedimentation-like operations applied for Romanian urban WW treatment plants (serving two towns with ca 18,000 inhabitants), industrial WW treatment plants (deserving industries of vegetal food processing and organic chemicals’ manufacturing) and additional information on valorisation of separated solid material and improvement possibilities.

  7. Use of a similarity index based on microbial fatty acid (MFA) analysis to monitor biological wastewater treatment systems.

    Science.gov (United States)

    Son, K S; Hall, E R

    2003-09-01

    Estimating the stability of microbial community structures may be useful in advanced biological wastewater treatment system design and operation. In this research, a monitoring method using fatty acid profiles was evaluated for detecting changes in microbial community structures. For the evaluation, the operating parameters such as pH, organic loading, and chlorine addition were varied in two identical laboratory scale conventional activated sludge systems. A similarity index based on microbial fatty acid analysis was used to express the stability of microbial community structures in the systems. Experiments using a model microbial community showed that microbial compositions changed daily even under constant operating conditions and that the rate of change increased under dynamic operating conditions. Substrate changes brought about a relatively large change in a microbial community structure, eventually resulting in a very different microbial community. After only 7 days following a substrate change in a lab-scale bioreactor, the biomass exhibited only 45% similarity to the original structure. The analysis of microbial fatty acids conveys additional information, in that it could be used for the calculation of biomass concentrations in a wastewater treatment system if microbial fatty acid analyses are executed on a routine basis as a monitoring tool for biological wastewater treatment systems. The total fatty acid concentrations were about 0.61% of the biomass concentration as mixed liquor volatile suspended solid concentrations in this research.

  8. Estimation and filtering of nonlinear systems application to a waste-water treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Zeng, F.Y.; Rols, J.L. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1994-04-01

    A fundamental task in design and control of biotechnological processes is system modelling. This task is made difficult by the scarceness of on-line direct sensors for some key variables and by the fact that identifiability of models including Michaelis-Menten type of nonlinearities is not straightforward. The use of adaptive estimation approaches constitutes an interesting alternative to circumvent these kind of problems. This paper discusses an identification technique derived to solve the problem of estimating simultaneously inaccessible state variables and time-varying parameters of a nonlinear wastewater treatment process. An extended linearization technique using Kronecker`s calculation provides the error model of the joint observer-estimator procedure which convergence is proved via Lyapunov`s method. Sufficient conditions for stability of this joint identification scheme are given and discussed according to the persistence excitation conditions of the signals. A simulation study with measurement noises and abrupt jumps of the process parameters shows the feasibility and significant robustness of the proposed adaptive estimation methodologies. (author). (author). 10 refs., 3 figs.

  9. A Model to Predict Nitrogen Losses in Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Morales, I.; Cooper, J.; Loomis, G.; Kalen, D.; Amador, J.; Boving, T. B.

    2014-12-01

    Most of the non-point source Nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds are considered environmental pollutants because they deplete the oxygen availability in water bodies and produce eutrophication. The objective of this study was to simulate the fate and transport of Nitrogen in OWTS. The commercially-available 2D/3D HYDRUS software was used to develop a transport and fate model. Experimental data from a laboratory meso-cosm study included the soil moisture content, NH4 and NO3- data. That data set was used to calibrate the model. Three types of OWTS were simulated: (1) pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (SND) and (3) Geomat (GEO), a variation of SND. To better understand the nitrogen removal mechanism and the performance of OWTS technologies, replicate (n = 3) intact soil mesocosms were used with 15N-labelled nitrogen inputs. As a result, it was estimated that N removal by denitrification was predominant in P&S. However, it is suggested that N was removed by nitrification in SND and GEO. The calibrated model was used to estimate Nitrogen fluxes for both conventional and advanced OWTS. Also, the model predicted the N losses from nitrification and denitrification in all OWTS. These findings help to provide practitioners with guidelines to estimate N removal efficiencies for OWTS, and predict N loads and spatial distribution for identifying non-point sources.

  10. Nitrifying-denitrifying filters and UV-C disinfection reactor: a combined system for wastewater treatment.

    Science.gov (United States)

    Ben Rajeb, Asma; Mehri, Inès; Nasr, Houda; Najjari, Afef; Saidi, Neila; Hassen, Abdennaceur

    2017-03-01

    Biological treatment systems use the natural processes of ubiquitous organisms to remove pollutants and improve the water quality before discharge to the environment. In this paper, the nitrification/denitrification reactor allowed a reduction in organic load, but offered a weak efficiency in nitrate reduction. However, the additions of the activated sludge in the reactor improve this efficiency. A decrease of [Formula: see text] values from 13.3 to 8 mg/l was noted. Nevertheless, sludge inoculation led to a net increase of the number of pathogenic bacteria. For this reason, a UV-C pilot reactor was installed at the exit of the biological nitrification-denitrification device. Thus, a fluence of 50 mJ.cm(-2) was sufficient to achieve values of 20 MPN/100 ml for fecal coliform and 6 MPN/100 ml for fecal streptococci, conforms to Tunisian Standards of Rejection. On the other hand, the DGGE approach has allowed a direct assessment of the bacterial community changes upon the treated wastewater.

  11. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  12. Biological flocculation treatment on distillery wastewater and recirculation of wastewater.

    Science.gov (United States)

    Zhang, Wen; Xiong, Rongchun; Wei, Gang

    2009-12-30

    In the present study, a wastewater treatment system for the ethanol fermentation industry was developed by recycling distillery wastewater. The waste was able to be recycled for the next fermentation after being treated with bio-flocculation process. The bio-flocculation process contains three steps: screening, treatment with polyaspartic acid and filtration. When the filtrate from this process was recycled, the average ethanol production yield was very close to that in the conventional process using tap water. In contrast, the recycle of wastewater without flocculation and with chemical flocculation showed negative effects on ethanol yield as recycling was repeated. This new process was confirmed to have stable operation over ten recycles. Hazardous materials influencing distillery wastewater recycles on fermentation were also considered. It was found that the content of suspended solids (SS), volatile acid and Fe ions inhibited fermentation and resulted in a decreased ethanol yield. Bio-flocculation was shown to be an effective way to diminish the content of inhibitory compounds drastically when the waste was recirculated.

  13. Treatment of vegetable oily wastewater using an integrated microfiltration-reverse osmosis system.

    Science.gov (United States)

    Yu, Xiaoli; Zhong, Zhaoxiang; Xing, Weihong

    2010-01-01

    Vegetable oil processing plants and catering trade often generate a large amount of oil-containing wastewater, which causes serious environmental problems. The objective of this work was to explore the feasibility of vegetable oil wastewater treatment with an integrated microfiltration-reverse osmosis (MF-RO) process. The influence of operational parameters on the separation behaviors were investigated in MF process. In MF continuous process the steady flux was around 90 (L/m(2) h) when the concentrated multiple reached 16, and the oil content in permeate was less than 12 mg/L. In the RO continuous process, antifouling membrane was used to treat permeate from the ceramic membrane process in order to improve the water quality. The RO process had a permeate flux of 24 (L/m(2) h) and water recovery rate of 95%. The permeate from the RO stage was free of oil, and its TOC and conductivity were less than 0.6 mg/L and 50 micros/cm, respectively. The results demonstrated that the two stage membrane process combining MF and RO is highly efficient in the treatment of oil-containing wastewater.

  14. Modelling micro-pollutant fate in wastewater collection and treatment systems: status and challenges

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Benedetti, L.; Daigger, G. T.;

    2013-01-01

    This paper provides a comprehensive summary on modelling of micro-pollutants' (MPs) fate and transport in wastewater. It indicates the motivations of MP modelling and summarises and illustrates the current status. Finally, some recommendations are provided to improve and diffuse the use....... This is crucial, as regional risk assessments and model-based evaluations of pollution discharge from urban areas can potentially be used by decision makers to evaluate effluent quality regulation, and assess upgrading requirements, in the future....... of such models. In brief, we conclude that, in order to predict the contaminant removal in centralised treatment works, considering the dramatic improvement in monitoring and detecting MPs in wastewater, more mechanistic approaches should be used to complement conventional, heuristic and other fate models...

  15. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  16. Use of Programmable Logic Controllers to Automate Control and Monitoring of U.S. Army Wastewater Treatment Systems

    Science.gov (United States)

    1991-07-01

    Belvoir, VA. January 1989). 2 Byung J. Kim, John J. Bandy, K.K. Gidwani, and S.P. Shelton, Artificial Intelligence for U.S. Army Wastewater Treament ...environmental sensitivity warrant a dedicated room and a heating , ventilation, and air conditioning (HVAC) system, PLCs are extremely small and can...innovative biological treatment process annually generates enough by-product gas from their high-strength waste stream to heat 60,000 average size homes

  17. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    sludge (Scenario 1), and anaerobic removal of organic matter by a continuous stirred tank reactor (Scenario 2). Both technologies were applied to wastewater coming from a fish meals industry and a pet food industry discharging about 250 to 260 thousand cubic meters of wastewater per year. The methodology...... comprises three major steps: (i) Data gathering regarding wastewater characteristics and discharge, (ii) Simulation of the wastewater treatment plant’s operation by dedicated process engineering models in Matlab/Simulink, (iii) Classification and calculation of life cycle inventory data: removal...... boundaries were limited from the influent entering the wastewater treatment plant until the disposal of the effluents generated, i.e. wastewater, sludge, and biogas (for Scenario 2). Main differences between Scenario 1 & Scenario 2 were: (i) Effluent quality was 65% better when pet food wastewater was fed...

  18. Following a drop of water from the cloud, throughout the sewer system, into the receiving water - Model predictive control of integrated sewer-wastewater treatment systems

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Vezzaro, Luca; Sharma, Anitha Kumari

    of pollutants discharged from treatment plants, etc.). The tools developed in the SWI project include (but are not limited to (i) rainfall nowcasting based on radar measurements, (ii) probabilistic flow forecasting based on data assimilation and stochastic models, (iii) prediction and optimization of wet...... measurements, flow and water levels, operational parameters at treatment plants) it is possible to dynamically optimize the integrated storm- and wastewater systems according to different criteria (e.g. utilizing the system fully at all times and reducing volumes of combined sewer overflows, loads......-weather performance of wastewater treatment plants, and (iv) integrated control of the different elements of the integrated wastewater systems. Full-scale testing of these tools in different catchment located in Denmark ensure that the developed tools can represent an important step forwards for on-line operation...

  19. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  20. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater.

    Science.gov (United States)

    Melero, J A; Martínez, F; Botas, J A; Molina, R; Pariente, M I

    2009-09-01

    The aim of this work was to assess the treatment of wastewater coming from a pharmaceutical plant through a continuous heterogeneous catalytic wet peroxide oxidation (CWPO) process using an Fe(2)O(3)/SBA-15 nanocomposite catalyst. This catalyst was preliminary tested in a batch stirred tank reactor (STR), to elucidate the influence of significant parameters on the oxidation system, such as temperature, initial oxidant concentration and initial pH of the reaction medium. In that case, a temperature of 80 degrees C using an initial oxidant concentration corresponding to twice the theoretical stoichiometric amount for complete carbon depletion and initial pH of ca. 3 allow TOC degradation of around 50% after 200 min of contact time. Thereafter, the powder catalyst was extruded with bentonite to prepare pellets that could be used in a fixed bed reactor (FBR). Results in the up-flow FBR indicate that the catalyst shows high activity in terms of TOC mineralization (ca. 60% under steady-state conditions), with an excellent use of the oxidant and high stability of the supported iron species. The activity of the catalyst is kept constant, at least, for 55h of reaction. Furthermore, the BOD(5)/COD ratio is increased from 0.20 to 0.30, whereas the average oxidation stage (AOS) changed from 0.70 to 2.35. These two parameters show a high oxidation degree of organic compounds in the outlet effluent, which enhances its biodegradability, and favours the possibility of a subsequent coupling with a conventional biological treatment.

  1. Life Cycle Assessment and Cost Analysis of Water and Wastewater Treatment Options for Sustainability: Influence of Scale on Membrane Bioreactor Systems

    Science.gov (United States)

    changes in drinking and wastewater infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated wastewa...

  2. Public awareness, behaviours and attitudes towards domestic wastewater treatment systems in the Republic of Ireland

    Science.gov (United States)

    Naughton, O.; Hynds, P. D.

    2014-10-01

    Numerous studies have highlighted and quantified the role of domestic wastewater treatment systems (DWWTSs) as significant sources of human-specific aquatic contaminants in both developed and developing regions, particularly with respect to private and municipal groundwater supplies. However, from a socio-hydrological perspective, little work has focused on these systems and the potential environmental and human burden posed. This is of particular relevance in the Republic of Ireland, where approximately one third of the population is serviced by DWWTSs. The objective of the current study was to examine levels of awareness and subsequent behavioural tendencies among owners and users of DWWTSs in the Republic of Ireland, particularly in light of recent and future (national and EU) legislative amendments. Structured questionnaires were completed bi-modally with 1106 Irish respondents. Analysis identified a number of significant knowledge gaps which currently exist among DWWTS users in Ireland. These were associated with environmentally inadvisable behavioural practises, potentially leading to increased contamination vulnerability and subsequently, increased human exposure to waterborne contaminants. Household water supply type was significantly associated with DWWTS threat acknowledgement (p = 0.014), with unregulated private groundwater users exhibited the lowest awareness of DWWTS as a potential source of aquatic contaminants despite being the group at greatest risk. A bi-modal clustering approach was employed, with respondents found to fall into one of three distinct “attitudinal” clusters. Future engagement strategies should strive to provide guidance regarding the role of people and their activities within the hydrological cycle. The current study reinforces this conclusion, while providing evidence-based recommendations regarding provision of demographically focused educational strategies; these will further increase environmental policy compliance, and in

  3. Multi-electrode bioelectrochemical system for the treatment of high total dissolved solids bearing chemical based wastewater.

    Science.gov (United States)

    Velvizhi, G; Venkata Mohan, S

    2017-10-01

    Multi-electrode bioelectrochemical treatment system (ME-BET; membrane less) consisting of six electrode assemblies (E1-E6) was designed and fabricated for the treatment of complex chemical based wastewater with high salt concentration. The performance was compared with single electrode assembly BET reactor (SE-BET). Enhanced TDS and COD removal was observed in ME-BET (32%; 56%) compared to SE-BET (15%; 23%) as a result of in situ bio-potential from multi-electrodes through the oxidation of organic substrate in the wastewater. Inorganic pollutants viz., nitrates (28%; 8%), sulphates (25%; 9%) and phosphates (20%; 7%) removal was higher in ME-BET in comparison with SE-BET and this was also supported with bioelectrogenic activity (584; 160mW/m(3)). The study infers that designing of compact reactors with multiple electrodes in a single system enhances the anodic reactions and enable effective treatment of complex wastewaters with simultaneous power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Catalytic oxidation with Al-Ce-Fe-PILC as a post-treatment system for coffee wet processing wastewater.

    Science.gov (United States)

    Sanabria, Nancy R; Peralta, Yury M; Montañez, Mardelly K; Rodríguez-Valencia, Nelson; Molina, Rafael; Moreno, Sonia

    2012-01-01

    The effluent from the anaerobic biological treatment of coffee wet processing wastewater (CWPW) contains a non-biodegradable compound that must be treated before it is discharged into a water source. In this paper, the wet hydrogen peroxide catalytic oxidation (WHPCO) process using Al-Ce-Fe-PILC catalysts was researched as a post-treatment system for CWPW and tested in a semi-batch reactor at atmospheric pressure and 25 °C. The Al-Ce-Fe-PILC achieved a high conversion rate of total phenolic compounds (70%) and mineralization to CO(2) (50%) after 5 h reaction time. The chemical oxygen demand (COD) of coffee processing wastewater after wet hydrogen peroxide catalytic oxidation was reduced in 66%. The combination of the two treatment methods, biological (developed by Cenicafé) and catalytic oxidation with Al-Ce-Fe-PILC, achieved a 97% reduction of COD in CWPW. Therefore, the WHPCO using Al-Ce-Fe-PILC catalysts is a viable alternative for the post-treatment of coffee processing wastewater.

  5. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  6. Domestic wastewater treatment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Duncan

    2004-09-15

    Details methods of domestic wastewater treatment that are especially suitable in developing countries. The emphasis is on low-cost, low-energy, low-maintenance, high-performance systems that contribute to environmental sustainability by producing effluents that can be safely and profitably used in agriculture for crop irrigation and/or in aquaculture for fish and aquatic vegetable pond fertilization. Modern design methodologies, with worked design examples, are described for waste stabilization ponds (WSPs), wastewater storage and treatment reservoirs, constructed wetlands, upflow anaerobic sludge blanket reactors, biofilters, aerated lagoons and oxidation ditches. (Author)

  7. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.;

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  8. Effects of Micronutrient Niacin on Treatment Efficiency of Textile Wastewater

    Institute of Scientific and Technical Information of China (English)

    LIANG Wei; HU Hongying; GU Xin; CHE Yuling; WANG Hui; GUO Yufeng; SONG Yudong

    2006-01-01

    Textile wastewater is well known as one of the wastewaters to be most difficultly treated. The effects of niacin on textile wastewater niacin, the physical and chemical indexes of the water samples, such as COD, ammonia and dehydrogenase activities, were analyzed every day with standard methods, and obvious improvement in wastewater treatcould improve the COD removal efficiency signifcantly with removal rates mental condition, addition of niacin had almost no effect on the removal of ase by 130%. It proved that the biological treatment performance of textile wastewater treatment system probably could be optimized through micronutrient niacin supplement.

  9. Comparative evaluation on the performance of bio-rack and shallow pond systems for domestic wastewater treatment.

    Science.gov (United States)

    Valipour, A; Raman, V K; Badaliansgholikandi, G

    2012-10-01

    Constructed wetlands have been used successfully for treatment of wastewater during the last decades. The bio-rack and shallow pond systems are well engineered wetland process in wastewater treatment. The aim of this study is to compare the potential use of bio-rack and shallow pond systems for domestic wastewater treatment either in presence of high total dissolved solids (TDS) or heavy metal salts. The sewage treatment performance indicates 75.15% & 80.93% chemical oxygen demand (COD), 86.59% & 90.90% biological oxygen demand (BOD5), 27.54% & 15.98% total dissolved solids (TDS), 73.13% & 70.31% total suspended solids (TSS), 8.86% & 3.61% Chlorides, 70.22% & 74.18% ammonia nitrogen (NH3-N), 31.71% & 41.24% phosphate (PO4-P), 92.11% & 96.45% most probable number (MPN) and 93.05% & 98.24% total viable count (TVC) reduction at 10 & 21 h hydraulic retention time (HRT) in bio-rack and shallow pond system respectively. Likewise, the Phragmites sp. and water hyacinth can tolerate TDS up to 9000 and 2000 mg/L. The reduction in TDS is minor (14 & 19%) at the highest tolerable limit whereas the heavy metal reduction is 68 & 65%, 69 & 67%, 67 & 63%, 71 & 69% for Cd, Cu, Ni and Zn in bio-rack and shallow pond system respectively. The overall studies indicate the better treatment efficiency in bio-rack system at low foot print area (91 m2) compared to shallow pond system.

  10. Increasing significance of advanced physical/chemical processes in the development and application of sustainable wastewater treatment systems

    Institute of Scientific and Technical Information of China (English)

    Wim RULKENS

    2008-01-01

    The awareness of the problem of the scarcity of water of high quality has strongly changed the approach of wastewater treatment. Currently, there is an increasing need for the beneficial reuse of treated wastewater and to recover valuable products and energy from the wastewater. Because microbiological treatment methods are, only to a limited part, able to satisfy these needs, the role and significance of physical/chemical pro-cesses in wastewater treatment are gaining more and more interest. The specific future role and aim of the various physical/chemical treatment processes can be categorized in five groups: improvement of the perform-ance of microbiological treatment processes, achieve-ment of the high quality required for reuse of the effluent, recovery of valuable components and energy from the wastewater for beneficial reuse, desalination of brackish water and seawater, and treatment of con-centrated liquid or solid waste residues produced in a wastewater treatment process. Development of more environmentally sustainable wastewater treatment chains in which physical/chemical processes play a cru-cial role, also requires application of process control and modeling strategies. This is briefly introduced by the elaboration of treatment scenarios for three specific wastewaters.

  11. Using nuclear microscopy to characterize the interaction of textile-used silver nanoparticles with a biological wastewater treatment system

    Science.gov (United States)

    Bento, J. B.; Franca, R. D. G.; Pinheiro, T.; Alves, L. C.; Pinheiro, H. M.; Lourenço, N. D.

    2017-08-01

    The use of engineered nanoparticles in the textile industry has been rapidly increasing but their fate during biological wastewater treatment is largely unknown. The goal of the current study was to characterize the interaction of silver nanoparticles (AgNPs), used in the textile industry, with a biological wastewater treatment system based on aerobic granular sludge (AGS). The exposure tests were performed using a laboratory-scale sequencing batch reactor (SBR) system with AGS. The behavior and fate of textile AgNPs in the AGS system was studied with nuclear microscopy techniques. Elemental maps of AGS samples collected from the SBR showed that AgNPs typically clustered in agglomerates of small dimensions (<10 μm), which were preferentially associated with extracellular polymeric substances (EPS). This preliminary study highlights the potential application of nuclear microscopy for the characterization of the behavior and fate of AgNPs in AGS. The detailed compartmentalization of AgNPs in AGS components obtained with nuclear microscopy provides new and relevant information concerning AgNPs retention. This will be important in biotechnological terms to delineate strategies for AgNPs removal from textile wastewater.

  12. Treatment of coke plant wastewater by SND fixed biofilm hybrid system

    Institute of Scientific and Technical Information of China (English)

    QI Rong; YANG Kun; YU Zhao-xiang

    2007-01-01

    In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the performance of the bio-degradation system. The chemical oxygen demand (COD) removal efficiency in this system was satisfactory, higher than 94%, and ammonia nitrogen was higher than 95%. The effluent COD concentration could meet the discharge standard, except for very few situations. The results showed that a sufficient carbon source was important for making ammonia nitrogen concentration meet the discharge standard. Then the TN removal efficiency in this system can be brought higher than 94%. Dissolved oxygen (DO) is very important to the performance of the SND bio-degradation system, and the suitable DO is about 3.5-4.0 mg/L at the forepart of reactor. In addition, the performance of the system was almost not affected by pH value. The results show that the system is feasible to treat coke plant wastewater.

  13. Wastewater treatment in a compact intensified wetland system at the Badboot: a floating swimming pool in Belgium.

    Science.gov (United States)

    Van Oirschot, D; Wallace, S; Van Deun, R

    2015-09-01

    The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are

  14. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to

  15. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  16. Comparative evaluation of three attached growth systems and a constructed wetland for in situ treatment of raw municipal wastewater.

    Science.gov (United States)

    Loupasaki, E; Diamadopoulos, E

    2013-01-01

    The necessity to treat municipal wastewaters in situ, with a low cost, yet effective system, led to the research of alternative methods for wastewater treatment. Attached growth systems can be an alternative option. Three attached growth systems with different media substrate, a rockwool cubes unit, a Kaldnes rings unit and a plastic bottle caps unit were studied in comparison with a constructed wetland in order to evaluate their ability to treat raw municipal wastewater. The selection of the three different media was based on their high porosity and surface area, as well as their availability and price. Three different operating periods were carried out with variations in the organic loading rate and the feeding frequency. The units were fed intermittently with short resting periods, less than 32 h, and relative high mean organic loading rates of 70, 50 and 30 g chemical oxygen demand (COD)/(m2d), respectively for each operating period. The constructed wetland and the rockwool cubes unit were the most effective, with mean COD reduction as mass rate (mg/d) 88% and 88%, biological oxygen demand 78% and 76%, dissolved organic carbon 73% and 67%, and total suspended solids 91% and 92%, respectively. Total nitrogen reduction was significantly higher at the constructed wetland with mean reduction as mass rate 51%, 60% and 83% for each period, compared to 41%, 43% and 60%, respectively, of the rockwool cubes unit. This study showed that it is possible to design, build and operate in situ small and decentralized treatment systems by using readily available packing materials and with minimum wastewater pretreatment.

  17. Bioaugmentative Approaches for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Irina Schneider

    2010-01-01

    Full Text Available Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system specially treated and acclimated activated sludge from Sofia Wastewater Treatment Plant was used. The acclimation and immobilization of initially inoculated biomass, the addition of microbiological preparations and its modification for increase of the biodegradation activity to target pollutants were studied as opportunities for the stimulation of water treatment process in bioreactors and water receiver. Second: self-purification processes in а water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied. Results: The results showed that the most important approaches for achieving high effectiveness of wastewater treatment process were both the acclimation and immobilization of biomass. In that aspect the data for the water receiver confirmed this conclusion. These two processes increased biodegradation effectiveness of the target pollutant (protein with 67%. Conclusion: The effect of the added preparations was smaller (protein biodegradation was increased to 9% for the different biological systems. It was thoroughly related to low improvement of the rate of metabolism and functioning of the biological system mainly on an enzyme level.

  18. Influence of bioselector processes on 17α-ethinylestradiol biodegradation in activated sludge wastewater treatment systems.

    Science.gov (United States)

    Ziels, Ryan M; Lust, Mariko J; Gough, Heidi L; Strand, Stuart E; Stensel, H David

    2014-06-03

    The removal of the potent endocrine-disrupting estrogen hormone, 17α-ethinylestradiol (EE2), in municipal wastewater treatment plant (WWTP) activated sludge (AS) processes can occur through biodegradation by heterotrophic bacteria growing on other organic wastewater substrates. Different kinetic and metabolic substrate utilization conditions created with AS bioselector processes can affect the heterotrophic population composition in AS. The primary goal of this research was to determine if these changes also affect specific EE2 biodegradation kinetics. A series of experiments were conducted with parallel bench-scale AS reactors treating municipal wastewater with estrogens at 100-300 ng/L concentrations to evaluate the effect of bioselector designs on pseudo first-order EE2 biodegradation kinetics normalized to mixed liquor volatile suspended solids (VSS). Kinetic rate coefficient (kb) values for EE2 biodegradation ranged from 5.0 to 18.9 L/g VSS/d at temperatures of 18 °C to 24 °C. EE2 kb values for aerobic biomass growth at low initial food to mass ratio feeding conditions (F/Mf) were 1.4 to 2.2 times greater than that from growth at high initial F/Mf. Anoxic/aerobic and anaerobic/aerobic metabolic bioselector reactors achieving biological nutrient removal had similar EE2 kb values, which were lower than that in aerobic AS reactors with biomass growth at low initial F/Mf. These results provide evidence that population selection with growth at low organic substrate concentrations can lead to improved EE2 biodegradation kinetics in AS treatment.

  19. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding are

  20. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  1. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Design of a modern automatic control system for the activated sludge process in wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    Alexandros D. Kotzapetros; Panayotis A. Paraskevas; Athanasios S. Stasinakis

    2015-01-01

    The Activated Sludge Process (ASP) exhibits highly nonlinear properties. The design of an automatic control system that is robust against disturbance of inlet wastewater flow rate and has short process settling times is a chal enging matter. The proposed control method is an I-P modified controller automatic control system with state variable feedback and control canonical form simulation diagram for the process. A more stable response is achieved with this type of modern control. Settling times of 0.48 days are achieved for the concentration of microorganisms, (reference value step increase of 50 mg·L−1) and 0.01 days for the concentration of oxygen (reference value step increase of 0.1 mg·L−1). Fluctuations of concentrations of oxygen and microorganisms after an inlet disturbance of 5 × 103m3·d−1 are smal . Changes in the reference values of oxygen and microorganisms (increases by 10%, 20%and 30%) show satisfactory response of the system in al cases. Changes in the value of inlet wastewater flow rate disturbance (increases by 10%, 25%, 50%and 100%) are stabilized by the control system in short time. Maximum percent overshoot is also taken in consideration in all cases and the largest value is 25%which is acceptable. The proposed method with I-P controller is better for disturbance rejection and process settling times compared to the same method using PI control er. This method can substitute optimal control systems in ASP.

  3. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  4. Electrochemical treatment of industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India); Palanivelu, K. [Centre for Environmental Studies, Anna University, Chennai 600 025 (India)]. E-mail: kpvelu@hotmail.com

    2004-09-10

    This paper presents the results of the treatment of phenolic compounds containing wastewater generated from phenol-formaldehyde resin manufacturing, oil refinery and bulk drug manufacturing industries by electrochemical method. Experiments were conducted at a fixed current density of 5.4 A/dm{sup 2} using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} electrode and an undivided reactor. During the various stages of electrolysis, parameters such as COD and TOC concentrations were determined in order to know the feasibility of electrochemical treatment. Adsorbable organic halogens (AOX) were detected at high concentrations during the electrolytic treatment of the effluents. However, it was observed that increasing the electrolysis time bring down the AOX concentration to lower levels. Energy consumption and current efficiency during the electrolysis were calculated and presented. The present study proves the effectiveness of electrochemical treatment for highly concentrated bio-refractory organic pollutants present in the industrial wastewater.

  5. Assessing potential cathodes for resource recovery through wastewater treatment and salinity removal using non-buffered microbial electrochemical systems.

    Science.gov (United States)

    Nikhil, G N; Yeruva, Dileep Kumar; Venkata Mohan, S; Swamy, Y V

    2016-09-01

    The present study evaluates relative functioning of microbial electrochemical systems (MES) for simultaneous wastewater treatment, desalination and resource recovery. Two MES were designed having abiotic cathode (MES-A) and algal biocathode (MES-B) which were investigated with synthetic feed and saline water as proxy of typical real-field wastewater. Comparative anodic and cathodic efficiencies revealed a distinct disparity in both the MES when operated in open circuit (OC) and closed circuit (CC). The maximum open circuit voltage (OCV) read in MES-A and MES-B was about 700mV and 600mV, respectively. Salinity and organic carbon removal efficiencies were noticed high during CC operation as 72% and 55% in MES-A and 60% and 63% in MES-B. These discrete observations evidenced ascribe to the influence of microbial electrochemical induced ion-migration over cathodic reduction reactions (CRR).

  6. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.

    Science.gov (United States)

    Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon

    2014-01-01

    Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.

  7. Development of natural treatment system consisting of black soil and Kentucky bluegrass for the post-treatment of anaerobically digested strong wastewater.

    Science.gov (United States)

    Chen, Xiaochen; Fukushi, Kensuke

    2016-03-01

    To develop a sound post-treatment process for anaerobically-digested strong wastewater, a novel natural treatment system comprising two units is put forward. The first unit, a trickling filter, provides for further reduction of biochemical oxygen demand and adjustable nitrification. The subsequent soil-plant unit aims at removing and recovering the nutrients nitrogen (N), phosphorus (P) and potassium (K). As a lab-scale feasibility study, a soil column test was conducted, in which black soil and valuable Kentucky bluegrass were integrated to treat artificial nutrient-enriched wastewater. After a long-term operation, the nitrification function was well established in the top layers, despite the need for an improved denitrification process prior to discharge. P and K were retained by the soil through distinct mechanisms. Since they either partially or totally remained in plant-available forms in the soil, indirect nutrient reuse could be achieved. As for Kentucky bluegrass, it displayed better growth status when receiving wastewater, with direct recovery of 8%, 6% and 14% of input N, P and K, respectively. Furthermore, the indispensable role of Kentucky bluegrass for better treatment performance was proved, as it enhanced the cell-specific nitrification potential of the soil nitrifying microorganisms inhabiting the rhizosphere. After further upgrade, the proposed system is expected to become a new solution for strong wastewater pollution.

  8. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  9. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    Science.gov (United States)

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids.

  10. Developing Anammox for mainstream municipal wastewater treatment

    OpenAIRE

    Lotti, T

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding area. Only across the EU, there are 16000 WWTPs that consume around 10000 GWh year-1 of electricity. Furthermore, the volume of wastewater treated in WWTPs in the EU is increasing with a rate of aroun...

  11. Colorimetric measurement of carbohydrates in biological wastewater treatment systems: A critical evaluation.

    Science.gov (United States)

    Le, Chencheng; Stuckey, David C

    2016-05-01

    Four laboratory preparations and three commercially available assay kits were tested on the same carbohydrate samples with the addition of 14 different interfering solutes typically found in wastewater treatment plants. This work shows that a wide variety of solutes can interfere with these assays. In addition, a comparative study on the use of these assays with different carbohydrate samples was also carried out, and the metachromatic response was clearly influenced by variation in sample composition. The carbohydrate content in the supernatant of a submerged anaerobic membrane bioreactor (SAMBR) was also measured using these assays, and the amount in the different supernatant samples, with and without a standard addition of glucose to the samples, showed substantial differences. We concluded that the carbohydrates present in wastewater measured using these colorimetric methods could be seriously under- or over-estimated. A new analytical method needs to be developed in order to better understand the biological transformations occurring in anaerobic digestion that leads to the production of soluble microbial products (SMPs) and extracellular polymeric substance (EPS).

  12. The relationship between BOD:N ratio and wastewater treatability in a nitrogen-fixing wastewater treatment system.

    Science.gov (United States)

    Slade, A H; Thorn, G J S; Dennis, M A

    2011-01-01

    A BOD:N:P ratio of 100:5:1 is often used as a benchmark for nutrient addition in nutrient limited wastewaters. The impact of varying nitrogen levels, whilst maintaining phosphorus constant, was studied in a simulated aerated lagoon (BOD:N of 100:0; 100:1.3; 100:1.8; 100:2.7 and 100:4.9). A synthetic wastewater was prepared using methanol, glucose and acetate as the combined carbon source, ammonium chloride as the nitrogen source and dipotassium hydrogen phosphate as the phosphorus source. Nitrogen levels did not impact organic carbon removal, but did strongly influence floc structure. With no supplemental nitrogen, growth was dispersed. Increasing the nitrogen level increased filamentous growth, with a marked change in filamentous species occurring between a BOD:N ratio of 100:1.8 and 100:2.7. Nitrogen fixation occurred at a BOD:N ratio of 100:0; 100:1.3 and 100:1.8, with nitrogen loss at BOD:N ratios of 100:2.7 and 100:4.9. At a BOD:N ratio of 100:4.9, ammonium discharge was significantly greater (1.8 mg/L) than at the lower nitrogen levels (0.04 - 0.18 mg/L). Phosphorus behaviour was more variable, however significantly more phosphorus was discharged at the lowest nitrogen level than at the highest (pBOD:N ratio at which nitrogen fixation no longer occurred was around 100:1.9.

  13. Emergy evaluations for constructed wetland and conventional wastewater treatments

    Science.gov (United States)

    Zhou, J. B.; Jiang, M. M.; Chen, B.; Chen, G. Q.

    2009-04-01

    Based on emergy synthesis, this study presents a comparative study on constructed wetland (CW) and conventional wastewater treatments with three representative cases in Beijing. Accounting the environmental and economic inputs and treated wastewater output based on emergy, different characteristics of two kinds of wastewater treatments are revealed. The results show that CWs are environment-benign, less energy-intensive despite the relatively low ecological waste removal efficiency (EWRE), and less cost in construction, operation and maintenance compared with the conventional wastewater treatment plants. In addition, manifested by the emergy analysis, the cyclic activated sludge system (CASS) has the merit of higher ecological waste elimination efficiency.

  14. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    William Z. de Mello

    2013-01-01

    Full Text Available This study investigated the emission of N2O during the sequential aerated (60-min and non-aerated (30-min stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP. N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.

  15. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  16. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  17. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  18. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The tr

  19. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  20. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  1. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A. [Oak Ridge National Lab., TN (United States)

    1995-12-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL`s Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation.

  2. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    Science.gov (United States)

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation.

  3. Sequential anaerobic-aerobic treatment for domestic wastewater - A review

    NARCIS (Netherlands)

    Kassab, G.; Halalsheh, M.; Klapwijk, A.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    Introduction, consolidation and even standardization of expensive conventional aerobic systems for domestic wastewater treatment imposed significant financial constraints on the expansion of sanitary services including treatment in developing countries. A viable alternative is the sequential anaerob

  4. Sequential anaerobic-aerobic treatment for domestic wastewater - A review

    NARCIS (Netherlands)

    Kassab, G.; Halalsheh, M.; Klapwijk, A.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    Introduction, consolidation and even standardization of expensive conventional aerobic systems for domestic wastewater treatment imposed significant financial constraints on the expansion of sanitary services including treatment in developing countries. A viable alternative is the sequential anaerob

  5. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.

  6. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with

  7. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  8. Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters.

    Science.gov (United States)

    Adrados, B; Sánchez, O; Arias, C A; Becares, E; Garrido, L; Mas, J; Brix, H; Morató, J

    2014-05-15

    The prokaryotic microbial communities (Bacteria and Archaea) of three different systems operating in Denmark for the treatment of domestic wastewater (horizontal flow constructed wetlands (HFCW), vertical flow constructed wetlands (VFCW) and biofilters (BF)) was analysed using endpoint PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE). Further sequencing of the most representative bacterial bands revealed that diverse and distinct bacterial communities were found in each system unit, being γ-Proteobacteria and Bacteroidetes present mainly in all of them, while Firmicutes was observed in HFCW and BF. Members of the Actinobacteria group, although found in HFCW and VFCW, seemed to be more abundant in BF units. Finally, some representatives of α, β and δ-Proteobacteria, Acidobacteria and Chloroflexi were also retrieved from some samples. On the other hand, a lower archaeal diversity was found in comparison with the bacterial population. Cluster analysis of the DGGE bacterial band patterns showed that community structure was related to the design of the treatment system and the organic matter load, while no clear relation was established between the microbial assemblage and the wastewater influent.

  9. Evaluation Criteria for Implementation of a Sustainable Sanitation and Wastewater Treatment System at Jiuzhaigou National Park, Sichuan Province, China

    Science.gov (United States)

    Gaulke, Linda S.; Weiyang, Xiao; Scanlon, Andrew; Henck, Amanda; Hinckley, Tom

    2010-01-01

    The administration of Jiuzhaigou National Park in Sichuan Province, China, is in the process of considering a range of upgrades to their sanitation and wastewater treatment systems. Their case history involves an ongoing series of engineering design flaws and management failures. The administration of the Park identified sustainability, environmental protection, and education goals for their sanitation and wastewater treatment system. To meet the goal of sustainability, environmental and economic concerns of the Park’s administration had to be balanced with socio-cultural needs. An advanced reconnaissance method was developed that identified reasons for previous failures, conducted stakeholder analysis and interviews, determined evaluation criteria, and introduced innovative alternatives with records of successful global implementations. This evaluation also helped the Park to better define their goals . To prevent future failures, the administration of the Park must commit to a balanced and thorough evaluation process for selection of a final alternative and institute effective long-term management and monitoring of systems. In addition, to meet goals and achieve energy efficient, cost-effective use of resources, the Park must shift their thinking from one of waste disposal to resource recovery. The method and criteria developed for this case study provides a framework to aid in the successful implementation of sanitation projects in both underdeveloped and developed areas of the world, incorporating socio-cultural values and resource recovery for a complex group of stakeholders.

  10. A study of subsurface wastewater infiltration systems for distributed rural sewage treatment.

    Science.gov (United States)

    Qin, Wei; Dou, Junfeng; Ding, Aizhong; Xie, En; Zheng, Lei

    2014-08-01

    Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration ofa pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.

  11. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  12. Advanced treatment of refractory organic pollutants in petrochemical industrial wastewater by bioactive enhanced ponds and wetland system.

    Science.gov (United States)

    Liu, Shuo; Ma, Qiusha; Wang, Baozhen; Wang, Jifu; Zhang, Ying

    2014-05-01

    A large-scale combined ponds-wetland system was applied for advanced treatment of refractory pollutants in petrochemical industrial wastewater. The system was designed to enhance bioactivity and biological diversity, which consisted of anaerobic ponds (APs), facultative ponds (FPs), aerobic pond and wetland. The refractory pollutants in the petrochemical wastewater to be treated were identified as alkanes, chloroalkanes, aromatic hydrocarbons, and olefins, which were significantly degraded and transformed along with the influent flowing through the enhanced bioactive ponds-wetland system. 8 years of recent operational data revealed that the average removal rate of stable chemical oxygen demand (COD) was 42.7 % and that influent COD varied from 92.3 to 195.6 mg/L. Final effluent COD could reach 65.8 mg/L (average). COD removal rates were high in the APs and FPs and accounted for 75 % of the total amount removed. This result indicated that the APs and FPs degraded refractory pollutants through the facilitation of bacteria growth. The changes in the community structures of major microbes were assessed by 16SrDNA-denaturing gradient gel electrophoresis. The same analysis was used to identify the main bacterial function for the removal of refractory pollutants in the APs and FPs. The APs and FPs displayed similar microbial diversities, and some of the identified bacteria degraded and removed refractory pollutants. The overall results proved the applicability, stability, and high efficiency of the ponds-wetland system with enhanced bioactivity in the advanced removal of refractory pollutants from petrochemical industrial wastewater.

  13. Wastewater treatment performances of horizontal and vertical subsurface flow constructed wetland systems in tropical climate

    Directory of Open Access Journals (Sweden)

    Suwasa Kantawanichkul

    2013-10-01

    Full Text Available The study was carried out in 4 concrete beds: two vertical subsurface flow beds (dimension of 1x1.4 x 0.6 m3 and twohorizontal subsurface flow beds (dimension of 0.6 x 2.3x 0.6 m3 planted with Cyperus alternifolius L. Under the averagewastewater temperature of 27°C, the hydraulic loading rates (HLR were varied from 5 to 20 cm/d in order to obtain theoptimum operating conditions and compare the removal efficiency. The wastewater was intermittently fed into the verticalsubsurface flow beds (5 minutes on and 55 minutes off, and continuously into the horizontal subsurface flow beds. Themaximum removal efficiencies were found at the lowest hydraulic loading rate for both systems. The horizontal subsurfaceflow system had a higher removal rate than the vertical subsurface flow system in terms of COD (the removal rates at 5-20cm/d were 9.6-33.9 g/m2.d. The vertical subsurface flow system showed higher removal efficiency for TKN and NH4+-N, inevery hydraulic loading rate and the removal rates for TKN and NH4+-N were 0.4-1.1 g/m2.d, respectively. Furthermore, it wasfound that the uptake of N by plants in the horizontal flow system was higher than in the vertical flow system for everyhydraulic loading rate (HLR but the loss of N via adsorption/denitrification was higher in the vertical flow system than inthe horizontal flow system, at 20 cm/d HLR. The removal rate constants in the horizontal subsurface flow system for COD andNH4+-N were 0.0166 and 0.0188 m/d and 0.0204 and 0.0287 m/d for the vertical subsurface flow system, respectively

  14. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    Science.gov (United States)

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  15. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  16. Integrated design of sewers and wastewater treatment plants.

    Science.gov (United States)

    Vollertsen, J; Hvitved-Jacobsen, T; Ujang, Z; Talib, S A

    2002-01-01

    Sewer system design must be integrated with wastewater treatment plant design when moving towards a more sustainable urban wastewater management. This integration allows an optimization of the design of both systems to achieve a better and more cost-effective wastewater management. Hitherto integrated process design has not been an option because the tools to predict in-sewer wastewater transformations have been inadequate. In this study the WATS model--being a new and validated tool for in-sewer microbial process simulations--is presented and its application for integrated sewer and treatment plant design is exemplified. A case study on a Malaysian catchment illustrates this integration. The effects of centralization of wastewater treatment and the subsequently longer transport distances are addressed. The layout of the intercepting sewer is optimized to meet the requirements of different treatment scenarios.

  17. Cheese whey wastewater: characterization and treatment.

    Science.gov (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems.

  18. A review on distribution and monitoring of hormones in the environment and their removal in wastewater treatment systems

    Directory of Open Access Journals (Sweden)

    Rahele Kafaei

    2014-11-01

    Full Text Available Steroid hormones of the Endocrine disrupting compounds (EDC are steroid hormones, which cause negative effects on human health, animals and ecosystems balance, have become a major concern in modern societies. In recent years numerous studies have performed on hormone distribution in the environment, especially in aquatic environments and the ways that they have been removed. Hormones entrance into the environment primarily is through wastewater, municipal wastewater treatment sludge, hospital wastewater and livestock activity. Measured values in the wastewater treatment influent, livestock lagoons, surface water and groundwater, showed different concentrations of hormones in the range of ng/L. But it is important to know even in trace concentration of ng/L, hormones can have adverse effects on environment. By biodegradation, biosorption and biotransformation, hormones will be degraded and their activities will be decreased. Wastewater treatment processes includes preliminary, primary, secondary and advanced treatment, that are the most important ways to prevent the entrance of hormonal compounds to the environment. Sludge should be cleaned by available technology before entering the environment. Wastewater processes in both liquid and sludge phase, under various operating conditions, show different range of hormones removal. In this paper authors try to discuss about the problem and different environmental aspects of hormones.

  19. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  20. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  1. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system.

    Science.gov (United States)

    Rodriguez-Caballero, A; Aymerich, I; Poch, M; Pijuan, M

    2014-09-15

    In this study, methane (CH4) and nitrous oxide (N2O) emission dynamics of a plug-flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH4 and N2O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2-3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH4 or N2O peak emissions. CH4 emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N2O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH4 and N2O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system.

  2. A Preliminary Investigation of Wastewater Treatment Efficiency and Economic Cost of Subsurface Flow Oyster-Shell-Bedded Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Chia-Chuan Hsu

    2013-06-01

    Full Text Available We conducted a preliminary investigation of wastewater treatment efficiency and economic cost of the oyster-shell-bedded constructed wetlands (CWs compared to the conventional gravel-bedded CW based on field monitoring data of water quality and numerical modeling. Four study subsurface (SSF CWs were built to receive wastewater from Taipei, Taiwan. Among these sites, two are vertical wetlands, filled with bagged- (VA and scattered- (VB oyster shells, and the other two horizontal wetlands were filled with scattered-oyster shells (HA and gravels (HB. The BOD, NO3−, DO and SS treatment efficiency of VA and VB were higher than HA and HB. However, VA was determined as the best option of CW design due to its highest cost-effectiveness in term of BOD removal (only 6.56 US$/kg as compared to VB, HA and HB (10.88–25.01 US$/kg. The results confirmed that oyster shells were an effective adsorption medium in CWs. Hydraulic design and arrangement of oyster shells could be important in determining their treatment efficiency and cost-effectiveness. A dynamic model was developed to simulate substance transmissions in different treatment processes in the CWS using AQUASIM 2.1 based on the water quality data. Feasible ranges of biomedical parameters involved were determined for characterizing the importance of different biochemical treatment processes in SSF CWs. Future work will involve extending the experimental period to confirm the treatment efficiency of the oyster-shell-bedded CW systems in long-term operation and provide more field data for the simulated model instead of the literature values.

  3. Nutrients valorisation via duckweed-based wastewater treatment and aquaculture

    OpenAIRE

    El-Shafai, S.A.A.M.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The treatment system was efficiënt in organic matter removal during the entire year, while nitrogen, phosphorus and faecal coliform removal were negatively affected by the decline in temperature in winter...

  4. Cotton-textile wastewater management: investigating different treatment methods.

    Science.gov (United States)

    Georgiou, D; Aivasidis, A

    2012-01-01

    The cotton-textile industry consumes significant amounts of water during manufacturing, creating high volumes of wastewater needing treatment. The organic-load concentration of cotton-textile wastewater is equivalent to a medium-strength municipal wastewater; the color of the water, however, remains a significant environmental issue. This research, in cooperation with a cotton-textile manufacturer, investigated different treatment methods and different combinations of methods to identify the most cost-effective approaches to treating textile wastewater. Although activated-sludge is economical, it can only be used as part of an integrated wastewater management system because it cannot decolorize wastewater. Coagulation/flocculation methods are able to decolorize cotton-wastewater; however, this process creates high amounts of wastewater solids, thus significantly increasing total treatment costs. Chemical oxidation is an environmentally friendly technique that can only be used as a polishing step because of high operating costs. Anaerobic digestion in a series of fixed-bed bioreactors with immobilized methanogens using acetic acid as a substrate and a pH-control agent followed by activated-sludge treatment was found to be the most cost-effective and environmentally safe cotton-textile wastewater management approach investigated.

  5. Treatment of Chinese Traditional Medicine Wastewater by Photosynthetic Bacteria

    Institute of Scientific and Technical Information of China (English)

    WANG You-zhi; WANG Feng-jun; BAO Li

    2005-01-01

    The influence factors treating wastewater of Chinese traditional medicine extraction by photosynthetic bacteria are tested and discussed. The results indicate that the method of photosynthetic bacteria can eliminate COD and BCD from wastewater in high efficiency. And it also has high load shock resistance. On the conditions of slight aerobic and semi-darkness, treating wastewater of Chinese traditional medicine extraction, the method has better efficiency to eliminate COD and BOD from the wastewater than those by anaerobic illumination and aerobic darkness treatments. After pretreatment of hydrolytic acidization, the removal rate of COD in the wastewater reached more than 85 %, and that rate of BOD reached more than 90% in the treating system of photosynthetic bacteria. It may be more feasible and advantageous than traditional anaerobic biological process to treat organic wastewater using PSB system.

  6. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2015-11-01

    Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.

  7. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    Science.gov (United States)

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  8. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  9. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  10. Modeling the Effect of Onsite Wastewater Treatment Systems on Nitrate Load Using SWAT in an Urban Watershed of Metropolitan Atlanta, GA

    Science.gov (United States)

    Onsite Wastewater Treatment Systems (OWTSs) can be a source of nitrate (NO3-) contamination in both surface and ground waters as a result of failing or high density systems. In metropolitan Atlanta, more than 26% of homes are on OWTS and this percentage is expected to increase wi...

  11. Phylogeny and FISH probe analysis of the “Candidatus Competibacter”-lineage in wastewater treatment systems

    DEFF Research Database (Denmark)

    Nittami, Tadashi; McIlroy, Simon Jon; Kanai, Eri

    . This study aimed at resolving the phylogeny and reassessing FISH probes for coverage of the diversity of the lineage in EBPR systems. Analysis of the level of 16S rRNA gene sequence diversity of lineage members (> 89%) suggests that it is more appropriately viewed as a family rather than a single genus......Our understanding of the microbial ecology of enhanced biological phosphorus removal (EBPR) wastewater treatment systems has been greatly advanced through the application of molecular methods such as fluorescence in situ hybridization (FISH). Considerable attention has been directed...... the gammaproteobacterial “Candidatus Competibacter”-lineage. The group is currently delineated by 8 FISH probe defined phylotypes, although further undescribed phylogenetic diversity beyond what is covered by these probes is evident. Where studied, marked differences in physiology between members are observed, including...

  12. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  13. Performance indicators for wastewater treatment plants.

    Science.gov (United States)

    Balmér, P; Hellström, D

    2012-01-01

    The Swedish Water & Wastewater Association has operated a web-based system, VASS, for the collection and compilation of key data from the Swedish water utilities since 2003. The VASS system will now be expanded to include data on operation of individual wastewater treatment plants (WWTP). The objective is to provide performance indicators (PIs) for performance and economy and the use of resources such as energy, chemicals and manpower. A set of PIs has been developed that also includes explanatory factors to compensate for differences in the condition of operation between plants. This paper discusses the data required for the calculation of PI but also for explanatory factors, quality checks and for plant operation context. The discussion is based on the experiences from a test round with the participation of 24 WWTP.

  14. Simulation of wastewater treatment plant within integrated urban wastewater models.

    Science.gov (United States)

    Heusch, S; Kamradt, B; Ostrowski, M

    2010-01-01

    In the federal state of Hesse in Germany the application of an integrated software modelling framework is becoming part of the planning process to attain legal approval for the operation of combined sewer systems. The software allows for parallel simulation of flow and water quality routing in the sewer system and in receiving rivers. It combines existing pollution load model approaches with a simplified version of the River Water Quality Model No. 1 (RWQM1). Comprehensive simulation of the wastewater treatment plant (WWTP) is not considered yet. The paper analyses alternatives for the implementation of a WWTP module to model activated sludge plants. For both primary and secondary clarifiers as well as for the activated sludge process concepts for the integration into the existing software framework were developed. The activated sludge concept which uses a linearized version of the well known ASM1 model is presented in detail.

  15. National onsite wastewater treatment: A national small flows clearinghouse summary of onsite systems in the United States, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Angoli, T.

    1998-07-01

    In 1994, the National Small Flows Clearinghouse undertook the project of learning about the status of onsite systems across the country by contacting those in the local and state public health agencies who work with these systems every day. Approximately 3,500 agencies were sent a questionnaire containing questions about onsite systems. The project objectives included determining the following for each state for the year 1993: the number of new onsite systems permitted; reasons for permit denial; number of onsite systems reported to have failed; reasons for system failure; new onsite system construction/installation cost; how often onsite system inspections are performed; and who has responsibility for onsite system maintenance. The most common reasons given for permit denial were inadequate lot size, high water table, poor/inadequate soils, shallow bedrock, and central sewer availability. Health departments attributed failure of onsite systems to the following factors: age, unsuitable soils, lack of maintenance/pumping, high groundwater table, and excessive water use. Many health departments noted a correlation between failing systems and either inadequate or nonexistent regulations. One recurring observation made by the local health departments was that sites which previously would never have been considered for onsite system use are now being purchased, planned, and developed with onsite wastewater treatment in mind.

  16. Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular Photocatalytic-Ultrasonic system.

    Science.gov (United States)

    Hu, Xiaohong; Zhu, Qi; Gu, Zhibin; Zhang, Nan; Liu, Na; Stanislaus, Mishma S; Li, Dawei; Yang, Yingnan

    2017-05-01

    TiO2 photocatalyst film recently has been utilized as the potential candidate for the wastewater treatment, due to its high stability and low toxicity. In order to further increase the photocatalytic ability and stability, different molecular weight of polyethylene glycol (PEG) were used to modify TiO2 structure to synthesize porous thin film used in the developed Photocatalytic-Ultrasonic system in this work. The results showed that PEG2000 modified TiO2 calcinated under 450°C for 2h exhibited the highest photocatalytic activity, attributed to the smallest crystallite size and optimal particle size. Over 95.0% of rhodamine B (Rh B) was photocatalytically degraded by optimized PEG2000-TiO2 film after 60min of UV irradiation, while only about 50.8% of Rh B was decolored over pure TiO2 film. Furthermore, optimized PEG2000-TiO2 film was used in a circular Photocatalytic-Ultrasonic system, and the obtained synergy (0.6519) of sonophotocatalysis indicated its extremely high efficiency for Rh B degradation. In this Photocatalytic-Ultrasonic system, larger amount of PEG2000-TiO2 coated glass beads, stronger ultrasonic power and longer experimental time could result to higher degradation efficiency of Rh B. In addition, repetitive experiments showed that about 97.2% of Rh B were still degraded in the fifth experiment by sonophotocatalysis using PEG2000-TiO2 film. Therefore, PEG2000-TiO2 film used in Photocatalytic-Ultrasonic system has promising potential for wastewater treatment, due to its excellent photocatalytic activity and high stability.

  17. Modeling the Effects of Onsite Wastewater Treatment Systems on Nitrate Loads Using SWAT in an Urban Watershed of Metropolitan Atlanta.

    Science.gov (United States)

    Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak

    2017-05-01

    Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Hybrid SBR–FO system for wastewater treatment and reuse: Operation, fouling and cleaning

    KAUST Repository

    Valladares Linares, Rodrigo

    2016-04-05

    Forward osmosis (FO) is a novel membrane separation process that potentially can be used as an energy-saving alternative to conventional membrane processes. A hybrid sequential batch reactor (SBR)–FO process was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating synthetic domestic wastewater. The dissolved organic carbon (DOC) removal efficiency of the system was 98.55%. Total nitrogen removal was 62.4%, with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4%, respectively. Phosphate removal was almost 100%. The 15-hour cycle average water flux of a virgin membrane with air scouring was 2.95 L/m2·h− 1. Air scouring can help to remove loose foulants from the membrane active layer, thus helping to recover up to 89.5% of the original flux. Chemical cleaning of the fouled active layer of the FO membrane was not as effective as air scouring. Natural organic matter (NOM) characterization methods (liquid chromatography–organic carbon detection (LC–OCD) and 3-D fluorescence excitation emission matrix (FEEM)) show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals. Transparent exopolymer particles (TEP) and other biopolymers might be associated with fouling of the membrane on the support layer. A 1% sodium hypochlorite (NaOCl) cleaning solution was proved to be effective for removing the foulants from the support layer and recovering the original flux.

  19. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  20. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  1. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  2. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  3. efficiency of wastewater treatment by a mixture of sludge and ...

    African Journals Online (AJOL)

    H. Khaldi

    2017-09-01

    Sep 1, 2017 ... Environmental Health and Biotechnology Research Group, Division of ... Urbanisation and other factors have resulted in dramatic increases in volumes of industrial ... microalgae-sludge system in wastewater treatment.

  4. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  5. Separate process wastewaters, part A: Contaminated flow collection and treatment system for the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to assist the agency in complying with the National Environmental Policy Act (NEPA) of 1969 as it applies to modification of ongoing groundwater treatment at DOE`s Kansas City Plant (KCP), located about 19 km (12 miles) south of the central business district of Kansas City, Missouri. The KCP is currently owned by DOE and is operated by the Kansas City Division of AlliedSignal Inc. The plant manufactures nonnuclear components for nuclear weapons. The purpose of and need for the DOE action is to treat identified toxic organic contaminated groundwater at the KCP to ensure that human health and the environment are protected and to comply with groundwater treatment requirements of the U.S. Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) 3008(h) Administrative Order on Consent and the discharge requirements of the Kansas City, Missouri, ordinances for the city sewer system. Four source streams of toxic organic contaminated groundwater have been identified that require treatment prior to discharge to the city sewer system. The toxic organic contaminants of concern consist of volatile organic compounds (VOCS) in the groundwater and polychlorinated biphenyls (PCBS) predominantly associated with some soils near the Main Manufacturing Building. The no-action alternative is to continue with the current combination of treatment and nontreatment and to continue operation of the KCP groundwater treatment system in its current configuration at Building 97 (B97). The DOE proposed action is to collect and treat all identified toxic organic contaminated groundwater prior to discharge to the city sewer system. The proposed action includes constructing an Organics Collection System and Organics Treatment Building, moving and expanding the existing groundwater treatment system, and operating the new groundwater treatment facility.

  6. 废水处理中pH值的PLC自动控制系统%PLC automatic control system of pH value in wastewater treatment.

    Institute of Scientific and Technical Information of China (English)

    李安峰; 张志群; 丁庭华; 王绍堂

    2001-01-01

    The pH value automatic control is a key link in the treatment of industrial wastewater. Based on much literature review, a new PLC automatic control system, suitable for pH value control in the wastewater treatment, is developed with simple structure and good control effect, which offers a practical approach for pH value automatic control in the treatment of industrial wastewater.%pH值自动控制是工业废水处理过程中的关键环节.在查阅大量文献的基础上,研究出一套新的适于污水处理pH值控制的结构简单且控制效果良好的PLC自动控制系统,为工业废水处理的pH值自动控制提供了一条切实可行的途径.

  7. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment - HIGHWET project.

    Science.gov (United States)

    Pascual, A; de la Varga, D; Arias, C A; Van Oirschot, D; Kilian, R; Álvarez, J A; Soto, M

    2017-01-01

    The HIGHWET project combines the hydrolytic up-flow sludge bed (HUSB) anaerobic digester and constructed wetlands (CWs) with forced aeration for decreasing the footprint and improving effluent quality. The HIGHWET plant in A Coruña (NW of Spain) treating municipal wastewater consists of a HUSB and four parallel subsurface horizontal flow (HF) CWs. HF1, HF2 and HF3 units are fitted with forced aeration, while the control HF4 is not aerated. All the HF units are provided with effluent recirculation, but different heights of gravel bed (0.8 m in HF1 and HF2, and 0.5 m in HF3 and HF4) are implemented. Besides, a tobermorite-enriched material was added in the HF2 unit in order to improve phosphorus removal. The HUSB 76-89% of total suspended solids (TSS) and about 40% of chemical oxygen demand (COD) and biological oxygen demand (BOD). Aerated HF units reached above 96% of TSS, COD and BOD at a surface loading rate of 29-47 g BOD5/m(2)·d. An aeration regime ranging from 5 h on/3 h off to 3 h on/5 h off was found to be adequate to optimize nitrogen removal, which ranged from 53% to 81%. Average removal rates of 3.4 ± 0.4 g total nitrogen (TN)/m(2)·d and 12.8 ± 3.7 g TN/m(3)·d were found in the aerated units, being 5.5 and 4.1 times higher than those of the non-aerated system. The tobermorite-enriched HF2 unit showed a distinct higher phosphate (60-67%) and total phosphorus (54%) removal.

  8. Design and Implement a System of Wastewater Treatment Based on Wetlands

    Directory of Open Access Journals (Sweden)

    Martha L. Dominínguez-Patiño

    2012-04-01

    Full Text Available The wetlands are considered as a natural passive cleaning of waste water. Is a process characterizes by its simplicity of operation, low or zero-energy consumption and low waste production. These consist of shallow ponds planted with plants. The processes of decontamination are performed simultaneously by its physical, chemical and biological properties. The objectives of this work are design and implement a system of artificial wetlands as an alternative method for treating waste water produced from the Faculty of Chemistry Science and Engineering that allow to reduce the costs of operation, knowing the degree of water pollution to determine how efficient the wetland and, finally improve the health and environmental conditions of the irrigation water. So the first step was to know the degree of water pollution and quantity to determine the wetland process variables. The second step was to determine the kind of plants that allow reducing the water contaminants. The Manning formula was applied to evaluate the free flow and Darcy’s equation for the surface flow by wetlands. A micro-scale prototype was design and built based on buckets. The absorption capacity of several plants (Bacopa monnieri, Nephrolepis exaltata,Tradescantia zebrine was determined. Also we use a natural filter consisting of Tezontle (first layer, sand (second layer, gravel (third layer, sand (fourth layer, Tezontle (fifth layer, gravel (sixth layer, sand (seventh layer and, organic substrate (eighth layer. A wetland decreases more than 60% the cost compared to a water purification plant as everything is based biodegradable materials and not using any energy or sophisticated equipment to water filtration. Wetlands not only help to purify the water, but also help the conservation of flora and fauna that is dependent on wet conditions, as only biodegradable materials are used there is no pollution to the ground, helping the conservation of the environment. Today we are

  9. Preparation of Cathode-Anode Integrated Ceramic Filler and Application in a Coupled ME-EGSB-SBR System for Chlortetracycline Industrial Wastewater Systematic Treatment

    OpenAIRE

    Yuanfeng Qi; Suqing Wu; Fei Xi; Shengbing He; Chunzhen Fan; Bibo Dai; Jungchen Huang; Meng Meng; Xiangguo Zhu; Lei Wang

    2016-01-01

    Chlortetracycline (CTC) contamination of aquatic systems has seriously threatened the environmental and human health throughout the world. Conventional biological treatments could not effectively treat the CTC industrial wastewater and few studies have been focused on the wastewater systematic treatment. Firstly, 40.0 wt% of clay, 30.0 wt% of dewatered sewage sludge (DSS), and 30.0 wt% of scrap iron (SI) were added to sinter the new media (cathode-anode integrated ceramic filler, CAICF). Subs...

  10. Preparation of Cathode-Anode Integrated Ceramic Filler and Application in a Coupled ME-EGSB-SBR System for Chlortetracycline Industrial Wastewater Systematic Treatment

    Directory of Open Access Journals (Sweden)

    Yuanfeng Qi

    2016-01-01

    Full Text Available Chlortetracycline (CTC contamination of aquatic systems has seriously threatened the environmental and human health throughout the world. Conventional biological treatments could not effectively treat the CTC industrial wastewater and few studies have been focused on the wastewater systematic treatment. Firstly, 40.0 wt% of clay, 30.0 wt% of dewatered sewage sludge (DSS, and 30.0 wt% of scrap iron (SI were added to sinter the new media (cathode-anode integrated ceramic filler, CAICF. Subsequently, the nontoxic CAICF with rough surface and porous interior packed into ME reactor, severing as a pretreatment step, was effective in removing CTC residue and improving the wastewater biodegradability. Secondly, expanded granular sludge bed (EGSB and sequencing batch reactor (SBR, serving as the secondary biological treatment, were mainly focusing on chemical oxygen demand (COD and ammonia nitrogen (NH3-N removal. The coupled ME-EGSB-SBR system removed about 98.0% of CODcr and 95.0% of NH3-N and the final effluent met the national discharged standard (C standard of CJ 343-2010, China. Therefore, the CTC industrial wastewater could be effectively treated by the coupled ME-EGSB-SBR system, which has significant implications for a cost-efficient system in CTC industrial systematic treatment and solid wastes (DSS and SI treatment.

  11. Modelling of Activated Sludge Wastewater Treatment

    OpenAIRE

    Kurtanjeka, Ž.; Deverić Meštrović, B.; Ležajić, Z.; Bevetek, A.; Čurlin; M.

    2008-01-01

    Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already b...

  12. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system

    DEFF Research Database (Denmark)

    Li, Xiaohu; Jin, Xiangdan; Angelidaki, Irini

    2017-01-01

    wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h−1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing...

  13. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  14. N{sub 2}O and CH{sub 4} Emission from Wastewater Collection and Treatment Systems (GWRC). Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The Global Water Research Coalition (GWRC) is an international organisation that is dedicated to the exchange and generation of knowledge to support sustainable development and management of the urban water cycle. The research agenda is developed by the member organisations of the GWRC and reflects their priorities and recognises global trends and drivers that affect the urban water cycle. The present research agenda includes Climate Change as one of the priorities areas. This research area comprises topics related to the possible impact of climate change on the urban water sector as well as the possible contribution to climate change by the urban water sector via the direct and indirect emission of greenhouse gasses (GHG). The objective of this joint effort was to collect and develop knowledge needed to understand and manage the emission of N{sub 2}O (nitrous oxide) and CH{sub 4} (methane) by wastewater collection and treatment systems. Starting with a kick-off meeting in Vienna in September 2008, the GWRC members involved in this activity have bundled their individual research programs on this topic, aligned methodologies used and exchanged and discussed the resulting information of the programs and developed additional actions where needed. The outcomes were reviewed and discussed at a final workshop in Montreal in September 2010. These activities have resulted in two reports: the State of the Science report which presents an overview of the current knowledge and know-how regarding the emissions of N{sub 2}O and CH{sub 4} by wastewater collection and treatment systems and this Technical Report which includes all the details, facts and figures of the underlying studies used to develop the State of the Science report. For the State of Science Report a separate record has been prepared.

  15. Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system.

    Science.gov (United States)

    Zhu, Shuang; Wu, Haizhen; Wei, Chaohai; Zhou, Lin; Xie, Junting

    2016-01-01

    To characterize the microbial community of the coking wastewater (CWW) treatment system and to study the effects of CWW characteristics and operational parameters on microbial communities, active sludge samples were collected from a full-scale CWW treatment plant using three-phase fluidized bed biological reactors. High-throughput MiSeq sequencing was used to examine the 16S rRNA genes of microbiology, revealing a distinct microbial composition among the active sludge samples of three sequential bioreactors. Pseudomonas, Comamonas, and Thiobacillus-related sequences dominated in the anaerobic bioreactor A, aerobic bioreactor O1, and aerobic bioreactor O2 active sludge with relative abundance of 72.59, 56.75, and 27.82 %, respectively. The physico-chemical characteristics of CWW were analyzed by standard methods and operational parameters were recorded to examine their effects on the microbial communities. The redundancy analysis (RDA) results showed that the bacterial communities of bioreactors A, O1, and O2 correlated strongly with cyanides, phenols, and ammonia, respectively. These results expand the knowledge about the biodiversity and population dynamics of microorganisms and discerned the relationships between bacterial communities and environmental variables in the biological treatment processes in the full-scale CWW treatment system.

  16. Photochemical Wastewater Treatment for Potential Agricultural Use

    Directory of Open Access Journals (Sweden)

    Sandra García

    2014-12-01

    Full Text Available The urban wastewaters after advanced primary treatment (APT are again discharged into the river without any use. In the present research in a soilless culture system where maize seedlings were tested three different treatments were planted: 1. Obtained from the effluent water of an APT, 2. Photochemically treated wastewater (PCT and 3. Urban water network (UW. A block randomly distributed design was tested, with five repetitions where the experimental unit was formed by a 36 cavities filled with Peat Moss and the useful plot was considered by 16 central plants for each experimental unit. Irrigations were scheduled since the first time of the planting, employed 27 mL/cavity. The removal of the organic contaminants present into the water was conducted by the employment of a Batch photoreactor, adapted with a recirculation system (UV/H2O2/O3, evaluated to determine UV-Vis spectra, pH, color and turbidity parameters initial and final samples. Measurements of height and percentage of germination in plants, where is determined that the seedlings irrigated with water PCT were reached the highest average compared to APT and UW irrigated; After the 50 cm growing plant, a determination of the presence of heavy metal, via atomic absorption method, were carried on analyzing the leaves, roots and stalks of the samples. Concluding that the presences of heavy metals into the APT were higher than PCT treatments, it can be an impediment for the normal growing of the plants. Therefore, the application of the photochemical treatment using (UV/H2O2/O3 system, represent a viable alternative for the wastewater treatment after the APT process to possible use of irrigation.

  17. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... African Journal of Biotechnology Vol. 7 (15), pp. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ... separate), industrial waste entering the sewer, type of.

  18. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    Science.gov (United States)

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  19. Wastewater treatment by a modular, domestic-scale reedbed system for safe horticultural irrigation.

    Science.gov (United States)

    Derry, Chris; Maheshwari, Basant

    2015-12-15

    The aim of the study was to assess the sequential treatment performance of a commercial, domestic-scale modular reedbed system intended to provide safe horticultural irrigation water. Previously only mechanical treatment systems involving forced aeration with subsequent disinfection, usually by tablet-chlorination, had been accredited in Australia. The modular design of the hybrid, subsurface-flow reedbed system offered 5 control points where monitoring and management of the treatment train could be carried out. Ten chemical parameters (chemical and biochemical oxygen demand, total organic carbon, total Kjeldahl nitrogen, ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total nitrogen, dissolved oxygen percentage saturation and suspended solids) and 4 microbial parameters (total coliform, Escherichia coli, enterococci and Clostridium perfringens) reached satisfactory levels as a result of the treatment process. Health requirements for safe horticultural irrigation were met by the outlet of the second reedbed, providing a high level of treatment-backup capacity in terms of the remaining 2 reedbeds. This suggested that chlorination was a redundant backup precaution in treating irrigation water to the acceptable regional guideline level for all horticultural uses, including the spray irrigation of salad crops eaten raw.

  20. Analysis of life cycle assessment of food/energy/waste systems and development and analysis of microalgae cultivation/wastewater treatment inclusive system

    Science.gov (United States)

    Armstrong, Kristina Ochsner

    Across the world, crises in food, energy, land and water resources, as well as waste and greenhouse gas accumulation are inspiring research into the interactions among these environmental pressures. In the food/energy/waste problem set, most of the research is focused on describing the antagonistic relationships between food, energy and waste; these relationships are often analyzed with life cycle assessment (LCA). These analyses often include reporting of metrics of environmental performance with few functional units, often focusing on energy use, productivity and environmental impact while neglecting water use, food nutrition and safety. Additionally, they are often attributional studies with small scope which report location-specific parameters only. This thesis puts forth a series of recommendations to amend the current practice of LCA to combat these limitations and then utilizes these suggestions to analyze a synergistic food/waste/energy system. As an example analysis, this thesis describes the effect of combining wastewater treatment and microalgae cultivation on the productivity and scalability of the synergistic system. To ameliorate the high nutrient and water demands of microalgae cultivation, many studies suggest that microalgae be cultivated in wastewater so as to achieve large scale and low environmental costs. While cultivation studies have found this to be true, none explore the viability of the substitution in terms of productivity and scale-up. The results of this study suggest that while the integrated system may be suitable for low-intensity microalgae cultivation, for freshwater microalgae species or wastewater treatment it is not suitable for high intensity salt water microalgae cultivation. This study shows that the integration could result in reduced lipid content, high wastewater requirements, no greenhouse gas emissions benefit and only a small energy benefit.

  1. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Caballero, A.; Aymerich, I. [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain); Poch, M. [Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG), Institute of the Environment, University of Girona, Campus Montilivi s/n, E-17071 Girona (Spain); Pijuan, M., E-mail: mpijuan@icra.cat [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain)

    2014-09-15

    In this study, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH{sub 4} and N{sub 2}O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH{sub 4} or N{sub 2}O peak emissions. CH{sub 4} emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N{sub 2}O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH{sub 4} and N{sub 2}O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH{sub 4} and N{sub 2}O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH{sub 4} and N{sub 2}O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH{sub 4} emissions were related with the inflow of influent and reject wastewater. • N{sub 2}O was generated as consequence of nitrification imbalances.

  2. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  3. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    Science.gov (United States)

    Paul, Parneet; Jones, Franck Anderson

    2016-01-05

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  4. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    NARCIS (Netherlands)

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewa

  5. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    NARCIS (Netherlands)

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic

  6. Fundamental Research Needs for Water and Wastewater Treatment Systems. Proceedings of a Conference (Arlington, Virginia, December 15, 1977).

    Science.gov (United States)

    Sherrard, J. H., Ed.

    Papers are presented identifying fundamental research needs in water and wastewater treatment by industrial users of technology, industrial users of research, a municipal water department, a consulting engineer, Congress, and the EPA. Areas of research needs addressed include: (1) microbial, viral, and organic contaminants; (2) biological…

  7. Wastewater Treatment and Reuse: Past, Present, and Future

    OpenAIRE

    Andreas N. Angelakis; Snyder, Shane A.

    2015-01-01

    This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Colle...

  8. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena......, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol....

  9. Wastewater treatment by oxidation with ozone.

    OpenAIRE

    Edna de Almeida; Márcia Regina Assalin; Maria Aparecida Rosa; Nelson Durán

    2004-01-01

    A large variety of organic and inorganic compounds may be found in wastewater which can contribute to environmental contamination. Oxidation processes with ozone (O3; O3/UV; O3/H2O2; O3/TiO2; O3/Mn+2) and the use of ozone in the pre- or post-treatment of wastewater combined with biological processes has been extensively studied for the treatment of effluents. The aim of this work was to evaluate the potential of the ozonation process in the treatment of several industrial wastewaters, namely ...

  10. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca

    2017-01-01

    Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design...

  11. Offshore Membrane Enclosures for Growing Algae (OMEGA: A System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    Science.gov (United States)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  12. Offshore Membrane Enclosure for Growing Algai (Omega) System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    Science.gov (United States)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  13. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  14. Treatment of municipal and industrial wastewater by reed bed technology: A low cost treatment approach

    OpenAIRE

    Bansari M. Ribadiya; Mehali J. Mehta

    2014-01-01

    Reed bed system for wastewater treatment has been proven to be effective and sustainable alternative for conventional wastewater treatment technologies. Use of macrophytes to treat wastewater is also categorized in this method. This new approach is based on natural processes for the removal of different aquatic macrophytes such as floating, submerged and emergent. Macrophytes are assumed to be the main biological components of wetlands. These techniques are reported to be cost eff...

  15. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration.

  16. Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater.

    Science.gov (United States)

    Tsioptsias, Costas; Lionta, Gesthimani; Deligiannis, Andreas; Samaras, Petros

    2016-12-01

    The treatment of molasses wastewater, by a combined microalgae-activated sludge process, for the simultaneous organics and total nitrogen reduction, was examined. Further enhancement of the performance of the combined process was accomplished, by means of biofilm carriers or electrocoagulation. A LED light tube was immersed into the reactor tank aiming to enhance the growth of photosynthetic microalgae, while in a similar unit, biofilm carriers were added to the system, representing a moving bed bioreactor. Exposure of the activated sludge biocommunity to light source, resulted in the growth of microalgae and photoreactors exhibited higher removal rates of total nitrogen and nitrates. However, operation at longer times resulted in low effluent quality due to the presence of microalgae cells as a result of high growth rates, and potential light shading effect. Nevertheless, the moving bed system was more beneficial than the single photoreactor, as biofilm carriers provided a self cleaning capacity of the light source, reducing the effect of microalgae deposition. Advanced treatment of the biological effluents, by electrocoagulation, increased even more the process efficiency: the combined photobioreactor and electrocoagulation process resulted in about 78% COD removal and more than 35% total nitrogen removal in the effluent, where nitrates represented almost the single form of total nitrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bacteriophages-potential for application in wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Withey, S. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Cartmell, E. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)]. E-mail: e.cartmell@cranfield.ac.uk; Avery, L.M. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Stephenson, T. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2005-03-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction.

  18. Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review.

    Science.gov (United States)

    Yang, Liyang; Hur, Jin; Zhuang, Wane

    2015-05-01

    Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.

  19. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  20. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  1. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  2. Occurrence and fate of organic contaminants during onsite wastewater treatment.

    Science.gov (United States)

    Conn, Kathleen E; Barber, Larry B; Brown, Gregory K; Siegrist, Robert L

    2006-12-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments.

  3. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  4. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada

    DEFF Research Database (Denmark)

    Neudorf, Kara D.; Huang, Yan Nan; Ragush, Colin M.

    2017-01-01

    communities under extreme climatic conditions. WWTPs have been identified as reservoirs of antibiotic resistance genes (ARGs). The objective of this work was to quantify the presence of nine different ARG markers (int1, sul1, sul2, tet(O), erm(B), mecA, blaCTX-M, blaTEM, and qnr(S)) in two passive systems...... that the WWTPs provided only primary treatment. Low levels of the ARGs (2 log copies/mL) were observed in the effluent, demonstrating that bacteria residing in three northern WWTPs harbour ARGs conferring resistance to multiple clinically-relevant classes of antibiotics. Our results indicate that long...

  5. [Selection of winter plant species for wetlands constructed as sewage treatment systems and evaluation of their wastewater purification potentials].

    Science.gov (United States)

    Chen, Yong-hua; Wu, Xiao-fu; Chen, Ming-li; Jiang, Li-juan; Li, Ke-lin; Lei, Dian; Wang, Hai-bin

    2010-08-01

    In order to establish an evaluation system for selection of winter wetland plants possessing high wastewater purification potentials in subtropics areas, designed sewage treatment experiments were carried out by introducing into the constructed wetlands 25 species of winter wetland plants. Cluster analysis was performed by including harmful environment-resistant enzyme and substrate enzyme activities into the commonly applied plant screening and assessment indexes system. The obtained results indicated that there were significant differences among the tested winter plants in their root length and vigor, leaf malonaldehyde (MDA), biomass, average nitrogen and phosphorus concentration and uptake, and urease and phosphoric acid enzyme activities in the root areas. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Oenanthe javanica, Brassicacapestris, Juncus effusu, Saxifragaceae, Iris pseudoacorus, Osmanthus fragrans and Iris ensata; those in the 2nd group possessing moderate purification potentials are Brassica oleracea var acephala, Calendula officinalis, Aucuba japonica, Ligustrum lucidu, Beta vulgaris, Rhododendron simsii and Ilex latifolia; and those in the 3rd group with low purification potentials are Brassica oleracea var acephala, Calistephus chinensis, Rosa chinensis, Antirrhinums, Liriope palatyphylla, Zephyranthes candida, Fatshedera lizei, Petunia hybrida, Ilex quihoui, Dianthus caryophyllus and Loropetalum chinensis.

  6. A review of anaerobic treatment of saline wastewater.

    Science.gov (United States)

    Xiao, Yeyuan; Roberts, Deborah J

    2010-01-01

    Large volumes of saline (> 2% w/v NaCl) wastewaters are discharged from many industries; e.g. seafood processing, textile dyeing, oil and gas production, tanneries and drinking water treatment processes. Although anaerobic treatment would be the most cost-effective and sustainable technology for the treatment of many of these saline wastewaters, the salinity is considered to be inhibitory to anaerobic biological treatment processes. The recent applications of salt-tolerant cultures for the treatment of wastewaters from seafood processing and ion-exchange processes suggest that biological systems can be used to treat salty wastewaters. Additionally, organisms capable of anaerobic degradation of contaminants in saline solutions have been observed in marine sediments and have been characterized during the last two decades. This manuscript provides a review of the recent research on anaerobic treatment of saline wastewater and bacterial consortia capable of the anaerobic degradation of pollutants in saline solutions, documenting that the biological treatment of saline wastewaters is promising.

  7. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    Science.gov (United States)

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.

  8. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  9. An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant.

    Science.gov (United States)

    Hiegemann, Heinz; Herzer, Daniel; Nettmann, Edith; Lübken, Manfred; Schulte, Patrick; Schmelz, Karl-Georg; Gredigk-Hoffmann, Sylvia; Wichern, Marc

    2016-10-01

    A 45-L pilot MFC system, consisting of four single-chamber membraneless MFCs, was integrated into a full-scale wastewater treatment plant (WWTP) and operated under practical conditions with the effluent of the primary clarifier for nine months to identify an optimal operational strategy for stable power output and maximum substrate based energy recovery (Normalized Energy Recovery, NER). Best results with the MFC were obtained at a hydraulic retention time of 22h with COD, TSS and nitrogen removal of 24%, 40% and 28%, respectively. Mean NER of 0.36kWhel/kgCOD,deg and coulombic efficiency of 24.8% were reached. Experimental results were used to set up the first described energy balance for a whole WWTP with an integrated MFC system. Energetic calculations of the model WWTP showed that energy savings due to reduced excess sludge production and energy gain of the MFC are significantly higher than the loss of energy due to reduced biogas production.

  10. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    Science.gov (United States)

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system.

  11. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  13. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.

    Science.gov (United States)

    Samorì, Giulia; Samorì, Chiara; Guerrini, Franca; Pistocchi, Rossella

    2013-02-01

    The microalgal biomass applications strongly depend on cell composition and the production of low cost products such as biofuels appears to be economically convenient only in conjunction with wastewater treatment. As a preliminary study, in view of the development of a wastewater treatment pilot plant for nutrient removal and algal biomass production, a biological wastewater system was carried out on a laboratory scale growing a newly isolated freshwater algal strain, Desmodesmus communis, and a natural consortium of microalgae in effluents generated by a local wastewater reclamation facility. Batch cultures were operated by using D. communis under different growth conditions to better understand the effects of CO₂, nutrient concentration and light intensity on the biomass productivity and biochemical composition. The results were compared with those obtained using a natural algal consortium. D. communis showed a great vitality in the wastewater effluents with a biomass productivity of 0.138-0.227 g L⁻¹ d⁻¹ in the primary effluent enriched with CO₂, higher biomass productivity compared with the one achieved by the algal consortium (0.078 g L⁻¹ d⁻¹). D. communis cultures reached also a better nutrient removal efficiency compared with the algal consortium culture, with almost 100% for ammonia and phosphorous at any N/P ratio characterizing the wastewater nutrient composition. Biomass composition was richer in polysaccharides and total fatty acids as the ammonia concentration in the water decreased. In view of a future application of this algal biomass, due to the low total fatty acids content of 1.4-9.3 wt% and the high C/N ratio of 7.6-39.3, anaerobic digestion appeared to be the most appropriate biofuel conversion process.

  14. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  15. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    Full Text Available Most of the non-point source nitrogen (N load in rural areas is attributed to onsite wastewater treatment systems (OWTS. Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+ and nitrate (NO3- concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1 a pipe-and-stone (P&S, (2 advanced soil drainfields, pressurized shallow narrow drainfield (PSND and (3 Geomat (GEO, a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide

  16. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    Science.gov (United States)

    Morales, Ivan; Cooper, Jennifer; Amador, José A; Boving, Thomas B

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  17. Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies.

    Science.gov (United States)

    Solon, K; Flores-Alsina, X; Kazadi Mbamba, C; Ikumi, D; Volcke, E I P; Vaneeckhaute, C; Ekama, G; Vanrolleghem, P A; Batstone, D J; Gernaey, K V; Jeppsson, U

    2017-04-15

    The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop) is used as test platform upon which three different operational alternatives (A1, A2, A3) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium ( [Formula: see text] ) and total suspended solids (XTSS) control strategy (A1) better adapts the system to influent dynamics, improves phosphate [Formula: see text] accumulation by phosphorus accumulating organisms (XPAO) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (Eaeration) (21%). The addition of iron ( [Formula: see text] ) for chemical P removal (A2) promotes the formation of ferric oxides (XHFO-H, XHFO-L), phosphate adsorption (XHFO-H,P, XHFO-L,P), co-precipitation (XHFO-H,P,old, XHFO-L,P,old) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m(-3)). This also has an impact on the sludge line, with hydrogen sulfide production ( [Formula: see text] ) reduced (36%) due to iron sulfide (XFeS) precipitation. As a consequence, there is also a slightly higher energy production (Eproduction) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A3) for P recovery reduces the quantity of P in the anaerobic digester supernatant returning to the water line and allows

  18. Performance of a biofilter system with agave fiber filter media for municipal wastewater treatment.

    Science.gov (United States)

    Vigueras-Cortés, Juan Manuel; Villanueva-Fierro, Ignacio; Garzón-Zúñiga, Marco Antonio; de Jesús Návar-Cháidez, José; Chaires-Hernández, Isaías; Hernández-Rodríguez, César

    2013-01-01

    Agave plants grow in semi-arid regions and are used for mescal production. However, agave fiber by-products are considered waste materials. Thus, we tested agave fiber as a filter media and biofilm material carrier for removing pollutants from municipal wastewater. Three laboratory-scale biofiltration reactors were used in two trials with five hydraulic loading rates (HLRs = 0.27, 0.54, 0.80, 1.07 and 1.34 m(3) m(-2) d(-1)). One series was conducted using mechanical aeration (0.62 m(3) m(-2) h(-1)). To prevent compaction, decreasing pressure and clogging of the filter media, 4, 8 and 12 internal divisions were evaluated in the biofilter column. After 17 months of continuous operation at an HLR of 0.80 m(3) m(-2) d(-1), the removal efficiencies of the aerated biofilters were 92.0% biochemical oxygen demand, 79.7% chemical oxygen demand, 98.0% helminth eggs, 99.9% fecal coliforms and 91.9% total suspended solids. Statistical analysis showed that the chosen operational parameters significantly influenced the removal efficiencies of the biofilters. The effluent quality obtained under these conditions complied with the Mexican and US EPA standards for agricultural irrigation and green spaces, except for coliforms, which is why the effluents must be disinfected. Thus, agave fiber is a favorable choice for use as a packing material in biofiltration processes.

  19. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  20. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  1. Membrane bioreactors and their uses in wastewater treatments.

    Science.gov (United States)

    Le-Clech, Pierre

    2010-12-01

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field.

  2. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  3. Treatment of wastewater and restoration of aquatic systems through an eco-technology based constructed treatment wetlands - a successful experience in Central India.

    Science.gov (United States)

    Billore, S K; Sharma, J K; Singh, N; Ram, H

    2013-01-01

    In the last couple of decades constructed wetlands (CWs) have drawn considerable interest in Central India. CWs offer an effective means of integrating wastewater treatment and resource enhancement, often at competitive cost in comparison to conventional wastewater treatments, with additional benefits of Green Urban Landscaping and wildlife habitat. This paper describes treatment performances and the design of some Sub Surface Flow CWs (SSFCW) and Artificial Floating Islands (AFIs) in Central India. Central Indian CWs show significant pollution reduction load for total suspended solids (TSS) (62-82%), biochemical oxygen demand (BOD) (40-75%), NH(4)-N (67-78%) and total Kjeldahl nitrogen (TKN) (59-78%). Field scale SSFCWs installed so far in Central India are rectangular, earthen, single/multiple celled having similar depths of 0.60-0.90 m, hydraulic retention capacity 18-221 m(3) with effective size 41.8-1,050 m(2). The major components of CWs incorporate puddled bottom/side walls, sealed with impermeable low-density polyethylene, a bed of locally available river gravel planted with Phragmites karka, and an inlet distribution and outlet collection system. A new variant on CWs are AFIs working under hydroponics. The field scale experimental AFIs installed in-situ in a slowly flowing local river were composed of hollow bamboo, a bed of coconut coir, floating arrangements and Phragmites karka as nutrient stripping plant species. The AFIs polish the aquatic system by reducing 46.6% of TSS, 45-55% of NH(4)-N, 33-45% of NO(3)-N, 45-50% of TKN and 40-50% of BOD. The study established that there is a need for further research and sufficient data to assist the development of CWs by instilling confidence in policymakers, planners and in the public.

  4. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  5. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    Science.gov (United States)

    Lopez-Vazquez, C M; Kubare, M; Saroj, D P; Chikamba, C; Schwarz, J; Daims, H; Brdjanovic, D

    2014-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.

  6. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  7. Predication of Fhhh potential in PTA wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    CHENG Shu-pei; SHI Lei; ZHANG Xu-xiang; YAN Jun; DING Zhong-hai; HAO Chun-bo

    2004-01-01

    Ebis is the intelligent environmental biotechnological informatics software developed for judging the effectiveness of the microorganism strain in the industrial wastewater treatment system(IWTS) at the optimal status. The parameter, as the objective function for the judgment, is the minimum reactor volume ( Vmin ) calculated by Ebis for microorganism required in wastewater treatment. The rationality and the universality of Ebis were demonstrated in the domestic sewage treatment system(DSTS) with the data published in USA and China at first, then Fhhh strain's potential for treating the purified terephthalic acid(PTA) was proved. It suggests that Ebis would be useful and universal for predicating the technique effectiveness in both DSTS and IWTS.

  8. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed.

  9. Oxidation pond for municipal wastewater treatment

    Science.gov (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  10. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  11. Development and implementation of an expert system to improve the control of nitrification and denitrification in the Vic wastewater treatment plant.

    Science.gov (United States)

    Ribas, F; Rodríguez-Roda, I; Serrat, J; Clara, P; Comas, J

    2008-05-01

    Wastewater treatment plants employ various physical, chemical and biological processes to reduce pollutants from raw wastewater. One of the most important is the biological nitrogen removal process through nitrification and denitrification steps taking place in various sections of the biological reactor. One of the most extensively used configurations to achieve the biological nitrogen removal is an activated sludge system using oxidation ditch or extended aeration. To improve nitrogen removal in the wastewater treatment plant (WWTP) of Vic (Catalonia, NE Spain), the automatic aeration control system was complemented with an Expert System to always provide the most appropriate aeration or anoxia sequence based on the values of ammonium and nitrates given by an automatic analyzer. This article illustrates the development and implementation of this knowledge-based system within the framework of a Decision Support System, which performs SCADA functions. The paper also shows that the application of the decision support system in the Vic WWTP resulted in significant improvements to the biological nitrogen removal.

  12. Evaluation of Grease Management Alternatives for Army Wastewater Collection and Treatment Systems.

    Science.gov (United States)

    1987-05-01

    34Biocatalytic Additives in Waste Treatment," Sewo,’ atrd Industrial Wastes, Vol 25 (1953), p 1268; R. E. McKinney and L. Poliakoff , "Hioc;italysts and...eKinnev and L. Poliakoff . I. Wojnowska-Farla, "Measuring the Effects of Biocatalytic Additives on Treatment Process Performance," Journal of the Water...34Biocatalytic Additives in Waste Treatment," Sewage (md Industriol Wastes, Vol 26 (1954), p 1162. McKinney, R. E., and L. Poliakoff , "Biocatalysts and

  13. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  14. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  15. Yannawa wastewater treatment plant (Bangkok, Thailand): design, construction and operation.

    Science.gov (United States)

    Kirkwood, S

    2004-01-01

    Yannawa Wastewater Treatment plant (Phase 1) serves a population equivalent of 500,000 and is located on a restricted site within the city of Bangkok, Thailand. Secondary treatment is based on the CASS sequencing batch reactor (SBR) process and the plant is one of the largest multi-storey SBRs in the world. The limitation of available site area, the ground conditions and the characteristics of the wastewater to be treated set a series of challenges for the designers, contractors and commissioning and operational staff. This paper briefly describes the collection system, the process selection and the treatment streams of the wastewater treatment plant. The SBR secondary treatment plant is described in more detail. The problems that arose during commissioning and operation and the solutions made possible by the use of an SBR type of process are discussed. Details of plant performance during performance testing and during the first three years of plant operation are provided.

  16. Membrane bio-reactors for decentralized wastewater treatment and reuse.

    Science.gov (United States)

    Meuler, S; Paris, S; Hackner, T

    2008-01-01

    Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops. IWA Publishing 2008.

  17. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  18. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    Science.gov (United States)

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  19. Environmental assessment of urban wastewater reuse: treatment alternatives and applications.

    Science.gov (United States)

    Meneses, Montse; Pasqualino, Jorgelina C; Castells, Francesc

    2010-09-01

    The main function of a Wastewater Treatment Plant is to minimize the environmental impact of discharging untreated water into natural water systems. Also a Wastewater Treatment Plant may get a resource from wastewater carrying out a tertiary treatment on the treated wastewater which can be reused in non-potable applications. Water reuse strategies are intended to address the problem of water scarcity without aggravating other environmental problems, thus reflecting the need of their environmental assessment. In this paper we used Life Cycle Assessment to evaluate different disinfection treatments (chlorination plus ultraviolet treatment, ozonation and ozonation plus hydrogen peroxide) and to assess the environmental advantages and drawbacks of urban wastewater reuse in non-potable applications. To do so, we compared the environmental impacts of producing 1m(3) of water for non-potable uses from reclaimed water, potable water and desalinated water sources. The calculation has used current operating data from a Wastewater Treatment Plant located in the Mediterranean area, although the results can be applied to any other plant with similar technology. The ozonation and ozonation plus hydrogen peroxide disinfection treatment technologies have similar environmental profiles. However most of the indicators are about 50% higher than the ultraviolet disinfection except for the acidification (100% higher) and photochemical oxidation (less than 5%). Non-potable uses (both agricultural and urban uses) of reclaimed water have environmental and economical advantages. Reuse of treated wastewater is particularly beneficial when it can replace desalinated water. Consequently, reclaimed water should be promoted for non-potable uses, when there is scarcity of freshwater.

  20. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    -arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  1. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  2. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  3. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...

  4. Denitrification enzyme activity in swine wastewater effluent of a nitrification/denitrification treatment system

    Science.gov (United States)

    Intensification of swine production in the USA and around the world requires advanced manure management. For swine manure management in the state of North Carolina, one system met all of the required advanced management criteria, and it was qualified as a superior technology. This investigation was ...

  5. Feasibility for Application of Soil Bioengineering Techniques to Natural Wastewater Treatment Systems

    Science.gov (United States)

    1992-12-01

    essentially act as an attached- growth bioreactor under a first order plug flow kinetics model ( Eckenfelder , 1966), dependence of removal efficiency on...34standard" design equation for this type of system, and is typical of attached-growth theory ( Eckenfelder , 1966). C ex CfKA-+1DA’ jcK m’ ° (1) CO Q...subsequent model developmen., by Martel (1982) and Smith and Schroeder (1985), closely resemble the Eckenfelder model and focus on the effect of travel

  6. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    Science.gov (United States)

    2016-08-01

    AnMBR system. .................. 15 Figure 8. Custom-built Membrana membrane, before (A and B) and after (C and D) housing modifications...size, 0.15 m2 polyethersul- fone hollow-fiber membrane was ordered from Membrana GmbH, and it was intended to be used as the membrane filtration...2005; Kang et al. 2002; Singhania et al. 2012). However, the Membrana membrane installed between Days 131 and 190 was unable to achieve the

  7. Application of Horizontal Subsurface Flow Constructed Wetland Systems for Domestic Wastewater Treatment: A Case Study, Kızılcaören

    Directory of Open Access Journals (Sweden)

    Fulya Aydın Temel

    2017-06-01

    Full Text Available Constructed wetlands (CWs are a green technology that have been used to treat several types of wastewater such as domestic, industrial, agricultural wastewaters and landfill leachate. CWs have several advantages included land intensive, low energy, easy operation and maintenance, low investment/operational costs, landscape esthetics, reuse of waters, and increased wildlife habitat compared to conventional systems. CWs are alternative treatment technologies due to these properties especially for rural settlements, industries, and hotels that are remote locations from central treatment plants. Physical, chemical, and biological treatment mechanisms can employ together in CWs. In the present study, two parallel full scale horizontal subsurface flow constructed wetlands were designed to treat domestic wastewater of Kızılcaören village in Samsun, Turkey. Juncus acutus and Cortaderia selloana were selected and the removal performance of each species were evaluated. During 7 months operation, the mean removal efficiencies of Juncus acutus and Cortaderia selloana were found as 33% and 32% for Mg2+; 62% and 55% for Fe2+; 64% and 56% for Fe3+; 46% and 37% for Cl2; 48% and 39% for total Cl2; 26% and 37% for Ca2+; 28% and 23% for SAA, respectively. Also, the Two-way ANOVA between groups was applied to determine any difference for the removal of all parameters between the plant types and months on the mean values of pollutants removal.

  8. Adsorption design for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooney, D.O.

    1998-12-31

    Understand the premier method for removing organic contaminants from water. Straight forward explanations and illustrations allow this overview to fill a dual purpose: study manual and design guide. The book discusses basic properties of activated carbons; explains the kinetics of adsorption processes; describes the design of both fixed-bed and batch process adsorption systems; contains useful knowledge that can be extended to other applications of adsorption, including drinking water treatment; and includes many illustrated examples and practice exercises.

  9. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    Performance of wastewater treatment plants in Jordan and suitability for reuse. ... for restricted use. Before reuse, effluent wastewater needs advanced treatment to prevent its impact on human health and the environment. ... Article Metrics.

  10. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    Among these activities, wastewater treatment plays a crucial role. In this work, a Streeter-Phelps dissolved oxygen model (DO) is implemented in a ... The Olifants River catchment modelled in this study features 9 wastewater treatment plants.

  11. Performance of a water hyacinth (Eichhornia crassipes)system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed

    Institute of Scientific and Technical Information of China (English)

    LU Jianbo; FU Zhihui; YIN Zhaozheng

    2008-01-01

    Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue. which motivated this study. A wetland of 688 m2 was constructed on an egg duck farm, and water hyacinth (Eichhornia crassipes)was chosen as an aquatic plant for the wetland and used as food for duck production. The objectives of this study were to test the role of water hyacinth in purifying nutrient-rich wastewater and its effects on the ducks' feed intake, egg laying performance and egg quality. This paper shows that the constructed wetland removed as much as 64. 44%of chemical oxygen demand (COD), 21. 78%of total nitrogen(TN)and 23. 02%of total phosphorus(TP). Both dissolved oxygen(DO)and the transparency of the wastewater were remarkably improved, with its transparency 2. 5 times higher than that of the untreated wastewater. After the ducks were fed with water hyacinth, the average daily feed intake and the egg-laying ratio in the test group were 5. 86%and 9. 79%higher, respectively, than in the control group; the differences were both significant at the0. 01 probability level. The egg weight in the test group Was 2. 36%higher than in the control group(P<0. 05), but the feed conversion ratios Were almost the same. The eggshell thickness and strength Were among the egg qualities significantly increased in ducks fed with water hyacinth. We concluded that a water hyacinth system was effective for purifying wastewater from an intensive duck farm during the water hyacinth growing season, as harvested water hyacinth had an excellent performance as duck feed. We also discussed the limitations of the experiment.

  12. Efficiency of domestic wastewater treatment plant for agricultural reuse

    OpenAIRE

    2015-01-01

    The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP) physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic ...

  13. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  14. Biological treatment and nanofiltration of denim textile wastewater for reuse

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Dilek, Filiz B. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)], E-mail: fdilek@metu.edu.tr

    2008-05-30

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 {+-} 2% and 84 {+-} 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 {+-} 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 {mu}m pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m{sup 2}/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria.

  15. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    Science.gov (United States)

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  16. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  17. WASTEWATER TREATMENT USING MACROALGAE KELP SP.

    Directory of Open Access Journals (Sweden)

    Suzana Elena BIRIS-DORHOI

    2016-11-01

    Full Text Available In the present study was used the alga Kelp sp. in wastewater collected from a household, in order to experiment its treatment capacities. Every measurement in this study was made using Spectoquant NOVA 60. The results show an decrease in the main parameters when low quantities of algae were used, but an increase when larger quantities were used.

  18. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  19. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. Howeve

  20. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  1. Heat recovery from wastewater systems; Waermerueckgewinnung aus Abwassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, O.

    2004-07-01

    Wastewater contains large amounts of heat energy which can be recovered by means of a heat pump and a heat exchanger installed in the sewer system. Practical problems, which may arise and have been investigated in this research project, are the reduction of the heat transfer efficiency due to heat exchanger fouling and the reduction of the nitrification capacity of downstream wastewater treatment plants due to lower wastewater temperatures. A mathematical model was developed by which the decrease of the wastewater temperature in the treatment plant influent can be determined as a function of the amount of heat energy gathered from the wastewater in the sewer system. By this model the variation in time and space of the wastewater temperature in a sewer pipe is calculated for given hydraulics, geometry and environmental conditions. By analysis of data from a large wastewater treatment plant and simulations with a calibrated model, the effect of lowered influent temperatures on nitrification safety, total nitrogen removal efficiency and ammonium effluent concentrations could be quantified. A procedure is suggested by which the reserve nitrification capacity of an existing treatment plant and the increase of the ammonium effluent concentration resulting from a permanent decrease of the wastewater influent temperature can be estimated. By experiments with a pilot scale heat exchanger in a small wastewater channel, the significance of parameters known to have an effect on fouling was investigated and measures to reduce fouling were tested. The measures tested included controlled variation of the wastewater flow velocity (flushing), coatings and finish of the heat exchanger surface and obstacles mounted on the surface. The best results were obtained by regular short term increases of the flow velocity. By this measure, the efficiency of the fouled heat exchanger, which on the average was 60% of the efficiency of the clean heat exchanger, could repeatedly be raised to an

  2. Thermophilic anaerobic wastewater treatment : temperature aspects and process stability

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.

    Experiments were conducted to study the suitability of two types of seed

  3. Perspectives on the feasibility of using microalgae for industrial wastewater treatment.

    Science.gov (United States)

    Wang, Yue; Ho, Shih-Hsin; Cheng, Chieh-Lun; Guo, Wan-Qian; Nagarajan, Dillirani; Ren, Nan-Qi; Lee, Duu-Jong; Chang, Jo-Shu

    2016-12-01

    Although microalgae can serve as an appropriate alternative feedstock for biofuel production, the high microalgal cultivation cost has been a major obstacle for commercializing such attempts. One of the feasible solution for cost reduction is to couple microalgal biofuel production system with wastewater treatment, as microalgae are known to effectively eliminate a variety of nutrients/pollutants in wastewater, such as nitrogen/phosphate, organic carbons, VFAs, pharmaceutical compounds, textile dye compounds, and heavy metals. This review aims to critically discuss the feasibility of microalgae-based wastewater treatment, including the strategies for strain selection, the effect of wastewater types, photobioreactor design, economic feasibility assessment, and other key issues that influence the treatment performance. The potential of microalgae-bacteria consortium for treatment of industrial wastewaters is also discussed. This review provides useful information for developing an integrated wastewater treatment with microalgal biomass and biofuel production facilities and establishing efficient co-cultivation for microalgae and bacteria in such systems.

  4. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  5. Toxicity Tests for Ensuring Succesful Industrial Wastewater Treatment Plant Operation

    Science.gov (United States)

    Cěbere, B.; Faltiņa, E.; Zelčāns, N.; Kalniņa, D.

    2009-01-01

    Industrial wastewaters are complex and can be polluted by non-biodegradable end toxic organic compounds and are a serious threat to the environment. Chemical procedure alone cannot provide sufficient information. A complete evaluation of wastewaters should include ecotoxicological tests too, especially concerning the complex wastewaters. In the literature review the authors attempted to establish which is the more promising and suitable aquatic toxicology test for sewage treatment plant influent toxicity monitoring. A variety of types of organisms representing different trophic levels and many different species are used for aquatic toxicity testing. Toxicity characterization would be needed both for influents and effluents of wastewater treatment plant. For the purpose of screening biological wastewater treatment influent, toxicity to activated sludge microorganisms is important and toxicology tests here used are respirometry and bioluminescence toxicology tests. Respirometry toxicity tests are easy, fast and inexpensive compared to other approaches. Bioluminescence has been widely used, the most thoroughly investigated test system is the Microtox. The toxicity tests have also been compared by different authors. International, national and regional authorities use these tools to meet various regulatory and legislative requirements. Importance of biotesting has been emphasized also in EU legislation.

  6. Modernizing sewers and wastewater systems with new technologies

    DEFF Research Database (Denmark)

    Henze, Mogens; Arnbjerg-Nielsen, Karsten

    2008-01-01

    After continuous problems and challenges with dead fish and oxygen depletion in the waters, Denmark initiated an action plan for Danish waters to reduce pollution in the late 1980s. The action plan puts focus on stricter criteria for wastewater treatment plants. Over the years, the plan has been...... revised three times to ensure continuity in the work. As a result, Danish waters are significantly cleaner today. Since 1987 the pollution caused by wastewater has been reduced by 80 - 90 % - depending on the type of pollutant. Upgrading the wastewater treatment system with a number of new and innovative...

  7. Sequential modeling of fecal coliform removals in a full-scale activated-sludge wastewater treatment plant using an evolutionary process model induction system.

    Science.gov (United States)

    Suh, Chang-Won; Lee, Joong-Won; Hong, Yoon-Seok Timothy; Shin, Hang-Sik

    2009-01-01

    We propose an evolutionary process model induction system that is based on the grammar-based genetic programming to automatically discover multivariate dynamic inference models that are able to predict fecal coliform bacteria removals using common process variables instead of directly measuring fecal coliform bacteria concentration in a full-scale municipal activated-sludge wastewater treatment plant. A sequential modeling paradigm is also proposed to derive multivariate dynamic models of fecal coliform removals in the evolutionary process model induction system. It is composed of two parts, the process estimator and the process predictor. The process estimator acts as an intelligent software sensor to achieve a good estimation of fecal coliform bacteria concentration in the influent. Then the process predictor yields sequential prediction of the effluent fecal coliform bacteria concentration based on the estimated fecal coliform bacteria concentration in the influent from the process estimator with other process variables. The results show that the evolutionary process model induction system with a sequential modeling paradigm has successfully evolved multivariate dynamic models of fecal coliform removals in the form of explicit mathematical formulas with high levels of accuracy and good generalization. The evolutionary process model induction system with sequential modeling paradigm proposed here provides a good alternative to develop cost-effective dynamic process models for a full-scale wastewater treatment plant and is readily applicable to a variety of other complex treatment processes.

  8. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Science.gov (United States)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  9. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.

    Science.gov (United States)

    Shi, Wenxin; Wang, Lizheng; Rousseau, Diederik P L; Lens, Piet N L

    2010-05-01

    Many pollutants have received significant attention due to their potential estrogenic effect and are classified as endocrine disrupting compounds (EDCs). Because of possible ecological effects and increased attention for water reuse schemes, it is important to increase our understanding of the EDC removal capacities of various wastewater treatment systems. However, there has so far been little research on the fate and behavior of EDCs in stabilization pond systems for wastewater treatment, which represent an important class of wastewater treatment systems in developing countries because of their cost-effectiveness. The aim of this work is to study the fate and behavior of EDCs in algae and duckweed ponds. Because the synthetic hormone 17alpha-ethinylestradiol (EE2) and the natural hormones estrone (E1), as well as 17beta-estradiol (E2), have been detected in effluents of sewage treatment plants and been suggested as the major compounds responsible for endocrine disruption in domestic sewage; E1, E2, and EE2 were therefore chosen as target chemicals in this current work. Both batch tests and continuous-flow tests were carried out to investigate the sorption and biodegradation of estrogens in algae and duckweed pond systems. The applied duckweed was a Lemna species. The applied algae was a mixture of pure cultures of six different algae genera, i.e., Anabaena cylindrica, Chlorococcus, Spirulina platensis, Chlorella, Scenedesmus quadricauda, and Anaebena var. Synthetic wastewater were used in all tests. The concentrations of estrogens were measured with three different enzyme-linked immunosorbent assay kits specific for E1, E2, or EE2. When the concentrations of estrogens in water samples were below the lowest quantitative analysis range (0.05 microg/l), preconcentration of the water samples were performed by means of solid phase extraction (SPE) with C18 cartridges. The 6-day batch tests show that the presence of algae or duckweed accelerated the removal of the three

  10. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  11. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regard to the removal of heavy metals....

  12. Bioaugmentative Approaches for Dairy Wastewater Treatment

    OpenAIRE

    Irina Schneider; Yana Topalova

    2010-01-01

    Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological sy...

  13. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    Science.gov (United States)

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  14. Prevalence and fate of Giardia cysts in wastewater treatment plants.

    Science.gov (United States)

    Nasser, A M; Vaizel-Ohayon, D; Aharoni, A; Revhun, M

    2012-09-01

    The present study was conducted to review factors affecting the prevalence and concentration of Giardia in raw wastewater. The removal and inactivation efficiency of Giardia by wastewater treatment technologies was also reviewed. Data published for the prevalence of Giardia in wastewater and the removal by wastewater treatment plants was reviewed. Giardia cysts are highly prevalent in wastewater in various parts of the world, which may reflect the infection rate in the population. In 23 of 30 (76.6%) studies, all of the tested raw wastewater samples were positive for Giardia cysts at concentrations ranging from 0.23 to 100 000 cysts l(-1). The concentration of Giardia in raw wastewater was not affected by the geographical region or the socio-economic status of the community. Discharge of raw wastewater or the application of raw wastewater for irrigation may result in Giardia transmission. Activated sludge treatment resulted in a one to two orders of magnitude reduction in Giardia, whereas a stabilization pond with a high retention time removed up to 100% of the cysts from wastewater. High-rate sand filtration, ultrafiltration and UV disinfection were reported as the most efficient wastewater treatment methods for removal and disinfection of Giardia cysts. Wastewater treatment may not totally prevent the environmental transmission of Giardia cysts. The reviewed data show that a combination of wastewater treatment methods may results in efficient removal of Giardia cysts and prevent their environmental transmission.

  15. A practitioner's perspective on the uses and future developments for wastewater treatment modelling.

    Science.gov (United States)

    Daigger, G T

    2011-01-01

    The modern age of wastewater treatment modelling began with publication of the International Water Association (IWA) Activated Sludge Model (ASM) No.1 and has advanced significantly since. Models are schematic representations of systems that are useful for analysis to support decision-making. The most appropriate model for a particular application often incorporates only those components essential for the particular analyses to be performed (i.e. the simplest model possible). Characteristics of effective models are presented, along with how wastewater modelling is integrated into the wastewater project life cycle. The desirable characteristics of wastewater treatment modelling platforms are then reviewed. Current developments of note in wastewater treatment modelling practice include estimates of greenhouse gas emissions, incorporating uncertainty into wastewater modelling and design practice, more fundamental modelling of process chemistry, and improved understanding of the degradability of wastewater constituents in different environments. Areas requiring greater emphasis include increased use of metabolic modelling, characterisation of the hydrodynamics of suspended and biofilm biological treatment processes, and the integration of biofilm and suspended growth process modelling. Wastewater treatment models must also interface with water and wastewater management software packages. While wastewater treatment modelling will continue to advance and make important contributions to practice, it must be remembered that these are complex systems which exhibit counter-intuitive behaviour (results differ from initial expectations) and multiple dynamic steady-states which can abruptly transition from one to another.

  16. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  17. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment.

  18. Comparison between treatment of kitchen-sink wastewater and a mixture of kitchen-sink and washing-machine wastewaters.

    Science.gov (United States)

    Huelgas, A; Nakajima, M; Nagata, H; Funamizu, N

    2009-01-01

    In this paper, a submerged membrane bioreactor was used to treat 'higher-load' grey water: (a) kitchen-sink wastewater only, and (b) a mixture of kitchen-sink wastewater and washing-machine wastewater. For each type of wastewater, three systems operated at different hydraulic retention times (HRTs) were investigated. In the mixture of kitchen-sink wastewater and washing-machine wastewater, the reactor with a short HRT of four hours was stopped due to foaming. It has been observed that for both types of wastewater, an HRT of eight hours or longer can be used for the treatment. However, it has been observed that a higher COD in the permeate of the mixture can be obtained compared with that of the kitchen-sink wastewater only. This indicated that washing-machine wastewater has some component that is not easily biodegradable. The total linear akylbenzene sulfonate (LAS) removal was > 99% even at a concentration of 10-23 mg 1(-1).

  19. Microbial community structure of a freshwater system receiving wastewater effluent.

    Science.gov (United States)

    Hladilek, Matthew D; Gaines, Karen F; Novak, James M; Collard, David A; Johnson, Daniel B; Canam, Thomas

    2016-11-01

    Despite our dependency on treatment facilities to condition wastewater for eventual release to the environment, our knowledge regarding the effects of treated water on the local watershed is extremely limited. Responses of lotic systems to the treated wastewater effluent have been traditionally investigated by examining the benthic macroinvertebrate assemblages and community structure; however, these studies do not address the microbial diversity of the water systems. In the present study, planktonic and benthic bacterial community structure were examined at 14 sites (from 60 m upstream to 12,100 m downstream) and at two time points along an aquatic system receiving treated effluent from the Charleston Wastewater Treatment Plant (Charleston, IL). Total bacterial DNA was isolated and 16S rRNA sequences were analyzed using a metagenomics platform. The community structure in planktonic bacterial communities was significantly correlated with dissolved oxygen concentration. Benthic bacterial communities were not correlated with water quality but did have a significant geographic structuring. A local restructuring effect was observed in both planktonic and benthic communities near the treated wastewater effluent, which was characterized by an increase in abundance of sphingobacteria. Sites further downstream from the wastewater facility appeared to be less influenced by the effluent. Overall, the present study demonstrated the utility of targeted high-throughput sequencing as a tool to assess the effects of treated wastewater effluent on a receiving water system, and highlighted the potential for this technology to be used for routine monitoring by wastewater facilities.

  20. Integration of wastewater treatment in agro-ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Geber, Ulrika [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Crop Production Science

    2000-07-01

    There is a need to find more ecologically sustainable wastewater treatment systems where increased reuse of phosphorus and nitrogen is combined with efficient resource use and decreased eutrophication of recipients. This thesis concerns the ecological sustainability in systems for treatment of municipal wastewater where processes at the WWTP are substituted for ecosystem services. A crop irrigation system was chosen for a study of how natural treatment of pre-treated municipal wastewater could be integrated with agricultural production. Reuse efficiency of nutrients and suitability as substrate for biogas generation was studied in reed canary grass (Phalaris arundinacea L.), meadow foxtail (Alopecurus pratensis L.) and smooth bromegrass (Bromus inermis Leyss.) irrigated with pre-treated wastewater. Crop management in order to increase potential biomass quality for biogas generation was studied in reed canary grass. Resource use in treatment systems differing in their demand of land area and purchased input was evaluated in an emergy analysis. There were only small differences between species in N and P removal and in the yield of dry matter and digestible organic matter. The reed canary grass and meadow foxtail can function well as catch crops in wastewater treatment and potentially as substrates for biogas production. The risk of N leaching in the harvested reed canary grass ley, receiving 175 to 350 kg N ha{sup -1} applied as 300 to 700 mm wastewater, is considered low due to an observed low content soil water NO{sub 3}{sup -}N during the vegetation period and of soil NO{sub 3}{sup -}N in autumn. Increased cutting frequency did not increase the yield of digestible organic matter in reed canary grass. Increased stubble height could not compensate for the effects of increased harvest frequency on the yield of dry matter and digestible organic matter. The emergy analysis did not reveal any differences in the use of purchased inputs between treatment systems. A high

  1. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  2. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with

  3. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laborato

  4. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laborato

  5. Summary on running of chlor-alkali wastewater treatment system%氯碱污水处理系统运行总结

    Institute of Scientific and Technical Information of China (English)

    赵国壁

    2012-01-01

    Abstract: The process flow of wastewater treatment system adopted in Shaanxi Jintai Chlor-Al- kali Chemical Industry Co., Ltd. is introduced as well as key control points in operation. The problems occurring in running are discussed.%介绍了陕西金泰氯碱化工有限公司污水处理系统的工艺流程及操作中应注意控制的要点,并对运行中出现的问题进行了探讨。

  6. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater.

    Science.gov (United States)

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang

    2014-01-01

    This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.

  7. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes--contribution for direct reuse of domestic wastewater.

    Science.gov (United States)

    Schmalz, Viktor; Dittmar, Thomas; Haaken, Daniela; Worch, Eckhard

    2009-12-01

    The aim of the study was to demonstrate the application potential of boron-doped diamond electrodes (BDD) in electrochemical disinfection of biologically treated sewage for direct recycling of domestic wastewater. Discontinuous bulk disinfection experiments with secondary effluents and model solutions were performed to investigate the influence of operating conditions and wastewater parameters on disinfection efficiency and formation of disinfection by-products (adsorbable organically bound halogens, AOX). The inactivation rate accelerates with increasing current density caused by a faster generation of electrochemical oxidants (ECO). It could be shown that the effect of OH radicals in case of the direct electrochemical disinfection of chloride-containing secondary effluents with BDD is negligible because of their fast reaction with typical radical scavengers. The dominating role of electrochemically generated free chlorine in the disinfection process could be explicitly verified. It could be also shown that the disinfection efficiency is strongly affected by the specific wastewater parameters temperature and pH. These effects can be explained by the behaviour of the reactive species. The migration-controlled generation of ECO can be accelerated under turbulent hydrodynamic conditions. The formation of disinfection by-products (AOX) correlates with the introduced electric charge Q applied per volume and is independent of the applied current density.

  8. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.

    Science.gov (United States)

    Linares Hernández, Ivonne; Barrera Díaz, Carlos; Valdés Cerecero, Mario; Almazán Sánchez, Perla Tatiana; Castañeda Juárez, Monserrat; Lugo Lugo, Violeta

    2017-02-01

    The aim of this work was to implement a coupled system, a monopolar Electrocoagulation (EC)-Electrooxidation (EO) processes, for the treatment of soft drink wastewater. For the EC test, Cu-Cu, anode-cathode were used at current densities of 17, 51 and 68 mA cm(-2). Only 37.67% of chemical oxygen demand (COD) and 27% of total organic carbon (TOC) were removed at 20 min with an optimum pH of 8, this low efficiency can be associated with the high concentration of inorganic ions which inhibit the oxidation of organic matter due to their complexation with copper ions. Later EO treatment was performed with boron-doped diamond-Cu electrodes and a current density of 30 Am(-2). The coupled EC-EO system was efficient to reduce organic pollutants from initial values of 1875 mg L(-1) TOC and 4300 mg L(-1) COD, the removal efficiencies were 75% and 85%, respectively. Electric energy consumption to degrade a kilogram of a pollutant in the soft drink wastewater using EC was 3.19 kWh kg(-1) TOC and 6.66 kWh kg(-1) COD. It was concluded that the coupled system EC-EO was effective for the soft drink wastewater treatment, reducing operating costs and residence time, and allowing its reuse in indirect contact with humans, thus contributing to the sustainable reuse as an effluent of industrial wastewater.

  9. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: Septic tank – up flow anaerobic filter.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Arrubla Vélez

    2016-04-01

    Full Text Available In several countries around the world, Pharmaceutical and Personal Care Products (PPCPs exist in aquatic environments, a fact that increases the awareness within the scientific community with respect to their possible fate and environment effects. This research presents a preliminary monitoring of use, consumption and presence of PPCPs in wastewater from a treatment plant in a rural area of Pereira (Colombia. Domestic sewage is treated in a septic tank followed by an Up-Flow Anaerobic Filter and its effluent is discharged into the Otún River, upstream of the water intake of the supply system of the city. The compounds monitored in this research included ibuprofen, naproxen, diclofenac, aspirin, ketoprofen, caffeine, galaxolide, tonalide and dihydrojasmonate. An adapted method of multi-residue analysis was used, which is based on solid phase extraction with hydrophilic-lipophilic balance cartridges, and determination by gas chromatography-mass spectrometry. The removal efficiencies demonstrated that the treatment plant could eliminate less than 50% of dihydrojasmonate, diclofenac and galaxolide existing in wastewater; concentration of aspirin, naproxen and tonalide could only be reduced in 15%; and caffeine, ibuprofen and ketoprofen were not removed. Results provided basic information to decide over the necessity of complementary treatments for effluents from systems with the mentioned units.

  10. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Ivan [Departamento de Hidrogeologia y Quimica Analitica, Universidad de Almeria, ctra. de Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain)], E-mail: ivanmuno@ual.es; Rodriguez, Antonio; Rosal, Roberto [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, Madrid (Spain); Fernandez-Alba, Amadeo R. [Departamento de Hidrogeologia y Quimica Analitica, Universidad de Almeria, ctra. de Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain)

    2009-02-01

    Life Cycle Assessment has been used to compare different scenarios involving wastewater reuse, with special focus on toxicity-related impact categories. The study is based on bench-scale experiments applying ozone and ozone in combination with hydrogen peroxide to a wastewater effluent from a Spanish sewage treatment plant. Two alternative characterisation models have been used to account for toxicity of chemical substances, namely USES-LCA and EDIP97. Four alternative scenarios have been assessed: wastewater discharge plus desalination supply, wastewater reuse without tertiary treatment, wastewater reuse after applying a tertiary treatment consisting on ozonation, and wastewater reuse after applying ozonation in combination with hydrogen peroxide. The results highlight the importance of including wastewater pollutants in LCA of wastewater systems assessing toxicity, since the contribution of wastewater pollutants to the overall toxicity scores in this case study can be above 90%. Key pollutants here are not only heavy metals and other priority pollutants, but also non-regulated pollutants such as pharmaceuticals and personal care products. Wastewater reuse after applying any of the tertiary treatments considered appears as the best choice from an ecotoxicity perspective. As for human toxicity, differences between scenarios are smaller, and taking into account the experimental and modelling uncertainty, the benefits of tertiary treatment are not so clear. From a global warming potential perspective, tertiary treatments involve a potential 85% reduction of greenhouse gas emissions when compared with desalination.

  11. Development of Waste Reduction System of Wastewater Treatment Process Using a Moss: Production of Useful Materials from Remainder of a Moss

    Science.gov (United States)

    Fumihisa, Kobayashi

    Landfill leachate pollution presents a serious environmental problem. It would be valuable to develop a sustainable method, one that is inexpensive and requires little energy, to eliminate the pollution and dispose of the waste. In a previous study, we reported the results of a leachate treatment for landfills in which we relied on the moss, Scopelophia cataractae, to support a sustainable method of waste reduction. In this study, for the development of a waste reduction system of landfill leachate treatment, we attempted to produce zinc as useful metal and ethanol as fuel from the remainder of moss after wastewater treatment. Steam explosions, which were used as physicochemical pretreatments to expose the raw material to saturated steam under high pressure and temperature, were used to pretreat the moss. By electrolysis, zinc recovered, and the maximum zinc recovery after wastewater treatment was 0.504 at 2.0 MPa steam pressure (211 °C) and 5 min steaming time. After that time, by simultaneous saccharification and fermentation using a Meicelase and Saccharomyces cerevisiae AM12, 0.42 g dm-3 of the maximum ethanol concentration was produced from 10 g dm-3 of exploded moss at 2.5 MPa steam pressure (223 °C) and 1 min steaming time.

  12. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  13. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  14. ``Living off the land'': resource efficiency of wetland wastewater treatment

    Science.gov (United States)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  15. "Living off the land": resource efficiency of wetland wastewater treatment.

    Science.gov (United States)

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  16. Carbon footprint of four different wastewater treatment scenarios

    Science.gov (United States)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  17. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  18. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M.; Saroj, DP; Chikamba, C; Schwarz, J.; Daims, H.; Brdjanovic, D.

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  19. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  20. Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics

    OpenAIRE

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  1. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  2. Dairy wastewater treatment in a moving bed biofilm reactor.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ragazzi, M; Villa, R

    2002-01-01

    Dairy raw wastewater is characterised by high concentrations and fluctuations of organic matter and nutrient loads related to the discontinuity in the cheese production cycle and machinery washing. The applicability of a Moving Bed Biofilm Reactor (MBBR) filled with FLOCOR-RMP plastic media to the treatment of dairy wastewater was evaluated in a pilot-plant. COD fractionation of influent wastewater, MBBR performance on COD and nutrient removal were investigated. A removal efficiency of total COD over 80% was obtained with an applied load up to 52.7 gCOD m-2 d-1 (corresponding to 5 kgCOD m-3d-1). The COD removal kinetics for the MBBR system was assessed. The order of the kinetics resulted very close to half-order in the case of a biofilm partially penetrated by the substrate. The nitrogen removal efficiency varied widely between 13.3 and 96.2% due to the bacterial synthesis requirement. The application of a MBBR system to dairy wastewater treatment may be appropriate when upgrading overloaded activated sludge plants or in order to minimise reactor volumes in a pre-treatment.

  3. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  4. Incentive systems for wastewater treatment and reuse in irrigated agriculture in the MENA region: evidence from Jordan and Tunisia

    NARCIS (Netherlands)

    Abu-Madi, M.O.R.

    2004-01-01

    As a result of chronic water scarcity, the countries of the MENA region (Middle East and Northern Africa) recognize reclaimed wastewater as a non-conventional water resource. Nonetheless, in this region, substantial amounts of the wastewater that are collected are still discharged into the sea or wa

  5. Incentive systems for wastewater treatment and reuse in irrigated agriculture in the MENA Region: evidence from Jordan and Tunisia

    NARCIS (Netherlands)

    Abu-Madi, M.O.R.

    2004-01-01

    As a result of chronic water scarcity, the countries of the MENA region ( Middle East and Northern Africa) recognize reclaimed wastewater as a non-conventional water resource. Nonetheless, in this region, substantial amounts of the wastewater that are collected are still discharged into the sea or w

  6. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  7. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    , which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms......As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment...

  8. Impacts of Nitrogen Removal and Re-Application on N2O fluxes from Narragansett Bay: Contrasting Turfgrasses, Salt Marshes, and Wastewater Treatment Systems

    Science.gov (United States)

    Brannon, E.; Moseman-Valtierra, S.; Quinn, R. K.; Amador, J.; Brown, R.; Lancellotti, B.; Glennon, K.; Celeste, G.; Craver, V.

    2016-12-01

    Narragansett Bay in Rhode Island is characterized by a substantial, historic bay-wide nitrogen (N) gradient. Centralized wastewater treatment plants (WWTPs) are a major anthropogenic N source. Onsite wastewater treatments systems (OWTS), which serve 1/3 of all households in the state, are another anthropogenic N source. Recent state regulation has prompted upgrades to both WWTPs and OWTS to increase N removal capacities. Although this should lower N loads to Narragansett Bay, it has the potential to increase the flux of nitrous oxide (N2O), a potent greenhouse gas. We measured summer-time (2016) N2O fluxes of a major WWTP (biological N removal system at Field's Point in Providence) and three of the most common advanced OWTS in the Narragansett Bay watershed (Orenco Advantex AX20, BioMicrobics FAST, SeptiTech D Series). We also tested impacts of application of recovered N (biosolids from wastewater sludge) on N2O fluxes from a turfgrass (Schedonerus arundinaceus) and dominant native coastal cordgrass (Spartina alterniflora) in mesocosm experiments. Preliminary results indicate that the largest N2O fluxes (245 ± 72 µmol N2O m-2 h-1) were from the Field's Point WWTP. Significant, but smaller N2O fluxes (6 ± 3 µmol N2O m-2 h-1 were also measured from the OWTS. In contrast, N2O fluxes from the N-enriched native coastal cordgrass and turfgrass mesocosms were often non-detectable. However, fluxes from a few mesocosms (max. of 25 µmol N2O m-2 h-1) were on the same order of magnitude as fluxes from the OWTS. A state-wide budget of N2O emissions from turfgrasses, intertidal marshes, and OWTS will be estimated to determine their significance as sources relative to the Field's Point WWTP. This data will be used to identify areas where N2O fluxes can be minimized in the state of RI.

  9. 污水深度处理系统水质结垢问题及治理方法研究%Research on the scaling problems in the advanced wastewater treatment system and their treatment methods

    Institute of Scientific and Technical Information of China (English)

    吕慧; 马俊峰

    2012-01-01

    通过对微滤-反渗透污水深度处理系统垢样进行成分分析,确定该系统所结垢为碳酸盐类污垢,采用了加酸方法解决结垢问题.运行结果表明:加酸后,pH降至7.8,朗格利尔(LSI)饱和指数与调节前相比显著降低,系统结垢倾向得到了有效抑制,延长了污水深度处理系统的运行周期.%The operation status of the advanced wastewater treatment system in PetroChina Dushanzi Ethylene Co. is introduced. According to the component analysis of the scaling in the MF-RO system,it is found that the main ingredient of the scaling is calcium carbonate. The problem can be solved by adding acid into the wastewater treatment system. The operation results show that the pH has been decreased to 7.8,and Langelier saturation index (LSI) has been declined significantly,compared with the original value before pH adjustment. The scaling tendency of the system is efficiently inhibited,and the operation cycles of the wastewater treatment system are extended.

  10. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.

  11. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    Science.gov (United States)

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China.

  12. Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems.

    Science.gov (United States)

    Qu, Yuanyuan; Zhang, Xuwang; Shen, Wenli; Ma, Qiao; You, Shengnan; Pei, Xiaofang; Li, Shuzhen; Ma, Fang; Zhou, Jiti

    2016-07-01

    In this study, phenol wastewater treatment systems treated with different concentrations of single-walled carbon nanotubes (SWCNTs) (0-3.5g/L) were exposed to phenol and carbon nanotubes (CNTs) shock loadings to investigate the long-term impacts of SWCNTs on microbial communities. Phenol removal remained high efficiency (>98%) in SWCNTs-treated groups but decreased in non-treated group (85.1±1.9%) when exposed to high concentration of phenol (500mg/L). However, secondary dosing of SWCNTs in SWCNTs-treated groups would decrease the phenol removal efficiency. Illumina MiSeq sequencing revealed that the diversity, richness and structure of microbial communities were shifted under phenol shock loading, especially under high phenol concentration, but not under CNTs shock loading. In response to phenol and CNTs shock loadings, Rudaea, Burkholderia, Sphingomonas, Acinetobacter, Methylocystis and Thauera became dominant genera, which should be involved in phenol removal. These results suggested that a proper amount of SWCNTs might have positive effects on phenol wastewater treatment systems.

  13. Development of biofilm on geotextile in a new multi-zone wastewater treatment system for simultaneous removal of COD, nitrogen and phosphorus.

    Science.gov (United States)

    Alimahmoodi, Mahmood; Yerushalmi, Laleh; Mulligan, Catherine N

    2012-03-01

    This study investigated the formation and evolution of biofilm on a fixed cylindrical structure wrapped in geotextile, in a multi-zone wastewater treatment system called BioCAST. The organic, nitrogen and phosphorus loading rates of (OLR) 0.95-1.86 g COD/(m(3)d), (NLR) 0.02-0.08 kg N/(m(3)d), and (PLR) 0.014-0.02 kg P/(m(3)d), were applied. The results demonstrated high removal efficiencies of carbon, nitrogen and phosphorus, reaching 98.9%, 98.3% and 94.1%, respectively, after 250 d of operation. The biofilm biomass showed a fast formation (reaching 54.2g/L) and maximum phosphorus content of about 7% (dry basis). Biofilm demonstrated the ability to remove phosphorus, and its characteristics correlated with nitrogen and phosphorus removal rates. The geotextile material with filamentous structure causing rapid attachment and formation of biofilm can solve many problems encountered in conventional attached-growth wastewater treatment systems such as slow start-up, low reactor biomass content and low capacity to handle high organic loading rates.

  14. Web Based Remote Monitoring System for Industrial Wastewater Treatment%基于Web的工业污水处理远程监控系统

    Institute of Scientific and Technical Information of China (English)

    张修建; 靳硕; 赵茜; 关新平; 梁振虎

    2012-01-01

    针对工业污水处理过程的远程监控问题,提出一种基于Web的远程监控系统设计方案。在给出系统体系结构的基础上,应用VC++高级语言、ASP(Active Server Page)技术等设计了系统各功能模块,实现了工业污水处理远程监控功能。用户可以通过浏览器实现对工业现场数据进行动态数据访问、曲线显示、远程控制以及对历史数据进行统计查询等功能。%A Web based remote monitoring system design method was proposed for industrial wastewater treatment processes.Based on the proposed system framework,the system's function modules were designed by using VC++ programming language and ASP(Active Server Page) technology,and the remote monitoring and control functions for industrial wastewater treatment were realized.Users can realize the functions of industrial real-time data acquisition,the curve showing,the remote control and query the statistics of historical data by the browser.

  15. National Pollution Discharge Elimination System (NPDES) Wastewater Treatment Plant Points, Region 9, 2007, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  16. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  17. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  18. Wastewater treatment alternatives for a vegetable and seafood cannery

    OpenAIRE

    Grassiano, James W.

    1990-01-01

    Peeled or whole-pack tomatoes, herring roe and oysters are processed at a Virginia Cannery. Wastewater from each food processing effluent was characterized. Treatment alternatives were investigated for tomato and herring roe wastewaters. For herring roe processing wastewater, the discharge requirement for BOD was nearly met through plain settling, while the TSS limitation was easily achieved by settling out the roe particles" Oyster processing wastewater was found to meet effluent guidelines ...

  19. Wastewater treatment in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Casu, Stefania; Crispino, Nedda A; Farina, Roberto; Mattioli, Davide; Ferraris, Marco; Spagni, Alessandro

    2012-01-01

    Although most membrane bioreactors are used under aerobic conditions, over the last few years there has been increased interest in their application for anaerobic processes. This paper presents the results obtained when a bench-scale submerged anaerobic membrane bioreactor was used for the treatment of wastewaters generated in the agro-food industry. The reactor was fed with synthetic wastewater consisting of cheese whey and sucrose, and volumetric organic loading rates (OLRs) ranging from 1.5 to 13 kgCOD/(m(3)*d) were applied. Under the operating conditions studied, the maximum applicable OLR was between 6 and 10 gCOD/(g*L), which fell within the ranges of the high-rate anaerobic wastewater treatment systems, while high concentrations of volatile fatty acids were produced at higher OLR rates. With an OLR of 1.5-10 gCOD/(g*L), the reactor showed 94% COD removal, whereas this value dropped to 33% with the highest applied OLR of 13 gCOD/(g*L). The study therefore confirms that membrane bioreactors can be used for anaerobic wastewater treatment.

  20. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  1. Performance intensification of Prague wastewater treatment plant.

    Science.gov (United States)

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  2. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    Science.gov (United States)

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Energy and nutrient recovery for municipal wastewater treatment: How to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2015-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for maximiz

  4. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  5. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Directory of Open Access Journals (Sweden)

    Chia-Chun Ho

    2015-03-01

    Full Text Available The multi-soil-layering (MSL system primarily comprises two parts, specifically, the soil mixture layer (SML and the permeable layer (PL. In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  6. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Science.gov (United States)

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  7. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  8. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  9. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Institute of Scientific and Technical Information of China (English)

    MOK Young Sun; JO Jin-Oh; LEE Heon-Ju

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  10. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant.

    Science.gov (United States)

    Zhou, Xiaohong; Wu, Yuanyuan; Shi, Hanchang; Song, Yanqing

    2013-02-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP ha d significantly different oxygen transferperformance; furthermore, the aerators in the samecorridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount aeration amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  11. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhou; Yuanyuan Wu; Hanchang Shi; Yanqing Song

    2013-01-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP,however,scarce to best of our knowledge.Through analyzing a plug flow aeration tank in the Lucun WWTP,in Wuxi,China,the oxygenation capacity of fine-bubble aerators under process conditions have been measured insitu using the off-gas method and the non-steady-state method.The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore,the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day.Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water.The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr).However,as the aeration amount reached 0.96 Nm3/hr,the discrepancy of oxygen transfer between the process condition and clean water was negligible.The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  12. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  13. A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater.

    Science.gov (United States)

    Mozia, Sylwia; Janus, Magdalena; Brożek, Piotr; Bering, Sławomira; Tarnowski, Krzysztof; Mazur, Jacek; Morawski, Antoni W

    2016-10-01

    The possibilities of application of a three-step system combining hybrid biological treatment followed by advanced UV/O3 oxidation with in situ generated O3 and membrane separation (ultrafiltration (UF) and nanofiltration (NF)) to treat and reuse the wastewater from an industrial laundry are presented. By the application of a hybrid moving bed biofilm reactor (HMBBR), the total organic carbon concentration was reduced for about 90 %. However, since the HMBBR effluent still contained organic contaminants as well as high concentrations of inorganic ions and exhibited significant turbidity (8.2 NTU), its further treatment before a possible reuse in the laundry was necessary. The UV/O3 pretreatment prior to UF was found to be an efficient method of the membrane fouling alleviation. During UF, the turbidity of wastewater was reduced below 0.3 NTU. To remove the inorganic salts, the UF permeate was further treated during NF. The NF permeate exhibited very low conductivity (27-75 μS/cm) and contained only small amounts of Ca(2+) and Mg(2+); thus ,it could be reused at any stage of the laundry process.

  14. Design and performance of hybrid constructed wetland systems for high-content wastewater treatment in the cold climate of Hokkaido, northern Japan.

    Science.gov (United States)

    Kato, K; Inoue, T; Ietsugu, H; Sasaki, H; Harada, J; Kitagawa, K; Sharma, P K

    2013-01-01

    The performance of six multistage hybrid constructed wetland systems was evaluated. The systems were designed to treat four kinds of high-content wastewater: dairy wastewater (three systems, average inflow content 2,400-5,000 mg·COD l(-1), 3-6 years of operation); pig farm wastewater, including liquid food washing wastewater (one system, 9,500 mg·COD l(-1), 3 years); potato starch processing wastewater (one system, 20,000-60,000 mg·COD l(-1), 3 years); and wastewater containing pig farm swine urine (one system, 6,600 mg·COD l(-1), 2.8 years) (COD = chemical oxygen demand). The systems contained three or four vertical (V) flow beds with self-priming siphons and surface partitions and no or one horizontal (H) flow bed (three to five beds). In some V flow beds, treated effluents were recirculated (Vr) through the inlet to improve performance. Mean annual temperature was 5-8 °C at all locations. To overcome clogging due to the high load in a cold climate, we applied a safety bypass structure and floating cover material to the V flow beds. Calculated average oxygen transfer rates (OTRs) increased proportionally with the influent load, and the OTR value was Vr > V> H. The relations of load-OTR, COD-ammonium, and a Arrhenius temperature-dependent equation enable the basic design of a reed bed system.

  15. A Modified Bio-Ecological Process for Rural Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-01-01

    Full Text Available Limited water resources and ensuring access to clean water are critical environmental challenges, especially for the developing world. In particular, rural domestic wastewater has become a significant source for the pollution of freshwater bodies. A modified bio-ecological A2O-wetland system for rural wastewater treatment consisting of a biological unit (anaerobic baffled reactor, anoxic tank and oxic unit, A2O and an ecological unit (horizontal flow constructed wetland was developed, and key performance indicators were identified. The bio-ecological treatment system showed high removal efficiency for pollutants, successfully achieving 91%, 85%, 78%, and 92% removal efficiencies for chemical oxygen demand (COD, ammonium (NH4–N, total nitrogen (TN, and total phosphorus (TP, respectively. The concentrations of pollutants in the effluent from the system were lower than the Class 1 A regulated values of the Chinese National Standard GB18918-2002. The system offered high removal efficiency, simple operation, and low energy consumption. The A2O-wetland is a good alternative for rural wastewater treatment systems.

  16. Pilot Plant Demonstration of a Sulfide Precipitation Process for Metal-Finishing Wastewater Treatment.

    Science.gov (United States)

    1984-05-01

    TOAD Metal-Finishing Wastewater Treatment System 6 3 View of Portion of Treatment System 7 4 Section of Treatment System, Showing Clearwell 7 5 Filter... Clearwell Effluent Suspended Solids 21 10 Effluent Oil and Grease 22 1 1 Dewatered Sludge Solids 23 12 Operating Time, Wastewater Flows, and Volume of...showing clearwell . S S S - - - - - - - - - - S 0C C0 CL U. * 4 Figure 6. Control panel. c. Flow Equalization. The effluents from the cyanide

  17. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    Science.gov (United States)

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab

  18. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  19. Design for a municipal wastewater treatment charge standard system based on cost accounting%基于成本核算的城镇污水处理收费标准设计研究

    Institute of Scientific and Technical Information of China (English)

    於方; 牛坤玉; 曹东; 王金南

    2011-01-01

    针对目前存在的分档计费定量依据不足等问题,基于全国第一次污染源普查数据,构建城镇污水治理投资和运行费用函数模型.计算在现有城镇污水处理成本核算体系下的东、中、西部不同污染负荷、不同排放标准的单位污水平均治理成本,将未纳入现有核算体系的管网折旧费、化验监测费用以及污泥处理费用进行成本核算,在此基础上设计一套东部、中部、西部三个地区的基于成本的污水处理收费标准体系,为城镇污水处理收费标准改革提供定量依据.%A treatment charge based on the pollution level of wastewater flowing into the municipal wastewater plants has been the mainstream of the present pricing policy reform for municipal wastewater treatment. However, insufficient data on pollution level in wastewater led to difficulties in establishing proper treatment charges. An investment and operation cost function model was developed for municipal wastewater treatment using the national pollution census data. It calculated the average unit cost for wastewater treatment of different pollution loads and different discharge standards in eastern, central and western regions given the current municipal wastewater treatment cost accounting system. Taking into account the cost for pipe work depreciation, testing and monitoring, and sludge treatment, a wastewater treatment charge standard system was developed for the three regions. The results may lay the basis for reforming the wastewater treatment charge standard system.

  20. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  1. Life cycle assessment of a water supply and wastewater treatment system. A case study of Tampere Water Works; Vesihuollon elinkaaritutkimus. Tampereen vesilaitoksen vaikutukset ympaeristoeoen

    Energy Technology Data Exchange (ETDEWEB)

    Tenhunen, J.; Oinonen, J.; Seppaelae, J.

    2000-09-01

    In this study, the Life Cycle Assessment (LCA) of Tampere Water Works was conducted in Finland. The main aims of the study were to assess the environmental impacts of water supply and wastewater treatment and to explain the question 'To what extent is it worthwhile to treat wastewater from the point of view of the environment?' In the study emissions caused by Tampere Water Works were assessed by the impact assessment method in which Finland-specific conditions are taken into account. This case study shows that the environmental impacts of final effluent are much higher than those caused by the wastewater treatment. Energy production needed in wastewater treatment and other subsystems in Water Works is the most important source of the environmental impacts after the treated wastewater. According to this study wastewater management in Tampere seems to be efficient and successful from the point of view of the environment. Furthermore the potential impacts of final effluent were considerably smaller than the impacts of direct emissions from energy production, industry and road traffic in Tampere. (orig.)

  2. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  3. Biological approaches for treatment of distillery wastewater: a review.

    Science.gov (United States)

    Pant, Deepak; Adholeya, Alok

    2007-09-01

    Effluent originating from distilleries known as spent wash leads to extensive soil and water pollution. Elimination of pollutants and colour from distillery effluent is becoming increasingly important from environmental and aesthetic point of view. Stillage, fermenter and condenser cooling water and fermenter wastewater are the primary polluting streams of a typical distillery. Due to the large volumes of effluent and presence of certain recalcitrant compounds, the treatment of this stream is rather challenging by conventional methods. Therefore, to supplement the existing treatments, a number of studies encompassing physico-chemical and biological treatments have been conducted. This review presents an account of the problem and the description of colour causing components in distillery wastewater and a detailed review of existing biological approaches. Further, the studies dealing with pure cultures such as bacterial, fungal, algal and plant based systems have also been incorporated. Also, the roles of microbial enzymes in the decolourization process have been discussed to develop a better understanding of the phenomenon.

  4. Solar Photocatalytic Treatment of Synthetic Municipal Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Poulios, I.; Malato, S.; Caceres, J.; Campos, A.

    2002-07-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater (SYMAWE), using heterogeneous and homogeneous photocatalytic methods under solar irradiation, has been studied at pilot plant scale at the Plataforma Solar de Almeria. In the case of heterogenous photocatalysis the effect of catalysts concentration, pH values and oxidants on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 KJ I''-1 the synergetic effect of TiO{sub 2} P-25 with H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} leads to a 55% and 73% reduction of the initial organic carbon content respectively. The Photo-Fenton process shows to be more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation energy of 20 KJ I''-1 leads to 80% reduction of the organic content. The presence of oxalate in the Fe''+3/H{sub 2}O{sub 2} system leads to an additional improvement of the photocatalytic efficiency. (Author) 11 refs.

  5. Solar photocatalytic treatment of synthetic municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Poulios, I. [University of Thessaloniki (Greece). Department of Chemistry, Lab. Physical Chemistry; Malato, S.; Caceres, J.; Campos, A. [Plataforma Solar de Almeria, Tabernas (Spain)

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJ L{sup -1} the synergetic effect of 0.2 g L{sup -1} TiO{sub 2} P-25 with hydrogen peroxide (H{sub 2}O{sub 2}) and Na{sub 2}S{sub 2}O{sub 8} leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation energy of 20 kJ L{sup -1} leads to 80% reduction of the organic content. The presence of oxalate in the Fe{sup 3+}/H{sub 2}O{sub 2} system leads to an additional improvement of the photocatalytic efficiency. (author)

  6. Evaluation of a treatment system wastewater prebeneficiado of coffee (Coffea arabica implemented in the community Carmen Pampa province of Nor Yungas of La Paz Department

    Directory of Open Access Journals (Sweden)

    Álvarez Javier

    2011-08-01

    Full Text Available This research was conducted in prebeneficiadora coffee plant of UAC-CP, located in the community of Carmen Pampa, Coroico Municipality, Nor Yungas of La Paz department. The objective was to determine the efficiency of wastewater treatment prebeneficiado coffee because it is not known to be effective in reducing the level of contamination of treated wastewater, and according to the results to correct and / or validate directly model system in place. For their study was established seven sampling points within the system of treatment and four replications were made at different times and with different amounts of coffee cherry. We evaluated the parameters of temperature, pH, settleable solids, total suspended solids, fixed and volatile, biochemical oxygen demand, chemical oxygen demand and dissolved oxygen. The temperature of wastewater entering the system has recorded 16.5 o C, increasing during the treatment process at 17.5 °C and record the output is 16.5 ºC. The pH increased from 4.51 to 6.04 which occurred at the last two gaps oxygenation and not in the neutralization tank. Settleable solids (SS increased from 0.1 mg / L to 0.15 mg / L, which was recorded at the lakes of oxygen, is attributed to the drag of fine gravel. Total suspended solids (TSS have been reduced from 1927.5 mg / L to 299 mg / L gradually throughout the treatment process. Fixed suspended solids (SSF were reduced from 137.5 mg / L to 58.5 mg / L. Volatile suspended solids (VSS were reduced from 1790 mg / L to 240.5 mg / L. Biochemical oxygen demand (BOD was reduced from 6102.5 mg O2 / L to 1245 mg O2 / L. The chemical oxygen demand (COD was reduced from 9800 mg O2 / L to 1658.75 mg O2 / L. Dissolved oxygen (DO increased from 0 to 2.4 mg O2 / L, in the last two gaps in oxygenation, due to the reduction of solids and chemical oxygen demand and biochemical oxygen. Of the nine parameters measured, six meet the maximum permissible values for download in source receptor (stream

  7. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  8. The effects of physicochemical wastewater treatment operations on forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2016-10-24

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  9. Energy-efficiency in wastewater treatment plants; Energieeffizienz in Abwasserreinigungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, R.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a data-collection system developed to monitor the energy consumption and production of wastewater treatment plants. The aim of the project was to optimise not only energy consumption but also the power and heat production in such an installation. Results are presented for the use of such a system at the wastewater treatment plant in Thun, Switzerland. The results show that considerable savings can be made by reducing the consumption of peak-rate external power by making use of the facility's own power and heat production that uses sewage-gas-powered combined heat and power units. Also, the demand-driven operation of various power consumers in the facility is discussed.

  10. Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems

    Energy Technology Data Exchange (ETDEWEB)

    Colica, Giovanni; Mecarozzi, Pier Cesare; De Philippis, Roberto [Florence Univ., Firenze (Italy). Dept. of Agricultural Biotechnology

    2010-08-15

    Seven exopolysaccharide-producing cyanobacteria were tested with regard to their capability to remove Cr(VI) from the wastewater of a plating industry. The cyanobacterium which showed, under lab conditions, the most promising features with regard to both Cr(VI) removal (about 12 mg of Cr(VI) removed per gram of dry biomass) and growth characteristics (highest growth rate and simplest culture medium) was Nostoc PCC7936. Furthermore, in lab experiments, it was also found that a HCl pretreatment is essential to abate the concentration of Cr(VI) in solution and that the viability of the biomass is not necessary. Subsequently, three pilot devices were tested, one batch (a dialysis cell) and two flow-through systems (a filter press and a column filled with quartz grain). The best performances were obtained with the filter press, where it was observed a sharp decrease in the concentration of Cr(VI), partly due to the adsorption of the metal by the biomass (about 50%) and partly due to its reduction to Cr(III). The results are discussed in terms of the role played by the different components (biomass and polysaccharide) of the cyanobacterial cultures in the removal of Cr(VI). (orig.)

  11. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  12. Estimating costs and manpower requirements for conventional wastewater treatment facilities

    National Research Council Canada - National Science Library

    Patterson, W.L; Banker, R.F

    1971-01-01

    Data for estimating average construciton costs, operation and maintenance costs, and manpower staffing requirements, are presented for conventional wastewater treatment plants ranging from 1 to 100...

  13. A Review on Advanced Treatment of Pharmaceutical Wastewater

    Science.gov (United States)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  14. Survey on possibility of Disinfection of Isfahan North Wastewater Treatment Plant Effluent by Low and Medium Pressure Ultraviolet Systems in Pilot ScaleSystems in Pilot Scale

    Directory of Open Access Journals (Sweden)

    H. Movahedian Attar

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives:Today, due to health, environmental and economical problems, of chlorine application, UV radiation is better option than chlorine for disinfection of effluent. The aim of this study was disinfection of secondary effluent with UV radiation."nMaterials and Methods: Two types of UV disinfection system including low pressure (LP and medium pressure (MP was used to disinfection of Isfahan North Wastewater Treatment Plant (INWWTP effluent without pretreatment. Single and combined lamps were operated to evaluate the removal of total and fecal coliforms (TC and FC, and fecal streptococcus (FS. TSS, iron, hardness, UV absorption and transmittance were analyzed in order to observe the fouling of the quartz sleeves. "nResults: After using LP lamp with dose of 161 mws/cm2, TC and FC content was declined to standard level (1000 TC, and 400 FC/100ml. In addition, disinfection with MP lamp was led to FS content of 400 MPN/100 mL. Combination of LP and MP, with dose of 460 mws/cm2 could be met the environmental requirements of TC & FC, and the FS count was reached to 400 MPN/100 mL with dose of 237 mws/cm2. Maximum photo-reactivation percentage of coliforms after LP and MP lamps were appeared 15 and 3 percent respectively, while it was not observed for FS."nConclusion: High fluctuation in secondary effluent quality of INWWTP mainly TSS concentration was caused to decline of the UVT value. Therefore, disinfection of effluent by LP, MP and even combined both systems are not applicable in conventional UV dose. Hence, using advanced process unit before UV disinfection system is necessary for removal of TSS.

  15. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  16. Swine manure-based pilot-scale algal biomass production system for fuel production and wastewater treatment--a case study.

    Science.gov (United States)

    Min, Min; Hu, Bing; Mohr, Michael J; Shi, Aimin; Ding, Jinfeng; Sun, Yong; Jiang, Yongcheng; Fu, Zongqiang; Griffith, Richard; Hussain, Fida; Mu, Dongyan; Nie, Yong; Chen, Paul; Zhou, Wenguang; Ruan, Roger

    2014-02-01

    Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH₃-N, TN, COD, and PO₄-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study.

  17. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

    Science.gov (United States)

    Sauder, Laura A; Albertsen, Mads; Engel, Katja; Schwarz, Jasmin; Nielsen, Per H; Wagner, Michael; Neufeld, Josh D

    2017-01-01

    Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In enrichment culture, Ca. N. exaquare oxidizes ammonia to nitrite stoichiometrically, is mesophilic, and tolerates at least 15 mm of ammonium chloride or sodium nitrite. Microautoradiography (MAR) for enrichment cultures demonstrates that Ca. N. exaquare assimilates bicarbonate in association with ammonia oxidation. However, despite using inorganic carbon, the ammonia-oxidizing activity of Ca. N. exaquare is greatly stimulated in enrichment culture by the addition of organic compounds, especially malate and succinate. Ca. N. exaquare cells are coccoid with a diameter of ~1–2 μm. Phylogenetically, Ca. N. exaquare belongs to the Nitrososphaera sister cluster within the Group I.1b Thaumarchaeota, a lineage which includes most other reported AOA sequences from municipal and industrial WWTPs. The 2.99 Mbp genome of Ca. N. exaquare encodes pathways for ammonia oxidation, bicarbonate fixation, and urea transport and breakdown. In addition, this genome encodes several key genes for dealing with oxidative stress, including peroxidase and catalase. Incubations of WWTP biofilm demonstrate partial inhibition of ammonia-oxidizing activity by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), suggesting that Ca. N. exaquare-like AOA may contribute to nitrification in situ. However, CARD-FISH-MAR showed no incorporation of bicarbonate by detected Thaumarchaeaota, suggesting that detected AOA may incorporate non-bicarbonate carbon sources or rely on an alternative and yet unknown

  18. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  19. Wastewater treatment using gamma irradiation: Tetouan pilot station, Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Tahri, Loubna, E-mail: dloubna78@hotmail.co [Pole d' excellence Regional, Centre des Etudes Environnementales Mediterraneennes, Laboratoire de Biologie Appliquee et Sciences de l' Environnement, Faculte des Sciences et Techniques, B.P. 416, Tangier (Morocco); Station d' Ionization de Boukhalef, Institut National de la Recherche Agronomique, Tangier (Morocco); Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed [Station d' Ionization de Boukhalef, Institut National de la Recherche Agronomique, Tangier (Morocco); Azmani, Amina; Sayah, Fouad [Pole d' excellence Regional, Centre des Etudes Environnementales Mediterraneennes, Laboratoire de Biologie Appliquee et Sciences de l' Environnement, Faculte des Sciences et Techniques, B.P. 416, Tangier (Morocco)

    2010-04-15

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co{sup 60} gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  20. Halonitromethanes formation in wastewater treatment plant effluents.

    Science.gov (United States)

    Song, Hocheol; Addison, Jesse W; Hu, Jia; Karanfil, Tanju

    2010-03-01

    Halonitromethanes (HNMs) constitute one class of emerging disinfection by-products with high potential health risks. This study investigated the formation and occurrence of HNMs under different disinfection scenarios and the presence of their precursors in municipal wastewater treatment plant (WWTPs) effluents. Formation potential tests performed on WWTP effluents revealed that HNM formation occurred in the order of ozonation-chlorination > ozonation-chloramination > chlorination > chloramination. Ozonation alone did not produce any HNM. Municipal WWTP effluents contained some reactive HNM precursors, possibly the by-products of biological treatment processes and/or some moiety of industry or household origin. No effects of nitrate on the formation of HNMs were observed in this study, and nitrification in WWTPs appears to remove appreciable portion of HNM precursors, especially those reactive to chlorine. UV disinfection using low pressure lamps in municipal WWTPs had negligible impact on HNM formation potential. HNM concentrations in the effluents of selected WWTPs were either non-detectable or less than minimum reporting level, except for one WWTP that gave trichloronitromethane concentrations in the range of 0.9-1.5 microg L(-1). No HNMs were observed in the effluents disinfected with UV radiation. Therefore, it appears the typical wastewater disinfection processes involving chlorination or UV treatment in WWTPs do not produce significant amounts of HNMs.

  1. Water quality modelling and optimisation of wastewater treatment network using mixed integer programming

    CSIR Research Space (South Africa)

    Mahlathi, Christopher

    2016-10-01

    Full Text Available , wastewater treatment plays a crucial role. In this work, a Streeter-Phelps dissolved oxygen model (DO) is implemented in a semi-hypothetical Upper Olifants River system to forecast instream dissolved oxygen profiles in response to different wastewater...

  2. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  3. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment.

    Science.gov (United States)

    El-Serehy, Hamed A; Bahgat, Magdy M; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2014-07-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water.

  4. Benchmarking wastewater treatment plants under an eco-efficiency perspective.

    Science.gov (United States)

    Lorenzo-Toja, Yago; Vázquez-Rowe, Ian; Amores, María José; Termes-Rifé, Montserrat; Marín-Navarro, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-10-01

    The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework.

  5. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  6. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  7. Wastewater treatment by adsorption onto micro-particles of dried Withania frutescens Plant as new adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chiban, M.; Soudani, A.; Sinan, F.; Persin, M.

    2009-07-01

    Several industrial wastewater streams may contain heavy metals such as Cd(II), Cr(III), Cr(VI), Cu(II), Pb(II), Zn(II), etc. including the waste liquids generated by metal finishing or the mineral processing industries. The toxic metals must be effectively treated/removed from the wastewaters. If the wastewaters were discharged directly into natural waters, it will constitute a great risk for the aquatic ecosystem, whilst the direct discharge into the sewerage system may affect negatively the subsequent biological wastewater treatment. (Author)

  8. Treatment of tannery wastewater by electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Treatment of tannery wastewater by electrocoagulation with low cell current (≤ 1A) and soluble electrodes (mild steel electrodes and aluminum electrodes) was studied. Compared with aluminum electrodes, mild steel electrodes were more effective for the removal of sulfide, with a removal efficiency of over 90%. But during the treatment process, black color precipitate typical to iron(II) sulfides was produced. While aluminum electrodes were effective to eliminate the colority of the effluent, the removal efficiency of sulfide was lower than 12%. The mechanisms of the removal of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority with different soluble electrodes (mild steel electrodes and aluminum electrodes) were discussed in detail. In order to exert the predominance of diffenent types of electrodes, the tannery wastewater was treated using mild steel electrodes first (electrocoagulation time: 20 min, cell current: 1 A) followed by the filter and finally by the aluminum electrodes (electrocoagulation time: 20 min, cell current: 1 A), the elimination rates of chemical oxygen demand, ammonia, total organic carbon, sulfide and colority were 68.0%, 43.1%, 55.1%, 96.7% and 84.3%, respectively, with the initial concentrations 2413.1 mg/L, 223.4 mg/L, 1000.4 mg/L, 112.3 mg/L and 256 dilution times, respectively. The absorbance spectra and energy consumption during electrocoagulation process were also discussed.

  9. Olive mill wastewater treatment: an experimental study.

    Science.gov (United States)

    Bettazzi, E; Morelli, M; Caffaz, S; Caretti, C; Azzari, E; Lubello, C

    2006-01-01

    Olive oil production, one of the main agro-industries in Mediterranean countries, generates significant amounts of olive mill wastewaters (OMWs), which represent a serious environmental problem, because of their high organic load, the acidic pH and the presence of recalcitrant and toxic substances such as phenolic and lipidic compounds (up to several grams per litre). In Italy, traditional disposal on the soil is the most common way to discharge OMWs. This work is aimed at investigating the efficiency and feasibility of AOPs and biological processes for OMW treatment. Trials have been carried out on wastewaters taken from one of the largest three-phase mills of Italy, located in Quarrata (Tuscany), as well as on synthetic solutions. Ozone and Fenton's reagents applied both on OMWs and on phenolic synthetic solutions guaranteed polyphenol removal efficiency up to 95%. Aerobic biological treatment was performed in a batch reactor filled with raw OMWs (pH = 4.5, T = 30 degrees C) without biomass inoculum. A biomass rich of fungi, developed after about 30 days, was able to biodegrade phenolic compounds reaching a removal efficiency of 70%. Pretreatment of OMWs by means of oxidation increased their biological treatability.

  10. Efficiency of a locally designed pilot-scale trickling biofilter (TBF) system in natural environment for the treatment of domestic wastewater.

    Science.gov (United States)

    Rasool, Tabassum; Rehman, Abdul; Naz, Iffat; Ullah, Rahat; Ahmed, Safia

    2017-06-07

    In the present study, a cost-effective and simple stone media pilot-scale trickling biofilter (TBF) was designed, constructed and operated in a continuous recirculation mode for wastewater treatment with a hydraulic flow rate of 1.2 L/min (Q = 0.072 m(3)/h) and hydraulic loading (Q/A) of 0.147 m(3)/day for 15 weeks at a temperature range of 14.5-36°C. A substantial reduction in the average concentration of different pollution indicators, such as chemical oxygen demand (COD) (85.6%), biochemical oxygen demand (BOD5) (85.6%), total dissolved solid (TDS) (62.8%), total suspended solid (TSS) (99.9%), electrical conductivity (EC) (15.1%), phosphates (63.22%), sulfates (28.5%) and total nitrogen (TN) (34.4%), was observed during 15 weeks of operational period. Whereas a considerable average increase in the levels of dissolved oxygen (DO) (63.2%) was found after treatment of wastewater by the TBF system. No significant reduction in most probable number (MPN) index of fecal coliforms was observed in the effluent in first 9 weeks of operation. However, a significant reduction in the MPN of fecal coliforms was observed, i.e. 80-90% in the last few weeks of treatment. Thus, overall results suggest that pilot-scale TBF has a great potential to be transferred to field scale for treating sewage for small communities in developing countries, in order to produce effluent of good quality, which can be safely used for irrigation as well as ornamental purposes.

  11. Investigation of Anaerobic Fluidized Bed Reactor Aerobic Mov-ing Bed Bio Reactor (AFBR/MMBR System for Treatment of Currant Wastewater

    Directory of Open Access Journals (Sweden)

    Jalil Jafari

    2013-08-01

    Full Text Available Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR-Aerobic Moving Bed Bio Reactor (MBBR in series arrangement to treat Currant wastewater.Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2-2.3 mm, particle density of 1250 kg/m3.The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3.Results: When system operated at 35 ºC, chemical oxygen demand (COD removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively.Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewate

  12. N{sub 2}O and CH{sub 4} Emission from Wastewater Collection and Treatment Systems (GWRC). State of the Science Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The Global Water Research Coalition (GWRC) is an international organisation that is dedicated to the exchange and generation of knowledge to support sustainable development and management of the urban water cycle. The research agenda is developed by the member organisations of the GWRC and reflects their priorities and recognises global trends and drivers that affect the urban water cycle. The present research agenda includes Climate Change as one of the priorities areas. This research area comprises topics related to the possible impact of climate change on the urban water sector as well as the possible contribution to climate change by the urban water sector via the direct and indirect emission of greenhouse gasses (GHG). The objective of this joint effort was to collect and develop knowledge needed to understand and manage the emission of N{sub 2}O (nitrous oxide) and CH{sub 4} (methane) by wastewater collection and treatment systems. Starting with a kick-off meeting in Vienna in September 2008, the GWRC members involved in this activity have bundled their individual research programs on this topic, aligned methodologies used and exchanged and discussed the resulting information of the programs and developed additional actions where needed. The outcomes were reviewed and discussed at a final workshop in Montreal in September 2010. These activities have resulted in two reports: this State of the Science report which presents an overview of the current knowledge and know-how regarding the emissions of N{sub 2}O and CH{sub 4} by wastewater collection and treatment systems and a Technical Report which includes all the details, facts and figures of the underlying studies used to develop the State of the Science report. For the Technical Report a separate record has been prepared.

  13. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Adey Feleke Desta

    Full Text Available A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2- and S(2-, 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%, Betaproteobacteria (10%, Bacteroidia (10%, Deltaproteobacteria (9% and Gammaproteobacteria (6%. Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.

  14. Anaerobic filters for the treatment of coal gasification wastewater.

    Science.gov (United States)

    Suidan, M T; Siekerka, G L; Kao, S W; Pfeffer, J T

    1983-06-01

    A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.

  15. Pilot-scale study of biomass reduction in wastewater treatment.

    Science.gov (United States)

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  16. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  17. Sustainability assessment of advanced wastewater treatment technologies.

    Science.gov (United States)

    Høibye, L; Clauson-Kaas, J; Wenzel, H; Larsen, H F; Jacobsen, B N; Dalgaard, O

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination with advanced oxidation. The technical assessment is based on 12 hazardous substances comprising heavy metals, organic pollutants, endocrine disruptors as well as pathogenic microorganisms. The environmental assessment is performed by life cycle assessment (LCA) comprising 9 of the specific hazardous substances and three advanced treatment methods; sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment is the most advantageous advanced treatment methods if the demands are restricted to pathogenic microorganisms. In terms of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals.

  18. Re-thinking wastewater landscapes: combining innovative strategies to address tomorrow's urban wastewater treatment challenges.

    Science.gov (United States)

    Smith, B R

    2009-01-01

    Most major cities worldwide face urban water management challenges relating to drinking supply, stormwater and wastewater treatment, and ecological preservation. In light of climate change and finite natural resources, addressing these challenges in sustainable ways will require innovative solutions arising from interdisciplinary collaboration. This article summarizes five major urban water management strategies that bridge the fields of engineering, ecology, landscape architecture, and urban planning. A conceptual implementation of these strategies is demonstrated through a design for a small constructed wetland treatment system in San Francisco, California. The proposed decentralized system described in this article consists of a detention basin, vegetated and open free water surface wetlands, and ultraviolet disinfection. In wet weather, the system would detain and treat combined sewer discharges (CSD), and in dry weather it would treat residential greywater for toilet flushing and irrigation in a nearby neighborhood. It is designed to adapt over time to changing climatic conditions and treatment demands. Importantly, this proposal demonstrates how constructed wetland engineers can incorporate multiple benefits into their systems, offering a vision of how wastewater infrastructure can be an attractive community, educational, recreational, and habitat amenity through the integration of engineering, ecology, and landscape design.

  19. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...... and heavy metals has been developed during the past two years. The concept is based on guidelines that are made according to considerations of me environment and the treatment plant system, and that encourage the introduction of a cleaner technology and integrated preventive measures. For most organic...

  20. The flocculants applied in the oil refining plant wastewater treatment

    Science.gov (United States)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.

    2017-08-01

    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  1. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  2. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  3. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.

  4. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  5. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  6. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    wastewater treatment plants receiving industrial effluent. FT Mhlanga* and ... The modelling of biological wastewater treatment systems has developed ..... of KwaZulu-Natal. ORHON D and CORGNOR EU (1996) COD fractionation in waste-.

  7. Treatment of dairy wastewater with a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2013-12-01

    Full Text Available Among the food industries, the dairy industry is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. In this study, an aerobic membrane bioreactor (MBR was used for the treatment of wastewater from a large dairy industry and two hydraulic retention times (HRT, 6 and 8 hours, were evaluated. For both HRTs removal efficiencies of organic matter of 99% were obtained. Despite high permeate flux (27.5 L/h.m², the system operated fairly stablely. The molecular weight distribution of feed, permeate and mixed liquor showed that only the low molecular weight fraction is efficiently degraded by biomass and that the membrane has an essential role in producing a permeate of excellent quality.

  8. Global sensitivity analysis of a phenomenological wastewater treatment plant influent generator. 8th IWA Symposium on Systems Analysis and Integrated Assessment

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    The objective of this paper is to present the results of a global sensitivity analysis (GSA) of a phenomenological model that generates wastewater treatment plant (WWTP) dynamic influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model no 2 (BSM2) and creates r...

  9. 恩德炉灰水处理系统技术研究%Technology Research of Ash Wastewater Treatment System for Ender Furnace

    Institute of Scientific and Technical Information of China (English)

    李忠海; 苏凤林

    2009-01-01

    通过对除尘灰水处理系统分析,选择高效浓缩压滤脱水的技术方案,解决了污染问题.%Through analyzing ash wastewater treatment system,the technical program of the high efficient concentration pressure filtration dehydration was chosen, pollution problems were solved.

  10. EVALUATION OF THE IMPACT OF WASTEWATER TREATMENT PLANTS WITH DRAINAGE SYSTEM ON THE QUALITY OF GROUNDWATER IN DUG AND DEEP WELLS

    Directory of Open Access Journals (Sweden)

    Krzysztof Jóźwiakowski

    2014-10-01

    Full Text Available The paper presents an assessment of the impact of sewage treatment plants with drainage system on the quality of groundwater in dug and deep wells in the Kwasówka village in the municipality of Drelów (Lublin Province. In the study area there is no sewerage system and water supply, and the local population benefits from dug or deep wells. The wastewater generated by households goes to septic tanks or sewage treatment plants with drainage system. The study of groundwater quality from wells was performed in 2013. The study was performed 4 series of studies, during which determined: total hardness, pH and conductivity of the electrolyte, as well as the content of NO3, NO2, NH4, Cl, SO4, Fe, Mn and bacteria from coliform and faecal coliform bacteria, mesophilic and psychrophilic. The research shows that water from deep wells are heavily contaminated with iron, and several wells dug reported exceeding the permissible concentrations of ammonia, nitrate, manganese and sulfates. Microbiological studies indicate a significant contamination of the well water analyzed domestic waste. You should immediately take action to improve the quality of the water used by residents of Kwasówka.

  11. Wastewater Treatment Using Horizontal Subsurface Flow Constructed Wetland

    Directory of Open Access Journals (Sweden)

    S. Sarafraz

    2009-01-01

    Full Text Available The last few decades witnessed sharp focus on environment pollution and its impact on life in nature. Wetlands can be used for biological treatment of wastewater. Problem statement: Scarcity of water is considered as a global problem and Iran is one the countries which is facing water shortage problem. Pollution of water bodies restrict the availability of water for various uses. Treatment of waste water before disposal contributes to water conservation efforts. Constructed wetlands are techniques aim to polish water quality and reduce the harmful effect of effluent. Approach: In this study, four horizontal subsurface flow wetlands (HSSF were constructed at the Research Station of Tehran University, located in Karaj, Iran. The study was carried out from April to September, 2007. Gravel and zeoilte were used in this study as substrate. Gravel-beds with and without plants (called GP and G and gravel-beds mixed with (10% zeolite, with and without plants (called ZP and Z were examined to investigate the feasibility of treating synthetic wastewater which was specifically produced and modified to imitate agricultural wastewater. Results: The results of this study indicated that the system had acceptable pollutant removal efficiency and that both plants were found to be tolerant under the tested conditions. The wetland system could achieve the NO3-N removal of (79% in ZP, (86% in Z, (82% in GP and finally (87.94% in G. As for the P removal, the efficiencies of 93, 89, 81 and 76% were respectively achieved for ZP, GP, Z and G. The outflow concentrations of Pb and Cd were found to be under the detection limit; however, as for Zn, the removal efficiencies of 99.9, 99.76, 99.71 and 99.52% were concluded for ZP, Z, GP and G respectively. Conclusions/Recommendations: It can be concluded that constructed wetlands are efficient in removing Zn, Pb and Cd from agricultural wastewater. Plants types such as Phragmites Australis and Juncus Inflexus can contribute

  12. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  13. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  14. Design and operation of UASB—A/O process for treatment starch and VB12 wastewater

    Directory of Open Access Journals (Sweden)

    Yuanyuan CHEN

    2016-12-01

    Full Text Available Starch and VB12 wastewater with higher COD and ammonia nitrogen concentration, contains a large number of difficult biodegradable material, complex composition, is difficult to deal with. In recent years, with the increasingly stringent wastewater discharge standards, require the use of a stable and efficient wastewater treatment process for purification treatment of high concentration of ammonia nitrogen in wastewater and the refractory organic pollutants, to achieve discharge standards. Upflow Anaerobic Sludge Blanket (UASB