WorldWideScience

Sample records for wastewater treatment held

  1. Wastewater Treatment

    Science.gov (United States)

    ... and arsenic can have acute and chronic toxic effects on species. other substances such as some pharmaceutical and personal care products, primarily entering the environment in wastewater effluents, may also pose threats to human health, aquatic life and wildlife. Wastewater treatment The major ...

  2. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  3. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  4. Onsite wastewater treatment, recycling and small water and wastewater systems: Selected proceedings of the IWA 6th International specialised conference on small water and wastewater systems and 1st International specialised conference on onsite wastewater treatment and recycling, held in Freemantle, Western Australia, 11-13 February 2004

    National Research Council Canada - National Science Library

    Mathew, K; Ho, G

    2005-01-01

    This issue contains a selection of 40 papers presented at IWA's 6th Specialised Conference on Small Water and Wastewater Systems and 1st Specialised Conference on Onsite Wastewater Treatment and Recycling...

  5. International Conference on Innovative Biological Treatment of Toxic Wastewaters Held in Arlington, Virginia on June 24-26, 1986.

    Science.gov (United States)

    1987-04-01

    el Tratamiento de Aguas Residuales ," presented at the November 6-11, 1983, X Interamerican Congress of Chemical Engineering, held at Santiago, Chile...OF log P VALLES FOR MIJSTRIAL. C*VIKALS. (YEITH, DE FOE, AND KNJtf) .... .... ..... no le3 I 30% a 3 Ś 7 l2x * 1.% FIG 4. PLOT OF BCF(f) VS 2Xv OF THE...34 Journal of the Sanitary Engineering Division, ASCE, Vol. 96, No. SA3, 1970, pp.757-778. 2. Slez, P.B., "Cindtica de los Procesos Biol6gicos Usados en

  6. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  7. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  8. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  9. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...... treatment, even by utilizing waste heat from the waste incinerators. For the seweraged parts of the towns it might be most beneficial to maintain the flush toilet solutions, while introducing a treatment step prior to discharging to the recipient, such as simple mechanical treatment which might even...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...

  10. Microalgae and wastewater treatment

    OpenAIRE

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged i...

  11. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    In the first part of this article, we have learned about the need and importance of wastewater treatment and conven- tional methods of treatment. Currently the need is to develop low power consuming and yet effective techniques to handle complex wastes. As a result, new and advanced techniques are being studied and in ...

  12. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    Techniques of Wastewater Treatment. 1. Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni, Mugdha Deshpande and A B Pandit. Amol A Kulkarni is a PhD student from the Chemi- cal Engineering division in UDCT and is working on the characterization of non-linear dynamics in chemical reactors.

  13. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...... emissions and potential health impacts due to spreading of pathogens. Anyway, the use of treatment for micro-pollutants is increasing and a paradigm shift is ongoing — wastewater is more and more considered as a resource of, e.g. energy, nutrients and even polymers, in the innovations going on. The focus...... of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact...

  14. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  15. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  16. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  17. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  18. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  19. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  20. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  1. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  2. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  3. High salinity wastewater treatment.

    Science.gov (United States)

    Linarić, M; Markić, M; Sipos, L

    2013-01-01

    The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.

  4. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  5. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  6. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  7. Constructed Wetlands for Wastewater Treatment

    Science.gov (United States)

    This presentation is a general introductory overview of constructed wetlands for wastewater treatment. Photographs show a wide range of applications and sizes. Summary data on cost and performance from previously published documents by WERF and EPA is presented. Previously pre...

  8. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  9. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  10. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  11. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  12. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  13. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...

  14. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  15. Restoration of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Skabo, R.R. [CH2M Hill, Denver, CO (United States)

    1994-12-31

    Corrosion in Wastewater Treatment Plants (WWTP) has always been a problem. As systems increase in size, corrosion of materials in certain areas of the plant can become more serious. Concrete is the primary material used in RWPS, and it can be severely corroded by the environment in a WWTP. This paper discusses some of the more common types of HWP corrosion, which occur in both concrete and metallic structures. Corrosion caused by poor design will be discussed also. Examples of corrosion will be described and practical solutions for restoration of corroded surfaces will be presented The advantages and disadvantages of various restoration methods will be compared and alternative construction methods and design changes will be offered. These alternatives will improve the corrosion performance of common construction materials.

  16. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  17. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  18. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  19. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  20. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  1. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    It was found that for anaerobic treatment of olive mills wastewater COD:N:P ratio of about 900:5:1.7 was able to achieve more than 80% COD removal. The observed biomass yield was about 0.06 kg VSS per kg of COD degraded. For extended aeration aerobic treatment of pulp and paper mill wastewater COD:N:P ratio of ...

  2. Microalgae at wastewater treatment in cold climate

    OpenAIRE

    Grönlund, Erik

    2002-01-01

    The thesis concludes that microalgae may improve wastewater treatment in ponds in cold climate, from a treatment perspective as well as a sustainability perspective. A literature review revealed that the microalgae biomass produced may find economic use, depending on what species will come to dominate, since there are many possible products from microalgae biomass. Laboratory experiments showed that microalgae collected in the Mid Sweden region can grow readily in wastewater from the same reg...

  3. Wastewater Treatment in Kathmandu : Management, Treatment and Alternative

    OpenAIRE

    Regmi, Shakil

    2013-01-01

    Main aim of this thesis was to understand the wastewater situation in Kathmandu, Nepal and its impact in natural water stream, how it is managed and treated. After understanding the scenario of wastewater treatment in Kathmandu, a suitable alternative wastewater treatment system is recommended for future use. Technical as well as managerial problem exists in Kathmandu, thus from my experience in Mikkeli, Finland I came up with the model that is handled by the municipality itself because skill...

  4. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  5. Oxidation pond for municipal wastewater treatment

    Science.gov (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  6. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  7. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  8. Emergency Planning for Municipal Wastewater Treatment Facilities.

    Science.gov (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  9. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  10. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  12. Cosmetic wastewater treatment using dissolved air flotation

    Directory of Open Access Journals (Sweden)

    Bogacki Jan Paweł

    2017-06-01

    Full Text Available Five cosmetics wastewater samples were treated by Dissolved Air Flotation (DAF assisted by coagulation. Different aluminum based coagulants were used: (Al2(SO43, Al 1019, Al 3010, Al 3030, Al 3035, PAX 16 and PAX 19. The raw wastewater COD values were in the range 285-2124 mg/l. The efficiency of DAF depended on different coagulants and production profi le of factory. COD removal was varied from 11.1 to 77.7%. The efficiency of coagulants was similar during treatment of particular sample. The best results were obtained with Al2(SO43 and for sample 5 - lotions and shampoos production. The wastewater from UV fi lter creams production (sample 4 was resistant to treatment by DAF regardless of used coagulant. HS-SPME-GC-MS analysis can be a confirmation of DAF effectiveness

  13. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand......, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination...

  14. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  15. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  16. Constructed wetlands: A future alternative wastewater treatment ...

    African Journals Online (AJOL)

    Wastewater treatment will always pose problems if there are no new alternative technologies in place to replace the currently available technologies. More recently, it has been estimated that developing countries will run out of water by 2050. This is a course for concern not only to the communities but also a challenge to ...

  17. WASTEWATER TREATMENT USING MACROALGAE KELP SP.

    Directory of Open Access Journals (Sweden)

    Suzana Elena BIRIS-DORHOI

    2016-11-01

    Full Text Available In the present study was used the alga Kelp sp. in wastewater collected from a household, in order to experiment its treatment capacities. Every measurement in this study was made using Spectoquant NOVA 60. The results show an decrease in the main parameters when low quantities of algae were used, but an increase when larger quantities were used.

  18. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  19. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  20. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  1. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  2. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  3. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  4. Catalytic thermal treatment of desizing wastewaters.

    Science.gov (United States)

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2007-10-01

    In the present study, catalytic thermal treatment (thermolysis) was investigated for the reduction of COD and color of the desizing wastewater under moderate temperature and atmospheric pressure conditions using various catalysts. The experimental runs were performed in a glass reactor equipped with a vertical condenser. The homogeneous copper sulfate catalyst was found to be the most active in comparison to other catalysts under similar operating conditions. A removal of about 71.6% chemical oxygen demand (COD) and 87.2% color of desizing wastewater was obtained with a catalyst concentration of 4 kg/m(3) at pH 4. The initial pH value of the wastewater showed a pronounced effect on the precipitation process. During the thermolysis, copper gets leached to the aqueous phase, the residue obtained after the treatment is rich in copper and it can be blended with organic manure for use in agricultural fields. The thermogravimetric analysis showed that the thermal oxidation of the solid residue obtained after thermolysis gets oxidized at a higher temperature range than that of the residue obtained from the desizing wastewater. The results lead to the conclusion that thermochemical precipitation is a very fast (instantaneous) process and would need a very small reactor vessel in comparison to other processes.

  5. Discussion on Wastewater Treatment Process of Coal Chemical Industry

    Science.gov (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie

    2017-12-01

    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  6. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    2000) Wastewater treatment by pond systems: experi- ences in Catalonia, Spain. Water Sci. Technol. 42 (10-11) 35-42. STANDARD METHODS (1995) Standard Methods for the Examination of Water and Wastewater (19th edn.) ...

  7. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....

  8. Optimizing potassium ferrate for textile wastewater treatment by RSM

    OpenAIRE

    Maryam Moradnia; Masoud Panahifard; Kavoos Dindarlo; Hamzeh Ali Jamali

    2016-01-01

    Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD) and response surface methodology (RSM) to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a p...

  9. Cheese whey wastewater: characterization and treatment.

    Science.gov (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Forward Osmosis in Wastewater Treatment Processes.

    Science.gov (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  11. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  12. Electrochemical treatment of olive oil mill wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences

    2001-04-01

    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  13. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  14. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment......, which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  15. Treatment of acid mine wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, D.; Barnard, R.

    1993-06-01

    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis.

  16. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Directory of Open Access Journals (Sweden)

    Boguniewicz-Zabłocka Joanna

    2017-01-01

    Full Text Available During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions pollution removal occurs mostly with higher efficiency.

  17. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  18. Photocatalytic Treatment of a Synthetic Wastewater

    Science.gov (United States)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  19. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  20. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  1. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment.

  2. Coagulation in Treatment of Swine Slaughterhouse Wastewater

    Directory of Open Access Journals (Sweden)

    Ha Bui Manh

    2017-03-01

    Full Text Available In this study, wastewater taken from the Nam Phong swine slaughterhouse, Ho Chi Minh City, was used to evaluate the treatment efficiency of common coagulants, including Alum (Aluminum Sulfate - Al2(SO43.18H2O, Poly-Aluminum Chloride (PAC, and Ferrous Sulfate (FeSO4.7H2O, using a jar-test system. The experiments were conducted using the one-factor-at-a-time method to examine three variables which are pH, stirring speed, and coagulant dosage. The results showed that both Alum and PAC perform over 90% removal of colour, turbidity, COD, and total phosphorus (TP from slaughterhouse wastewater at pH 7 with a stirring speed of 75 revolutions per minute (RPM and average coagulant dosages of 450 mg/L for Alum and 550 mg/L for PAC. Meanwhile, under the appropriate conditions of pH equal to 10 and 75 RPM with a chemical dosage of 350 mg/L, COD and TP removal efficiencies by Ferrous Sulfate exceed 87%, but those of turbidity and colour only reach 25%. This finding could be a promising coagulation method as a pre-treatment for the swine slaughterhouse wastewater.

  3. AN OVERVIEW OF WASTEWATER TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Ionela Ramona SURDU

    2015-05-01

    Full Text Available Water-resource management key issues include the re-use of wastewater for drinkingwater supply or for industrial or agriculture purposes. In this context, the organic contaminants effects in sewage water entering theenvironment have gained more attention. The studies carried out for these contaminants varied widely, as a function of the substances: pesticides, pharmaceuticalsand diagnostic contrast products, personal care products,antibiotics and so on. Most of the wastewater treatment plants (WWTPs are not really designed totreat these type of compounds and an important part of emerging compounds may enter the aquatic environment via sewage effluents.This study gives an overview of the research concerning the technological steps that must be achieved in WWTP’s, in order to reduce at maximum theoccurrence oforganic substances in effluents.

  4. Wastewater treatment alternatives for a vegetable and seafood cannery

    OpenAIRE

    Grassiano, James W.

    1990-01-01

    Peeled or whole-pack tomatoes, herring roe and oysters are processed at a Virginia Cannery. Wastewater from each food processing effluent was characterized. Treatment alternatives were investigated for tomato and herring roe wastewaters. For herring roe processing wastewater, the discharge requirement for BOD was nearly met through plain settling, while the TSS limitation was easily achieved by settling out the roe particles" Oyster processing wastewater was found to meet effluent guidelines ...

  5. Granular activated algae for wastewater treatment.

    Science.gov (United States)

    Tiron, O; Bumbac, C; Patroescu, I V; Badescu, V R; Postolache, C

    2015-01-01

    The study used activated algae granules for low-strength wastewater treatment in sequential batch mode. Each treatment cycle was conducted within 24 h in a bioreactor exposed to 235 μmol/m²/s light intensity. Wastewater treatment was performed mostly in aerobic conditions, oxygen being provided by microalgae. High removal efficiency of chemical oxygen demand (COD) was achieved (86-98%) in the first hours of the reaction phase, during which the indicator's removal rate was 17.4 ± 3.9 mg O₂/g h; NH(4)(+) was removed during organic matter degradation processes with a rate of 1.8 ± 0.6 mg/g h. After almost complete COD removal, the (O⁺) remaining in the liquor was removed through nitrification processes promoted by the increase of the liquor's oxygen saturation (O₂%), the transformation rate of NH4(+) into NO(3)(-) increasing from 0.14 ± 0.05 to 1.5 ± 0.4 mg NH4(+)/g h, along with an O₂% increase. A wide removal efficiency was achieved in the case of PO(4)(3)(-) (11-85%), with the indicator's removal rate being 1.3 ± 0.7 mg/g h. In the provided optimum conditions, the occurrence of the denitrifying activity was also noticed. A large pH variation was registered (5-8.5) during treatment cycles. The granular activated algae system proved to be a promising alternative for wastewater treatment as it also sustains cost-efficient microalgae harvesting, with microalgae recovery efficiency ranging between 99.85 and 99.99% after granules settling with a velocity of 19 ± 3.6 m/h.

  6. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  7. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  8. Swine wastewater treatment by media filtration.

    Science.gov (United States)

    Szögi, A A; Humenik, F J; Rice, J M; Hunt, P G

    1997-09-01

    A media filter was constructed to treat swine wastewater after anaerobic lagoon treatment. The media filter consisted of a tank (1.5-m-diameter x 0.6-m-height) filled with marl gravel. The marl gravel had a carbonate content of 300 g kg-1. Gravel particle size distributions were 85 and 14% in the 4.7- to 12.7-mm and 12.7- to 19-mm size classes, respectively. Pore space of the filtration unit was 57%. Wastewater flow rate was 606 L m-2 d-1, and total Kjeldahl nitrogen (TKN) load was 198 g m-2 d-1. The media filter removed 54% of chemical oxygen demand (COD) content after one cycle, but increased cycling did not produce additional COD reduction. Total suspended solids (TSS) removal after one cycle was 50% of initial levels, and additional cycling reduced TSS levels at a much lower rate of 7% per cycle. Removal efficiencies for total phosphorus (TP) ranged from 37% to 52% (one to four cycles), but long-term phosphorus removal would be limited by the sorption capacity of the gravel. Up to 24% of TKN was converted to nitrate-plus-nitrite-N (NO3+NO2-N). Effluents with high NO3+NO2-N levels can be treated further for denitrification with constructed wetlands or anaerobic lagoon. This is important in cases where land is limited for wastewater application.

  9. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  10. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  11. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  12. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    , the water is not lost (non-consumptive uses); but it is heavily polluted. Water treatment can be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use. Marine discharge may violate quality required for use of the marine waters...... receiving the discharge. The EU has decided on regulation of wastewater treament by enforcing effluent standards. This is interpreted in relation to basic EU-principles and discussed with regard to an ethical framework of thinking. The conclusion is that basically different concepts are difficult...

  13. Membrane-based treatment for tanning wastewaters 

    OpenAIRE

    Catarino, Justina; MENDONÇA, E.; Picado, Ana; Lança, Ana; Silva, Luís Manuel; Pinho, Maria

    2013-01-01

    Tanning wastewater was subjected to different unit operations to select the best treatment sequences. Textile membrane filtration (TMF), microfiltration (MF), and ultrafiltration (UF) were complemented by screening, flocculation or flotation operations. The general chemical characterization determined that the wastewater had a high organic load. The ecotoxicological study classified the wastewater as highly ecotoxic. The sequence of screening–TMF – UF was found to be the optimal treatment...

  14. Thermophilic anaerobic digestion for waste and wastewater treatment

    NARCIS (Netherlands)

    Wiegant, W.M.

    1986-01-01

    This thesis deals with thermophilic anaerobic waste and wastewater treatment. A literature survey is presented, in which the thermophilic treatment processes are evaluated with respect to the loading rates and treatment efficiencies, and some relevant theoretical considerations concerning

  15. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  16. Treatment of Wastewater from Backwashing Process Sand Filters

    Directory of Open Access Journals (Sweden)

    Miletić, S.

    2011-10-01

    Full Text Available In the process of raw water treatment for use in the petrochemical industry, one of the most important treatments is the filtration process with process sand filters. A by-product of the filtration process of raw water is wastewater. The wastewater results from the technological process of backwashing process sand filters. Wastewater from backwashing sand filters is unsuitable for further use, since it is contaminated with residual suspended matter and chemical compounds that are added in the process of raw water clarification. To reduce the environmental impact of such wastewater and improve overall system processing of raw water, this paper presents the technological treatment of wastewater from backwashing process sand filters. The selected technological process with subsequent sedimentation of suspended matter from the wastewater enables it to be returned into the process stream. This paper also presents a wastewater treatment system, which consists of a concrete sedimentation tank, pumps, pipelines, and flocculator for the final acceptance of the wastewater. The treatment system of wastewater from backwashing process sand filters includes the wastewater from backwashing sand filters for the filtration of the clarified water after clarification of the raw water, sand filters for the filtration of the cooling water and sand filters for filtration of clarified water prior to ion decarbonatisation. The overall technological process is efficiently sized and fully automated. The treatment of wastewater from backwashing process sand filters allows the successful and continuous return of the water in a volume flow, Q, from 80 m3h-1 to 85 m3 h-1, with no negative impact on the clarification of raw water. The constructed technological solution resulted in 12-percent less use of raw water from the Pakra accumulation lake, as well as 50-percent less discharge of the wastewater into natural watercourses.

  17. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of

  18. Energy-saving wastewater treatment systems : formulation of cost functions

    OpenAIRE

    Nogueira, R.; Ferreira, I.; Janknecht, P; Rodríguez, Juan José; de Oliveira, Pedro; A. G. Brito

    2007-01-01

    Natural interactions between water, soil, atmosphere, plants and microorganisms include physical, chemical and biological processes with decontaminating capacities. Natural or energy-saving wastewater treatment systems utilize these processes and thereby enable a sustainable management in the field of wastewater treatment, offering low investment and operation costs, little or no energy consumption, little and low-skill labor requirements, good landscape integration and excellent ...

  19. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    2013-08-15

    Aug 15, 2013 ... Treatment of dyeing wastewater including reactive dyes. (Reactive Red RB, Reactive Black B, ... Keywords: Rhizopus arrhizus, wastewater treatment, decolourisation, textile dye. INTRODUCTION. Dyeing effluents ... as bacteria, yeasts, algae and fungi, are able to remove differ- ent classes of dyes (Fu and ...

  20. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  1. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  2. Optimal design of wastewater treatment plant using adaptive ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... This paper deals with the application of Adaptive Simulated Annealing (ASA) for the optimal design of the wastewater treatment plant. The plant ... In this work a successful attempt has been made to use the ASA for optimal design of wastewater treatment plant.

  3. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The flocculants applied in the oil refining plant wastewater treatment

    Science.gov (United States)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.

    2017-08-01

    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  5. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  6. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  7. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  8. Modeling duckweed growth in wastewater treatment systems

    Science.gov (United States)

    Landesman, L.; Parker, N.C.; Fedler, C.B.; Konikoff, M.

    2005-01-01

    Species of the genera Lemnaceae, or duckweeds, are floating aquatic plants that show great promise for both wastewater treatment and livestock feed production. Research conducted in the Southern High Plains of Texas has shown that Lemna obscura grew well in cattle feedlot runoff water and produced leaf tissue with a high protein content. A model or mathematical expression derived from duckweed growth data was used to fit data from experiments conducted in a greenhouse in Lubbock, Texas. The relationship between duckweed growth and the total nitrogen concentration in the mediium follows the Mitscherlich Function and is similar to that of other plants. Empirically derived model equations have successfully predicted the growth response of Lemna obscura.

  9. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  10. Crystallization techniques in wastewater treatment: An overview of applications.

    Science.gov (United States)

    Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun

    2017-04-01

    As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. wastewater

    African Journals Online (AJOL)

    Mtui-Combined chemical and biological treatment of recalcitrant industrial effluets. Tzitzi M, Vayenas DV and Lyberatos G 1994 Pretreatment of textile industry wastewater with ozone. Water Sci. Tech. 29(9): 151-160. Walter RH and Sherman RM 1974 Ozonation of lactic acid fermentation effluent. J. Water Poll. Control Fed.

  12. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  13. Wastewater treatment: options for Louisiana seafood processors

    National Research Council Canada - National Science Library

    Zachritz, W.H; Malone, R.F

    1991-01-01

    ...) to define the environmental regulatory requirements that apply to seafood processors; 3) to catalog available historical data for describing the wastewaters of major Louisiana seafood processors, and 4...

  14. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    sludge. Methanogenic bacterial aggregates have been successfully applied in many full scale installations, especially for sugar beet, potato, pulp and paper mill, and other soluble wastes. The UASB reactors used for these treatments are simple in construction and handling which result in rather low total costs. A further and wider application of UASB reactors and methanogenic aggregates for various industrial wastewaters is expected.

  15. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

  16. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled...

  17. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  18. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the

  19. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  20. Carbapenem-resistant bacteria in a secondary wastewater treatment ...

    African Journals Online (AJOL)

    Bacterial resistance to carbapenems is an emerging problem of this century. A carbapenem-resistant bacterial population (CRBP) grown at 42°C was monitored in the influent and effluent of a secondary municipal wastewater treatment plant over 10 months. The municipal wastewater consisted of domestic, industrial, ...

  1. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  2. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  3. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  4. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  5. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  6. Decision support for redesigning wastewater treatment technologies.

    Science.gov (United States)

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  7. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  8. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  9. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-06-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals, mechanisms, fouling challenges and their controls.

  10. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  11. Nutrients valorisation via duckweed-based wastewater treatment and aquaculture

    OpenAIRE

    El-Shafai, S.A.A.M.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The treatment system was efficiënt in organic matter removal during the entire year, while nitrogen, phosphorus and faecal coliform removal were negatively affected by the decline in temperature in winter...

  12. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  13. Saline landfill leachate disposal in facultative lagoons for wastewater treatment.

    Science.gov (United States)

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I

    2012-01-01

    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  14. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model

    OpenAIRE

    Marcin Spychała; Maciej Pawlak; Tadeusz Nawrot

    2016-01-01

    The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The ...

  15. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  16. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Perspectives on wastewater treatment wetlands and waterbird conservation

    National Research Council Canada - National Science Library

    Christopher G. Murray; Andrew J. Hamilton

    2010-01-01

    .... Wastewater treatment wetlands are currently of critical importance for certain waterbird species in some parts of the world, and we illustrate this with an example from south-eastern Australia...

  18. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  19. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  20. Starch Wastewater Treatment in a Three Phase Fluidized Bed ...

    African Journals Online (AJOL)

    MICHAEL

    www.bioline.org.br/ja. Starch Wastewater Treatment in a Three Phase Fluidized Bed Bioreactor with Low. Density Biomass Support. *RAJASIMMAN, M; KARTHIKEYAN, C. Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University. Annamalai Nagar - 608002, Tamil nadu, India.

  1. Wastewater Treatment Plants, North America, 2010, Dun and Bradstreet

    Data.gov (United States)

    U.S. Environmental Protection Agency — D&B 20101220 Wastewater Treatment Plants Points for the United States, including Puerto Rico and the US Virgin Islands, Canada, and Mexico, Released Quarterly...

  2. Limited dissemination of the wastewater treatment plant core resistome

    DEFF Research Database (Denmark)

    Munck, Christian; Albertsen, Mads; Telke, Amar

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role...

  3. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...

  4. Antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants

    CSIR Research Space (South Africa)

    Musee, N

    2011-05-01

    Full Text Available ). With the increasing number of applications and uses of ENMs comes an increasing likelihood of nanoscale materials posing potential risks to the environment and engineered technical systems such as wastewater treatment plants (WWTPs). Recent scientific data suggests...

  5. Mesa Verde National Park Wastewater Treatment Facility NPDES Permit

    Science.gov (United States)

    Under NPDES permit number CO-0034398, the United States Department of the Interior, National Park Service, Mesa Verde National Park is authorized to discharge from the Mesa Verde National Park wastewater treatment plant, in Montezuma County, Colo.

  6. Study on decolorization of dyeing wastewater by electrochemical treatment

    Science.gov (United States)

    Chen, Jianjun; Xiaohui, Wang; Hao, Wu; Qi, Jiang

    2018-02-01

    In view of the decolorization of dyeing wastewater, three different kinds of simulated dyeing wastewater were treated by electrochemical method. The effects of current density, initial pH, electrolyte concentration and initial concentration of dye on the treatment effect were investigated, and the decolorization mechanism and color reversion were studied. The experimental results show that the decolorization rate of the three kinds of dyeing wastewater is more than 90% after 60min treatment. And the decolorization process is mainly chromogenic groups gradually destroyed, the dye molecules are gradually degraded. Moreover, in the natural conditions, aeration conditions, heating conditions, almost no phenomenon of color reversion occured.

  7. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  8. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena...

  9. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.

  10. FATTY WASTEWATER TREATMENT WITH THE APPLICATION OF COAGULATION

    Directory of Open Access Journals (Sweden)

    Lucyna Przywara

    2014-10-01

    Full Text Available The article discusses the study, whose aim was to determine the efficiency of edible fats and oils wastewater treatment in the process of coagulation. In the process of coagulation volume was tested of three different coagulants containing various amount of reactive aluminum: PAX 18, PAC 16 and sodium aluminate. Efficiency of physical-chemical treatment of fatty wastewater was determined based on change in indicators of pollution; chemical oxygen demand, phosphate and sulphate.

  11. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  12. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Kalka

    2012-01-01

    Full Text Available Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  13. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %.

  14. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties

    Science.gov (United States)

    Ji, Zhongguang

    2018-01-01

    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  15. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  16. Wastewater Treatment After Improved Scourings of Raw Wool

    Directory of Open Access Journals (Sweden)

    Pernar, E.

    2007-11-01

    Full Text Available Textile industry processes need high amounts of water for wet treatment of textiles. Therefore, high amounts of wastewater also appear containing different inorganic and organic substances depending on the used materials and processes. Raw wool is contaminated with wool wax, suint, skin flakes, dirt, sand, vegetable matter, urine and various microorganisms. The methods for raw wool scouring and cleaning today often in use are: scouring in the suint, scouring with soaps or tenside in alkaline, extraction by organic solvents and freezing. The different methods for wastewater purification after scouring in use are: settling/floculation, biological treatment, adsorptionand catalytic oxidation. In this work, wastewater treatments after improved raw wool scouring with enzymes and EDTA have been investigated. Isothermal adsorption on zeolite A, active carbon and a natural and H+ type of bentonite for removal of the obtained wastewater impurities was used. The results were determined by means of different physical-chemical test methods.

  17. Anaerobic Digestion of Wastewater: Effects of Inoculants and Nutrient Management on Biomethane Production and Treatment

    OpenAIRE

    Peterson, Jason

    2017-01-01

    Due to population expiation and the increased awareness of the impact on the environment by wastewater treatment, improved wastewater treatment systems are needed to treat municipal and agricultural wastewater. Treating wastewater with oxygen decreases carbon compounds at the expense of energy to move carbon and oxygen to be in contact with each other. Anaerobic digestion of wastewater can reduce the cost by utilizing microbes to treat high amounts of carbon in wastewater without the need for...

  18. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    Science.gov (United States)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  19. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  20. Algal biofuels from wastewater treatment high rate algal ponds.

    Science.gov (United States)

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  1. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  2. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  3. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  4. Evaluation of microalgae production coupled with wastewater treatment

    DEFF Research Database (Denmark)

    De Francisci, Davide; Su, Yixi; Iital, Arvo

    2017-01-01

    In the present study the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat panel photobioreactors. Biomass productivity was determined for four dilution rates (4.32 d-1, 3...... that potentially more than 70% of revenue was from the production of pigments, i.e. chlorophyllin (59.6%), lutein (8.9%) and β-carotene (5.0%) while reduction in discharging costs of the treated wastewaters could account for 19.6% of the revenue. Due to the low yield of FAME and the low market price of biodiesel...

  5. Tofu wastewater treatment using vetiver grass ( Vetiveria zizanioides) and zeliac

    Science.gov (United States)

    Seroja, Romi; Effendi, Hefni; Hariyadi, Sigid

    2018-03-01

    Tofu production is a domestic industry, that most of it has no appropriate wastewater treatment facilities. Wastewater of tofu contains high organic matter which can decrease the water quality. This study aimed to analyze capability of Vetiveria zizanioides, L and zeliac in treating tofu wastewater industry. Zeliac is a new adsorbent, which consists of zeolite, activated carbon, limestone, rice husk ash and cement. Response surface methodology was applied to analyze the data, using central composite design with two factors, i.e., time (3, 9, and 15 days) and waste concentration (20, 40, and 60%). The optimum treatment occurred at the time of 15 days and 38.41% of tofu wastewater concentration decreasing up to 76% of COD, 71.78% of BOD, and 75.28% of TSS.

  6. Wastewater treatment aeration process optimization: A data mining approach.

    Science.gov (United States)

    Asadi, Ali; Verma, Anoop; Yang, Kai; Mejabi, Ben

    2017-12-01

    Being water quality oriented, large-scale industries such as wastewater treatment plants tend to overlook potential savings in energy consumption. Wastewater treatment process includes energy intensive equipment such as pumps and blowers to move and treat wastewater. Presently, a data-driven approach has been applied for aeration process modeling and optimization of one large scale wastewater in Midwest. More specifically, aeration process optimization is carried out with an aim to minimize energy usage without sacrificing water quality. Models developed by data mining algorithms are useful in developing a clear and concise relationship among input and output variables. Results indicate that a great deal of saving in energy can be made while keeping the water quality within limit. Limitation of the work is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  8. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  9. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Science.gov (United States)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  11. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  12. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?

    Science.gov (United States)

    Acién, F Gabriel; Gómez-Serrano, C; Morales-Amaral, M M; Fernández-Sevilla, J M; Molina-Grima, E

    2016-11-01

    Microalgae have been proposed as an option for wastewater treatment since the 1960s, but still, this technology has not been expanded to an industrial scale. In this paper, the major factors limiting the performance of these systems are analysed. The composition of the wastewater is highly relevant, and especially the presence of pollutants such as heavy metals and emerging compounds. Biological and engineering aspects are also critical and have to be improved to at least approximate the performance of conventional systems, not just in terms of capacity and efficiency but also in terms of robustness. Finally, the harvesting of the biomass and its processing into valuable products pose a challenge; yet at the same time, an opportunity exists to increase economic profitability. Land requirement is a major bottleneck that can be ameliorated by improving the system's photosynthetic efficiency. Land requirement has a significant impact on the economic balance, but the profits from the biomass produced can enhance these systems' reliability, especially in small cities.

  13. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Using this model, it was demonstrated that water quality standards can be met at all monitoring points at a minimum cost by simultaneously optimising treatment levels at each treatment plant. Keywords: instream water quality, mixed integer optimisation, wastewater treatment levels, Streeter-Phelps.

  14. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  15. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  16. Treatment of dairy wastewater by water hyacinth.

    Science.gov (United States)

    Munavalli, G R; Saler, P S

    2009-01-01

    The present study addresses potential of water hyacinth for treating small-scale dairy wastewater to satisfy effluent standards for disposal into public sewers. The batch experiments were conducted on dairy wastewater using reactor with water hyacinth and without water hyacinth. The Chemical Oxygen Demand (COD) was varied from 507 mg/L to 4,672 mg/L and the maximum Hydraulic Retention Time (HRT) adopted was 8 days. The loss of water due to evapo-transpiration and evaporation was also measured. The water hyacinth system performed better when initial COD concentration was maintained less than 1,672 mg/L for six days HRT. The performance of water hyacinth system was more effective than reference by 30% to 45% for COD removal. However, water hyacinth had no significant impact in reducing Total Dissolved Solids (TDS). The evapo-transpiration loss was almost double than the evaporation loss. The first order reaction kinetics was applicable and reaction rate parameters were estimated for various organic strengths of wastewater. The reaction rate parameters for water hyacinth system were three times higher than a system without water hyacinth and also found to vary with initial COD values. Water hyacinth can be adopted to treat dairy wastewater from small-scale dairy effectively for disposal into public sewers.

  17. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with

  18. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  19. [Recent progress in treatment of aquaculture wastewater based on microalgae--a review].

    Science.gov (United States)

    Meng, Fanping; Gong, Yanyan; Ma, Dongdong

    2009-06-01

    Microalgae enables aquaculture wastewater recycling through a biological conversion. Recently, many studies have been reported on microalgae cultivation and wastewater treatment, including developing various wastewater treatment technologies such as algae pond, activated algae, immobilized algae and algae photo-bioreactor. In this review, we address the mechanisms, progress and application in the purification of aquaculture wastewater, as well as some research perspectives.

  20. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  1. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  2. Real-time optical monitoring of the wastewater treatment process.

    Science.gov (United States)

    Tomperi, Jani; Koivuranta, Elisa; Kuokkanen, Anna; Juuso, Esko; Leiviskä, Kauko

    2016-01-01

    One activated sludge process line was optically monitored in situ by a novel image analysis equipment. The results of the image analysis were studied to find out dependencies to the process variables of the wastewater treatment plant (WWTP) and to the quality of the treated wastewater. The quality parameter of the treated wastewater, suspended solids, was modelled using the image analysis results. The model can be used for evaluating the performance of the WWTP and for the better control for stable effluent quality. It was shown that the results of the online optical monitoring reveal useful information from the process and can be used in forecasting the quality of biologically treated wastewater. The optical monitoring method together with process measurements has an important role in keeping the process in stable operating conditions and avoiding environmental risks.

  3. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  4. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  5. Monitoring a municipal wastewater treatment process using a trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Kuokkanen, Anna; Leiviskä, Kauko

    2017-09-13

    New monitoring methods are required to enhance the operation of a wastewater treatment process and to meet the constantly tightening regulations for the effluent discharges. An on-line optical monitoring device, that analyses the morphological parameters of the flocs, has been shown to be a potential tool for assessing the wastewater quality and the state of the activated sludge process. In this paper, the earlier presented trend analysis method is applied to the operating conditions, the treatment results and the optical monitoring variables of a full-scale biological wastewater treatment process. The trend episodes and the deviation indices resulted from the trend analysis provide warning of the changes in the monitored variables and the received information can be used as assistance in the treatment process operation and avoiding harmful environmental risks.

  6. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  7. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  8. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  9. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    Science.gov (United States)

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  10. Solar photocatalytic treatment of synthetic municipal wastewater.

    Science.gov (United States)

    Kositzi, M; Poulios, I; Malato, S; Caceres, J; Campos, A

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.

  11. A simple anaerobic system for onsite treatment of domestic wastewater

    African Journals Online (AJOL)

    user

    The use of anaerobic process for domestic wastewater treatment would achieve lower carbon footprint as it eliminates aeration and generate methane. Among several anaerobic treatment processes, high rate anaerobic digesters receive great attention due to its high loading capacity and chemical oxygen demand removal ...

  12. Techniques of WasteWater Treatment-Introduction to Effluent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 11. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni Mugdha Deshpande A B Pandit. General Article Volume 5 Issue 11 November 2000 pp 56-68 ...

  13. Treatment of wastewater from rubber industry in Malaysia

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... producing the biogas as a useful energy sources are some advantages of anaerobic wastewater treatment system (Kantachote et al., 2008). However, this treatment results in the formation of H2S due to consumption of sulphate instead of oxygen by sulphate-reducing bacteria. H2S is toxic and increases ...

  14. Adaptive model based control for wastewater treatment plants

    NARCIS (Netherlands)

    de Niet, Arie; van de Vrugt, Noëlle Maria; Korving, Hans; Boucherie, Richardus J.; Savic, D.A.; Kapelan, Z.; Butler, D.

    2011-01-01

    In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge. The process requires oxygen input via aeration of the activated sludge tank. Aeration is responsible for about 60% of the energy consumption of a treatment plant. Hence optimization of aeration can

  15. A Primer on Wastewater Treatment, July 1976 Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This general information pamphlet is concerned with the types of wastewater treatment systems, the need for further treatment, and advanced methods of treating waste. Current methods are described, illustrated and evaluated. Pollution problems from oxygen-demanding wastes, disease-causing agents, plant nutrients, synthetic chemicals, inorganic…

  16. Optimal design of regional wastewater pipelines and treatment plant systems.

    Science.gov (United States)

    Brand, Noam; Ostfeld, Avi

    2011-01-01

    This manuscript describes the application of a genetic algorithm model for the optimal design of regional wastewater systems comprised of transmission gravitational and pumping sewer pipelines, decentralized treatment plants, and end users of reclaimed wastewater. The algorithm seeks the diameter size of the designed pipelines and their flow distribution simultaneously, the number of treatment plants and their size and location, the pump power, and the required excavation work. The model capabilities are demonstrated through a simplified example application using base runs and sensitivity analyses. Scaling of the proposed methodology to real life wastewater collection and treatment plants design problems needs further testing and developments. The model is coded in MATLAB using the GATOOL toolbox and is available from the authors.

  17. Membrane bio-reactors for decentralized wastewater treatment and reuse.

    Science.gov (United States)

    Meuler, S; Paris, S; Hackner, T

    2008-01-01

    Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops. IWA Publishing 2008.

  18. Wastewater treatment high rate algal ponds for biofuel production.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae.

    Science.gov (United States)

    Larsdotter, K; La Cour Jansen, J; Dalhammar, G

    2007-09-01

    A lab-scale continuous microalgal culture was grown on sterile-filtered wastewater in order to clarify the phosphorus removing mechanisms in a microalgal treatment step that treats residual phosphorus from a hydroponic wastewater treatment pilot plant. The phosphorus assimilation was dependent on algal biomass production, whereas the chemical precipitation was dependent on phosphorus load, i.e. an increase in average precipitation rate with decreased hydraulic retention time was observed. The chemical precipitation was mainly a result of the increased pH, which was biologically mediated by the photosynthesising algae. The precipitate was composed of a calcium phosphate with magnesium included, magnesium hydroxide and calcite. A significant nitrogen removal was also experienced, which implies that the microalgal wastewater treatment is appropriate both for phosphorus and nitrogen removal.

  20. Sustainable wastewater treatment: how might microbial fuel cells contribute.

    Science.gov (United States)

    Oh, Sung T; Kim, Jung Rae; Premier, Giuliano C; Lee, Tae Ho; Kim, Changwon; Sloan, William T

    2010-01-01

    The need for cost-effective low-energy wastewater treatment has never been greater. Clean water for our expanding and predominantly urban global population will be expensive to deliver, eats into our diminishing carbon-based energy reserves and consequently contributes to green house gases in the atmosphere and climate change. Thus every potential cost and energy cutting measure for wastewater treatment should be explored. Microbial fuel cells (MFCs) could potentially yield such savings but, to achieve this, requires significant advances in our understanding in a few critical areas and in our designs of the overall systems. Here we review the research which might accelerate our progress towards sustainable wastewater treatment using MFCs: system control and modelling and the understanding of the ecology of the microbial communities that catalyse the generation of electricity. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  2. Biological Treatment of Wastewater by Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Tsvetko Prokopov

    2014-04-01

    Full Text Available In the present paper the operation of wastewater treatment plant (WWTP in the town of Hisarya which includes a biological stage with aeration basins of cyclic type (SBR-method was studied. The values of the standard indicators of input and output water from the wastewater treatment plant were evaluated. Moreover, the reached effects due to the biological treatment of the wastewater in terms of the COD (95.7%, BOD5 (96.6%, total nitrogen (81.3%, total phosphorus (53.7% and suspended solids (95.7% were established. It was concluded that the indexes of the treated water were significantly below the emission limits specified in the discharge permit

  3. New framework for standardized notation in wastewater treatment modelling

    DEFF Research Database (Denmark)

    Corominas, L.; Rieger, L.; Takacs, I.

    2010-01-01

    Many unit process models are available in the field of wastewater treatment. All of these models use their own notation, causing problems for documentation, implementation and connection of different models (using different sets of state variables). The main goal of this paper is to propose a new...... notational framework which allows unique and systematic naming of state variables and parameters of biokinetic models in the wastewater treatment field. The symbols are based on one main letter that gives a general description of the state variable or parameter and several subscript levels that provide...... is to establish a consistent set of rules that can be applied to existing and most importantly, future models. Applying the proposed notation should make it easier for everyone active in the wastewater treatment field to read, write and review documents describing modelling projects....

  4. Optimizing potassium ferrate for textile wastewater treatment by RSM

    Directory of Open Access Journals (Sweden)

    Maryam Moradnia

    2016-08-01

    Full Text Available Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD and response surface methodology (RSM to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a period of two seasons. Ferrate oxidation experiments were conducted by means of a conventional jar-test apparatus. The time and speed for mixing were set with an automatic controller. Parameters of study were measured based on given methodologies in Standard method for examining water and wastewater. CCD and RSM were applied to optimize the operating variables including potassium ferrate dosage and pH. Results: Results showed that potassium ferrate concentration (A, pH (B, their interactions (AB and quadratic effects (A2 and B2 were significant in the removal of COD, turbidity, color and TSS from carpet industries effluents. At an optimum point (COD: 160 mg/L of potassium ferrate and pH 4, turbidity: 165 mg/L of potassium ferrate and pH 4, color and TSS: pH 4.5 and 150 mg/L of potassium ferrate removal efficiencies for COD, turbidity, color and TSS were 86, 86, 87 and 89%, respectively. Conclusion: Potassium ferrate has a significant impact on pollutants decomposition and the removal of color from wastewater produced in carpet industries. This process can be employed for the pretreatment or post treatment of wastewaters containing refractory organic pollutants. CCD and RSM are suitable tools for experimental design.

  5. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    Science.gov (United States)

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  6. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  7. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    Science.gov (United States)

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  8. Performance of Wastewater Treatment Plants in Gaza Strip Potential use of Wastewater and Sludge in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Shomar, B.H.; Mueller, G.; Yahya, A.

    2003-07-01

    Twelve elements (Ag, Al, As, Cd, Ca, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were analyzed in 120 composite samples of influent and effluent wastewater; the results revealed that domestic wastewater influent contains considerable amounts of heavy metals and the partially functional treatment plants of Gaza are able to remove 40-70% of most metals during the treatment process. Heavy metals in 31 industrial wastewater effluents are within the ranges of international standards. All industries of Gaza are light, despite that they have no treatment facilities, their effluents are being discharged to municipal sewerage system and the existing treatment plants are capable to absorb the industrial effluents with no significant impact on treatment bioprocesses. Thirty parameters were determined in 35 sludge samples; P, AOX, C, S, CaCO{sub 3}, Mg, Ca, Na, K, Li, Cu, Zn, Ni, Pb, Mn, Fe, Cr, Co, Cd, As, Hg, Ti, Se, Br, Rb, Th, Sr, Y, U, and Zr. Although there are no treatment facilities for sludge within the treatment plants, the results indicated that sludge in general is clean of heavy metals. Zinc and AOX only showed anomalous concentrations; more than 85% of sludge samples showed that averages of zinc and AOX are 2000 mg/kg and 550 mg Cl/kg, respectively, which exceed the standards of all industrial countries for sludge to be used in land application. (author)

  9. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  10. Electrospun nylon 6 microfiltration membrane for treatment of brewery wastewater

    Science.gov (United States)

    Islam, Md. Shahidul; Sultana, Sormin; Rahaman, Md. Saifur

    2016-07-01

    Nylon 6 microfiltration membrane, for the treatment of brewery wastewater, was fabricated using an electrospinning technique, followed by hot-pressing. The fabricated membrane was robust and demonstrated highly hydrophilic property (water contact angle 39° at the touching point to the membrane surface and the water droplet was completely immersed into the membrane in 7 seconds), and higher porosity (65%) with pore sizes of 100 to 210 nm. The electrospun nylon 6 membrane showed higher pure water flux (850 LMH) at an applied pressure of 4 psi. The same membrane also demonstrated a 95% rejection rate of suspended solids (SS) in brewery wastewater treatment.

  11. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    Science.gov (United States)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  12. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  13. Polymeric polyelectrolytes obtained from renewable sources for biodiesel wastewater treatment by dual-flocculation

    OpenAIRE

    E. A. M. Ribeiro; G. Rodrigues Filho; N. S. Rozeno; J. M. B. A. Nogueira; M. A. Resende; J. P. Thompson Junior; J. G. Vieira; S. C. Canobre; F. A. Amaral

    2017-01-01

    Biodiesel wastewater generally contains high levels of oils, soaps and glycerol residues. This needs wastewater treatment. In this study, the biodiesel wastewater treatment was tested (industrial wastewater (EFID) and laboratory wastewater (EFLB) from biodiesel) by performing flocculation and dual-flocculation with renewable polymers. Tannin and cationic hemicellulose (CH) were used as cationic flocculant, and cellulose acetate sulfate (CAS) was used as an anionic flocculant. Polyacrylamide (...

  14. Combined photo-Fenton-SBR process for antibiotic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Elmolla, Emad S., E-mail: em_civil@yahoo.com [Department of Civil Engineering, Faculty of Engineering, Al-Azhar University, Cairo (Egypt); Chaudhuri, Malay [Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2011-09-15

    Highlights: {center_dot} The work focused on hazardous wastewater (antibiotic wastewater) treatment. {center_dot} Complete degradation of the antibiotics achieved by the treatment process. {center_dot} The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio below 0.40. {center_dot} Combined photo-Fenton-SBR process is a feasible treatment process for the antibiotic wastewater. - Abstract: The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H{sub 2}O{sub 2}/COD and H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio). The SBR performance was found to be very sensitive to BOD{sub 5}/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe{sup 2+} dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H{sub 2}O{sub 2}/COD molar ratio 2, H{sub 2}O{sub 2}/Fe{sup 2+} molar ratio 150, irradiation time 90 min and HRT of 12 h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards.

  15. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  16. Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Rongjun Su

    2015-01-01

    Full Text Available Rotating biological contactors (RBC are effective for treating wastewater, while they are rarely reported to be used for treating antibiotic pharmaceutical wastewater (APW. The current study investigates treatment of APW using an RBC. The effects of influent concentration, number of stages, and temperature on the remediation of APW were studied. The results indicated, even at low ambient temperature, 45% COD and 40% NH4+-N removal efficiencies. Moreover, the BOD5 removal efficiency was 85%. Microscopic observations illustrated that there were various active microorganisms displayed in the biofilms and their distribution changed from stage to stage. Compared with activated sludge, the biofilms in this study have higher content of dry matter and are easier to dehydrate and settle. Compared with current commercial incineration processes or advanced oxidation processes, RBC can greatly reduce the treatment cost. This research shows RBC is effective for such an inherently biorecalcitrant wastewater even at low ambient temperature.

  17. Treatment of slaughterhouse wastewaters using anaerobic filters.

    Science.gov (United States)

    Martinez, Sandra Luz; Torretta, Vincenzo; Minguelac, Jésus Vázquez; Siñeriz, Faustino; Raboni, Massimo; Copelli, Sabrina; Rada, Elena Cristina; Ragazzi, Marco

    2014-01-01

    In this paper, a laboratory-scale experimentation allowed comparing the performances of two upflow anaerobic packed-bed filters filled with different packing materials and operating at mesophilic conditions (30 degreeC) for treating slaughterhouse wastewaters. Methane production was experimentally evaluated considering different volumetric organic loading rates as well as feeding overloading conditions. Although filter performances declined with loading rates higher than 6 kg CODin m-3 d-1 , the chemical oxygen demand (COD) removal efficiency remained always above 60%. The experimental results allowed for determining kinetic parameters for bacterial growth rate and methane production, following Monod and Chen-Hashimoto models, respectively. Results demonstrated that the reactors reached a cellular retention time significantly greater than the hydraulic retention time. The kinetic parameter values (Ks, l/max) revealed the low microorganisms' affinity for the substrate and confirmed the moderate biodegradability of slaughterhouse wastewater. The kinetic analysis also allowed the comparison of the filters performances with another anaerobic system and the assessment of the parameters useful for real-scale plant design. The system design, applied to a medium-sized Argentinean slaughterhouse, demonstrated to (i) be energetically self-sufficient and (ii) contribute to the plant's water heating requirements.

  18. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  19. Energy pattern analysis of a wastewater treatment plant

    Science.gov (United States)

    Singh, Pratima; Carliell-Marquet, Cynthia; Kansal, Arun

    2012-09-01

    Various forms of energy are used during a wastewater treatment process like electrical, manual, fuel, chemical etc. Most of the earlier studies have focused only on electrical energy intensity of large-scale centralized wastewater treatment plants (WWTPs). This paper presents a methodological framework for analysing manual, mechanical, chemical and electrical energy consumption in a small-scaled WWTP. The methodology has been demonstrated on a small-scale WWTP in an institutional area. Total energy intensity of the plant is 1.046 kWh/m3 of wastewater treated. Electrical energy is only about half of the total energy consumption. Manual energy also has a significant share, which means that the small-scale treatment plants offer significant employment opportunities in newly industrializing countries and replaces fossil fuel-based energy with renewable. There is a lack of sufficient data in the literature for comparison, and few studies have reported values that vary significantly due to the difference in scale, scope of the study and the choice of the treatment technologies. Replication of similar studies and generation of data in this area will offer directions for decision on choice of the scale of wastewater treatment process from the considerations of energy and climate change mitigation strategies.

  20. Integrated Risk Framework for Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  1. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    Science.gov (United States)

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  2. Sequenced anaerobic - aerobic treatment of hemp pulping wastewaters

    OpenAIRE

    Kortekaas, S.

    1998-01-01

    Biological treatment is an indispensable instrument for water management of non-wood pulp mills, either as internal measure to enable progressive closure of water cycles, or as end of pipe treatment. In this thesis, the sequenced anaerobic-aerobic treatment of hemp ( Cannabis sativa L. ) pulping wastewaters is described, with a focus on the treatability of thermomechanical pulping (TMP) effluents and soda pulping black liquors. The research was performed within t...

  3. Performance assessment of aquatic macrophytes for treatment of municipal wastewater

    OpenAIRE

    Shah, Mumtaz,; Hashmi, Hashim Nisar; Ali, Arshad; Ghumman, Abdul Razzaq

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte...

  4. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    OpenAIRE

    Francesca Giaccherini; Giulio Munz; Thomas Dockhorn; Claudio Lubello; Diego Rosso

    2017-01-01

    In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent e...

  5. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  6. Treatment of grain distillation wastewaters in an upflow anaerobic ...

    African Journals Online (AJOL)

    In operation of the full-scale upflow anaerobic sludge bed (UASB) system at the Stellenbosch Farmers' Winery (SFW) Wellington distillery, a problem encountered in the treatment of grain distillation wastewater was the accumulation of a floating scum layer. On occasion this was so severe that it forced shutdown of the UASB ...

  7. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  8. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant. (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in north- eastern Spain, which comprises four ponds ...

  9. Lipase-producing fungi for potential wastewater treatment and ...

    African Journals Online (AJOL)

    The use of fungal biomass as a lipase biocatalyst represents an attractive approach for the treatments of oil wastewater as well as for the production of biodiesel from oil and residual grease, due to its greater stability, possibility of reuse, and lower cost. In this work, 20 filamentous fungi were isolated from the grease trap ...

  10. Advanced treatment of textile wastewater for reuse using ...

    African Journals Online (AJOL)

    driniev

    2005-01-01

    Jan 1, 2005 ... 31 No. 1 January 2005. 132. Available on website http://www.wrc.org.za. LIN S and PENG C (1996) Continuous treatment of textile wastewater by combined coagulation electrochemical oxidation and activated sludge. Water Res. 30 (3) 587-592. NAOHIDE T, YUKIO M, MASATAKA Y, SHIN-ICHI W, SAHORI.

  11. Benchmarking in the Dutch waste-water treatment sector

    NARCIS (Netherlands)

    Admiraal, R.J.; van Helden, G.J.

    The Dutch water boards have recently completed a performance measurement and evaluation project for waste-water treatment. This Project was intended to strengthen the boards' accountability to their stakeholders and to identify starting Points for Performance improvement. The Balanced Scorecard was

  12. Energy-saving wastewater treatment systems: formulation of cost functions.

    Science.gov (United States)

    Nogueira, R; Ferreira, I; Janknecht, P; Rodríguez, J J; Oliveira, P; Brito, A G

    2007-01-01

    Natural interactions between water, soil, atmosphere, plants and microorganisms include physical, chemical and biological processes with decontaminating capacities. Natural or energy-saving wastewater treatment systems utilize these processes and thereby enable a sustainable management in the field of wastewater treatment, offering low investment and operation costs, little or no energy consumption, little and low-skill labor requirements, good landscape integration and excellent feasibility for small settlements, especially when remote from centralized sewer systems. The objective of this work is the development of cost functions for investment and operation of energy-saving wastewater treatment technologies. Cost functions are essential for making cost estimations based on a very reduced number of variables. The latter are easily identified and quantified and have a direct bearing on the costs in question. The formulated investment and operation cost functions follow a power law, and the costs decrease with the increase of the population served. The different energy-saving wastewater treatment systems serving small population settlements, between 50 p.e. and 250 p.e., present associated investment costs varying from 400 Euro/p.e. to 200 Euro/p.e. and annual operation costs in the range of 70 Euro/p.e. to 20 Euro/p.e., respectively.

  13. Physical-chemical treatment of water and wastewater

    National Research Council Canada - National Science Library

    Sincero, Gregoria A. (Gregoria Alivio); Sincero, Arcadio P. (Arcadio Pacquiao)

    2003-01-01

    ... engineers, civil engineers, chemical engineers, etc. They are normally employed in consulting firms, city and county public works departments, and engineering departments of industries, and in various water and wastewater treatment plants in cities, municipalities, and industries. These professionals are also likely to be employed in government age...

  14. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    Instream water quality management encompasses field monitoring and utilisation of mathematical models. These models can be coupled with optimisation techniques to determine more efficient water quality management alternatives. Among these activities, wastewater treatment plays a crucial role. In this work, a ...

  15. Treatment of dairy wastewater in UASB reactors inoculated with ...

    African Journals Online (AJOL)

    This work assesses the possibility of using flocculent sludge in UASB reactors applied to the treatment of dairy wastewater and studies the effect of hydraulic retention time (6, 8, 12 and 16 h) on the performance of the reactors. The results show that the performance of flocculent sludge is similar to what has been reported in ...

  16. Synthesis of iron/GAC catalyst for wastewater treatment using ...

    Indian Academy of Sciences (India)

    38, No. 4, August 2015, pp. 1039–1042. c Indian Academy of Sciences. Synthesis of iron/GAC catalyst for wastewater treatment using heterogeneous Fenton reaction. STTLE1,2, T T NGO3, W KHANITCHAIDECHA1,2 and A NAKARUK4,5,∗. 1Department of Civil Engineering, Faculty of Engineering, Naresuan University, ...

  17. Assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. Performance of the existing treatment system was assessed through characterization of both raw and treated effluents. From the analysis parameters likeChemical Oxygen Demand (COD), Biochemical ...

  18. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    Science.gov (United States)

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  19. Treatment of wastewater from rubber industry in Malaysia

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... Review. Treatment of wastewater from rubber industry in. Malaysia. Mitra Mohammadi1, Hasfalina Che Man2*, Mohd Ali Hassan1 and Phang Lai Yee1. 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400. UPM Serdang, Selangor ...

  20. Wastewater Treatment: A Pilot Plant on the Move

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    Reports that there are currently three companies that own mobile physical-chemical wastewater treatment vans that investigate such parameters as chemical coagulation, sedimentation, sand filtration and carbon adsorption. Information is provided regarding the potential of utilizing this type of facility and rental agreements. (MLB)

  1. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    Science.gov (United States)

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  2. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  3. Efficiency of wastewater treatment by a mixture of sludge and ...

    African Journals Online (AJOL)

    A combined system using the microalgae from South Africa and the sewage sludge from Algeria has been tested, in order to study the efficiency of wastewater treatment by mixtures of microalgae / activated sludge, five bioreactors were installed with different inoculation rates (microalgae / activated sludge) B1: 100% algae, ...

  4. efficiency of wastewater treatment by a mixture of sludge

    African Journals Online (AJOL)

    H. Khaldi

    Received: 27 April 2017 / Accepted: 15 July 2017 / Published online: 01 September 2017. ABSTRACT. A combined system using the microalgae from South Africa and the sewage sludge from. Algeria has been tested, in order to study the efficiency of wastewater treatment by mixtures of microalgae / activated sludge, five ...

  5. Phthalates, Nonylphenols and LAS in Roskilde Wastewater Treatment Plant

    DEFF Research Database (Denmark)

    Fauser, P.; Sørensen, P. B.; Carlsen, L.

    The steady-state compartment description of the biological reactors and settlers in wastewater treatment plants that is used in SimpleTreat has been evaluated with respect to an alternately operated WWTP situated in Roskilde, Denmark. The effect of substituting a complex discontinuous operation...

  6. Foraging at wastewater treatment works increases the potential for ...

    African Journals Online (AJOL)

    Wastewater treatment works (WWTWs) are known to provide profitable foraging areas for insectivorous bats in Europe and the New World because of their association with high abundance of pollution-tolerant midges (Diptera). However, bats that feed on these insects may also accumulate metal pollutants such as cadmium ...

  7. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the impact of effluent and sludge discharges of an abattoir wastewater treatment plant (WWTP) on the operation of a municipal aerated pond WWTP. Experiments were carried out in Cervera WWTP, located in northeastern Spain, which comprises four ponds operating in series.

  8. Domestic wastewater treatment with a vertical completely drained ...

    African Journals Online (AJOL)

    STORAGESEVER

    2007-11-07

    Nov 7, 2007 ... A pilot scale constructed wetland planted with Amaranthus hybridus was developed for domestic wastewater treatment. The reactor system was composed of rectangular beds realized in cement. Each bed was filled from the bottom to the top with 0.1 m of gravel (15/25 mm) and 0.30 m of a white sand.

  9. optimizing bio-coagulants for brewery wastewater treatment using ...

    African Journals Online (AJOL)

    HOD

    OPTIMIZING BIO-COAGULANTS FOR BREWERY WASTEWATER TREATMENT. USING RESPONSE SURFACE METHODOLOGY. B. I. Okolo1,* P. C. Nnaji2, E. O. Oke3, K. F. Adekunle4, C. S. Ume5 and O. D. Onukwuli6. 1, 2,3, 4 DEPARTMENT OF CHEMICAL ENGINEERING, MICHAEL OKPARA UNIVERSITY, UMUDIKE ...

  10. Tourist cottages in the Arctic: Possibilities of wastewater treatment

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Ingeman-Nielsen, Thomas; Jenssen, Petter Deinboll

    2009-01-01

    with toilets problems with hygienically and environmentally safe disposal of the excreta exist. The current situation is unacceptable from a health and sanitary point of view. There are several factors that have to be taken into consideration when planning wastewater treatment in cold regions, one of them...

  11. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  12. The impact of inadequate wastewater treatment on the receiving ...

    African Journals Online (AJOL)

    687. The impact of inadequate wastewater treatment on the receiving water bodies – Case study: Buffalo City and. Nkokonbe Municipalities of the Eastern Cape Province. MNB Momba1*, AN Osode2 and M Sibewu1. 1 Tshwane University of Technology, Water Care Department, Arcadia Campus, P/Bag x 680 Pretoria 0002, ...

  13. Domestic wastewater treatment with a vertical completely drained ...

    African Journals Online (AJOL)

    Domestic wastewater treatment with a vertical completely drained pilot scale constructed wetland planted with Amaranthus hybridus. ... +: 69%, PO4 3-: 67%) than in the control (NH4 +: 15%; PO4 3-: 56%). However the important oxidation of NH4 + to NO2 - and NO3 - provoked their accumulation in these beds filtrates than ...

  14. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    NARCIS (Netherlands)

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading

  15. Surface adsorption technique for the treatment of textile wastewaters ...

    African Journals Online (AJOL)

    Surface adsorption technique has been employed for the treatment of textile wastewater by electrolyzing the effluent with a current of 4 A for 200 minutes. Reductions in color and pH variation of the effluent were monitored through absorbance and pH measurements throughout the process. Concentration levels of Ni2+ in ...

  16. Anammox treatment of swine wastewater using immobilized technology

    Science.gov (United States)

    Partial nitrification (PN) coupled with anaerobic oxidation of ammonium (anammox) stands for a totally autotrophic strategy for the removal of nitrogen. This new bioprocess is particularly useful for the treatment of wastewaters with a high ammonium concentration and a low organic load such as lives...

  17. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rita [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)], E-mail: ritamelo@itn.pt; Cabo Verde, Sandra [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Branco, Joaquim [Departamento de Quimica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal); Botelho, M. Luisa [Departamento de Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacavem (Portugal)

    2008-01-15

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h{sup -1}. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  18. Electrochemical treatment of pharmaceutical and industrial wastewater by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, H. M.; Fellerer, M.; Treschnitzer, M.

    2009-07-01

    In modern medicine pharmaceuticals play a decisive role: because of an increased life expectancy and intensive care medicine an increasing amount of pharmaceuticals is produced. thus these substances are consumed in a mass of tons per year in industrialized countries. Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. (Author)

  19. Application of the SCADA system in wastewater treatment plants.

    Science.gov (United States)

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  20. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  1. Treatment and valorization of olive mill wastewaters

    Directory of Open Access Journals (Sweden)

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  2. Cod Fractions In Mechanical-Biological Wastewater Treatment Plant

    Science.gov (United States)

    Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita; Myszograj, Sylwia; Uszakiewicz, Sylwia

    2017-03-01

    The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.

  3. Cod Fractions In Mechanical-Biological Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Płuciennik-Koropczuk Ewelina

    2017-03-01

    Full Text Available The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.

  4. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  5. Current status of urban wastewater treatment plants in China.

    Science.gov (United States)

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    Science.gov (United States)

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  8. Treatment of Wastewater by Ozone Produced in Dielectric Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Rita Bhatta

    2015-01-01

    Full Text Available There is rapid diminishing of water resources in many countries due to, for example, population growth and constant reduction in fresh water supply. The sewage wastewater, industrial effluents, and municipal wastewater are directly and indiscriminately discharged into rivers and lakes and thus primarily cause water pollution in Nepal. This has increased the water crisis and also causes environmental deterioration. Therefore, the need for the development of an effective, cheap, and environmentally friendly process for the treatment of wastewater before discharging into aquatic environment has emerged. Treatment by ozone produced from dielectric barrier discharge is one of the emerging technologies for such application. The ozonation process is more effective for disinfection and degradation of organic pollutants from water. The current study describes the treatment of wastewater of selected site within Kathmandu. Results on various physicochemical and microbial parameters of the inlet and outlet samples are discussed. Our results showed slight increase in pH, decrease in chemical oxygen demand, and significant increase in dissolved oxygen after ozonation. Importantly, ozonation caused total reduction of fecal coliform.

  9. Positive examples of wastewater treatment effectiveness in ‘Natron-Hayat’ Maglaj factory

    OpenAIRE

    Bušatlić Ilhan; Botonjić Šefkija; Halilović Azra; Bušatlić Nadira; Karić Amna

    2017-01-01

    In the paper are described the basic characteristics of wastewaters in the cellulose and paper factory ‘Natron-Hayat’ Maglaj. Particular emphasis is placed on the description of the technological process of wastewater treatment at the ‘Natron-Hayat’ Maglaj factory which is represented in the paper by a technological scheme and represents one of the more complex systems for wastewater treatment. In the experimental part, the results of the efficiency of the wastewater treatment system at the ‘...

  10. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.

    2017-01-01

    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central

  11. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Fateme Barancheshme

    2018-01-01

    Full Text Available The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB and antibiotic resistant genes (ARGs in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs. It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1 study innovative strategies in large scale and over a long time to reach an actual evaluation, (2 develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3 consider operating and environmental factors that affect the

  12. The effects of physicochemical wastewater treatment operations on forward osmosis.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside TM FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  13. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    Science.gov (United States)

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L(-1), phosphorus 430 mg L(-1) and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH4:PO4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  14. Post treatment of antibiotic wastewater by adsorption on activated carbon

    Science.gov (United States)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  15. A critical review on textile wastewater treatments: Possible approaches.

    Science.gov (United States)

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  17. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    Directory of Open Access Journals (Sweden)

    John R. White

    2006-01-01

    Full Text Available Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the soil. We review relevant laboratory research on these various mechanisms and provide data on the few studies that have examined wetland removal. There is a need to document the degree to which various pharmaceutical compounds are removed in full-scale treatment wetlands, as there is a paucity of data on overall pharmaceutical removal rates.

  18. Pollution abatement with peat onsite wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.L. (University of Maine, Orano, ME (United States). Dept. of Civil Engineering)

    1994-02-01

    The purpose of onsite wastewater treatment is to provide economical removal of dissolved nutrients, pathogens and other contaminates from septic tank effluent to avoid the pollution of groundwater or creation of other health hazards. The effective use of conventional soil adsorption systems is limited by a number of factors including site characteristics, soil type and condition, and the proximity of the system to surface waters or a source of potable water. On adverse sites, where the use of conventional subsurface soil adsorption systems does not provide acceptable levels of treatment, Sphagnum peat may be used as an economical method of onsite wastewater treatment. The peat system, when properly designed and constructed, is relatively simple to install, requires minimal energy and maintenance, and provides a high quality effluent without additional disinfection. 19 refs.

  19. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2014-01-01

    Full Text Available Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtration and nitrification. This study constructed a wastewater treatment optimization model for migratory fish, which considers three costs (filtration cost, nitrification cost, and irrigation cost and two environmental constraints (minimal dissolved oxygen level and maximal nitrate-nitrogen concentration. Results show that the metaheuristic technique such as harmony search could find good solutions robustly while calculus-based technique such as generalized reduced gradient method was trapped in local optima or even divergent.

  20. Applications of nanotechnology in water and wastewater treatment.

    Science.gov (United States)

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. wastewaters

    African Journals Online (AJOL)

    DRINIE

    2003-10-04

    Oct 4, 2003 ... system without affecting the biochemical reactions in the reactor, whereas .... Results of inert COD experiment for the Study A. Time. Reactor 1. Reactor 2. Fed with raw. Fed with filtered wastewater wastewater. (COD, mg·l-1). (COD .... rate limiting process component for heterotrophic growth in the. IIDWTP.

  2. Sustainable Optimization for Wastewater Treatment System Using PSF-HS

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-03-01

    Full Text Available The sustainability in a river with respect to water quality is critical because it is highly related with environmental pollution, economic expenditure, and public health. This study proposes a sustainability problem of wastewater treatment system for river ecosystem conservation which helps the healthy survival of the aquatic biota and human beings. This study optimizes the design of a wastewater treatment system using the parameter-setting-free harmony search algorithm, which does not require the existing tedious value-setting process for algorithm parameters. The real-scale system has three different options of wastewater treatment, such as filtration, nitrification, and diverted irrigation (fertilization, as well as two existing treatment processes (settling and biological oxidation. The objective of this system design is to minimize life cycle costs, including initial construction costs of those treatment options, while satisfying minimal dissolved oxygen requirements in the river, maximal nitrate-nitrogen concentration in groundwater, and a minimal nitrogen requirement for crop farming. Results show that the proposed technique could successfully find solutions without requiring a tedious setting process.

  3. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    National Research Council Canada - National Science Library

    Zhang, Tong; Wang, Xiaoguang; Zhang, Xiwang

    2014-01-01

      The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater...

  4. Fate and behaviour of ZnO engineered nanoparticles in a simulated domestic wastewater treatment plant

    CSIR Research Space (South Africa)

    Chaúquea, EFC

    2013-08-01

    Full Text Available Wastewater treatment plants (WWTPs) employ activated sludge processes to treat domestic wastewater using a consortium of bacteria essentially to degrade organic matter. However, bacteria activity is inhibited by toxic substances; thus, potentially...

  5. Anaerobic ammonium oxidation in the old trickling filters at Daspooort wastewater treatment works

    CSIR Research Space (South Africa)

    Wilsenach, J

    2014-01-01

    Full Text Available The century-old trickling filters at the Daspoort Wastewater Treatment Works in Pretoria (Gauteng, South Africa) are known for their remarkable removal of nitrogen from municipal wastewater. Our study was conducted to identify the microbiological...

  6. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    Science.gov (United States)

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  7. Energy and nutrient recovery for municipal wastewater treatment: How to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2015-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  8. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for

  9. Removal of Selected Endocrine Disrupting Chemicals During On-Site Wastewater Treatment Using A Constructed Wetland

    Science.gov (United States)

    Significant research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants. These plants have been show...

  10. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    OpenAIRE

    Željko Kamberović; Marija Korać; Zoran Anđić; Marija Štulović; Tihomir Kovačević; Aleksandar Vujović; Ilija Ilić

    2012-01-01

    This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW) from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II)-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewat...

  11. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review

    OpenAIRE

    Lu Haifeng; Ma Shanshan; Yuanhui Zhang; Liu Zhidan; Duan Na

    2017-01-01

    Using microalgae to treat wastewater has received growing attention in the world because it is regarded as a novel means for wastewater treatment. It is commonly recognized that large-scale cultivation and commercial application of microalgae are limited by the development of photobioreactor (PBR). Although there are a lot of PBRs for microalgae pure cultivation which used culture medium, specialized PBRs designed for wastewater treatment are rare. The composition of wastewater is quite co...

  12. ``Living off the land'': resource efficiency of wetland wastewater treatment

    Science.gov (United States)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  13. Use of hydrodynamic cavitation in (waste)water treatment.

    Science.gov (United States)

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    Science.gov (United States)

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Textile dyes as solar photocatalysts is wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A.; Garcia, M.C.; Gisbert, M.; Miranda, M.A.; Pey, J.; Sempere, I. [Dept. de Ingenieria Textil y Papelera, Univ. Politecnica de Valencia, Alcoy (Spain)

    2003-07-01

    Textile industries wastewaters contain important amounts of organic dyes, that constitute an important environmental problem, not only because of the colour of the effluents, but also because of the toxicity of some families of pollutants. Nevertheless, dyes could also be employed as solar photocatalysts, as they can absorb solar light in the visible or the UV-A range of the spectrum and produce a degradation of the pollutants. Thus, they can behave as photosensitisers. It would be interesting to check among different families of dyes, which of them are effective in the degradation of other pollutants present in the same effluents. Wastewaters containing these dyes could be submitted to solar irradiation as the first step in the treatment of these effluents. Another possibility is the use of these dyes as heterogeneous photocatalysts. For this purpose, a solid support able to host the dye has to chosen. With this strategy, coloured pollutants could be removed from the textile wastewater by filtration, and then added to another industrial wastewater, in which it would act as a solar photocatalyst. (orig.)

  16. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  17. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  18. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  19. Wastewater Treatment of Stone Cutting Industries by Coagulation Process

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2013-09-01

    Full Text Available Background & Aims of the Study: The wastewater created as a result of stone cutting industries enters some pools for re-consumption so that its suspended solids settle by gravity. By taking to account the high volume of water and sludge, treatment of wastewater and removal of sludge cause many problems for stone cutting units. The objective of this study was to determine the quality of wastewater and to investigate the effects of coagulants on suspended solids removal efficiency from wastewater of some stone cutting industries (Qom, Iran. Materials & Methods: In this experimental study, the effects of different doses of coagulants including Alum, poly aluminum chloride, Polymer, Ferric chloride (Fecl3 and Lime on Turbidity, “total suspended solids” (TSS and “total solids” (TS removal were investigated by Jar Test. Removal efficiency of different coagulates was estimated. Results: The results indicated that lime in dose 100 PPM is the best coagulant for turbidity removal and the highest efficiency for TS removal is related to using Alum in dose 100 PPM. Conclusions: Considering the findings of this study, it can be concluded that using coagulants causes reduction in settling time and speeds up the return of water to the consumption cycle of stone cutting factories, and also increases turbidity removal efficiency.

  20. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    Full Text Available Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard. In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  1. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  2. Treatment of coking wastewater by using manganese and magnesium ores

    Energy Technology Data Exchange (ETDEWEB)

    Chen Tianhu; Huang Xiaoming; Pan Min [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei City 230009 (China); Jin Song, E-mail: sjin@uwyo.edu [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Peng Suchuan [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei City 230009 (China); Fallgren, Paul H. [Western Research Institute, 365 North 9th Street, Laramie, WY 82072 (United States)

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD){sub ,} and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  3. Accumulation of contaminants in fish from wastewater treatment wetlands

    Science.gov (United States)

    Barber, L.B.; Keefe, S.H.; Antweiler, R.C.; Taylor, H.E.; Wass, R.D.

    2006-01-01

    Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p???-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58 000 and for the HOC ranged from 530 to 150 000. ?? 2006 American Chemical Society.

  4. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  5. Fate and Effect of Dissolved Silicon within Wastewater Treatment Effluent.

    Science.gov (United States)

    Maguire, Timothy J; Fulweiler, Robinson W

    2017-07-05

    In large rivers, the ratios of silicon (Si)/nitrogen (N)/phosphorus (P) have changed dramatically as anthropogenic additions of N or P are not matched by Si. Wastewater effluent is a recognized source of N and P to coastal environments. Few previous studies, however, have examined the Si load of a large wastewater plant's effluent or the molar ratios of Si/N and Si/P in effluent. We examine the annual flux of dissolved silicon (DSi) carried by effluent from the second largest treatment plant by flow in the United States (Deer Island Treatment Plant, DITP, Boston, MA). We compare treatment plant nutrient fluxes to local urban river nutrient fluxes and trace the impact of the DITP DSi loading on receiving waters. Estimates (±95% confidence interval) of treated effluent (67 800 ± 1500 kmol DSi year-1) compared to untreated (69 500 kmol DSi year-1) indicate that the process of sewage treatment at DITP likely does not remove DSi. DITP effluent was Si-limited and this Si-limitation is reflected in the receiving waters (Massachusetts Bay). However, Si-limitation appears only in the area immediately surrounding the effluent discharge. We use these results to explain phytoplankton patterns in Massachusetts Bay and to provide the first estimate of DSi loading (3.6 Gmol SiO2 year-1) from wastewater effluent across the US.

  6. The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant)

    OpenAIRE

    Ariesyady, Herto Dwi; Fadilah, Rifka; Kurniasih, Kurniasih; Sulaeman, Aminudin; Kardena, Edwan

    2016-01-01

    The Bojongsoang Wastewater Treatment Plant (WWTP) serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease was...

  7. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  8. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.

    Science.gov (United States)

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2016-01-01

    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology.

  9. An Overview of Nanomaterials for Water and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haijiao Lu

    2016-01-01

    Full Text Available Due to the exceptional characteristics which resulted from nanoscale size, such as improved catalysis and adsorption properties as well as high reactivity, nanomaterials have been the subject of active research and development worldwide in recent years. Numerous studies have shown that nanomaterials can effectively remove various pollutants in water and thus have been successfully applied in water and wastewater treatment. In this paper, the most extensively studied nanomaterials, zero-valent metal nanoparticles (Ag, Fe, and Zn, metal oxide nanoparticles (TiO2, ZnO, and iron oxides, carbon nanotubes (CNTs, and nanocomposites are discussed and highlighted in detail. Besides, future aspects of nanomaterials in water and wastewater treatment are discussed.

  10. Combined coagulation flocculation pre treatment unit for municipal wastewater

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Ismail

    2012-10-01

    Full Text Available The potentials of using the hydraulic technique in combined unit for municipal wastewater treatment were studied. A combined unit in which processes of coagulation, flocculation and sedimentation, has been designed utilizing hydraulic mixing instead of mechanical mixing. A jar test treatability study has been conducted to locate the optimum dose of the coagulants to be used. Alum, ferrous sulfate, ferric sulfate, a mixture of ferric and ferrous sulfates, and mixture of lime and ferrous sulfate were all tested. A pilot unit was constructed in the existing wastewater treatment plant at El Mansoura governorate located in north Egypt. The optimum dose of coagulants used in the combined unit gives removal efficiencies for COD, BOD, and total phosphorous as 65%, 55%, and 83%, respectively.

  11. Energy-efficiency in wastewater treatment plants; Energieeffizienz in Abwasserreinigungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, R.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a data-collection system developed to monitor the energy consumption and production of wastewater treatment plants. The aim of the project was to optimise not only energy consumption but also the power and heat production in such an installation. Results are presented for the use of such a system at the wastewater treatment plant in Thun, Switzerland. The results show that considerable savings can be made by reducing the consumption of peak-rate external power by making use of the facility's own power and heat production that uses sewage-gas-powered combined heat and power units. Also, the demand-driven operation of various power consumers in the facility is discussed.

  12. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.

    2013-01-01

    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact...... on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters....

  13. Wastewater Treatment by a Prototype Slow Rate Land Treatment System,

    Science.gov (United States)

    1981-08-01

    limiting nutrient t!am,3 for aquatic growth in many freshwater systems Several investigators have studied the ability Algal blooms in surface water have in...characteristics of the killed with the herbicide glyphosate . Potassium soils before wastewater application and subse- chloride (300 kg/ha) was applied to the

  14. Effectiveness of Urban Wastewater Treatment Policies in Selected Countries

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Smith, Carey; Kristensen, Peter

    This pilot study examines the effectiveness of wastewater policies and measures in six Member States in order to identify and understand the reasons for both the successes and the shortfalls in implementation. Two of these countries have almost fully implemented the directive, two have yet to do so......-effectiveness. The report focuses on the extension of sewage plants with appropriate levels of treatment (biological or advanced) and trends in discharges to surface waters....

  15. Treatment of ink-containing wastewater by coagulation/ flocculation ...

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Treatment of ink-containing wastewater by coagulation/ flocculation using biopolymers. J Roussy1, Philippe Chastellan1, Maurice van Vooren2 and Eric Guibal1*. 1 Ecole des Mines d'Alès, Laboratoire Génie de l'Environnement Industriel, 6 avenue de Clavières, F-30319 ALES cedex, France. 2 Société ...

  16. Industrial wastewater treatment plant of sugar production

    OpenAIRE

    Čad, Luka

    2016-01-01

    Sugar as product in our every day’s life’s been consumed in enormous quantities as one of main resources in food and drink industry. Production processes of sugar from sugar beet bring significant environmental impacts with it’s waste waters as the biggest pollutant. The thesis deals with sugar production waste water’s treatment process by presenting an example of waste water treatment plant of sugar factory, therefor presenting the production processes in sugar factories and their environmen...

  17. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  18. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  19. A Modified Bio-Ecological Process for Rural Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-01-01

    Full Text Available Limited water resources and ensuring access to clean water are critical environmental challenges, especially for the developing world. In particular, rural domestic wastewater has become a significant source for the pollution of freshwater bodies. A modified bio-ecological A2O-wetland system for rural wastewater treatment consisting of a biological unit (anaerobic baffled reactor, anoxic tank and oxic unit, A2O and an ecological unit (horizontal flow constructed wetland was developed, and key performance indicators were identified. The bio-ecological treatment system showed high removal efficiency for pollutants, successfully achieving 91%, 85%, 78%, and 92% removal efficiencies for chemical oxygen demand (COD, ammonium (NH4–N, total nitrogen (TN, and total phosphorus (TP, respectively. The concentrations of pollutants in the effluent from the system were lower than the Class 1 A regulated values of the Chinese National Standard GB18918-2002. The system offered high removal efficiency, simple operation, and low energy consumption. The A2O-wetland is a good alternative for rural wastewater treatment systems.

  20. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus

    2017-01-01

    of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli...... and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal...

  1. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  2. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    Science.gov (United States)

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  3. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...... technology is used for the environmental comparison. Emissions from the treatment of the sludge as well as energy consumption and production, chemical consumption, infrastructures and transport are taken into account. This poster will present the results of LCA’s performed on different inertisation...

  4. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    Directory of Open Access Journals (Sweden)

    Gerek Emine Esra

    2017-01-01

    Full Text Available Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment “itself” has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand, while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  5. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    Science.gov (United States)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  6. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    with regards to discharge of pharmaceuticals in wastewater effluents. Nonetheless, the challenge of the growing number of ambulant treatments and increasing consumption of pharmaceuticals at home has not been addressed so far. Already now more than 95% of pharmaceutical consumption happens at home. Moreover...... approximately 26 micro-pollutants, including common antibiotics, pain killers, antidepressants, contrast media and blood pressure pharmaceuticals. We compared the measured concentrations in the effluents with the current emission limits required for the hospitals, and assessed the necessity of implementing...

  7. Passive treatment of wastewater and contaminated groundwater

    Science.gov (United States)

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  8. MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse.

    Science.gov (United States)

    Schneider, E E; Cerqueira, A C F P; Dezotti, M

    2011-01-01

    This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.

  9. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  10. Wastewater treatment with Moringa oleifera seed extract: Impact on turbidity and sedimentation of Cryptosporidium parvum oocysts

    DEFF Research Database (Denmark)

    Petersen, Heidi H.; Woolsey, Ian; Dalsgaard, Anders

    produced from seeds of the Moringa oleifera tree (MO) in reducing Cryptosporidium parvum oocysts and turbidity in wastewater. To a total of 5 x 12 glass jars containing 500 ml wastewater samples from a Danish treatment plant, 1.2 x 106 ± 1.2 x 105 oocysts L-1 were added. To half of the wastewater samples 8...

  11. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    Science.gov (United States)

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Treatment of radioactive wastewater using direct contact membrane distillation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haiyang [Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Laboratory of Environmental Technology, Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2013-10-15

    Highlights: • DCMD process can separate almost all Cs{sup +}, Sr{sup 2+}, Co{sup 2+} from liquid wastes. • The permeate flux decreased linearly when NaNO{sub 3}concentration increased. • DGM could be used to estimate the mass transfer. • DCMD is a promising separation process for LLRW treatment. -- Abstract: Direct contact membrane distillation (DCMD) was used to treat low level radioactive wastewater (LLRW). The dusty gas model (DGM) was used to analyze the mass transfer mechanism and calculate the permeate flux. The operating parameters such as feed temperature, feed velocity and feed concentration were studied. The experimental results showed that DCMD process can separate almost all Cs{sup +}, Sr{sup 2+} and Co{sup 2+} from wastewater. The permeate flux decreased linearly when NaNO{sub 3} concentration increased from 1.0 to 200 g/L. The permeate flux remained about 60% of its initial flux even when NaNO{sub 3} concentration in feed solution was as high as 200 g/L. The dusty gas model can be successfully applied to estimate the mass transfer, and the experimental permeate flux values fitted well with that calculated by DGM. DCMD is a promising separation process for low level radioactive wastewater treatment.

  13. The ecological filter system for treatment of decentralized wastewater.

    Science.gov (United States)

    Zhong, Kun; Luo, Yi-Yong; Wu, Zheng-Song; He, Qiang; Hu, Xue-Bin; Jie, Qi-Wu; Li, Yan-Ting; Wang, Shao-Jie

    2016-10-01

    A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m3/(m2·d), carbon-nitrogen ratio was 10, and gas-water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4+-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4+-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic-anaerobic-aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.

  14. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.

    1992-05-01

    The broad range of processing conditions involved in direct biomass liquefaction lead to a variety of product properties. The aqueous byproduct streams have received limited analyses because priority has been placed on analysis of the complex organic liquid product. The range of organic contaminants carried in the aqueous byproducts directly correlates with the quantity and quality of contaminants in the liquid oil product. The data in the literature gives a general indication of the types and amounts of components expected in biomass liquefaction wastewater; however, the data is insufficient to prepare a general model that predicts the wastewater composition from any given liquefaction process. Such a model would be useful in predicting the amount of water that would be soluble in a given oil and the level of dissolved water at which a second aqueous-rich phase would separate from the oil. Both biological and thermochemical processes have proposed for wastewater treatment, but no treatment process has been tested. Aerobic and anaerobic biological systems as well as oxidative and catalytic reforming thermochemical systems should be considered.

  16. Combined photo-Fenton-SBR process for antibiotic wastewater treatment.

    Science.gov (United States)

    Elmolla, Emad S; Chaudhuri, Malay

    2011-09-15

    The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H(2)O(2)/COD and H(2)O(2)/Fe(2+) molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H(2)O(2)/COD and H(2)O(2)/Fe(2+) molar ratio). The SBR performance was found to be very sensitive to BOD(5)/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe(2+) dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H(2)O(2)/COD molar ratio 2, H(2)O(2)/Fe(2+) molar ratio 150, irradiation time 90 min and HRT of 12h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Pilot-scale study of biomass reduction in wastewater treatment.

    Science.gov (United States)

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  18. Modeling of biobasins of an oil refinery wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    RADOSTIN K. KUTSAROV

    2015-04-01

    Full Text Available The biobasins of the largest wastewater treatment plant (WWTP on the Balkans has been examined. Samples were taken four times from the inlet and outlet flow. The concentration of the total hydrocarbons, benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene and styrene in the wastewater has been obtained by gas chromatography. The average experimental concentrations were used when the mass balance was made. The results indicate that about 60% of pollutants are emitted in the air, about 22% are assimilated through biodegradation, and nearly 18% leave WWTP with the purified water. The measured concentrations were also modeled by Water 9.3 program. Comparison between the measured amounts of pollution concentrations and those forecasted by the Water 9.3 program has been made.

  19. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... and heavy metals has been developed during the past two years. The concept is based on guidelines that are made according to considerations of me environment and the treatment plant system, and that encourage the introduction of a cleaner technology and integrated preventive measures. For most organic...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...

  20. Microalgae at wastewater pond treatment in cold climate:an ecological engineering approach

    OpenAIRE

    Grönlund, Erik

    2004-01-01

    Three types of wastewater ponds in subarctic climates were investigated, each of them highly dependent on microalgae. They were fellingsdams, i.e. wastewater stabilization ponds complemented with chemical precipitation, high-rate algal ponds (HRAPs), and a type of aquaculture interface ponds between a wastewater treatment plant and the natural surrounding. From a microalgae taxa perspective green algae and cryptophytes were dominant in the wastewater ponds. Green algae and cryptophytes were a...

  1. Wineries wastewater treatment by constructed wetlands: a review.

    Science.gov (United States)

    Masi, F; Rochereau, J; Troesch, S; Ruiz, I; Soto, M

    2015-01-01

    The application of wetland systems for the treatment of wineries wastewater started in the early 1990s in the USA followed a few years later by France, Italy, Germany and Spain. Various studies demonstrated the efficiency of constructed wetlands (CWs) as a low cost, low maintenance and energy-saving technology for the treatment of wineries wastewater. Several of these experiences have also shown lessons to be learnt, such as some limits in the tolerance of the horizontal subsurface flow and vertical subsurface flow classic CWs to the strength of the wineries wastewater, especially in the first stage for the multistage systems. This paper is presenting an overview of all the reported experiences at worldwide level during the last 15 years, giving particular attention and provision of details to those systems that have proven to get reliable and constant performances in the long-term period and that have been designed and realized as optimized solutions for the application of CW technology to this particular kind of wastewater. The organic loading rates (OLRs) applied to the examined 13 CW systems ranged from about 30 up to about 5,000 gCOD/m² d (COD: chemical oxygen demand), with the 80th percentile of the reported values being below 297 gCOD/m² d and the median at 164 gCOD/m² d; the highest OLR values have in all cases been measured during the peak season (vintage) and often have been linked to lower surface removal rates (SRRs) in comparison to the other periods of the year. With such OLRs the SRRs have ranged from a minimum of 15 up to 4,700 gCOD/m² d, with the 80th percentile of the reported values being below 308 gCOD/m² d and the median at 112 gCOD/m² d.

  2. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  3. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  4. Aerobic wastewater treatment under high and varying temperatures : thermophilic process performance and effluent quality

    OpenAIRE

    Suvilampi, Juhani

    2003-01-01

    Industries, such as the pulp and paper industry, generate high-temperature process waters and wastewaters. Biological treatment at high temperatures may be an attractive option for the treatment of hot or concentrated wastewaters. The objective of this study was to evaluate the feasibility of thermophilic aerobic wastewater treatment in laboratory experiments, in which thermophilic processes were compared with mesophilic processes. A combined thermophilic-mesophilic treatment was used to impr...

  5. A mathematical programming framework for early stage design of wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2015-01-01

    The increasing number of alternative wastewater treatment technologies and stricter effluent requirements make the optimal treatment process selection for wastewater treatment plant design a complicated problem. This task, defined as wastewater treatment process synthesis, is currently based on e...... the design problem is formulated as a Mixed Integer (Non)linear Programming problem e MI(N)LP e and solved. A case study is formulated and solved to highlight the application of the framework. © 2014 Elsevier Ltd. All rights reserved....

  6. Operational energy performance assessment system of municipal wastewater treatment plants.

    Science.gov (United States)

    Yang, Lingbo; Zeng, Siyu; Chen, Jining; He, Miao; Yang, Wan

    2010-01-01

    Based on the statistical analysis of operational energy consumption and its influential factors from data of 599 Chinese WWTPs in 2006, it is noticed that the most influential factors include treatment technology adopted, treated sewage amount, removed pollutants amount, etc. Using the conclusion above, this paper sets up an integrated system of operational energy performance assessment for municipal wastewater treatment plants. Combining with result from on-spot research and model simulation, the calculating method of benchmark value and score of 7 energy efficiency indicators grouped into 3 levels is stated. Applying the assessment system to three plants, its applicability and objectivity are proved and suggestions to improve energy performance are provided.

  7. Benchmarking Combined Biological Phosphorus and Nitrogen Removal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jørgensen, Sten Bay

    2004-01-01

    This paper describes the implementation of a simulation benchmark for studying the influence of control strategy implementations on combined nitrogen and phosphorus removal processes in a biological wastewater treatment plant. The presented simulation benchmark plant and its performance criteria...... are to a large extent based on the already existing nitrogen removal simulation benchmark. The paper illustrates and motivates the selection of the treatment plant lay-out, the selection of the biological process model, the development of realistic influent disturbance scenarios for dry, rain and storm weather...

  8. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  9. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    Science.gov (United States)

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO2/IrO2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO2/IrO2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  10. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying the feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].

  11. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    Science.gov (United States)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  12. Continuous treatment of flotation collector wastewater using a membrane bioreactor.

    Science.gov (United States)

    Lin, Weixiong; Dai, Yongkang; Wu, Chun; Xu, Pingting; Ren, Jie; Sun, Shuiyu; Li, Biao

    2016-01-01

    Aniline aerofloat (DDA) is a widely used material in China and has become a main pollutant in floatation wastewater. In this study, a membrane reactor (MBR) was constructed to continuously treat simulated wastewater contaminated with DDA. The study investigated the hydraulic retention time (HRT) and the impact of influent DDA concentration on MBR performance, and analyzed intermediates from the DDA biodegradation pathway and activated sludge transfer pathway. The results showed that a 3 h HRT was an efficient and economical time period for MBR to remove 95 ± 5 mg/L DDA from the simulated wastewater; the chemical oxygen demand reduction rate was 89.9%. DDA concentration negatively impacted MBR performance. MBR performance fluctuated slightly when HRT was 3 h, dissolved oxygen ranged from 4.8 to 5.3 mg/L, pH was between 6.5 and 7.0, and DDA concentrations were at 95 ± 5 mg/L DDA. The transfer pathway in the activated sludge of DDA was through soluble microbial products, loosely bound extracellular polymeric substances, tightly bound extracellular polymeric substances, and finally cell biodegradation. DDA initially degraded to aniline; the aniline was further biodegraded to other organic compounds and was finally mineralized through the tricarboxylic acid cycle. This study offers a new continuous biological treatment technology to address DDA.

  13. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  14. Wastewater treatment to enhance the economic viability of microalgae culture.

    Science.gov (United States)

    Pires, J C M; Alvim-Ferraz, M C M; Martins, F G; Simões, M

    2013-08-01

    Microalgae culture is still not economically viable and it presents some negative environmental impacts, concerning water, nutrient and energy requirements. In this context, this study aims to review the recent advances on microalgal cultures in wastewaters to enhance their economic viability. We focused on three different culture concepts: (1) suspended cell systems, (2) cell immobilization, and (3) microalgae consortia. Cultures with suspended cells are the most studied. The nutrient removal efficiencies are usually high for wastewaters of different sources. However, biomass harvesting is difficult and a costly process due to the small cell size and lower culture density. On the other hand, the cell immobilization systems showed to be the solution for this problem, having as main limitation the nutrient diffusion from bulk to cells, which results in a reduced nutrient removal efficiency. The consortium between microalgae and bacteria enhances the growth of both microorganisms. This culture concept showed to be a promising technology to improve wastewater treatment, regarding not only nutrient removal but also biomass harvesting by bioflocculation. The aggregation mechanism must be studied in depth to find the process parameters that would lead to an effective and cheap harvesting process.

  15. Wastewater treatment in a hybrid activated sludge baffled reactor.

    Science.gov (United States)

    Tizghadam, Mostafa; Dagot, Christophe; Baudu, Michel

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98+/-2% of the total COD and 98+/-2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593+/-11 mg COD/L and 43+/-5 mg N/L, respectively, at a HRT of 10 h. These results were 93+/-3 and 6+/-3% for the CAS reactor, respectively. Approximately 90+/-7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654+/-16 mg COD/L at a 3h HRT, and in the organic loading rate (OLR) of 5.36kgCOD m(-3) day(-1). The result for the CAS reactor was 60+/-3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  16. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    Science.gov (United States)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  17. Nitrogen removal from concentrated latex wastewater by land treatment

    Directory of Open Access Journals (Sweden)

    Vikanda Thongnuekhang

    2004-05-01

    Full Text Available Most of the concentrated latex factories in the South of Thailand discharge treated wastewater that contains high level of nitrogen to a nearby river or canals leading to a water pollution problem. A study of land treatment system was conducted to treat and utilize nitrogen in treated wastewater from the concentrated latex factory. The experimental pilot-scale land treatment system was constructed at the Faculty of Engineering, Prince of Songkla University, Hat Yai Campus. It consisted of water convolvulus (Ipomea aquatica, I. Reptans, tropical carpet grass (Axonopus compresus (Swartz Beav. and control unit (no plantation. The treated wastewater from the stabilization pond system of the selected concentrated latex factoryin Songkhla was used to irrigate each experimental unit. Influent and effluent from the experimental units were analyzed for TKN, NH3-N, Org-N, NO3 --N, NO2 --N, BOD5, sulfate, pH and EC. The land treatment system resulted a high removal efficiency for nitrogen. Tropical carpet grass provided higher removal efficiency than other units for all parameters. The removal efficiency of water convolvulus and control unit were not significantly different. The average removal efficiency of TKN, NH3-N, Org-N, BOD5 and sulfate for tropical carpet grass unit were 92, 97, 61, 88 and 52%, for water convolvulus unit were 75, 80, 43, 41 and 30%, and for control unit were 74, 80, 41, 31 and 28%, respectively. Mass balance of nitrogen transformation was conducted. It revealed that plant uptake was the major mechanism for nitrogen removal in land treatment.

  18. Applications of microalgal biofilms for wastewater treatment and bioenergy production.

    Science.gov (United States)

    Miranda, Ana F; Ramkumar, Narasimhan; Andriotis, Constandino; Höltkemeier, Thorben; Yasmin, Aneela; Rochfort, Simone; Wlodkowic, Donald; Morrison, Paul; Roddick, Felicity; Spangenberg, German; Lal, Banwari; Subudhi, Sanjukta; Mouradov, Aidyn

    2017-01-01

    Microalgae have shown clear advantages for the production of biofuels compared with energy crops. Apart from their high growth rates and substantial lipid/triacylglycerol yields, microalgae can grow in wastewaters (animal, municipal and mining wastewaters) efficiently removing their primary nutrients (C, N, and P), heavy metals and micropollutants, and they do not compete with crops for arable lands. However, fundamental barriers to the industrial application of microalgae for biofuel production still include high costs of removing the algae from the water and the water from the algae which can account for up to 30-40% of the total cost of biodiesel production. Algal biofilms are becoming increasingly popular as a strategy for the concentration of microalgae, making harvesting/dewatering easier and cheaper. We have isolated and characterized a number of natural microalgal biofilms from freshwater, saline lakes and marine habitats. Structurally, these biofilms represent complex consortia of unicellular and multicellular, photosynthetic and heterotrophic inhabitants, such as cyanobacteria, microalgae, diatoms, bacteria, and fungi. Biofilm #52 was used as feedstock for bioenergy production. Dark fermentation of its biomass by Enterobacter cloacae DT-1 led to the production of 2.4 mol of H2/mol of reduced sugar. The levels and compositions of saturated, monosaturated and polyunsaturated fatty acids in Biofilm #52 were target-wise modified through the promotion of the growth of selected individual photosynthetic inhabitants. Photosynthetic components isolated from different biofilms were used for tailoring of novel biofilms designed for (i) treatment of specific types of wastewaters, such as reverse osmosis concentrate, (ii) compositions of total fatty acids with a new degree of unsaturation and (iii) bio-flocculation and concentration of commercial microalgal cells. Treatment of different types of wastewaters with biofilms showed a reduction in the concentrations of

  19. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems

    OpenAIRE

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2006-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface wetland (FWS) compared to traditional wastewater- treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting da...

  20. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems

    OpenAIRE

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2006-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface wetland (FWS) compared to traditional wastewater- treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental ...

  1. "Living off the land": resource efficiency of wetland wastewater treatment.

    Science.gov (United States)

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  2. Beyond the conventional life cycle inventory in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo-Toja, Yago, E-mail: yago.lorenzo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Alfonsín, Carolina [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain); Amores, María José; Aldea, Xavier; Marin, Desirée [Cetaqua, Water Technology Centre, 08940 Cornellà de Llobregat, Barcelona (Spain); Moreira, María Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia (Spain)

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO{sub 2} emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. - Highlights: • The influence of LCI quality on the environmental assessment

  3. Transport and fate of microplastic particles in wastewater treatment plants.

    Science.gov (United States)

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  4. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  5. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model

    Directory of Open Access Journals (Sweden)

    Marcin Spychała

    2016-12-01

    Full Text Available The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The dry mass covering the surface and contained in internal space of filtering material was then indicated and a mathematical model was elaborated. Flow characteristics during the highly changeable flow-condition test were sensitivity to differentiated values of hydraulic conductivity in horizontal zones of filtering layer. During the slightly changeable flow-conditions experiment the differences in permeability and hydraulic conductivity of different filter (horizontal zones height regions were much smaller. The proposed modelling approach in spite of its simplicity provides a satisfactory agreement with empirical data and therefore enables to simulate the hydraulic capacity of vertically oriented textile filters. The mathematical model reflects the significant impact of the filter characteristics (textile permeability at different filter height and operational conditions (dosing frequency on the textile filters hydraulic capacity.

  6. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  7. Strengthening Critical Infrastructure: Combined Heat and Power at Wastewater Treatment Facilities (Webinar) – November 15, 2011

    Science.gov (United States)

    This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.

  8. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  9. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Study the Stability of a Wastewater Treatment Unit using LABVIEW

    Directory of Open Access Journals (Sweden)

    Ghainm M. Alwan

    2013-05-01

    Full Text Available This study was devoted to limit the stability conditions of the wastewater treatment unit.       LABVIEW was a powerful and versatile graphical programming language in automation control and date acquisition of the system. The on-line show that accurate and stable control responses were obtained in the present work. The actual phase plane proved to a better technique to limit the regions of the non-linear system stability compared to other theoretical techniques. Limit cycle did not appear in the present system. 

  11. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  12. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  13. Held to Ransom: CMV Treatment in South Africa

    Directory of Open Access Journals (Sweden)

    Fatima Laher

    2010-04-01

    Full Text Available Cytomegalovirus is a multi-systemic infection reactivated in the immunocompromised. Diagnosis and treatment are prohibitively costly in sub-Saharan Africa, and efforts need to be made for their price reduction to support the expanding highly active antiretroviral treatment programme in the region.

  14. Towards energy neutrality of wastewater treatment plants via deammonification process

    Directory of Open Access Journals (Sweden)

    Janiak Kamil

    2017-01-01

    Full Text Available Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.. With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  15. SELECTION OF CHEMICAL TREATMENT PROGRAM FOR OILY WASTEWATER

    Directory of Open Access Journals (Sweden)

    Miguel Díaz

    2017-04-01

    Full Text Available When selecting a chemical treatment program for wastewater to achieve an effective flocculation and coagulation is crucial to understand how individual colloids interact. The coagulation process requires a rapid mixing while flocculation process needs a slow mixing. The behavior of colloids in water is strongly influenced by the electrokinetic charge, where each colloidal particle carries its own charge, which in its nature is usually negative. Polymers, which are long chains of high molecular weight and high charge, when added to water begin to form longer chains, allowing removing numerous particles of suspended matter. A study of physico-chemical treatment by addition of coagulant and flocculant was carried out in order to determine a chemical program for oily wastewater coming from the gravity separation process in a crude oil refinery. The tests were carried out in a Jar Test equipment, where commercial products: aluminum polychloride (PAC, aluminum sulfate and Sintec D50 were evaluated with five different flocculants. The selected chemical program was evaluated with fluids at three temperatures to know its sensitivity to this parameter and the mixing energy in the coagulation and flocculation. The chemical program and operational characteristics for physico-chemical treatment with PAC were determined, obtaining a removal of more than 93% for suspended matter and 96% for total hydrocarbons for the selected coagulant / flocculant combination.

  16. Towards energy neutrality of wastewater treatment plants via deammonification process

    Science.gov (United States)

    Janiak, Kamil; Łojek, Andrzej; Muszyński-Huhajło, Mateusz

    2017-11-01

    Energy neutrality of wastewater treatment plants is possible with constant and consistent optimization and implementation of new technologies. In recent years new process called deammonification has been discovered and implemented in treatment of side streams rich in nitrogen. With its implementation on wastewater treatment plants it is possible to remove nearly all nitrogen from side stream (even 30% of overall nitrogen load) in less energy consuming way. Additionally, thanks to lower nitrogen load to main stream reactors it is possible to optimize them to further lower energy consumption. This article presents simulation studies of deammonification implementation and main stream reactor optimization in case of medium Polish WWTP (115 000 p.e.). With removal of 20% of nitrogen in side stream via deammonification and subsequent main line optimization it is possible to save 5000 euro/year by lowering sludge retention time, oxygen concentration in main stream reactors. When additional COD is precipitated in primary clarifiers with iron coagulants, 55 000 euro/year can be saved in case of energy costs which states for most of the energy costs. However, when coagulant and disposal costs are included savings are on the level of 25 000 euro/year.

  17. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco

    Science.gov (United States)

    Tahri, Loubna; Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed; Azmani, Amina; Sayah, Fouad

    2010-04-01

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co 60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  18. Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration

    Energy Technology Data Exchange (ETDEWEB)

    Sudilovskiy, P.S.; Kagramanov, G.G.; Trushin, A.M.; Kolesnikov, V.A. [D.I. Mendeleyev University of Chemical Technology of Russia, Moscow (Russian Federation)

    2007-08-15

    A new water treatment process - membrane flotation - is presented. The hydrodynamics of air sparging with the use of microporous membranes was studied as well as the membrane flotation efficacy for cationic wastewater treatment. The performance of membrane filtration processes was evaluated. Ways of integration of flotation and membrane filtration in cationic wastewater treatment practice are discussed. (orig.)

  19. High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions

    NARCIS (Netherlands)

    Lier, van J.B.; Rebac, S.; Lettinga, G.

    1997-01-01

    Anaerobic wastewater treatment is an attractive and generally accepted technology for the treatment ofvarious types of medium- and high-strength wastewaters. So far, this treatment technology is mostly applied at the mesophilic temperature range between 25 and 40°C. However, results of recent

  20. Agricultural use of treated wastewater: the need for a paradigm shift in sanitation & treatment

    OpenAIRE

    Van, Lier, G; Huibers, F.P.

    2004-01-01

    Appropriate treated domestic sewage can be regarded as iseal for irrigation and fertilization purposes, particularly in the (semi)arid climate region. This contribution focuses on: 1) pathogens, various levels of interception; 2) basic wastewater treatment; 3) wastewater treatment for effluent use in irrigated agriculture; 4) effluent treatment for agricultural re-use

  1. Microbial Diversity in Soil Treatment Systems for Wastewater

    Science.gov (United States)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  2. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  3. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling.

    Science.gov (United States)

    Watkinson, A J; Murby, E J; Costanzo, S D

    2007-10-01

    Removal of 28 human and veterinary antibiotics was assessed in a conventional (activated sludge) and advanced (microfiltration/reverse osmosis) wastewater treatment plant (WWTP) in Brisbane, Australia. The dominant antibiotics detected in wastewater influents were cephalexin (med. 4.6 microg L(-1), freq. 100%), ciprofloxacin (med. 3.8 microg L(-1), freq. 100%), cefaclor (med. 0.5 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.36 microg L(-1), freq. 100%) and trimethoprim (med. 0.34 microg L(-1), freq. 100%). Results indicated that both treatment plants significantly reduced antibiotic concentrations with an average removal rate from the liquid phase of 92%. However, antibiotics were still detected in both effluents from the low-to-mid ng L(-1) range. Antibiotics detected in effluent from the activated sludge WWTP included ciprofloxacin (med. 0.6 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.27 microg L(-1), freq. 100%) lincomycin (med. 0.05 microg L(-1), freq. 100%) and trimethoprim (med. 0.05 microg L(-1), freq. 100%). Antibiotics identified in microfiltration/reverse osmosis product water included naladixic acid (med. 0.045 microg L(-1), freq. 100%), enrofloxacin (med. 0.01 microg L(-1), freq. 100%), roxithromycin (med. 0.01 microg L(-1), freq. 100%), norfloxacin (med. 0.005 microg L(-1), freq. 100%), oleandomycin (med. 0.005 microg L(-1), freq. 100%), trimethoprim (med. 0.005 microg L(-1), freq. 100%), tylosin (med. 0.001 microg L(-1), freq. 100%), and lincomycin (med. 0.001 microg L(-1), freq. 66%). Certain traditional parameters, including nitrate concentration, conductivity and turbidity of the effluent were assessed as predictors of total antibiotic concentration, however only conductivity demonstrated any correlation with total antibiotic concentration (p=0.018, r=0.7). There is currently a lack of information concerning the effects of these chemicals to critically assess potential risks for environmental discharge and water recycling.

  4. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  5. Synthesis of BiOCl using Cl source from industrial wastewater and its application for wastewater treatment.

    Science.gov (United States)

    Yao, Kun; Jia, Manke; Wu, Huanhuan; Li, Yonggang; Chen, Chuncheng; Huang, Yingping

    2017-11-03

    Cl- in industrial wastewater from glyphosate production has been used as Cl source to synthesize BiOCl photocatalyst via a simple solvothermal route. The crystalline, morphology, specific surface area and optical properties of photocatalysts prepared under various conditions have been investigated. BiOCl photocatalyst prepared in acidic solution shows the highest crystallinity and without impurities and microcellular structure. The degradation of industrial wastewater contaminants demonstrates the possibility of this BiOCl used in industrial wastewater treatment and phosphorus recycling through the subsequent phosphorus recovery processes. This study not only sheds light on the possibility of photocatalysts' preparation in situ using industrial wasterwater as raw materials and the feasibility of using photocatalysis technology in wastewater treatment area, but also the chloride ions have been removed as an available resource and the corrosion to treatment facilities has been slowed down. The phosphorus and nitrogen resources can be recycled by other subsequent recycle recoveries. It offers a novel way for the wastewater treatment process in succession from photocatalysts' manufacture to contaminants disposal.

  6. Treatment of domestic wastewater using microbiological processes and hydroponics in Sweden

    OpenAIRE

    Norström, Anna

    2005-01-01

    Conventional end-of-pipe solutions for wastewater treatment have been criticized from a sustainable view-point, in particular regarding recycling of nutrients. The integration of hydroponic cultivation into a wastewater treatment system has been proposed as an ecological alternative, where nutrients can be removed from the wastewater through plant uptake; however, cultivation of plants in a temperate climate, such as Sweden, implies that additional energy is needed during the colder and darke...

  7. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  8. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Svojitka, Jan; Dvořák, Lukáš; Studer, Martin; Straub, Jürg Oliver; Frömelt, Heinz; Wintgens, Thomas

    2017-04-01

    Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL(-1) as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL(-1) as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  10. Improvement of wastewater treatment by use of natural coagulants

    Directory of Open Access Journals (Sweden)

    Jelena Prodanović

    2013-06-01

    Full Text Available An activated sludge and other organic sludges from wastewater treatment processes are usually anaerobically digested prior to application on land. The purpose of digestion is to convert bulky, odorous sludges to relatively inert material that can be rapidly dewatering. The important benefit of this process is a biogas production, too. It is proper to enlarge primary sludge production in a primary settler by adding some coagulation aids, with aim to increase a biogas production, as much as possible. The most common coagulant is alum, but presence of large quantities of aluminum salts in sludge has a harmful impact on digestion and digested sludge application. Some natural coagulants, that have a numerous advantages, can be used instead of alum. Natural coagulants could be extracted from a different plant material, and considering the fact that they are of organic nature, the biogas yield can be enhanced by their presence. A plant material that remains after extraction can be used as a feed. The aim of this paper is a consideration of potential environmental benefits of substitution of alum by natural coagulant extracted from common bean seeds in sewage wastewater treatment process.

  11. Biological treatment of model dyes and textile wastewaters.

    Science.gov (United States)

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Greenhouse gases from wastewater treatment - A review of modelling tools.

    Science.gov (United States)

    Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf

    2016-05-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. General Characteristics and Treatment Possibilities of Dairy Wastewater - A Review

    National Research Council Canada - National Science Library

    Aleksandar Kolev Slavov

    2017-01-01

    ... attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described...

  14. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    Science.gov (United States)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  15. Towards sustainable and robust on-site domestic wastewater treatment for all citizens

    NARCIS (Netherlands)

    Mgana, S.

    2003-01-01

    In most developing countries commonly practiced domestic wastewater treatment systems predominantly constitute anaerobic treatment process. The anaerobic treatment units mostly installed are on-site at residential dwellings.However the commonly installed units, viz., traditional pit latrines and

  16. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  17. Evaluating the welfare effects of improved wastewater treatment using a discrete choice experiment.

    Science.gov (United States)

    Ndunda, Ezekiel N; Mungatana, Eric D

    2013-07-15

    This paper employs the discrete choice experiment method to estimate the benefits of improved wastewater treatment programs to mitigate the impacts of water pollution in Nairobi, Kenya. Urban and peri-urban farmers who use wastewater for irrigation from Motoine to Ngong River in Nairobi were randomly selected for the study. A random parameter logit model was used to estimate the individual level willingness to pay for the wastewater treatment before reuse in irrigation. The results show that urban and peri-urban farmers are willing to pay significant monthly municipality taxes for treatment of wastewater. We find that the quality of treated wastewater, the quantity of treated wastewater and the riverine ecosystem restoration are significant factors of preference over alternative policy designs in reduction of water pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    Directory of Open Access Journals (Sweden)

    Francesca Giaccherini

    2017-06-01

    Full Text Available In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent emission for tannery wastewater treatment is 1.49 103 tCO2,eq d−1. Moreover, the energy intensity of tannery wastewater treatment processes are evaluated at 3.9 kWh kg−1bCOD,removed, compared to 1.4 kWh kg−1bCOD,removed of municipal wastewater treatment processes. Based on this work in the field of tannery wastewater treatment, an effort to innovate suitable treatment trains and technologies has the strong potential to reduce the carbon footprint.

  19. A novel multistage kinetic modeling of flotation for wastewater treatment.

    Science.gov (United States)

    Ksenofontov, B S; Ivanov, M V

    2013-01-01

    This study develops a new model for description of flotation kinetics. It defines flotation as a process that consists of several stages: separated air bubbles and particles, air bubbles and particles forming an aggregate, aggregate rising to the froth layer. This description significantly differs from known models, which are much simplified. The multistage model gives a novel in-depth description and considers different aspects of flotation, i.e. aggregate formation, which is critically important for flotation to take place. Experimental approval of the new model resulted in its accuracy. The model is to be used for a description of kinetics of all flotation processes in wastewater treatment. It helps in accurate design of flotation treatment plants and may be used for further research of the flotation process.

  20. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  1. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  2. Influence of wastewater treatment process and the population size on human virus profiles in wastewater.

    Science.gov (United States)

    Hewitt, Joanne; Leonard, Margaret; Greening, Gail E; Lewis, Gillian D

    2011-11-15

    Human adenovirus (AdV and AdV species F), enterovirus (EV) and norovirus (NoV) concentrations entering wastewater treatment plants (WWTP) serving different-sized communities, and effectiveness of different treatment processes in reducing concentrations were established. Data was combined to create a characteristic and unique descriptor of the individual viral composition and termed as the sample virus profile. Virus profiles were generally independent of population size and treatment process (moving bed biofilm reactors, activated sludge, waste stabilisation ponds). AdV and EV concentrations in wastewater were more variable in small (130,000 inhabitants) plants. AdV and EV concentrations were detected in influent of most WWTP (AdV range 1.00-4.08 log(10) infectious units (IU)/L, 3.25-8.62 log(10) genome copies/L; EV range 0.7-3.52 log(10) plaque forming units (PFU)/L; 2.84-6.67 log(10) genome copies/L) with a reduced median concentration in effluent (AdV range 0.70-3.26 log(10) IU/L, 2.97-6.95 log(10) genome copies/L; EV range 0.7-2.15 log(10)PFU/L, 1.54-5.28 log(10) genome copies/L). Highest culturable AdV and EV concentrations in effluent were from a medium-sized WWTP. NoV was sporadic in all WWTP with GI and GII concentrations being similar in influent (range 2.11-4.64 and 2.19-5.46 log(10) genome copies/L) as in effluent (range 2.18-5.06 and 2.88-5.46 log(10) genome copies/L). Effective management of WWTP requires recognition that virus concentration in influent will vary - particularly in small and medium plants. Irrespective of treatment type, culturable viruses and NoV are likely to be present in non-disinfected effluent, with associated human health risks dependent on concentration and receiving water usage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment

    KAUST Repository

    Ivanov, Ivan

    2013-10-01

    Microbial electrolysis cells (MECs) are potential candidates for sustainable wastewater treatment as they allow for recovery of the energy input by producing valuable chemicals such as hydrogen gas. Evaluating the effectiveness of MEC treatment for different wastewaters requires new approaches to quantify performance, and the establishment of specific procedures and parameters to characterize the outcome of fed-batch treatability tests. It is shown here that Coulombic efficiency can be used to directly calculate energy consumption relative to wastewater treatment in terms of COD removal, and that the average current, not maximum current, is a better metric to evaluate the rate of the bioelectrochemical reactions. The utility of these methods was demonstrated using simulated current profiles and actual wastewater tests. Industrial and domestic wastewaters were evaluated using small volume MECs, and different inoculation strategies. The energy needed for treatment was 2.17kWhkgCOD-1 for industrial wastewater and 2.59kWhkgCOD-1 for domestic wastewater. When these wastewaters were combined in equal amounts, the energy required was reduced to 0.63kWhkgCOD-1. Acclimation of the MEC to domestic wastewater, prior to tests with industrial wastewaters, was the easiest and most direct method to optimize MEC performance for industrial wastewater treatment. A pre-acclimated MEC accomplished the same removal (1847 ± 53 mg L-1) as reactor acclimated to only the industrial wastewater (1839 ± 57 mg L-1), but treatment was achieved in significantly less time (70 h versus 238 h). © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  4. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review

    Directory of Open Access Journals (Sweden)

    Lu Haifeng

    2017-01-01

    Full Text Available Using microalgae to treat wastewater has received growing attention in the world because it is regarded as a novel means for wastewater treatment. It is commonly recognized that large-scale cultivation and commercial application of microalgae are limited by the development of photobioreactor (PBR. Although there are a lot of PBRs for microalgae pure cultivation which used culture medium, specialized PBRs designed for wastewater treatment are rare. The composition of wastewater is quite complicated; this might cause a very different photosynthetic effect of microalgae compared to those grown in a pure cultivation medium. Therefore, PBRs for wastewater treatment need to be redesigned and improved based on the existing PBRs that are used for microalgae pure cultivation. In this review, different PBRs for microalgae cultivation and wastewater treatment are summarized. PBR configurations, PBR design parameters and types of wastewater are presented. In addition, the wastewater treatment efficiency and biomass productivity were also compared among each type of PBRs. Moreover, some other promising PBRs are introduced in this review, and a two-stage cultivation mode which combines both closed and open system is discussed as well. Ultimately, this article focuses on current problems and gives an outlook for this field, aiming at providing a primary reference for microalgae cultivation by using wastewater.

  5. Treatment of trace organic compounds in common onsite wastewater systems

    Science.gov (United States)

    Robert Siegrist,; Conn, Kathleen E.

    2015-01-01

    Onsite wastewater systems (OWS) have historically been relied on to treat conventional pollutants and pathogens in a fashion similar to that expected from centralized wastewater systems. However, based on the occurrence of, and potential effects from, contaminants of emerging concern in wastewaters, OWS as well as centralized systems need to account for these compounds in system design and use. One group of contaminants involves organic compounds such as those associated with consumer product chemicals and pharmaceuticals, which are collectively referred to as trace organic compounds (TOrCs) due to their very low levels (e.g., ng/L to ug/L) relative to other pollutants. The question being confronted today is how best to account for TOrCs in onsite system design and use while also achieving other goals such as system simplicity, limited operation and maintenance requirements, low cost, and sustainability. In contrast to conventional pollutants such as nutrients and pathogens which have specific and achievable treatment goals, there are currently no enforceable treatment standards for TOrCs, which often have non-traditional toxicological endpoints (i.e. endocrine disruption). As highlighted in this paper, there are a large number of TOrCs that can be present in OWS and they have different properties, can be present at different frequencies of occurrence and concentrations, and have different susceptibilities to treatment in OWS. In general, based on the studies summarized in this paper, TOrCs normally should not require additional considerations beyond those for conventional pollutants and pathogens (e.g., nitrogen or bacteria and virus) during design and use of OWS. That said, there are situations where TOrCs could be a serious concern warranting special consideration in system design and use. In this paper, the frequency of occurrence of TOrCs and the range of concentrations encountered are highlighted. An evolving approach is outlined that could help assess the

  6. Turbidity-based monitoring of particle concentrations and flocculant requirement in wastewater pre-treatment

    NARCIS (Netherlands)

    Mels, A.R.; Spanjers, H.; Klapwijk, A.

    2004-01-01

    The removal of particulate organic material in the first step of wastewater treatment may result in significant savings of reactor volume and energy at wastewater treatment plants, because the organic loading to pursuing unit operations can be reduced. This article describes experiments into the

  7. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... collector sewers constructed exclusively, or almost exclusively, to serve industrial users; or (2) Costs for...

  8. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Science.gov (United States)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  9. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  10. Inter-Municipal Cooperation For Wastewater Treatment: Case studies from Israel

    NARCIS (Netherlands)

    Hophmayer Tokich, Sharon; Kliot, Nurit

    2008-01-01

    Since the beginning of the 1990s, local authorities in Israel have been engaged in promoting advanced Wastewater Treatment Plant (WWTP) projects throughout the country, resulting in the “wastewater treatment revolution” of the 1990s. These achievements are extremely important in the water-scarce

  11. Operation of Wastewater Treatment Plants. Volume 1. A Field Study Training Program. Third Edition. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The purpose of this wastewater treatment field study training program is to: (1) develop new qualified wastewater treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  12. Feasibility of using ornamental plants in subsurface flow wetlands for domestic wastewater treatment

    Science.gov (United States)

    Marco A. Belmont

    2000-01-01

    Constructed wetlands are possible low-cost solutions for treating domestic and industrial wastewater in developing countries such as Mexico. However, treatment of wastewater is not a priority in most developing countries unless communities can derive economic benefit from the water resources that are created by the treatment process. As part of our studies directed at...

  13. Agricultural use of treated wastewater: the need for a paradigm shift in sanitation & treatment

    NARCIS (Netherlands)

    Lier, van J.B.; Huibers, F.P.

    2004-01-01

    Appropriate treated domestic sewage can be regarded as iseal for irrigation and fertilization purposes, particularly in the (semi)arid climate region. This contribution focuses on: 1) pathogens, various levels of interception; 2) basic wastewater treatment; 3) wastewater treatment for effluent use

  14. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    Science.gov (United States)

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Treatment of cyanide containing wastewater using cavitation based approach.

    Science.gov (United States)

    Jawale, Rajashree H; Gogate, Parag R; Pandit, Aniruddha B

    2014-07-01

    Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Subsurface Treatment of Domestic Wastewater Using Single Domicile Constructed Wetlands

    Science.gov (United States)

    Aseltyne, T.; Steer, D.; Fraser, L.

    2001-05-01

    Analysis of one year of input versus output water quality monitoring data from nine household wastewater treatment wetlands in western Ohio indicates that these systems substantially reduce effluent loads delivered to the local watershed. Overall performance as measured by output water quality improvement varies widely between the nine systems despite their close proximity and identical design. These three-cell systems (septic tank with 2 subsurface wetland cells) are found to reduce biological oxygen demand (BOD) 70-98%, fecal coliform 60-99.9%, NH3 29-97%, Phosphorus 21-99.9% and total suspended solids (TSS) up to 97%. NO3/NO2 readings were only taken at the second wetland cell, but show that NO3/NO2 levels are at 0.005-5.01 mg/l and well below the USEPA standards for discharge from a wetland. On average, the pH of the wastewater increases from 6.6 at the septic tank to 8.7 at the wetland output. Nearly all the monitoring data indicate clear decreases in nutrient loads and bacteria though individual systems are found to non-systematically fail to meet EPA discharge guidelines for one or more of the monitored loads. Preliminary analysis of the data indicates a decrease in overall efficiency of the wetlands in April that may be related to seasonal factors. These systems will be monitored for the next three years in order to relate changing performance trends to seasonal variability.

  17. Bacterial communities involved in sulfur transformations in wastewater treatment plants.

    Science.gov (United States)

    Meyer, Daniel Derrossi; de Andrade, Pedro Avelino Maia; Durrer, Ademir; Andreote, Fernando Dini; Corção, Gertrudes; Brandelli, Adriano

    2016-12-01

    The main sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB) in six wastewater treatment plants (WWTPs) located at southern Brazil were described based on high-throughput sequencing of the 16S rDNA. Specific taxa of SRB and SOB were correlated with some abiotic factors, such as the source of the wastewater, oxygen content, sample type, and physical chemical attributes of these WWTPs. When the 22 families of SRB and SOB were clustered together, the samples presented a striking distribution, demonstrating grouping patterns according to the sample type. For SOB, the most abundant families were Spirochaetaceae, Chromatiaceae, Helicobacteriaceae, Rhodospirillaceae, and Neisseriaceae, whereas, for SRB, were Syntrophaceae, Desulfobacteraceae, Nitrospiraceae, and Desulfovibriaceae. The structure and composition of the major families related to the sulfur cycle were also influenced by six chemical attributes (sulfur, potassium, zinc, manganese, phosphorus, and nitrogen). Sulfur was the chemical attribute that most influenced the variation of bacterial communities in the WWTPs (λ = 0.14, p = 0.008). The OTUs affiliated to Syntrophus showed the highest response to the increase of total sulfur. All these findings can contribute to improve the understanding in relation to the sulfur-oxidizing and sulfate-reducing communities in WWTPs aiming to reduce H2S emissions.

  18. Dairy farm wastewater treatment by an advanced pond system.

    Science.gov (United States)

    Craggs, R J; Tanner, C C; Sukias, J P S; Davies-Colley, R J

    2003-01-01

    Waste stabilisation ponds (WSPs) have been used for the treatment of dairy farm wastewater in New Zealand since the 1970s. The conventional two pond WSP systems provide efficient removal of wastewater BOD5 and total suspended solids, but effluent concentrations of other pollutants including nutrients and faecal bacteria are now considered unsuitable for discharge to waterways. Advanced Pond Systems (APS) provide a potential solution. A pilot dairy farm APS consisting of an Anaerobic pond (the first pond of the conventional WSP system) followed by three ponds: a High Rate Pond (HRP), an Algae Settling Pond (ASP) and a Maturation Pond (which all replace the conventional WSP system facultative pond) was evaluated over a two year period. Performance was compared to that of the existing conventional dairy farm WSP system. APS system effluent quality was considerably higher than that of the conventional WSP system with respective median effluent concentrations of BOD5: 34 and 108 g m(-3), TSS: 64 and 220 g m(-3), NH4-N: 8 and 29 g m(-3), DRP: 13 and 17 g m(-3), and E. coli: 146 and 16195 MPN/100 ml. APS systems show great promise for upgrading conventional dairy farm WSPs in New Zealand.

  19. A novel integrated treatment system for coal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Srinivasan, K.R.

    1992-01-01

    The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and heavy metals present in coal conversion wastewaters. To remove and recover heavy metals from wastewaters, four different types of surfactant-clay complexes have been prepared using hectored or montmorillonite as the base clays. The adsorbent is prepared by first coating the clay surface, upto a monolayer, with a cationic surfactant, CBDA, to which an amine, (DT), or a carboxylic acid (Palmitic acid, PA) is anchored using hydrophobic effect to form a mixed bilayer. Such an arrangement is expected to locate the functional groups in metal adsorption at the solid-solution interface. Complexes based on hectored are shown to adsorb Cu{sup 2+} ions more strongly than the ones based on montmorillonite. The rate of adsorption of Cu{sup 2+} ions is quite rapid and the adsorbed amount levels off in less than 2 hrs. The optimum pH for metal adsorption is around 6.5 and the amount of metal adsorbed declines sharply on the lower pH side of the pH optimum, suggesting that removal and recovery of adsorbed metal ions can be effected by a slight pH shift.

  20. Vegetable coagulants as alternative for treatment of wastewater in Mexico

    Directory of Open Access Journals (Sweden)

    Servando López-León

    2017-11-01

    Full Text Available This review addresses the various properties of natural coagulants, water, the chemical substance essential for life and the ideal solvent for a large number of compounds, it is commonly used with domestic, commercial and industrial purposes. After its use, it presents sewage to be retired before use it once again. To remove pollutant, water is subject to different physical, chemical and biological processes. Here, the clarification process uses aluminum and iron materials to remove the solids present; these materials are reported as health hazardous and toxic. In Mexico, regulatory frame work stablish that treated wastewater should do not exceed 0.2 mg/L of aluminum even though has been reported an increased risk of Alzheimer's in populations when water exceeds 0.1 mg/L. Natural coagulants have showed coagulation properties when are used in the clarification process, proven its advantages over traditional ones; such as low cost, good coagulant properties and safe health and non-toxic properties. Here, we enlist some vegetable species as alternatives to the traditional based on aluminum and iron. Additionally, these species are known to have origins on Mexico or being present extensively in the territory, making possible to think about them as alternative coagulants in the clarification process of the wastewater treatment process.

  1. Development of large bore superconducting magnet for wastewater treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui Ming; Xu, Dong; Shen, Fuzhi; Zhang, Hengcheng; Li, Lafeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2017-03-15

    Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

  2. Design of zeolite ion-exchange columns for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.

    1991-01-01

    Oak Ridge National Laboratory plans to use chabazite zeolites for decontamination of wastewater containing parts-per-billion levels of {sup 90}Sr and {sup 137}Cs. Treatability studies indicate that such zeolites can remove trace amounts of {sup 90}Sr and {sup 137}Cs from wastewater containing high concentrations of calcium and magnesium. These studies who that zeolite system efficiency is dependent on column design and operating conditions. Previous results with bench-scale, pilot-scale, and near-full-scale columns indicate that optimized design of full-scale columns could reduce the volume of spent solids generation by one-half. The data indicate that shortcut scale-up methods cannot be used to design columns to minimize secondary waste generation. Since the secondary waste generation rate is a primary influence on process cost effectiveness, a predictive mathematical model for column design is being developed. Equilibrium models and mass-transfer mechanisms are being experimentally determined for isothermal multicomponent ion exchange (Ca, Mg, Na, Cs, and Sr). Mathematical models of these data to determine the breakthrough curves for different column configurations and operating conditions will be used to optimize the final design of full-scale treatment plant. 32 refs., 6 figs., 3 tabs.

  3. Treatment of real paracetamol wastewater by fenton process

    Directory of Open Access Journals (Sweden)

    Dalgic Gamze

    2017-01-01

    Full Text Available The study investigated the pretreatment of real paracetamol (PCT wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step, 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD, total organic carbon (TOC, 5-day biological oxygen demand (BOD5, PCT, para-amino phenol (PAP and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge. Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.

  4. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K

    2011-05-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  5. Temporal dynamics of antibiotics in wastewater treatment plant influent.

    Science.gov (United States)

    Coutu, Sylvain; Wyrsch, V; Wynn, H K; Rossi, L; Barry, D A

    2013-08-01

    A yearlong field experimental campaign was conducted to reveal time scales over which antibiotic fluxes vary in the influent of a wastewater treatment plant (WTP). In particular, sampling was carried out to ascertain the amplitudes of monthly, daily and hourly fluctuations of several antibiotics. A total of 180 samples was collected at the entrance of a WTP in Lausanne, Switzerland. Sample concentrations were multiplied by flow rate to obtain monthly, daily and hourly mass fluxes of six antibiotics (trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, clindamycin and metronidazole). Seasonality in mass fluxes was observed for all substances, with maximum values in winter being up to an order of magnitude higher than in summer. The hourly measurements of the mass flux of antibiotics were found to have a period of 12h. This was due to peaks in toilet use in the morning and early evening. In particular, the morning peak in flushing coincided with high concentrations (and hence high mass fluxes) due to overnight accumulation of substances in urine. However, little variation was observed in the average daily flux. Consequently, fluctuations in mass fluxes of antibiotics were mainly evident at the monthly and hourly time scales, with little variation on the day-week time scale. These results can aid in optimizing removal strategies and future sampling campaigns focused on antibiotics in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Study on treatment of aquaculture wastewater using a hybrid constructed wetland

    Science.gov (United States)

    Hu, Jinzhao; Hu, Rui; Qi, Dan; Lu, Xujie

    2017-04-01

    This paper reported the pollutant removal performances of a hybrid wetland system for the treatment of aquaculture wastewater. The system consisted of two treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF). The aquaculture wastewater with the different concentrations such as eutrophy and mesotrophy was treated using hybrid constructed wetland. The experimental results showed that the removal efficiencies of eutrophy aquaculture wastewater achieved 56%, 71%, 73% for nitrite, phosphate and nitrate, respectively. At the same conditions, it can be found that the removal efficiencies of mesotrophy aquaculture wastewater achieved 39%, 74%, 73% for nitrite, phosphate and nitrate, respectively.

  7. Study of the efficiency of immobilized algal technology for wastewater treatment.

    Science.gov (United States)

    Kanherkar, S V; Late, A M; Nalawade, P M; Bhosaleanda, B J; Dhapate, S A

    2012-01-01

    The present paper deals with the study of efficiency of immobilized algal technology in wastewater treatment. The acclimatized algal species and wastewater samples were collected from three different sampling sites such as Kham River, Waluj [MIDC], Salim Ali Lake for the study. The encapsulation of collected algal species such as Spirogyra, Cyanobacteria in mixture form and Arthospira from selected sampling sites were made in sodium alginate for wastewater treatment. The percentage efficiency of immobilized algal technology for wastewater treatment was studied with respect to physico-chemical parameters. The physicochemical parameters were analyzed before and after treatment and compared for percentage efficiency study. The results obtained from present investigation reveal that the immobilized algal technology has maximum percentage efficiency in reduction of BOD, COD, Total Hardness, Total Alkalinity, Chloride. TSS, TDS and TSS. Whereas, the minimum fluctuations were found in pH and temperature. However, the immobilized algal technology is also useful to increase the dissolved oxygen concentration in wastewater treatment process.

  8. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production

    Science.gov (United States)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.

    2017-06-01

    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  9. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  10. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  11. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    Science.gov (United States)

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  12. Improvement on filterability in the aerobic treatment of carboxymethyl cellulose (CMC) wastewater

    OpenAIRE

    Qing Pei Ye; Hui Chen Dong; Ming Zhou Gong; Qin Lu; Qiang Ma Ji

    2014-01-01

    CMC is chemically modified from natural cellulose and widely applied in various industries. CMC wastewater consists mainly of sodium glycolate, sodium chloride and water. With extremely high COD and salinity, high concentration CMC wastewater can’t be biologically treated, but with COD and salinity around 15000 mg/L and 30000 mg/L respectively, low concentration CMC wastewater can be aerobically treated. In a CMC factory, the treatment of low concentration ...

  13. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review

    OpenAIRE

    Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A.

    2012-01-01

    A wastewater treatment plant may receive various types of wastewater namely, urban, industrial, agricultural, washout from the streets, wet or/and dry atmospheric deposition. As such, scientists have detected in wastewaters all major categories of pollutants like persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides, but also substances that are widely used as pharmaceuticals and cosmetics, classified as "PPCPs" (pharmaceuticals and personal care product...

  14. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  15. Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones.

    Science.gov (United States)

    Méndez, Erika; González-Fuentes, Miguel A; Rebollar-Perez, Georgette; Méndez-Albores, Alia; Torres, Eduardo

    2017-02-23

    Because of the intensive use of pharmaceutical substances in human life, studies on the detection of these chemical compounds and their metabolites as pollutants in water bodies are continuously reported. Some pharmaceutical agents are associated with adverse effects to aquatic life, even at very low concentrations (ng L-1 to μg L-1). For instance, the presence of antibiotics and hormones has been associated with increasing proliferation of antibiotic resistant pathogens and feminization and masculinization of some aquatic organisms. Currently, new attempts are being made to minimize or fully remove these types of pollutants from aquatic systems to protect the environment and human health. In this regard, physicochemical and biological treatments are among the most promising technologies for the treatment of wastewater containing pharmaceutical pollutants. These treatments are green alternatives for the degradation of hazardous organic compounds into nontoxic by-products. Here, we review some of the physicochemical and biological treatment methods used for the removal of the most extensively used antibiotics and hormones. Enzymatic oxidation, photocatalysis and electrochemical oxidation are described in terms of the aforementioned pharmaceutically active compounds (PhACs). The use of membrane technologies to separate different groups of antibiotics and hormones prior to biologic or physicochemical treatment methods is also addressed.

  16. Tabas coal preparation plant wastewater treatment with membrane technology.

    Science.gov (United States)

    Akbari, Ahmad; Abbaspour, Vahid Reza; Mojallali Rostami, Seyed Majid

    The goal of the present work is the Tabas coal preparation plant wastewater treatment using membrane technology. Polyacrylonitrile membrane was prepared through phase inversion method and then developed by annealing process. Also, high fouling resistance membranes were prepared by the embedding of TiO2 nanoparticles using self-assembling and blending methods. The effect of immersion time and TiO2 nanoparticles concentration was investigated using two techniques. The chemical structure, morphology, hydrophilicity, molecular weight cut-off and antifouling properties of membranes were characterized using energy-dispersive X-ray spectroscopy, scanning electron microscopy, contact angle, polyethylene glycol tracers, and cationic polyacrylamide (C-PAM) filtration, respectively. The optimized self-assembled membrane was shown to have more than 31.2% higher water flux with the best antifouling properties. Improving hydrophilicity leads to excellent antifouling properties for composite membranes and illustrates a promising method for fabrication of high performance membrane for C-PAM separation.

  17. Biological control and management of the detoxication wastewater treatment technologies

    Directory of Open Access Journals (Sweden)

    Topalova Yana

    2007-01-01

    Full Text Available Detoxication technologies require the combination of theoretical and practical knowledge of xenobiotic biodegradation, wastewater treatment technologies, and management rules. The purpose of this complicated combination is to propose specialized strategies for detoxication, based on lab- and pilot-scale modeling. These strategies include preliminary created algorithms for preventing the risk of water pollution and sediments. The technologies and algorithms are essentially important outcome, applied in the textile, pharmaceutical, cosmetic, woodtreating, and oiltreating industries. In this paper four rehabilitation technologies for pretreatment of water contaminated by pentachlorophenol (PCP have been developed in the frame of the European and Bulgarian National projects. Emphasize is put on the biological systems and their potential of detoxication management. The light and transmission electron microscopy of the reconstructed activated sludges the microbial, kinetic and enzymological indicators are presented and approved as critical points in the biocontrol.

  18. [Non-woven fabric media for wastewater treatment and mechanism].

    Science.gov (United States)

    Jin, Dongxia; Tian, Gang; Shi, Hanchang

    2002-05-01

    Non-woven fabric was adopted as a new kind of suspended media. Adapting condition and operation parameters and biodegradation mechanism using non-woven fabric media in wastewater treatment were studied. The result of experiment shows that different CODCr volumetric load should take different media volume. When CODCr volume load was lower than 1.2 kg/(m3.d), the volume ratio of media to reactor should be 20%; the CODCr volume load between 1.2-2.0 kg/(m3.d), the volume radio of media to reactor 38%; the CODCr volume load was larger 2.0 kg/(m3.d), the volume radio of media to reactor 29%. The result of the model shows that the biodegradation rule of pollutant can be described by the format of Monod Equation.

  19. Fungal treatment of humic-rich industrial wastewater : application of white rot fungi in remediation of food-processing wastewater

    NARCIS (Netherlands)

    Zahmatkesh, M.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot

  20. The Effectiveness of Anaerobic Baffled Reactor and Rotating Biological Contactor in Batik Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Augustinus Kristijanto

    2013-03-01

    Full Text Available Batik is one of popular arts of Indonesia. The batik industries in Sragen, Central Java, are prepared to compete in global market. In order to realize that objective, batik products should fulfill some qualifications, one of which is “environmental friendliness”. As batik production is usually generating wastewater which pollutes the environment, the technology of wastewater treatment should be developed to solve the problem. This preliminary study has been done to assess the effectiveness of anaerobic baffled reactor (ABR and rotating biological contactor (RBC in batik wastewater treatment. In 40 days of treatment period, the ABR performance in reducing pollutants showed an effectiveness up to 75%, whereas RBC effectiveness was in the range of 15-57%. Concerning the quality standard of wastewater, the wastewater treatment system showed a good performance  to decrease pH, whereas the COD was still high. Further optimization, then, is needed to improve the quality of effluent.

  1. Halophyte filter beds for treatment of saline wastewater from aquaculture.

    Science.gov (United States)

    Webb, J M; Quintã, R; Papadimitriou, S; Norman, L; Rigby, M; Thomas, D N; Le Vay, L

    2012-10-15

    The expansion of aquaculture and the recent development of more intensive land-based marine farms require efficient and cost-effective systems for treatment of highly nutrient-rich saline wastewater. Constructed wetlands with halophytic plants offer the potential for waste-stream treatment combined with production of valuable secondary plant crops. Pilot wetland filter beds, constructed in triplicate and planted with the saltmarsh plant Salicornia europaea, were evaluated over 88 days under commercial operating conditions on a marine fish and shrimp farm. Nitrogen waste was primarily in the form of dissolved inorganic nitrogen (TDIN) and was removed by 98.2 ± 2.2% under ambient loadings of 109-383 μmol l(-1). There was a linear relationship between TDIN uptake and loading over the range of inputs tested. At peak loadings of up to 8185 ± 590 μmol l(-1) (equivalent to 600 mmol N m(-2) d(-1)), the filter beds removed between 30 and 58% (250 mmol N m(-2) d(-1)) of influent TDIN. Influent dissolved inorganic phosphorus levels ranged from 34 to 90 μmol l(-1), with 36-89% reduction under routine operations. Dissolved organic nitrogen (DON) loadings were lower (11-144 μmol l(-1)), and between 23 and 69% of influent DON was removed during routine operation, with no significant removal of DON under high TDIN loading. Over the 88-day study, cumulative nitrogen removal was 1.28 mol m(-2), of which 1.09 mol m(-2) was retained in plant tissue, with plant uptake ranging from 2.4 to 27.0 mmol N g(-1) dry weight d(-1). The results demonstrate the effectiveness of N and P removal from wastewater from land-based intensive marine aquaculture farms by constructed wetlands planted with S. europaea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre......-treatment, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested...... oxygen demand and total and soluble phosphorus, regardless of the type of mechanical pre-treated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits for small- and medium...

  3. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  4. Unraveling cyanobacteria ecology in wastewater treatment plants (WWTP).

    Science.gov (United States)

    Martins, Joana; Peixe, Luísa; Vasconcelos, Vítor M

    2011-08-01

    Cyanobacteria may be important components of wastewater treatment plants' (WWTP) biological treatment, reaching levels of 100% of the total phytoplankton density in some systems. The occurrence of cyanobacteria and their associated toxins in these systems present a risk to the aquatic environments and to public health, changing drastically the ecology of microbial communities and associated organisms. Many studies reveal that cyanotoxins, namely microcystins may not act as antibacterial compounds but they might have negative impacts on protozoans, inhibiting their growing and respiration rates and leading to changes in cellular morphology, decreasing consequently the treatment efficacy in WWTP. On the other side, flagellates and ciliates may ingest some cyanobacteria species while the formation of colonies by these prokaryotes may be seen as a defense mechanism against predation. Problems regarding the occurrence of cyanobacteria in WWTP are not limited to toxin production. Other cyanobacterial secondary metabolites may act as antibacterial compounds leading to the disruption of bacterial communities that biologically convert organic materials in WWTP being fundamental to the efficacy of the process. Studies reveal that the potential antibacterial capacity differs according to cyanobacteria specie and it seems to be more effective in Gram (+) bacteria. Thus, to understand the effects of cyanobacterial communities in the efficiency of the waste water treatment it will be necessary to unravel the complex interactions between cyanobacterial populations, bacteria, and protozoa in WWTP in situ studies.

  5. Electro-peroxone treatment of Orange II dye wastewater.

    Science.gov (United States)

    Bakheet, Belal; Yuan, Shi; Li, Zhaoxin; Wang, Huijiao; Zuo, Jiane; Komarneni, Sridhar; Wang, Yujue

    2013-10-15

    Degradation of a synthetic azo dye, Orange II, by electro-peroxone (E-peroxone) treatment was investigated. During the E-peroxone process, ozone generator effluent (O2 and O3 gas mixture) was continuously sparged into an electrolysis reactor, which was equipped with a carbon-polytetrafluorethylene (carbon-PTFE) cathode to electrochemically convert the sparged O2 to H2O2. The in-situ generated H2O2 then reacted with the sparged O3 to produce •OH, which can oxidize ozone-refractory organic pollutants effectively. Thus, by simply combining conventional ozonation and electrolysis processes, and using a cathode that can effectively convert O2 to H2O2, the E-peroxone process degraded Orange II much more effectively than the two processes individually. Complete decolorization and 95.7% total organic carbon (TOC) mineralization were obtained after 4 and 45 min of the E-peroxone treatment, respectively. In comparison, only 55.6 and 15.3% TOC were mineralized after 90 min of the individual ozonation and electrolysis treatments, respectively. In addition to its high efficiency, the E-peroxone process was effective over a wide range of pH (3-10) and did not produce any secondary pollutants. The E-peroxone process can thus provide an effective and environmentally-friendly alternative for wastewater treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Demasculinization of male fish by wastewater treatment plant effluent

    Science.gov (United States)

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  7. Biodegradation of phytosanitary products in biological wastewater treatment.

    Science.gov (United States)

    Massot, A; Estève, K; Noilet, P; Méoule, C; Poupot, C; Mietton-Peuchot, M

    2012-04-15

    Agricultural activity generates two types of waste: firstly, biodegradable organic effluents generally treated by biological processes and, secondly, phytosanitary effluents which contain residues of plant protection products. The latter are collected and treated. Current technological solutions are essentially based on concentration or physical-chemical processes. However, recent improvements in the biodegradability of pesticides open the way to the consideration of alternative, biological, treatment using mixed liquor from wastewater plant activated sludge. The feasibility of the biological treatment of viticultural effluents has been evaluated by the application of pesticides to activated sludge. The necessity for selection of a pesticide-resistant biomass has been highlighted. The elimination of the phytosanitary products shows the potential of a resistant biomass in the treatment of pesticides. The aerated biological storage ponds at three wineries, followed by a sand or reed-bed filter, were used for the treatment of the total annual volume of the viticulture effluents and validate the laboratory experiments. The results show that the biological purification of pesticides by activated sludge is possible by allowing approximately 8 days for biomass adaptation. Stability of purification occurs between 20 and 30 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  9. Enhancing anaerobic treatment of wastewaters containing oleic acid

    OpenAIRE

    Hwu, C.S.

    1997-01-01

    INTRODUCTION

    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater concern when considering the higher lipid concentrations in the discharged effluents. Typical industries that generate lipids-containing wastewaters are dairy, edible oil and fat refinery, slaughte...

  10. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    OpenAIRE

    P.-H. Rao; W.-Q. Zhang; W. Yao; A.-Y. Zhu; J.-L. Xia; Y.-F. Tan; T.-Z. Liu

    2015-01-01

    Carboxymethyl cellulose (CMC) is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD) and salinity (>10 %), which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover val...

  11. Persistence and prevalence of pathogenic and extended-spectrum beta-lactamase-producing Escherichia coli in municipal wastewater treatment plant receiving slaughterhouse wastewater.

    Science.gov (United States)

    Diallo, Alpha Amadou; Brugère, Hubert; Kérourédan, Monique; Dupouy, Véronique; Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Oswald, Eric; Bibbal, Delphine

    2013-09-01

    We compared the prevalence of pathogenic and extended-spectrum beta-lactamase (ESBL) - producing Escherichia coli in effluents of a municipal wastewater treatment plant (WWTP) receiving wastewater from a slaughterhouse. A total of 1248 isolates were screened for the presence of virulence genes associated with enterohemorrhagic E. coli (EHEC) (stx1, stx2, and eae) and extraintestinal pathogenic E. coli (ExPEC) (sfa/focDE, kpsMT K1, hlyA, papEF, afa/draBC, clbN, f17A and cnf). The prevalence of atypical enteropathogenic E. coli (EPEC) was 0.7%, 0.2% and 0.5% in city wastewater, slaughterhouse wastewater and in the treated effluent, respectively. One stx1a and stx2b-positive E. coli isolate was detected in city wastewater. The prevalence of ExPEC was significantly higher in city wastewater (8.4%), compared to slaughterhouse wastewater (1.2%). Treatment in the WWTP did not significantly impact the prevalence of ExPEC in the outlet effluent (5.0%) compared to city wastewater. Moreover, the most potentially pathogenic ExPEC were isolated from city wastewater and from the treated effluent. ESBL-producing E. coli was also mainly detected in city wastewater (1.7%), compared to slaughterhouse wastewater (0.2%), and treated effluent (0.2%). One ESBL-producing E. coli, isolated from city wastewater, was eae-β1 positive. These results showed that pathogenic and/or ESBL-producing E. coli were mainly detected in human wastewater, and at a lesser extend in animal wastewater. Treatment failed to eliminate these strains which were discharged into the river, and then these strains could be transmitted to animals and humans via the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Wastewater Land Application Permit LA-000141 Renewal Information for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    On July 25, 1994, the State of ldaho Division of Environmental Quality issued a Wastewater Land Application Permit, #LA-000141-01, for the Central Facilities Area Sewage Treatment Plant. The permit expires August 7, 1999. This report is being submitted with the renewal application and specifically addresses; Wastewater flow; Wastewater characteristics; Impacts to vegetation in irrigation area; Impacts to soil in irrigation area; Evaluation of groundwater monitoring wells for Wastewater Land Application Permit purposes; Summary of trends observed during the 5-year reporting period; and Projection of changes and new processes.

  13. WASTEWATER TREATMENT TECHNOLOGIES APPLIED IN CONFORMITY WITH THE EUROPEAN ENVIRONMENTAL POLICIES

    Directory of Open Access Journals (Sweden)

    CASEN PANAITESCU

    2014-05-01

    Full Text Available Increasing industrialization degree and its complexity has made studies of the environmental impact assessment to be a necessity. Enforcement of national legislation in line with European legislation going to need to implement wastewater treatment technologies that treatment levels to be above 90% for not influence the quality of the receiving water. In the present work are compared wastewater treatment technologies. Based on monitored values of physico-chemical indicators are the advantages and disadvantages. It is also studied and their compliance with environmental policies in the wastewater treatment .

  14. Determination of the priority indexes for the oil refinery wastewater treatment process

    Science.gov (United States)

    Chesnokova, M. G.; Myshlyavtsev, A. V.; Kriga, A. S.; Shaporenko, A. P.; Markelov, V. V.

    2017-08-01

    The wastewater biological treatment intensity and effectiveness are influenced by many factors: temperature, pH, presence and concentration of toxic substances, the biomass concentration et al. Regulation of them allows controlling the biological treatment process. Using the Bayesian theorem the link between changes was determined and the wastewater indexes normative limits exceeding influence for activated sludge characteristics alteration probability was evaluated. The estimation of total, or aposterioric, priority index presence probability, which characterizes the wastewater treatment level, is an important way to use the Bayesian theorem in activated sludge swelling prediction at the oil refinery biological treatment unit.

  15. Risk assessment for organic trace compounds in wastewater: comparison of conventional and advanced treatment.

    Science.gov (United States)

    Schwätter, F; Hannich, C B; Nöthe, T; Oehlmann, J; Fahlenkamp, H

    2007-01-01

    The elimination of organic trace compounds in municipal wastewater was analysed at three German wastewater treatment plants. Additionally, the effects of advanced treatment, membrane filtration, adsorption and oxidation processes were investigated. To assess the ecotoxicity of effluents, a number of tools were used: substance-specific evaluation, case studies for combined effects and risk assessment on the basis of cumulative parameters. The results of the research projects revealed that aquatic environmental risks can be reduced significantly using advanced treatment technologies for wastewater treatment plants.

  16. Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Suriyapraphadilok, Uthaiporn; Siemanond, Kitipat

    2015-01-01

    is employed to solve a network superstructure-based optimization problem formulated as Mixed Integer Linear and/or Non-Linear Programming (MILP/MINLP). Data from a petroleum refinery effluent treatment plant together with special design constraints are employed to formulate different design schemes based...... a generic model-based synthesis and design framework for retrofit wastewater treatment networks (WWTN) of an existing industrial process. The developed approach is suitable for grassroots and retrofit systems and adaptable to a wide range of wastewater treatment problems. A sequential solution procedure...... for the future development of the existing wastewater treatment process....

  17. Economics of wastewater treatment in GTL plant using spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Enyi, G.C.; Nasr, G.G.; Burby, M. [University of Salford, Manchester, M5 4WT (United Kingdom)

    2013-07-01

    In a Gas-to-liquid (GTL) plant, significant quantities of CO2 and reaction water are produced and various chemicals are used as intermediate treatment chemicals. The reaction water is contaminated by these chemicals which impair the pH and the related properties of the water. The pH has to be controlled in the effluent treatment unit before the water is re-used or released to the environment. The overall aim of this investigation is to create a novel technique to address the problem of waste water treatment in GTL plants which will assist in the reduction of greenhouse gas (CO2) emissions into the atmosphere. A laboratory-scale effluent neutralisation unit for pH control utilising gas injectors was designed and built. The unit used the CO2 produced as a by-product of GTL process as wastewater treatment chemical instead of the conventional Sulphuric acid. The quality of wastewater after treatment with CO2 met the standards set by the state regulatory agency. The economics of the new process shows a better payout period of 3.6 years for capital investment of $1,645 Million compared to 4.7 years for an existing plant layout with capital investment of $1,900 Million. The effects of increase in plant capacity showed a lower payback back of 2.8 years for plant capacity of 140,000 barrels/day (22258 m3/day), 3.6 years for 34,000 barrels/day and 6.0 years for 12,500 barrels/day (1987 m3/day) plant capacity. The sensitivity analysis using crystal ball simulator with 'Microsoft Excel' shows that the annual revenue has the greatest effects on the NPV of the plant than the CAPEX and inflation rate. Apart from the environmental benefits the process generates by reducing CO2 emissions into the atmosphere, the study also concludes that the replacement of conventional Sulphuric acid (H2SO4) unit with CO2 improves the economics of the plant.

  18. Hybrid constructed wetlands for wastewater treatment: a worldwide review

    National Research Council Canada - National Science Library

    Sayadi, M.H; Kargar, R; Doosti, M.R; Salehi, H

    2012-01-01

    .... This study aimed to assess the potentiality of hybrid constructed wetlands for treating of landfill leachate, river polluted water, domestic, industrial, hospital, runoff and agricultural wastewater...

  19. Use of Both Anode and Cathode Reactions in Wastewater Treatment

    Science.gov (United States)

    Brillas, Enric; Sirés, Ignasi; Cabot, Pere LluíS.

    Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (•OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield •OH and Fe3 + from Fenton's reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by •OH formed in the medium from Fenton's reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with •OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized

  20. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    Science.gov (United States)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  1. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    Science.gov (United States)

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (Pindustrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  2. Treatment of oil refinery wastewater using crude Coprinus cinereus peroxidase and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, K.; Buchanan, I. D.; Smith, D. W. [University of Alberta, Dept. of Civil and Environmental Engineering, Edmonton, AB (Canada)

    2003-11-01

    Enzymatic treatment of oil refinery wastewater was investigated using crude peroxidase derived from the fungus Coprinus cinereus (CIP), and hydrogen peroxide. Further objectives were to investigate the effects of residual organic compounds in the crude enzyme, and compare the performance of CIP to those of purified horseradish peroxidase (HRP) and Arthromyces ramosus peroxidase (ARP) in the treatment of a strong refinery wastewater. Phenols in the wastewater were converted to coloured polymeric products and then removed by coagulation with alum. As a result of the enzymatic treatment and alum coagulation of the wastewater containing 6.4 mM total phenol, the chemical oxygen demand and the 5-d biochemical oxygen demand were reduced by 52 per cent and 58 per cent, respectively. Reduction of the oxygen demands notwithstanding, the dissolved organic materials in the crude CIP were not affected by either of these processes and tended to remain in the treated wastewater. 31 refs., 1 tab., 7 figs.

  3. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation

    DEFF Research Database (Denmark)

    Kirkegaard, Peter; Hansen, Steffen Foss; Rygaard, Martin

    2015-01-01

    Water scarcity brings an increased focus on wastewater reclamation for drinking water supply. Meanwhile, the production volume of nanoparticles (NPs) is rapidly increasing, but to date there has been little attention given to the fate of NPs in water systems based on wastewater reclamation. We have...... investigated the possible concentrations of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles in tap water for water supplies based on reclaimed wastewater. Tap water concentrations of the NPs were assessed by mass flow analyses of two typical wastewater reclamation concepts: 1) advanced...... studies are available on the removal efficiencies of NPs by advanced water treatment processes with a majority of the identified studies focusing on removal efficiencies in wastewater treatment plants and fate in surface waters. The NP removal efficiency of several treatment processes is unknown...

  4. Computer-aided Framework for Synthesis, Design and Retrofit of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande

    and composition, change in the effluent limitations, as well as changes in the wastewater treatment trends, e.g. from nutrient removal to nutrient recovery. Similarly, recovery possibilities for clean water,energy and materials shifted the perception about wastewater towards being a valuableresource rather than......Water is used for several purposes in houses and industrial applications, which results in the generation of considerable amounts of wastewater. Wastewater should be handled appropriately which is required from legal, environmental as well as economic and societal perspectives. Wastewater treatment...... plant (WWTP) design is a formidable challenge. One of the key steps involved is the process synthesis - defined as the selection of treatment processes as a combination of unit operations and processes to create the process flow diagram.As a consequence of the emerging technological developments...

  5. Concentration of norovirus during wastewater treatment and its impact on oyster contamination.

    Science.gov (United States)

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent; Doré, William

    2012-05-01

    The concentrations of Escherichia coli, F-specific RNA bacteriophage (FRNA bacteriophage), and norovirus genogroup I (NoV GI) and norovirus genogroup II (NoV GII) in wastewater were monitored weekly over a 1-year period at a wastewater treatment plant (WWTP) providing secondary wastewater treatment. A total of 49 samples of influent wastewater and wastewater that had been treated by primary and secondary wastewater treatment processes (primary and secondary treated wastewater) were analyzed. Using a real-time reverse transcription-quantitative PCR (RT-qPCR), the mean NoV GI and NoV GII concentrations detected in effluent wastewater were 2.53 and 2.63 log(10) virus genome copies 100 ml(-1), respectively. The mean NoV concentrations in wastewater during the winter period (January to March) (n = 12) were 0.82 (NoV GI) and 1.41 (NoV GII) log units greater than the mean concentrations for the rest of the year (n = 37). The mean reductions of NoV GI and GII during treatment were 0.80 and 0.92 log units, respectively, with no significant difference detected in the extent of NoV reductions due to season. No seasonal trend was detected in the concentrations of E. coli or FRNA bacteriophage in wastewater influent and showed mean reductions of 1.49 and 2.13 log units, respectively. Mean concentrations of 3.56 and 3.72 log(10) virus genome copies 100 ml(-1) for NoV GI and GII, respectively, were detected in oysters sampled adjacent to the WWTP discharge. A strong seasonal trend was observed, and the concentrations of NoV GI and GII detected in oysters were correlated with concentrations detected in the wastewater effluent. No seasonal difference was detected in concentrations of E. coli or FRNA bacteriophage detected in oysters.

  6. Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater.

    Science.gov (United States)

    Abma, W R; Driessen, W; Haarhuis, R; van Loosdrecht, M C M

    2010-01-01

    The Olburgen sewage treatment plant has been upgraded to improve the effluent quality by implementing a separate and dedicated treatment for industrial (potato) wastewater and reject water. The separate industrial treatment has been realized within a beneficial public-private partnership. The separate treatment of the concentrated flows of industrial wastewater and sludge treatment effluent proved to be more cost-efficient and area and energy efficient than a combined traditional treatment process. The industrial wastewater was first treated in a UASB reactor for biogas production. The UASB reactor effluent was combined with the reject water and treated in a struvite reactor (Phospaq process) followed by a one stage granular sludge nitritation/anammox process. For the first time both reactors where demonstrated on full scale and have been operated stable over a period of 3 years. The recovered struvite has been tested as a suitable substitute for commercial fertilizers. Prolonged exposure of granular anammox biomass to nitrite levels up to 30 mg/l did not result in inhibition of the anammox bacteria in this reactor configuration. The chosen option required a 17 times smaller reactorvolume (20,000 m(3) less volume) and saves electric power by approximately 1.5 GWh per year.

  7. Context matters : water governance assessment of the wastewater treatment plant policy in Central Mexico

    NARCIS (Netherlands)

    Casiano Flores, Cesar Augusto

    2017-01-01

    A lack of wastewater treatment is one of the main water problems worldwide. In high-income countries, 70% of wastewater is typically treated, but the rate falls to an average 28% in lower-middle-income countries. This low level has negative consequences for human health and for nature, with high

  8. Effect of salinity on biological treatment of wastewater from oil industry

    OpenAIRE

    Andriamasinoro, Herimisa

    2009-01-01

    Master's thesis in Environmental technology High salinity may affect biological wastewater negative by reducing the growth rate of microorganisms. Wastewater from oil industry often contains high salinity which could be problematic to treat. This thesis is to evaluate the effect of salinity on biological treatment by performing laboratory test with variable salinities. In addition, microbiological investigation performed with microscopy and growth culture.

  9. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    Science.gov (United States)

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  10. Jaffrey, N.H. Facility to Upgrade its Wastewater Treatment Systems Under Clean Water Act Settlement

    Science.gov (United States)

    Under the terms of a Consent Decree lodged in federal court, EMD Millipore Corp. of Jaffrey, N.H., will upgrade its on-site wastewater treatment system to comply with the terms of the company’s industrial wastewater discharge permit & prevent...

  11. A Manual of Simplified Laboratory Methods for Operators of Wastewater Treatment Facilities.

    Science.gov (United States)

    Westerhold, Arnold F., Ed.; Bennett, Ernest C., Ed.

    This manual is designed to provide the small wastewater treatment plant operator, as well as the new or inexperienced operator, with simplified methods for laboratory analysis of water and wastewater. It is emphasized that this manual is not a replacement for standard methods but a guide for plants with insufficient equipment to perform analyses…

  12. Instructional Resources Monograph Series: Safety in Wastewater Treatment Systems. Selected Instructional Activities and References.

    Science.gov (United States)

    Coon, Herbert L.

    Described are instructional and reference materials that may be useful to managers, supervisors, foremen and others who are interested in the safety education of workers in wastewater systems. Emphasis is upon items relevant to the development and presentation of wastewater treatment training programs. Part I contains descriptions and excerpts…

  13. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  14. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate,

  15. Control of Sewer systems and Wastewater treatment plants using pollutant concentration profiles

    DEFF Research Database (Denmark)

    Bechmann, Henrik; Nielsen, Marinus K.; Madsen, Henrik

    1998-01-01

    On-line measurements of pollutants in the wastewater combined with grey-box modelling are used to estimate the amount of deposits in the sewer system. The pollutant mass flow at the wastewater treatment plant is found to consist of a diurnal profile minus the deposited amount of pollutants...

  16. Removal Of Endocrine Disrupting Chemicals By A Constructed Wetland For On-Site Domestic Wastewater Treatment

    Science.gov (United States)

    Research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants (WWTPs). These WWTPs have been shown to ...

  17. Constructed wetlands for freshwater and saline aquaculture wastewater treatment: a microcosm experience

    OpenAIRE

    Jesus, J.M.; Borges, M. T.; Calheiros, Cristina S.C.; Castro, Paula M.L.

    2011-01-01

    Poster presentation published at page 185 The aquaculture industry discharges large volumes of nutrient rich wastewater, contributing to eutrophication events. Recent culture intensification methodologies such as recirculation (RAS) and shallow raceway (SRS) systems discharge wastewater with even higher nutrient concentrations, though at lower volumes (Rana et al., 2005). Hence, efluent treatment options are of vital importance. Constructed wetlands (CWs) are a possible but ...

  18. Assessment of airborne virus contamination in wastewater treatment plants.

    Science.gov (United States)

    Masclaux, Frédéric G; Hotz, Philipp; Gashi, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2014-08-01

    Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers' health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses are present in wastewater and, due to their small size, they should become aerosolized. Two in particular, the norovirus and the adenovirus, are extremely widespread and are the major causes of infectious gastrointestinal diseases reported around the world. The third one, hepatitis E virus, has an emerging status. This study׳s objectives were to detect and quantify the presence and concentrations of 3 different viruses (adenovirus, norovirus and the hepatitis E virus) in air samples from 31 WWTPs by using quantitative polymerase chain reaction (qPCR) during two different seasons and two consecutive years. Adenovirus was present in 100% of summer WWTP samples and 97% of winter samples. The highest airborne concentration measured was 2.27 × 10(6) genome equivalent/m(3) and, on average, these were higher in summer than in winter. Norovirus was detected in only 3 of the 123 air samples, and the hepatitis E virus was not detected. Concentrations of potentially pathogenic viral particles in WWTP air are non-negligible and could partly explain the work-related gastrointestinal symptoms often reported in employees in this sector. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Reduction of greenhouse gases from anaerobic piggery wastewater treatment by bromochloromethane in Taiwan.

    Science.gov (United States)

    Su, Jung-Jeng; Liu, Bee-Yang; Chang, Yuan-Chie

    2004-01-01

    This work establishes methods of reducing the amount of methane produced from the anaerobic treatment of piggery wastewater by either reducing the storage time before solid/liquid separation or inhibiting the activity of methanogens in anaerobic wastewater treatment system. Experimental results showed these two methods can be adopted effectively to reduce methane production resulting from anaerobic piggery wastewater treatment. First, the wastewater must be processed using solid/liquid separation immediately after washing pig houses. This process can reduce by 62% the biogas production and indirectly decrease the methane production from the anaerobic wastewater treatment reactor. Second, adding 10 mg L(-1) bromochloromethane (BCM) daily into the anaerobic wastewater treatment reactor can significantly reduce the amount of biogas and methane produced during the anaerobic fermentation process. Furthermore, biogas production can be completely inhibited after 4 days. Adding BCM (treatment process. Results in this study can provide the basis for further research on reduction of the amount of methane produced from anaerobic wastewater treatments.

  20. An Integrated System for the Treatment of Coal Conversion Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Henry Y. Wang; Keeran R. Srinivasan

    1999-02-25

    Treatment of mixed waste from coal conversion wastewaters involves the degradation of toxic organics and the removal of heavy metals. An integrated and cost-effective treatment scheme that can implement such a process is considered essential to promote continued development and growth of coal conversion processes without any deleterious effects on our ecosystem. We have recently developed a pH-dependent, reversible heavy metal adsorption/desorption process which promises to be a cost-effective alternative to the treatment and disposal options currently in place for these inorganic contaminants. Our work shows that: (1) Polydisperse, industrial-grade surfactants can be used in the development of novel, surfactant-coated smectitic clays containing up to 50% by weight of adsorbed surfactant, (2) Reversible adsorption and resorption of cationic (CU(II) and Cd(II)) and anionic (Cr(VI)) heavy metals from their respective aqueous solutions onto these surfactant-modified smectites can be effected using pH of the medium as a switch, and (3) These surfactant-modified smectites can be repeatedly used (up to 5 times) with only a minimal loss in their adsorption potency and with very little leaching of the adsorbed surfactants.

  1. A novel bioaugmentation treatment approach using a confined microbial environment: a case study in a Membrane Bioreactor wastewater treatment plant.

    Science.gov (United States)

    Menashe, Ofir; Kurzbaum, Eyal

    2016-01-01

    A novel bioaugmentation treatment approach, the Small-Bioreactor Platform (SBP) technology, was developed to increase the biological stabilization process in the treatment of wastewater in order to improve wastewater processing effectiveness. The SBP microfiltration membrane provides protection against the natural selection forces that target exogenous bacterial cultures within wastewater. As a result, the exogenous microorganisms culture adapt and proliferate, thus providing a successful bioaugmentation process in wastewater treatment. The new bioaugmentation treatment approach was studied in a full configuration Membrane Bioreactor (MBR) plant treating domestic wastewater. Our results present the potential of this innovative technology to eliminate, or reduce, the intensity of stress events, as well as shortening the recovery time after stress events, consequently elevating the treatment effectiveness. The effective dose of SBP capsules per cubic metre per day of wastewater was achieved during the addition of 3000 SBP capsules (1.25 SBP capsules per cubic metre per day), which provided approximately 4.5 L of high concentration exogenous biomass culture within the SBP capsules internal medium. This study demonstrates an innovative treatment capability which provides an effective bioaugmentation treatment in an MBR domestic wastewater treatment plant.

  2. Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2014-06-01

    Large-scale membrane bioreactors (MBRs) have been widely used for the municipal wastewater treatment, whose performance relies on microbial communities of activated sludge. Nevertheless, microbial functional structures in MBRs remain little understood. To gain insight into functional genes and their steering environmental factors, we adopted GeoChip, a high-throughput microarray-based tool, to examine microbial genes in four large-scale, in-operation MBRs located in Beijing, China. The results revealed substantial microbial gene heterogeneity (43.7-85.1% overlaps) among different MBRs. Mantel tests indicated that microbial nutrient cycling genes were significantly (P wastewater constituent removal. In addition, functional genes shared by all four MBRs contained a large number of genes involved in antibiotics resistance, metal resistance and organic remediation, suggesting that they were required for degradation or resistance to toxic compounds in wastewater. The linkages between microbial functional structures and environmental variables were also unveiled by the finding of hydraulic retention time, influent COD, [Formula: see text] -N, mixed liquid temperature and humic substances as major factors shaping microbial communities. Together, the results presented demonstrate the utility of GeoChip-based microarray approach in examining microbial communities of wastewater treatment plants and provide insights into the forces driving important processes of element cycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. EFFICIENCY OF REMOVING ORGANIC POLLUTANTS FROM WASTEWATER IN A HOUSEHOLD WASTEWATER TREATMENT PLANT WITH A HYBRID REACTOR

    Directory of Open Access Journals (Sweden)

    Michał Marzec

    2016-11-01

    Full Text Available The purpose of the study is to evaluate the efficiency of removing organic pollutants from wastewater in a household wastewater treatment plant with a hybrid reactor. The efficiency of the plant was analysed in terms of decreasing BOD5, COD and the content of total suspended solids in differentiated technological conditions. The variable parameter was the length of the reactor aeration phase and the dwell phase. Six different aeration variants were analysed. The efficiency of a wastewater treatment plant with a hybrid reactor in terms of reducing BOD5 oscillated from 81 to 90%, COD – 64–84%, whereas total suspended solids – 66–89% which, as a rule, was not sufficient to achieve standard levels. The best results were achieved for the following variants: 2h aeration – 2h dwell and 1h aeration – 0.5h dwell. Lower efficiency of the plant could have been attributed to operational problems, mainly failures of the plant control system and uneven conditions such as air temperature, volume and composition of wastewater received in the plant.

  4. Preliminary Assessment of the Nutrient Film Technique for Wastewater Treatment

    Science.gov (United States)

    1982-03-01

    umre) Hydroponics Thin films Wastes (Sanitary engineering) \\Waslewater \\I MArWIASSACr a m evemww sb N nem y., d idenif, by block nm,6...) An experiment...1 Wastewater application rates...9 TABLES Table Page I. Wastewater application schedule and daily volumes .................................. 2 2

  5. Enhancing anaerobic treatment of wastewaters containing oleic acid

    NARCIS (Netherlands)

    Hwu, C.S.

    1997-01-01

    INTRODUCTION

    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater

  6. assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    USER

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. ... effluent displaying higher values of organic matter than the allowed discharge limits according to the national standards. ..... consuming-bacteria in anaerobic digestion at the wastewater ponds (Wang ...

  7. A review on full-scale decentralized wastewater treatment systems: techno-economical approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Kazmi, A A; Starkl, M

    2015-01-01

    As a solution to the shortcomings of centralized systems, over the last two decades large numbers of decentralized wastewater treatment plants of different technology types have been installed all over the world. This paper aims at deriving lessons learned from existing decentralized wastewater treatment plants that are relevant for smaller towns (and peri-urban areas) as well as rural communities in developing countries, such as India. Only full-scale implemented decentralized wastewater treatment systems are reviewed in terms of performance, land area requirement, capital cost, and operation and maintenance costs. The results are presented in tables comparing different technology types with respect to those parameters.

  8. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  9. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  10. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  11. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    Science.gov (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  12. Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.W.; Wang, T.H.; Pan, Y.Q.; Qiu, J.S. [Dalian University of Technology, Dalian (China). Carbon Research Laboratory

    2006-08-15

    The coal-based microfiltration carbon membrane with low cost for the treatment of oily wastewater was prepared by carbonization of tubular carbonaceous precursor obtained by extrusion method. The pore size of carbon membrane was controlled by adjusting the particle size of coal. Effects of pore size of carbon membrane, transmembrane pressure and crossflow velocity on the filtration flux were investigated in the treatment of oily wastewater. The results indicate it is feasible to treat oily wastewater by coal-base microfiltration carbon membrane. The carbon membrane with pore size of 1.0 {mu} m and the operation conditions of 0.10 MPa transmembrane pressure and 0.1 m/s crossflow velocity are recommended. After treated by coal-based microfiltration carbon membrane, the oil rejection coefficients of oily wastewater are up to 97%, and the oil concentrations of the permeate are less than 10 mg/L, which can meet the National Discharge Standard of China for wastewater.

  13. Improvement on filterability in the aerobic treatment of carboxymethyl cellulose (CMC wastewater

    Directory of Open Access Journals (Sweden)

    Qing Pei Ye

    2014-01-01

    Full Text Available CMC is chemically modified from natural cellulose and widely applied in various industries. CMC wastewater consists mainly of sodium glycolate, sodium chloride and water. With extremely high COD and salinity, high concentration CMC wastewater can’t be biologically treated, but with COD and salinity around 15000 mg/L and 30000 mg/L respectively, low concentration CMC wastewater can be aerobically treated. In a CMC factory, the treatment of low concentration wastewater with aerobic MBR was successful except for one serious problem: poor filterability. Two trial solutions: adding micronutrients and applying MBBR were expected to improve the filterability. In the experiment, adding micronutrients was achieved by mixing filtered natural water into the wastewater, rather than dosing chemicals into it. The treatment efficiency of both solutions was close, but adding micronutrients showed distinguished performance in improving filterability, which includes higher filtration flux and slighter membrane fouling. Adding micronutrients also effectively improved the filterability under severe salinity shock.

  14. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review.

    Science.gov (United States)

    Ratola, Nuno; Cincinelli, Alessandra; Alves, Arminda; Katsoyiannis, Athanasios

    2012-11-15

    A wastewater treatment plant may receive various types of wastewater namely, urban, industrial, agricultural, washout from the streets, wet or/and dry atmospheric deposition. As such, scientists have detected in wastewaters all major categories of pollutants like persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs) and pesticides, but also substances that are widely used as pharmaceuticals and cosmetics, classified as "PPCPs" (pharmaceuticals and personal care products). Finally, the latest categories of compounds to be looked upon in these types of matrices are illicit drugs (drugs of abuse, like cocaine, etc.) and doping substances. This review article summarises major categories of organic microcontaminants that have been detected in wastewaters and studies their fate during the wastewater treatment process. Occurrence of these compounds in the influents and effluents are reported, as well as percents of removal, mass balances and phase distributions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    Science.gov (United States)

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  16. Treatment of Olive Mill Wastewater with Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2012-03-01

    Full Text Available The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW. Two free water surface (FWS constructed wetlands, one without (CW1 and one with effluent recirculation (CW2, were operated for a two-year period with diluted OMW (1:10 and evaluated in terms of the removal of COD, TSS, TKN, NH4+-N, NO3−-N, TP and total phenols. The organic loading rate of CWs was adjusted to 925 kg BOD/ha·d. In CW1 the removal efficiency averaged 80%, 83%, 78%, 80%, and 74% for COD, TSS, TKN, TP, and total phenols, respectively, during the operation period. Effluent recirculation further improved the treatment efficiency which approached 90%, 98%, 87%, 85%, and 87% for COD, TSS, TKN, TP, and total phenols, respectively. Constructed wetlands also showed high removal efficiency for NH4+-N. Nitrate concentration maintained low in both CWs basins, probably due to the prevalence of high denitrification rates that efficiently removed the NO3--N produced by NH4+-N oxidation. Despite the increased removal percentages, pollutant concentration in effluent exceeded the allowable limits for discharge in water bodies, suggesting that additional practices, including enhanced pre-application treatment and/or higher dilution rates, are required to make this practice effective for OMW management.

  17. Benchmarking energy consumption in municipal wastewater treatment plants in Japan.

    Science.gov (United States)

    Mizuta, Kentaro; Shimada, Masao

    2010-01-01

    Reduction of greenhouse gas (GHG) emissions is one of the most important tasks facing municipal WWTPs. Electric power consumption typically accounts for about 90% of the total energy consumption. This study presents a benchmarking analysis of electric power consumption. The specific power consumption (SPC) ranged from 0.44 to 2.07 kWh/m(3) for oxidation ditch plants and from 0.30 to 1.89 kWh/m(3) for conventional activated sludge plants without sludge incineration. Observed differences of the SPC can be attributed to the difference in the scale of plants rather than to different kinds of wastewater treatment processes. It was concluded that economical benefits by centralizing treatment had contributed significantly to the reduction of energy consumption. Further analysis was carried out on the plant that had shown an extremely small SPC value of 0.32 kWh/m(3). In this WWTP, a large amount of digestion gas was generated by anaerobic digestion. In particular, it was used to generate power using phosphoric acid fuel cells to generate approximately 50% of the energy consumed in the plant. It was calculated that this plant had reduced the overall SPC by 0.17 kWh/m(3). The effect of power generation using digestion gas demonstrated clearly the advantage of implementing energy recovery schemes.

  18. Urban wastewater treatment by Tetraselmis sp. CTP4 (Chlorophyta).

    Science.gov (United States)

    Schulze, Peter S C; Carvalho, Carolina F M; Pereira, Hugo; Gangadhar, Katkam N; Schüler, Lisa M; Santos, Tamára F; Varela, João C S; Barreira, Luísa

    2017-01-01

    The ability of a recent isolate, Tetraselmis sp. CTP4, for nutrient removal from sewage effluents before and after the nitrification process under batch and continuous cultivation was studied. Biomass productivities in both wastewaters were similar under continuous conditions (0.343±0.053gL-1d-1) and nutrient uptake rates were maximal 31.4±0.4mgNL-1d-1 and 6.66±1.57mgP-PO43-L-1d-1 in WW before nitrification when cultivated in batch. Among batch treatments, cellular protein, carbohydrate and lipid levels shifted with aging cultures from 71.7±6.3 to 29.2±1.2%, 17.4±7.2 to 57.2±3.9% and 10.9±1.7 to 13.7±4.7%, respectively. In contrast, CTP4 cultivated continuously in Algal medium (control) showed lower biomass productivities (0.282gVSSL-1d-1) although improved lipid content (up to 20% lipids) in batch cultivation. Overall, Tetraselmis sp. CTP4 is promising for WW treatment as a replacement of the costly nitrification process, fixating more nutrients and providing a protein and carbohydrate-rich biomass as by-product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  20. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.