WorldWideScience

Sample records for wastewater treatment system

  1. Advanced wastewater treatment system (SEADS)

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a wastewater treatment technology identified as the Advanced Wastewater Treatment System Inc.'s Superior Extended Aerobic Digester System (SEADS). SEADS is an advanced miniaturized wastewater treatment plant that can meet advanced wastewater treatment standards for effluent public reuse. SEADS goes beyond primary and secondary treatment operations to reduce nutrients such as nitrogen and phosphorus, which are typically found in excessive quantities in traditional wastewater treatment effluent. The objective of this evaluation will be to verify the performance and reliability of the SEADS to treat wastewater from a variety of sources, including domestic wastewater and commercial industrial wastewater. SEADS utilizes remote telemetry equipment to achieve added reliability and reduces monitoring costs as compared to many package wastewater treatment plants. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the SEADS technology evaluation will address its ability to treat low flows-from remote individual and clustered housing applications, and individual commercial applications in lieu of a main station conventional wastewater treatment plant. The unneeded reliance on particular soil types for percolation and the improved effluent water quality over septic systems alone look to make these types of package treatment plants a viable option for rural communities, small farms, and other low-flow remote settings. Added benefits to be examined

  2. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  3. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  4. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  5. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  6. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  7. Advances in HTGR Wastewater Treatment System Design

    International Nuclear Information System (INIS)

    Li Junfeng; Qiu Yu; Wang Jianlong; Jia Fei

    2014-01-01

    The source terms of radioactive wastewater from HTR-PM were introduced. Concentration process should be used to reduce volume. A radioactive wastewater treatment system was designed by using Disc tubular reverse osmosis (DTRO) membrane system. The pretreatment system was simplify by using a cartridge filter. A three-stage membrane system was built. The operated characters to treat low and intermediate radioactive waste water were studied. A concentration rates of 25-50 is reached. The decontamination factor of the membrane system can reach 30-100. (author)

  8. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    Science.gov (United States)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  9. Integrated Risk Framework for Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  10. A review of virus removal in wastewater treatment pond systems.

    Science.gov (United States)

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  11. RESOURCE RECOVERY BY OSMOTIC BIOELECTROCHEMICAL SYSTEMS  TOWARDS SUSTAINABLE WASTEWATER TREATMENT

    OpenAIRE

    Qin, Mohan

    2017-01-01

    Recovering valuable resources from wastewater will transform wastewater management from a treatment focused to sustainability focused strategy, and creates the need for new technology development. An innovative treatment concept - osmotic bioelectrochemical system (OsBES), which is based on cooperation between bioelectrochemical systems (BES) and forward osmosis (FO), has been introduced and studied in the past few years. An OsBES can accomplish simultaneous treatment of wastewater and recove...

  12. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  13. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  14. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  15. Pollution abatement with peat onsite wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J L [University of Maine, Orano, ME (United States). Dept. of Civil Engineering

    1994-02-01

    The purpose of onsite wastewater treatment is to provide economical removal of dissolved nutrients, pathogens and other contaminates from septic tank effluent to avoid the pollution of groundwater or creation of other health hazards. The effective use of conventional soil adsorption systems is limited by a number of factors including site characteristics, soil type and condition, and the proximity of the system to surface waters or a source of potable water. On adverse sites, where the use of conventional subsurface soil adsorption systems does not provide acceptable levels of treatment, Sphagnum peat may be used as an economical method of onsite wastewater treatment. The peat system, when properly designed and constructed, is relatively simple to install, requires minimal energy and maintenance, and provides a high quality effluent without additional disinfection. 19 refs.

  16. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    Science.gov (United States)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  17. Innovative biological systems for anaerobic treatment of grain and food processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, P M

    1986-09-01

    The application of two innovative fixed film and suspended growth anaerobic biological systems to the treatment of grain and food processing wastewaters is discussed. A fluidized bed fixed film system and a suspended growth membrane system are described. The technical and economic factors dictating which system is selected for treatment of a specific industrial wastewater are discussed. Case history results from successful operation of full-scale, demonstration, and pilot-scale systems treating respectively, soy whey, cheese whey, and wheat flour processing wastewaters are presented.

  18. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  19. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Municipal wastewater treatment in Mexico: current status and opportunities for employing ecological treatment systems.

    Science.gov (United States)

    Zurita, Florentina; Roy, Eric D; White, John R

    2012-06-01

    The aim of this paper is to evaluate the current status of municipal wastewater (MWW) treatment in Mexico, as well as to assess opportunities for using ecological treatment systems, such as constructed wetlands. In 2008, Mexico had 2101 MWW treatment plants that treated only 84 m3/s of wastewater (208 m3/s ofMWW were collected in sewer systems). Unfortunately, most treatment plants operate below capacity owing to a lack of maintenance and paucity of properly trained personnel. The main types of treatment systems applied in Mexico are activated sludge and waste stabilization ponds, which treat 44.3% and 18% of the MWW collected, respectively. As in many other developing nations around the world, there is a great need in Mexico for low-cost, low-maintenance wastewater treatment systems that are both economically and environmentally sustainable. In 2005, 24.3 million Mexicans lived in villages of less than 2500 inhabitants and 14.1 million lived in towns with 2500-15,000 inhabitants. An opportunity exists to extend the use of ecological treatment systems to these low population density areas and considerably increase the percentage of MWW that is treated in Mexico. Small-scale and medium-size constructed wetlands have been built successfully in some states, primarily during the past five years. Several barriers need to be overcome to increase the adoption and utilization of ecological wastewater technology in Mexico, including: a lack of knowledge about this technology, scarce technical information in Spanish, and the government's concentration on constructing MWW treatment plants solely in urban areas.

  1. Natural treatment system models for wastewater management: a study from Hyderabad, India.

    Science.gov (United States)

    Sonkamble, Sahebrao; Wajihuddin, Md; Jampani, Mahesh; Sarah, S; Somvanshi, V K; Ahmed, Shakeel; Amerasinghe, Priyanie; Boisson, Alexandre

    2018-01-01

    Wastewater generated on a global scale has become a significant source of water resources which necessitates appropriate management strategies. However, the complexities associated with wastewater are lack of economically viable treatment systems, especially in low- and middle-income countries. While many types of treatment systems are needed to serve the various local issues, we propose natural treatment systems (NTS) such as natural wetlands that are eco-friendly, cost-effective, and can be jointly driven by public bodies and communities. In order for it to be part of wastewater management, this study explores the NTS potential for removal of pollutants, cost-effectiveness, and reuse options for the 1.20 million m 3 /day of wastewater generated in Hyderabad, India. The pilot study includes hydro-geophysical characterization of natural wetland to determine pollutant removal efficiency and its effective utilization for treated wastewater in the peri-urban habitat. The results show the removal of organic content (76-78%), nutrients (77-97%), and microbes (99.5-99.9%) from the wetland-treated wastewater and its suitability for agriculture applications. Furthermore, the wetland efficiency integrated with engineered interventions led to the development of NTS models with different application scenarios: (i) constructed wetlands, (ii) minimized community wetlands, and (iii) single outlet system, suitable for urban, peri-urban and rural areas, respectively.

  2. A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment

    International Nuclear Information System (INIS)

    Wang, Yong-Peng; Liu, Xian-Wei; Li, Wen-Wei; Li, Feng; Wang, Yun-Kun; Sheng, Guo-Ping; Zeng, Raymond J.; Yu, Han-Qing

    2012-01-01

    Highlights: ► An MFC–MBR integrated system for wastewater treatment and electricity generation. ► Stable electricity generation during 1000-h continuous operation. ► Low-cost electrode, separator and filter materials were adopted. -- Abstract: Microbial fuel cell (MFC) and membrane bioreactor (MBR) are both promising technologies for wastewater treatment, but both with limitations. In this study, a novel MFC–MBR integrated system, which combines the advantages of the individual systems, was proposed for simultaneous wastewater treatment and energy recovery. The system favored a better utilization of the oxygen in the aeration tank of MBR by the MFC biocathode, and enabled a high effluent quality. Continuous and stable electricity generation, with the average current of 1.9 ± 0.4 mA, was achieved over a long period of about 40 days. The maximum power density reached 6.0 W m −3 . Moreover, low-cost materials were used for the reactor construction. This integrated system shows great promise for practical wastewater treatment application.

  3. Optimal design of regional wastewater pipelines and treatment plant systems.

    Science.gov (United States)

    Brand, Noam; Ostfeld, Avi

    2011-01-01

    This manuscript describes the application of a genetic algorithm model for the optimal design of regional wastewater systems comprised of transmission gravitational and pumping sewer pipelines, decentralized treatment plants, and end users of reclaimed wastewater. The algorithm seeks the diameter size of the designed pipelines and their flow distribution simultaneously, the number of treatment plants and their size and location, the pump power, and the required excavation work. The model capabilities are demonstrated through a simplified example application using base runs and sensitivity analyses. Scaling of the proposed methodology to real life wastewater collection and treatment plants design problems needs further testing and developments. The model is coded in MATLAB using the GATOOL toolbox and is available from the authors.

  4. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  5. Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant

    International Nuclear Information System (INIS)

    Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

    1998-07-01

    The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality

  6. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    Science.gov (United States)

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  7. The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Herto Dwi Ariesyady

    2016-02-01

    Full Text Available The Bojongsoang Wastewater Treatment Plant (WWTP serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease wastewater treatment performance. More knowledge about the relationship between the nutrients concentration and algae blooming conditions, such as microalgae diversity, is needed to control and maintain the performance of the wastewater treatment plant. Therefore this study was conducted, in order to reveal the diversity of microalgae in the stabilization pond system and its relationship with the water characteristics of the comprising ponds. The results showed that the water quality in the stabilization pond system of Bojongsoang WWTP supported rapid growth of microalgae, where most rapid microbial growth occurred in the anaerobic pond. The microalgae diversity in the stabilization ponds was very high, with various morphologies, probably affiliated with blue-green algae, green algae, cryptophytes, dinoflagellates and diatoms. This study has successfully produced information on microalgae diversity and abundance profiles in a stabilization pond system.

  8. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  9. Dairy wastewater treatment

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... treatment processes to treat dairy wastewater such as activated sludge system .... Gas chromatograph. (Perkin Elmer, Auto system XL), equipped with thermal conductivity ..... Enzymatic hydrolysis of molasses. Bioresour. Tech.

  10. Evaluation of on-site wastewater treatment systems

    International Nuclear Information System (INIS)

    Dunn, J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a program designed to conduct a third-party group evaluation of wastewater denitrification technologies appropriate for low-flow systems, partially funded by a grant from the Pennsylvania Department of Environmental Protection (PADEP). The objective of this program is to verify the performance of products that provide nutrient reduction in wastewater from a variety of sources, including domestic wastewater, agricultural runoff, or other waste streams. The evaluation process will be overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. Among other performance issues, the potential energy savings of using nutrient reducing technologies scaled to treat low flows - larger than an individual septic tank but smaller than that of a conventional wastewater treatment plant - will be assessed. The energy savings realized by reduced construction and equipment transport costs alone could make low-flow nutrient reduction technologies viable options for rural communities, small farms, and other low-flow settings. The evaluation is being funded in part by PADEP, which is sponsoring this evaluation due to its interest in developing low-cost wastewater treatment technologies for Pennsylvania's rural communities. However, the evaluation is national in scope, and participants will come from all areas of the country. The presentation will include a description of the process for establishing the testing protocol, testing results from various nutrient reducing technologies, and obstacles encountered and lessons learned during the process. (author)

  11. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    user

    C++ programme to implement Brown's model for determining water quality usage ... predicting the re-use options of the wastewater treatment system was a ... skins from rural slaughter slabs/butchers, slaughter .... City (Karnataka State, India).

  12. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  13. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    Science.gov (United States)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  14. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    Science.gov (United States)

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  15. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    Science.gov (United States)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery

  16. Integrated constructed wetland systems: design, operation, and performance of low-cost decentralized wastewater treatment systems.

    Science.gov (United States)

    Behrends, L L; Bailey, E; Jansen, P; Houke, L; Smith, S

    2007-01-01

    Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84% +) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.

  17. Microbial Diversity in Soil Treatment Systems for Wastewater

    Science.gov (United States)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  18. Integration of treatment wetlands as sustainable wastewater management systems for small communities

    Energy Technology Data Exchange (ETDEWEB)

    Dahab, M.F.; Surampalli, R.Y. [Univ. of Nebraski-Lincoln, Dept. of Civil Engineering, Lincoln, NE (United States)

    2002-06-15

    This paper discuses the applicability as well as the integration of the constructed wetlands technology within the environmental infrastructure in small communities. To that end, a case study involving the use of Constructed wetlands (CW) for waste management in the Nebraska plains is presented. CW systems have been shown to be effective treatment alternatives in resource-limited small communities; and hence, can contribute to improving the economic well-being and the sustainability of many small communities. The paper specifically discusses the performance of subsurface-flow constructed wetlands systems used as the wastewater treatment process for a small community in eastern Nebraska and outlines operational experience gained through five years of plant operation. The results show that effective and sufficient CW seasonal removals of TSS, VSS, CBOD{sub 5}, COD, and fecal coliform were achieved. Wastewater temperatures seemed to affect CBOD{sub 5} and COD removal rates. Nitrogen and phosphorus reductions were not as effective and varied seasonally, as well as with wastewater temperature. The addition of a sand filter, to aid in further nitrification and disinfection following CW treatment, markedly improved the performance of the wetlands system. After a few years of operation, the performance of the system was dampened by apparent clogging and subsequent eruption of wastewater at the head-end of the treatment cells. While clogging was partially caused by biomass build-up in the wetlands substrate, visual observations suggest that excessive vegetation and relaxed maintenance may also be responsible. (author)

  19. Integration of treatment wetlands as sustainable wastewater management systems for small communities

    International Nuclear Information System (INIS)

    Dahab, M.F.; Surampalli, R.Y.

    2002-01-01

    This paper discuses the applicability as well as the integration of the constructed wetlands technology within the environmental infrastructure in small communities. To that end, a case study involving the use of Constructed wetlands (CW) for waste management in the Nebraska plains is presented. CW systems have been shown to be effective treatment alternatives in resource-limited small communities; and hence, can contribute to improving the economic well-being and the sustainability of many small communities. The paper specifically discusses the performance of subsurface-flow constructed wetlands systems used as the wastewater treatment process for a small community in eastern Nebraska and outlines operational experience gained through five years of plant operation. The results show that effective and sufficient CW seasonal removals of TSS, VSS, CBOD 5 , COD, and fecal coliform were achieved. Wastewater temperatures seemed to affect CBOD 5 and COD removal rates. Nitrogen and phosphorus reductions were not as effective and varied seasonally, as well as with wastewater temperature. The addition of a sand filter, to aid in further nitrification and disinfection following CW treatment, markedly improved the performance of the wetlands system. After a few years of operation, the performance of the system was dampened by apparent clogging and subsequent eruption of wastewater at the head-end of the treatment cells. While clogging was partially caused by biomass build-up in the wetlands substrate, visual observations suggest that excessive vegetation and relaxed maintenance may also be responsible. (author)

  20. The development of an on-site wastewater treatment system with monitoring capabilities

    International Nuclear Information System (INIS)

    Kubota, Hiroshi; Shigeizumi, Koga; Noguchi, Shuntaro; Kita, Shingo; Egawa, Moritoshi; Takeshima, Toshikatsu

    2015-01-01

    A compact Wastewater Treatment Unit that can monitor its own decontamination efficiency by using an underwater dosimeter and turbidity meter was developed. This equipment is so compact as to be able to be loaded up a 1t-class truck and is efficient enough to decrease radioactivity level of wastewater to under 10 Bq/L. There are high levels of correlation between radioactivity and turbidity and underwater radiation dose (URD). Turbidity has the advantage of measuring low radiation density, whilst URD can measure radioactive contamination independently of other factors affecting water quality. However experiments showed that the relationship between turbidity and radioactivity density was changed according to radioactivity of the suspensoid, and that air dose rate had an impact on determination limit of URD index. As this Wastewater Treatment Unit has a dual-meter system, it is possible to calibrate the turbidity index with the measured URD. This dual-meter system would be able to monitor low radioactivity levels in a range of wastewaters. (author)

  1. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  2. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    Science.gov (United States)

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  3. Control of Sewer systems and Wastewater treatment plants using pollutant concentration profiles

    DEFF Research Database (Denmark)

    Bechmann, Henrik; Nielsen, Marinus K.; Madsen, Henrik

    1998-01-01

    On-line measurements of pollutants in the wastewater combined with grey-box modelling are used to estimate the amount of deposits in the sewer system. The pollutant mass flow at the wastewater treatment plant is found to consist of a diurnal profile minus the deposited amount of pollutants...

  4. Green Systems for Wastewater Treatment

    Science.gov (United States)

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  5. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    Science.gov (United States)

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  6. Bacterial communities in full-scale wastewater treatment systems

    OpenAIRE

    Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2016-01-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in...

  7. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  8. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  9. Wastewater Treatment

    Science.gov (United States)

    ... day before releasing it back to the environment. Treatment plants reduce pollutants in wastewater to a level nature can handle. Wastewater is used water. It includes substances such as human waste, food ...

  10. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    Science.gov (United States)

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  11. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    Science.gov (United States)

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  12. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  13. Treatment of trace organic compounds in common onsite wastewater systems

    Science.gov (United States)

    Robert Siegrist,; Conn, Kathleen E.

    2015-01-01

    Onsite wastewater systems (OWS) have historically been relied on to treat conventional pollutants and pathogens in a fashion similar to that expected from centralized wastewater systems. However, based on the occurrence of, and potential effects from, contaminants of emerging concern in wastewaters, OWS as well as centralized systems need to account for these compounds in system design and use. One group of contaminants involves organic compounds such as those associated with consumer product chemicals and pharmaceuticals, which are collectively referred to as trace organic compounds (TOrCs) due to their very low levels (e.g., ng/L to ug/L) relative to other pollutants. The question being confronted today is how best to account for TOrCs in onsite system design and use while also achieving other goals such as system simplicity, limited operation and maintenance requirements, low cost, and sustainability. In contrast to conventional pollutants such as nutrients and pathogens which have specific and achievable treatment goals, there are currently no enforceable treatment standards for TOrCs, which often have non-traditional toxicological endpoints (i.e. endocrine disruption). As highlighted in this paper, there are a large number of TOrCs that can be present in OWS and they have different properties, can be present at different frequencies of occurrence and concentrations, and have different susceptibilities to treatment in OWS. In general, based on the studies summarized in this paper, TOrCs normally should not require additional considerations beyond those for conventional pollutants and pathogens (e.g., nitrogen or bacteria and virus) during design and use of OWS. That said, there are situations where TOrCs could be a serious concern warranting special consideration in system design and use. In this paper, the frequency of occurrence of TOrCs and the range of concentrations encountered are highlighted. An evolving approach is outlined that could help assess the

  14. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  15. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  16. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  17. Winery wastewater treatment using the land filter technique.

    Science.gov (United States)

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  18. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. USBF-system of biological wastewater treatment; Elsistema USBF en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Ampudia Gutierrez, J.

    2003-07-01

    An advanced system of biological wastewater treatment, has been developed by the company Depuralia. This system brings up a technological innovation, which has been awarded with several international awards. The wastewater treatment, occurs in an activated sludge reactor of extended aeration with a very low mass loading, with a nitrification-denitrification process, and water separation-clarification by upflow sludge blanket-filtration. The arrangement of a compact biological reactor enables complex wastewater treatment. High efficiency of the separation through sludge filtration provides functionality of the equipment with high concentration of activated sludge, with less implementation surface and volume. The elements of the biological reactor are described, the advantages are enumerated, and the results obtained in several accomplishments are shown; in the industrial as well as in the urban water treatment plants. (Author) 9 refs.

  20. Performance of slow rate systems for treatment of domestic wastewater.

    Science.gov (United States)

    Tzanakakis, V E; Paranychianakis, N V; Angelakis, A N

    2007-01-01

    The performance of slow rate (SR) systems in terms of treatment efficiency, environmental and health risks, and land sustainability was investigated over a three-year period in a rural community close to Iraklio, Greece. Four plant species (Acacia cyanophylla, Eucalyptus camandulensis, Populus nigra and Arundo donax) were used in order to investigate the role of vegetation in the treatment of wastewater and in biomass production. Wastewater effluent was pre-treated in a septic tank before its application to land. Applied hydraulic loading rates were based on crop water requirements which were determined separately for each plant species. The evaluation of treatment performance was accomplished by measuring COD, TKN, NH3-N, NO3-N, total and reactive P, TC and FC in soil solution samples taken at different depths (15, 30 and 60 cm). SR systems showed great potential for COD, TKN and NH4-N removal which reached 89, 90 and 94%, respectively at a depth of 15 cm. An outstanding removal was also observed for TC and FC which reached 99.99%. The concentration of both P and NO3-N in soil solution increased with the passage of time, but it was lower in winter. Despite the differences in the application rates among the SR systems planted with different plant species, the treatment efficiency was not affected. Moreover, increasing the soil depth from 15 to 60 cm had no effect on the treatment efficiency of the SR systems.

  1. Decision support systems in water and wastewater treatment process selection and design: a review.

    Science.gov (United States)

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  2. Basic Principles of Wastewater Treatment

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Basic Principles of Wastewater Treatment is the second volume in the series Biological Wastewater Treatment, and focusses on the unit operations and processes associated with biological wastewater treatment. The major topics covered are: microbiology and ecology of wastewater treatment reaction kinetics and reactor hydraulics conversion of organic and inorganic matter sedimentation aeration The theory presented in this volume forms the basis upon which the other books...

  3. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... or water saving toilets. This opens up for co-treatment of organic waste fractions. Freezing and thawing has also been recognised as being a cost-effective wastewater treatment method in cold regions. Thus it was chosen to concentrate on the effect of the mentioned processes, namely freezing, anaerobic...... spreading of nutrients, diseases and potential pollution issues. Due to the above mentioned challenges alternative treatment methods are needed, especially in small and remotely located communities. Decentralized solutions are well suited for Greenland. Ideal solutions should reduce the need for expensive...

  4. Technical and Economic Comparison of Conventional Wastewater Treatment Systems in the Sugar Industries in Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadi

    2005-03-01

    Full Text Available Iran’s location in an arid and water scarce area characterized by qualititative and quantitative degradation in its water resources makes strict planning imperative for reduced water consumption and wastewater treatment and reuse, especially in the industry sector. The technical and economic evaluation of various industrial treatment processes is a key factor in the success of such schemes in the face of the effects of climate variety, high wastewater treatment costs, and environmental factors on selecting a most suitable alternative for industrial wastewater treatment. The situation is even more critical in the case of the sugar industry as the largest pollutant source and especially because more than 90% of its facilities are located on plains with a negative water balance. Reviewing wastewater problems associated with the Iranian sugar facilities, this paper will attempt to perform an economic assessment and a comparison of conventional anaerobic-aerobic processes under various conditions in order to identify the best aleternative and to determine the most important environmental and cost factors affecting the selection of a desirable alternative. For this purpose, six combined treatment systems are selected and their construction and operation costs and detailed uniform annual cost sensitivity analysis based on the most important parameters are presented. Finally, two different combined wastewater treatment systems of UASB + facultative lagoons and UASB + trickling filters will be introduced as the best treatment processes for Iranian conditions.

  5. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    Science.gov (United States)

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  7. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  8. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    Science.gov (United States)

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.

  9. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  10. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  11. Biological treatment of winery wastewater: an overview.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  12. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  13. Wastewater treatment by nanofiltration membranes

    Science.gov (United States)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  14. Safety in wastewater treatment: the pure oxygen system

    International Nuclear Information System (INIS)

    Giagnoni, L.

    1998-01-01

    Though the active sludge process represent, nowadays, the main reference system referring to installations for wastewater treatments, nevertheless systems that exploit the pure oxygen properties constitute an alternative method to the traditional cycle. The following essay is divided into two parts: the first one deals with the fundamental concepts related to the active sludge process and to the alternative system proposed, mentioned before, and includes a short account of the functional characteristics and a brief comparison with traditional methods; the second part represents the head corpus of the work and deals with the problems related to the safety with particular reference to the risk of an explosion meanwhile the process. Moreover, it's drawn attention to the fundamental role of security systems that, nowadays, get frequently used in such kind of installations. On this subject, furthermore, it's pointed out the great importance of the whole preliminary treatments in the planning phase, with particular reference to the processes used for stripping [it

  15. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  16. A Review of On-Site Wastewater Treatment Systems in Western Australia from 1997 to 2011

    Science.gov (United States)

    Gunady, Maria; Shishkina, Natalia; Tan, Henry; Rodriguez, Clemencia

    2015-01-01

    On-site wastewater treatment systems (OWTS) are widely used in Western Australia (WA) to treat and dispose of household wastewater in areas where centralized sewerage systems are unavailable. Septic tanks, aerobic treatment units (ATUs), and composting toilets with greywater systems are among the most well established and commonly used OWTS. However, there are concerns that some OWTS installed in WA are either performing below expected standards or failing. Poorly performing OWTS are often attributed to inadequate installation, inadequate maintenance, poor public awareness, insufficient local authority resources, ongoing wastewater management issues, or inadequate adoption of standards, procedures, and guidelines. This paper is to review the installations and failures of OWTS in WA. Recommendations to the Department of Health Western Australia (DOHWA) and Local Government (LG) in regard to management strategies and institutional arrangements of OWTS are also highlighted. PMID:25960745

  17. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  18. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  19. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min

    2013-10-15

    It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the

  20. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  1. Decision making tools for selecting sustainable wastewater treatment technologies in Thailand

    Science.gov (United States)

    Wongburi, Praewa; Park, Jae K.

    2018-05-01

    Wastewater consists of valuable resources that could be recovered or reused. Still it is under threat because of ineffective wastewater management and systems. In Thailand, less than 25% of wastewater generated may be treated while then rest is inadequately treated and sent back directly into waterbodies or the environment. Furthermore, the technologies that have been applied may be inefficient and unsustainable. Efficiency, sustainability, and simplicity are important concepts when designing an appropriate wastewater treatment system in developing countries. The objectives of this study were to review and evaluate wastewater treatment technologies and propose a method to improve or select an appropriate technology. An expert system in Excel® program was developed to determine the best solution. Sensitivity analysis was applied to compare and assess uncertainty factors. Due to the different conditions of each area, the key factor of interest was varied. Furthermore, Robust Decision Making tool was applied to determine the best way to improve existing wastewater treatment facility and to choose the most appropriate wastewater treatment technology.

  2. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  3. Effect of using dissolved air flotation system on industrial wastewater treatment in pilot scale

    International Nuclear Information System (INIS)

    Yahya, Habibzadeh

    2010-01-01

    In the present paper the application of Dissolved Air Flotation (DAF) system for wastewater treatment, especially for industrial wastewater on a designed pilot system has been investigated. It is for the first time in dissolved air flotation system that instead of air dissolving tube, hydro cyclone technology is used to dissolve air in water with ratio of 1:1 (almost 100 percent) in the form of small air bubbles and a circular flotation tank instead of rectangular tank. The advantage of usage of circular tank in DAF system is the capability of being treated in higher rate of mass, so less space is needed. Although application of hydro cyclone with different diameters of holes for producing mixing energy which also has the capability of direct injection of chemical coagulant and polymeric materials leads to the higher efficiency of treatment and so reduces the cost of pump and consumed air. Investigations on the efficiency of this system was done by providing and analyzing samples of wastewater with and without adding of PAC (Poly-Aluminium-Chloride). Sampling and analyzing was done according to standard methods. The results of the analyses show that pilot system has high efficiency, especially for oil removal

  4. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  5. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  6. A novel PSB-EDI system for high ammonia wastewater treatment, biomass production and nitrogen resource recovery: PSB system.

    Science.gov (United States)

    Wang, Hangyao; Zhou, Qin; Zhang, Guangming; Yan, Guokai; Lu, Haifeng; Sun, Liyan

    A novel process coupling photosynthetic bacteria (PSB) with electrodeionization (EDI) treatment was proposed to treat high ammonia wastewater and recover bio-resources and nitrogen. The first stage (PSB treatment) was used to degrade organic pollutants and accumulate biomass, while the second stage (EDI) was for nitrogen removal and recovery. The first stage was the focus in this study. The results showed that using PSB to transform organic pollutants in wastewater into biomass was practical. PSB could acclimatize to wastewater with a chemical oxygen demand (COD) of 2,300 mg/L and an ammonia nitrogen (NH4(+)-N) concentration of 288-4,600 mg/L. The suitable pH was 6.0-9.0, the average COD removal reached 80%, and the biomass increased by an average of 9.16 times. The wastewater COD removal was independent of the NH4(+)-N concentration. Moreover, the PSB functioned effectively when the inoculum size was only 10 mg/L. The PSB-treated wastewater was then further handled in an EDI system. More than 90% of the NH4(+)-N was removed from the wastewater and condensed in the concentrate, which could be used to produce nitrogen fertilizer. In the whole system, the average NH4(+)-N removal was 94%, and the average NH4(+)-N condensing ratio was 10.0.

  7. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  8. Evaluation of constructed wetland treatment performance for winery wastewater.

    Science.gov (United States)

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  9. A proposed strategy for upgrade of the ORNL Process Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Kent, T.E.; Robinson, S.M.; Scott, C.B.

    1990-01-01

    An approach to the upgrade of the radiological Process Wastewater Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL) has been developed that, if adopted, will result in significant cost reductions and improved water quality. The strategy described in this report satisfies the short-term upgrade needs of the PWTP and ultimately results in replacement of existing PWTP softening/ion- exchange technology with a zeolite molecular sieve treatment system for removal of radioactive contaminants from process wastewater. Use of zeolites will improve wastewater quality while reducing operating and disposal costs. The zeolite system would be constructed adjacent to the site now occupied by the Non-Radiological Process Wastewater Treatment Plant (NRWTP), thereby consolidating all process wastewater treatment systems at one location. 4 refs., 4 figs

  10. A proposed strategy for upgrade of the ORNL process wastewater treatment plant

    International Nuclear Information System (INIS)

    Kent, T.E.; Robinson, S.M.; Scott, C.B.

    1990-01-01

    This paper reports on an approach to the upgrade of the radiological Process Wastewater Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL), which has been developed and that, if adopted, will result in significant cost reductions and improved water quality. The strategy described in this report satisfies the short-term upgrade needs of the PWTP and ultimately results in replacement of existing PWTP softening/ion-exchange technology with a zeolite molecular sieve treatment system for removal of radioactive contaminants from process wastewater. Use of zeolites will improve wastewater quality while reducing operating and disposal costs. The zeolite system would be constructed adjacent to the site now occupied by the Non-Radiological Process Wastewater Treatment Plant (NRWTP), thereby consolidating all process wastewater treatment systems at one location

  11. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  12. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  13. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  14. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  15. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  16. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...

  17. Potential of ORC Systems to Retrofit CHP Plants in Wastewater Treatment Stations

    Directory of Open Access Journals (Sweden)

    Ricardo Chacartegui

    2013-12-01

    Full Text Available Wastewater treatment stations take advantage of the biogas produced from sludge in anaerobic digesters to generate electricity (reciprocating gas engines and heat (cooling water and engine exhaust gases. A fraction of this electricity is used to operate the plant while the remaining is sold to the grid. Heat is almost entirely used to support the endothermic anaerobic digestion and a minimum fraction of it is rejected to the environment at a set of fan coolers. This generic description is applicable to on-design conditions. Nevertheless, the operating conditions of the plant present a large seasonal variation so it is commonly found that the fraction of heat rejected to the atmosphere increases significantly at certain times of the year. Moreover, the heat available in the exhaust gases of the reciprocating engine is at a very high temperature (around 650 oC, which is far from the temperature at which heat is needed for the digestion of sludge (around 40 oC in the digesters. This temperature difference offers an opportunity to introduce an intermediate system between the engines and the digesters that makes use of a fraction of the available heat to convert it into electricity. An Organic Rankine Cycle (ORC with an appropriate working fluid is an adequate candidate for these hot/cold temperature sources. In this paper, the techno-economic effect of adding an Organic Rankine Cycle as the intermediate system of an existing wastewater treatment station is analysed. On this purpose, different working fluids and system layouts have been studied for a reference wastewater treatment station giving rise to optimal systems configurations. The proposed systems yield very promising results with regard to global efficiency and electricity production (thermodynamically and economically.

  18. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  19. Decentralized approaches to wastewater treatment and management: applicability in developing countries.

    Science.gov (United States)

    Massoud, May A; Tarhini, Akram; Nasr, Joumana A

    2009-01-01

    Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.

  20. Carbon footprint of four different wastewater treatment scenarios

    Science.gov (United States)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  1. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  2. The application of bacteriophages as novel indicators of viral pathogens in wastewater treatment systems.

    Science.gov (United States)

    Dias, Edgard; Ebdon, James; Taylor, Huw

    2018-02-01

    Many wastewater treatment technologies have been shown to remove bacterial pathogens more effectively than viral pathogens and, in aquatic environments, levels of traditional faecal indicator bacteria (FIB) do not appear to correlate consistently with levels of human viral pathogens. There is, therefore, a need for novel viral indicators of faecal pollution and surrogates of viral pathogens, especially given the increasing importance of indirect and direct wastewater reuse. Potential candidates include bacteriophages (phages) and the study described here sought to elucidate the relationship between three groups of phages (somatic coliphages (SOMPH), F-RNA coliphages (F-RNAPH) and human-specific phages infecting B. fragilis (Bf124PH) - enumeration using double layer agar technique) and viral pathogens (human adenovirus (HuAdV) and norovirus (NoV) - enumeration using molecular methods) through full-scale municipal wastewater treatment processes. FIB (faecal coliforms (FC) and intestinal enterococci (ENT) - enumeration using membrane filtration) were also monitored. Samples were collected every fortnight, during a twelve-month period, at each stage of four full-scale wastewater treatment plants (WWTP) in southern England (two activated sludge (AS) and two trickling filter (TF) plants) (n = 360 samples). FIB and SOMPH were consistently found in all samples tested, whereas F-RNAPH, Bf124PH and HuAdV were less frequently detected, especially following AS treatment. The detection rate of NoV was low and consequently discussion of this group of viruses is limited. Concentrations of SOMPH and FIB were statistically higher (p value F-RNAPH, Bf124PH and HuAdV in raw wastewater. FIB were more effectively removed than phages in both systems. Removal rates of HuAdV were similar to those of phages at the secondary treatment stage of both systems. In TF systems, HuAdV were removed at the same rate as F-RNAPH, but at lower rates than SOMPH and Bf124PH. The findings suggest that

  3. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  4. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  5. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system.

    Science.gov (United States)

    Li, Xiaohu; Jin, Xiangdan; Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-08-01

    Aniline-containing wastewater can cause significant environmental problems and threaten the humans's life. However, rapid degradation of aniline with cost-efficient methods remains a challenge. In this work, a novel microbial electrolysis cell with bipolar membrane was integrated with Fenton reaction (MEC-Fenton) for efficient treatment of real wastewater containing a high concentration (4460 ± 52 mg L -1 ) of aniline. In this system, H 2 O 2 was in situ electro-synthesized from O 2 reduction on the graphite cathode and was simultaneously used as source of OH for the oxidation of aniline wastewater under an acidic condition maintained by the bipolar membrane. The aniline was effectively degraded following first-order kinetics at a rate constant of 0.0166 h -1 under an applied voltage of 0.5 V. Meanwhile, a total organic carbon (TOC) removal efficiency of 93.1 ± 1.2% was obtained, revealing efficient mineralization of aniline. The applicability of bipolar membrane MEC-Fenton system was successfully demonstrated with actual aniline wastewater. Moreover, energy balance showed that the system could be a promising technology for removal of biorefractory organic pollutants from wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Using a life cycle assessment methodology for the analysis of two treatment systems of food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Schmidt, Jens Ejbye; Baun, Anders

    2007-01-01

    criteria involve sludge disposal strategies and electrical energy consumption. However, there is a need to develop a systematic methodology to quantify relevant environmental indicators; comprising information of the wastewater treatment system in a life cycle perspective. Also, to identify which...... are the parameters that have the greatest influence on the potential environmental impacts of the systems analyzed. In this study, we present a systematic methodology for the analysis of the operation of two modern wastewater treatment technologies: Biological removal of nitrogen and organic matter by activated...... sludge (Scenario 1), and anaerobic removal of organic matter by a continuous stirred tank reactor (Scenario 2). Both technologies were applied to wastewater coming from a fish meals industry and a pet food industry discharging about 250 to 260 thousand cubic meters of wastewater per year. The methodology...

  7. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  8. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  9. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  10. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  11. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  12. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  13. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed. IWA Publishing 2008.

  14. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  15. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  16. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Han Bumsoo; Kim Jinkyu; Kim Yuri

    2006-01-01

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m 3 /d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, . OH and HO 2 . radicals and hydrogen peroxide H 2 O 2 and H 2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10 -3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to

  17. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... that plants with return sludge Side-Stream Hydrolysis (SSH) instead of the normal anaerobic process tank tended to have significantly fewer unwanted GAOs in contrast to many plants with traditional mainstream anaerobic tank and thus it was proposed that this system might be an effective strategy of control...

  18. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system

    Science.gov (United States)

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contam...

  19. Following a drop of water from the cloud, throughout the sewer system, into the receiving water - Model predictive control of integrated sewer-wastewater treatment systems

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Vezzaro, Luca; Sharma, Anitha Kumari

    This article presents selected examples of model-based prediction and control of integrated sewer-wastewater treatment systems, developed within the framework of the Storm- and Wastewater Informatics project (SWI). By exploiting all the available on-line information (e.g. radar based rainfall...... of pollutants discharged from treatment plants, etc.). The tools developed in the SWI project include (but are not limited to (i) rainfall nowcasting based on radar measurements, (ii) probabilistic flow forecasting based on data assimilation and stochastic models, (iii) prediction and optimization of wet......-weather performance of wastewater treatment plants, and (iv) integrated control of the different elements of the integrated wastewater systems. Full-scale testing of these tools in different catchment located in Denmark ensure that the developed tools can represent an important step forwards for on-line operation...

  20. Evaluation of operating characteristics for a chabazite zeolite system for treatment of process wastewater at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kent, T.E.; Perona, J.J.; Jennings, H.L.; Lucero, A.J.; Taylor, P.A.

    1998-02-01

    Laboratory and pilot-scale testing were performed for development and design of a chabazite zeolite ion-exchange system to replace existing treatment systems at the Process Waste Treatment Plant (PWTP) at Oak Ridge National Laboratory (ORNL). The process wastewater treatment systems at ORNL need upgrading to improve efficiency, reduce waste generation, and remove greater quantities of contaminants from the wastewater. Previous study indicated that replacement of the existing PWTP systems with an ion-exchange system using chabazite zeolite will satisfy these upgrade objectives. Pilot-scale testing of the zeolite system was performed using a commercially available ion-exchange system to evaluate physical operating characteristics and to validate smaller-scale column test results. Results of this test program indicate that (1) spent zeolite can be sluiced easily and completely from a commercially designed vessel, (2) clarification followed by granular anthracite prefilters is adequate pretreatment for the zeolite system, and (3) the length of the mass transfer zone was comparable with that obtained in smaller-scale column tests. Laboratory studies were performed to determine the loading capacity of the zeolite for selected heavy metals. These test results indicated fairly effective removal of silver, cadmium, copper, mercury, nickel, lead, and zinc from simple water solutions. Heavy-metals data collected during pilot-scale testing of actual wastewater indicated marginal removal of iron, copper, and zinc. Reduced effectiveness for other heavy metals during pilot testing can be attributed to the presence of interfering cations and the relatively short zeolite/wastewater contact time. Flocculating agents (polyelectrolytes) were tested for pretreatment of wastewater prior to the zeolite flow-through column system. Several commercially available polyelectrolytes were effective in flocculation and settling of suspended solids in process wastewater

  1. ETV REPORT: EVALUATION OF HYDROMETRICS, INC., HIGH EFFICIENCY REVERSE OSMOSIS (HERO™) INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    Science.gov (United States)

    Hydrometrics, founded in 1979 and located in Helena, MT, manufactures a commercial-ready High Efficiency Reverse Osmosis (HERO™) industrial wastewater treatment system. The system uses a three-stage reverse osmosis process to remove and concentrate metals for recovery while prod...

  2. When Bioelectrochemical Systems Meet Forward Osmosis: Accomplishing Wastewater Treatment and Reuse through Synergy

    Directory of Open Access Journals (Sweden)

    Yaobin Lu

    2014-12-01

    Full Text Available Bioelectrochemical systems (BES and forward osmosis (FO are two emerging technologies with great potential for energy-efficient water/wastewater treatment. BES takes advantage of microbial interaction with a solid electron acceptor/donor to accomplish bioenergy recovery from organic compounds, and FO can extract high-quality water driven by an osmotic pressure. The strong synergy between those two technologies may complement each other and collaboratively address water-energy nexus. FO can assist BES with achieving water recovery (for future reuse, enhancing electricity generation, and supplying energy for accomplishing the cathode reactions; while BES may help FO with degrading organic contaminants, providing sustainable draw solute, and stabilizing water flux. This work has reviewed the recent development that focuses on the synergy between BES and FO, analyzed the advantages of each combination, and provided perspectives for future research. The findings encourage further investigation and development for efficient coordination between BES and FO towards an integrated system for wastewater treatment and reuse.

  3. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  4. Constructed wetlands for wastewater treatment: five decades of experience.

    Science.gov (United States)

    Vymazal, Jan

    2011-01-01

    The first experiments on the use of wetland plants to treat wastewaters were carried out in the early 1950s by Dr. Käthe Seidel in Germany and the first full-scale systems were put into operation during the late 1960s. Since then, the subsurface systems have been commonly used in Europe while free water surface systems have been more popular in North America and Australia. During the 1970s and 1980s, the information on constructed wetland technology spread slowly. But since the 1990 s the technology has become international, facilitated by exchange among scientists and researchers around the world. Because of the need for more effective removal of ammonia and total nitrogen, during the 1990 s and 2000s vertical and horizontal flow constructed wetlands were combined to complement each other to achieve higher treatment efficiency. Today, constructed wetlands are recognized as a reliable wastewater treatment technology and they represent a suitable solution for the treatment of many types of wastewater.

  5. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  6. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  7. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  8. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  9. Sea level rise impacts on wastewater treatment systems along the U.S. coasts

    Science.gov (United States)

    Hummel, M.; Berry, M.; Stacey, M. T.

    2017-12-01

    As sea levels rise, coastal communities will experience more frequent and persistent nuisance flooding, and some low-lying areas may be permanently inundated. Critical components of lifeline infrastructure networks in these areas are also at risk of flooding, which could cause significant service disruptions that extend beyond the flooded zone. Thus, identifying critical infrastructure components that are vulnerable to sea level rise is an important first step in developing targeted investment in protective actions and enhancing the overall resilience of coastal communities. Wastewater treatment plants are typically located at low elevations near the coastline to minimize the cost of collecting consumed water and discharging treated effluent, which makes them particularly susceptible to coastal flooding. For this analysis, we used geographic information systems to assess the vulnerability of wastewater infrastructure to various sea level rise projections at the national level. We then estimated the number of people who would lose wastewater services, which could be more than three times as high as previous predictions of the number of people at risk of direct flooding due to sea level rise. We also considered several case studies of wastewater infrastructure in mid-sized cities to determine how topography and system configuration (centralized versus distributed) impact vulnerability. Overall, this analysis highlights the widespread vulnerability of wastewater infrastructure in the U.S. and demonstrates that local disruptions to infrastructure networks may have far-ranging impacts on areas that do not experience direct flooding.

  10. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Masłoń Adam

    2017-01-01

    Full Text Available Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTPs, energy consumption is often correlated with the magnitude and type of pollutant load, which can influence the treatment methods and technologies used in the WWTP. In many cases wastewater treatment plants are operated without optimized measures for process optimization. A detailed study of the energy consumption should be executed in order to determine the optimization potential. This paper presents the energy consumption in municipal wastewater treatment plant in Rzeszów (Poland. In the year 2016, parameters of raw and treated wastewater were tested. The data related to energy consumption in plants allowed us to determine the energy intensity coefficients. Total consumption was measured. Indicators of energy consumption per cubic meter and removed load were calculated.

  11. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  12. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    OpenAIRE

    Masłoń Adam

    2017-01-01

    Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTP...

  13. Application of reverse osmosis in radioactive wastewater treatment

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2012-01-01

    Considering the disadvantages of the conventional evaporation and ion exchange process for radioactive wastewater treatment, the reverse osmosis is used to treat the low level radioactive wastewater. The paper summarizes the research and application progress of the reverse osmosis in the radioactive wastewater treatment and indicates that the reverse osmosis in the radioactive wastewater treatment is very important. (authors)

  14. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  15. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  16. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  17. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment

    International Nuclear Information System (INIS)

    Munoz, Ivan; Rodriguez, Antonio; Rosal, Roberto; Fernandez-Alba, Amadeo R.

    2009-01-01

    Life Cycle Assessment has been used to compare different scenarios involving wastewater reuse, with special focus on toxicity-related impact categories. The study is based on bench-scale experiments applying ozone and ozone in combination with hydrogen peroxide to a wastewater effluent from a Spanish sewage treatment plant. Two alternative characterisation models have been used to account for toxicity of chemical substances, namely USES-LCA and EDIP97. Four alternative scenarios have been assessed: wastewater discharge plus desalination supply, wastewater reuse without tertiary treatment, wastewater reuse after applying a tertiary treatment consisting on ozonation, and wastewater reuse after applying ozonation in combination with hydrogen peroxide. The results highlight the importance of including wastewater pollutants in LCA of wastewater systems assessing toxicity, since the contribution of wastewater pollutants to the overall toxicity scores in this case study can be above 90%. Key pollutants here are not only heavy metals and other priority pollutants, but also non-regulated pollutants such as pharmaceuticals and personal care products. Wastewater reuse after applying any of the tertiary treatments considered appears as the best choice from an ecotoxicity perspective. As for human toxicity, differences between scenarios are smaller, and taking into account the experimental and modelling uncertainty, the benefits of tertiary treatment are not so clear. From a global warming potential perspective, tertiary treatments involve a potential 85% reduction of greenhouse gas emissions when compared with desalination

  18. Wastewater sludge treatment at selected wastewater treatment plants of the region Banska Bystrica

    International Nuclear Information System (INIS)

    Samesova, D.; Mitterpach, J.; Martinkova, A.

    2014-01-01

    The management of sewage sludges in water treatment plants of Banska Bystrica region. The paper deals with the problems of sewage sludge in wastewater treatment plants, its origin and possibilities how to use it in accordance with the current legislation of the Slovak Republic. We described radioactive pollution of sewage sludges. The paper consists of review of sludge production and its usage in the Slovak Republic and in selected states of the European Union. The paper deals with the sludge treatment in selected wastewater treatment plants in Banska Bystrica region in the context of biogas production and its usage by the help of the electricity and heat production. (authors)

  19. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    Science.gov (United States)

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  1. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    Science.gov (United States)

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  2. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Feng, Chuanping; Chen, Nan; Tong, Shuang; Zhang, Baogang; Hao, Chunbo; Chen, Kun

    2014-05-01

    To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  4. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  5. Wastewater treatment technologies to satisfy 1990's energy conservation/pollution prevention goals

    International Nuclear Information System (INIS)

    Keith, L.W.; Beers, A.R.

    1993-01-01

    Anheuser-Busch, like most other companies, relied through the mid-1970's on end-of-pipe, energy-intensive aerobic treatment systems for its wastewater. Little if any attention was placed on source reduction. There are several factors that help explain why industry had adopted this approach. Energy was relatively cheap, sludge disposal was not a major problem and many municipalities provided wastewater treatment capacity to industry as an inducement for industry to locate there. The saying for A-B was open-quotes We know how to make beer - municipalities know how to treat our wastewater - let's not mix the two.close quotes The 1973 oil embargo and the resulting mid-1970's energy crisis changed Anheuser-Busch's wastewater treatment philosophy. The days of cheap energy and wastewater treatment were gone. This was only exaggerated by the more stringent treatment requirements resulting from the passage of PL92-500 (Clean Water Act). Increasing sludge disposal problems with associated increased disposal costs also occurred. From the mid-1970's to the mid-1980's Anheuser-Busch performed significant developmental work on land application of wastewater. This technology, which requires only about 10% of the energy of aerobic activated sludge treatment systems and produces no sludge for disposal, was installed at six Anheuser-Busch locations. During this time period considerable improvement was made in the area of waste load reduction. However, the main driving force was economics; that is, it was done if cheaper than wastewater treatment. Anheuser-Busch still had a basic end-of-pipe treatment philosophy

  6. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China.

    Science.gov (United States)

    Chen, Hong; Zhang, Mingmei

    2013-08-06

    This study aimed at quantifying the concentration and removal of antibiotic resistance genes (ARGs) in three municipal wastewater treatment plants (WWTPs) employing different advanced treatment systems [biological aerated filter, constructed wetland, and ultraviolet (UV) disinfection]. The concentrations of tetM, tetO, tetQ, tetW, sulI, sulII, intI1, and 16S rDNA genes were examined in wastewater and biosolid samples. In municipal WWTPs, ARG reductions of 1-3 orders of magnitude were observed, and no difference was found among the three municipal WWTPs with different treatment processes (p > 0.05). In advanced treatment systems, 1-3 orders of magnitude of reductions in ARGs were observed in constructed wetlands, 0.6-1.2 orders of magnitude of reductions in ARGs were observed in the biological aerated filter, but no apparent decrease by UV disinfection was observed. A significant difference was found between constructed wetlands and biological filter (p removal of ARGs and 16S rDNA genes (R(2) = 0.391-0.866; p removal values with WWTP (p > 0.05) but also have the advantage in ARG relative abundance removal, and it should be given priority to be an advanced treatment system for further ARG attenuation from WWTP.

  7. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  8. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  9. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert; Meg Iannacone

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity of outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed

  10. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  11. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact......The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...

  12. Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Watari, Takahiro; Thanh, Nguyen Thi; Tsuruoka, Natsumi; Tanikawa, Daisuke; Kuroda, Kyohei; Huong, Nguyen Lan; Tan, Nguyen Minh; Hai, Huynh Trung; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Yamaguchi, Takashi

    2015-11-21

    Natural rubber processing wastewater contains high concentrations of organic compounds, nitrogen, and other contaminants. In this study, a treatment system composed of a baffled reactor (BR), an upflow anaerobic sludge blanket (UASB) reactor, and a downflow hanging sponge (DHS) reactor was used to treat natural rubber processing wastewater in Vietnam. The BR showed good total suspended solids removal of 47.6%, as well as acidification of wastewater. The UASB reactor achieved a high chemical oxygen demand (COD) removal efficiency of 92.7% ± 2.3% and energy recovery in the form of methane with an organic loading rate of 12.2 ± 6.6 kg-COD·m -3 ·day -1 . The DHS reactor showed a high performance in residual organic matter removal from UASB effluent. In total, the system achieved high-level total COD removal of 98.6% ± 1.2% and total suspended solids removal of 98.0% ± 1.4%. Massive parallel 16S rRNA gene sequencing of the retained sludge in the UASB reactor showed the predominant microbial phyla to be Bacteroidetes, Firmicutes, Proteobacteria, WWE1, and Euryarchaeota. Uncultured bacteria belonging to the phylum Bacteroidetes and Phylum WWE1 were predominant in the UASB reactor. This microbial assemblage utilizes the organic compounds contained in natural rubber processing wastewater. In addition, the methane-producing archaea Methanosaeta sp. and Methanolinea sp. were detected.

  13. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  14. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    Science.gov (United States)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  15. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  16. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  17. System-wide Benchmark Simulation Model for integrated analysis of urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores-Alsina, X.; Gernaey, K. V.

    Interactions between different components (sewer, wastewater treatment plant (WWTP) and river) of an urban wastewater system (UWS) are widely recognized (Benedetti et al., 2013). This has resulted in an increasing interest in the modelling of the UWS. System-wide models take into account the inte...

  18. Treatment of Preserved Wastewater with UASB

    Directory of Open Access Journals (Sweden)

    Zhang Yongli

    2016-01-01

    Full Text Available The preserved wastewater was treated by the upflow anaerobic sludge blanket (UASB reactor, the effects of the anaerobic time on COD, turbidity, pH, conductivity, SS, absorbance, and decolorization rate of the preserved wastewater were investigated. The results showed that with the increase of the anaerobic time, the treatment effect of the UASB reactor on the preserved wastewater was improved. Under the optimum anaerobic time condition, the COD removal rate, turbidity removal rate, pH, conductivity, SS removal rate, absorbance, and decoloration rate of the wastewater were 49.6%, 38.5%, 5.68, 0.518×104, 24%, 0.598, and 32.4%, respectively. Therefore, the UASB reactor can be used as a pretreatment for the preserved wastewater, in order to reduce the difficulty of subsequent aerobic treatment.

  19. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  20. Operating household wastewater treatment plants in the light of binding quality standards for wastewater discharged to water bodies or to soil

    Directory of Open Access Journals (Sweden)

    Jawecki Bartosz

    2017-03-01

    Full Text Available The study presents the legal requirements concerning the quality of wastewater discharged to waterbodies and to soil after treatment in household wastewater treatment plants located in agglomerations or outside them. The procedure of stopping the operation of a household treatment plant that doesn’t meet the statutory wastewater treatment efficiency was presented. The decision ordering to stop the use of a household wastewater treatment plant has to be preceded by a decision ordering to take measures to limit its adverse impact on the environment. The clarification procedure has to determine the adverse impact on the environment in a doubtless manner and it has to be reflected in the documentation. The assessment of adverse impact should take into account the binding standards of use of the environment. Stopping the operation of a household wastewater treatment plant may result in issuing a decision ordering the user to connect to the sanitary sewage system.

  1. Treatment of variable and intermittently flowing wastewaters.

    Science.gov (United States)

    Kocasoy, Günay

    1993-11-01

    The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

  2. Heat recovery from wastewater systems; Waermerueckgewinnung aus Abwassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, O.

    2004-07-01

    Wastewater contains large amounts of heat energy which can be recovered by means of a heat pump and a heat exchanger installed in the sewer system. Practical problems, which may arise and have been investigated in this research project, are the reduction of the heat transfer efficiency due to heat exchanger fouling and the reduction of the nitrification capacity of downstream wastewater treatment plants due to lower wastewater temperatures. A mathematical model was developed by which the decrease of the wastewater temperature in the treatment plant influent can be determined as a function of the amount of heat energy gathered from the wastewater in the sewer system. By this model the variation in time and space of the wastewater temperature in a sewer pipe is calculated for given hydraulics, geometry and environmental conditions. By analysis of data from a large wastewater treatment plant and simulations with a calibrated model, the effect of lowered influent temperatures on nitrification safety, total nitrogen removal efficiency and ammonium effluent concentrations could be quantified. A procedure is suggested by which the reserve nitrification capacity of an existing treatment plant and the increase of the ammonium effluent concentration resulting from a permanent decrease of the wastewater influent temperature can be estimated. By experiments with a pilot scale heat exchanger in a small wastewater channel, the significance of parameters known to have an effect on fouling was investigated and measures to reduce fouling were tested. The measures tested included controlled variation of the wastewater flow velocity (flushing), coatings and finish of the heat exchanger surface and obstacles mounted on the surface. The best results were obtained by regular short term increases of the flow velocity. By this measure, the efficiency of the fouled heat exchanger, which on the average was 60% of the efficiency of the clean heat exchanger, could repeatedly be raised to an

  3. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  4. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  5. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....... permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO...

  6. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  7. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.

    2017-01-01

    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central

  8. Setting-up a cost recovery system for the largest wastewater treatment plant in South-East Asia.

    Science.gov (United States)

    Lønholdt, J; Elberg Jørgensen, P; O'Hearn, D

    2005-01-01

    A tariff system has been set up for the largest wastewater treatment plant in South-East Asia, the Samut Prakarn Wastewater Treatment Plant south of Bangkok, which is currently under completion. Fully functional the plant will have a design capacity for 500,000 m3 per day and will service a combined residential and industrial area with approximately 600,000 residents and 2,300 factories. The tariff system, which includes a tariff model, is based on water consumption and BOD load. As background for setting the tariffs a comprehensive monitoring system including an industrial permitting system has been developed. The paper presents the background and rationale for setting up the system as well as the objective, scope and content of the tariff system and the industrial permit system. Further, the feasibility of introducing cost recovery systems, which is widely accepted in developing economies on the conceptual level and to some extent implemented at the legal and regulatory level, but has yet to be implemented at large, is discussed.

  9. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Science.gov (United States)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  10. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    Ciardelli, G.; Brighetti, G.

    1999-01-01

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique [it

  11. Anaerobic fluidized bed treatment of a tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.J.; Li, C.T.; Shieh, W.K.

    1988-11-01

    The anaerobic fluidized bed system, in conjunction with neutralization and chemical coagulation/flocculation, was evaluated for treatment of a tannery wastewater produced from a chrome tanning operation. Neutralization with 1 N sulphuric acid was effective for removal of chromate, with complete removal achieved at pH=8.0. Chemical coagulation/flocculation with alum at a dosage of 200 mg/L was able to remove 97% of feed SS and 65% of feed grease. Evaluation of the performance of the anaerobic fluidized bed system indicated more than 75% of feed COD could be removed up to an F/M ratio of approximately 0.4 g COD/g TVS center dot day. The observed methane production rate was 0.221 of CH/sub 4/ produced per gram COD removed. The anaerobic fluidized bed system could provide an effective treatment of a pretreated tannery wastewater.

  12. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems

    DEFF Research Database (Denmark)

    Mcllroy, Simon; Starnawska, Anna; Starnawski, Piotr

    2015-01-01

    Denitrification is essential to the removal of nitrogen from wastewater during treatment, yet an understanding of the diversity of the active denitrifying bacteria responsible in full-scale wastewater treatment plants (WWTPs) is lacking. In this study, stable-isotope probing (SIP) was applied......-labelled complex substrate was used for SIP incubations, under nitrite-reducing conditions, in order to maximize the capture of the potentially metabolically diverse denitrifiers likely present. Members of the Rhodoferax, Dechloromonas, Sulfuritalea, Haliangium and Thermomonas were represented in the 16S rRNA gene...

  13. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  14. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1994-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  15. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  16. Assessing clogging development in infiltration-percolation systems for wastewater treatment by electrical resistivity and induced polarisation methods

    Science.gov (United States)

    Tapias, Josefina C.; Himi, Mahjoub; Lovera, Raúl; de la Rocha, Angelica; Foch, Montserrat; Salvadó, Humbert; Casas, Albert

    2013-04-01

    Infiltration-percolation is a low technology process used to treat primary and secondary effluents. It consists in the intermittent application of sewage on buried sand filters where the infiltrated water percolates through unsaturated porous medium. The advantages over conventional mechanical sanitation systems are: low energy requirements, operation and maintenance that may be conducted by unskilled staff, and low sludge production because their simplicity and low operation costs. Nevertheless, clogging is a major operational and maintenance issue associated with the use of infiltration-percolation systems for wastewater treatment, and can ultimately limit the lifetime of the system. The clogging development causes decrease of hydraulic conductivity, reduced oxygen supply and further leads to a rapid decrease of the treatment performance. For this reason it is essential to assess in advance the evolution of clogging process and detect potential failures in the system. The preliminary results of this research conducted at the Hostalets de Pierola wastewater treatment plant (near Barcelona, Spain) show that electrical resistivity and induced polarisation geophysical methods can be very useful for delineating the clogging expansion. Then, this non-destructive metodology can help take the preventive measures for enlarge the lifetime of the treatment system.

  17. Sea Level Rise Impacts on Wastewater Treatment Systems Along the U.S. Coasts

    Science.gov (United States)

    Hummel, Michelle A.; Berry, Matthew S.; Stacey, Mark T.

    2018-04-01

    As sea levels rise, coastal communities will experience more frequent and persistent nuisance flooding, and some low-lying areas may be permanently inundated. Critical components of lifeline infrastructure networks in these areas are also at risk of flooding, which could cause significant service disruptions that extend beyond the flooded zone. Thus, identifying critical infrastructure components that are exposed to sea level rise is an important first step in developing targeted investment in protective actions and enhancing the overall resilience of coastal communities. Wastewater treatment plants are typically located at low elevations near the coastline to minimize the cost of collecting consumed water and discharging treated effluent, which makes them particularly susceptible to coastal flooding. For this analysis, we used geographic information systems to assess the exposure of wastewater infrastructure to various sea level rise projections at the national level. We then estimated the number of people who would lose wastewater services, which could be more than five times as high as previous predictions of the number of people at risk of direct flooding due to sea level rise. We also performed a regional comparison of wastewater exposure to marine and groundwater flooding in the San Francisco Bay Area. Overall, this analysis highlights the widespread exposure of wastewater infrastructure in the United States and demonstrates that local disruptions to infrastructure networks may have far-ranging impacts on areas that do not experience direct flooding.

  18. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  19. Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review.

    Science.gov (United States)

    Yang, Liyang; Hur, Jin; Zhuang, Wane

    2015-05-01

    Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.

  20. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  1. Life cycle assessment applied to wastewater treatment; Analyse de cycle de vie appliquee aux systemes de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Renou, S.

    2006-01-15

    Nowadays, the environmental performances of wastewater treatment systems are not properly analyzed. Thus, the development of an exhaustive and reliable method is needed to help stakeholders to choose the best environmental solutions. Life cycle assessment (LCA) was selected as a starting point to answer this problem. LCA has been tested. This tool is essential to analyze the environmental performances of wastewater treatment systems. In order to fulfill our goal, the best compromise seems to be the association of LCA, to assess global impacts, with others methodologies, to assess local impacts. Finally, a software has been developed to compare urban sludge treatment and recovering process trains. Two impacts, energy and greenhouse effect, are currently included in. The software and its development steps are described and illustrated through two case studies. This tool has made LCA easier to apply and more useful to wastewater field stakeholders. (author)

  2. Phylogeny and FISH probe analysis of the “Candidatus Competibacter”-lineage in wastewater treatment systems

    DEFF Research Database (Denmark)

    Nittami, Tadashi; McIlroy, Simon Jon; Kanai, Eri

    Our understanding of the microbial ecology of enhanced biological phosphorus removal (EBPR) wastewater treatment systems has been greatly advanced through the application of molecular methods such as fluorescence in situ hybridization (FISH). Considerable attention has been directed at the identi......Our understanding of the microbial ecology of enhanced biological phosphorus removal (EBPR) wastewater treatment systems has been greatly advanced through the application of molecular methods such as fluorescence in situ hybridization (FISH). Considerable attention has been directed...... at the identification and characterization of the glycogen accumulating organisms (GAO), a phenotypic group thought to compete with the polyphosphate accumulating organisms (PAO) for resources at the theoretical expense of EBPR efficiency. Demonstrated candidates for members of the GAO phenotype include...... the gammaproteobacterial “Candidatus Competibacter”-lineage. The group is currently delineated by 8 FISH probe defined phylotypes, although further undescribed phylogenetic diversity beyond what is covered by these probes is evident. Where studied, marked differences in physiology between members are observed, including...

  3. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thermoeconomic analysis applied to an alternative wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lamas, Wendell de Queiroz [University of Taubate, Post-graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Sp (Brazil); Sao Paulo State University, Faculty of Engineering, Campus of Guaratingueta, Postgraduate Programme in Mechanical Engineering, Sp (Brazil); Silveira, Jose Luz; Mattos dos Reis, Luiz Octavio [Sao Paulo State University, Faculty of Engineering, Campus of Guaratingueta, Postgraduate Programme in Mechanical Engineering, Sp (Brazil); Oscare Giacaglia, Giorgio Eugenio [University of Taubate, Post-graduate Programme in Mechanical Engineering, Department of Mechanical Engineering, Sp (Brazil)

    2010-10-15

    This work develops a methodology for the determination of costs associated to products generated in a small wastewater treatment station. The methodology begins with plant units identification, relating their fluid and thermodynamics features to each point indicated in its process diagram. Following, a functional diagram and a formulation are developed in exergetic basis, describing all equations for these points, which are the constraints for optimisation and are used to determine costs associated to products generated in a Small Wastewater Treatment Station - SWTS. The methodology is applied to a hypothetical system based on SWTS plants and presents consistent results when compared to values based on previous experiments and evaluations. (author)

  5. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  6. ``Living off the land'': resource efficiency of wetland wastewater treatment

    Science.gov (United States)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  7. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  8. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers

    Science.gov (United States)

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  9. Energy Data Management Manual for the Wastewater Treatment Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States); De Fontaine, Andre [Dept. of Energy (DOE), Washington DC (United States)

    2017-12-01

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven by population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.

  10. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  11. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    International Nuclear Information System (INIS)

    Sun, Mok Young; Jin-Oh, Jo; Heon-Ju, Lee

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  12. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  13. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    In both these wastewaters nutrients were not added. A simple formula is introduced to calculate nutrient requirements based on removal efficiency and observed biomass yield coefficient. Key Words: Olive mill wastewater; anaerobic treatment; aerobic treatment; sequencing batch reactor; biomass yield; nutrient requirement.

  14. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... and NH4; therefore it is classified as a strong waste. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ..... MSc. thesis, university of Jordan. Bataineh F, Najjar ...

  15. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  16. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    International Nuclear Information System (INIS)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-01-01

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m 3 h −1 ) was operated with the same parameters. The results showed that the BOD 5 /COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L −1 for bench scale reactor and 60.9 mg L −1 for PCWWTP when the influent COD was about 480 mg L −1 on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L −1 . There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  17. Wastewater collection and treatment technologies for semi-urban areas of India: a case study.

    Science.gov (United States)

    Sundaravadivel, M; Vigneswaran, S

    2001-01-01

    Sanitation and wastewater management problems in small and medium towns in India (referred to as "semi-urban areas"--SUAs) are distinctly different from those of large cities or rural villages. There is an apparent lack of choices of appropriate sanitation options for these semi-urban areas, leading them to adopt on-site sanitation technologies. A field study of four such small towns in India was conducted to evaluate the suitability of available low-cost wastewater collection and treatment technologies, in light of their current practice. Based on the field study, this paper suggests a system comprising "combined surface sewers" and "reed-bed channel" for collection and treatment of wastewater for semi-urban areas, that can utilize all the existing infrastructure to effect better sanitation at lower costs. The suggested system involves converting the existing open wastewater collection drains on the road sides, as "decentralized" networks of covered drains with simple structural modifications to collect both wastewater and stormwater; and, converting the large open drains on the outskirts of SUAs that carry wastewater to agricultural fields, as gravel media filled beds planted with local reeds. Cost estimates for the towns studied indicate this system to be over 70% cheaper compared to conventional collection and treatment systems.

  18. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radiotracer Applications in Wastewater Treatment Plants

    International Nuclear Information System (INIS)

    2011-01-01

    Wastewater containing pollutants resulting from municipal and industrial activities are normally collected in wastewater treatment plants (WWTPs) for processing before discharge to the environment. The WWTPs are the last barrier against contamination of downstream surface waters such as rivers, lakes and sea. Treated wastewater is reused for irrigation, particularly in arid and semi-arid countries. Therefore, it is very important to maintain optimal operating conditions of WWTPs to eliminate or reduce environmental pollution. Wastewater treatment plants are complicated systems, where the processes of mixing, separation, aeration, biological and chemical reactions occur. A WWTP is basically a multiphase system, and the efficiency of an installation strongly depends on liquid, solid and gas phase flow structures and their residence time distributions (RTDs). However, the fluid dynamic properties of such systems are not yet completely understood, rendering difficult the theoretical prediction of important process parameters such as flow rates, phase distributions, mixing and sediment characteristics. Tracer techniques are very useful tools to investigate the efficiency of purification in WWTPs, aiding both their design and performance optimization. There are many kinds of tracers. Radioactive tracers are the most sensitive and are largely used for on-line diagnosis of various operations in WWTPs. The success of radiotracer applications rests upon their extremely high detection sensitivity, and the strong resistance against severe process conditions. During the last few decades, many radiotracer studies have been conducted worldwide for investigation of various installations for wastewater treatment, such as mixer, aeration tank, clarifiers, digester, filter, wetland and oxidation units. Various radiotracer methods and techniques have been developed by individual tracer groups. However, the information necessary for the preservation of knowledge and transfer of

  20. Pulsed reactor modelling for catalytic micropollutant treatment in wastewater

    OpenAIRE

    Juarros Bertolín, Helena Georgina

    2011-01-01

    This study stems from the problem of the presence of micropollutants (including phenolic compounds such as Bisphenol A, Nonylphenol and Triclosan) in urban and industrial wastewaters. Systems used in the wastewater treatment plants are inefficient in removing these micropollutants that are harmful for the environment. In an ongoing project, laccases, a group of enzymes, are used to efficiently catalyse the degradation of phenolic micropollutants. In this master thesis, it is proposed...

  1. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    Science.gov (United States)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  2. A flux-enhancing forward osmosis-nanofiltration integrated treatment system for the tannery wastewater reclamation.

    Science.gov (United States)

    Pal, Parimal; Chakrabortty, Sankha; Nayak, Jayato; Senapati, Suman

    2017-06-01

    Effective treatment of tannery wastewater prior to discharge to the environment as per environmental regulations remains a big challenge despite efforts to bring down the concentrations of the pollutants which are often quite high as measured in terms of chemical oxygen demand (7800 mg/L), total dissolved solids (5400 mg/L), chloride (4260 mg/L), sulphides (250 mg/L) and chromium. A pilot-scale forward osmosis and nanofiltration integrated closed loop system was developed for continuous reclamation of clean water from tannery wastewater at a rate of 52-55 L/m 2 /h at 1.6 bar pressure. The low-cost draw solution was 0.8 M NaCl solution. Continuous recovery for recycling the draw solute was done by nanofiltration of diluted draw solution at an operating pressure of 12 bar and volumetric cross-flow rate of 700 L/h. Fouling study revealed that the specific flat-sheet design of cross-flow forward osmosis module with counter current flow of feed and draw solution prevents the build-up of concentration polarization, thus enabling long-term filtration in continuous mode of operation without significant membrane fouling. This study culminates in the development of a compact, efficient and low-cost industrial wastewater treatment and reclamation technology.

  3. Fluidized bed bio reactor sewage treatment system and wastewater quality at Kudankulam

    International Nuclear Information System (INIS)

    Vijayakumar, B.; George, Thomas; Rajan, P.S.; Kumar, M.; Rajan, M.P.

    2006-01-01

    With the availability of fresh water becoming exiguous in certain coastal belts, it has become imperative to manage water resources in a resourceful and judicious manner. The focus has also shifted to minimum or zero tolerance from existing waste treatment plants so as not to contaminate or pollute the already shrinking drinking water resources. Many of the modern waste treatment approaches are already aiming at zero discharge with a view to conserving the ecological balance and to protect the rich bio diversity, flora and fauna. This paper describes one such domestic sewage treatment system called fluidized bed bio reactor operating in the residential colony and plant site area of Kudankulam Nuclear Power Project. Wastewater quality of the resulting effluent water is also discussed. (author)

  4. Oceurrence of fungi degrading aniline and its derivatives in biocenoses of wastewater treatment systems

    Directory of Open Access Journals (Sweden)

    Tomasz Słomczyński

    2014-08-01

    Full Text Available It has been found that numerous yeast-like microorganisms from the genera Geotrichum, Trichmporon, Candida, Rhodotorula and Sporobolomyces occurring in wastewater treatment systems biocenoses arę able to utilize aniline, p-nitroaniline and acetanilide as a sole C-source. High active in this respect were strains belonging to the species of Geoirichum candidum, G. sericeum and Candida boidinii.

  5. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  6. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  7. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  8. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.

    Science.gov (United States)

    Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo

    2014-01-01

    Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.

  9. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  10. Biological treatment and nanofiltration of denim textile wastewater for reuse

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.

    2008-01-01

    This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 ± 2% and 84 ± 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 ± 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 μm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m 2 /h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria

  11. The effects of physicochemical wastewater treatment operations on forward osmosis

    OpenAIRE

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; La Cour Jansen, Jes; Jönsson, Karin

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin...

  12. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  13. The use of constructed wetlands for the treatment of industrial wastewater

    Directory of Open Access Journals (Sweden)

    Skrzypiecbcef Katarzyna

    2017-09-01

    Full Text Available Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.

  14. Sustainable treatment of rubber latex processing wastewater : the UASB-system combined with aerobic post-treatment

    NARCIS (Netherlands)

    Viet Nguyen Trung,

    1999-01-01

    The main objective of this PhD-thesis is to assess the applicability of UASB-process for treating RLP wastewater and the feasibility of some adequate post-treatment processes for the effluent of the anaerobic treatment process.

    The studies were carried out in The Netherlands during

  15. Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    Science.gov (United States)

    Detail for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems, on complying with part 68 with respect to chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  16. Nitrogen removal from concentrated latex wastewater by land treatment

    Directory of Open Access Journals (Sweden)

    Vikanda Thongnuekhang

    2004-05-01

    Full Text Available Most of the concentrated latex factories in the South of Thailand discharge treated wastewater that contains high level of nitrogen to a nearby river or canals leading to a water pollution problem. A study of land treatment system was conducted to treat and utilize nitrogen in treated wastewater from the concentrated latex factory. The experimental pilot-scale land treatment system was constructed at the Faculty of Engineering, Prince of Songkla University, Hat Yai Campus. It consisted of water convolvulus (Ipomea aquatica, I. Reptans, tropical carpet grass (Axonopus compresus (Swartz Beav. and control unit (no plantation. The treated wastewater from the stabilization pond system of the selected concentrated latex factoryin Songkhla was used to irrigate each experimental unit. Influent and effluent from the experimental units were analyzed for TKN, NH3-N, Org-N, NO3 --N, NO2 --N, BOD5, sulfate, pH and EC. The land treatment system resulted a high removal efficiency for nitrogen. Tropical carpet grass provided higher removal efficiency than other units for all parameters. The removal efficiency of water convolvulus and control unit were not significantly different. The average removal efficiency of TKN, NH3-N, Org-N, BOD5 and sulfate for tropical carpet grass unit were 92, 97, 61, 88 and 52%, for water convolvulus unit were 75, 80, 43, 41 and 30%, and for control unit were 74, 80, 41, 31 and 28%, respectively. Mass balance of nitrogen transformation was conducted. It revealed that plant uptake was the major mechanism for nitrogen removal in land treatment.

  17. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  18. A summary of studies on mine wastewater treatment

    International Nuclear Information System (INIS)

    Ma Yao; Hu Baoqun; Sun Zhanxue

    2006-01-01

    The composition of mine wastewater is complicated and is harmful to the environment. The mine wastewater treatment methods include mainly neutralization, constructed wetland and microorganism methods. The three methods are summarized, with focus on the microorganism method. The mechanisms, characteristics and influencing factors of the sulfate reducing bacteria and the iron oxidizing bacteria are described in detail. The treatment methods of uranium mine wastewater are presented. (authors)

  19. SEM analysis of particle size during conventional treatment of CMP process wastewater

    International Nuclear Information System (INIS)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A.

    2015-01-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles

  20. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    Science.gov (United States)

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.

  1. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  2. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    Science.gov (United States)

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cold climate performance analysis of on-site domestic wastewater treatment systems.

    Science.gov (United States)

    Williamson, Eric

    2010-06-01

    Household on-site septic systems with secondary wastewater treatment in Anchorage, Alaska, were sampled and analyzed for performance parameters during the winter to spring months. System types included intermittent dosing sand filters (ISF), three types of recirculating trickling filters (RTF), and suspended-growth aeration tanks. Total nitrogen from the trickling filter and aeration tank effluent was fairly uniform, at approximately 30 mg/L. Total suspended solids (TSS) means were mostly less than 15 mg/L. The 5-day biochemical oxygen demand (BODs) showed considerable variability, with means ranging from 9.2 mg/ L for ISFs up to 39.5 mg/L for one type of RTF, even though this type has shown excellent results in several test programs. The data suggested that effluent temperature within the sample range had almost no effect on effluent concentrations of BOD5 or TSS and only a small effect on the removal of total nitrogen. Non-climatic factors were probably of equal importance to treatment results.

  4. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  5. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  6. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  7. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  8. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  9. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  10. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  11. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  12. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  13. Performance assessment of aquatic macrophytes for treatment of municipal wastewater.

    Science.gov (United States)

    Shah, Mumtaz; Hashmi, Hashim Nisar; Ali, Arshad; Ghumman, Abdul Razzaq

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  14. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  15. The effects of physicochemical wastewater treatment operations on forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside TM FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  16. Positive examples of wastewater treatment effectiveness in ‘Natron-Hayat’ Maglaj factory

    Directory of Open Access Journals (Sweden)

    Bušatlić Ilhan

    2017-01-01

    Full Text Available In the paper are described the basic characteristics of wastewaters in the cellulose and paper factory ‘Natron-Hayat’ Maglaj. Particular emphasis is placed on the description of the technological process of wastewater treatment at the ‘Natron-Hayat’ Maglaj factory which is represented in the paper by a technological scheme and represents one of the more complex systems for wastewater treatment. In the experimental part, the results of the efficiency of the wastewater treatment system at the ‘Natron-Hayat’ Maglaj factory were given. It can be said that the basic raw materials for paper production are cellulose fibers and water. The role that water has in the cellulose and paper industry as the solvent, agent for cooking and washing of the produced pulp, indicates the presence of water in almost all stages of cellulose fiber production (Žarković et al., 2004. In accordance with the principles of sustainable development, cellulose and paper industry must face strict regulations on the protection of the environment which includes rationalization of raw material consumption, water, energy and chemicals, with ‘Natron-Hayat’ Maglaj are subjected to the purification before discharging into surface water recipient. The wastewaters from ‘Natron-Hayat’ Maglaj factory are discharged into river Bosna.

  17. Evaluation of optimal reuse system for hydrofluoric acid wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Won, Chan-Hee [Department of Environmental Engineering, Chonbuk National University, 567 Bakje-daero, Deokjin-Gu, Jeonju, Jeollabuk-Do, 561-756 (Korea, Republic of); Choi, Jeongyun [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of); Chung, Jinwook, E-mail: jin-wook.chung@samsung.com [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Coagulation and ion exchange technologies were ineffective in removing fluoride. Black-Right-Pointing-Pointer Polyamide RO was more efficacious than cellulose RO due to its high flux and rejection. Black-Right-Pointing-Pointer Spiral wound RO system was more preferential to disc tube RO system for reusing raw hydrofluoric acid wastewater. Black-Right-Pointing-Pointer Combined coagulation and RO technology can be applied to reuse raw hydrofluoric acid wastewater. - Abstract: The treatment of hydrofluoric acid (HF) wastewater has been an important environmental issue in recent years due to the extensive use of hydrofluoric acid in the chemical and electronics industries, such as semiconductor manufacturers. Coagulation/precipitation and ion exchange technologies have been used to treat HF wastewater, but these conventional methods are ineffective in removing organics, salts, and fluorides, limiting its reuse for water quality and economic feasibility. One promising alternative is reverse osmosis (RO) after lime treatment. Based on pilot-scale experiment using real HF wastewater discharged from semiconductor facility, the spiral wound module equipped with polyamide membranes has shown excellent flux and chemical cleaning cycles. Our results suggest that coagulation/precipitation and spiral wound RO constitute the optimal combination to reuse HF wastewater.

  18. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  19. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  20. Modification of Wastewater Treatment Technology at Cottonseed Oil Plant

    Directory of Open Access Journals (Sweden)

    Alshabab Mary Shick

    2016-01-01

    Full Text Available Wastewaters from cottonseed oil producing plant in Syria were studied in laboratory experiments. Aim of the study was to suggest modification of wastewater treatment technology in order to increase its efficiency. Concentration of pollutants in wastewaters was controlled by measurement of COD. According to the results of experiments it was suggested to decrease significantly (8-20 times dosages of reagents (acidifier, coagulant, flocculant in several actual stages of treatment (acidification, separation, coagulation and sedimentation and add stage of dispersed air flotation before coagulation treatment. The modified wastewater treatment technology would reduce COD to the values allowed for irrigation waters by Syrian National Standard.

  1. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system.

    Science.gov (United States)

    Du, Jing; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke; Zhang, Yan

    2015-03-01

    The variation of five antibiotic resistance genes (ARGs)-tetG, tetW, tetX, sul1, and intI1-in a full-scale municipal wastewater treatment plant with A(2)O-MBR system was studied. The concentrations of five resistance genes both in influent and in membrane bioreactor (MBR) effluent decreased as sul1 > intI1 > tetX > tetG > tetW, and an abundance of sul1 was statistically higher than three other tetracycline resistance genes (tetG, tetW, and tetX) (p MBR effluent. The reduction of tetW, intI1, and sul1 was all significantly positively correlated with the reduction of 16S ribosomal DNA (rDNA) in the wastewater treatment process (p MBR was observed for all ARGs.

  2. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested......-sized wastewater treatment plants....

  3. Structural redundancy of data from wastewater treatment systems. Determination of individual balance equations.

    Science.gov (United States)

    Spindler, A

    2014-06-15

    Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods are employed for validation of operational data from wastewater treatment plants. This is partly due to some prerequisites that are difficult to meet including steady state, known variances of process variables and absence of gross errors. However, an algorithm can be derived from the classical approaches to data reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also be applied to verify the necessity of existing or additional measurements with respect to the improvement of the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at establishing a link between methods known from data reconciliation in process engineering and their application in wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    Science.gov (United States)

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  5. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    OpenAIRE

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete d...

  6. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  7. Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Suriyapraphadilok, Uthaiporn; Siemanond, Kitipat

    2015-01-01

    a generic model-based synthesis and design framework for retrofit wastewater treatment networks (WWTN) of an existing industrial process. The developed approach is suitable for grassroots and retrofit systems and adaptable to a wide range of wastewater treatment problems. A sequential solution procedure...... is employed to solve a network superstructure-based optimization problem formulated as Mixed Integer Linear and/or Non-Linear Programming (MILP/MINLP). Data from a petroleum refinery effluent treatment plant together with special design constraints are employed to formulate different design schemes based...... for the future development of the existing wastewater treatment process....

  8. Application of Electrocoagulation Process for Continuous Coal Stockpile Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Rusdianasari Rusdianasari

    2017-02-01

    Full Text Available Coal wastewater is characterized by high total suspended solid (TSS, heavy metals, and low acidity (pH. The purpose of this study was to research the effects of the operating parameters such as applied voltage, the number of electrodes, and reaction time on a real coal stockpile wastewater in the continuous electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as an electrolyte. It has been shown that the removal efficiency of TSS and heavy metals content increased with increasing the applied voltage and reaction time. The results indicate that the electrocoagulation process is efficient and able to achieve 88.67% TSS removal, 95.65% ferrous removal, 99.11% manganesse removal, and pH increased until 7.1 at 24 volts during 120 min, respectively. The experiments demonstrated the effectiveness of electrocoagulation methods for the treatment of coal stockpile wastewater.

  9. Development of radioactive wastewater treatment systems at Fukushima Daiichi Nuclear Power Station and Toshiba's efforts

    International Nuclear Information System (INIS)

    Arima, Yuki; Takeuchi, Tsutomu; Yoshino, Akira

    2012-01-01

    In keeping the condition of the Fukushima Daiichi Nuclear Power Station (NPS) of The Tokyo Electric Power Company, Inc. under control, following the serious damage to the NPS as a result of the Great East Japan Earthquake and subsequent tsunami on March 11, 2011, both stable cooling of the reactors and spent fuel pools and control of the radioactive wastewater to prevent release have been crucial issues. The reactor cooling has depended on the injection of water from outside, with seawater used first for approximately one month, after which the supply was changed to filtered water. In both cases, however, the water flowed into the reactor buildings and turbine buildings. Toshiba contributed to the realization of circulating water injection cooling at the NPS by supplying a radioactive wastewater transferral system and the first purification system in the initial three months, followed by a second purification system, called SARRY TM , which provided stable treatment capability. These systems make it possible to reuse injected water by purification for further injection, eliminating the need for additional water from the outside. These systems also decrease wastewater generation in the NPS and minimize the risk of spills into the environment. (author)

  10. Treatment of textiles industrial wastewater by electron beam and biological treatment (sbr)

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Khairul Zaman Mohd Dahlan; Zulkafli Ghazali; Ting Teo Ming

    2008-08-01

    Study of treating textiles industrial wastewater with combined of electron beam and Tower Style Biological Treatment (TSB) was investigated in Korea. In this project, textiles wastewater was also treated with electron beam, but hybrid with Sequencing Batch Reactor (SBR). The purpose of this research is to develop combined electron beam treatment with existing biological treatment facility (SBR), of textile industries in Malaysia. The objectives of this project are to determine the effective irradiation parameter for treatment and to identify effective total retention time in SBR system. To achieve the objective, samples fill in polypropyle tray were irradiated at 1 MeV, 20 mA and 1 MeV ,5 mA at doses 11, 20, 30, 40 and 50 kGy respectively. Raw effluent and two series of irradiated effluent at 1 MeV 20 mA (11, 20, 30, 40 and 50 kGy) and 1 MeV 5 mA (11, 20, 30, 40 and 50 kGy) were then treated in SBR system. Samples were analysed at 6, 14 and 20 hrs after aeration in the SBR. The results show that, average reduction in BOD was about 2-11% after irradiated at 5 mA, and the percentage increased to 21-73% after treatment in SBR system. At 20 mA, BOD reduced to 7-29% during irradiation and the value increased to 57-87% after treatment in SBR system. (Author)

  11. Development and operation of innovative scum to biodiesel pilot-system for the treatment of floatable wastewater scum.

    Science.gov (United States)

    Anderson, Erik; Addy, Min; Chen, Paul; Ruan, Roger

    2018-02-01

    A novel process was developed for the biorefining of floatable wastewater scum and other waste oils from water treatment facilities into biodiesel and other value-added bio-products. To test the scalability and commercial potential of the technology, a 7000 l/year pilot-scale system was designed and built. Scum from a wastewater treatment facility, located in St. Paul, Mn, was collected and converted into methyl esters (biodiesel) according to the process chemistry. All of the incoming and outgoing process streams were sampled, tested, weighed and recorded to calculate both the process efficiency and product quality. Data from the pilot-scale system operation was compared to laboratory results and the theoretically expected values for each individual unit operation. The biodiesel was tested using a third party laboratory and confirmed it met all of the US EPA's test requirements for commercial-grade biodiesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Cline, J.E. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Sullivan, P.F. [Specialty Industrial Products, Inc., Spartanburg, SC (United States); Lovejoy, M.A.; Collier, J. [Sun River Innovations, Ltd., Lexington, KY (United States); Adams, C.D. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  13. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  14. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    Science.gov (United States)

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study.

    Science.gov (United States)

    Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang

    2018-01-01

    This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    Science.gov (United States)

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    Science.gov (United States)

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.

  18. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System

    Directory of Open Access Journals (Sweden)

    Alireza Valipour

    2015-01-01

    Full Text Available onstructed wetland applications have been limited by a large land requirement and capital investment. This study aimed to improve a shallow pond water hyacinth system by incorporating the advantages of engineered attached microbial growth technique (termed Bio-hedge for on-site domestic wastewater treatment. A laboratory scale continuous-flow system consists of the mesh type matrix providing an additional biofilm surface area of 54 m2/m3. Following one year of experimentation, the process showed more stability and enhanced performance in removing organic matter and nutrients, compared to traditional water hyacinth (by lowering 33%–67% HRT and facultative (by lowering 92%–96% HRT ponds. The wastewater exposed plants revealed a relative growth rate of 1.15% per day, and no anatomical deformities were observed. Plant nutrient level averaged 27 ± 1.7 and 44 ± 2.3 mg N/g dry weight, and 5 ± 1.4 & 9±1.2 mg P/g dry weight in roots and shoots, respectively. Microorganisms immobilized on Bio-hedge media (4.06 × 107 cfu/cm2 and plant roots (3.12 × 104 cfu/cm were isolated and identified (a total of 23 strains. The capital cost was pre-estimated for 1 m3/d wastewater at 78 US$/m3inflow and 465 US$/kg BOD5 removed. This process is a suitable ecotechnology due to improved biofilm formation, reduced footprint, energy savings, and increased quality effluent.

  19. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    Directory of Open Access Journals (Sweden)

    Francesca Giaccherini

    2017-06-01

    Full Text Available In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent emission for tannery wastewater treatment is 1.49 103 tCO2,eq d−1. Moreover, the energy intensity of tannery wastewater treatment processes are evaluated at 3.9 kWh kg−1bCOD,removed, compared to 1.4 kWh kg−1bCOD,removed of municipal wastewater treatment processes. Based on this work in the field of tannery wastewater treatment, an effort to innovate suitable treatment trains and technologies has the strong potential to reduce the carbon footprint.

  20. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  1. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  2. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups.

    Science.gov (United States)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca; Nierychlo, Marta; Kristensen, Jannie Munk; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

    2017-01-01

    Wastewater is increasingly viewed as a resource, with anaerobic digester technology being routinely implemented for biogas production. Characterising the microbial communities involved in wastewater treatment facilities and their anaerobic digesters is considered key to their optimal design and operation. Amplicon sequencing of the 16S rRNA gene allows high-throughput monitoring of these systems. The MiDAS field guide is a public resource providing amplicon sequencing protocols and an ecosystem-specific taxonomic database optimized for use with wastewater treatment facility samples. The curated taxonomy endeavours to provide a genus-level-classification for abundant phylotypes and the online field guide links this identity to published information regarding their ecology, function and distribution. This article describes the expansion of the database resources to cover the organisms of the anaerobic digester systems fed primary sludge and surplus activated sludge. The updated database includes descriptions of the abundant genus-level-taxa in influent wastewater, activated sludge and anaerobic digesters. Abundance information is also included to allow assessment of the role of emigration in the ecology of each phylotype. MiDAS is intended as a collaborative resource for the progression of research into the ecology of wastewater treatment, by providing a public repository for knowledge that is accessible to all interested in these biotechnologically important systems. http://www.midasfieldguide.org. © The Author(s) 2017. Published by Oxford University Press.

  3. Wastewater treatment in a compact intensified wetland system at the Badboot: a floating swimming pool in Belgium.

    Science.gov (United States)

    Van Oirschot, D; Wallace, S; Van Deun, R

    2015-09-01

    The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are

  4. A study on radiation treatment of wastewater using an electron accelerator

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1982-02-01

    A study on radiation oxidation treatment of refractory or toxic wastewater using an electron accelerator was carried out from the viewpoint of reaction engineering. For the process using electron beams, oxygen supply to the penetration range of electron (reaction zone) where the dose rate is extremely high, is significantly important. A concentric dual-tube-type bubbling column reactor was shown to be most suitable to maintain the dissolved oxygen at a high concentration. Rate expressions of pollutant reduction and oxygen consumption in the reactor were derived. The efficiency of active species utilization for oxidation, phi, was defined and shown to be an important design parameter. A new wastewater treatment system (Electron Accelerator-Dual tube Bubbling Reactor system) was proposed, and successfully demonstrated for the treatment of wastewater involving dyes and phenol. The dissolved oxygen was maintained at a high concentration by using this type of reactor for the high dose rate irradiation. phi was obtained as a function of dissolved oxygen concentration for the dye solution and was also obtained as functions of the oxygen concentration and dose rate for the phenol solution. By these experimental results, the effectiveness of EA-DBR system was proved. (author)

  5. Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2018-01-01

    Full Text Available River water pollution by wastewater can cause significant negative impact on the aquatic sustainability. Hence, accurate modeling of this complicated system and its cost-effective treatment and reuse decision is very important because this optimization process is related to economic expenditure, societal health, and environmental deterioration. In order to optimize this complex system, we may consider three treatment or reuse options such as microscreening filtration, nitrification, and fertilization-oriented irrigation on top of two existing options such as settling and biological oxidation. The objective of this environmental optimization is to minimize the economic expenditure of life cycle costs while satisfying the public health standard in terms of groundwater quality and the environmental standard in terms of river water quality. Particularly, this study improves existing optimization model by pinpointing the critical deficit location of dissolved oxygen sag curve by using analytic differentiation. Also, the proposed formulation considers more practical constraints such as maximal size of irrigation area and minimal amount of filtration treatment process. The results obtained by using an evolutionary algorithm, named a parameter-setting-free harmony search algorithm, show that the proposed model successfully finds optimal solutions while conveniently locating the critical deficit point.

  6. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation

    DEFF Research Database (Denmark)

    Kirkegaard, Peter; Hansen, Steffen Foss; Rygaard, Martin

    2015-01-01

    Water scarcity brings an increased focus on wastewater reclamation for drinking water supply. Meanwhile, the production volume of nanoparticles (NPs) is rapidly increasing, but to date there has been little attention given to the fate of NPs in water systems based on wastewater reclamation. We have...... investigated the possible concentrations of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles in tap water for water supplies based on reclaimed wastewater. Tap water concentrations of the NPs were assessed by mass flow analyses of two typical wastewater reclamation concepts: 1) advanced...... studies are available on the removal efficiencies of NPs by advanced water treatment processes with a majority of the identified studies focusing on removal efficiencies in wastewater treatment plants and fate in surface waters. The NP removal efficiency of several treatment processes is unknown...

  7. Decentralized domestic wastewater systems in developing countries: the case study of Harare (Zimbabwe)

    Science.gov (United States)

    Chirisa, Innocent; Bandauko, Elmond; Matamanda, Abraham; Mandisvika, Gladys

    2017-06-01

    Until recently there has been little, if any, concern over revamping let alone improving wastewater management system in Zimbabwe's urban areas given the dominance and institutionalised water-borne system. Yet, the current constraints in this system and the immensity of urbanisation in the country begs and compels planners, engineers and systems thinkers to rethink what best can work as a sustainable wastewater system. With particular reference to the ever-expanding Harare metropolitan region, this article provides an evaluative analysis on the potentiality, risks and strategies that can be adopted by Harare and its satellites in addressing the problems of the conventional wastewater management system. The suggested framework of operation is a decentralised domestic wastewater collection and treatment system which however has its own multifarious risks. Using systems dynamics conceptualisation of the potentiality, opportunities, risks and strategies, the paper seeks to model the path and outcomes of this decentralised domestic wastewater collection and treatment system and also suggests a number of policy measures and strategies that the city of Harare and its satellites can adopt.

  8. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    Science.gov (United States)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  9. Treatment of Synthetic Wastewater Containing Reactive Red 198 by Electrocoagulation Process

    OpenAIRE

    N.M Mahmoodi; A Ameri; M Gholami; A Jonidi jafari; A Dalvand

    2011-01-01

    "nBackground and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater; thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater co...

  10. Research on treatment of wastewater containing heavy metal by microbial fuel cell

    Science.gov (United States)

    Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui

    2018-02-01

    With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.

  11. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  12. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  13. Performance Evaluation of Moving Bed Bio Film Reactor in Saline Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2013-06-01

    Full Text Available Background and purpose:Moving Bed Biofilm Reactor is an aerobic attached growth with better biofilm thickness control, lack of plugging and lower head loss. Consequently, this system is greatly used by different wastewater treatment plants. High TDS wastewater produced petrochemical, leather tanning, sea food processing, cannery, pickling and dairy industries. The aim of this study was to evaluate the performance of MBBR in saline wastewater treatment. Materials and methods: In this study, 50 percent of a cylindrical reactor with 9.5 liter occupied media with 650 m2.m-3. In the first step, hydraulic regime was evaluated and startup reactor was done by sanitary sludge. Bio film was generated with glucose as the sole carbon source in synthetic wastewater. MBBR performance evaluation was performed in 6:30 and 8:45 with saline wastewater after bio film produced on media. Results: After 83 days of passing MBBR operation with saline wastewater containing 3000-12000 mg.L-1 TDS, organic loading rate of 2.2-3.5 kg/m3.d COD removal efficiency reached 80-92%. Conclusion: Moving bed biofilm reactor is effective in organic load elimination from saline wastewater.

  14. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    OpenAIRE

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chlorid...

  15. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    Science.gov (United States)

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  16. Toxicity Evaluation of Through Fish Bioassay Raw Bulk Drug Industry Wastewater After Electrochemical Treatment

    Directory of Open Access Journals (Sweden)

    S Satyanarayan

    2011-10-01

    Full Text Available Considering the high pollution potential that the synthetic Bulk Drug industry Wastewater (BDW possesses due to the presence of variety of refractory organics, toxicity evaluation is of prime importance in assessing the efficiency of the applied wastewater treatment system and in establishing the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter were studied under laboratory conditions. Results indicated that wastewater being very strong in terms of color, COD and BOD is found to be very toxic to the studied fish. The LC50 values for raw wastewater and after electrochemical treatment with carbon and aluminium electrodes for 24, 48, 72 and 96 hours ranged between, 2.5-3.6%, 6.8-8.0%, 5.0-5.8% respectively. Carbon electrode showed marginally better removals for toxicity than aluminium electrode. It was evident from the studies that electrochemical treatment reduces toxicity in proportion to the removal efficiency shown by both the electrodes. The reduction in toxicity after treatment indicates the intermediates generated are not toxic than the parent compounds. Furthermore, as the electrochemical treatment did not result in achieving disposal standards it could be used only as a pre-treatment and the wastewater needs further secondary treatment before final disposal.

  17. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  18. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  19. [NH4+-N removal stability of zeolite media packed multistage-biofilm system for coke-plant wastewater treatment].

    Science.gov (United States)

    Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan

    2009-02-15

    The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight 1x 10(3) were the main remained substances in the effluent.

  20. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S.

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  1. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  2. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  3. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  4. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  5. Hydrogen production by supercritical water gasification of wastewater from food waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Korean food wastes have high moisture content (more than 85 wt%) and their major treatment processes such as drying or biological fermentations generate concentrated organic wastewater (CODs of about 100,000 mgO{sub 2}/L). For obtaining both wastewater treatment and hydrogen production from renewable resources, supercritical water gasification (SCWG) of the organic wastewater was carried out in this work. The effect of catalyst, reaction temperature, and reactor residence time on COD destruction and composition of gas products was examined. As a result, a SCWG of the wastewater over Ni- Y/activated charcoal at 700 C, 28 MPa yielded 99 % COD destruction and hydrogen-rich gas production (45 vol% H{sub 2}). A liquid-phase thermal pretreatment to destroy solid particles from the wastewater was proposed for more effective operation of the SCWG system. (orig.)

  6. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada

    DEFF Research Database (Denmark)

    Neudorf, Kara D.; Huang, Yan Nan; Ragush, Colin M.

    2017-01-01

    Domestic wastewater discharges may adversely impact arctic ecosystems and local indigenous people, who rely on being able to hunt and harvest food from their local environment. Therefore, there is a need to develop efficient wastewater treatment plants (WWTPs), which can be operated in remote...... communities under extreme climatic conditions. WWTPs have been identified as reservoirs of antibiotic resistance genes (ARGs). The objective of this work was to quantify the presence of nine different ARG markers (int1, sul1, sul2, tet(O), erm(B), mecA, blaCTX-M, blaTEM, and qnr(S)) in two passive systems...... (waste stabilization ponds [WSPs]) and one mechanical filtration plant operating in two smaller and one large community, respectively, in Nunavut, Canada. Measurement of water quality parameters (carbonaceous oxygen demand, ammonia, total suspended solids, Escherichia coli and total coliforms) showed...

  7. Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms.

    Science.gov (United States)

    Waller, Travis; Marcus, Ian M; Walker, Sharon L

    2018-06-04

    Engineered nanomaterials (ENMs) are commonly incorporated into food and consumer applications to enhance a specific product aspect (i.e., optical properties). Life cycle analyses revealed ENMs can be released from products during usage and reach wastewater treatment plants (WWTPs), with titanium dioxide (TiO 2 ) accounting for a large fraction. As such, food grade (FG) TiO 2 , a more common form of TiO 2 in wastewater, was used in this study. Nanomaterials in WWTPs have been well characterized, although the problematic septic system has been neglected. Elution and bioaccumulation of TiO 2 ENMs from WTTPs in downriver sediments and microorganisms has been observed; however, little is known about mechanisms governing the elution of FG TiO 2 from the septic drainage system. This study characterized the transport behavior and mechanisms of FG TiO 2 particles in porous media conditions after septic waste treatment. FG and industrial grade (IG) TiO 2 (more commonly studied) were introduced to septic tank effluent and low-ionic strength electrolyte solutions prior to column transport experiments. Results indicate that FG TiO 2 aggregate size (200-400 nm) remained consistent across solutions. Additionally, elution of FG and IG TiO 2 was greatest in septic effluent at the higher nanoparticle concentration (100 ppm). FG TiO 2 was well retained at the low (2 ppm) concentration in septic effluent, suggesting that particles that escape the septic system may still be retained in drainage field before reaching the groundwater system, although eluted particles are highly stabilized. Findings provide valuable insight into the significance of the solution environment at mediating differences observed between uniquely engineered nanomaterials. Graphical abstract.

  8. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    OpenAIRE

    Yun-Young Choi; Seung-Ryong Baek; Jae-In Kim; Jeong-Woo Choi; Jin Hur; Tae-U Lee; Cheol-Joon Park; Byung Joon Lee

    2017-01-01

    Municipal wastewater treatment plants (WWTPs) in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industri...

  9. PRE-FEASIBILITY STUDY FOR TREATMENT WETLAND APPLICATION FOR WASTEWATER TREATMENT IN DISPERSED DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Magdalena Gajewska

    2016-07-01

    Full Text Available The aim of the paper is to present the conducted analyses of pre-feasibility study of different approaches for wastewater management in a settlement of 180 persons. In the assessment both technical and economic aspects were analyzed. The costs were calculated for three different and, at the same time, most popular as well as possible technical solutions like: (i construction of local wastewater treatment plant with gravitational and pressurized networks, (ii construction of single family wastewater treatment plants, (iii construction of sealed septic tanks. Carried out analyses of investment and maintenance costs revealed that at the stage of construction the most expensive is local sewer network with treatment plant, while the construction of a single family treatment plant has similar cost regardless of the technology used. When the long term operation and investment cost are accounted the most economical reasonable solution is the application of wetland treatment for household wastewater treatment.

  10. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  11. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  12. Towards sustainable and robust on-site domestic wastewater treatment for all citizens

    NARCIS (Netherlands)

    Mgana, S.

    2003-01-01

    In most developing countries commonly practiced domestic wastewater treatment systems predominantly constitute anaerobic treatment process. The anaerobic treatment units mostly installed are on-site at residential dwellings.

    However the commonly installed units, viz., traditional pit

  13. Evaluation of treatment efficiency of processes for petroleum refinery`s wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Kean Chin [National Univ. of Singapore, Kent Ridge (Singapore). Dept. of Civil Engineering

    1994-12-31

    Processes used in the treatment of a petroleum refinery wastewater included initial API oil separator to be followed by dissolved air flotation and extended aeration system. The use of extended aeration biological system proved to be an improvement but not a solution yet in such kind of treatment. 2 refs., 2 tabs.

  14. Evaluation of treatment efficiency of processes for petroleum refinery`s wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Kean Chin [National Univ. of Singapore, Kent Ridge (Singapore). Dept. of Civil Engineering

    1993-12-31

    Processes used in the treatment of a petroleum refinery wastewater included initial API oil separator to be followed by dissolved air flotation and extended aeration system. The use of extended aeration biological system proved to be an improvement but not a solution yet in such kind of treatment. 2 refs., 2 tabs.

  15. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities

    OpenAIRE

    Xu, Bojun; Ge, Zheng; He, Zhen

    2015-01-01

    Sediment microbial fuel cells (SMFCs) have been intensively investigated for the harvest of energy from natural sediment, but studies of their application for wastewater treatment mainly occurred in the past 2-3 years. SMFCs with simple structures can generate electrical energy while decontaminating wastewater. Most SMFCs used for wastewater treatment contain plants to mimic constructed wetlands. Both synthetic and real wastewaters have been used as substrates in SMFCs that achieved satisfact...

  16. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  17. Pharmaceutical wastewater treatment by internal micro-electrolysis--coagulation, biological treatment and activated carbon adsorption.

    Science.gov (United States)

    Wang, Kangle; Liu, Suiqing; Zhang, Qiang; He, Yiliang

    2009-12-01

    Treatment of pharmaceutical wastewater by the combined process of internal micro-electrolysis and coagulation, biological treatment and activated carbon adsorption was studied. Internal micro-electrolysis and coagulation served as the pretreatment for the wastewater before biological treatment to reduce the contaminants' toxicity to microbes and improve the biodegradability of wastewater to guarantee the smooth operation of the biological process. Biological treatment was the main body of the whole process which took an unparalleled role in removing COD (chemical oxygen demand). Activated carbon adsorption was adopted as the post-treatment process to further remove the remaining non-biodegradable particles. Results showed that the removal rates of COD and S2- (sulphide ion) by pretreatment were 66.9% and 98.9%, respectively, and the biodegradability, as measured by the ratio of biodegradable COD to initial COD, of the wastewater was greatly improved from 0.16 +/- 0.02 to 0.41 +/- 0.02. The overall removal rate of COD in the wastewater achieved by this combined treatment process was up to 96%, and the effluent COD met the Chinese tertiary discharge standard (GB 8978-1996).

  18. Domestic wastewater treatment using electron accelerator

    International Nuclear Information System (INIS)

    Borrely, Sueli I.

    1995-01-01

    This work aims the application of an industrial electron beam accelerator to disinfect sludge and to remove organic matter existent in the influent and effluent from the Mairipora domestic wastewater treatment plant. The in vitro Co-60 radiosensitivity of the major representative Salmonella species in wastewater from Sao Paulo city was also studied. (author). 66 refs., 19 figs., 12 tabs

  19. Cost benefit risk - a concept for management of integrated urban wastewater systems?

    DEFF Research Database (Denmark)

    Hauger, Mikkel B.; Rauch, W.; Linde, Jens Jørgen

    2002-01-01

    Urban wastewater systems should be evaluated and analysed from an integrated point of view, taking all parts of the system, that is sewer system, wastewater treatment plant and receiving waters into consideration. Risk and parameter uncertainties are aspects that hardly ever have been addressed...... in the evaluation and design of urban wastewater systems. In this paper we present and discuss a probabilistic approach for evaluation of the performance of urban wastewater systems. Risk analysis together with the traditional cost-benefit analysis is a special variant of multi-criteria analysis that seeks to find...... the most feasible improvement alternative for an urban wastewater system. The most feasible alternative in this context is the alternative that has the best performance, meaning that the alternative has the lowest sum of costs, benefits and risks. The sum is expressed as the Net Present Cost (NPC). To use...

  20. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  1. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  2. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  3. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  4. Design and operation of UASB—A/O process for treatment starch and VB12 wastewater

    Directory of Open Access Journals (Sweden)

    Yuanyuan CHEN

    2016-12-01

    Full Text Available Starch and VB12 wastewater with higher COD and ammonia nitrogen concentration, contains a large number of difficult biodegradable material, complex composition, is difficult to deal with. In recent years, with the increasingly stringent wastewater discharge standards, require the use of a stable and efficient wastewater treatment process for purification treatment of high concentration of ammonia nitrogen in wastewater and the refractory organic pollutants, to achieve discharge standards. Upflow Anaerobic Sludge Blanket (UASB—Anoxic/Oxic(A/O process was employed in a wastewater treatment of starch and Vitamin B12 wastewater, which was 5 000 m3/d with highly concentrated organic pollutants and ammonia. The efficiency and reliability of the process has been proven. The results of the system operation show that the concentration of the effluent COD, ammonia and total nitrogen (TN were at 78.4 mg/L, 18.7 mg/L and 41.1 mg/L, and the treatment efficiencies of COD, ammonia and TN reached over 99%, 92.1%, 82.7%, respectively, when the influent COD and TN concentration were in the ranges of 8 544~9 720 mg/L and 240~250 mg/L. The quality of the treated wastewater met the first-class discharge standards in Integrated Wastewater Discharge Standard(GB 8978—1996.

  5. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  6. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    Science.gov (United States)

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    International Nuclear Information System (INIS)

    Mendoza-Marin, Claudia; Osorio, Paula; Benitez, Norberto

    2010-01-01

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe 2+ and H 2 O 2 concentrations.

  8. Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Marin, Claudia; Osorio, Paula [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia); Benitez, Norberto, E-mail: lubenite@univalle.edu.co [Department of Chemistry, Faculty of Science, Universidad del Valle, A.A. 25360 Cali (Colombia)

    2010-05-15

    The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe{sup 2+} and H{sub 2}O{sub 2} concentrations.

  9. Livestock wastewater treatment by zeolite ion exchange and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Lee, Sang Ryul; Kim, Tak Hyun; Lee, Myun Joo

    2008-01-01

    Livestock wastewater containing high concentrations of organic matters and ammonia-nitrogen has been known as one of the recalcitrant wastewater. It is difficult to treat by conventional wastewater treatment techniques. This study was carried out to evaluate the feasibility of zeolite ion exchange and gamma-ray irradiation treatment of livestock wastewater. The removal efficiencies of SCOD Cr and NH3-N were significantly enhanced by gamma-ray irradiation after zeolite ion exchange as a pre-treatment. However, the effects of zeolite particle size on the SCOD Cr and NH 3 -N removal efficiencies were insignificant. These results indicate that the combined process of zeolite ion exchange and gamma-ray irradiation has potential for the treatment of livestock wastewater

  10. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter.

    Science.gov (United States)

    Xie, Ruosong; Wu, Miaomiao; Qu, Guangfei; Ning, Ping; Cai, Yingying; Lv, Pei

    2018-04-01

    A newly designed electric assisted micro-electrolysis filter (E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis (SE) and micro-electrolysis (ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry (GC-MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds. Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon (GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial pH in E-ME systems were also studied. The best voltage value was 1V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some pH buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust pH prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater. Copyright © 2017. Published by Elsevier B.V.

  11. Trace Analysis of Pharmaceutical Residues in Wastewater Treatment Plants in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Aldo Pacheco Ferreira

    2014-05-01

    Full Text Available The occurrence and fate of trace-level contamination of pharmaceuticals in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. The effluents of wastewater treatment plants, usually directly emitted to the environment, often contain the anti-inflammatory drug diclofenac. Diclofenac was chosen because it is of high consumption; by background literature indicate toxic effects on biota and the lack of profile in sewage removal provided by the city. For this purpose, a survey on the presence of diclofenac in urban wastewater of Rio de Janeiro was carried out. It were evaluated diclofenac concentration in the affluent and effluent from wastewater treatment plant (WWTP Penha and Ilha do Governador, Rio de Janeiro, Brazil. Samples were collected along the line of treatment of each WWTP, and for clean up the samples were solid phase extraction (SPE, analysed by high performance liquid chromatography (HPLC, assisted by diode array detector (DAD techniques. The removal efficiency of pharmaceuticals in the wastewater treatment plants was roughly evaluated. Diclofenac was detected in all samples analysed wastewater (treated and raw, which confirms the low removal efficiency of conventional treatment systems, aerobes and anaerobes.

  12. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  13. Formal Design and Analysis of a Wastewater Treatment Control System based on Petrinet

    Directory of Open Access Journals (Sweden)

    Seno D. Panjaitan

    2012-04-01

    Full Text Available This paper proposes a new control design approach for industrial wastewater treatment where its logic control is verifiable. In this research, a treatment control design in a lab-scale was controlled by a microcontroller circuit. The developed system combined anaerobic digestion, aeration and filtration process. Its logic control algorithm was designed by using Signal Interpreted Petri Net. In the logic verification, six analysis properties were satisfied: conflict free (logical process had no conflict behavior, termination (the process could be terminated from any state, non-contradictory outputs, live (any process state could always be reached from other state, deadlock-free, and reversible (the process could always back to initial condition. In the design evaluation, the average value of transparency metrics was 0.984 close to 1 as the best value. The system performance was evaluated by pollutant removal efficiency. The highest removal efficiencies were obtained when each anaerobic and aeration treatment were performed for three days respectively and followed by filtration. Within this condition, the system obtained average removal efficiency 91.7% of Chemical Oxygen Demand and 95.4% of Total Suspended Solids. In terms of electricity consumption, the system needed only 1,857.6 Watt-hour for a batch treatment process.

  14. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  15. About the use and treatment of reclaimed wastewater

    International Nuclear Information System (INIS)

    Marin Galvin, R.

    2009-01-01

    Demand of water in our actual society is increasing each day. Taking into account the irregular climatic situation experienced in a lot of zones of Spain, it is necessary to use all the available resources. Among the conventional resources of sweet waters (surface and underground), we must pay attention to the desalted waters and to the reclaimed wastewater. In this way, the practical use of reclaimed wastewater must be supported in three basic items: normative about reusing of reclaimed wastewater, that of treated wastewater and effluents discarded to natural environment and finally, treatment processes to reclaim wastewater. (Author) 11 refs

  16. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    OpenAIRE

    Abou-Elela, Sohair I.; Ali, Mohammed Eid M.; Ibrahim, Hanan S.

    2016-01-01

    The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC). The effects of operating condition on Fento...

  17. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  18. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  19. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    Science.gov (United States)

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L -1 , phosphorus 430 mg L -1 and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH 4 :PO 4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  20. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  1. Assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. Performance of the existing treatment system was assessed through characterization of both raw and treated effluents. From the analysis parameters likeChemical Oxygen Demand (COD), Biochemical ...

  2. Life cycle assessment of wastewater treatment options for small and decentralized communities.

    Science.gov (United States)

    Machado, A P; Urbano, L; Brito, A G; Janknecht, P; Salas, J J; Nogueira, R

    2007-01-01

    Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA) is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The present study used a LCA approach for comparing alternative wastewater treatment processes for small and decentralised rural communities. The assessment was focused on two energy-saving systems (constructed wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the global warming indicator. Options for reduction of life cycle impacts were assessed including materials used in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed when concrete was replaced by HDPE.

  3. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    Science.gov (United States)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  4. ASSESSMENT OF CARBON, NITROGEN AND PHOSPHORUS TRANSFORMATIONS DURING MUNICIPAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Lucyna Bogumiła Przywara

    2017-08-01

    Full Text Available Proper exploitation of waste water treatment plant is strictly connected with monitoring of basic parameters and effectiveness of particular its stages. Legal requirements include not only organic compounds (BOD5, COD and general suspensions but also highly effective removal of nutrients: nitrogen and phosphorus. Effectiveness of removal of biogenic compounds interferes with temperature fluctuations, effluent quality, problems of active sediment. The aim of this study was to show changes in concentrations of organic compounds, nitrogen and phosphorus in the municipal wastewater after subsequent stages of mechanical-biological treatment. During researches samples were taken down by the wastewater treatment line: raw wastewater, after mechanical treatment, pre-denitrification, dephosphatation, denitrification, nitrification and treated wastewater. Another aspect of this study was determination of COD fractions, and their changes in the municipal wastewater, after the successive stages of mechanical-biological treatment. It allows separation of dissolved and non-dissolved organic substances, taking into account also their biodegradability and the lack of susceptibility to biological decomposition. It can also be a very important method of the processes control during wastewater treatment.

  5. Assessment of On-Site Treatment Process of Institutional Building’s Wastewater

    Directory of Open Access Journals (Sweden)

    Motasem N. Saidan

    2018-03-01

    Full Text Available This study is conducted to investigate the characteristics of outflow wastewater of the 1 m3 on-site wastewater treatment unit on the basis of the testing and measurement data of the samples that were taken during the study monitored period (August 2017 to January 2018. For this purpose, samples were taken on a weekly basis from the treated wastewater effluent and five quality parameters (biochemical oxygen demand (BOD, chemical oxygen demand (COD, total suspended solids (TSS, pH, E-coli counts were monitored and measured. The average values of the five parameters were compared with the Jordanian standard maximum values, and water reuse in irrigation of plants classifications have been assessed and investigated. Average values of BOD, COD, TSS, pH, and E-coli in treated wastewater were 11 mg/L, 104 mg/L, 15 mg/L, 7.51, and 387 counts, respectively. The installation of in-line ultraviolet (UV unit in recirculating delivery system played a vital role in the reduction of counts far below the permissible maximum level (1000 counts. Based on national and international standards and criteria, results showed that the treated wastewater is suitable for the irrigation of two classifications of plants: (i Fruit trees, road-green sides outside cities, and green landscape; (ii Crops, commercial crops, and forest trees. Hence, such very low water flow rate treatment system can be utilized in refugees’ camps and water scarce residential areas in Jordan.

  6. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency...... of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli...... of heterotrophic bacteria by applying 6 mg/L and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 kWh/m3 and 2.10 kWh/m3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physico-chemical treatment of raw wastewater followed...

  7. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Fateme Barancheshme

    2018-01-01

    Full Text Available The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB and antibiotic resistant genes (ARGs in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs. It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1 study innovative strategies in large scale and over a long time to reach an actual evaluation, (2 develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3 consider operating and environmental factors that affect the

  8. ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi

    Science.gov (United States)

    Chipofya, V.; Kraslawski, A.; Avramenko, Y.

    The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.

  9. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  10. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  11. An innovative concept for handling and operation of the wastewater treatment plant of Cottbus

    International Nuclear Information System (INIS)

    Spiller, K.; Schmitt, J.

    1994-01-01

    A new concept for handling and operating the wastewater treatment plant of Cottbus, with computerized modelling and an expert system as integral parts of process analysis and decision-making, is developed. Optimized plant operation and process stability is to be achieved by conrolling process-dependent dosage of wastewater coming from sludge treatment and from faecal wastewater. With the treatment plant still being built, a thorough analysis of the influent and the resulting process conditions is done, using the computerized model. Results and consequences for process optimization are presented in this article. Special attention has to be given to load smoothing and optimization of denitrification, influencing process stability and quality. Thereby not only the legal requirements can be fulfilled but improvement of effluent quality also could be achieved, reducing total nitrogen in the effluent by as much as 50%, lowering wastewater treatment costs by allowing lower control levels and fees to be payed. (orig.) [de

  12. The effect of three holding tank chemicals on anaerobic wastewater treatment

    OpenAIRE

    Howard, Samuel Clarence

    1988-01-01

    Sewage-holding tanks aboard recreational boats store human wastes, thereby preventing the direct discharge of wastewater to the aquatic environment. Water-conserving toilets and limited holding tank volumes produce a highly concentrated waste that must be periodically dumped to a wastewater treatment system. Prior to disposal, many boat operators add commercial preparations to control odors produced in their chemical toilets and holding tanks. The objective of this study was to determine t...

  13. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  14. Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system.

    Science.gov (United States)

    Toyoda, Sakae; Suzuki, Yuuri; Hattori, Shohei; Yamada, Keita; Fujii, Ayako; Yoshida, Naohiro; Kouno, Rina; Murayama, Kouki; Shiomi, Hiroshi

    2011-02-01

    Wastewater treatment processes are believed to be anthropogenic sources of nitrous oxide (N(2)O) and methane (CH(4)). However, few studies have examined the mechanisms and controlling factors in production of these greenhouse gases in complex bacterial systems. To elucidate production and consumption mechanisms of N(2)O and CH(4) in microbial consortia during wastewater treatment and to characterize human waste sources, we measured their concentrations and isotopomer ratios (elemental isotope ratios and site-specific N isotope ratios in asymmetric molecules of NNO) in water and gas samples collected by an advanced treatment system in Tokyo. Although the estimated emissions of N(2)O and CH(4) from the system were found to be lower than those from the typical treatment systems reported before, water in biological reaction tanks was supersaturated with both gases. The concentration of N(2)O, produced mainly by nitrifier-denitrification as indicated by isotopomer ratios, was highest in the oxic tank (ca. 4000% saturation). The dissolved CH(4) concentration was highest in in-flow water (ca. 3000% saturation). It decreased gradually during treatment. Its carbon isotope ratio indicated that the decrease resulted from bacterial CH(4) oxidation and that microbial CH(4) production can occur in anaerobic and settling tanks.

  15. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  16. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  17. Is the whole the sum of its parts? Agent-based modelling of wastewater treatment systems.

    Science.gov (United States)

    Schuler, A J; Majed, N; Bucci, V; Hellweger, F L; Tu, Y; Gu, A Z

    2011-01-01

    Agent-based models (ABMS) simulate individual units within a system, such as the bacteria in a biological wastewater treatment system. This paper outlines past, current and potential future applications of ABMs to wastewater treatment. ABMs track heterogeneities within microbial populations, and this has been demonstrated to yield different predictions of bulk behaviors than the conventional, "lumped" approaches for enhanced biological phosphorus removal (EBPR) completely mixed reactors systems. Current work included the application of the ABM approach to bacterial adaptation/evolution, using the model system of individual EBPR bacteria that are allowed to evolve a kinetic parameter (maximum glycogen storage) in a competitive environment. The ABM approach was successfully implemented to a simple anaerobic-aerobic system and it was found the differing initial states converged to the same optimal solution under uncertain hydraulic residence times associated with completely mixed hydraulics. In another study, an ABM was developed and applied to simulate the heterogeneity in intracellular polymer storage compounds, including polyphosphate (PP), in functional microbial populations in enhanced biological phosphorus removal (EBPR) process. The simulation results were compared to the experimental measurements of single-cell abundance of PP in polyphosphate accumulating organisms (PAOs), performed using Raman microscopy. The model-predicted heterogeneity was generally consistent with observations, and it was used to investigate the relative contribution of external (different life histories) and internal (biological) mechanisms leading to heterogeneity. In the future, ABMs could be combined with computational fluid dynamics (CFD) models to understand incomplete mixing, more intracellular states and mechanisms can be incorporated, and additional experimental verification is needed.

  18. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  19. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment

    Science.gov (United States)

    Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.

    2018-04-01

    Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.

  20. Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment

    Science.gov (United States)

    Xu, Fei; Wang, Can; Xiao, Kemeng; Gao, Yufeng; Zhou, Tong; Xu, Heng

    2018-05-01

    An activated carbon (AC) coated with tungstic acid (WO3)/titanium dioxide (TiO2) nanocomposites photocatalytic material (ACWT) combined with Three-phase Fluidized Bed (TFB) was investigated for human excrement wastewater treatment. Under the ultraviolet (UV) and fluorescent lamp illumination, the ACWT had shown a good performance on chemical oxygen demand (COD) and total nitrogen (TN) removal but inefficient on ammonia nitrogen (NH3-N) removal. Optimized by Taguchi method, COD and TN removal efficiency was up to 88.39% and 55.07%, respectively. Among all the parameters, the dosage of ACWT had the largest contribution on the process. Bacterial community changes after treatment demonstrated that this photocatalytic system had a great sterilization effect on wastewater. These results confirmed that ACWT could be applied for the human excrement wastewater treatment.

  1. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    Science.gov (United States)

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  2. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...... is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies...... briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication....

  3. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter

    International Nuclear Information System (INIS)

    Kornaros, M.; Lyberatos, G.

    2006-01-01

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH) 2 and FeSO 4 , was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m 3 /m 2 day and up to 80-85% for a hydraulic loading 0.6 m 3 /m 2 day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m 3 /m 2 day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content

  4. Application of constructed wetlands for wastewater treatment in developing countries--a review of recent developments (2000-2013).

    Science.gov (United States)

    Zhang, Dong Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Ng, Wun Jern; Tan, Soon Keat

    2014-08-01

    Inadequate access to clean water and sanitation has become one of the most pervasive problems afflicting people throughout the developing world. Replication of centralized water-, energy- and cost-intensive technologies has proved ineffective in resolving the complex water-related problems resulting from rapid urbanization in the developing countries. Instead constructed wetlands (CWs) have emerged and become a viable option for wastewater treatment, and are currently being recognized as attractive alternatives to conventional wastewater treatment methods. The primary objective of this review is to present a comprehensive overview of the diverse range of practice, applications and researches of CW systems for removing various contaminants from wastewater in developing countries, placing them in the overall context of the need for low-cost and sustainable wastewater treatment systems. Emphasis of this review is placed on the treatment performance of various types of CWs including: (i) free water surface flow CW; (ii) subsurface flow CW; (iii) hybrid systems; and, (iv) floating treatment wetland. The impacts of different wetland design and pertinent operational variables (e.g., hydraulic loading rate, vegetation species, physical configurations, and seasonal variation) on contaminant removal in CW systems are also summarized and highlighted. Finally, the cost and land requirements for CW systems are critically evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Wastewater treatment and pollution control in Indonesia

    International Nuclear Information System (INIS)

    Danu, Sugiarto

    2006-01-01

    Present status of radiation facilities for Co-60 gamma ray irradiation and electron beam irradiation in Indonesia is first presented. Wastewater treatment is explained: kinds of waste, industrial, agricultural, municipal and nuclear. Each liquid wastewater containing various kinds of contaminants, radioactive or non-radioactive is differently treated by waste treatment industries. On-going project is use of electron beams in which combination with ozone to reduce chlorinated solvent, disinfected sludge from sewage treatment containing organic and inorganic components for soil fertilizer, and high color river water for water supplying. The cost factor and the effect of combined treatment are being examined. Other on-going projects are applications of electron beams for vulcanization of natural rubber latex and flue gas treatment by BATAN. (S. Ohno)

  6. Micro-electrolysis technology for industrial wastewater treatment.

    Science.gov (United States)

    Jin, Yi-Zhong; Zhang, Yue-Feng; Li, Wei

    2003-05-01

    Experiments were conducted to study the role of micro-electrolysis in removing chromaticity and COD and improving the biodegradability of wastewater from pharmaceutical, dye-printing and papermaking plants. Results showed that the use of micro-electrolysis technology could remove more than 90% of chromaticity and more than 50% of COD and greatly improved the biodegradability of pharmaceutical wastewater. Lower initial pH could be advantageous to the removal of chromaticity. A retention time of 30 minutes was recommended for the process design of micro-electrolysis. For the use of micro-electrolysis in treatment of dye-printing wastewater, the removal rates of both chromaticity and COD were increased from neutral condition to acid condition for disperse blue wastewater; more than 90% of chromaticity and more than 50% of COD could be removed in neutral condition for vital red wastewater.

  7. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  8. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention

    Directory of Open Access Journals (Sweden)

    J. L. Campos

    2016-01-01

    Full Text Available The operation of wastewater treatment plants results in direct emissions, from the biological processes, of greenhouse gases (GHG such as carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O, as well as indirect emissions resulting from energy generation. In this study, three possible ways to reduce these emissions are discussed and analyzed: (1 minimization through the change of operational conditions, (2 treatment of the gaseous streams, and (3 prevention by applying new configurations and processes to remove both organic matter and pollutants. In current WWTPs, to modify the operational conditions of existing units reveals itself as possibly the most economical way to decrease N2O and CO2 emissions without deterioration of effluent quality. Nowadays the treatment of the gaseous streams containing the GHG seems to be a not suitable option due to the high capital costs of systems involved to capture and clean them. The change of WWTP configuration by using microalgae or partial nitritation-Anammox processes to remove ammonia from wastewater, instead of conventional nitrification-denitrification processes, can significantly reduce the GHG emissions and the energy consumed. However, the area required in the case of microalgae systems and the current lack of information about stability of partial nitritation-Anammox processes operating in the main stream of the WWTP are factors to be considered.

  9. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.

    Science.gov (United States)

    Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L

    2018-06-19

    Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.

  10. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  11. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    International Nuclear Information System (INIS)

    Elmolla, Emad S.; Chaudhuri, Malay

    2011-01-01

    Highlights: · The work focused on hazardous wastewater (antibiotic wastewater) treatment. · Complete degradation of the antibiotics achieved by the treatment process. · The SBR performance was found to be very sensitive to BOD 5 /COD ratio below 0.40. · Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H 2 O 2 /COD and H 2 O 2 /Fe 2+ molar ratio). The SBR performance was found to be very sensitive to BOD 5 /COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe 2+ dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H 2 O 2 /COD molar ratio 2, H 2 O 2 /Fe 2+ molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  12. Oily wastewater treatment using a novel hybrid PBR-UASB system.

    Science.gov (United States)

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2007-04-01

    In this study, anaerobic treatability of oily wastewater was investigated in a hybrid reactor system consisting of a packed bed reactor (PBR) followed by an upflow anaerobic sludge blanket (UASB) reactor at 35 degrees C. The system was operated using real pet food wastewater at different hydraulic retention times and loading rates for 165 d. The PBR was packed with sol-gel/alginate beads containing immobilized enzyme which hydrolyzed the oil and grease (O&G) into free long chain fatty acids, that were biodegraded by the UASB. The hybrid system was operated up to an oil loading rate of 4.9 kg O&Gm(-3)d(-1) (to the PBR) without any operational problems for a period of 100 d, with COD and O&G removal efficiencies above 90% and no sludge flotation was observed in the UASB. Beads supplement to the PBR was less than 2 g d(-1) and the relative activity was about 70%. Further increment in O&G loading to 18.7 kg O&Gm(-3)d(-1) caused destabilization of the system with 0.35% (v float/v feed) sludge float removed from the UASB.

  13. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  14. Treatment of grain distillation wastewaters in an upflow anaerobic ...

    African Journals Online (AJOL)

    In operation of the full-scale upflow anaerobic sludge bed (UASB) system at the Stellenbosch Farmers' Winery (SFW) Wellington distillery, a problem encountered in the treatment of grain distillation wastewater was the accumulation of a floating scum layer. On occasion this was so severe that it forced shutdown of the UASB ...

  15. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    Science.gov (United States)

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  16. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  17. Treatment of wastewater by lemna minor

    International Nuclear Information System (INIS)

    Iram, S.; Zahra, A.

    2012-01-01

    The aim of the present study was to study the performance of bio-treatment ponds after one year of functioning at National Agricultural Research Center, Islamabad, Pakistan. The physical parameters (colour, pH, EC, TDS, turbidity) and chemical parameters (Zn, Cu, Cd, Ni, Mn, Fe and Pb) are with in the limits which are not sub-lethal for fish rearing. Lemna accumulates higher concentration of heavy metals as compared to wastewater and best for phyto remediation purpose. The treated wastewater is currently used for rearing of fish and irrigation of crops and plants. The plants around the bio-treatment ponds are healthy, green and showing enough production. The present investigation indicates that in future it would be possible to construct bio-treatment ponds in polluted areas of Pakistan. (author)

  18. Risk-Cost Estimation of On-Site Wastewater Treatment System Failures Using Extreme Value Analysis.

    Science.gov (United States)

    Kohler, Laura E; Silverstein, JoAnn; Rajagopalan, Balaji

    2017-05-01

      Owner resistance to increasing regulation of on-site wastewater treatment systems (OWTS), including obligatory inspections and upgrades, moratoriums and cease-and-desist orders in communities around the U.S. demonstrate the challenges associated with managing risks of inadequate performance of owner-operated wastewater treatment systems. As a result, determining appropriate and enforceable performance measures in an industry with little history of these requirements is challenging. To better support such measures, we develop a statistical method to predict lifetime failure risks, expressed as costs, in order to identify operational factors associated with costly repairs and replacement. A binomial logistic regression is used to fit data from public records of reported OWTS failures, in Boulder County, Colorado, which has 14 300 OWTS to determine the probability that an OWTS will be in a low- or high-risk category for lifetime repair and replacement costs. High-performing or low risk OWTS with repairs and replacements below the threshold of $9000 over a 40-year life are associated with more frequent inspections and upgrades following home additions. OWTS with a high risk of exceeding the repair cost threshold of $18 000 are further analyzed in a variation of extreme value analysis (EVA), Points Over Threshold (POT) where the distribution of risk-cost exceedance values are represented by a generalized Pareto distribution. The resulting threshold cost exceedance estimates for OWTS in the high-risk category over a 40-year expected life ranged from $18 000 to $44 000.

  19. A Highly Effective Photochemical System for Complex Treatment of Heavily Contaminated Wastewaters

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Hejda, S.; Mašín, P.; Tito, D.N.

    2014-01-01

    Roč. 86, č. 11 (2014), s. 2212-2220 ISSN 1061-4303 R&D Projects: GA MPO(CZ) FR-TI1/065 Institutional support: RVO:67985858 Keywords : advanced oxidation processes * photochemical oxidation * wastewater treatment Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.865, year: 2014

  20. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  1. Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios.

    Science.gov (United States)

    Lei, Zhongfang; Wu, Ting; Zhang, Yi; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong; Tay, Joo-Hwa

    2013-01-01

    Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l(-1). This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN>100 mg l(-1) and of chemical oxygen demand (COD)/TN ratio of 3.2-8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m(3) m(-2) d(-1) for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m(3) m(-2) d(-1) of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment.

    Science.gov (United States)

    Bai, Yaohui; Huo, Yang; Liao, Kailingli; Qu, Jiuhui

    2017-10-01

    Traditional wastewater treatments based on activated sludge often encounter the problems of bulking and foaming, as well as malodor. To solve these problems, new treatment technologies have emerged in recent decades, including the ecological wastewater treatment process, which introduces selected local plants into the treatment system. With a focus on the underlying mechanisms of the ecological treatment process, we explored the microbial community biomass, composition, and function in the treatment system to understand the microbial growth in this system and its role in pollutant removal. Flow cytometry analysis revealed that ecological treatment significantly decreased influent bacterial quantity, with around 80% removal. 16S rRNA gene sequencing showed that the ecological treatment also altered the bacterial community structure of the wastewater, leading to a significant change in Comamonadaceae in the effluent. In the internal ecological system, because most of microbes aggregate in the plant rhizosphere and the sludge under plant roots, we selected two plant species (Nerium oleander and Arundo donax) to study the characteristics of rhizosphere and sludge microbes. Metagenomic results showed that the microbial community composition and function differed between the two species, and the microbial communities of A. donax were more sensitive to seasonal effects. Combined with their greater biomass and abundance of metabolic genes, microbes associated with N. oleander showed a greater contribution to pollutant removal. Further, the biodegradation pathways of some micropollutants, e.g., atrazine, were estimated.

  3. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  4. Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration.

    Science.gov (United States)

    Lingua, Guido; Copetta, Andrea; Musso, Davide; Aimo, Stefania; Ranzenigo, Angelo; Buico, Alessandra; Gianotti, Valentina; Osella, Domenico; Berta, Graziella

    2015-12-01

    High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.

  5. Wastewater treatment by adsorption onto micro-particles of dried Withania frutescens Plant as new adsorbent

    International Nuclear Information System (INIS)

    Chiban, M.; Soudani, A.; Sinan, F.; Persin, M.

    2009-01-01

    Several industrial wastewater streams may contain heavy metals such as Cd(II), Cr(III), Cr(VI), Cu(II), Pb(II), Zn(II), etc. including the waste liquids generated by metal finishing or the mineral processing industries. The toxic metals must be effectively treated/removed from the wastewaters. If the wastewaters were discharged directly into natural waters, it will constitute a great risk for the aquatic ecosystem, whilst the direct discharge into the sewerage system may affect negatively the subsequent biological wastewater treatment. (Author)

  6. A Comprehensive Study on the Application of Reverse Osmosis (RO Technology for the Petroleum Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Shahryar Jafarinejad

    2017-10-01

    Full Text Available Large quantities of oily wastewaters can be generated from the activities and processes in the petroleum industry which draining of these effluents not only pollutes the environment but also reduces the yield of oil and water. Therefore, development of treatment processes for petroleum industry wastewaters is vital in order to prevent serious environmental damage and provide a source of water for beneficial use. Reverse osmosis (RO can be the most common membrane process used for desalination from oily wastewater and can produce water suitable for reuse at the petroleum industry. In this study, the application of RO technology for the petroleum industry wastewater treatment in different laboratory, pilot, field, and industrial scales have been reviewed. In addition, membrane fouling control, performance efficiency, treatment system configurations, pretreatment methods, quality of treated water, and economic issues have been investigated. With mixtures as complex as petroleum industry wastewaters, membrane fouling becomes a significant hurdle to implement the RO-based purification system. Operating the system within the critical flux range or adding chemicals, and/or pretreatment can usually control membrane fouling. Salt rejection of RO membranes can be 99% or higher.

  7. Electron beam wastewater treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Oikawa, H.; Somessari, E.S.R.; Silveira, C.G.; Costa, F.E.

    2001-01-01

    Experiments were performed at laboratory scale and at pilot plant scale to study the efficiency on using EB to remove and degrade toxic and refractory pollutants mainly from industrial origins. An upflow stream hydraulic system that governs the efficiency of the EB energy transferred to the stream was developed. Two different sources of samples were used to treat industrial effluents from a pharmaceutical chemical industry located in Sao Paulo and from a Governmental Wastewater Treatment Plant (WWTP) in Sao Paulo State, which receives the major quantity of industrial wastewater. Using samples from this WWTP, studies to combine EB irradiation process with conventional treatment were carried out with experimentation doses of 5 kGy, 10 kGy and 20 kGy and the irradiation effects were evaluated in the following parameters: COD, BOD, solids, TOC, THMs. PCE, TCE, BTX and concentration of organic acids by-products. Toxicity studies were also carried out for different sites and industrial activities showing significant removal of acute toxicity by increasing values of the EC-50 for most of the experiments. The economic aspects of this technology were evaluated and the estimated processing costs for some values of delivered doses and operation are reported here. (author)

  8. Upgrading of the STP Uithoorn: treatment of nutrient rich wastewater from horticulture.

    Science.gov (United States)

    Piekema, P; Neef, R

    2005-01-01

    The STP Uithoorn will be upgraded to accommodate the treatment of wastewater from a growing population and to meet more stringent nutrient discharge limits in 2006. In 2003 a system choice and preliminary design was made for the upgrading. A special feature is the nutrient rich wastewater flow from the rapidly developing horticulture in the area. Since the future loads from horticulture are highly uncertain, flexibility of the STP after upgrading is an important issue. A three stage system was selected: improved physical-chemical primary treatment, secondary treatment by activated sludge, and tertiary treatment by denitrifying filters. In this way an important part of the existing infrastructure can be reused, and flexibility is assured by constructing the tertiary treatment in modules and by providing a wide range of operational control possibilities. In this paper the process of system choice and selection of type of tertiary treatment are described, as well as the optimisation of the existing treatment. In order to determine the feasibility of allowing a high loading rate on the existing secondary clarifiers, a two-dimensional hydraulic model of the clarification process was used.

  9. Advanced oxidation-based treatment of furniture industry wastewater.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  10. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation.

    Science.gov (United States)

    Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang; Fan, Jinlin; Liu, Hai

    2015-01-01

    Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods

    Directory of Open Access Journals (Sweden)

    José de Anda

    2018-01-01

    Full Text Available This paper describes the preliminary monitoring results of an onsite pilot wastewater treatment plant consisting of a septic tank, an anaerobic up-flow filter, and a horizontal subsurface flow wetland system planted with Agapanthus africanus. The system was designed to treat heavily polluted domestic wastewater produced in a research and development (R&D center, reaching additional goals of zero energy consumption and eliminating the use of chemical additives. First water quality data shows that organic load in the treated sewage were removed achieving more than 95% efficiency. Nutrients were removed by almost 50%, and fecal and total coliform counts decreased by 99.96%. The results were compared to official Mexican regulations for wastewater discharged into lakes and reservoirs complied with all of them except for nutrients. In this pilot project, the resulting treated wastewater was directly reused for watering the green areas of the R&D center. The result was that the excess of nutrients improved the quality of the grass, avoiding the use of synthetic fertilizers, and created a wetland habitat for small wildlife species living in the area.

  12. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    Science.gov (United States)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  13. The application of ionising radiation in industrial wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kos, L. [Inst. of Knitting Technology and Techniques, Lodz (Poland); Perkowski, J. [Inst. of Applied Radiation Chemistry, Technical Univ. of Lodz, Lodz (Poland); Ledakowicz, S. [Dept. of Bioprocess Engineering, Technical Univ. of Lodz, Lodz (Poland)

    2003-07-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  14. A novel image processing-based system for turbidity measurement in domestic and industrial wastewater.

    Science.gov (United States)

    Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin

    2018-03-01

    Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it

  15. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  16. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    Science.gov (United States)

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    Science.gov (United States)

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO 2 /IrO 2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO 2 /IrO 2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  18. Microbial Removal Efficiency of UV in Tehran Shahid Mahallati Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Reza Dabbagh

    2009-03-01

    Full Text Available Shahid Mahallati Wastewater Treatment Plant was selected for installing a UV disinfection unit to investigate its germicidal effect on microbial removal. Low pressure mercury lamps were used to generate germicidal ultraviolet radiation (UV-C. The UV system was operated over a period of 6 months that included both warm and cold seasons. A maximum UV disinfection efficiency of 14.4m3/h was recorded for the system on the basis of design criteria within turbidity ranges of 9 to 32 NTU. The minimum UV dose applied in the UV unit was 40000 µW.s/cm2 and the highest bacterial density in the UV unit influent was 5.6*107. Effluent total coliform or fecal coliform enumeration after exposure to UV ray showed the microbial density decreasing from four logs, or 99.99%, to as high as six logs, or 99.9999% removal efficiency, under different conditions. Effluent microbial densities in terms of total and fecal coliforms were below 1000MPN/100mL and 400MPN/100mL, respectively. These values comply with wastewater discharge or agricultural irrigation standards according to Iran Department of Environment. From our results, it is concluded that UV disinfection may be an effective technique for wastewater disinfection in Iranian wastewater treatment plants.

  19. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  20. The effect of public or private structures in wastewater treatment on the conditions for the design, construction and operation of wastewater treatment plants.

    Science.gov (United States)

    Grünebaum, T; Bode, H

    2004-01-01

    Organised in public or private structures, wastewater services have to cope with different framework conditions as regards planning, construction, financing and operation. This leads quite often to different modes of management. In recent years there has been a push for privatisation on the water sector in general, the reasons for which are manifold, ranging from access to external know-how and capital to synergistic effects through integration of wastewater treatment into other tasks of similar or equal nature. Discussed are various models of public/private partnership (PPP) in wastewater treatment, encompassing for example the delegation of partial tasks or even the proportional or entire transfer of ownership of treatment facilities to private third parties. Decisive for high performance and efficiency is not the legal or organisational form, but rather the clear and unmistakable definition of tasks which are to be assigned to the different parties, customers and all other partners involved, as well as of clear-cut interfaces. On account of the (of course legitimate) profit-oriented perspective of the private sector, some decision-making processes in relation to project implementation (design and construction) and to operational aspects will differ from those typically found on the public sector. This does apply to decisions on investments, financing and on technical solutions too. On the other hand, core competencies in wastewater treatment should not be outsourced, but remain the public bodies' responsibility, even with 'far-reaching' privatisation models. Such core competencies are all efforts geared to sustainable wastewater treatment as life-supporting provision for the future or as contribution to the protection of health and the environment and to the development of infrastructure. Major areas of wastewater treatment and other related tasks are reviewed. The paper concludes with a list of questions on the issue of outsourcing.

  1. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    Science.gov (United States)

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  2. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with

  3. Electrochemical treatment of olive oil mill wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences

    2001-04-01

    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  4. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR.

    Science.gov (United States)

    Tao, Chi-Wei; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Kao, Po-Min; Hsu, Chun-Po; Shen, Shu-Min; Shen, Tzung-Yu; Wan, Terng-Jou; Huang, Yu-Li

    2014-10-15

    Antibiotics are widely used in livestock for infection treatment and growth promotion. Wastes from animal husbandry are a potential environmental source of antibiotic-insensitive pathogens, and the removal efficiency of the resistance genotypes in current wastewater treatment plants (WWTPs) is unknown. In this study, quantitative PCR was used for evaluating antibiotic resistance genes in wastewater treatment processes. Six wastewater treatment plants in different swine farms were included in this study, and five antibiotic resistance genes (ARGs) were tested for each treatment procedure. All of the tested ARGs including tetA, tetW, sulI, sulII, and blaTEM genes were detected in six swine farms with considerable amounts. The results showed that antibiotic resistance is prevalent in livestock farming. The ARG levels were varied by wastewater treatment procedure, frequently with the highest level at anaerobic treatment tank and lowest in the activated sludge unit and the effluents. After normalizing the ARG levels to 16S rRNA gene copies, the results showed that ARGs in WWTP units fluctuated partly with the quantity of bacteria. Regardless of its importance in biodegradation, the anaerobic procedure may facilitate bacterial growth thus increasing the sustainability of the antibiotic resistance genotypes. After comparing the copy numbers in influx and efflux samples, the mean removal efficiency of ARGs ranged between 33.30 and 97.56%. The results suggested that treatments in the WWTP could partially reduce the spread of antibiotic-resistant bacteria, and additional procedures such as sedimentation may not critically affect the removal efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Performance of A Pilot-Scale Vermifilter for the Treatment of A Real Hospital Wastewater

    Directory of Open Access Journals (Sweden)

    Nahid Ghobadi

    2016-12-01

    Full Text Available In this study, the performance of a pilot-scale vermifilter (VF for the treatment of hospital wastewater using the earthworm species Eisenia fetida was evaluated. The earthworms’ gut acts as a bioreactor and can ingest the wastewater solid and liquid organic wastes and expel these as vermicompost. A pilot-scale vermifilter was installed and operated for 133 days in one of hospitals in Hamadan city; the designed system was fed with the influent passed through coarse and fine grillage and the sedimentation tank of the hospital’s sanitary collection system. In order to study the efficiency of the system, the variations of pH value, chemical oxygen demand (COD, biochemical oxygen demand (BOD5, and total suspended solids (TSS were measured. In addition, a conventional geofilter (GF without Earthworm was used as the experimental control. The vermifiltration caused a significant decrease in the levels of COD (75%, BOD5 (93%, and TSS (89% as well as neutralized pH in the wastewater. Also, these contents in the geofilter were observed to be 65%, 71%, and 71%, respectively. The vermifiltration technology can, therefore, be applied as an environmentally friendly method for hospital wastewater treatment.

  6. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane

    Directory of Open Access Journals (Sweden)

    Dai Xiaoyuan

    2017-01-01

    Full Text Available The composition and complexity of oily wastewater contains many solid particles, free oil, emulsified oil and so on.It brought about a series of environmental pollution problems when oily wastewater was directly discharged into rivers, lakes and other water bodies. Therefore, researchers are committed to study how to deal with oily wastewater to deal with oily wastewater to apply it to meet the requirements of water injection.Inorganic porous ceramic membrane has excellent properties among many filtering methods. For example, high temperature and high pressure resistance, resistance to acid and alkali, low energy consumption, no pollution to the environment and has a good prospect in the field of oily wastewater treatment, which has attracted the attention of many scholars not only at home but also on abroad. This article describes the present situation of the research on the treatment of oily wastewater by ceramic membrane in recent years, and expounded the significance of the treatment of oily wastewater to people’s lives and makes an expectation for the development of inorganic porous ceramic membrane in the future.

  7. Current technologies for biological treatment of textile wastewater--a review.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  8. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  9. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able t...

  10. Renewable energy in Switzerland - Potential of waste-water treatment plants, waste-incineration plants and drinking water supply systems - Strategical decisions in politics

    International Nuclear Information System (INIS)

    Kernen, M.

    2006-01-01

    This article discusses how waste-water treatment plants, waste-incineration plants and drinking water supply systems make an important contribution to the production of renewable energy in Switzerland. Financing by the 'Climate-Cent' programme, which finances projects involving the use of renewable energy, is discussed. Figures are quoted on the electrical energy produced in waste-water treatment plants, waste-incineration plants and combined heat and power generation plant. Eco-balances of the various systems are discussed. Political efforts being made in Switzerland, including the 'Climate Cent', are looked at and promotion provided by new energy legislation is discussed. Eco-power and the processing of sewage gas to meet natural gas quality standards are discussed, as are energy analysis, co-operation between various research institutions and external costs

  11. COMPARATIVE STUDY OF TERTIARY WASTEWATER TREATMENT BY COMPUTER SIMULATION

    OpenAIRE

    Stefania Iordache; Nicolae Petrescu; Cornel Ianache

    2010-01-01

    The aim of this work is to asses conditions for implementation of a Biological Nutrient Removal (BNR) process in theWastewater Treatment Plant (WWTP) of Moreni city (Romania). In order to meet the more increased environmentalregulations, the wastewater treatment plant that was studied, must update the actual treatment process and have tomodernize it. A comparative study was undertaken of the quality of effluents that could be obtained by implementationof biological nutrient removal process li...

  12. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems.

    Science.gov (United States)

    Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten

    2018-05-01

    We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i.e. primary, secondary and tertiary treatment, independent treatment by septic tanks and also direct discharge to natural waters. Sludge disposal by means of composting is added as a new option. The model also includes a database containing statistics on wastewater treatment levels and sludge disposal patterns in 56 countries. The application of the new model is demonstrated using five chemicals assumed discharged to wastewater systems in four different countries. WW LCI 2.0 model results shows that chemicals such as diethylenetriamine penta (methylene phosphonic acid) (DTPMP) and Diclofenac, exhibit lower climate change (CC) and freshwater ecotoxicity (FET) burdens upon wastewater treatment compared to direct discharge in all country scenarios. Results for Ibuprofen and Acetaminophen (more readily degradable) show that the CC burden depends on the country-specific levels of wastewater treatment. Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how the model can provide substantially different outcomes, compared to conventional wastewater inventory models, making the inventory dependent upon the atomic composition of the molecules

  13. Improvement of biodegradability of industrial wastewaters by radiation treatment

    International Nuclear Information System (INIS)

    Jo, H.J.; Kim, H.J.; Kim, J.G.; Jung, J.; Choi, J.S.; Park, Y.K.

    2006-01-01

    In order to evaluate the use of gamma-ray treatment as a pretreatment to conventional biological methods, the effects of gamma-irradiation on biodegradability (BOD 5 /COD) of textile and pulp wastewaters were investigated. For all wastewaters studied in this work, the efficiency of treatment based on TOC removal was insignificant even at an absorbed dose of 20 kGy. However, the change of biodegradability was noticeable and largely dependent on the chemical property of wastewaters and the absorbed dose of gamma-rays. For textile wastewaters, gamma-ray treatment increased the biodegradability of desizing effluent due to degradation of polymeric sizing agents such as polyvinyl alcohol. Interestingly, the weight-loss showed the highest value of 0.97 at a relatively low dose of 1 kGy. This may be caused by the degradation of less biodegradable ethylene glycol prior to terephthalic acid decomposition. For pulp wastewater, the gamma-ray treatment did not improve the biodegradability of cooking and bleaching of C/D effluents. However, the biodegradability of bleaching E1 and final effluents was abruptly increased up to 5 kGy then slowly decreased as the absorbed dose was increased. The initial increase of biodegradability may be induced by the decomposition of refractory organic compounds such as chlorophenols, which are known to be the main components of bleaching C/D and final effluents. (author)

  14. Investigation of Irrigation Reuse Potential of Wastewater Treatment Effluent from Hamedan Atieh-Sazan General Hospital

    Directory of Open Access Journals (Sweden)

    Mohammad Binavapour

    2007-12-01

    Full Text Available Hospital wastewater is a type of municipal wastewater which may contain pathogenic agents and different microorganisms. If properly treated, the effluent from hospital wastewater treatment facilities can be used for irrigation purposes. To investigate this, the effluent from Hamedan Atieh-Sazan General Hospital was studied. The existing treatment facility uses an extended aeration system with an average wastewater flow rate of approximately 150 m3/day. In addition to evaluating the performance of the wastewater facility at Atieh-Sazan General Hospital, quality parameters of the raw wastewater and the effluent were measured. The mean values obtained for pH, BOD, COD, MPN for total Coliform/100ml, and Nematode/lit in raw wastewater were about 7.1, 238 mg/l, 352 mg/l, 5.5´106, and 2340, respectively. The mean values obtained for pH, BOD, COD, Na%, MPN for total Coliform/100 ml, and Nematode/lit in the effluent were 7.1, 35 mg/L, 77 mg/L, 61, 1561, and 575, respectively. Based on these results, the efficiency of the existing system in removing BOD, COD, and MPN/100 ml were %85.3, %78.3, and %99.97, respectively. With respect to water quality standards available, the quality of the effluent was considered to be suitable for irrigation except for its Na%, MPN for total Coliform, and Nematodes values.

  15. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment.

    Science.gov (United States)

    Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R

    2018-03-05

    Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.

  16. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    OpenAIRE

    Irena Kania-Surowiec

    2014-01-01

    In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the...

  17. Inter-Municipal Cooperation For Wastewater Treatment: Case studies from Israel

    NARCIS (Netherlands)

    Hophmayer Tokich, Sharon; Kliot, Nurit

    2008-01-01

    Since the beginning of the 1990s, local authorities in Israel have been engaged in promoting advanced Wastewater Treatment Plant (WWTP) projects throughout the country, resulting in the “wastewater treatment revolution” of the 1990s. These achievements are extremely important in the water-scarce

  18. Electrochemical treatment of tannery wastewater using DSA electrodes

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Botta, Clarice M.R.; Espindola, Evaldo L.G.; Olivi, Paulo

    2008-01-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity

  19. Electrochemical treatment of tannery wastewater using DSA electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carla Regina [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil); Botta, Clarice M.R.; Espindola, Evaldo L.G. [Nucleo de Estudos em Ecossistemas Aquaticos, Centro de Recursos Hidricos e Ecologia Aplicada, Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, CP 292, CEP 13560-970 Sao Carlos, SP (Brazil); Olivi, Paulo [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil)], E-mail: olivip@ffclrp.usp.br

    2008-05-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity.

  20. Electrocatalysis in wastewater treatment: recent mechanism advances

    Directory of Open Access Journals (Sweden)

    Carlos A. Martínez-Huitle

    2011-01-01

    Full Text Available Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models for organics destruction, related to electrochemical phenomena and material surfaces, were proposed in the last decades. So, this paper presents a critical and comprehensive review about the principles and recent mechanism advances in electrocatalysis for wastewater treatment.

  1. Modeling the Effect of Onsite Wastewater Treatment Systems on Nitrate Load Using SWAT in an Urban Watershed of Metropolitan Atlanta, GA

    Science.gov (United States)

    Onsite Wastewater Treatment Systems (OWTSs) can be a source of nitrate (NO3-) contamination in both surface and ground waters as a result of failing or high density systems. In metropolitan Atlanta, more than 26% of homes are on OWTS and this percentage is expected to increase wi...

  2. Anaerobic bio filter systems to have the best yield of biogas with the treatment of piggery wastewater

    International Nuclear Information System (INIS)

    Athula, Jayamanne M. D. A.

    2006-01-01

    Animal husbandry is a leading food supplying industry for the mankind. Wastewater generation from animal husbandry is a real environmental threat for many countries. Piggery wastewater with high Chemical Oxygen Demand (COD is between 8000 to 15000 mg/lt) is having a very high potential of biogas production, under anaerobic condition. This research was based upon the fixing of series of Up flow Anaerobic Floating Filters (UAFF) to catch a maximum yield of biogas from piggery wastewater with better cleaning facility. These experiments achieved more than 90% of COD removal of piggery wastewater with better cleaning facility. Other analyzed results of the experiments shows that the removal rate of biological Oxygen Demand (BOD) also is more than 90% with 90% of avarrage removal rates of Suspended Solids (SS) and Total Solids (TS). Average volumetric biogas yield was reched up to 450 lts/Cum.day in the different loading rates held between 2.24 to 5.92 kg. COD/Cum.day. Encouraged by this attractive results of the lab-scale unit, and another medium scale unit installed at a piggery site, a few companies funded for developing full-scale units with low cost construction methodolgy. A few companies funded for developing full-scale units with low cost construction methodology. A few farmers for animalhusbandry. Centrl Environmental Authority of Sri Lanka (CEA) has lready monitored the parameters of the treated wastewater with this treatment system and satisfactory levels were ensured. A few private farmers for animal husbandry in Sri Lanka are now precticing this system satisfactory as a good start for a long journey towards the prospects of biogas energy with a clean farm environment. This UAFF syste can easily practice with other type of wastewaters from the field of animal husbandry. Some of them are cattle farms. poultry farms, Lamb and sheep farms etc. Technical paper with full data analysis is available with a pictorial power point presentation.(Author)

  3. Life Cycle Assessment and Cost Analysis of Water and Wastewater Treatment Options for Sustainability: Influence of Scale on Membrane Bioreactor Systems

    Science.gov (United States)

    changes in drinking and wastewater infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated wastewa...

  4. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment.

    Science.gov (United States)

    Abinandan, Sudharsanam; Subashchandrabose, Suresh R; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu

    2018-05-17

    Owing to certain drawbacks, such as energy-intensive operations in conventional modes of wastewater treatment (WWT), there has been an extensive search for alternative strategies in treatment technology. Biological modes for treating wastewaters are one of the finest technologies in terms of economy and efficiency. An integrated biological approach with chemical flocculation is being conventionally practiced in several-sewage and effluent treatment plants around the world. Overwhelming responsiveness to treat wastewaters especially by using microalgae is due to their simplest photosynthetic mechanism and ease of acclimation to various habitats. Microalgal technology, also known as phycoremediation, has been in use for WWT since 1950s. Various strategies for the cultivation of microalgae in WWT systems are evolving faster. However, the availability of innovative approaches for maximizing the treatment efficiency, coupled with biomass productivity, remains the major bottleneck for commercialization of microalgal technology. Investment costs and invasive parameters also delimit the use of microalgae in WWT. This review critically discusses the merits and demerits of microalgal cultivation strategies recently developed for maximum pollutant removal as well as biomass productivity. Also, the potential of algal biofilm technology in pollutant removal, and harvesting the microalgal biomass using different techniques have been highlighted. Finally, an economic assessment of the currently available methods has been made to validate microalgal cultivation in wastewater at the commercial level.

  5. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    Science.gov (United States)

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  6. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jelic, Aleksandra [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Fatone, Francesco; Di Fabio, Silvia [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Petrovic, Mira, E-mail: mpetrovic@icra.cat [Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 80010 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain); Cecchi, Franco [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Interuniversity Consortium ' Chemistry for the Environment' (INCA), Via delle Industrie, I-30135, Marghera-Venice (Italy); Barcelo, Damia [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 101-E-17003 Girona (Spain)

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ss-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 {mu}g/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  7. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment

    International Nuclear Information System (INIS)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-01-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification–denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. < 20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg) also indicated that the selected pharmaceuticals preferably remain

  8. Addressing social aspects associated with wastewater treatment facilities

    International Nuclear Information System (INIS)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia

    2016-01-01

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  9. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  10. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  11. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    Science.gov (United States)

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  12. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparative overview of primary sedimentation-based mechanical stage in some Romanian wastewater treatment systems

    Science.gov (United States)

    Zaharia, C.

    2017-08-01

    Nowadays, wastewater (WW) treatment facilities are considered significant exposure pathways for solid particles, and also significant concerns of any quality conscious manufacturer. Most solid particles have some forms of organic coating either used as active material or to suspend and/or stabilize different present solid materials, having increase in toxicity that must be reduced, or sometimes even totally eliminated, especially if effluent is either discharged directly to surface water, or distributed through industrial water supplies. Representatives providing innovative technologies, comprehensive supports and expertise in wastewater and sludge treatment field are known, each one using modern treatment technology and facilities. Mechanical treatment is indispensable in primary treatment steps of both municipal and industrial WW applications, its main goal being separation of floating, settling and suspended materials (especially into a primary sedimentation-based treatment step). The aim of this work is to present comparatively the performance in solids removal of conventional mechanical WW treatment stages, especially those based on primary sedimentation, or sedimentation-like operations applied for Romanian urban WW treatment plants (serving two towns with ca 18,000 inhabitants), industrial WW treatment plants (deserving industries of vegetal food processing and organic chemicals’ manufacturing) and additional information on valorisation of separated solid material and improvement possibilities.

  14. Treatment of dairy wastewater with a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2013-12-01

    Full Text Available Among the food industries, the dairy industry is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. In this study, an aerobic membrane bioreactor (MBR was used for the treatment of wastewater from a large dairy industry and two hydraulic retention times (HRT, 6 and 8 hours, were evaluated. For both HRTs removal efficiencies of organic matter of 99% were obtained. Despite high permeate flux (27.5 L/h.m², the system operated fairly stablely. The molecular weight distribution of feed, permeate and mixed liquor showed that only the low molecular weight fraction is efficiently degraded by biomass and that the membrane has an essential role in producing a permeate of excellent quality.

  15. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  16. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  17. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    Science.gov (United States)

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  18. Study of the aerobic biological treatment of slaughterhouse wastewater by membrane process

    International Nuclear Information System (INIS)

    Ben yahmed, Nesrine

    2011-01-01

    The objective of this work is to study the performance of aerobic treatment of slaughterhouse wastewater by a side-stream membrane bioreactor (MBR) with semi-frontal filtration and to evaluate the sludge production generated by this system treatment. The MBR was fed with a flow rate of 5 L/d. The wastewater used in this study was collected from the WWTP Ellouhoum following pretreatment operations. They are characterized by an average total COD concentration of approximately 2 g/L. The mass load applied to the system was 0.18 g COD/gVSS.d. The results show that COD and total nitrogen removal efficiencies are respectively estimated at 90.66 pour cent and 92.86 pour cent. Treatment with MBR also allows a total elimination of TSS, fecal coliforms and pathogens. With a total biomass recycling, low sludge yield (Yobs) of 0.106 gTSS/g COD eliminated was obtained.

  19. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  20. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, A.; Taguchi, M. [Japan Atomic Energy Agency (Japan); Maruyama, A. [Gunma Prefectural Sewerage Manegement General Office (Japan)

    2012-07-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D{sub 1ng}, were estimated to be 100, 200 and 150 Gy (J kg{sup -1}), respectively. Since the D{sub 1ng} of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m{sup -3}. (author)

  1. Treatment of Wastewater Containing Organic Pollutants by Ionizing Radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Maruyama, A.

    2012-01-01

    We have investigated the treatment of endocrine disrupting chemicals (EDCs) and halogented organic compounds (HOCs) in wastewater by ionizing radiation in the CRP. Three samples of the actual wastewater having estrogen activity were analyzed by the yeast two-hybrid assay, enzyme linked immunosorbent assay (ELISA) and total organic carbon (TOC) analysis. Treatment of the wastewater is required to decrease the estrogen activity to less than 1 ng / L; the lower limit concentration of appearance of endocrine disrupting property. Medaka estrogen activity (mEA) initially increased and then decreased by β-ray irradiation, indicating that decomposition products in the real wastewaters also have the estrogen activity. The doses required to decrease in mEA of samples 1 to 3 below 1 ng / L, D 1ng , were estimated to be 100, 200 and 150 Gy (J kg -1 ), respectively. Since the D 1ng of 17 β-stradiol (E2) at 500 ng/L (1.8 nmol/L) in pure water was estimated to be 5 Gy as mentioned in the previous CRP, the elimination of estrogen activity of real wastewater is considered to be interfered by organic impurities. The economic cost of the treatment process of EDCs using electron beam was estimated at 17 yen m -3 . (author)

  2. Combined oxidative and biological treatment of separated streams of tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, G.; Nieto, J. [Environmental Science Center EULA - Chile, Univ. of Concepcion, Concepcion (Chile); Mansilla, H.D. [Lab. of Renewable Resources, Univ. of Concepcion, Concepcion (Chile); Bornhardt, C. [Chemical Engineering Dept., Univ. of La Frontera, Temuco (Chile)

    2003-07-01

    Leather tanning effluents are a source of severe environmental impacts. In particular, the unhairing stage, belonging to the beamhouse processes, generates an alkaline wastewater with high concentrations of organic matter, sulphides, suspended solids, and salts, which shows significant toxicity. The objective of this work was to evaluate the biodegradation of this industrial wastewater by combined oxidative and biological treatments. An advanced oxidation process (AOP) with Fenton's reagent was used as batch pre-treatment. The relationships of H{sub 2}O{sub 2}/Fe{sup 2+} and H{sub 2}O{sub 2}/COD were 9 and 4, respectively, reaching an organic matter removal of about 90%. Subsequently, the oxidised beamhouse effluent was fed to an activated sludge system, at increasing organic load rates (OLR), in the range of 0.4 to 1.6 g COD/L.d. The biological organic matter removal of the pre-treated wastewater ranged between 35% and 60% for COD, and from 60% to 70% for BOD. Therefore, sequential AOP pretreatment and biological aerobic treatment increased the overall COD removal up to 96%, compared to 60% without pretreatment. Bioassays with D. magna and D. pulex showed that this kind of treatment achieves only a partial toxicity removal of the tannery effluent. (orig.)

  3. Modelling micro-pollutant fate in wastewater collection and treatment systems: status and challenges

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Benedetti, L.; Daigger, G. T.

    2013-01-01

    of such models. In brief, we conclude that, in order to predict the contaminant removal in centralised treatment works, considering the dramatic improvement in monitoring and detecting MPs in wastewater, more mechanistic approaches should be used to complement conventional, heuristic and other fate models...

  4. Determination of transport parameters in polymeric systems for industrial wastewater treatments

    International Nuclear Information System (INIS)

    Caracciolo, Nestor; Vazquez, Cristina; Boeykens, Susana P.

    2009-01-01

    In this paper the influence of dispersed macromolecules in the process of selective mass transfer through aqueous systems was studied in order to apply this knowledge in the design of reactors for industrial wastewater treatments. The application of biomass, usually composed of biopolymers production accessible, is currently in great development. Particularly, their use in case of retention of heavy metals in liquids. The discovery of these retention phenomena provides the foundation of new technologies for remediation and the recovery of these metals. To evaluate the retention capacity or the mobility of charged species in TAD (stirred tank batch) and TUB (tubular) reactors, we studied the behavior of metal ions in media of different ionic strength with scleroglucan (polar polymer), xanthan (anionic polyelectrolyte) and polyoxyethylene (virtually non-polar). The study using anions and cations of varying mass and charge in the aforementioned systems, was done by Synchrotron Radiation micro X-Ray Fluorescence (SRμXRF). A double cell that allow determining concentrations at different times and positions was designed. (author)

  5. A mathematical programming framework for early stage design of wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2015-01-01

    The increasing number of alternative wastewater treatment technologies and stricter effluent requirements make the optimal treatment process selection for wastewater treatment plant design a complicated problem. This task, defined as wastewater treatment process synthesis, is currently based on e...... the design problem is formulated as a Mixed Integer (Non)linear Programming problem e MI(N)LP e and solved. A case study is formulated and solved to highlight the application of the framework. © 2014 Elsevier Ltd. All rights reserved....... on expert decisions and previous experiences. This paper proposes a new approach based on mathematical programming to manage the complexity of the problem. The approach generates/identifies novel and optimal wastewater treatment process selection, and the interconnection between unit operations to create...

  6. Treatment of low-activity-level process wastewaters by continuous countercurrent ion exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    A mobile pilot-scale continuous countercurrent ion-exchange (CCIX) system is being operated at the Oak Ridge National Laboratory (ORNL) for the treatment of wastewaters that contain predominantly calcium sodium, and magnesium bicarbonates and are slightly contaminated with 90 Sr and 137 Cs radioisotopes. A demonstration study is being conducted to evaluate the near-steady-state performance and feasibility of a pilot-scale CCIX column for the selective removal of strontium from wastewater. Test results show that the process removes strontium sufficiently from the wastewater to permit discharge while significantly reducing the volume of secondary waste generation. CCIX has the potential for effective use in several applications; however, it has not been frequently utilized by industries to date. The CCIX system could offer an economical alternative for decontamination of wastewaters containing trace amounts of contaminants prior to discharge into the environment. This paper discusses (a) application of the Thomas model for predicting breakthrough curves from ion exchange column tests, (b) methods for scaleup of experimental small-scale ion-exchange columns to industrial-scale columns, and (c) methods for predicting effluent compositions in a CCIX system. 20 refs., 6 figs., 2 tabs

  7. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    Science.gov (United States)

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Optimizing the selection of small-town wastewater treatment processes

    Science.gov (United States)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  9. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  10. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    Science.gov (United States)

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  11. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed transesterification.

    Science.gov (United States)

    De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni

    2013-01-01

    The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.

  13. Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology.

    Science.gov (United States)

    Chen, Hsi-Jien; Lin, Yi-Zi; Fanjiang, Jen-Mao; Fan, Chihhao

    2013-04-01

    This study aimed to explore the microbial community variation and treatment ability of a full-scale anoxic-aerobic-anoxic-aerobic (AOAO) process used for optoelectronic wastewater treatment. The sludge samples in the biological treatment units were collected and subsequently subjected to polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis identification and the wastewater components such as BOD5 and NH3-N were evaluated during the processes. The group specific primers selected were targeting at the kingdom Bacteria, the Acidobacterium, the α-proteobacteria, the β-proteobacteria ammonia oxidizers, Actinobacteria and methyllotrophs, and the 16S rDNA clone libraries were established. Ten different clones were obtained using the Bacteria primers and eight different clones were obtained using the β-proteobacteria ammonia oxidizer primers. Over 95 % of BOD5 and 90 % of NH3-N were removed from the system. The microbial community analysis showed that the Janthinobacterium sp. An8 and Nitrosospira sp. were the dominant species throughout the AOAO process. Across the whole clone library, six clones showed closely related to Janthinobacterium sp. and these species seemed to be the dominant species with more than 50 % occupancy of the total population. Nitrosospira sp. was the predominant species within the β-proteobacteria and occupied more than 30 % of the total population in the system. These two strains were the novel species specific to the AOAO process for optoelectronic treatment, and they were found strongly related to the system capability of removing aquatic contaminants by inspecting the wastewater concentration variation across the system.

  14. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  15. Application of electron beam to industrial wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, D.K.; Boo, J.Y.; Kim, J.K.; Kim, Y.; Chung, W.; Choi, J.S.; Kang, H.J.; Pikaev, A.K.

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1995, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with EB irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an EB pilot plant for treating 1,000m 3 /day of wastewater from 60,000m 3 /day of total dyeing wastewater has been constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  16. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    International Nuclear Information System (INIS)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-01-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  17. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  18. Enterobius vermicularis as a Novel Surrogate for the Presence of Helminth Ova in Tertiary Wastewater Treatment Plants.

    Science.gov (United States)

    Rudko, Sydney P; Ruecker, Norma J; Ashbolt, Nicholas J; Neumann, Norman F; Hanington, Patrick C

    2017-06-01

    Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log 10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova may be

  19. Behavior of natural radionuclides in wastewater treatment plants

    International Nuclear Information System (INIS)

    Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V.

    2012-01-01

    56 samples, including influent, primary effluent, secondary effluent and final effluent wastewater from two Spanish municipal wastewater treatment plants (WWTPs), were analyzed to assess both the occurrence and behavior of natural radioactivity during 12 sampling campaigns carried out over the period 2007–2010. Influent and final effluent wastewaters were sampled by taking into account the hydraulic residence time within the WWTP. A wide range of gross alpha activities (15–129 mBq/L) and gross beta activities (477–983 mBq/L) in liquid samples were obtained. A correlation analysis between radioactivity in liquid samples and the performance characteristics of the WWTPs was performed. The results in liquid samples showed that gross beta activities were not influenced by treatment in the studied WWTPs. However, gross alpha activities behave differently and an increase was detected in the effluent values compared with influent wastewater. This behavior was due to the increase in the total dissolved uranium produced during secondary treatment. The results indicate that the radiological characteristics of the effluents do not present a significant radiological risk and make them suitable for future applications. - Highlights: ► Liquids from WWTPs were analyzed to know the behavior of natural radionuclides. ► Gross beta activities were not influenced by treatment in the studied WWTPs. ► Increase in gross alpha activity was observed due to uranium desorption/solubilisation. ► Correlation between gross alpha activity and the chemical oxygen demand was found

  20. Wastewater Treatment with Ammonia Recovery System

    OpenAIRE

    M. Örvös; T. Balázs; K. F. Both

    2008-01-01

    From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

  1. Oil refinery wastewater treatment using physicochemical, Fenton and Photo-Fenton oxidation processes.

    Science.gov (United States)

    Tony, Maha A; Purcell, Patrick J; Zhao, Yaqian

    2012-01-01

    The objective of this study was to investigate the application of advanced oxidation processes (AOPs) to the treatment of wastewaters contaminated with hydrocarbon oil. Three different oil-contaminated wastewaters were examined and compared: (i) a 'real' hydrocarbon wastewater collected from an oil refinery (Conoco-Phillips Whitegate refinery, County Cork, Ireland); (ii) a 'real' hydrocarbon wastewater collected from a car-wash facility located at a petroleum filling station; and (iii) a 'synthetic' hydrocarbon wastewater generated by emulsifying diesel oil and water. The AOPs investigated were Fe(2+)/H(2)O(2) (Fenton's reagent), Fe(2+)/H(2)O(2)/UV (Photo-Fenton's reagent) which may be used as an alternative to, or in conjunction with, conventional treatment techniques. Laboratory-scale batch and continuous-flow experiments were undertaken. The photo-Fenton parametric concentrations to maximize COD removal were optimized: pH = 3, H(2)O(2) = 400 mg/L, and Fe(2+) = 40 mg/L. In the case of the oil-refinery wastewater, photo-Fenton treatment achieved approximately 50% COD removal and, when preceded by physicochemical treatment, the percentage removal increased to approximately 75%.

  2. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  3. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Hu, Zhen; Liu, Hai

    2015-10-01

    Constructed wetlands (CWs) have been used as an alternative to conventional technologies for wastewater treatment for more than five decades. Recently, the use of various modified CWs to improve treatment performance has also been reported in the literature. However, the available knowledge on various CW technologies considering the intensified and reliable removal of pollutants is still limited. Hence, this paper aims to provide an overview of the current development of CW strategies and techniques for enhanced wastewater treatment. Basic information on configurations and characteristics of different innovations was summarized. Then, overall treatment performance of those systems and their shortcomings were further discussed. Lastly, future perspectives were also identified for specialists to design more effective and sustainable CWs. This information is used to inspire some novel intensifying methodologies, and benefit the successful applications of potential CW technologies.

  4. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu

    2011-01-01

    Treatment of various types of wastewaters is an urgent problem in densely populated areas of many tropical countries. We studied the potential of using Sesbania sesban, an N2-fixing shrub, in constructed wetland systems for the treatment of high-strength wastewater. A replicated horizontal subsur...

  5. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  6. A Tool to Support Optimal Industrial Wastewater Treatment Design and Analysis

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Pennati, Alessandra; Bozkurt, Hande

    2013-01-01

    may be suboptimal or disregard opportunities for water recycle or resource recovery and reuse. In this contribution, we propose a model-based toolbox developed to help wastewater professionals to screen among a large number of alternatives in order to identify the optimal treatment configuration from......Industrial Wastewater Treatment Plant (IWWTP) design is often based on in-house expert knowledge and experience. Because of time and resources constraints, only a small number of alternative treatment configurations and ideas are evaluated while designing an IWWTP. Consequently, the selected design...... an economic cost-benefit perspective. The toolbox is demonstrated through a case study, dealing with oil refinery wastewater treatment and water recycle....

  7. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  8. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian; Katuri, Krishna; Logan, Bruce E.; Maab, Husnul; Nunes, Suzana Pereira; Saikaly, Pascal

    2013-01-01

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  9. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  10. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  11. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaoyi, E-mail: yangxiaoyi@buaa.edu.cn [Department of Thermal Energy Engineering, BeiHang University, Beijing 100191 (China)

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  12. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    Yang Xiaoyi

    2009-01-01

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  13. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  14. Incentives in the water chain: wastewater treatment and reuse in developing countries

    NARCIS (Netherlands)

    Gengenbach, M.F.

    2010-01-01

    The proper management of wastewater and its reuse is crucial in order to reduce hazards and maintain a variety of benefits. The merits of improvements in wastewater management are particularly high where effective wastewater treatment is not in place and completely untreated wastewater is reused.

  15. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment

    International Nuclear Information System (INIS)

    Liu, Wei; Ai, Zhihui; Zhang, Lizhi

    2012-01-01

    Highlights: ► Remove RhB by a novel 3D-E-Fenton system using foam nickel as particle electrodes. ► The 3D-E-Fenton system exhibit much higher RhB removal efficiency than the counterpart 3D-E and E-Fenton system. ► Foam nickel as a particle electrode displays good oxygen reduction activity. ► The performance of RhB removal was optimized by some operating parameters and the optimization pH was the neutral. - Abstract: In this work, we demonstrate a novel three-dimensional electro-Fenton system (3D-E-Fenton) for wastewater treatment with foam nickel, activated carbon fiber and Ti/RuO 2 –IrO 2 as the particle electrodes, the cathode, and the anode respectively. This 3D-E-Fenton system could exhibit much higher rhodamine B removal efficiency (99%) than the counterpart three-dimensional electrochemical system (33%) and E-Fenton system (19%) at neutral pH in 30 min. The degradation efficiency enhancement was attributed to much more hydroxyl radicals generated in the 3D-E-Fenton system because foam nickel particle electrodes could activate molecular oxygen to produce ·O 2 − via a single-electron transfer pathway to subsequently generate more H 2 O 2 and hydroxyl radicals. This is the first observation of molecular oxygen activation over the particle electrodes in the three-dimensional electrochemical system. These interesting findings could provide some new insight on the development of high efficient E-Fenton system for wastewater treatment at neutral pH.

  16. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  17. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  18. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic

  19. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  20. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  1. The use of moving bed bio-reactor to laundry wastewater treatment

    Science.gov (United States)

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni

    2017-11-01

    Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.

  2. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  3. Survey of onsite wastewater treatment systems in Kristiansand municipality Norway : pollutants removal performance and solutions : performance analysis based on Web-GIS model

    OpenAIRE

    Abbas, Muhammad

    2017-01-01

    In Norway, 16% of the population lives in rural areas where centralized infrastructure for wastewater treatment is neither cost effective and nor sustainable due to topography and long distance to connect a treatment facility. There are 330,000 small decentralized wastewater treatment plants in Norway and out of those 1,500 plants are located in Kristiansand municipality. Eutrophication and fecal contamination in the recipients are the major cause of concern to wastewater disposal from such o...

  4. Decentralized wastewater treatment using passively aerated biological filter.

    Science.gov (United States)

    Abou-Elela, Sohair I; Hellal, Mohamed S; Aly, Olfat H; Abo-Elenin, Salah A

    2017-10-13

    This study aimed to evaluate the efficiency of a novel pilot-scale passively aerated biological filter (PABF) as a low energy consumption system for the treatment of municipal wastewater. It consists of four similar compartments, each containing 40% of a non-woven polyester fabric as a bio-bed. The PABF was fed with primary treated wastewater under a hydraulic retention time (HRT) of 3.5 hr and a hydraulic loading rate of 5.5 m 2 /m 3 /d. The effect of media depth, HRT, dissolved oxygen (DO) and surface area of the media on the removal efficiency of pollutants was investigated. Results indicated that increasing media depth along the axis of the reactor and consequently increasing the HRT and DO resulted in great removal of different pollutants. A significant increase in the DO levels in the final effluent up to 6.7 mg/l resulted in good nitrification processes. Statistical analysis using SPSS showed that the reactor performance has significant removal efficiency (p filter systems.

  5. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    Residues of pharmaceuticals, personal care products and industrial chemicals find their way into the environment mainly through incomplete removal in the conventional urban wastewater treatment plants (WWTPs) and appear as micro-pollutants at pg L-1 to μg L-1 concentrations. WWTPs were designed...

  6. Removal performance and water quality analysis of paper machine white water in a full-scale wastewater treatment plant.

    Science.gov (United States)

    Shi, Shuai; Wang, Can; Fang, Shuai; Jia, Minghao; Li, Xiaoguang

    2017-06-01

    Paper machine white water is generally characterized as a high concentration of suspended solids and organic matters. A combined physicochemical-biological and filtration process was used in the study for removing pollutants in the wastewater. The removal efficiency of the pollutant in physicochemical and biological process was evaluated, respectively. Furthermore, advanced technology was used to analyse the water quality before and after the process treatment. Experimental results showed that the removal efficiency of suspend solids (SS) of the system was above 99%, while the physicochemical treatment in the forepart of the system had achieved about 97%. The removal efficiency of chemical oxygen demand (COD) and colour had the similar trend after physicochemical treatment and were corresponding to the proportion of suspended and the near-colloidal organic matter in the wastewater. After biological treatment, the removal efficiency of COD and colour achieved were about 97% and 90%, respectively. Furthermore, molecular weight (MW) distribution analysis showed that after treatment low MW molecules (analysis showed that most humic-like substances were effectively removed during the treatment. The analyses of gas chromatography/mass spectrometry showed that the composition of organic matter in the wastewater was not complicated. Methylsiloxanes were the typical organic components in the raw wastewater and most of them were removed after treatment.

  7. Cesium and strontium behaviors in wastewater collected by different sewer systems

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nao K.; Hatanaka, Takuma; Umita, Teruyuki [Department of Civil and Environmental Engineering, Iwate University, 020-8551, Ueda 4-3-5, Morioka, Iwate (Japan); Ito, Ayumi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering Iwate University, 020-8551, Ueda 4-3-5, Morioka, Iwate (Japan)

    2014-07-01

    The nuclear accident at the Fukushima Daiichi Nuclear Power Plant resulted in the release of radionuclides such as {sup 134}Cs, {sup 137}Cs, and {sup 90}Sr into the environment. Some of these radionuclides have been entering sewage treatment plants through sewer systems and then being transferred to sewage sludge. There are two types of sewer systems, e.g. a combined sewer system (CSS) and a separated sewer system (SSS). The CSS transfers rainwater runoff and domestic wastewater to the treatment plants in a single pipe. The SSS has independent pipes; one pipe transfers domestic wastewater to the treatment plant and the other pipe transfers rainwater runoff to river or sea. Since most of the radionuclides released into the atmosphere by the nuclear accident fell onto the land surface by precipitation, the CSS should collect more radionuclides than the SSS. However, there is little information about behavior differences of radionuclides in wastewater between the two types of sewer systems. The objective of the present study was to clarify the differences of radionuclide behavior in wastewater between the CSS and SSS. Behaviors of stable Cs and Sr in wastewater were observed as a means to predict radiocesium and radiostrontium. Two types of wastewater were collected in Morioka city, Japan: wastewater in a CSS in a rain event (WC) and wastewater in a SSS (WS). The WC was taken at a high rate filtration plant every 20 minutes from the beginning of the rain event for several hours in 2013. The WS was collected at a sewage treatment plant once a month from June to October 2013; sometimes the collection was at the time of a rain event. Suspended solid (SS) in each sample was measured as a physicochemical property. The element concentrations in total, dissolved, and particulate fractions were determined. While the SS in the WS taken on rainy day was 0.11 g/L, the SS in the WC was 0.36 g/L in the beginning of the rainfall and then decreased with time. Total Cs concentration

  8. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    Science.gov (United States)

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  9. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  10. Investigating the interactions of decentralized and centralized wastewater heat recovery systems.

    Science.gov (United States)

    Sitzenfrei, Robert; Hillebrand, Sebastian; Rauch, Wolfgang

    2017-03-01

    In the urban water cycle there are different sources for extracting energy. In addition to potential and chemical energy in the wastewater, thermal energy can also be recovered. Heat can be recovered from the wastewater with heat exchangers that are located decentralized and/or centralized at several locations throughout the system. It can be recovered directly at the source (e.g. in the showers and bathrooms), at building block level (e.g. warm water tanks collecting all grey water), in sewers or at the wastewater treatment plant. However, an uncoordinated installation of systems on such different levels can lead to competing technologies. To investigate these interactions, a modelling environment is set up, tested and calibrated based on continuous sewer temperature and flow measurements. With that approach different heat recovery scenarios on a household level (decentralized) and of in-sewer heat recovery (centralized) are investigated. A maximum performance drop of 40% for a centralized energy recovery system was estimated when all bathrooms are equipped with decentralized recovery systems. Therefore, the proposed modelling approach is suitable for testing different future conditions and to identify robust strategies for heat recovery systems from wastewater.

  11. Integrated control of the wastewater system – potentials and barriers

    DEFF Research Database (Denmark)

    Mollerup, Ane Loft; Grum, Morten; Muschalla, Dirk

    2013-01-01

    Applying integrated control to a sewer system and wastewater treatment plant often leads to additional benefits for both systems when compared to controlling them independently. However, barriers such as a lack of incentive for utilities to put this type of control in place mean that in practice...

  12. Treatment of laundry wastewater by biological and electrocoagulation methods.

    Science.gov (United States)

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  13. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  14. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management.

    Science.gov (United States)

    Ishii, Stephanie K L; Boyer, Treavor H

    2015-08-01

    Alternative approaches to wastewater management including urine source separation have the potential to simultaneously improve multiple aspects of wastewater treatment, including reduced use of potable water for waste conveyance and improved contaminant removal, especially nutrients. In order to pursue such radical changes, system-level evaluations of urine source separation in community contexts are required. The focus of this life cycle assessment (LCA) is managing nutrients from urine produced in a residential setting with urine source separation and struvite precipitation, as compared with a centralized wastewater treatment approach. The life cycle impacts evaluated in this study pertain to construction of the urine source separation system and operation of drinking water treatment, decentralized urine treatment, and centralized wastewater treatment. System boundaries include fertilizer offsets resulting from the production of urine based struvite fertilizer. As calculated by the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), urine source separation with MgO addition for subsequent struvite precipitation with high P recovery (Scenario B) has the smallest environmental cost relative to existing centralized wastewater treatment (Scenario A) and urine source separation with MgO and Na3PO4 addition for subsequent struvite precipitation with concurrent high P and N recovery (Scenario C). Preliminary economic evaluations show that the three urine management scenarios are relatively equal on a monetary basis (<13% difference). The impacts of each urine management scenario are most sensitive to the assumed urine composition, the selected urine storage time, and the assumed electricity required to treat influent urine and toilet water used to convey urine at the centralized wastewater treatment plant. The importance of full nutrient recovery from urine in combination with the substantial chemical inputs required for N recovery

  15. Energy and air emission implications of a decentralized wastewater system

    International Nuclear Information System (INIS)

    Shehabi, Arman; Stokes, Jennifer R; Horvath, Arpad

    2012-01-01

    Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process. (letter)

  16. Domestic wastewater treatment as a net energy producer--can this be achieved?

    Science.gov (United States)

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  17. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  18. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  19. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Kang; Tsai, Tsung-Yueh; Liu, Jiunn-Ching; Chen, Mei-Chen [Energy and Resources Labs., ITRI, Hsinchu (Taiwan)

    2001-07-01

    The characteristics of degradation/conversion of bio-refractory and the growth of a biofilm are investigated in laboratory-scale pre-ozonation and lifted moving-bed biological activated carbon (BAC) advanced treatment processes treating phenol, benzoic acid, aminobenzoic acid and petrochemical industry wastewater which contains acrylonitrile butadiene styrene (ABS). The optimal reaction time and ozone dosage of pre-ozonation for bio-refractory conversion were determined to be 30 min and 100-200mg O{sub 3}/hr, respectively. After pre-ozonation of 30 min treatment, BOD{sub 5}/COD ratio of influent and effluent increased apparently from 20 to 35%, approximately. However, the change of pH in pre-ozonation was inconspicuous. The optimal flow rate of influent and air were controlled at 1.6 1/h and 120-l50nl/min in lifted moving-bed BAC advanced treatment reactor. A COD removal efficiency of 85-95% and 70-90% may be maintained by using an organic loading of 3.2-6.3kg COD/m{sup 3} day and 0.6-1.6 kg-COD/m{sup 3} day with an HRT of 6.0 h as secondary and advanced treatment system, respectively. The time required for the BAC bed to be regenerated by a thermal regeneration is prolonged 4-5 times more than that of GAC system. It can be estimated that the enhanced COD removal capability of the biofilm was not only due to the increase in the COD removal capability of acclimated bacteria, but also due to species succession of bacteria in bio-film ecosystem. (Author)

  20. Case study: centralized wastewater treatment plant at Rawang Integrated Industrial Park

    International Nuclear Information System (INIS)

    Ting Teo Ming; Khomsaton Abu Bakar; Zulkafli Ghazali; Khairul Zaman Mohd Dahlan

    2006-01-01

    Survey has been conducted at Rawang Integrated Industrial Park (RIIP) to investigate the possibility of setting up centralized industrial wastewater treatment plant. Rawang integrated industrial park is selected based on suggestion from department of environment. RIIP consists of about 150 industries with various type of activities operated in the area. Only 9 out of estimated 150 industries have individual wastewater treatment plant. The business activities of the 9 industries include food processing, textile, welding rods manufacturing, steel galvanizing and battery manufacturing. Wastewater generated by the industries are characterized by high oil and grease, cod, bod, organic matter, metal hydroxide and acidic. Besides that most of industries do the monitoring only once a month. This paper will also discuss the advantages of setting up of centralized industrial wastewater treatment plant to the government authorities, industries, people and environment. (Author)

  1. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    Science.gov (United States)

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to

  2. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    Science.gov (United States)

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent

  3. Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater

    Science.gov (United States)

    Lu, Mengqian; Chen, Shing; Babanova, Sofia; Phadke, Sujal; Salvacion, Michael; Mirhosseini, Auvid; Chan, Shirley; Carpenter, Kayla; Cortese, Rachel; Bretschger, Orianna

    2017-07-01

    Microbial fuel cells (MFCs) have been shown as a promising technology for wastewater treatment. Integration of MFCs into current wastewater treatment plant have potential to reduce the operational cost and improve the treatment performance, and scaling up MFCs will be essential. However, only a few studies have reported successful scale up attempts. Fabrication cost, treatment performance and operational lifetime are critical factors to optimize before commercialization of MFCs. To test these factors, we constructed a 20 L MFC system containing two 10 L MFC reactors and operated the system with brewery wastewater for nearly one year. Several operational conditions were tested, including different flowrates, applied external resistors, and poised anodic potentials. The condition resulting in the highest chemical oxygen demand (COD) removal efficiency (94.6 ± 1.0%) was a flow rate of 1 mL min-1 (HRT = 313 h) and an applied resistor of 10 Ω across each MFC circuit. Results from each of the eight stages of operation (325 days total) indicate that MFCs can sustain treatment rates over a long-term period and are robust enough to sustain performance even after system perturbations. possible ways to improve MFC performance were discussed for future studies.

  4. Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system.

    Science.gov (United States)

    Meng, Lingwei; Li, Xiangkun; Wang, Xinran; Ma, Kaili; Liu, Gaige; Zhang, Jie

    2017-11-01

    This study aimed to reveal how amoxicillin (AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes (ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed (EGSB) reactor was designed and run for 241days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA- 1 , OXA -2 , OXA -10 , TEM -1 , CTX-M -1 , class I integrons (intI1) and 16S rRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter, Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds (such as various sugars and amines). And the relative quantification of each β-lactam resistance gene in the study was changed with the increasing of AMX concentration. Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system. Copyright © 2017. Published by Elsevier B.V.

  5. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...

  6. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  7. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  8. Nitrogen Control Through Decentralized Wastewater Treatment: Process Performance and Alternative Management Strategies

    Science.gov (United States)

    Decentralized or onsite wastewater treatment (OWT) systems have long been implicated in being a major source of N inputs to surface and ground waters and numerous regulatory bodies have promulgated strict total N (TN) effluent standards in N-sensitive areas. These standards, howe...

  9. Engineered ecosystem for on-site wastewater treatment in tropical areas.

    Science.gov (United States)

    de Sá Salomão, André Luis; Marques, Marcia; Severo, Raul Gonçalves; da Cruz Roque, Odir Clécio

    2012-01-01

    There is a worldwide demand for decentralized wastewater treatment options. An on-site engineered ecosystem (EE) treatment plant was designed with a multistage approach for small wastewater generators in tropical areas. The array of treatment units included a septic tank, a submersed aerated filter, and a secondary decanter followed by three vegetated tanks containing aquatic macrophytes intercalated with one tank of algae. During 11 months of operation with a flow rate of 52 L h(-1), the system removed on average 93.2% and 92.9% of the chemical oxygen demand (COD) and volatile suspended solids (VSS) reaching final concentrations of 36.3 ± 12.7 and 13.7 ± 4.2 mg L(-1), respectively. Regarding ammonia-N (NH(4)-N) and total phosphorus (TP), the system removed on average 69.8% and 54.5% with final concentrations of 18.8 ± 9.3 and 14.0 ± 2.5 mg L(-1), respectively. The tanks with algae and macrophytes together contributed to the overall nutrient removal with 33.6% for NH(4)-N and 26.4% for TP. The final concentrations for all parameters except TP met the discharge threshold limits established by Brazilian and EU legislation. The EE was considered appropriate for the purpose for which it was created.

  10. Use and treatment of olive mill wastewater: current situation and prospects in Spain

    Directory of Open Access Journals (Sweden)

    Fiestas Ros de Ursinos, J. A.

    1992-04-01

    Full Text Available The characteristics of olive mill wastewater are set out the viewpoint of their pollutant capacity and the problems arising from their tipping in olive-growing areas. The national administration's solutions for preventing pollutions of surface waters are also stated. Special detail is given to the action taken within a research and development program financed by the Spanish Government and the EEC through the Commission MEDSPA 89 for the technical-economic evaluation of different systems for eliminating and treating olive mill wastewater, in order to determine the feasibility of their introduction at industrial level. At the same time the systems currently under evaluation are described: - Intensification of natural evaporation from olive mill wastewater stored in ponds (two systems. - Physical processes using forced evaporation to eliminate the olive mill wastewater, followed by aerobic biological processes or systems of ultrafiltration and inverse osmosis for final treatment of the condensate (two systems. - Application of physico-chemical processes to eliminate the greater part of the organic components of the olive mill wastewaters and the use of aerobic biological processes or systems of ultrafiltration and inverse osmosis for final treatment of the clarified fraction (three systems. - Biological process for the complete treatment of the olive mill wastewaters by the successive application of processes: bioconversion, biomethanisation, aerobic treatment, and physico-chemical treatment. Treatment yields of the order of 99,6% are achieved, at the same time obtaining by-products of commercial interest (one system.

    Las características de los alpechines se establecen desde el punto de vista de su capacidad contaminante y de los problemas típicos que surgen en las zonas de cultivo del olivo. También están descritas las soluciones de la administración del Estado para la prevención de la contaminación de aguas de superficie

  11. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    Science.gov (United States)

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  12. Tetracycline removal during wastewater treatment in high-rate algal ponds

    International Nuclear Information System (INIS)

    Godos, Ignacio de; Muñoz, Raúl; Guieysse, Benoit

    2012-01-01

    Highlights: ► Tetracycline removal was most likely caused by photodegradation and biosorption. ► Tetracycline presence was linked to biomass deflocculation and poor settleability. ► Deflocculation did not impact treatment efficiency. ► Deflocculation may hamper biomass recover during full-scale treatment. - Abstract: With the hypothesis that light supply can impact the removal of veterinary antibiotics during livestock wastewater treatment in high rate algal ponds (HRAPs), this study was undertaken to determine the mechanisms of tetracycline removal in these systems. For this purpose, two HRAPs were fed with synthetic wastewater for 46 days before tetracycline was added at 2 mg L −1 to the influent of one of the reactors (Te-HRAP). From day 62, dissolved tetracycline removal stabilized around 69 ± 1% in the Te-HRAP and evidence from batch assays suggests that this removal was mainly caused by photodegradation and biosorption. Tetracycline addition was followed by the deflocculation of the Te-HRAP biomass but had otherwise no apparent impact on the removal of the chemical oxygen demand (COD) and biomass productivity. The results from the batch assays also suggested that the light-shading and/or pollutant-sequestrating effects of the biomass limited tetracycline removal in the pond. For the first time, these results demonstrate that the shallow geometry of HRAPs is advantageous to support the photodegradation of antibiotics during wastewater biological treatment but that the presence of these pollutants could hamper biomass recovery. These findings have significant implications for algal-based environmental biotechnologies and must be confirmed under field conditions.

  13. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  14. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: septic tank - upflow anaerobic filter

    DEFF Research Database (Denmark)

    Arrubla, Juan Pablo; Cubillos, Janneth A.; Ramírez Vargas, Carlos Andrés

    2016-01-01

    of use, consumption and presence of PPCPs in wastewater from a treatment plant in a rural area of Pereira (Colombia). Domestic sewage is treated in a septic tank followed by an Up-Flow Anaerobic Filter and its ef uent is discharged into the Otún River, upstream of the water intake of the supply system...

  15. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  16. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China

    International Nuclear Information System (INIS)

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-01-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of 85% in A/O process and 60–77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. - Highlights: • UV-234 and UV-329 were the predominated compounds in residential wastewater. • The A/O treatment process had higher removal effect than the BAF treatment process. • Removal efficiency of UV filters was not significantly influenced by season changes. • Effluent from the WWTP was not the

  17. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    NARCIS (Netherlands)

    Speth, D.R.; Zandt, M.H. in 't; Guerrero Cruz, S.; Dutilh, B.E.; Jetten, M.S.M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is

  18. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  19. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    Science.gov (United States)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  20. Combined treatment of municipal waste-water and landfill leachate by means of membrane bioreactor: an experimental study

    International Nuclear Information System (INIS)

    Iannelli, R.; Lizza, E.; Giraldi, D.

    2005-01-01

    This work presents the results of an experimental study focusing on the applicability of the membrane bioreactor technology for the combined treatment of municipal wastewater and landfill leachate. In the experiment we used both a micro-filtration unit and a traditional secondary settler in an innovative combined process that can present some economic advantages on the pure membrane separation, so as to evaluate and compare the efficiencies of the two adopted technologies. The experiment was carried out in two phases: first, we evaluated the system only with municipal wastewater; then we tested the treatment of a mixture of municipal wastewater and landfill leachate. We obtained good results in both cases for standard quality indicators (COD, TSS, NH 4 ), specific inorganic compounds such as Fe and Zn and microorganisms. The micro-filtrations unit had very good performances with respect to both treatment efficiency and hydraulic behaviour: after the first start-up period, we observed a regular running of the unit with no need for special chemical or mechanical treatment different from the ones adopted ordinarily in the MBR treatment systems [it