WorldWideScience

Sample records for wastewater treatment bioreactors

  1. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  3. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  4. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  6. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  7. Membrane bio-reactors for decentralized wastewater treatment and reuse.

    Science.gov (United States)

    Meuler, S; Paris, S; Hackner, T

    2008-01-01

    Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops. IWA Publishing 2008.

  8. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Svojitka, Jan; Dvořák, Lukáš; Studer, Martin; Straub, Jürg Oliver; Frömelt, Heinz; Wintgens, Thomas

    2017-04-01

    Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL(-1) as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL(-1) as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  10. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  11. Treatment of slaughterhouse plant wastewater by using a membrane bioreactor.

    Science.gov (United States)

    Gürel, Levent; Büyükgüngör, Hanife

    2011-01-01

    The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.

  12. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  13. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    Science.gov (United States)

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  14. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the

  15. Use of G3-DHS Bioreactor for Secondary Treatment of Septic Tank Desludging Wastewater

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-01-01

    Full Text Available Study was done for the use of the third-generation of downflow hanging sponge (G3-DHS bioreactor for secondary treatment of septic tank desludging wastewater. The main objective of this study was to evaluate the prospective system of G3-DHS bioreactor to be applied in Indonesia. During experiment, the G3-DHS bioreactor kept a relatively high dissolved oxygen concentration under natural aeration. At a relatively short hydraulic retention (HRT of 3 h, the G3-DHS bioreactor could remove up to 21% (SD 15% of total COD, 21% (SD = 7% of filtered-COD, 58% (SD = 24% of unfiltered-BOD, and 33% (SD = 24% of ammonium removal. The final effluent had an unfiltered-BOD of only 46 mg.L-1 (SD = 20 mg.L-1 that it was below the Indonesian standard (unfiltered-BOD = 100 mg.L-1 for thresholds of domestic wastewater treatment plants effluent.

  16. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  17. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research,

  18. Microbial community dynamics in a submerged fixed bed bioreactor during biological treatment of saline urban wastewater

    NARCIS (Netherlands)

    Cortés-Lorenzo, C.; Sipkema, D.; Rodríguez-Díaz, M.; Fuentes, S.; Juárez-Jiménez, B.; Rodelas, B.; Smidt, H.; González-López, J.

    2014-01-01

    The influence of salt (NaCl) on bacterial and archaeal communities in a submerged fixed bed bioreactor system for the treatment of urban wastewater was determined by DGGE and 454 pyrosequencing of PCR-amplified 16S ribosomal RNA gene fragments. Cluster analysis of DGGE fingerprints showed

  19. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and disinfection to remove microorganisms from municipal wastewaters

    Science.gov (United States)

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor activated-sludge (MBR) and two conventional secondary activated-sludge municipal wastewater treatment plants during three disinfection seasons (May–Oct.). In total, 73 regular samples were ...

  20. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    NARCIS (Netherlands)

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading

  1. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    Science.gov (United States)

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2017-05-01

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  2. Continuous treatment of flotation collector wastewater using a membrane bioreactor.

    Science.gov (United States)

    Lin, Weixiong; Dai, Yongkang; Wu, Chun; Xu, Pingting; Ren, Jie; Sun, Shuiyu; Li, Biao

    2016-01-01

    Aniline aerofloat (DDA) is a widely used material in China and has become a main pollutant in floatation wastewater. In this study, a membrane reactor (MBR) was constructed to continuously treat simulated wastewater contaminated with DDA. The study investigated the hydraulic retention time (HRT) and the impact of influent DDA concentration on MBR performance, and analyzed intermediates from the DDA biodegradation pathway and activated sludge transfer pathway. The results showed that a 3 h HRT was an efficient and economical time period for MBR to remove 95 ± 5 mg/L DDA from the simulated wastewater; the chemical oxygen demand reduction rate was 89.9%. DDA concentration negatively impacted MBR performance. MBR performance fluctuated slightly when HRT was 3 h, dissolved oxygen ranged from 4.8 to 5.3 mg/L, pH was between 6.5 and 7.0, and DDA concentrations were at 95 ± 5 mg/L DDA. The transfer pathway in the activated sludge of DDA was through soluble microbial products, loosely bound extracellular polymeric substances, tightly bound extracellular polymeric substances, and finally cell biodegradation. DDA initially degraded to aniline; the aniline was further biodegraded to other organic compounds and was finally mineralized through the tricarboxylic acid cycle. This study offers a new continuous biological treatment technology to address DDA.

  3. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Sheng, Guo-Ping; Shi, Bing-Jing; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    One possible way to address both water and energy shortage issues, the two of major global challenges, is to recover energy and water resource from wastewater. Herein, a novel electrochemical membrane bioreactor (EMBR) was developed to recover energy from wastewater and meantime harvest clean water for reuse. With the help of the microorganisms in the biocatalysis and biodegradation process, net electricity could be recovered from a low-strength synthetic wastewater after estimating total energy consumption of this system. In addition, high-quality clean water was obtained for reuse. The results clearly demonstrate that, under the optimized operating conditions, it is possible to recover net energy from wastewater, while at the same time to harvest high-quality effluent for reuse with this novel wastewater treatment system.

  4. EVALUATION OF AN INNOVATIVE ANAEROBIC BIOREACTOR WITH FIXED-STRUCTURED BED (ABFSB FOR BREWERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. de Araujo Junior

    Full Text Available Abstract The aim of this study was to evaluate the application of the anaerobic bioreactor with fixed-structured bed (ABFSB for brewery wastewater treatment with high volumetric organic loading rate (VOLR and its comparison with a traditional packed-fixed bed bioreactor. Two different biomass support materials were tested, including polyurethane (PU and polypropylene (PP for both configurations. The best global efficiency was reached by the structured-fixed bed reactor with polyurethane as biomass support (SB PU. For a VOLR of 14.0 kg CODt m-3 d-1 (HRT of 8 h and 20.3 kg CODt m-3 d-1(HRT of 12 h, the SB PU reached the average CODt removal efficiencies (ECOD of 81% and 71%, respectively. The results show that ABFSB is a promising technology for high organic matter and solids concentration wastewater treatment, but the type of the biomass support had a big impact on the reactors performance.

  5. Microbial Community Composition in a Simultaneous Nitrification and Denitrification Bioreactor for Domestic Wastewater Treatment

    Science.gov (United States)

    Chen, Chen; Ouyang, Wukun; Huang, Shan; Peng, Xiaochun

    2018-01-01

    Traditional domestic wastewater treatments rely on aerobic processes followed by anaerobic processes. The aerobic step in which ammonium and organic carbon are oxidized, calls for large oxygen input, while the anaerobic process often requires extra carbon input. The challenge of synchronizing both processes is to maintain an active nitrifiers sludge under low dissolved oxygen (DO) condition. In this study, a membrane bioreactor was established and operated stable with low DO of 0.1-0.4 mg L-1. Chemical indicators were determined daily, and bacterial community was checked by qPCR and 16S rDNA sequencing every month. After 2 months incubation, the bioreactor reached to a stable removal rate of total nitrogen around 50% and total organic carbon around 90% with the retaining time of 12 h. The sludge showed enrichment of low DO nitrifiers (Nitrosomonadaceae, Chitinophagaceae, and Nitrospiraceae) which were different from sludge in other regular wastewater treatment plants with aerobic and anaerobic cycles.

  6. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    OpenAIRE

    Oliver Terna Iorhemen; Rania Ahmed Hamza; Joo Hwa Tay

    2016-01-01

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview...

  7. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; van Loosdrecht, M C M; Gonzalez-Lopez, Jesus; Vahala, Riku

    2016-12-01

    The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox. Multivariate redundancy analysis of nitrifying genera showed an outcompetition of Nitrosomonas and non-comammox Nitrospira. Operational data from the bioreactors suggested that comammox could be favored at low temperature, low nitrogen substrate, and high dissolved oxygen. The non-ubiquity and low relative abundance of comammox in full-scale bioreactors suggested that this phylotype is not very relevant in the nitrogen cycle in wastewater treatment plants.

  8. PERFORMANCE OF NEWLY CONFIGURED SUBMERGED MEMBRANE BIOREACTOR FOR AEROBIC INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gede Wenten

    2012-02-01

    Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module  with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.

  9. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  10. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  11. A novel bioaugmentation treatment approach using a confined microbial environment: a case study in a Membrane Bioreactor wastewater treatment plant.

    Science.gov (United States)

    Menashe, Ofir; Kurzbaum, Eyal

    2016-01-01

    A novel bioaugmentation treatment approach, the Small-Bioreactor Platform (SBP) technology, was developed to increase the biological stabilization process in the treatment of wastewater in order to improve wastewater processing effectiveness. The SBP microfiltration membrane provides protection against the natural selection forces that target exogenous bacterial cultures within wastewater. As a result, the exogenous microorganisms culture adapt and proliferate, thus providing a successful bioaugmentation process in wastewater treatment. The new bioaugmentation treatment approach was studied in a full configuration Membrane Bioreactor (MBR) plant treating domestic wastewater. Our results present the potential of this innovative technology to eliminate, or reduce, the intensity of stress events, as well as shortening the recovery time after stress events, consequently elevating the treatment effectiveness. The effective dose of SBP capsules per cubic metre per day of wastewater was achieved during the addition of 3000 SBP capsules (1.25 SBP capsules per cubic metre per day), which provided approximately 4.5 L of high concentration exogenous biomass culture within the SBP capsules internal medium. This study demonstrates an innovative treatment capability which provides an effective bioaugmentation treatment in an MBR domestic wastewater treatment plant.

  12. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    Directory of Open Access Journals (Sweden)

    Bibi Saima Zeb

    2013-01-01

    Full Text Available Constructed wetland (CW with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80 and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7% > Ni (79% > Pb (85%. Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater.

  13. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  14. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    Science.gov (United States)

    Zeb, Bibi Saima; Mahmood, Qaisar; Jadoon, Saima; Pervez, Arshid; Irshad, Muhammad; Bilal, Muhammad; Bhatti, Zulfiqar Ahmad

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater. PMID:24396832

  15. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (P<0.05) correlated to the multiple antibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis.

    Science.gov (United States)

    Wang, Hong-Cheng; Cheng, Hao-Yi; Wang, Shu-Sen; Cui, Dan; Han, Jing-Long; Hu, Ya-Ping; Su, Shi-Gang; Wang, Ai-Jie

    2016-01-01

    In this study, a novel scaled-up hybrid acidogenic bioreactor (HAB) was designed and adopted to evaluate the performance of azo dye (acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time (HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD (chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis (AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3%±2.5%, 86.2%±3.8% and 93.5%±1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS (61.1%±4.7%, 75.4%±5.0% and 82.1%±2.1%, respectively). Moreover, larger TCV/TV (total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2%±3.7% and 28.30±1.48 mA, respectively. They were significantly increased to 62.1%±2.0% and 34.55±0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater. Copyright © 2015. Published by Elsevier B.V.

  17. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling

    KAUST Repository

    Ye, Yaoli

    2016-09-24

    Anaerobic fluidized bed membrane bioreactors (AFMBRs) use granular activated carbon (GAC) particles suspended by recirculation to effectively treat low strength wastewaters (∼100–200 mg L−1, chemical oxygen demand, COD), but the effluent can contain dissolved methane. An aerobic fluidized bed membrane bioreactor (AOFMBR) was developed to avoid methane production and the need for wastewater recirculation by using rising air bubbles to suspend GAC particles. The performance of the AOFMBR was compared to an AFMBR and a conventional aerobic membrane bioreactor (AeMBR) for domestic wastewater treatment over 130 d at ambient temperatures (fixed hydraulic retention time of 1.3 h). The effluent of the AOFMBR had a COD of 20 ± 8 mg L−1, and a turbidity of <0.2 NTU, for low-COD influent (153 ± 19 and 214 ± 27 mg L−1), similar to the AeMBR and AFMBR. For the high-COD influent (299 ± 24 mg L−1), higher effluent CODs were obtained for the AeMBR (38 ± 9 mg L−1) and AFMBR (51 ± 11 mg L−1) than the AOFMBR (26 ± 6 mg L−1). Transmembrane pressure of the AOFMBR increased at 0.04 kPa d−1, which was 20% less than the AeMBR and 57% less than the AFMBR, at the low influent COD. Scanning electron microscopy (SEM) analysis indicated a more uniform biofilm on the membrane in AOFMBR than that from the AeMBR biofilm, and no evidence of membrane damage. High similarity was found between communities in the suspended sludge in the AOFMBR and AeMBR (square-root transformed Bray–Curtis similarity, SRBCS, 0.69). Communities on the GAC and suspended sludge were dissimilar in the AOFMBR (SRBCS, 0.52), but clustered in the AFMBR (SRBCS, 0.63).

  18. Treatment of synthetic olefin plant wastewater at various salt concentrations in a membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Fatemeh; Mehrnia, Mohammad Reza; Sarrafzadeh, Mohammad Hossein [School of Chemical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-04-15

    The objective of this study was to investigate the effect of salt concentration on performance of a membrane bioreactor (MBR) for treating an olefin plant wastewater. For this purpose, a lab-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of synthetic wastewater according to oxidation and neutralization unit of olefin plant. The synthetic wastewater was adjusted to have 500 mg/L chemical oxygen demand (COD). Trials on different concentrations of sodium sulfate (Na{sub 2}SO{sub 4}) (0-20 000 ppm) in the feed were conducted under aerobic conditions in the MBR. The results showed that increasing the salt concentrations causes an increase in the effluent COD, phenol, and oil concentrations. These results are due to reduction of the membrane filtration efficiency and also decline in the microbial activity that it is indicated by decreasing the sOUR in MBR. But in all the trials, the effluent COD and oil concentration was well within the local discharge limit of 100 and 10 mg/L, respectively. These results indicate that the MBR system is highly efficient for treating the olefin plant wastewater, and although high salt concentrations decreased organic contaminant removal rates in the MBR, the effluent still met the discharge limits for treating the olefin plant wastewater. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. High strength domestic wastewater treatment with submerged forward osmosis membrane bioreactor.

    Science.gov (United States)

    Aftab, Bilal; Khan, Sher Jamal; Maqbool, Tahir; Hankins, Nicholas P

    2015-01-01

    Forward osmosis membranes are less prone to fouling with high rejection of salts, and the osmotic membrane bioreactor (OMBR) can be considered as an innovative membrane technology for wastewater treatment. In this study, a submerged OMBR having a cellulose triacetate membrane, with the active layer facing the feed solution configuration, was operated at different organic loading rates (OLRs), i.e., 0.4, 1.2 and 2.0 kg-COD/(m(3)·d) with chemical oxygen demand (COD) concentrations of 200 mg/L, 600 mg/L and 1,000 mg/L, respectively, to evaluate the performance on varying wastewater strengths. High organic content with sufficient amount of nutrients enhanced the biomass growth. High OLR caused more extrapolymeric substances production and less dewaterability. However, no significant differences in fouling trends and flux rates were observed among different OLR operational conditions.

  20. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  1. Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2014-06-01

    Large-scale membrane bioreactors (MBRs) have been widely used for the municipal wastewater treatment, whose performance relies on microbial communities of activated sludge. Nevertheless, microbial functional structures in MBRs remain little understood. To gain insight into functional genes and their steering environmental factors, we adopted GeoChip, a high-throughput microarray-based tool, to examine microbial genes in four large-scale, in-operation MBRs located in Beijing, China. The results revealed substantial microbial gene heterogeneity (43.7-85.1% overlaps) among different MBRs. Mantel tests indicated that microbial nutrient cycling genes were significantly (P wastewater constituent removal. In addition, functional genes shared by all four MBRs contained a large number of genes involved in antibiotics resistance, metal resistance and organic remediation, suggesting that they were required for degradation or resistance to toxic compounds in wastewater. The linkages between microbial functional structures and environmental variables were also unveiled by the finding of hydraulic retention time, influent COD, [Formula: see text] -N, mixed liquid temperature and humic substances as major factors shaping microbial communities. Together, the results presented demonstrate the utility of GeoChip-based microarray approach in examining microbial communities of wastewater treatment plants and provide insights into the forces driving important processes of element cycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  4. Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant.

    Science.gov (United States)

    Kim, M; Guerra, P; Shah, A; Parsa, M; Alaee, M; Smyth, S A

    2014-01-01

    Ninety-nine pharmaceuticals and personal care products (PPCPs) were analyzed in influent, final effluent, and biosolids samples from a wastewater treatment plant employing a membrane bioreactor (MBR). High concentrations in influent were found for acetaminophen, caffeine, metformin, 2-hydroxy-ibuprofen, paraxanthine, ibuprofen, and naproxen (10(4)-10(5) ng/L). Final effluents contained clarithromycin, metformin, atenolol, carbamazepine, and trimethoprim (>500 ng/L) at the highest concentrations, while triclosan, ciprofloxacin, norfloxacin, triclocarban, metformin, caffeine, ofloxacin, and paraxanthine were found at high concentrations in biosolids (>10(3) ng/g dry weight). PPCP removals varied from -34% to >99% and 23 PPCPs had ≥90% removal. Of the studied PPCPs, 26 compounds have been rarely or never studied in previous membrane bioreactor (MBR) investigations. The removal pathway showed that acetaminophen, 2-hydroxy-ibuprofen, naproxen, ibuprofen, codeine, metformin, enalapril, atorvastatin, caffeine, paraxanthine, and cotinine exhibited high degradation/transformation. PPCPs showing strong sorption to solids included triclocarban, triclosan, miconazole, tetracycline, 4-epitetracycline, norfloxacin, ciprofloxacin, doxycycline, paroxetine, and ofloxacin. Trimethoprim, oxycodone, clarithromycin, thiabendazole, hydrochlorothiazide, erythromycin-H2O, carbamazepine, meprobamate, and propranolol were not removed during treatment, and clarithromycin was even formed during treatment. This investigation extended our understanding of the occurrence and fate of PPCPs in an MBR process through the analysis of the largest number of compounds in an MBR study to date.

  5. Biological treatment of oily wastewater from gas stations by membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tri, P.T.; Visvanathan, C. [Asian Inst. of Technology, Pathumthani (Thailand). School of Environment, Resources and Development, Environmental Engineering and Management Program; Jegatheesan, V. [James Cook Univ., Townsville, QLD (Australia). School of Engineering

    2006-09-15

    The increased number of cars in urban areas of Thailand has led to a rapid growth in the number of gas stations in the country. Wastewater from these stations is characterized by high concentrations of oil-water emulsions that have become a major contributor to pollution in the urban environment. Physical treatment of the oily wastewater by such methods as gravity separation, dissolved air flotation or ultrafiltration is not effective in completely removing the pollutants, nor it they remove the soluble fraction of the wastewater which may contain toxic compounds such as polyaromatic hydrocarbons. This study examined the feasibility of using the membrane bioreactor (MBR) process in treating wastewater from gas stations. The process is a modification of conventional activated sludge process, in which solid-liquid separation is achieved by membrane filtration rather than a secondary sedimentation tank. The process operates at a very high sludge retention time, allowing slow-growing microorganisms to grow and degrade recalcitrant and toxic substrates such as petroleum hydrocarbons, lubricant oil and fuel oils. The advantage of using the MBR process to treat oily wastewater from gas stations is that the effluent can meet effluent standards and can also be reused in car washing operations. This experimental investigation revealed that the MBR process could achieve good removal efficiency with stability against shock loading. Optimum operating conditions were found to be at a hydraulic retention time of 4 hours and an oil-loading rate of 1.8 kg oil per cubic metre per day. The study revealed that operating the MBR with only microbial flocs had an advantage over adding powdered activated carbon particles to the MBR, because the former condition prolonged the cycle of filtration with a smaller increase in transmembrane pressure. 11 refs., 4 tabs., 6 figs.

  6. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment

    Science.gov (United States)

    2013-01-01

    The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199

  7. [Mechanism of membrane fouling and filtration characteristics in a membrane bioreactor for industrial wastewater treatment].

    Science.gov (United States)

    Fan, Ju-Hong; Yu, Su-Lin; Zhang, Pei-Shuai; Lan, Ya-Qiong; Liu, Rui; Chen, Liu-Jun

    2013-03-01

    The influence of mixed liquor suspended solids (MLSS), soluble microbial product (SMP), extracellular polymeric substance (EPS), colloidal particles and other factors contributed to membrane fouling was analyzed in this pilot test by membrane bioreactor (MBR) process for the leather printing and dyeing industrial park mixed wastewater treatment. The results showed that slight membrane fouling occurred after 120-day experiment with an observable increase in membrane resistance R20 from 1.5 x 10(12) m(-1) to 1.8 x 10(12) m(-1). Also, a linear correlation was found between the proportion of colloidal particles concentration in TOC of MBR former solution and membrane filtration resistance change. However, the change of MLSS, SMP, EPS and other factors was not correlated with the membrane filtration resistance change. Therefore, the colloidal particle was considered to be the main factor causing membrane fouling, which attached to the membrane surface and deposited to block the membrane pore.

  8. An integrated membrane bioreactor - nanofiltration concept with concentrate recirculation for wastewater treatment and nutrient recovery

    NARCIS (Netherlands)

    Kappel, C.

    2014-01-01

    Increasing water shortages drive the need for water reuse. Membranes are a very suitable technology for purification of wastewater. Membrane bioreactor (MBR) permeate can be polished by nanofiltration (NF), allowing the production of high quality reusable water. The NF concentrate potentially is an

  9. Submerged Membrane Bioreactor (sMBR: a promising alternative to wastewater treatment for water reuse

    Directory of Open Access Journals (Sweden)

    Eduardo Lucas Subtil

    2013-12-01

    Full Text Available Treatment technology for wastewater treatment and reuse encompasses a vast number of options, and the Submerged Membrane Bioreactor is regarded as a key element for the role it can play in water reuse schemes. Thus, this study aimed to present and discuss the current status of sMBR implementation, as well as to present the results of a pilot plant with submerged flat sheet membranes treating wastewater from the residence halls and the restaurant of the University of São Paulo. The pilot plant was operated under stationary conditions over a period of 90 days with a concentration of 3422 ± 693 mg TSS/L. The results showed that the system can produce an effluent with low concentrations of color, turbidity, COD and BOD5 with values of 25 uC, 0.29 NTU, 5.5 mg O2/L and 24 mg O2/L, respectively. Furthermore, the ultrafiltration membranes used were able to reduce the density of pathogen indicators, with removal of 7 and 6 log of thermotolerant coliforms and E. coli respectively, resulting with concentrations of 9,3 ± 21,0 e 1,8 ± 4,0 MPN/100 mL, respectively.

  10. Changes in bacterial community structure in a full-scale membrane bioreactor for municipal wastewater treatment.

    Science.gov (United States)

    Hashimoto, Kurumi; Tsutsui, Hirofumi; Takada, Kazuki; Hamada, Hiroshi; Sakai, Kousuke; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Yamashita, Kyoko; Tsuji, Koji; Hashimoto, Toshikazu; Ike, Michihiko

    2016-07-01

    This study investigated changes in the structure and metabolic capabilities of the bacterial community in a full-scale membrane bioreactor (MBR) treating municipal wastewater. Microbial monitoring was also conducted for a parallel-running conventional activated sludge (CAS) process treating the same influent. The mixed-liquor suspended solid concentration in the MBR reached a steady-state on day 73 after the start-up. Then the MBR maintained higher rates of removal of organic compounds and nitrogen than the CAS process did. Terminal restriction fragment length polymorphism analysis revealed that the bacterial community structure in the MBR was similar to that in the CAS process at the start-up, but it became very different from that in the CAS process in the steady state. The bacterial community structure of the MBR continued to change dynamically even after 20 months of the steady-state operation, while that of the CAS process was maintained in a stable condition. By contrast, Biolog assay revealed that the carbon source utilization potential of the MBR resembled that of the CAS process as a whole, although it declined transiently. Overall, the results indicate that the bacterial community of the MBR has flexibility in terms of its phylogenetic structure and metabolic activity to maintain the high wastewater treatment capability. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    Science.gov (United States)

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-09-01

    An aluminum dioxide (Al2O3) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m(2)h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m(3), which is only about 17% of the electrical energy that could be generated with the methane produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biofouling control by biostimulation of quorum-quenching bacteria in a membrane bioreactor for wastewater treatment.

    Science.gov (United States)

    Yu, Huarong; Liang, Heng; Qu, Fangshu; He, Junguo; Xu, Guoren; Hu, Huizhi; Li, Guibai

    2016-12-01

    Bacterial quorum quenching (QQ) has been shown to be effective in controlling biofouling in membrane bioreactors (MBRs) for wastewater treatment. However, the encapsulation of a sufficient level of QQ bacteria is complicated and difficult. In plant research, gamma-caprolactone (GCL), which is structurally similar to the quorum signal, N-acyl homoserine lactone (AHL), was successfully used to specifically stimulate AHL-degrading bacteria (biostimulation) in hydroponic systems to control blackleg and soft rot diseases in potato. In this study, the feasibility of enriching QQ bacteria from activated sludge by GCL was examined, and the effect of biostimulation on biofouling control in MBR treating domestic wastewater was investigated. The results showed that after enrichment with GCL, activated sludge could effectively degrade AHLs, and a QQ gene (qsdA) was augmented. The proposed biostimulation QQ strategy, by introducing and continuously dosing GCL, could significantly increase QQ activity, decrease AHL, control the secretion of extracellular polymeric substances (EPS), and thus, effectively control biofouling in an MBR. This biostimulation QQ strategy provides a more convenient option for biofouling control in MBR applications. Biotechnol. Bioeng. 2016;113: 2624-2632. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR).

    Science.gov (United States)

    Galib, Mohamed; Elbeshbishy, Elsayed; Reid, Robertson; Hussain, Abid; Lee, Hyung-Sool

    2016-11-01

    An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor

    Directory of Open Access Journals (Sweden)

    D. J. Araujo

    2008-09-01

    Full Text Available The anaerobic treatment of wastewater from the household and personal products industry was studied using a 16.3 L hybrid reactor (UASB and biofilter. The top of the UASB reactor was filled with coconut shells to act as the support material for the biofilter. The wastewater was characterized in terms of pH (1.0 - 12.0, COD (1,000 - 5,000 mg/L, BOD5 (700 - 1,500 mg/L, chloride (55 - 850 mg/L, ammonia nitrogen (0.4 - 0.9 mg/L, total Kjeldahl nitrogen (22.1 - 34.0 mg/L, phosphorus (2.0 - 2.5 mg/L, anionic surfactants (100 - 600 mg/L, turbidity (115 - 300 NTU and total suspended solids (450 - 1,440 mg/L. The bioreactor was operated continuously for 120 days at room temperature (26 ± 5ºC with hydraulic retention times of 50, 40 and 60 h. COD and BOD removals and biogas production were evaluated in order to analyze process efficiency. The average removal efficiencies for COD (77%, 72% and 80% and BOD5 (approximately 90% were obtained with HRTs of 50, 40 and 60 h, respectively. The average specific biogas production was 0.32 L/g COD (at standard temperature and pressure for the three experimental runs. These data indicate good reactor efficiency and suggest the possibility of using this system to treat wastewater generated by the household and personal products industry.

  15. Anaerobic treatment of agro-industrial wastewaters for COD removal in expanded granular sludge bed bioreactor

    Directory of Open Access Journals (Sweden)

    Abumalé Cruz-Salomón

    2017-12-01

    Full Text Available Untreated agro-industrial wastewaters are undesirable in the aquatic environment due to the presence of high organic matter contents. However, they may constitute a large potential for biogas production. The present investigation is focused on three laboratory-scale anaerobic expanded granular sludge bed (EGSB bioreactors, continuously operated for 60 d under mesophilic condition with the aim of exploring the feasibility of treating three most significant agro-industrial wastewaters in Chiapas, Mexico (i.e., cheese whey, vinasse, and coffee-processing wastewater. The EGSB bioreactors were operated with a hydraulic retention time (HRT of 6 d under stable conditions (i.e., buffer index (BI of 0.31, 0.34, and 0.03, generating a maximum chemical oxygen demand (COD removal efficiency of 91, 74, and 96% with an average methane production of 340, 245, and 300 mL/g COD∙d for cheese whey, vinasse, and coffee-processing wastewater, respectively. According to the obtained results, the EGSB bioreactors could be a sustainable alternative to simultaneously solve the environmental problems and to produce bioenergy.

  16. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Khondee, Nichakorn; Tathong, Sitti [International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok (Thailand); Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Pinyakong, Onruthai [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand); Powtongsook, Sorawit [Center of Excellence for Marine Biotechnology (c/o Department of Marine Science, Chulalongkorn University), National Center for Genetic Engineering and Biotechnology, Pathum Thani (Thailand); Chatchupong, Thawach; Ruangchainikom, Chalermchai [Environmental Research and Management Department, PTT Research and Technology Institute, Ayutthaya (Thailand); Luepromchai, Ekawan, E-mail: ekawan.l@chula.ac.th [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Sphingobium sp. P2 effectively degraded various lubricant samples. Black-Right-Pointing-Pointer Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. Black-Right-Pointing-Pointer High removal efficiency was due to both sorption and degradation processes. Black-Right-Pointing-Pointer The immobilized bacteria (4 g L{sup -1}) were applied in internal loop airlift bioreactor. Black-Right-Pointing-Pointer The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80-90% of the 200 mg L{sup -1} total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L{sup -1} immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 {+-} 5% TPH and 73 {+-} 11% chemical oxygen demand (COD) from the carwash wastewater with 25-200 mg L{sup -1} amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  17. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  18. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-01-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry’s law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm’s treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  19. Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies.

    Science.gov (United States)

    Tan, Songwen; Hou, Yang; Cui, Chunzhi; Chen, Xuncai; Li, Weiguo

    2017-01-01

    This work presents a novel, fast and simple monitoring-responding method at the very early stages of membrane bio-fouling in a membrane bioreactor (MBR) during saline wastewater treatment. The impacts of multiple environmental shocks on membrane fouling were studied. The transmembrane pressure exceeded the critical fouling pressure within 8days in the case of salinity shock or temperature shock. In the case of DO shock, the transmembrane pressure exceeded the critical fouling pressure after 16days, showing the lower impact of DO shock on the MBR. In another study, the membrane fouling was observed within 4days responding to mixed environmental shocks. To decrease the potential of membrane bio-fouling, another bioreactor was integrated immediately with the MBR as a quickly-responded countermeasure, when an early warning of membrane bio-fouling was provided. After the bioreactor enhancement, the time required for membrane fouling increased from 4 to 10days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of membrane characteristics on the performance of membrane bioreactors for oily wastewater treatment.

    Science.gov (United States)

    Mafirad, S; Mehrnia, M R; Sarrafzadeh, M H

    2011-01-01

    Influence of membrane material and pore size on the performance of a submerged membrane bioreactor (sMBR) for oily wastewater treatment was investigated. The sMBR had a working volume of about 19 L with flat sheet modules at the same hydrodynamic conditions. Five types of micro- and ultra-polymeric membranes containing cellulose acetate (CA), cellulose nitrate (CN), polyamide (PA), polyvinylidene difluoride (PVDF) and polyethersulfone (PES) were used and their filtration performance in terms of permeability, permeate quality and fouling intensity were evaluated. Characterization of the membranes was done by performing some analysis such as pore size distribution; contact angle and scanning electronic microscopy (SEM) microphotograph on all membranes. The quality of permeates from each membrane was identified by measuring chemical oxygen demand (COD). The results showed more irreversible fouling intensity for membranes with larger pore size which can be due to more permeation of bioparticles and colloids inside the pores. Membrane characteristics have a major role in the preliminary time of the filtration before cake layer formation so that the PA with the highest hydrophilicity had the lowest permeability decline by fouling in this period. Also, the PVDF and PES membranes had better performance according to better permeate quality in the preliminary time of the filtration related to smaller pore size and also their better fouling resistance and chemical stability properties. However, all membranes resulted in the same permeability and permeate quality after cake layer formation. An overall efficiency of about 95% in COD removal was obtained for oily wastewater treatment by the membranes used in this study.

  1. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    Science.gov (United States)

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  2. Study of Kinetic coefficients of a Membrane Bioreactor (MBR for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2013-08-01

    Full Text Available Background & Aims of the Study: In order to design membrane bioreactors (MBR properly, it is essential to comprehend the behavior of microorganisms in such wastewater treatment processes. Materials & Methods: In this study, a lab-scale MBR process was operated to determine the biokinetic coefficients of the MBR system under different MLSS concentrations of 6800, 7000, 7400, and 7800 mg/l and organic loading rates of 0.5 kg COD/m3/day. Results: The results of this study showed that the yield of microorganisms (Y, the endogenous decay coefficient (kd, the maximum specific growth rate (μmax and the saturation constant (Ks were in the range of 0.67 g VSS/g COD, 0.56 d−1, 1.86 d−1 and 6.65 mg COD/l, respectively. Conclusions: The kinetic coefficients in this study can be used to improve the operation and design the MBR system in full scale.

  3. Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production.

    Science.gov (United States)

    Hou, Dianxun; Lu, Lu; Ren, Zhiyong Jason

    2016-07-01

    This study demonstrates that microbial fuel cells (MFCs) and osmotic membrane bioreactors (OMBRs) can be mutually beneficial when integrated together for wastewater treatment. When connecting MFCs with OMBRs, the solute buildup increased conductivity and buffer capacity, which greatly increased MFC power density from 3 W/m(3) up to 11.5 W/m(3). In turn, the MFCs conditioned and reduced sludge production and therefore reduced forward osmosis (FO) membrane fouling. The MFC-OMBR equipped with new thin-film composite (TFC) membrane showed excellent organic (>95%) and phosphorus removal (>99%) and therefore maintained effluent sCOD below 20 mg/L. However, the nitrogen removal was limited due to the negative surface charge of the thin-film composite membrane and solution chemistry, which led to higher flux of ammonium toward the OMBR draw solution. Further studies are needed to improve nitrogen removal, reduce fouling, and optimize system integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Science.gov (United States)

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-01-01

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. PMID:27314394

  5. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams. Copyright © 2016. Published by Elsevier Ltd.

  6. Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment.

    Science.gov (United States)

    Hai, Faisal Ibney; Yamamoto, Kazuo; Nakajima, Fumiyuki; Fukushi, Kensuke

    2011-03-01

    The long-term performance of a bioaugmented membrane bioreactor (MBR) containing a GAC-packed anaerobic zone for treatment of textile wastewater containing structurally different azo dyes was observed. A unique feeding strategy, consistent with the mode of evolution of separate waste streams in textile plants, was adopted to make the best use of the GAC-zone for dye removal. Dye was introduced through the GAC-zone while the rest of the colorless media was simultaneously fed through the aerobic zone. Preliminary experiments confirmed the importance of coupling the GAC-amended anaerobic zone to the aerobic MBR and also evidenced the efficacy of the adopted feeding strategy. Following this, the robustness of the process under gradually increasing dye-loading was tested. The respective average dye concentrations (mg/L) in the sample from GAC-zone and the membrane-permeate under dye-loadings of 0.1 and 1 g/L.d were as follows: GAC-zone (3, 105), permeate (0, 5). TOC concentration in membrane-permeate for the aforementioned loadings were 3 and 54 mg/L, respectively. Stable decoloration along with significant TOC removal during a period of over 7 months under extremely high dye-loadings demonstrated the superiority of the proposed hybrid process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Membrane Bioreactor (MBR Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Oliver Terna Iorhemen

    2016-06-01

    Full Text Available The membrane bioreactor (MBR has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  8. Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor.

    Science.gov (United States)

    Abid, Abdeldjalil; Saidane, Faten; Hamdi, Moktar

    2017-06-01

    The aim of this work was to study the ability of using Hydrocabonoclastic native microbial and Spongiochloris sp microalgae in airlift bioreactors couples in order to restore hydrocarbons wastewater and develop the capacity of natural systems to reduce greenhouse effect through maximal control of CO2 gas emission in atmosphere. The kinetic parameters of CO2 gas fixation level and conversion it into biological material by microalgae as the biodegradation process effect in hydrocarbon have been evaluated. The result present that maximum specific growth rate μmax of Spongiochloris sp was (0.87±0.04day-1) and the biomass productivity Pmax was attended (1.5±0.3gL-1day-1) with maximal CO2 biofixation rate RCO2 (2.9205gL-1day-1). At 30°C and pH (7.6-7.4) the bioreactor showed a good wastewater removal efficiency (99.18%) in total hydrocarbons with COD stabilized within (1.30g/L), this result obtained suggesting that, the bioreactor applied system represented a useful strategy for maximizing CO2 bio-mitigation. Copyright © 2017. Published by Elsevier Ltd.

  9. Biological treatment of a synthetic space mission wastewater using a membrane-aerated, membrane-coupled bioreactor (M2BR).

    Science.gov (United States)

    Chen, Ruoyu D; Semmens, Michael J; LaPara, Timothy M

    2008-06-01

    This paper describes the membrane-aerated, membrane-coupled bioreactor (M2BR), which was developed for wastewater treatment during long-term space missions because it achieves aeration and biomass separation using components that are compatible with microgravity conditions. In the experiments described herein, the M2BR was used to treat a synthetic wastewater formulated by NASA to simulate the wastewater typically collected during space missions. The M2BR was able to achieve more than 90% removal of both chemical oxygen demand (COD) and total nitrogen when it was fed a modified NASA wastewater that had a 4:1 COD to nitrogen ratio. When the full-strength synthetic wastewater was fed to the M2BR (COD:N=1), however, the nitrogenous pollutant removal efficiency was adversely affected because of either insufficient oxygen transfer to support nitrification (an air-fed M2BR) or insufficient electron donor to support denitrification (an oxygen-fed M2BR). In conclusion, the M2BR provides considerable promise for wastewater treatment during long-term space missions, although additional research is needed to identify the best approach to treat the space mission wastewater, which poses a unique challenge because of its low COD:N ratio.

  10. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Nguyen, Hau Thi [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Hao, Chan Wen [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Lin, Po-Hsun [New Materials Research and Development Dept., China Steel Corporation, Taiwan, ROC (China)

    2015-06-15

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m{sup 2} h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH{sub 4}{sup +}-N and PO{sub 4}{sup 3−}-P were almost removed (> 99%) while producing relatively low NO{sub 3}{sup −}-N and NO{sub 2}{sup −}-N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus.

  11. Performance of Submerged Membrane Bioreactor Combined with Powdered Activated Carbon Addition for the Treatment of an Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Tri Widjaja

    2010-02-01

    Full Text Available Membrane technology is one of the alternative solutions to overcome industrial wastewater treatment developed nowadays. The addition of PAC (Powdered Activated Carbon in the activated sludge using Submerged Membrane Adsorption Hybrid Bioreactor (SMAHBR is expected to increase the organic material removal. The purpose of this study was to determine the performance of submerged membrane bioreactor and activated carbon adsorption capacity of organic materials in wastewater. This study used SIER (Surabaya Industrial Estate Rungkut – Surabaya, Indonesia waste as activated sludge operated at Mixed Liquor Suspended Solid (MLSS concentrations of 8000 and 15000 mg/l, and Chemical Oxygen Demand (COD concentrations of 1500, 2500 mg/l, Sludge Retention Time (SRT of 10;20; and 30 days and activated carbon variables of 0%; 2.5%; 5%; 7.5%; 10%. The results showed that the fouling potential occurred at high MLSS where the COD removal occurred at PAC addition of 10% reaching 91.86%. High Soluble Microbial Product (SMP accumulation (± 10 mg/l occurred in short SRT and high MLSS concentration. PAC addition resulted in decreased microorganisms in the reactor and better effluent of SMAHBR, as a result, the performance of the submerged membrane bioreactor would be restored.

  12. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate,

  13. Usage of membrane bioreactors in municipal treatment plants

    OpenAIRE

    Maučec, Miha

    2016-01-01

    We wanted to present the usage of membrane bioreactors for municipal wastewater treatment plants. In industries such systems are widely spread contributing to improve wastewater treatment. With increasing standards on discharges from wastewater treatment plants began usage of membrane bioreactors at municipal treatment plants. The aim of the thesis was to describe the process of wastewater treatment with membrane bioreactors and to present advantages and disadvantages of these systems. Compa...

  14. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  15. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  16. The use of moving bed bio-reactor to laundry wastewater treatment

    Science.gov (United States)

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni

    2017-11-01

    Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.

  17. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors

    OpenAIRE

    Tao, Wenda; Zhang, Xu-Xiang; Zhao, Fuzheng; Huang, Kailong; Ma, Haijun; Wang, Zhu; Ye, Lin; Ren, Hongqiang

    2016-01-01

    To understand the diversity and abundance of antibiotic resistance genes (ARGs) in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs) were investigated and compared with sludge samples from three sewage treatment plants (STPs) using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). ...

  18. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment

    National Research Council Canada - National Science Library

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-01-01

    ... ) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit...

  19. Evaluation of flat sheet membrane bioreactor efficiency for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Somayeh Fazeli

    2012-01-01

    Conclusion: It is concluded that FS-MBR can be used in the large scale municipal wastewater treatment plants to improve effluent quality due to high removal of COD, BOD 5 , TSS and VSS to meet effluent discharge standards.

  20. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  1. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation.

    Science.gov (United States)

    Zhou, Guowang; Zhou, Yuhong; Zhou, Guoqiang; Lu, Lian; Wan, Xiankai; Shi, Huixiang

    2015-11-01

    A novel overflow-type electrochemical membrane bioreactor (EMBR) without ion exchange membrane, was developed for wastewater treatment and utilized electricity recovered by microbial fuel cell (MFC) for membrane fouling mitigation in membrane bioreactor (MBR). The maximum power density of 629mW/m(3) or 7.18mW/m(2) was obtained. The removal efficiencies of chemical oxygen demand, ammonia nitrogen and total nitrogen under appropriate ranges of hydraulic retention times (16.9-8.5h) were 92.6±5.4%, 96.5±2.8% and 73.9±9.7%, respectively. Sequencing showed electrochemically active bacteria Lactococcus, Bacillus and Saprospiraceae_uncultured were abundant in the biofilm. Compared with a conventional MBR, five significant effects of the MFC integration on the sludge properties, including particle zeta potential decrease, particle size distribution macroaggregation, soluble microbial products and extracellular polymeric substances reduction and SMPP/SMPC ratio increase, were achieved in this system, leading to membrane fouling mitigation. This system shows great promise for practical wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater.

    Science.gov (United States)

    Friha, Inès; Bradai, Mohamed; Johnson, Daniel; Hilal, Nidal; Loukil, Slim; Ben Amor, Fatma; Feki, Firas; Han, Junkuy; Isoda, Hiroko; Sayadi, Sami

    2015-09-01

    The performance of a pilot-scale membrane bioreactor (MBR) system for the treatment of textile wastewater was investigated. The MBR was continuously operated for 7 months. Very high treatment efficiencies were achieved (color, 100%; chemical oxygen demand (COD), 98%; biochemical oxygen demand (BOD5), 96%; suspended solids (SS), 100%). Furthermore, the MBR treatment efficiency was analyzed from a toxicological-risk assessment point of view, via different In vitro bioassays using Caco-2 cells, a widely used cell model in toxicological studies. Results showed that MBR treatment significantly reduced the raw textile wastewater (RTWW) cytotoxicity on Caco-2 cells by 53% for a hydraulic retention time (HRT) of 2 days. Additionally, the RTWW-induced disruption in the barrier function (BF) of the Caco-2 cell monolayer was also significantly reduced after MBR treatment under a HRT of 2 days (no disruption of BF was observed). Moreover, the effect of RTWW and treated wastewater on stress response was investigated using different stress genes: AHSA1, HSPD1, HSPA1A, HSPA5 and HSPA8. The cell exposure to RTWW significantly increased the expression of all used stress genes; interestingly, the treated wastewater (HRT 2 days) did not show any significant modulation of the stress genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development of in-house lattice-Boltzmann simulator of bioreactors for wastewater treatment: basic concepts and initial results.

    Science.gov (United States)

    Fortunato, V A; Caneppele, F L; Ribeiro, R; Rabi, J A

    2018-02-01

    While computational modelling has increasingly supported wastewater bioreactor engineering, novel numerical techniques have been developed such as the lattice-Boltzmann method (LBM). With vinasse treatment as case study, this work is a first step towards a comprehensive LBM simulator of a continuous-flow anaerobic packed-bed reactor. Extensions from typical models comprise one-dimensional (besides time) dependence, species transport via convection and diffusion, and imposition of either Dirichlet or Danckwerts condition at inlet. The LBM simulator proved to be operational when simulating the bioreactor at different hydraulic retention times (HRTs). Simulated profiles show that stepwise feeding concentrations are smoothed as they are transported towards the bioreactor exit while concentrations increase or decrease in response to generation or degradation kinetics. Good fitting was observed for concentrations of acetic acid (2.1 kg-COD/m 3 for HRT = 24 h) and butyric acid (1.3 kg-COD/m 3 for HRT = 16 h) at the exit whereas other concentrations were numerically simulated at proper order of magnitude.

  4. Treatment of wastewater containing phenol using a tubular ceramic membrane bioreactor.

    Science.gov (United States)

    Ersu, C B; Ong, S K

    2008-02-01

    The performance of a membrane bioreactor (MBR) with a tubular ceramic membrane for phenol removal was evaluated under varying hydraulic retention times (HRT) and a fixed sludge residence time (SRT) of 30 days. The tubular ceramic membrane was operated with a mode of 15 minutes of filtration followed by 15 seconds of permeate backwashing at a flux of 250 l m(-2)hr(-1) along with an extended backwashing of 30 seconds every 3 hours of operation, which maintained the transmembrane pressure (TMP) below 100 kPa. Using a simulated municipal wastewater with varying phenol concentrations, the chemical oxygen demand (COD) and phenol removals observed were greater than 88% with excellent suspended solids (SS) removal of 100% at low phenol concentrations (approx. 100 mg l(-1) of phenol). Step increases in phenol concentration showed that inhibition was observed between 600 to 800 mg l(-1) of phenol with decreased sludge production rate, mixed liquor suspended solids (MLSS) concentration, and removal performance. The sludge volume index (SVI) of the biomass increased to about 450 ml g(-1) for a phenol input concentration of 800 mg l(-1). When the phenol concentration was decreased to 100 mg l(-1), the ceramic tubular MBR was found to recover rapidly indicating that the MBR is a robust system retaining most of the biomass. Experimental runs using wastewater containing phenol indicated that the MBR can be operated safely without upsets for concentrations up to 600 mg l(-1) of phenol at 2-4 hours HRT and 30 days SRT.

  5. Effectiveness of three configurations of membrane bioreactors on the removal of priority and emergent organic compounds from wastewater: comparison with conventional wastewater treatments.

    Science.gov (United States)

    Camacho-Muñoz, D; Martín, J; Santos, J L; Alonso, E; Aparicio, I; De la Torre, T; Rodriguez, C; Malfeito, J J

    2012-05-01

    In this work the effectiveness of membrane bioreactors as advanced treatment on the removal of emergent and priority organic compounds in wastewater treatment plants has been evaluated during a one-year monitoring study. The studied wastewater treatment plant operates with flat sheet and hollow fibre membranes in two parallel lines. Moreover, a reverse osmosis module connected in series after the hollow fibre membrane was evaluated for one month. Comparison of membrane bioreactor and conventional activated sludge treatment was also investigated, as well as the influence of the physicochemical properties of the compounds on the removal rates achieved. Sixteen pharmaceutical compounds belonging to seven therapeutic groups and eight priority organic pollutants, including linear alkylbenzene sulfonates, nonylphenol and its ethoxylates and phthalate, were monitored. The highest mean concentrations corresponded to priority organic pollutants (309 μg L(-1) of linear alkylbenzene sulfonate C(12)) followed by pharmaceutical compounds (24.5 μg L(-1) of ibuprofen). No significant difference of effectiveness was found among flat sheet and hollow fibre membranes. However, an improvement was obtained with the addition of a reverse osmosis module for most of the compounds. Biodegradation has been shown as the main route involved in the removal of organic compounds during both technologies.

  6. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    Science.gov (United States)

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  7. On-line cake-layer management by trans-membrane pressure steady state assessment in Anaerobic Membrane Bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane bioreactors have been increasingly applied for wastewater treatment during the last two decades. High energy requirements and membrane capital costs remains as their main drawback. A new strategy of operation is presented based on a continuous critical flux determination, preventing

  8. Effect of Membrane Type for the Treatment of Organized Industrial Zone (OIZ Wastewater with a Membrane Bioreactor (MBR: Batch Experiments

    Directory of Open Access Journals (Sweden)

    Oktay Özkan

    2017-08-01

    Full Text Available Organized industrial zone (OIZ wastewater is a mixed wastewater that is contributed by both municipal use and from different industrial sectors. Since MBR has advantages over conventional treatment plants, membrane types and fouling become the most important parameters in the treatment of this kind of wastewater. In this study, six different membrane types were used to find the most suitable membrane with the least resistivity to fouling. Three different microfiltration (MF and ultrafiltration (UF membranes were operated to estimate their (i membrane, (ii cake, (iii pore, and (iv total resistances. The highest total resistance was observed in a polyethersulfone (PES membrane (3.8 × 1010 m−1, while the lowest one was a UF polyvinylidene fluoride (PVDF membrane with approximately 20 times lower resistance than the highest one. PVDF membranes showed lower total resistances than PES membranes. An MF or a 250 kDa UF membrane could be operated long-term in a membrane bioreactor with the least fouling potential.

  9. Influence of salinity on fungal communities in a submerged fixed bed bioreactor for wastewater treatment

    NARCIS (Netherlands)

    Cortés-Lorenzo, C.; González-Martínez, A.; Smidt, H.; González-López, J.; Rodelas, B.

    2016-01-01

    Salinity is known to influence the performance of biological wastewater treatment plants. While its impact on bacterial communities has been thoroughly studied, its influence on fungal communities has been largely overlooked. To address this knowledge gap, we assessed the effect of saline

  10. Biorreatores com Membranas Submersas (BRMs): alternativa promissora para o tratamento de esgotos sanitários para reúso/Submerged Membrane Bioreactor (sMBR): a promising alternative to wastewater treatment for water reuse

    National Research Council Canada - National Science Library

    Eduardo Lucas Subtil; Ivanildo Hespanhol; José Carlos Mierzwa

    2013-01-01

      Treatment technology for wastewater treatment and reuse encompasses a vast number of options, and the Submerged Membrane Bioreactor is regarded as a key element for the role it can play in water reuse schemes...

  11. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    Science.gov (United States)

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  12. Membrane Bioreactor-Based Wastewater Treatment Plant in Saudi Arabia: Reduction of Viral Diversity, Load, and Infectious Capacity

    KAUST Repository

    Jumat, Muhammad

    2017-07-18

    A membrane bioreactor (MBR)-based wastewater treatment plant in Saudi Arabia was assessed over a nine-month period for virus removal efficiency. Viral diversity was detected using omics-based approaches. Log reduction values (LRV) of Adenoviruses (AdV) and Enteroviruses (EV) were enumerated using digital polymerase chain reaction (dPCR) and assessed for infectivity using fluorescence-based infection assays. MBR treatment was successful in reducing viral diversity. Plant viruses remained abundant in the treated effluent. Human enteric viruses were present in lower abundance than plant viruses, and were reduced by MBR at varying LRV. AdV copy numbers were reduced by 3.7-log. Infectious AdV was not detected in the effluent. EV copy numbers were reduced by 1.7-log post MBR and infectious EV decreased by an average of 2.0-log. Infectious EV was detected in the chlorinated effluent, occasionally in concentrations that approximate to its 50% infectious dose. Overall, results indicated that a MBR-based wastewater treatment plant (WWTP) effectively reduces viral diversity, viral load, and infectious capacity by up to 4-logs. These findings suggest potential concerns associated with plant and human enteric viruses for reuse events in this country. Local guidelines for assessment of treated water quality should take into consideration both infectious viral concentration and LRV.

  13. Performance of up flow anaerobic sludge fixed film bioreactor for the treatment of high organic load and biogas production of cheese whey wastewater

    Directory of Open Access Journals (Sweden)

    Tehrani Nazila Samimi

    2015-01-01

    Full Text Available Among various wastewater treatment technologies, biological wastewater treatment appears to be the most promising method. A pilot scale of hybrid anaerobic bioreactor was fabricated and used for the whey wastewater treatment. The top and bottom of the hybrid bioreactor known as up flow anaerobic sludge fixed film (UASFF; was a combination of up flow anaerobic sludge blanket (UASB and up flow anaerobic fixed film reactor (UAFF, respectively. The effects of operating parameters such as temperature and hydraulic retention time (HRT on chemical oxygen demand (COD removal and biogas production in the hybrid bioreactor were investigated. Treatability of the samples at various HRTs of 12, 24, 36 and 48 hours was evaluated in the fabricated bioreactor. The desired conditions for COD removal such as HRT of 48 hours and operation temperature of 40 °C were obtained. The maximum COD removal and biogas production were 80% and 2.40 (L/d, respectively. Kinetic models of Riccati, Monod and Verhalst were also evaluated for the living microorganisms in the treatment process. Among the above models, Riccati model was the best growth model fitted with the experimental data with R2 of about 0.99.

  14. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Saddoud, Ahlem [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia); Sayadi, Sami [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia)], E-mail: sami.sayadi@cbs.rnrt.tn

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m{sup -3} d{sup -1} with gradual increase to an average of 13.27 kg TCOD m{sup -3} d{sup -1}. At stable conditions, the treatment efficiency was high with an average COD and BOD{sub 5} reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m{sup -3} d{sup -1}. The removal efficiencies of SCOD and BOD{sub 5} were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  15. A novel membrane bioreactor enhanced by effective microorganisms for the treatment of domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jin Min; Wang Xin-Wei; Gong Tai-Shi; Gu Chang-Qin; Zhang Bin; Shen Zhi-Qiang; Li Jun-Wen [Institute of Environment and Health, Tianjin (China)

    2005-11-01

    The activated sludge membrane bioreactor (MBR) has been shown to have some advantages for the processing and reclamation of domestic wastewater. We hypothesized that certain microorganisms, chosen for their abilities to decompose the chemical components of raw sewage, would, when coupled with the MBR, significantly improve the stability and efficiency of this system. We selected environmental bacterial strains which oxidize ammonia and nitrites and produce protease, amylase, and cellulase for the development and testing of a novel biologically enhanced MBR (eMBR). We compared the eMBR with the activated sludge MBR. With the eMBR, the average values of effluent quality were: chemical oxygen demand (COD), 40 mg/l(average efficiency of removal 90.0%); and NH{sub 4}{sup +}-N, 0.66 mg/l(average efficiency of removal 99.4%). Effluent qualities met the standard and were stable during the entire 90 days of this study. For the activated sludge MBR, the COD removal rate was 91.7%, and the NH{sub 4}{sup +}-N removal (94.8%) was less than that of the eMBR. Start-up time for the eMBR was only 24-48 h, much shorter than the 7-8 days required to initiate function of the standard MBR. The biomass concentrations of total heterotrophic bacteria and autotrophic bacteria in the eMBR did not fluctuate significantly during the course of the study. Various kinds of microorganisms will establish an ecological balance in the reactor. Compared with the activated sludge MBR, the eMBR not only produced an excellent and stable quality of effluent but also resulted in a shorter time to start-up and significantly improved the efficiency of NH{sub 4}{sup +}-N removal. (orig.)

  16. Bioindicator value of flagellates in urban wastewater treatment using membrane bioreactors.

    Science.gov (United States)

    Parada-Albarracín, J A; Pérez, J; Gómez, M A

    2017-10-01

    Two experimental submerged membrane bioreactors (MBR) at the industrial scale with different membranes (microfiltration and ultrafiltration) were used to analyse the influence of the small flagellates on the lack of significance of the sludge biotic index (SBI). Also, with these systems, flagellates were analysed as bioindicators in the activated sludge of MBRs. Both facilities were operated in parallel with a pre-denitrification system for a period of nearly two years and fed with real pretreated urban wastewater. During the experimental period, the sludge-retention time in the facilities was from 16.5 to 36.5 days, the organic loading ranged between 1.8 Kg COD/d m3 and 0.14 Kg COD/d m3, and the temperature of the activated sludge was between 32.8 and 12.8 °C. Under these conditions, the concentrations of total solids in the activated sludge reached 21.6 and 0.3 g/L, and the ratio of food:microrganims (F:M) remained stable at around 0.1 Kg BOD5/Kg VSS day, while the trans-membrane pressure (TMP) followed an increasing trend. Both facilities presented a high capacity for organic matter elimination and complete nitrification. The small flagellates were present throughout the experimental period in the activated sludge and showed no significant bioindicator role in the MBR systems which limited the application of SBI. Of the large flagellates studied, only Peranema sp. could be considered to be a bioindicator of MBR systems, indicating the effectiveness of denitrification for systems with complete nitrification and correlating with the time course of the TMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sequencing treatment of industrial wastewater with ultraviolet/H2O2 advanced oxidation and moving bed bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Mehrabani Ardekani

    2015-01-01

    Full Text Available Aims: The main purpose of this study was to determine the efficiency of a sequencing treatment including ultraviolet (UV/H 2 O 2 oxidation followed by a moving bed bioreactor (MBBR. Materials and Methods: Effect of solution pH, reaction time, and H 2 O 2 concentration were investigated for an industrial wastewater sample. The effluent of the advanced oxidation processes unit was introduced to the MBBR operated for three hydraulic retention times of 4, 8, and 12 h. Results: The optimum condition for industrial wastewater treatment via advanced oxidation was solution pH: 7, H 2 O 2 dose: 1000 mg/L and 90 min reaction time. These conditions led to 74.68% chemical oxygen demand (COD removal and 66.15% biochemical oxygen demand (BOD 5 removal from presedimentation step effluent that initially had COD and BOD 5 contents of 4,400 and 1,950 mg/L, respectively. Conclusion: Combination of UV/H 2 O 2 advanced oxidation with MBBR could result in effluents that meet water quality standards for discharge to receiving waters.

  18. Modeling and mitigation of denitrification 'woodchip' bioreactor phosphorus releases during treatment of aquaculture wastewater

    Science.gov (United States)

    Denitrification 'woodchip' bioreactors designed to remove nitrate from agricultural waters may either be phosphorus sources or sinks. A 24 d batch test showed woodchip leaching is an important source of phosphorus during bioreactor start-up with a leaching potential of approximately 20 -30 mg P per ...

  19. Treatment of swine wastewater using MLE process and membrane bio-reactor.

    Science.gov (United States)

    Chung, Y J; Choi, H N; Cho, J B; Park, S K

    2004-01-01

    The aim of this study was to develop the optimum integrated treatment system for slurry type swine wastewater through field testing. Although composting and liquid composting are the most desirable processes to treat swine wastewater, inadequate composting has been blamed as critical non-point source pollutants. In the area with limited crop land and grass land, the most feasible method to handle slurry type swine wastewater would be that the solids portion from the solids/liquid separation process is treated by composting and then the liquid portion is treated by a series of wastewater treatment processes, including physicochemical treatment system and biological nutrient removal systems such as the modified Ludzack Ettinger (MLE) process and MLE process coupled with a membrane, to satisfy the different effluent criteria. When using the appropriate solids/liquid separation system, the removal efficiency of SS, COD(Cr), and TKN was 92.4%, 73.6%, and 46.0%, respectively and the amount of bulking agent required for composting and organic loading rate for the following wastewater treatment system can be reduced by 94.8% and 84.7%, respectively. When treating the effluent from solids/liquid separation process by MLE process, the optimal volume fraction for denitrification was 20% of total reactor volume and the optimum ratio of F/M and F(N)/M were increased with increase of C/N ratio. Since the effluent quality of MLE process is not enough to discharge, the DAF process was operated with addition of FeCl3 and cationic polyelectrolyte. The effluent from the DAF process was treated in the MLE process coupled with a crossflow ultrafiltration membrane to satisfy more stringent effluent criteria. When external carbon source is added to keep 6.0 of C/N ratio, the efficiency of denitrification is best. The optimum linear velocity and transmembrane pressure for MBR process was 1.8 m/sec and 2.1 atm, respectively. By addition of external carbon source, nitrogen compounds

  20. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    Science.gov (United States)

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH 4 /g COD removed . Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m -2  h -1 (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m -3  d -1 . On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights

  1. Popular pharmaceutical residues in hospital wastewater: quantification and qualification of degradation products by mass spectroscopy after treatment with membrane bioreactor.

    Science.gov (United States)

    Chiarello, M; Minetto, L; Giustina, S V Della; Beal, L L; Moura, S

    2016-08-01

    The occurrence of drugs in wastewater has been considered an imminent risk to the population, for the treatments used are usually ineffective. The presence of four popular drug residues (metformin, paracetamol, tetracycline, and enalapril) in hospital effluents, by using ultra-fast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) with electrospray (ESI) ionization, and removal/degradation by membrane bioreactor (MBR) system are investigated in this study. For analysis method, all standard calibration curves showed satisfactory linearity (R (2) ≥ 0.993) within a relatively wide range. The recovery was between 70.4 and 105.0 %, and the relative standard deviation (RSD) values were within the ranges of 8.2 and 13.5 %. The effluent samples were collected at the end of the process treated in a bench-scale MBR treatment system and preconcentrated on solid-phase extraction (SPE) cartridges. Following that procedure, the chemical analysis demonstrated that the MBR system was effective in enalapril 94.3 ± 7.63 %, tetracycline 99.4 ± 0.02 %, and paracetamol 98.8 ± 0.86 % removal. However, the polar metformin was less effectively removed (35.4 ± 12.49 %). Moreover, the degradation products were investigated using high-resolution mass spectrometry (HRMS) by quadrupole-time of flight (Q-TOF), which has been indicated a tetracycline metabolite. In order to investigate the environmental impact, the wastewater potential risk was evaluated. The risk quotient (RQ) by measure environmental concentration (MEC) and its predicted no effect concentration (PNEC) ratio (RQ = MEC/PNEC) was between 0.003 (enalapril) to 0.815 (paracetamol). Finally, this work demonstrates that UFLC-MS/MS (ESI-Q) is a sensitive and selective method for drug analysis in wastewater and with ESI-Q-TOF has the accuracy required for determining the degradation products of these compounds. Also, it indicated that membrane bioreactor systems represent a new generation of

  2. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50mg/L for general reuse was 6gCOD/L/d and 0.63gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300ml/gCOD (even approaching the theoretical value of 382ml/gCOD). A low biomass production of 0.015-0.026gMLVSS/gCOD and a sustainable flux of 6L/m2/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. © 2014 Elsevier Ltd.

  3. Predator-prey-substrate model of wastewater treatment in bioreactor system

    Science.gov (United States)

    Sadikin, Zubaidah; Salim, Normah; Allias, Razihan

    2013-04-01

    This paper analyses the mathematical model of the interaction between predator-prey and substrate that have been expressed as a system of nonlinear ordinary differential equations. This mathematical model can help to investigate the biological reaction of the interaction of predator-prey and substrate in biological wastewater treatment to improve the quality of water that flows out from the reactor. By using Monod Kinetics Growth Model, the steady state solutions have been obtained and their stability is determined as a function of the residence time.

  4. Performance investigation of a jet loop membrane bioreactor for the treatment of an actual olive mill wastewater.

    Science.gov (United States)

    Değermenci, Nejdet; Cengiz, İbrahim; Yildiz, Ergun; Nuhoglu, Alper

    2016-12-15

    In this study, following the pre-treatment of olive mill wastewater (OMW), its treatment in a jet loop membrane bioreactor (JLMBR) was investigated. Among the pre-treatment options, the configuration composed of physical settling, cartridge filter and ceramic membrane showed the best performance in terms of investigated parameters. For the JLMBR that was fed by pretreated OMW, up to 93 and 87% removal efficiencies were achieved for the chemical oxygen demand (COD) and total phenol, respectively, at volumetric organic load (VOL) of 17.8 kg COD/m(3) day. The calculated specific oxygen uptake rate (SOUR) values were in the range 7.7-34.7 g O2/kg MLVSS h. When even hydraulic retention times (HRT) values decreased by a factor of 1:24, system performance in terms of COD and total phenol removal remained almost stable. Decreasing the sludge retention time (SRT) to three days made considerable perturbations for the system performance, increasing the effluent COD and total phenol values in 900 and 80 mg/L, respectively. The JLMBR showed a high overall performance for the treatment of an actual OMW under the evaluated operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.A.; Plugge, C.M.; Pereira, M.A.; Lier, van J.B.

    2009-01-01

    Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5m/s and fed with

  6. Treatment of industrial wastewaters by anaerobic membrane bioreactors : Implications of substrate characteristics

    NARCIS (Netherlands)

    Dereli, R.K.

    2015-01-01

    The success of anaerobic digestion relies on the presence of highly active methanogenic biomass, requiring effective retention of slow growing anaerobic microorganisms inside bioreactor by decoupling the hydraulic retention time (HRT) from solids residence time (SRT) or the employment of long SRTs

  7. Energy Consumption Related to Shear Stress for Membrane Bioreactors Used for Wastewater Treatment

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Bérube, P.R.

    2011-01-01

    The main drawback of membrane bioreactors (MBR) systems is the fouling of the membrane, which is decrease and/or prevented through gas sparging. However, gas sparging practices are based on rules of thumb or a trial-and-error approaches which are tedious, very timeconsuming, do not necessarily pr...

  8. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Science.gov (United States)

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  9. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions.

    Science.gov (United States)

    Martinez-Sosa, David; Helmreich, Brigitte; Netter, Thomas; Paris, Stefania; Bischof, Franz; Horn, Harald

    2011-11-01

    A pilot scale anaerobic submerged membrane bioreactor (AnSMBR) with an external filtration unit for municipal wastewater treatment was operated for 100 days. Besides gas sparging, additional shear was created by circulating sludge to control membrane fouling. During the first 69 days, the reactor was operated under mesophilic temperature conditions. Afterwards, the temperature was gradually reduced to 20 °C. A slow and linear increase in the filtration resistance was observed under critical flux conditions (7 L/(m2 h)) at 35 °C. However, an increase in the fouling rate probably linked to an accumulation of solids, a higher viscosity and soluble COD concentrations in the reactor was observed at 20 °C. The COD removal efficiency was close to 90% under both temperature ranges. Effluent COD and BOD5 concentrations were lower than 80 and 25 mg/L, respectively. Pathogen indicator microorganisms (fecal coliforms bacteria) were reduced by log(10)5. Hence, the effluent could be used for irrigation purposes in agriculture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  11. Optimizing the operational conditions of a membrane bioreactor used for domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    Priscilla Zuconi Viana

    2005-06-01

    Full Text Available This study evaluated the performance of a sidestream membrane module combined with an aeration system for the treatment of municipal wastewater. To investigate the membrane's behavior and to control fouling, trials in laboratory units were conducted. In these tests, optimal values were established for some operational parameters, such as crossflow velocity, transmembrane pressure and air supply to continuously flush the membrane surface. Air supply improved the behavior of the permeate flux over time. After six hours operation, the stabilized flux was 35 L/m².h at a total pressure of 0.40 bar (wastewater pressure of 0.05 bar and air pressure of 0.35 bar and Reynolds Number of 4,600. All permeate samples analyzed indicated absence of fecal coliform and Escherichia coli.Biorreatores com membrana para retenção de sólidos consistem em processos biológicos acoplados a módulos de membranas de microfiltração ou ultrafiltração. O presente estudo avaliou o desempenho de um módulo de membranas, combinado a um sistema de aeração, para o tratamento de esgoto doméstico. Com o objetivo de investigar o comportamento das membranas e minimizar os efeitos do "fouling", foram realizados testes em unidades em escala de laboratório, nos quais foram estabelecidos valores ótimos para alguns parâmetros operacionais, como velocidade tangencial no módulo, pressão transmembrana e vazão de ar inserida na linha de alimentação do módulo. Com a inserção de ar foi possível controlar melhor o comportamento do fluxo permeado ao longo do tempo. Após seis horas de operação, o fluxo se manteve em torno de 35 L/m².h para uma pressão total de 0,40 bar (pressão gerada pelo esgoto de 0,05bar e pelo ar de 0,35 bar e Reynolds de 4.600. Todas as análises das amostras do permeado indicaram ausência de coliformes termotolerantes e Escherichia coli.

  12. A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge.

    Science.gov (United States)

    Dong, Honghong; Wang, Wei; Song, Zhaozheng; Dong, Hao; Wang, Jianfeng; Sun, Shanshan; Zhang, Zhongzhi; Ke, Ming; Zhang, Zhenjia; Wu, Wei-Min; Zhang, Guangqing; Ma, Jie

    2017-09-01

    The performance of a laboratory-scale, high-efficiency denitrification bioreactor (15L) using activated sludge immobilized by waterborne polyurethane in treating acrylonitrile wastewater with high concentration of nitrate nitrogen (249mg/L) was investigated. The bioreactor was operated at 30°C for 220days. Batch denitrification experiments showed that the optimal operation parameters were C/NO3(-)-N molar ratio of 2.0 using sodium acetate as electron donor and carrier filling rate of 20% (V/V) in the bioreactor. Stable performance of denitrification was observed with a hydraulic retention time of 30 to 38h. A volumetric removal rate up to 2.1kgN/m(3)·d was achieved with a total nitrogen removal efficiency of 95%. Pyrosequencing results showed that Rhodocyclaceae and Pseudomonadaceae were the dominant bacterial families in the immobilized carrier and bioreactor effluent. The overall microbial diversity declined as denitrifiers gradually dominated and the relative abundance of other bacteria decreased along with testing time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison between a conventional membrane bioreactor (C-MBR and a biofilm membrane bioreactor (BF-MBR for domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    E. L. Subtil

    2014-09-01

    Full Text Available In this paper, the influence of biofilm carriers in a MBR on the performance of organic matter and nitrogen removal and the influence on membrane fouling were evaluated. The configurations studied included a Conventional Membrane Bioreactor (C-MBR and a Biofilm Membrane Bioreactor (BF-MBR operated in parallel, both fed with domestic wastewater. Regarding organic matter removal, no statistically significant differences were observed between C-MBR and BF-MBR, producing an effluent with a Soluble COD concentration of 27 ± 9.0 mgO2/L and 26 ±1.0 mgO2/L and BOD concentration of 6.0 ± 2.5 mgO2/L and 6.2 ± 2.1 mgO2/L, respectively. On the other hand, the BF-MBR produced a permeate with lower ammonia and total nitrogen concentrations, which resulted in a removal efficiency of 98% and 73%, respectively. It was also observed that the fouling rate was about 35% higher in the C-MBR than that for the BF-MBR, which also presented a reduction of total membrane resistance, about 29%, and increased operational cycle length around 7 days, compared to C-MBR.

  14. Comparison of the removal of phthalates and other organic pollutants from industrial wastewaters in membrane bioreactor and conventional activated sludge treatment plants.

    Science.gov (United States)

    Llop, A; Borrull, F; Pocurull, E

    2009-01-01

    In recent years greater attention has been paid to the presence of pollutants in wastewater treatment plants, mainly because of strict environmental regulations and the possibility of reusing treated water in industrial processes. Since some organic pollutant compounds are not sufficiently removed in conventional activated sludge treatment (CAST) plants, new treatment processes have been developed, such as membrane bioreactors (MBRs). In this study a submerged membrane bioreactor (MBR) was used to treat mixed industrial wastewaters in parallel with a CAST plant. Two hydraulic retention times (HRT) of wastewater were tested as one of the operational conditions of MBR and the quality of effluents of the two processes were studied and compared. Several general quality parameters were analysed in wastewaters: chemical oxygen demand (COD), pH, conductivity, nitrogen, phosphate, suspended solids (SS) and turbidity. The two systems reduced COD by around 90%. SS was reduced by around 81% in the CAST plant and around 90% in the MBR plant. The results for the other general parameters were similar or better in the MBR process, which worked at a lower HRT. We also studied the removal of a group of six phthalates and bis(2-ethylhexyl)adipate ester by SPME/GC-MS in the two treatment plants. Most of these compounds were not completely removed in the two treatment plants and were identified at low microg l(-1) levels. We also tentatively identify some organic compounds in the wastewaters. Most of the compounds we found in the influent, MBR effluent and CAST effluent were benzene derivates, styrene, naphthalene and naphthalene derivates, and phenol derivates.

  15. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters

    Science.gov (United States)

    Francy, Donna S.; Erin, A. Stelzer; Bushon, Rebecca N.; Brady, Amie M.G.; Williston, Ashley G.; Riddell, Kimberly R.; Borchardt, Mark A.; Spencer, Susan K.; Gellner, Terry M.

    2012-01-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  16. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    Science.gov (United States)

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. New urban wastewater treatment with autotrophic membrane bioreactor at low chemical oxygen demand/N substrate ratio.

    Science.gov (United States)

    Yang, Y; Lesage, G; Barret, M; Bernet, N; Grasmick, A; Hamelin, J; Heran, M

    2014-01-01

    The potential for total nitrogen removal from municipal wastewater has been evaluated in an autotrophic membrane bioreactor running with a low chemical oxygen demand (COD)/N ratio to simulate its combination with an upstream physicochemical process that retains a large proportion of organic matter. The tests were conducted in a laboratory scale submerged membrane bioreactor loaded with a synthetic influent. Nitrogen loading rate was 0.16 kgN-NH4+.m(-3).d(-1) and sodium acetate was added as a carbon source. Results have shown that nitrogen elimination can reach 85% for a COD/N ratio of 5, with COD removal exceeding 97%. However, a COD/N ratio of 3.5 was found to be the limiting factor for successfully reaching the overall target value of 10 mgN.L(-1) in the effluent. Nevertheless, low COD/N ratios make it possible to work with low total suspended solid concentrations in the bioreactor, which greatly facilitates membrane fouling control by a simple aeration and backwashing strategy.

  18. Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR).

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-01-01

    In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.

  19. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery.

    Science.gov (United States)

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-15

    Extensive research in recent years has explored numerous new features in the forward osmosis membrane bioreactor (FOMBR) process. However, there is an aspect, which is revolutionary but not yet been investigated. In FOMBR, FO membrane shows high rejection for a wide range of soluble contaminants. As a result, hydraulic retention time (HRT) does not correctly reflect the nominal retention of these dissolved contaminants in the bioreactor. This decoupling of contaminants retention time (CRT, i.e. the nominal retention of the dissolved contaminants) from HRT endows FOMBR a potential in significantly reducing the HRT for wastewater treatment. In this work, we report our results in this unexplored treatment potential. Using real municipal wastewater as feed, both a hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) and a newly developed hybrid biofilm-forward osmosis membrane bioreactor (BF-FOMBR) achieved high removal of organic matter and nitrogen under HRT of down to 2.0 h, with significantly enhanced phosphorus recovery capacities. In the BF-FOMBR, the used of fixed bed biofilm not only obviated the need of additional solid/liquid separation (e.g. MF) to extract the side-stream for salt accumulation control and phosphorus recovery, but effectively quarantined the biomass from the FO membrane. The absence of MF in the side-stream further allowed suspended growth to be continuously removed from the system, which produced a selection pressure for the predominance of attached growth. As a result, a significant reduction in FO membrane fouling (by 24.7-54.5%) was achieved in the BF-FOMBR due to substantially reduced bacteria deposition and colonization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Post-Treatment of Secondary Wastewater Treatment Plant Effluent Using A Two-Stage Fluidized Bed Bioreactor System

    Directory of Open Access Journals (Sweden)

    Golam Hossein Safari

    2013-06-01

    Full Text Available The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran. The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity filled with PVC as the fluidized bed (first stage and gravel for the filtration purpose (second stage. Aluminum sulfate (30 mg/L and chlorine (1 mg/L were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5, chemical oxygen demand (COD, turbidity, total phosphorous, total coliform and fecal coliform were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5–10 m/h, about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination.

  1. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment.

    Science.gov (United States)

    Liu, Yali; Kang, Xiaorong; Li, Xin; Yuan, Yixing

    2015-08-01

    Lab-scale experiment was conducted to investigate the formation and characteristics of aerobic granular sludge for biological nutrient removal of slaughterhouse wastewater. Experimental results showed that removal performances of chemical oxygen demand (COD), ammonia and phosphate were enhanced with sludge granulation, and their removal efficiencies reached 95.1%, 99.3% and 83.5%, respectively. The aerobic granular sludge was matured after 90days cultivation, and protein-like substances were the main components. Simultaneously, the mass ratio of proteins and polysaccharides (PN/PS) was enhanced to 2.5 from 1.7. The granules with particle sizes of 0.6-1.2 and 1.2-1.8mm, accounting for 69.6%, were benefit for the growth of ammonia oxidizing bacteria (AOB) and nitrate oxidizing bacteria (NOB), and corresponding specific oxygen demand rates (SOUR) of AOB and NOB were 31.4 and 23.3mgO2/gMLSSh, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. INFLUENCE OF THE APPLIED ORGANIC LOAD (OLR ON TEXTILE WASTEWATER TREATMENT USING SUBMERGED ANAEROBIC MEMBRANE BIOREACTORS (SAMBR IN THE PRESENCE OF REDOX MEDIATOR AND POWDERED ACTIVATED CARBON (PAC

    Directory of Open Access Journals (Sweden)

    B. E. L. Baêta

    Full Text Available Abstract This paper evaluated the treatment of textile wastewater in submerged anaerobic membrane bioreactors (SAMBR operated on a bench scale. Particularly, the influence of operational conditions, such as the applied organic rate (OLR and the dilution factor (for toxicity attenuation of the textile wastewater, was evaluated on color and organic matter removal. In addition, the effect of powdered activated carbon (PAC on SAMBR-1 and the addition of yeast extract (source of the redox mediator riboflavin were also investigated. The results showed that reducing the textile wastewater dilution factor from 10× (phase 1 to 4× (phase 2 and 0× (no dilution decreased the COD and color removal efficiencies in both SAMBRs, probably due to an increase in the toxic load. Nevertheless, PAC adsorbed toxic compounds found in the textile wastewater and helped biomass acclimatization, which led to higher COD and color removal efficiencies in SAMBR-1. The presence of yeast extract enhanced color removal efficiencies 3-fold in both SAMBRs when they were fed with undiluted textile wastewater.

  3. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  4. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: membrane permeability and fouling control.

    Science.gov (United States)

    Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin

    2015-05-01

    In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald

    2015-12-01

    Membrane bioreactors (MBRs) offer promising solution for wastewater treatment and reuse to address the problem of water scarcity. Nevertheless, this technology is still facing challenges associated with membrane biofouling. This phenomenon has been mainly investigated in lab-scale MBRs with little or no insight on biofouling in full-scale MBR plants. Furthermore, the temporal dynamics of biofouling microbial communities and their extracellular polymeric substances (EPS) are less studied. Herein, a multidisciplinary approach was adopted to address the above knowledge gaps in lab- and full-scale MBRs. In the full-scale MBR study, 16S rRNA gene pyrosequencing with multivariate statistical analysis revealed that the early and mature biofilm communities from five full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared between the five MBR plants sampled despite differences in their operating conditions. In the lab-scale MBR studies, temporal dynamics of microbial communities and their EPS products were monitored on different hydrophobic and hydrophilic membranes during 30 days. At the early stages of filtration (1 d), the same early colonizers belonging to the class Betaproteobacteria were identified on all the membranes. However, their relative abundance decreased on day 20 and 30, and sequence reads belonging to the phylum Firmicutes and Chlorobi became dominant on all the membranes on day 20 and 30. In addition, the intrinsic membrane characteristic did not select any specific EPS fractions at the initial stages of filtration and the same EPS foulants developed with time on the hydrophobic and hydrophilic membranes. Our results indicated that the membrane surface characteristics did not select for specific biofouling communities or EPS foulants, and the same early

  6. Application of a membrane bioreactor for treating explosives process wastewater.

    Science.gov (United States)

    Zoh, Kyung-Duk; Stenstrom, Michael K

    2002-02-01

    A bench-scale anoxic membrane bioreactor (MBR) system, consisting of a bioreactor coupled to a ceramic cross-flow ultrafiltration module, was evaluated to treat a synthetic wastewater containing alkaline hydrolysis byproducts (hydrolysates) of RDX. The wastewater was formulated the same as hydrolysis wastewater and consisted of acetate, formate and formaldehyde as carbon sources and nitrite and nitrate electron acceptors. The MBR system removed 80-90% of the carbon sources, and approximately 90% of the stoichiometric amount of nitrate, 60% of nitrite. The reactor was also operated over a range of transmembrane pressure, temperature, suspended solids concentration, and organic loading rate to maximize treatment efficiency and permeate flux. Increasing the transmembrane pressure and temperature did not improve flux significantly. Increasing mixed liquor volatile suspended solids (MLVSS) concentration in the bioreactor decreased the permeate flux significantly. The maximum volumetric organic loading rate was 0.72 kg COD/m3/day. The maximum food-to-mass ratio was 0.50 kg N/kg MLVSS/day and 1.82 kg COD/kg MLVSS/day. Membrane permeate was clear and essentially free of bacteria, as indicated by heterotrophic plate count. Permeate flux ranged between 0.15 and 2.0 m3/m2 day and was maintained by routine backwashing every three days. Backwashing with tap water containing chlorine bleach every fourth or fifth backwashing was able to restore membrane flux to its original value.

  7. Influence of air scouring on the performance of a Self Forming Dynamic Membrane BioReactor (SFD MBR) for municipal wastewater treatment.

    Science.gov (United States)

    Salerno, Carlo; Vergine, Pompilio; Berardi, Giovanni; Pollice, Alfieri

    2017-01-01

    The Membrane BioReactor (MBR) is a well-established filtration-based technology for wastewater treatment. Despite the high quality of the effluent produced, one of the main drawbacks of the MBR is membrane fouling. In this context, a possible evolution towards systems having potentially lower installation and operating costs is the Self Forming Dynamic Membrane BioReactor (SFD MBR). Key of this technology is the self-formation of a biological filtering layer on a support of inert material. In this work, a lab-scale aerobic SFD MBR equipped with a nylon mesh was operated at approximately 95Lm(-2)h(-1). Two mesh pore sizes (20 and 50μm) and three air scouring flow rates (150, 250, and 500mLairmin(-1)) were tested at steady state. Under all the tested conditions, the SFD MBR effectively treated real municipal wastewater. The quality of the produced effluent increased for lower mesh size and lower air scouring intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bioaugmentation of a continuous-flow self-forming dynamic membrane bioreactor for the treatment of wastewater containing high-strength pyridine.

    Science.gov (United States)

    Hou, Cheng; Shen, Jinyou; Zhang, Dejin; Han, Yi; Ma, Dehua; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong

    2017-02-01

    For the treatment of high-strength pyridine containing wastewater, a bioaugmented continuous-flow self-forming dynamic membrane bioreactor (CSFDMBR), which was consisted of a continuous flow airlift reactor (CFAR) and a dynamic membrane bioreactor (DMBR), was developed in this study. The results indicated that through the bioaugmentation by Rhizobium sp. NJUST18, CSFDMBR could be successfully started, which was confirmed by complete removal of pyridine, efficient nitrification, and significant increase of biomass. Pyridine could be effectively degraded in the CSFDMBR even at influent pyridine loading rate as high as 9.0 kg m-3 day-1, probably due to the efficient biomass retention in the CSFDMBR, which could be attributed to the formation of aerobic granules and the key role of dynamic membrane. CSFDMBR presented good polishing performance in treating pyridine wastewater, with effluent total organic carbon (TOC) and turbidity as low as 22.5 ± 6.8 mg L-1 and 3.8 ± 0.5 NTU, respectively. Membrane fouling could be effectively controlled, as indicated by backwash period as long as 60 days. The observed efficient performance highlights the potential for the full-scale application of the bioaugmented CSFDMBR, particularly for highly recalcitrant pollutant removal.

  9. Wastewater Treatment

    Science.gov (United States)

    ... and arsenic can have acute and chronic toxic effects on species. other substances such as some pharmaceutical and personal care products, primarily entering the environment in wastewater effluents, may also pose threats to human health, aquatic life and wildlife. Wastewater treatment The major ...

  10. Efficient methanogenic degradation of alcohol ethoxylates and microbial community acclimation in treatment of municipal wastewater using a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Nie, Yulun; Niu, Qigui; Kato, Hiroyuki; Sugo, Toshiki; Tian, Xike; Li, Yu-You

    2017-02-01

    The effect of alcohol ethoxylates on the treatment of municipal wastewater by a submerged anaerobic membrane bioreactor was investigated by a 400days operation including the treatment efficiency, methanogenic activity of sludge and microbial community structure. The results indicated that alcohol ethoxylates (5.0-200mg/L) was efficiently degraded and converted into methane due to the similar COD removal 95.5-98.8% and rising biogas production rate (2.30-4.25L/d) compared with control (96.8% and 2.55L/d). The microbes in sludge could copy with the presence of alcohol ethoxylates in wastewater by releasing more SMP and EPS, which caused a higher membrane fouling rate. Moreover, via long term acclimation, the specific methanogenic activity of sludge was greatly enhanced due to the changes of microbial community structure. Hence, the sludge self-acclimation to alcohol ethoxylates was responsible to the efficient methane recovery in treatment of municipal wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng

    2015-12-01

    Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications. Copyright © 2015. Published by Elsevier Ltd.

  12. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  13. Novel application of high-density polyethylene mesh as self-forming dynamic membrane integrated into a bioreactor for wastewater treatment.

    Science.gov (United States)

    Sreeda, P; Sathya, A B; Sivasubramanian, V

    2018-01-01

    In the present study, self-forming dynamic membrane (SFDM) on rigid high-density polyethylene (HDPE) mesh with a large pore size of 2 mm is reported for the first time. The system was investigated for utilisation in simulated wastewater treatment by integrating the mesh with an aerobic bioreactor. The SFDM was analysed using Fourier transform infra-red (FT-IR) spectroscopy and visualised by scanning electron microscopy (SEM). The effect of the operating parameter on the change in composition of SFDM was also investigated. The system was used as a single unit for treatment of wastewater and showed stability over long-term treatment. The system could achieve a chemical oxygen demand (COD) reduction of 82.16 ± 6.47% at an influent COD concentration of 613.93 ± 72.13 mg/l and ammonia removal efficiency of 97.21 ± 0.62% at an influent ammonia concentration of 55.54 ± 2.23 mg/l. The reactor generated high-quality effluent and the turbidity recorded was less than 2NTU. In addition, the operational parameters, namely hydraulic retention time and organic loading rate, were optimised.

  14. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    Science.gov (United States)

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Integrated Microbial Electrolysis Cell (MEC) with an anaerobic Membrane Bioreactor (MBR) for low strength wastewater treatment, energy harvesting and water reclamation

    KAUST Repository

    Jimenez Sandoval, Rodrigo J.

    2013-11-01

    Shortage of potable water is a problem that affects many nations in the world and it will aggravate in a near future if pertinent actions are not carried out. Decrease in consumption, improvements in water distribution systems to avoid losses and more efficient water treatment processes are some actions that can be implemented to attack this problem. Membrane technology and biological processes are used in wastewater treatment to achieve high water quality standards. Some other technologies, besides water treatment, attempt to obtain energy from organic wastes present in water. In this study, a proof-of-concept was accomplished demonstrating that a Microbial Electrolysis Cell can be fully integrated with a Membrane Bioreactor to achieve wastewater treatment and harvest energy. Conductive hollow fiber membranes made of nickel functioned as both filter material for treated water reclamation and as a cathode to catalyze hydrogen production reaction. The produced hydrogen was subsequently converted into methane by hydrogenotrophic methanogens. Organic removal was 98.9% irrespective of operation mode. Maximum volumetric hydrogen production rate was 0.2 m3/m3d, while maximum current density achieved was 6.1 A/m2 (based on cathode surface area). Biofouling, an unavoidable phenomenon in traditional MBRs, can be minimized in this system through self-cleaning approach of hybrid membranes by hydrogen production. The increased rate of hydrogen evolution at high applied voltage (0.9 V) reduces the membrane fouling. Improvements can be done in the system to make it as a promising net energy positive technology for the low strength wastewater treatment.

  16. Assessing membrane biofouling and its gel layer of anoxic/oxic membrane bioreactor for megacity municipal wastewater treatment during plum rain season in Yangtze River Delta, China.

    Science.gov (United States)

    Zhou, Lijie; Ye, Biao; Xia, Siqing

    2017-12-15

    This study assessed membrane biofouling and its gel layer of anoxic/oxic membrane bioreactor (A/O-MBR) for megacity municipal wastewater treatment during plum rain season, which was continuous rainy weather, in Yangtze River Delta, China. A laboratory-scale A/O-MBR was operated to treat the municipal wastewater from Quyang wastewater treatment plant, which located at the typical megacity of Shanghai in Yangtze River Delta, from April to July accompanying with plum rain season. As reactor performance showed, CODCr, NH4+-N, TN, TP of the influent gradually decreased during plum rain season, and inhibited pollutant removal due to organic carbon shortage. However, dissolve inorganic carbon and inorganic components in mixed liquid had an obvious increase under rainy weather. Membrane filtration results indicated that plum rain season enhanced pore blocking behavior, further leading to the serious membrane biofouling but inhibiting gel layer formation. Additionally, gel layer analysis predicted that plum rain season led to plenty of inorganic components and precipitate flew into A/O-MBR reactor. Inorganic components with elements of Ca, Mg Ba, Fe, Al and Si seriously blocked membrane pores. Those components also accumulated into gel layer in the form of SiO2, CaCO3, CaSiO3, MgNH4PO4, BaCO3, AlPO4, etc. Consequently, plum rain season enhanced pore blocking behavior and led to severe membrane biofouling but with the inhibition of gel layer formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater

    OpenAIRE

    Hossain, Kaizar; Quaik, Shlrene; Ismail, Norli; Rafatullah, Mohd.; Avasan, Maruthi; Shaik, Rameeja

    2016-01-01

    Background Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology. Objectives In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater. Materials and Methods The decolorization capacity of white-rot fungus coriolus versic...

  18. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors.

    Science.gov (United States)

    Tao, Wenda; Zhang, Xu-Xiang; Zhao, Fuzheng; Huang, Kailong; Ma, Haijun; Wang, Zhu; Ye, Lin; Ren, Hongqiang

    2016-01-01

    To understand the diversity and abundance of antibiotic resistance genes (ARGs) in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs) were investigated and compared with sludge samples from three sewage treatment plants (STPs) using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm). Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes) was higher than that in STP aerobic sludge (118 subtypes). In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO) could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs) were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.

  19. High Levels of Antibiotic Resistance Genes and Their Correlations with Bacterial Community and Mobile Genetic Elements in Pharmaceutical Wastewater Treatment Bioreactors.

    Directory of Open Access Journals (Sweden)

    Wenda Tao

    Full Text Available To understand the diversity and abundance of antibiotic resistance genes (ARGs in pharmaceutical wastewater treatment bioreactors, the ARGs in sludge from two full-scale pharmaceutical wastewater treatment plants (PWWTPs were investigated and compared with sludge samples from three sewage treatment plants (STPs using metagenomic approach. The results showed that the ARG abundances in PWWTP sludge ranged from 54.7 to 585.0 ppm, which were higher than those in STP sludge (27.2 to 86.4 ppm. Moreover, the diversity of ARGs in PWWTP aerobic sludge (153 subtypes was higher than that in STP aerobic sludge (118 subtypes. In addition, it was found that the profiles of ARGs in PWWTP aerobic sludge were similar to those in STP aerobic sludge but different from those in PWWTP anaerobic sludge, suggesting that dissolve oxygen (DO could be one of the important factors affecting the profiles of ARGs. In PWWTP aerobic sludge, aminoglycoside, sulfonamide and multidrug resistance genes were frequently detected. While, tetracycline, macrolide-lincosamide-streptogramin and polypeptide resistance genes were abundantly present in PWWTP anaerobic sludge. Furthermore, we investigated the microbial community and the correlation between microbial community and ARGs in PWWTP sludge. And, significant correlations between ARG types and seven bacterial genera were found. In addition, the mobile genetic elements (MGEs were also examined and correlations between the ARGs and MGEs in PWWTP sludge were observed. Collectively, our results suggested that the microbial community and MGEs, which could be affected by DO, might be the main factors shaping the profiles of ARGs in PWWTP sludge.

  20. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  1. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ray, Saikat Sinha; Ngo, Huu Hao; Guo, Wenshan; Lin, Po-Hsun

    2016-03-15

    For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation.

    Science.gov (United States)

    Tian, Yu; Li, Hui; Li, Lipin; Su, Xinying; Lu, Yaobin; Zuo, Wei; Zhang, Jun

    2015-02-15

    A hollow-fiber membrane bioreactor was integrated with a microbial fuel cell to develop a novel system of MFC-MBR based on the utilization of electricity recovered by the MFC for wastewater treatment improvement and membrane fouling mitigation in the MBR. In this system, a maximum power density of 2.18 W/m(3) and an average voltage output of 0.15 V were achieved at an external resistance of 50 Ω. The removal efficiencies of COD, ammonia nitrogen ( [Formula: see text] ) and total nitrogen (TN) in the MFC-MBR were improved by 4.4%, 1.2% and 10.3%, respectively. It is worth noting that, in addition to reducing the deposition of sludge on the membrane surface by the electric field force, the MFC-MBR also alleviated the membrane fouling by sludge modification. Compared with the control MBR (C-MBR), less loosely bound extracellular polymeric substances (LB-EPS), lower SMPp/SMPc ratio, more homogenized sludge flocs and less filamentous bacteria were obtained in the MFC-MBR, which improved the dewaterability and filterability of the sludge. The cake layer on the membrane formed by the modified sludge was more porous with lower compressibility, significantly enhancing the membrane filterability. A proof of concept of an MFC-MBR was provided and shown to be effective in membrane fouling mitigation with efficient wastewater treatment and energy recovery, demonstrating the feasibility of the minute electricity generated by the MFC for membrane fouling alleviation in the MBR. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling.

    Science.gov (United States)

    Su, Xinying; Tian, Yu; Sun, Zhicai; Lu, Yaobin; Li, Zhipeng

    2013-11-15

    A novel combined system of sludge microbial fuel cell (S-MFC) stack and membrane bioreactor (MBR) was proposed in this study. The non-consumed sludge in the MBR sludge-fed S-MFC was recycled to the MBR. In the combined system, the COD and ammonia treatment efficiencies were more than 90% and the sludge reduction was 5.1% higher than that of the conventional MBR. It's worth noting that the energy recovery and fouling mitigation were observed in the combined system. In the single S-MFC, about 75 mg L(-1) COD could be translated to electricity during one cycle. The average voltage and maximum power production of the single S-MFC were 430 mV and 51 mWm(-2), respectively. Additionally, the combined system was able to mitigate membrane fouling by the sludge modification. Except for the content decrease (22%), S-MFC destroyed simple aromatic proteins and tryptophan protein-like substances in loosely bound extracellular polymeric substances (LB-EPS). These results indicated that effective wastewater treatment, sludge reduction, energy recovery and membrane fouling mitigation could be obtained in the combined system. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors Used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Bérube, P.R.

    2011-01-01

    Two types of submerged membrane bioreactors (MBR): Hollow Fiber (HF) and Hollow Sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...

  5. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  6. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    DEFF Research Database (Denmark)

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (

  7. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  8. Nitrogen and Phosphorus Removal from Wastewater Treatment Plant Effluent via Bacterial Sulfate Reduction in an Anoxic Bioreactor Packed with Wood and Iron

    Directory of Open Access Journals (Sweden)

    Takahiro Yamashita

    2014-09-01

    Full Text Available We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors.

  9. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shuai [Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Yang Fenglin, E-mail: yangshuai1125@163.com [Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Fu Zhimin; Wang Tao [Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Lei Ruibo [State Key Laboratory of Coastal and Offshore Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-03-15

    Biological nutrient removal (BNR) was investigated in a sequencing batch membrane bioreactor which used carriers instead of activated sludge named a sequencing batch moving bed membrane bioreactor (SBMBMBR). The SBMBMBR performed well on carbon and nitrogen removal at different COD/TN ratios. COD, TN and ammonium nitrogen removal efficiencies averaged at 93.5%, 82.6% and 95.6%, respectively. The TP removal was closely correlated with the length of anaerobic phase and aerobic phase. When anaerobic time and aerobic time were both 2 h, the average TP removal efficiency reached to 84.1% at influent TP concentration of 12.4 mg/L. DO in aerobic phase was an important factor affecting nutrient removal, and the optimal DO was about 3 mg/L. There was a small amount of denitrifying phosphorus accumulating organisms (DPAOs) in SBMBMBR which resulted from the anoxic microenvironment existed in the inner of the biofilm. Fluorescence in situ hybridization (FISH) results of microbes showed the composition and spatial structure of the microbial community in the reactor. Furthermore, sequencing batch mode operation was propitious to retard membrane fouling.

  10. Energy consumption in terms of shear stress for two types of membrane bioreactors used for municipal wastewater treatment processes

    Science.gov (United States)

    Ratkovich, Nicolas; Bentzen, Thomas R.; Rasmussen, Michael R.

    2012-10-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.

  11. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Rasmussen, Michael R.

    2012-01-01

    of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error...... of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved...... to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor....

  12. Application of an aerobic fixed bed bioreactor for treatment of petroleum refinery wastewaters; Aplicacao de um bio-reator aerobio de leito fixo para tratamento de efluentes do refino de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Vendramel, Simone M.; Dezzotti, Marcia; Sant' Anna Junior, Geraldo L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica

    2004-07-01

    The motivation of this work was to investigate a biological treatment system, which requires low installation area and presents high flexibility. Thus, a laboratory scale aerated submerged fixed-film bioreactor was applied to the treatment of a petroleum refinery wastewater and its performance was monitored. The reactor was continuously operated during 260 days and submitted to different organic loadings in the range of 0.5 to 2.4 kgCOD.m{sup -3}.d{sup -1}. The following removal efficiencies were attained: COD (75 - 91%), TSS and TVS (60 - 92%) and DOC (56 - 91%) and turbidity (71 - 95%). The reactor presented a high level of mixing and showed to be stable when submitted to different hydraulic and organic loadings. Loss of biofilm was negligible and medium clogging problems were not observed. The support medium (PVC plates) showed to be very adequate for microbial adhesion and growth, resulting in stable bioreactor operation. (author)

  13. Hydrodynamic study to the bioreactor at the Granollers wastewater plant; Estudio hidrodinamico del reactor biologia de la EDAR Granollers

    Energy Technology Data Exchange (ETDEWEB)

    Olivet Santana, D.; Valls Puig, J.; Gordillo Bolasell, M. A.; Sanchez Ferrer, A.; Freixo Rey, A.

    2002-07-01

    One of the most important parameters affecting the operation of bioreactors used in the wastewater treatment is their hydrodynamic behaviour. Usually, bioreactors are designed according to ideal flow models, concretely stirred tank and plug flow models. However, actual bioreactors show a different behaviour from that predicted from ideal modelling. This fact is due to the presence of multiphase systems (e. g. biomass, liquid phase, air, etc.) and the yield obtained can significantly differ from theoretical design values. In the present work, residence-time distribution (RTD) is used to study a plug-flow bioreactor, which is currently working at the plant placed in Granollers (Barcelona). (Author) 5 refs.

  14. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. © 2010 Elsevier Ltd.

  15. Membrane bioreactor for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.

    1997-01-01

    Summary

    This thesis describes the design and testing of a membrane bioreactor (MBR) for removal of organic pollutants from air. In such a bioreactor for biological gas treatment pollutants are degraded by micro-organisms. The membrane bioreactor is an alternative to other types of

  16. Nitrification performance in a membrane bioreactor treating industrial wastewater.

    Science.gov (United States)

    Dvořák, Lukáš; Svojitka, Jan; Wanner, Jiří; Wintgens, Thomas

    2013-09-01

    The influence of industrial (pharmaceutical and chemical) wastewater composition on membrane bioreactor (MBR) performance was investigated in a pilot-scale installation. The study focussed on nitrification performance, which was evaluated based on influent and effluent parameters as well as batch nitrification rate tests. The industrial wastewater was pumped into the MBR in a mixture with municipal wastewater at constant flow rate. The loading of the MBR with industrial wastewater was increased stepwise from 0 to 75% share in the mixed influent to study the adaptation of nitrifying bacteria. Stable nitrification performance was observed until the content of industrial wastewater in the influent reached 40%, with effluent values of around 0.56 mg L(-1) NH4-N and 98.3% ammonia removal. Breakdown of nitratation was observed at a 40% industrial wastewater dose and breakdown of nitritation at a 50% dose, respectively. However, after several months of adaptation, both processes recovered. No nitrification was observed when the industrial wastewater share exceeded 50%. Adaptation of nitrifying bacteria in the MBR was also confirmed by results of kinetic tests. The inhibition effect of the concentrated industrial wastewater to the MBR sludge decreased substantially after several months of exposure, while the inhibition of referential activated sludge remained constant. Copyright © 2013. Published by Elsevier Ltd.

  17. Life Cycle Assessment and Cost Analysis of Water and Wastewater Treatment Options for Sustainability: Influence of Scale on Membrane Bioreactor Systems

    Science.gov (United States)

    changes in drinking and wastewater infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated wastewa...

  18. Starch Wastewater Treatment in a Three Phase Fluidized Bed ...

    African Journals Online (AJOL)

    MICHAEL

    www.bioline.org.br/ja. Starch Wastewater Treatment in a Three Phase Fluidized Bed Bioreactor with Low. Density Biomass Support. *RAJASIMMAN, M; KARTHIKEYAN, C. Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University. Annamalai Nagar - 608002, Tamil nadu, India.

  19. Fate of organic pollutants in a pilot-scale membrane bioreactor-nanofiltration membrane system at high water yield in antibiotic wastewater treatment.

    Science.gov (United States)

    Wang, Jianxing; Wei, Yuansong; Li, Kun; Cheng, Yutao; Li, Mingyue; Xu, Jianguo

    2014-01-01

    A double membrane system combining a membrane bioreactor (MBR) with a nanofiltration (NF) membrane at the pilot scale was tested to treat real antibiotic wastewater at a pharmaceutical company in Wuxi (China). The water yield of the pilot system reached over 92 ± 5.6% through recycling the NF concentrate to the MBR tank. Results showed that the pilot scale system operated in good conditions throughout the entire experiment period and obtained excellent water quality in which the concentrations of chemical oxygen demand and total organic carbon were stable at 35 and 5.7 mg/L, respectively. The antibiotic removal rates of both spiramycin (SPM) and new spiramycin in wastewater were over 95%. Organics analysis results showed that the main organics in the biological effluent were proteins, soluble microbial by-product-like, fulvic acid-like and humic-like substances. These organics could be perfectly rejected by the NF membrane. Most of the organics could be removed through recycling NF concentrate to the MBR tank and only a small part was discharged with NF concentrate and permeate.

  20. Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater.

    Science.gov (United States)

    Hossain, Kaizar; Quaik, Shlrene; Ismail, Norli; Rafatullah, Mohd; Avasan, Maruthi; Shaik, Rameeja

    2016-09-01

    Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology. In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater. The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d-1 (HRT=15hrs) for a month. Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively. The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution.

  1. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  2. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment.

    Science.gov (United States)

    Wang, Jie; Bi, Fanghua; Ngo, Huu-Hao; Guo, Wenshan; Jia, Hui; Zhang, Hongwei; Zhang, Xinbo

    2016-01-01

    A low-cost hybrid system integrating a membrane-less microbial fuel cell (MFC) with an anoxic/oxic membrane bioreactor (MBR) was studied for fouling mitigation. The appended electric field in the MBR was supplied by the MFC with continuous flow. Supernatant from an anaerobic reactor with low dissolved oxygen was used as feed to the MFC in order to enhance its performance compared with that fed with synthetic wastewater. The voltage output of MFC maintained at 0.52±0.02V with 1000Ω resister. The electric field intensity could reach to 0.114Vcm(-1). Compared with the conventional MBR (CMBR), the contents rather than the components of foulants on the cake layer of fouled MFC-MBR system was significantly reduced. Although only 0.5% of the feed COD was translated into electricity and applied to MBR, the hybrid system showed great feasibility without additional consumption but extracting energy from waste water and significantly enhancing the membrane filterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions.

    Science.gov (United States)

    Gouveia, J; Plaza, F; Garralon, G; Fdz-Polanco, F; Peña, M

    2015-06-01

    The performance of a pilot scale anaerobic membrane bioreactor (AnMBR), comprising an upflow anaerobic sludge blanket (UASB) reactor coupled to an external ultrafiltration membrane treating municipal wastewater at 18±2°C, was evaluated over three years of stable operation. The reactor was inoculated with a mesophilic inoculum without acclimation. The AnMBR supported a tCOD removal efficiency of 87±1% at hydraulic retention time (HRT) of 7h, operating at a volumetric loading rate (VLR) of between 2 and 2.5kgtCOD/m(3)d, reaching effluent tCOD concentrations of 100-120mg/L and BOD5 concentrations of 35-50mgO2/L. Specific methane yield varied from 0.18 to 0.23Nm(3)CH4/kgCODremoved depending on the recirculation between the membrane module and the UASB reactor. The permeate flow rate, using cycles of 15s backwash, 7.5min filtration, and continuous biogas sparging (40-60m/h), ranged from 10 to 14Lm(2)/h with trans-membrane pressure (TMP) values of 400-550mbar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Recent progress in treatment of aquaculture wastewater based on microalgae--a review].

    Science.gov (United States)

    Meng, Fanping; Gong, Yanyan; Ma, Dongdong

    2009-06-01

    Microalgae enables aquaculture wastewater recycling through a biological conversion. Recently, many studies have been reported on microalgae cultivation and wastewater treatment, including developing various wastewater treatment technologies such as algae pond, activated algae, immobilized algae and algae photo-bioreactor. In this review, we address the mechanisms, progress and application in the purification of aquaculture wastewater, as well as some research perspectives.

  5. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena

    2016-01-01

    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... understanding of organic and biofouling in AnMBR. An AnMBR consisting of external PVDF membrane was operated at 25°C and fed with synthetic dairy wastewater. Intensity, morphology and composition of foulants were determined using Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectrometry...

  6. NASA Bioreactors Advance Disease Treatments

    Science.gov (United States)

    2009-01-01

    the body. Experiments conducted by Johnson scientist Dr. Thomas Goodwin proved that the NASA bioreactor could successfully cultivate cells using simulated microgravity, resulting in three-dimensional tissues that more closely approximate those in the body. Further experiments conducted on space shuttle missions and by Wolf as an astronaut on the Mir space station demonstrated that the bioreactor s effects were even further expanded in space, resulting in remarkable levels of tissue formation. While the bioreactor may one day culture red blood cells for injured astronauts or single-celled organisms like algae as food or oxygen producers for a Mars colony, the technology s cell growth capability offers significant opportunities for terrestrial medical research right now. A small Texas company is taking advantage of the NASA technology to advance promising treatment applications for diseases both common and obscure.

  7. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur.

    Science.gov (United States)

    Moon, Jinyoung; Hwang, Yongwoo; Kim, Junbeum; Kwak, Inho

    Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3(-). Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3(-) and HCO3(-), and actual plating wastewater, which was collected from the effluent water of a plating company called 'H Metals'. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 0.9 kg NO3(-)-N/m(3)·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 1.11 kg NO3(-)-N/m(3)·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO4(2-) production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio.

  8. Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater

    Science.gov (United States)

    Hossain, Kaizar; Quaik, Shlrene; Ismail, Norli; Rafatullah, Mohd; Avasan, Maruthi; Shaik, Rameeja

    2016-01-01

    Background Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology. Objectives In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater. Materials and Methods The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d-1 (HRT=15hrs) for a month. Results Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively. Conclusions The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution. PMID:28959331

  9. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    Science.gov (United States)

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  10. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  11. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  12. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    Science.gov (United States)

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  14. Frontiers International Conference on Wastewater Treatment

    CERN Document Server

    2017-01-01

    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  15. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  16. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...... treatment, even by utilizing waste heat from the waste incinerators. For the seweraged parts of the towns it might be most beneficial to maintain the flush toilet solutions, while introducing a treatment step prior to discharging to the recipient, such as simple mechanical treatment which might even...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...

  17. Microalgae and wastewater treatment

    OpenAIRE

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged i...

  18. Evaluation of Different Wastewater Treatment Processes and Development of a Modified Attached Growth Bioreactor as a Decentralized Approach for Small Communities

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    2013-01-01

    Full Text Available This study was undertaken to evaluate the potential future use of three biological processes in order to designate the most desired solution for on-site treatment of wastewater from residential complexes, that is, conventional activated sludge process (CASP, moving-bed biofilm reactor (MBBR, and packed-bed biofilm reactor (PBBR. Hydraulic retention time (HRT of 6, 3, and 2 h can be achieved in CASP, MBBR, and PBBR, respectively. The PBBR dealt with a particular arrangement to prevent the restriction of oxygen transfer efficiency into the thick biofilms. The laboratory scale result revealed that the overall reduction of 87% COD, 92% BOD5, 82% TSS, 79% NH3-N, 43% PO4-P, 95% MPN, and 97% TVC at a HRT of 2 h was achieved in PBBR. The microflora present in the system was also estimated through the isolation, identification, and immobilization of the microorganisms with an index of COD elimination. The number of bacterial species examined on the nutrient agar medium was 22 and five bacterial species were documented to degrade the organic pollutants by reducing COD by more than 43%. This study illustrated that the present PBBR with a specific modified internal arrangement could be an ideal practice for promoting sustainable decentralization and therefore providing a low wastage sludge biomass concentration.

  19. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2008-01-01

    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand......, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination...

  20. Effect of membrane bioreactor solids retention time on reverse osmosis membrane fouling for wastewater reuse.

    Science.gov (United States)

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-02-01

    The effect of the solids retention time (SRT) in a membrane bioreactor (MBR) on the fouling of the membranes in a subsequent reverse osmosis (RO) process used for wastewater reuse was studied experimentally using a pilot-scale treatment system. The MBR-RO pilot system was fed effluent from the primary clarifiers at a large municipal wastewater treatment plant. The SRT in the MBRs was adjusted to approximately 2, 10, and 20 days in three experiments. The normalized specific flux through the MBR and RO membranes was evaluated along with inorganic and organic constituents in the influent and effluent of each process. Increasing the SRT in the MBR led to an increase in the removal of bulk DOC, protein, and carbohydrates, as has been observed in previous studies. Increasing the SRT led to a decrease in the fouling of the MBR membranes, which is consistent with previous studies. However, the opposite trend was observed for fouling of the RO membranes; increasing the SRT of the MBR resulted in increased fouling of the RO membranes. These results indicate that the constituents that foul MBR membranes are not the same as those that foul RO membranes; to be an RO membrane foulant in a MBR-RO system, the constituents must first pass through the MBR membranes without being retained. Thus, an intermediate value of SRT may be best choice of operating conditions in an MBR when the MBR is followed by RO for wastewater reuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Biodegradation of phenolic wastewaters in a three-phase fluidized bed bioreactor with the KMT{reg_sign} biomass support

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, W.; Halfini, M.R. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1996-12-31

    A treatment of wastewater from a local refinery in a three-phase fluidised bed bioreactor with the KMT{sup R} biomass support was investigated. It was found that after adding mineral salts to the wastewater to be treated, a reduction in the COD values increased from about 55% to almost 90%. The reduction in COD was increasing with an increase in both a superficial air velocity and a ratio of bed volume to bioreactor volume (V{sub b}/V{sub r}). The highest value of (V{sub b}/V{sub r}) which could be applied in the experiments was 0.7, because at larger (V{sub b}/V{sub r}) movement of the whole bed was impossible. The bioreactor as operated was not successful in degrading thiocyanates, cyanides, nitrates and ammonia. However, results of independent experiments that have been started to adapt the symbiotic populations of microorganisms that may effectively degrade those compounds are promising. Stratification of the support media coated with the biomass led to their movement to the base of the bioreactor where concentration of organic compounds was highest. This was desirable since the compounds could penetrate far into the biofilm so most of the biomass grown on the support was active. 6 refs., 3 figs.

  2. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    In the first part of this article, we have learned about the need and importance of wastewater treatment and conven- tional methods of treatment. Currently the need is to develop low power consuming and yet effective techniques to handle complex wastes. As a result, new and advanced techniques are being studied and in ...

  3. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    Techniques of Wastewater Treatment. 1. Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni, Mugdha Deshpande and A B Pandit. Amol A Kulkarni is a PhD student from the Chemi- cal Engineering division in UDCT and is working on the characterization of non-linear dynamics in chemical reactors.

  4. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, Eltaief; Gannoun, Hana [Laboratory of Microbial Ecology and Technology, Department of Biological and Chemical Engineering, Institut National des Sciences Appliquees et de Technologie (INSAT), 2 Boulevard de la terre, B.P. 676, 1080 Tunis (Tunisia); Touhami, Youssef [Laboratory of Microbial Ecology and Technology, Department of Biological and Chemical Engineering, Institut National des Sciences Appliquees et de Technologie (INSAT), 2 Boulevard de la terre, B.P. 676, 1080 Tunis (Tunisia)], E-mail: youssef.touhami@insat.rnu.tn; Bouallagui, Hassib; Hamdi, Moktar [Laboratory of Microbial Ecology and Technology, Department of Biological and Chemical Engineering, Institut National des Sciences Appliquees et de Technologie (INSAT), 2 Boulevard de la terre, B.P. 676, 1080 Tunis (Tunisia)

    2008-04-01

    An aerobic bioprocess was applied to Indigo dye-containing textile wastewater treatment aiming at the colour elimination and biodegradation. A combined aerobic system using continuous stirred tank reactor (CSTR) and fixed film bioreactor (FFB) was continuously operated at constant temperature and fed with the textile wastewater (pH: 7.5 and total chemical oxygen demand (COD): 1185 mg l{sup -1}). The CSTR is a 1 l continuous flow stirred tank reactor with a 700 ml working volume, and operated with a variable wastewater loading rate (WLR) from 0.92 to 3.7 g l{sup -1} d{sup -1}. The FFB is a 1.5 l continuous flow with three compartments packed with a rippled cylindrical polyethylene support, operated with a variable WLR between 0.09 and 0.73 g l{sup -1} d{sup -1}. The combined two bioreactors were inoculated by an acclimated microbial consortium and continuously operated with four total WLR. This system presented high COD elimination and colour removal efficiencies of 97.5% and 97.3%, respectively, obtained with a total hydraulic retention time (HRT) of 4 days and total WLR of 0.29 g l{sup -1} d{sup -1}. The effects of WLR on absorption phenomena on the yield of conversion of substrate on biomass (R{sub TSS/COD}) and on the yield of conversion of substrate on active biomass (R{sub VVS/COD}) are discussed. The increase of WLR and the decrease of HRT diminished the performances of this system in terms of decolourization and COD removal explained by the sloughing of biofilm, and the washout phenomena.

  5. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2018-01-01

    The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...... emissions and potential health impacts due to spreading of pathogens. Anyway, the use of treatment for micro-pollutants is increasing and a paradigm shift is ongoing — wastewater is more and more considered as a resource of, e.g. energy, nutrients and even polymers, in the innovations going on. The focus...... of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact...

  6. Meta-omics approaches to understand and improve wastewater treatment systems

    NARCIS (Netherlands)

    Rodríguez, E.; García-Encina, P.A.; Stams, A.J.M.; Maphosa, F.; Sousa, D.Z.

    2015-01-01

    Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel

  7. Full-scale Applications of Membrane Filtration in Municipal Wastewater Treatment Plants

    Czech Academy of Sciences Publication Activity Database

    Holba, Marek; Plotěný, K.; Dvořák, L.; Gómez, M.; Růžičková, I.

    2012-01-01

    Roč. 40, č. 5 (2012), s. 479-486 ISSN 1863-0650 Institutional support: RVO:67985939 Keywords : membrane bioreactors * wastewater treatment * full-scale application Subject RIV: EF - Botanics Impact factor: 2.046, year: 2012

  8. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  9. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  10. Wastewater Treatment and Reuse: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Andreas N. Angelakis

    2015-09-01

    Full Text Available This paper provides an overview of the Special Issue on Wastewater Treatment and Reuse: Past, Present, and Future. The papers selected for publication include advanced wastewater treatment and monitoring technologies, such as membrane bioreactors, electrochemical systems; denitrifying biofilters, and disinfection technologies. The Issue also contains articles related to best management practices of biosolids, the influence of organic matter on pathogen inactivation and nutrient removal. Collectively, the Special Issue presents an evolution of technologies, from conventional through advanced, for reliable and sustainable wastewater treatment and reuse.

  11. Efficiency of wastewater treatment by a mixture of sludge and ...

    African Journals Online (AJOL)

    A combined system using the microalgae from South Africa and the sewage sludge from Algeria has been tested, in order to study the efficiency of wastewater treatment by mixtures of microalgae / activated sludge, five bioreactors were installed with different inoculation rates (microalgae / activated sludge) B1: 100% algae, ...

  12. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  13. Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-01-01

    Full Text Available Membrane bioreactors (MBRs are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.

  14. Plasmid-Mediated Bioaugmentation of Wastewater Microbial Communities in a Laboratory-Scale Bioreactor

    Science.gov (United States)

    Bathe, Stephan; Hausner, Martina

    Xenobiotic degradation during biological wastewater treatment can be established or enhanced by bioaugmentation - the addition of biological agents carrying biodegradation genes required to perform the task. Whereas the addition of microbial cells carrying chromosomally encoded catabolic genes can be impaired by limited survival of the added microorganisms, the addition of donor organisms carrying a transmissible catabolic plasmid is a promising alternative. This plasmid can spread within the indigenous microbial community of the system, circumventing the need for extended survival of the introduced bacterial strain. Here we discuss how the catabolic plasmid pNB2 can be evaluated towards its potential to facilitate the degradation of a xenobiotic compound, 3-chloroaniline, and demonstrate the applicability of this plasmid to accomplish 3-chloroaniline degradation in a bioreactor setting after in situ transfer to suitable recipient strains.

  15. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  16. A potential sanitary sewer overflow treatment technology: fixed-media bioreactors.

    Science.gov (United States)

    Tao, Jing; Mancl, Karen M; Tuovinen, Olli H

    2011-08-01

    Under certain conditions, sanitary sewer overflows (SSOs) containing raw wastewater may be discharged to public land and can contribute to environmental and public health issues. Although this problem has attracted the attention of local, state, and federal government and regulators, relatively little SSO abatement research has been published. This study used fixed-media bioreactors, a proven onsite technology in rural areas, to treat wet weather SSO wastewater and reduce its effects on the receiving water environment. The results of this 32-month laboratory study showed that fixed-media bioreactors, especially sand bioreactors, efficiently removed organic matter, solids, and nutrients during six-hour simulated SSO peak flows. Five-day biochemical oxygen demand (BODs) of the simulated SSO varied between 40 and 125 mg/L. The average effluent concentration of BOD5 was 13 mg/L in sand bioreactors at a hydraulic loading rate of 20.4 cm/h. In addition to having high hydraulic loadings, SSO events occur infrequently. This irregularity requires that treatment systems quickly start up and effectively treat wastewater after a period of no flow. This research found that an interval up to six months between two SSO peak flows did not affect the bioreactor performance. Based on this work, fixed-media bioreactors have the potential to reduce the effects of SSOs on the water environment by following proper design parameters and operation strategies. The pollution loading of approximately 18 g BODs/m2 x h is recommended for the efficient performance of sand bioreactors in the SSO treatment.

  17. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    Science.gov (United States)

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biological nitrate removal from synthetic wastewater using a fungal consortium in one stage bioreactors

    CSIR Research Space (South Africa)

    Greben, HA

    2007-04-01

    Full Text Available A series of lignocellulosic fungi, capable of cellulase and/or xylanase production, were isolated from soil to be used for cellulose degradation and nitrate removal from nitrate-rich wastewater in simple one-stage anaerobic bioreactors containing...

  19. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters

    NARCIS (Netherlands)

    Houten, van B.H.G.W.

    2006-01-01

    The use of synthesis gas fed sulfate-reducing bioreactors to simultaneously remove both oxidized sulfur compounds and metals shows great potential to treat wastewaters generated as a result of flue gas scrubbing, mining activities and galvanic processes. Detailed information about the phylogenetic

  20. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    Science.gov (United States)

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nitrification in hybrid bioreactors treating simulated domestic wastewater.

    Science.gov (United States)

    Bellucci, M; Ofiţeru, I D; Head, I M; Curtis, T P; Graham, D W

    2013-08-01

    To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors). Three bench-scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5-day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2.5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia-oxidizing bacteria, AOB; nitrite-oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB-NOB activity were less apparent, resulting in incomplete nitrification. Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification. This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure. © 2013 The Society for Applied Microbiology.

  2. Achieving advanced nitrogen removal for small flow wastewater using a baffled bioreactor (BBR) with intermittent aeration.

    Science.gov (United States)

    Liu, Guoqiang; Wang, Jianmin

    2017-09-01

    Nitrogen discharge from decentralized and onsite wastewater treatment systems, such as recirculating sand filters, stabilization ponds, and septic tanks, is an important source of groundwater and surface water contamination. This study demonstrated a simple baffled bioreactor (BBR) technology, operated with an intermittent aeration mode, that effectively removed nearly all nitrogen for small flow wastewater treatment. The BBR is characterized by an aeration zone, followed by an integrated internal settler, which automatically retains a high biomass concentration of approximately 6 g/L without using a separate sludge return device. Long-term testing results indicated that this process had reduced the chemical oxygen demand and total nitrogen concentration to approximately 20 mg/L and less than 3 mg-N/L, respectively, under an operational temperature of 7.1 °C to 24.7 °C. The average effluent ammonia and nitrate concentrations were 0.75 and 0.61 mg-N/L, respectively, indicating that both nitrification and denitrification had been completed. In addition to nitrogen removal, this BBR had removed approximately 65% of the total phosphorus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik

    2007-01-01

    As a consequence of the EU Water Framwork Directive, more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advenced treatment technologies. This paper describes a holistic assessment......, which includes technical, economic and environmental aspects. The technical and economic assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, Membrane Bioreactor (MBR), and UV in combination...... and three advanced treatment methods: sand filtration, ozone treatment and MBR. The technical and economic assessment showed that UV solely for disinfection purposes or ozone treatment are the most advantageous advanved treatment methods if the demands are restricted to pathogenic microorganisms. In terms...

  4. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  5. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Pendashteh, Ali Reza [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Environmental Research Institute, Iranian Academic Center for Education, Culture and Research (ACECR), Rasht (Iran, Islamic Republic of); Fakhru' l-Razi, A., E-mail: fakhrul@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Chaibakhsh, Naz [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Abdullah, Luqman Chuah [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia); Madaeni, Sayed Siavash [Chemical Engineering Department, Razi University, Kermanshah (Iran, Islamic Republic of); Abidin, Zurina Zainal [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E. (Malaysia)

    2011-08-30

    Highlights: {yields} Hypersaline oily wastewater was treated in a membrane bioreactor. {yields} The effects of salinity and organic loading rate were evaluated. {yields} The system was modeled by neural network and optimized by genetic algorithm. {yields} The model prediction agrees well with experimental values. {yields} The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m{sup 3} day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m{sup 3} day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  6. Membrane bioreactors for metal recovery from wastewater: A review

    African Journals Online (AJOL)

    driniev

    2004-10-04

    Oct 4, 2004 ... mines and metal refiners. Classical methods of metal removal from wastewater. The recovery of metals from wastewater has a twofold advantage. Firstly, it minimises the contamination of the aquatic environment and secondly, recovering metals of value such as gold and platinum group metals (PGMs) ...

  7. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  8. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  9. Performance of diatomite/iron oxide modified nonwoven membrane used in membrane bioreactor process for wastewater reclamation.

    Science.gov (United States)

    He, Yueling; Zhang, Wenqi; Rao, Pinhua; Jin, Peng

    2014-01-01

    This study describes an approach for surface modification of a nonwoven membrane by diatomite/iron oxide to examine its filterability. Analysis results showed that nonwoven hydrophilicity is enhanced. Static contact angle decreases dramatically from 122.66° to 39.33°. Scanning electron micrograph images show that diatomite/iron oxide is attached on nonwoven fiber. X-ray diffraction analysis further proves that the compound is mostly magnetite. Fourier transformed infrared spectra results reveal that two new absorption peaks might be attributed to Si-O and Fe-O, respectively. Modified and original membranes were used in double nonwoven membrane bioreactors (MBRs) for synthetic wastewater treatment. High critical flux, long filtration time, slow trans-membrane pressure rise and stable sludge volume index confirmed the advantages of modified nonwoven. Comparing with original nonwoven, similar effluent qualities are achieved, meeting the requirements for wastewater reclamation.

  10. COUPLING OF MEMBRANE BIOREACTOR AND OZONATION FOR REMOVAL OF ANTIBIOTICS FROM HOSPITAL WASTEWATER

    OpenAIRE

    Bui Xuan Thanh; Quyen Vo Thi Kim; Phuc Luu Vinh; Tin Nguyen Thanh; Hien Vo Thi Dieu; Thanh Cao Ngoc Dan; Quoc Tuc Dinh,

    2016-01-01

    Antibiotic residues in the environment and their potential toxic effects have been considered as one of the emerging research area in the environmental field. Their continuous introduction in our environment may increase their negative impacts on human health.  In this study, the eliminations of antibiotic such as Norfloxacin (NOR), Ciprofloxacin (CIP), Ofloxacin (OFL) and Sulfamethoxazole (SMZ) in wastewater of hospital were processed by membrane bioreactor (MBR) coupled with ozonation proce...

  11. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community.

    Science.gov (United States)

    Seib, M D; Berg, K J; Zitomer, D H

    2016-09-01

    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25°C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10°C. The significant relative abundance of Methanosaeta at 10°C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  13. High salinity wastewater treatment.

    Science.gov (United States)

    Linarić, M; Markić, M; Sipos, L

    2013-01-01

    The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.

  14. COUPLING OF MEMBRANE BIOREACTOR AND OZONATION FOR REMOVAL OF ANTIBIOTICS FROM HOSPITAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Bui Xuan Thanh

    2016-02-01

    Full Text Available Antibiotic residues in the environment and their potential toxic effects have been considered as one of the emerging research area in the environmental field. Their continuous introduction in our environment may increase their negative impacts on human health.  In this study, the eliminations of antibiotic such as Norfloxacin (NOR, Ciprofloxacin (CIP, Ofloxacin (OFL and Sulfamethoxazole (SMZ in wastewater of hospital were processed by membrane bioreactor (MBR coupled with ozonation process. In particular, the MBR was applied for the antibiotic removals followed by ozonation process as a post-treatment stage to create an adequate integration to enhance removal efficiency. Achieved results after MBR treatment showed that the removal efficiency of NOR, CIP, OFL and SMZ were 90 ± 4.0% , 83 ± 13% , 81 ± 13 % and  39 ± 6%, respectivley. In addition, those antibiotic matters were continously removed by ozonation process with the removal efficiency of 87±9.0% , 83±1.0% , 81±2.3% and 66±2.3% for NOR, CIP, OFL and SMZ, respectively. In summary, antibiotics could be basically limited by the combination of MBR and ozonation before discharging in aquatic environment.

  15. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  16. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  17. Bioreactor

    Science.gov (United States)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  18. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  19. Removal of pharmaceuticals from synthetic wastewater in an aerobic granular sludge membrane bioreactor and determination of the bioreactor microbial diversity.

    Science.gov (United States)

    Wang, Xiao-Chun; Shen, Ji-Min; Chen, Zhong-Lin; Zhao, Xia; Xu, Hao

    2016-09-01

    Five types of pharmaceuticals and personal care products (PPCPs) substances were selected as pollutants in this study. The effects of the removal of these pollutants and the microbial succession process in a granular sludge membrane bioreactor (GMBR) were investigated. Results showed that wastewater containing PPCPs influenced the performance of granular sludge. The removal of the five PPCPs from the GMBR had different effects. The removal rates of prednisolone, norfloxacin and naproxen reached 98.5, 87.8 and 84 %, respectively. The degradation effect in the GMBR system was relatively lower for sulphamethoxazole and ibuprofen, with removal efficiency rates of 79.8 and 63.3 %, respectively. Furthermore, the microbial community structure and diversity variation of the GMBR were analysed via high-throughput sequencing technology. The results indicated the structural and functional succession of the microbial community based on the GMBR process. The results indicate the key features of bacteria with an important role in drug degradation.

  20. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  1. Reduction of Net Sulfide Production Rate by Nitrate in Wastewater Bioreactors. Kinetics and Changes in the Microbial Community

    DEFF Research Database (Denmark)

    Villahermosa, Desiree; Corzo, Alfonso; Gonzalez, J M

    2013-01-01

    Nitrate addition stimulated sulfide oxidation by increasing the activity of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), decreasing the concentration of dissolved H2S in the water phase and, consequently, its release to the atmosphere of a pilot-scale anaerobic bioreactor. The effect...... of four different concentrations of nitrate (0.12, 0.24, 0.50, and 1.00 mM) was investigated for a period of 3 days in relation to sulfide concentration in two bioreactors set up at Guadalete wastewater treatment plant (Jerez de la Frontera, Spain). Physicochemical variables were measured in water and air......, and the activity of bacteria implicated in the sulfur and nitrogen cycles was analyzed in the biofilms and in the water phase of the bioreactors. Biofilms were a net source of sulfide for the water and gas phases (7.22 ± 5.3 μmol s−1) in the absence of nitrate dosing. Addition of nitrate resulted in a quick...

  2. Membrane bioreactors for metal recovery from wastewater: a review ...

    African Journals Online (AJOL)

    The need to remove or recover metal ions from industrial wastewaters is both financially and environmentally driven, financially in terms of cost savings through metal reuse or sale, and environmentally as heavy metal toxicity can affect organisms throughout the food chain, including humans. Current removal strategies are ...

  3. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  4. Evaluation of upflow hybrid bioreactor system for treating low-strength nitrogenous wastewater under low-shear environment

    Directory of Open Access Journals (Sweden)

    Maliwan Kutako

    2015-02-01

    Full Text Available Lab-scale upflow bioreactor system without biomass-liquid separation unit was built to treat low-strength nitrogenous wastewater based on intermittent aeration under low-shear environment. Biomass zone formed in the absence of gas bubbles provided simultaneous biomass retention, biodegradation of nitrogenous and carbonaceous compounds, and biomass-liquid separation. Biomass zone was stable as indicated by insignificant biomass washout rates (14–29 mg VSS/day and relatively constant biomass zone height (26–30 cm up to the shear gradient of 1.8 s-1. Nitrogen treatment efficiency of wastewater containing 15 mg NH4 + -N/L was 15.3±1.96% under continuous oxygen influx of 95 mg O2 /L/day and autotrophic environment, whereas it increased significantly, 88.2±7.05%, after intermittent aeration (3 hrs air-on and 3 hrs air-off and organic carbon source were supplied to the bioreactor system. Carbon removal efficiencies for both continuous and intermittent aeration were comparable reported at 85±1.76% and 91±2.1%, respectively.

  5. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  6. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    Science.gov (United States)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  7. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment

    NARCIS (Netherlands)

    Kappel, C.; Kemperman, A.J.B.; Temmink, B.G.; Zwijnenburg, A.; Rijnaarts, H.; Nijmeijer, K.

    2014-01-01

    As water shortages are increasing, the need for sustainable water treatment and the reuse of water is essential. Water reuse from wastewater can be accomplished in a membrane bioreactor (MBR) in the secondary activated sludge stage of a wastewater treatment plant. To remove viruses, dissolved

  8. Constructed Wetlands for Wastewater Treatment

    Science.gov (United States)

    This presentation is a general introductory overview of constructed wetlands for wastewater treatment. Photographs show a wide range of applications and sizes. Summary data on cost and performance from previously published documents by WERF and EPA is presented. Previously pre...

  9. Granular activated algae for wastewater treatment.

    Science.gov (United States)

    Tiron, O; Bumbac, C; Patroescu, I V; Badescu, V R; Postolache, C

    2015-01-01

    The study used activated algae granules for low-strength wastewater treatment in sequential batch mode. Each treatment cycle was conducted within 24 h in a bioreactor exposed to 235 μmol/m²/s light intensity. Wastewater treatment was performed mostly in aerobic conditions, oxygen being provided by microalgae. High removal efficiency of chemical oxygen demand (COD) was achieved (86-98%) in the first hours of the reaction phase, during which the indicator's removal rate was 17.4 ± 3.9 mg O₂/g h; NH(4)(+) was removed during organic matter degradation processes with a rate of 1.8 ± 0.6 mg/g h. After almost complete COD removal, the (O⁺) remaining in the liquor was removed through nitrification processes promoted by the increase of the liquor's oxygen saturation (O₂%), the transformation rate of NH4(+) into NO(3)(-) increasing from 0.14 ± 0.05 to 1.5 ± 0.4 mg NH4(+)/g h, along with an O₂% increase. A wide removal efficiency was achieved in the case of PO(4)(3)(-) (11-85%), with the indicator's removal rate being 1.3 ± 0.7 mg/g h. In the provided optimum conditions, the occurrence of the denitrifying activity was also noticed. A large pH variation was registered (5-8.5) during treatment cycles. The granular activated algae system proved to be a promising alternative for wastewater treatment as it also sustains cost-efficient microalgae harvesting, with microalgae recovery efficiency ranging between 99.85 and 99.99% after granules settling with a velocity of 19 ± 3.6 m/h.

  10. Hybrid bioreactor (HBR) of hollow fiber microfilter membrane and cross-linked laccase aggregates eliminate aromatic pharmaceuticals in wastewaters.

    Science.gov (United States)

    Ba, Sidy; Jones, J Peter; Cabana, Hubert

    2014-09-15

    Widespread detection of numerous micropollutants including aromatic pharmaceuticals in effluents of wastewater treatment plants has prompted much research aimed at efficiently eliminating these contaminants of environmental concerns. In the present work, a novel hybrid bioreactor (HBR) of cross-linked enzymes aggregates of laccase (CLEA-Lac) and polysulfone hollow fiber MF membrane was developed for the elimination of acetaminophen (ACT), mefenamic acid (MFA) and carbamazepine (CBZ) as model aromatic pharmaceuticals. The MF alone showed removals of the three drugs varying approximately from 50 to 90% over the course of 8h in the filtrate of aqueous solution. Synergistic action of the MF and CLEA-Lac during operation achieved eliminations from aqueous solution of around 99%, nearly 100% and up to 85% for ACT, MFA and CBZ, respectively. Under continuous operation, the HBR demonstrated elimination rates of the drugs from filtered wastewater up to 93% after 72h for CBZ and near complete elimination of ACT and MFA was achieved within 24h of treatment. Concomitantly to the drugs eliminations in the wastewater, the CLEA-Lac exhibited 25% residual activity while being continuously recycled with no activity in the filtrate. Meanwhile, the filtrate flowrate showed only minor decline indicating limited fouling of the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biogas Production and Removal COD – BOD and TSS from Wastewater Industrial Alcohol (Vinasse) by Modified UASB Bioreactor

    OpenAIRE

    Utami Isni; Redjeki Sri; Astuti Dwi Hery; Sani

    2016-01-01

    Biogas production and decreased organic loading of vinasse using a modified UASB bioreactor has been done successfully. Vinasse is waste from the ethanol industry which contains COD: 9.360 mg / L , BOD : 4.013 mg/L, and TSS: 317.5 mg/L. The purpose of this research was to study the performance of bioreactors Upflow Anaerobic Sludge Blanket (UASB) to decompose the vinasse into biogas or methane. UASB operating principle is to distribute wastewater in the bioreactor to flow upward through the s...

  12. Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks.

    Science.gov (United States)

    Mirbagheri, Seyed Ahmad; Bagheri, Majid; Boudaghpour, Siamak; Ehteshami, Majid; Bagheri, Zahra

    2015-01-01

    Treatment process models are efficient tools to assure proper operation and better control of wastewater treatment systems. The current research was an effort to evaluate performance of a submerged membrane bioreactor (SMBR) treating combined municipal and industrial wastewater and to simulate effluent quality parameters of the SMBR using a radial basis function artificial neural network (RBFANN). The results showed that the treatment efficiencies increase and hydraulic retention time (HRT) decreases for combined wastewater compared with municipal and industrial wastewaters. The BOD, COD, [Formula: see text] and total phosphorous (TP) removal efficiencies for combined wastewater at HRT of 7 hours were 96.9%, 96%, 96.7% and 92%, respectively. As desirable criteria for treating wastewater, the TBOD/TP ratio increased, the BOD and COD concentrations decreased to 700 and 1000 mg/L, respectively and the BOD/COD ratio was about 0.5 for combined wastewater. The training procedures of the RBFANN models were successful for all predicted components. The train and test models showed an almost perfect match between the experimental and predicted values of effluent BOD, COD, [Formula: see text] and TP. The coefficient of determination (R(2)) values were higher than 0.98 and root mean squared error (RMSE) values did not exceed 7% for train and test models.

  13. Bacteriophage removal in a full-scale membrane bioreactor (MBR) - Implications for wastewater reuse.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2015-04-15

    The aim of this study was to assess the potential removal efficacy of viruses in a full-scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 'spiked' bacteriophages (phages) of known size and morphology. Samples were taken each week for three months from nine locations at each treatment stage of the water recycling plant (WRP) and tested for a range of microbiological parameters (n = 135). Mean levels of faecal coliforms were reduced to 0.3 CFU/100 ml in the MBR product and were undetected in samples taken after the chlorination stage. A relatively large reduction (5.3 log) in somatic coliphages was also observed following MBR treatment. However, F-specific and human-specific (GB124) phages were less abundant at all stages, and demonstrated log reductions post-MBR of 3.5 and 3.8, respectively. In 'spiking' experiments, suspended 'spiked' phages (MS2 and B-14) displayed post-MBR log reductions of 2.25 and 2.30, respectively. The removal of these suspended phages, which are smaller than the membrane pore size (0.04 μm), also highlights the possible role of the membrane biofilm as an effective additional barrier to virus transmission. The findings from this study of a full-scale MBR system demonstrate that the enumeration of several phage groups may offer a practical and conservative way of assessing the ability of MBR to remove enteric viruses of human health significance. They also suggest that phage removal in MBR systems may be highly variable and may be closely related on the one hand to both the size and morphology of the viruses and, on the other, to whether or not they are attached to solids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A REVIEW ON SEWAGE TREATMENT AND POLISHING USING MOVING BED BIOREACTOR (MBBR

    Directory of Open Access Journals (Sweden)

    JAMAL ALI KAWAN

    2016-08-01

    Full Text Available Effluent treatment and polishing using moving bed bioreactors (MBBRs are advanced technique in biological treatment operations become increasing widely and popular use all over the world to treat various types of effluents with very different operating status. It is a combination of two separate processes suspended and attached growth systems for the treatment in order to minimize the concentrations of the contaminated parameters at the required level for reuse or final destination. The MBBR has been proved to be effective in great removing biochemical oxygen demand (BOD and chemical oxygen demand (COD with nutrients (N and P from the effluent stream simultaneously. It provides additional capacity of wastewater treatment technology with high treatment efficiency; low capital, operational, maintenance and replacement cost; single reliable and robust operation procedure. This process can be used for new sewage treatment works or for modifying (upgrading existing wastewater treatment plants as it is efficient, compact and easy to operate. The efficiency of MBBR depends on the filling percent of biofilm carriers to be provided inside the tank, surface area of the biocarrier, diffused aeration supply and the organic loading. The aim of this paper is reviewing the sewage treatment and polishing using moving bed bioreactor MBB technology as an alternative and successful method. It presents the advantages of the MBBR compared to conventional waste water treatment. The review also includes many relevant researches carried out at the laboratory andpilot scales plants that could improve these systems by enhancing performance and reducing costs.

  15. Biological treatment of whey in an UASFF bioreactor following a three-stage RBC

    Directory of Open Access Journals (Sweden)

    Atiye Ebrahimi

    2010-07-01

    Full Text Available Biological treatment of a high strength chesses whey wastewater was investigated in a series of aerobic-anaerobic experiments. The aerobic treatment of the wastewater was conducted in a three-stage rotating biological contactor (NRBC, while the anaerobic process was performed in an up-flow anaerobic sludge fixed film (UASFF bioreactor. Various concentrations of wastewater with influent COD of 40 to 70 g/L were introduced into the NRBC system. Treatability of the samples at various HRTs of 8, 12 and 16 h was evaluated in the NRBC reactor. The effluent streams of the NRBC system were introduced into a UASFF bioreactor. The anaerobic treatment of pretreated samples was investigated in the UASFF at the same HRTs of 8, 12 and 16 h. The obtained results revealed that more than 53, 69 and 78% of the influent COD (50 g/L were removed in the NRBC reactor at HRTs of 8, 12 and 16 h, respectively. Maximum COD removal efficiencies of 96, 96.8, 97.4 and 96.4% were achieved in the combined systems at total HRT of 32 h for the influent COD of 40, 50, 60 and 70 g/L, respectively.

  16. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  18. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  19. Full-Scale Implementation of a Vertical Membrane Bioreactor for Simultaneous Removal of Organic Matter and Nutrients from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    So-Ryong Chae

    2015-03-01

    Full Text Available In nutrient-sensitive estuaries, wastewater treatment plants (WWTPs are required to implement more advanced treatment methods in order to meet increasingly stringent effluent guidelines for organic matter and nutrients. To comply with current and anticipated water quality regulations and to reduce the volume of produced sludge, we have successfully developed a vertical membrane bioreactor (VMBR that is composed of anoxic (lower layer and oxic (upper layer zones in one reactor. Since 2009, the VMBR has been commercialized (Q = 1100–16,000 m3/d under the trade-name of DMBRTM for recycling of municipal wastewater in South Korea. In this study, we explore the performance and stability of the full-scale systems. As a result, it was found that the DMBRTM systems showed excellent removal efficiencies of organic substances, suspended solids (SS and Escherichia coli (E. coli. Moreover, average removal efficiencies of total nitrogen (TN and total phosphorus (TP by the DMBRTM systems were found to be 79% and 90% at 18 °C, 8.3 h HRT and 41 d SRT. Moreover, transmembrane pressure (TMP was maintained below 40 kPa at a flux of 18 L/m2/h (LMH more than 300 days. Average specific energy consumption of the full-scale DMBRTM systems was found to be 0.94 kWh/m3.

  20. Removal and Degradation Pathways of Sulfamethoxazole Present in Synthetic Municipal Wastewater via an Anaerobic Membrane Bioreactor

    KAUST Repository

    Sanchez Huerta, Claudia

    2016-05-01

    The current global water crisis in addition to continues contamination of natural water bodies with harmful organic micropollutants (OMPs) have driven the development of new water treatment technologies that allow the efficient removal of such compounds. Among a long list of OMPs, antibiotics are considered as top priority pollutants to be treated due to their great resistance to biological treatments and their potential to develop bacterial resistance. Different approaches, such as membrane-based and advance oxidation processes have been proposed to alleviate or minimize antibiotics discharge into aquatic environments. However most of these processes are costly and generate either matrices with high concentration of OMPs or intermediate products with potentially greater toxicity or persistence. Therefore, this thesis proposes the study of an anaerobic membrane bioreactor (AnMBR) for the treatment of synthetic municipal wastewater containing sulfamethoxazole (SMX), a world widely used antibiotic. Besides the general evaluation of AnMBR performance in the COD removal and biogas production, this research mainly focuses on the SMX removal and its degradation pathway. Thus 5 SMX quantification was performed through solid phase extraction-liquid chromatography/mass spectrometry and the identification of its transformation products (TPs) was assessed by gas chromatography/mass spectrometry technique. The results achieved showed that, working under optimal conditions (35°C, pH 7 and ORP around -380 to -420 mV) and after a biomass adaptation period (maintaining 0.85 VSS/TSS ratio), the AnMBR process provided over 95% COD removal and 95-98% SMX removal, while allowing stable biogas composition and methane production (≈130 mL CH4/g CODremoved). Kinetic analysis through a batch test showed that after 24 h of biological reaction, AnMBR process achieved around 94% SMX removal, indicating a first order kinetic reaction with K= 0.119, which highlights the high degradation

  1. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  2. Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor.

    Science.gov (United States)

    Zhu, Xiaobiao; Liu, Rui; Liu, Cong; Chen, Lujun

    2015-11-01

    The bioaugmentation strains for phenol, pyridine, quinoline, carbazole, and naphthalene degradation were employed to treat coking wastewater in a membrane bioreactor (MBR). The results showed that the bioaugmented MBR was much better in pollutant removal than that of the control MBR with conventional activated sludge. Compared to the control MBR, the bioaugmented MBR displayed an additional 3.2 mg/L of phenol, pyridine, quinoline, naphthalene and carbazole in total by the addition of the degrading strains. Also, about 10 % of the chemical oxygen demand in the effluent was further removed by the bioaugmentation. The pyrosequencing analysis of the sludge in the MBRs revealed that the microbial community shifted in response to the addition of the degrading strains. The diversity of the microbial community increased during the bioaugmentation, and some bacterial taxa favorable to the removal of toxic and refractory pollutants appeared in the bioaugmented MBR. The results indicated that the use of high-efficiency bacteria was a feasible method for industrial coking wastewater treatment.

  3. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  4. Hydrogenotrophic denitrification of highly saline aquaculture wastewater using hollow fiber membrane bioreactor.

    Science.gov (United States)

    Visvanathan, C; Phong, D D; Jegatheesan, V

    2008-06-01

    A hydrogenotrophic denitrification system with a hollow fiber membrane was evaluated for treating and recycling synthetic aquaculture wastewater. Hollow fibers ensured bubble-less diffusion of hydrogen and subsequent removal of nitrate from the first bioreactor. The second aerobic reactor was used for biomass filtration and removal of organic matter. Nitrate and organic matter expressed as dissolved organic carbon were 50 mgl(-1) and 20 mgl(-1), respectively, in the inlet. Acclimatization of hydrogenotrophic bacteria to 10, 20 and 30 ppt of salinity was also observed. Optimum hydraulic retention time and denitrification rate corresponding to these salinities were 3, 5 and 6 h and 366.8, 226.2 and 193.2 gm(-3) day(-1), respectively.

  5. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  6. Microbiology in starting up of the membrane bioreactor (MBR) for urban wastewater treatment; Microbiologia en la puesta en marcha de un biorreactor de membranas (MBR) para la depuracion de aguas residuales urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Parada-Albarracin, J. A.; Arevalo, J.; Ruiz, L. M.; Moreno, B.; Perez, J.; Gomez, M. A.

    2010-07-01

    This work is based on a study of metazoan and protozoan communities, moreover filamentous bacteria in an activated sludge from a MBR system for urban wastewater treatment. The aim of this study was the evaluation of the system through the sludge biotic index (SBI), and the study of other microorganisms such as filamentous bacteria in the performance of the process, effluent quality and biomass stability. for the carry up of this work we count with a biologic reactor with the ultrafiltration membranes. The assigned role of the different protozans keys in activated sludge from conventional process are not extrapolated in MBR system. This search was supported by Andalucian Water Agency (Junta de Andalucia) Through European Regional Development Fund (ERDF). (Author) 25 refs.

  7. Evaluation of abiotic fate mechanisms in soil slurry bioreactor treatment

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, J.A.; McCauley, P.T. [Environmental Protection Agency, Cincinnati, OH (United States); Dosani, M.A. [IT Corp., Cincinnati, OH (United States)] [and others

    1995-10-01

    Biological treatment of contaminated soil slurries may offer a viable technology for soil bioremediation. Slurry bioreactor treatment of soils, however, has not sufficiently progressed to be a durable, reliable, and cost-effective treatment option. Critical to the evaluation of slurry bioreactors is a better description of pollutant mass transfer during the treatment phase. Losses attributable to abiotic means are generally overlooked in field application of the technology. Discussions with EPA regional personnel and inspection of active soil slurry bioreactor operations have identified operational problems such as foaming which could result in possible abiotic loss. Field bioslurry operations have adopted various approaches to reduce foaming: (1) the addition of defoaming agents, (2) the reduction of rotational speed of the agitator, and (3) the reduction of gas flow through the bioreactor system. We have conducted two bench-scale slurry bioreactor treatability studies, at the U.S. EPA Testing & Evaluation Facility in Cincinnati, Ohio, which were designed to investigate some of the operating factors leading to foam formation and identify the most advantageous means to deal with foaming. The initial study has been previously presented as a general treatability study for treatment of creosote contamination in a soil. During this study, foaming became a major problem for operation. The foaming conditions were mitigated by use of defoamer and, in the more extreme cases, through reduction of the mixer rotational speed and gas flow. A subsequent study which was devoted specifically to investigating the causes and conditions of foaming using a different batch of soil from the same site as the earlier study showed little foaming at the very beginning of the study.

  8. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater.

    Science.gov (United States)

    Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina

    2018-03-01

    This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.

  9. Pilot-scale study of biomass reduction in wastewater treatment.

    Science.gov (United States)

    Wang, Qunhui; Ai, Hengyu; Li, Xuesong; Liu, Haitao; Xie, Weimin

    2007-05-01

    Pilot-scale experiments were continuously carried out for more than 9 months to study the excess biomass reduction effect using a biophase-separation bioreactor, which was designed based on food-chain theory. By separating the biophase in the wastewater treatment system, bacteria, protozoa, and metazoa could be separated from each other and dominated in different microbial communities. After degrading organic matter, bacteria were consumed by protozoa or metazoa in the following process in such a reactor. Thus, both chemical oxygen demand (COD) and biomass were reduced. During the process of treating restaurant wastewater, the excess biomass yield in this biophase-separation technique varied from 0.13 to 0.22 kg/kg COD removed, 50% lower than that from the reference system. Apart from low biomass production, this biophase-separation technique can simultaneously achieve a high COD removal efficiency and improve settleability of biosolids at a hydraulic retention time of 6 to 13 hours.

  10. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    Science.gov (United States)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  11. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Arifan Fahmi

    2018-01-01

    Full Text Available The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD. How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result.

  12. The removal and degradation of pharmaceutical compounds during membrane bioreactor treatment.

    Science.gov (United States)

    Schröder, H Fr; Tambosi, J L; Sena, R F; Moreira, R F P M; José, H J; Pinnekamp, J

    2012-01-01

    Pharmaceutical compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) and antibiotics have been detected in sewage treatment plant (STP) effluents, surface and ground water and even in drinking water all over the world, and therefore have developed as compounds of concern. Membrane bioreactor (MBR) treatment has gained significant popularity as an advanced wastewater treatment technology and might be effective for an advanced removal of these pollutants. This paper evaluates the treatment of wastewater containing three NSAIDs (acetaminophen, ketoprofen and naproxen) and three antibiotics (roxithromycin, sulfamethoxazole and trimethoprim) performed in two MBRs with sludge retention times (SRTs) of 15 (MBR-15) and 30 (MBR-30) days over a period of four weeks. It was observed that NSAIDs were removed with higher efficiencies than the antibiotics for both MBRs, and the MBR-30 presented higher removal efficiencies for all the compounds than obtained by MBR-15. Removal rates ranged from 55% (sulfamethoxazole) up to 100% (acetaminophen, ketoprofen). Besides mineralisation biological transformation products of ketoprofen and naproxen produced by wastewater biocoenosis were identified in both MBR permeates using liquid chromatography coupled with mass spectrometry (LC-MS). The results indicated the importance of investigating the environmental fate of pharmaceuticals and their transformation products reaching the environment.

  13. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    Science.gov (United States)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  14. Performance and microbial community of a membrane bioreactor system - Treating wastewater from ethanol fermentation of food waste.

    Science.gov (United States)

    Zhu, Xiaobiao; Li, Mengqi; Zheng, Wei; Liu, Rui; Chen, Lujun

    2017-03-01

    In this study, a lab-scale biological anaerobic/anaerobic/anoxic/membrane bioreactor (A3-MBR) was designed to treat wastewater from the ethanol fermentation of food waste, a promising way for the disposal of food waste and reclamation of resources. The 454 pyrosequencing technique was used to investigate the composition of the microbial community in the treatment system. The system yielded a stable effluent concentration of chemical oxygen demand (202±23mg/L), total nitrogen (62.1±7.1mg/L), ammonia (0.3±0.13mg/L) and total phosphorus (8.3±0.9mg/L), and the reactors played different roles in specific pollutant removal. The exploration of the microbial community in the system revealed that: (1) the microbial diversity of anaerobic reactors A1 and A2, in which organic pollutants were massively degraded, was much higher than that in anoxic A3 and aerobic MBR; (2) although the community composition in each reactor was quite different, bacteria assigned to the classes Clostridia, Bacteroidia, and Synergistia were important and common microorganisms for organic pollutant degradation in the anaerobic units, and bacteria from Alphaproteobacteria and Betaproteobacteria were the dominant microbial population in A3 and MBR; (3) the taxon identification indicated that Arcobacter in the anaerobic reactors and Thauera in the anoxic reactor were two representative genera in the biological process. Our results proved that the biological A3-MBR process is an alternative technique for treating wastewater from food waste. Copyright © 2016. Published by Elsevier B.V.

  15. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  16. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    Science.gov (United States)

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nitrous oxide emissions in a membrane bioreactor treating saline wastewater contaminated by hydrocarbons.

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Morici, Claudia; Ødegaard, Hallvard

    2016-11-01

    The joint effect of wastewater salinity and hydrocarbons on nitrous oxide emission was investigated. The membrane bioreactor pilot plant was operated with two phases: i. biomass acclimation by increasing salinity from 10gNaClL(-1) to 20gNaClL(-1) (Phase I); ii. hydrocarbons dosing at 20mgL(-1) with a constant salt concentration of 20gNaClL(-1) (Phase II). The Phase I revealed a relationship between nitrous oxide emissions and salinity. During the end of the Phase I, the activity of nitrifiers started to recover, indicating a partial acclimatization. During the Phase II, the hydrocarbon shock induced a temporary inhibition of the biomass with the suppression of nitrous oxide emissions. The results revealed that the oxic tank was the major source of nitrous oxide emission, likely due to the gas stripping by aeration. The joint effect of salinity and hydrocarbons was found to be crucial for the production of nitrous oxide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Selective adhesion of wastewater bacteria to Pleurotus ostreatus mycelium in a trickle-bed bioreactor

    Directory of Open Access Journals (Sweden)

    Čeněk Novotný

    2016-07-01

    Full Text Available The work is focused on spontaneous colonization of fungal mycelium by invading microorganisms in a trickle-bed fungal bioreactor operating under semi-sterile conditions. Pleurotus ostreatus was grown under the flow of synthetic wastewater containing activated sludge bacteria and the microbial consortium developed in the reactor was characterized. Genotype and phenotype profile of the reactor-invading, bacterial consortium was clearly distinctive from that of the original activated sludge. The bacterial consortium from the reactor contained a higher portion of bacteria capable of cellobiose utilization and a small amount of bacteria with the ability to utilize benzoic acids. The invading bacteria had no effect on the dye decolorization performance of the fungal reactor. Five bacterial strains colonizing P. ostreatus reactor cultures were isolated and identified as species of the genera Pseudomonas and Bacillus. Except for Bacillus cereus all strains displayed a potential to inhibit fungal growth on solid media (14 to 51 % inhibition which was comparable or higher than that of the reference bacterial strains. The pH- and media composition-dependence of the growth inhibition was demonstrated.

  19. Use of cloth-media filter for membrane bioreactor treating municipal wastewater.

    Science.gov (United States)

    Zahid, Waleed M; El-Shafai, Saber A

    2011-02-01

    This study evaluated three different textile materials (Acrylate, Polyester, and Nylon) as filter media for MBR treating municipal wastewater. Chemical oxygen demand (COD) loading rates were 1.71, 1.65 and 1.84 g/l d while feed/microorganisms (F/M) ratios were 0.32, 0.31 and 0.33 in Reactor 1, Reactor 2 and Reactor 3, respectively. The actual hydraulic retention times were 8.6, 8.9 and 8.0 h in R1, R2 and R3. At 5.3-5.5 g/l mixed liquor suspended (MLSS) and 26.3 days solid retention time (SRT) the membrane bioreactors were effective in removing 93-95% of COD, 99% of total suspended solids (TSS) and turbidity, 89-94% of total kjeldahl nitrogen (TKN) and 90-96% of total ammonia nitrogen. Phosphorous removal was limited to 51-55% while faecal coliform was reduced by four logs. Quality of the treated effluents met both Saudi and Egyptian reuse standards for restricted irrigation and could be easily disinfected to meet the unrestricted irrigation standards. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  1. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...

  2. Filterability and Sludge Concentration in Membrane Bioreactors

    OpenAIRE

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of the sludge to be filtrated through a membrane, in a wastewater treatment system designated as Membrane Bioreactor (MBR). An MBR is a wastewater treatment system that combines an activated sludge proc...

  3. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  4. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    Science.gov (United States)

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Restoration of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Skabo, R.R. [CH2M Hill, Denver, CO (United States)

    1994-12-31

    Corrosion in Wastewater Treatment Plants (WWTP) has always been a problem. As systems increase in size, corrosion of materials in certain areas of the plant can become more serious. Concrete is the primary material used in RWPS, and it can be severely corroded by the environment in a WWTP. This paper discusses some of the more common types of HWP corrosion, which occur in both concrete and metallic structures. Corrosion caused by poor design will be discussed also. Examples of corrosion will be described and practical solutions for restoration of corroded surfaces will be presented The advantages and disadvantages of various restoration methods will be compared and alternative construction methods and design changes will be offered. These alternatives will improve the corrosion performance of common construction materials.

  6. Examination of Bacterial Characteristics of Anaerobic Membrane Bioreactors in Three Pilot-Scale Plants for Treating Low-Strength Wastewater by Application of the Colony-Forming-Curve Analysis Method

    Science.gov (United States)

    Kataoka, Naoaki; Tokiwa, Yutaka; Tanaka, Yasuo; Fujiki, Kiichi; Taroda, Hiroyuki; Takeda, Kiyoshi

    1992-01-01

    Characteristic sludge ecosystems arising in anaerobic membrane bioreactors of three pilot-scale plants treating low-strength (less than 1 g of biological oxygen demand per liter) sewage or soybean-processing wastewater were examined by analysis of the colony-forming-curves (CFC) obtained by counting colonies at suitable intervals. The wastewaters, containing high amounts of suspended solids (SS) (SS/chemical oxygen demand ratio, 0.51 to 0.80), were treated by using two types of bioreactors: (i) a hydrolyzation reactor for solubilization and acidification of SS in wastewater and (ii) a methane fermentation reactor for producing methane. The colony counts for the two sewage treatment plants continued to increase even after 3 weeks of incubation, whereas those for soybean-processing wastewater reached an approximately constant level within 3 weeks of incubation. The CFCs were analyzed by correlating the rate of colony appearance on roll tubes with the physiological types of bacteria present in the bioreactors. It was found that there were large numbers of slow-colony-forming anaerobic bacteria within the bioreactors and that the viable populations consisted of a few groups with different growth rates. It is considered that the slow-growing colonies appearing after 10 days of incubation were the dominant microflora in the sewage treated by hydrolyzation reactors. In particular, highly concentrated sludge (30.0 g of mixed-liquor volatile SS per liter) retained by the membrane separation module contained a large number of such bacteria. Slow-growing colonies of these bacteria could be counted by using a sludge extract medium prepared from only the supernatant of autoclaved sludge. In addition, the highest colony counts were almost always obtained with the sludge extract medium, meaning that most of the anaerobic bacteria in these sludges have complex nutrient requirements for growth. This report also indicates the usefulness of application of the CFC analysis method to

  7. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent.

    Science.gov (United States)

    Giménez, J B; Martí, N; Ferrer, J; Seco, A

    2012-08-01

    The present paper presents a submerged anaerobic membrane bioreactor (SAnMBR) as a sustainable approach for urban wastewater treatment at 33 and 20 °C, since greenhouse gas emissions are reduced and energy recovery is enhanced. Compared to other anaerobic systems, such as UASB reactors, the membrane technology allows the use of biogas-assisted mixing which enhances the methane stripping from the liquid phase bulk. The methane saturation index obtained for the whole period (1.00±0.04) evidenced that the equilibrium condition was reached and the methane loss with the effluent was reduced. The methane recovery efficiency obtained at 20 °C (53.6%) was slightly lower than at 33 °C (57.4%) due to a reduction of the treatment efficiency, as evidenced by the lower methane production and the higher waste sludge per litre of treated wastewater. For both operational temperatures, the methane recovery efficiency was strongly affected by the high sulphate concentration in the influent wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse.

    Science.gov (United States)

    Schneider, E E; Cerqueira, A C F P; Dezotti, M

    2011-01-01

    This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.

  9. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  10. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...

  11. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  12. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.

    Science.gov (United States)

    Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun

    2017-04-01

    Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m(-2) h(-1) bar(-1), and 4.5 × 10(12) m(-1) when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L(-1)) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L(-1) when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass

  13. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  14. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  16. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  17. Performance of mixed algae for treatment of slaughterhouse wastewater and microbial community analysis.

    Science.gov (United States)

    Taşkan, Ergin

    2016-10-01

    This study investigated organic matter (OM) and nutrient removal efficiency of mixed algal species from slaughterhouse wastewater (SWW) by using photo-bioreactor. For this purpose, different dilution multiples of 10, 4, and 2 were applied to the SWW, and pure wastewater was finally used for algal cultivation. OM and nutrient removal performance in an algal photo-bioreactor were severely affected by the dilution ratio. After 7 days of cultivation, the highest removal percentages of total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) were 89.6, 70.2, and 96.2 %, respectively. Furthermore, the changes in eukaryotic algae and cyanobacterial species in the algal photo-bioreactors were investigated using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results indicated that cyanobacterial species were more efficient than eukaryotic species in removing nutrients from the SWW. This study suggests that mixed algal photo-bioreactors could be used efficiently in the treatment of SWW.

  18. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors.

    Science.gov (United States)

    Dorival-García, N; Zafra-Gómez, A; Navalón, A; González, J; Vílchez, J L

    2013-01-01

    Laboratory-scale batch experiments were developed to investigate the main removal routes for 6 commonly found quinolones (ciprofloxacin, moxifloxacin, norfloxacin, ofloxacin, pipemidic acid, and piromidic acid), in wastewaters from a wastewater treatment plant, at μg L(-1) levels in an aerobic sludge system from a membrane bioreactor (MBR) pilot plant. It was demonstrated that sorption and biotransformation were the main removal routes for the target antibiotics over other possible pathways, as volatilization or hydrolysis, under the experimental conditions. Mass balances indicated that sorption on sludge played a dominant role in the elimination of antibiotics from waters. The sorption coefficient K(d) depended strongly on temperature and on the quinolone type and were higher at lower temperatures and for piperazinylic quinolones. K(d) values were between 516 and 3746 L kg(-1) in the temperature range of 9-38°C. Higher mixed liquor suspended solids (MLSS) increased quinolone removal efficiency mainly by sorption. Quinolone biodegradation constituted a secondary pathway, and could be described by first-order kinetics with degradation-rate constants ranging from 8.0 × 10(-4)h(-1) to 1.4 × 10(-2)h(-1) within the same temperature range and MLSS from 7000 to 15,000 mg L(-1). Biodegradation depended on the MLSS and temperature, but also on the initial chemical oxygen demand (COD). Higher biodegradation rates were observed at higher MLSS and temperature, as well as at low initial COD. Ciprofloxacin and moxifloxacin registered the highest biodegradation percentages (52.8% and 47.2%, respectively, at 38°C and 15,000 mg L(-1) MLSS), which is evidence that, despite the known persistence of this group of antibiotics and removal from waters mainly by sorption, it was possible to improve their removal by biodegradation, with an appropriate selection of conditions and control of process variables, as a preliminary step towards the elimination of these antibiotics from the

  19. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    It was found that for anaerobic treatment of olive mills wastewater COD:N:P ratio of about 900:5:1.7 was able to achieve more than 80% COD removal. The observed biomass yield was about 0.06 kg VSS per kg of COD degraded. For extended aeration aerobic treatment of pulp and paper mill wastewater COD:N:P ratio of ...

  20. Microalgae at wastewater treatment in cold climate

    OpenAIRE

    Grönlund, Erik

    2002-01-01

    The thesis concludes that microalgae may improve wastewater treatment in ponds in cold climate, from a treatment perspective as well as a sustainability perspective. A literature review revealed that the microalgae biomass produced may find economic use, depending on what species will come to dominate, since there are many possible products from microalgae biomass. Laboratory experiments showed that microalgae collected in the Mid Sweden region can grow readily in wastewater from the same reg...

  1. Biogas Production and Removal COD – BOD and TSS from Wastewater Industrial Alcohol (Vinasse by Modified UASB Bioreactor

    Directory of Open Access Journals (Sweden)

    Utami Isni

    2016-01-01

    Full Text Available Biogas production and decreased organic loading of vinasse using a modified UASB bioreactor has been done successfully. Vinasse is waste from the ethanol industry which contains COD: 9.360 mg / L , BOD : 4.013 mg/L, and TSS: 317.5 mg/L. The purpose of this research was to study the performance of bioreactors Upflow Anaerobic Sludge Blanket (UASB to decompose the vinasse into biogas or methane. UASB operating principle is to distribute wastewater in the bioreactor to flow upward through the sludge blanket by setting the hidrolic retention time (HRT. Four UASB bioreactor columns were used in this experiment wherein each with a capacity of 50 L in volume; 23 cm inside diameter, and 120 cm. The variations of hydraulic capacity followed the variations of HRT in the range of 72-36 hours. Modifications were carried out on the top of column UASB with the aim of preventing gas losses and increasing the flowrate of gas out from the top of the column. The results showed that HRT increased from 36 h to 72 h followed by an increase in COD removal efficiency of 55.64% to 66.81%; BOD5 from 67.85% to 74.58%; and TSS from 66.69% to 84.19%. The maximum volume of biogas produced was in the range of 5.826 L / day (42.89% methane to 7.930 L / day (methane 58.06%.

  2. Wastewater Treatment in Kathmandu : Management, Treatment and Alternative

    OpenAIRE

    Regmi, Shakil

    2013-01-01

    Main aim of this thesis was to understand the wastewater situation in Kathmandu, Nepal and its impact in natural water stream, how it is managed and treated. After understanding the scenario of wastewater treatment in Kathmandu, a suitable alternative wastewater treatment system is recommended for future use. Technical as well as managerial problem exists in Kathmandu, thus from my experience in Mikkeli, Finland I came up with the model that is handled by the municipality itself because skill...

  3. Desulfovibrio paquesii sp. nov., a hydrogenotrophic sulfate-reducing bacterium isolated from a synthesis-gas-fed bioreactor treating zinc- and sulfate-rich wastewater

    NARCIS (Netherlands)

    Houten, van B.H.G.W.; Meulepas, R.J.W.; Doesburg, van W.; Smidt, H.; Muyzer, G.; Stams, A.J.M.

    2009-01-01

    A hydrogenotrophic, sulfate-reducing bacterium, designated strain SB1(T), was isolated from sulfidogenic sludge of a full-scale synthesis-gas-fed bioreactor used to remediate wastewater from a zinc smelter. Strain SB1(T) was found to be an abundant micro-organism in the sludge at the time of

  4. Standardized application of yeast bioluminescent reporters as endocrine disruptor screen for comparative analysis of wastewater effluents from membrane bioreactor and traditional activated sludge.

    Science.gov (United States)

    Wang, Jun; Eldridge, Melanie; Menn, Fu-min; Dykes, Todd; Sayler, Gary

    2015-12-01

    A standardized protocol is demonstrated for bioluminescent strains Saccharomyces cerevisiae BLYES, BLYAS and BLYR as high-throughput screening tools to monitor the estrogenic, androgenic and toxic potencies in wastewater. The sensitivity and reproducibility of the assay in wastewater monitoring was evaluated for 7 day semi-continuous batch reactor using activated sludge with hormones spiked raw sewage. Yeast bioluminescent assay successfully captured the rapid removal of estrogenic and androgenic activities in the bioreactors, and demonstrated rapid response (≤4 h) with good reproducibility. This standardized protocol was then applied in a 12 months monitoring of the effluent of a WWTP located at Powell, TN, USA featuring parallel-operated full-scale membrane bioreactor (MBR) and traditional activated sludge (TAS) treatment. Monitoring results showed that estrogenic activity was persistent in all TAS and most MBR effluent samples, while residual androgenic activity was non-detectable throughout the monitored period. The estrogenic equivalents (EEQ) in TAS effluent ranged from 21.61 ng/L to 0.04 pg/L and averaged 3.25 ng/L. The EEQ in MBR effluent ranged from 2.88 ng/L to 0.0134 pg/L and averaged ~10 fold less (0.32 ng/L) than TAS. Despite the large temporal variation, MBR effluent EEQ was consistently lower than TAS on any given sampling date. Most MBR effluent samples also exhibited less cytotoxicity than TAS. Further analysis did not demonstrate significant correlation between effluent EEQ level and WWTP operational parameters including MLSS, SRT, HRT and BOD.

  5. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  6. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin M.; Koss, Lawrence L.; Hummerick, Mary E.; Spencer, Lachelle E.; Johnsey, Marissa N.; Richards, Jeffrey T.; Ellis, Ronald; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).

  7. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale.

    Science.gov (United States)

    Djelal, Hayet; Amrane, Abdeltif

    2013-09-01

    A fungal consortium including Aspergillus niger, Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater. The bio-augmentation method was tested at lab-scale (4 L), at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP). The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, chemical oxygen demand (COD) removal yields increased from 55% to 75% for model medium, diluted milk. While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000 L pilot plant, the outlet COD values decreased from values above the standard one (100 mg/L) to values in the range of 50-70 mg/L. In addition, there was a clear impact of fungal addition on the 'hard' or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD5 ratio between the inlet and the outlet of the biological tank of WWTP. It was in the range of 451%-1111% before adding fungal consortium, and in the range of 257%-153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in

  8. Oxidation pond for municipal wastewater treatment

    Science.gov (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei

    2017-03-01

    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  9. Periodically operated bioreactors for the treatment of soils and leachates

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L.; Cassidy, D.P. [Univ. of Notre Dame, IN (United States). Center for Bioventing and Pollution Control

    1995-12-31

    Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rate and renders solid-phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. Periodic aeration during solid-phase bioremediation has the potential to lower treatment costs relative to continuous aeration. A biological treatment system consisting of slurrying followed by periodic aeration in solid-phase sequencing batch reactors (SP-SBRs) was developed and tested in the laboratory using a silty loam contaminated predominantly with the plasticizer bis(2-ethylhexyl)phthalate (BEHP) or (DEHP) and a silty clay loam contaminated with diesel fuel. The first experiment evaluated the effect of water content and mixing time during slurrying on subsequent treatment in continuously aerated solid-phase bioreactors. The second experiment compared treatment of slurried soil in SP-SBRs using three different periodic aeration strategies with continuous aeration.

  10. Bioremediation of nitroexplosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor.

    Science.gov (United States)

    Kanekar, S P; Kanekar, P P; Sarnaik, S S; Gujrathi, N P; Shede, P N; Kedargol, M R; Reardon, K F

    2009-02-01

    Nitroexplosives are essential for security and defense of the nation and hence their production continues. Their residues and transformed products, released in the environment are toxic to both terrestrial and aquatic life. This necessitates remediation of wastewaters containing such hazardous chemicals to reduce threat to human health and environment. Bioremediation technologies using microorganisms become the present day choice. High Melting Explosive (HMX) is one of the nitroexplosives produced by nitration of hexamine using ammonium nitrate and acetic anhydride and hence the wastewater bears high concentration of nitrate and acetate. The present investigation describes potential of a soil isolate of yeast Pichia sydowiorum MCM Y-3, for remediation of HMX wastewater in fixed film bioreactor (FFBR). The flask culture studies showed appreciable growth of the organism in HMX wastewater under shake culture condition within 5-6 days of incubation at ambient temperature (28 +/- 2 degrees C). The FFBR process operated in both batch and continuous mode, with Hydraulic Retention Time (HRT) of 1 week resulted in 50-55% removal in nitrate, 70-88% in acetate, 50-66% in COD, and 28-50% in HMX content. Continuous operation of the reactor showed better removal of nitrate as compared to that in the batch operation, while removal of acetate and COD was comparable in both the modes of operation of the reactor. Insertion of baffles in the reactor increased efficiency of the reactor. Thus, FFBR developed with baffles and operated in continuous mode will be beneficial for bioremediation of high nitrate and acetate containing wastewater using the culture of P. sydowiorum.

  11. Aquatic Plants and Wastewater Treatment (an Overview)

    Science.gov (United States)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  12. Phenol biodegradation and microbial community dynamics in extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater.

    Science.gov (United States)

    Ren, Long-Fei; Chen, Rui; Zhang, Xiaofan; Shao, Jiahui; He, Yiliang

    2017-11-01

    An extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater was set up in this study to investigate the variations of phenol removal, extracellular polymeric substance (EPS) release and microbial community dynamics. The gradual release of phenol and the total separation of salt were achieved by silicon rubber tube membrane. Only phenol (55.6-273.9mg/L) was extracted into microorganism unit from wastewaters containing 1.0-5.0g/L phenol and 35.0g/L NaCl. After 82d of EMBR operation, maximal 273.9mg/L of phenol was removed in EMBR. Low concentration of phenol in wastewater (2.5g/L) played a favorable effect on the microbial community structure, community and dynamics. The enumeration of Proteobacteria (30,499 sequences) significantly increased with more released EPS (82.82mg/gSS) to absorb and degrade phenol, compared to the virgin data without phenol addition. However, high concentration of phenol showed adverse effects on EPS release, microbial abundance and biodiversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Performance and Fouling in Pre-Denitrification Membrane Bioreactors Treating High-Strength Wastewater from Food Waste Disposers

    Directory of Open Access Journals (Sweden)

    Jongkeun Lee

    2017-07-01

    Full Text Available The study investigated the performance of the pre-denitrification membrane bioreactor (MBR process to treat high-strength wastewater generated from food waste disposals. Extracellular polymeric substances (EPS as membrane foulant and microbial community profiles were analyzed under different hydraulic retention time (HRT operation conditions. The pre-denitrification MBR was effective for treating food wastewater with high chemical oxygen demand (COD/N resulting in high total nitrogen (TN removal efficiency. The operational data showed that effluent qualities in terms of COD, TN, and TP improved with longer HRT. However, membrane fouling potential as shown by specific membrane fouling rate and specific resistance to filtration (SRF increased as HRT increased. The longer HRT conditions or lower influent loading led to higher levels of bound EPS while HRT did not show large effects on the level of soluble microbial products (SMP. The restriction fragment length polymorphism (RFLP analysis showed similar microbial banding patterns from the sludges generated under different HRT conditions, indicating that HRT had minimal effects on the composition of microbial communities in the system. All these results suggest that the MBR with pre-denitrification is a feasible option for treating high-strength food wastewater and that different HRT conditions could affect the operational performance and the fouling rate, which is governed via changes in microbial responses through EPS in the system.

  14. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future.

  15. LAW CAPACITY WASTEWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj

    2012-01-01

    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  16. Emergency Planning for Municipal Wastewater Treatment Facilities.

    Science.gov (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  17. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  18. Fiber Treatment Effects on Bioreactor Bulk Fluid Trends

    Science.gov (United States)

    Ellis, Ronald II

    2013-01-01

    In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.

  19. New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor.

    Science.gov (United States)

    Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing

    2017-11-01

    In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  1. Cosmetic wastewater treatment using dissolved air flotation

    Directory of Open Access Journals (Sweden)

    Bogacki Jan Paweł

    2017-06-01

    Full Text Available Five cosmetics wastewater samples were treated by Dissolved Air Flotation (DAF assisted by coagulation. Different aluminum based coagulants were used: (Al2(SO43, Al 1019, Al 3010, Al 3030, Al 3035, PAX 16 and PAX 19. The raw wastewater COD values were in the range 285-2124 mg/l. The efficiency of DAF depended on different coagulants and production profi le of factory. COD removal was varied from 11.1 to 77.7%. The efficiency of coagulants was similar during treatment of particular sample. The best results were obtained with Al2(SO43 and for sample 5 - lotions and shampoos production. The wastewater from UV fi lter creams production (sample 4 was resistant to treatment by DAF regardless of used coagulant. HS-SPME-GC-MS analysis can be a confirmation of DAF effectiveness

  2. Constructed wetlands in the treatment of agro-industrial wastewater: A review

    Directory of Open Access Journals (Sweden)

    Sultana Mar-Yam

    2015-01-01

    Full Text Available Due to their simplicity and low operation cost, constructed wetlands are becoming more prevalent in wastewater treatment all over the world. Their range of applications is no longer limited to municipal wastewater but has expanded to the treatment of heavily polluted wastewaters such as agro-industrial effluents. This paper provides a comprehensive literature review of the application of constructed wetlands in treating a variety of agro-industrial wastewaters, and discusses pollutant surface loads and the role of constructed wetland type, prior-treatment stages and plant species in pollutant removal efficiency. Results indicate that constructed wetlands can tolerate high pollutant loads and toxic substances without losing their removal ability, thus these systems are very effective bio-reactors even in hostile environments. Additionally, the review outlines issues that could improve pollutant treatment efficiency and proposes design and operation suggestions such as suitable vegetation, porous media and constructed wetland plain view. Finally, a decision tree for designing constructed wetlands treating agro-industrial wastewaters provides an initial design tool for scientists and engineers.

  3. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  4. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.

    2016-01-01

    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  5. Constructed wetlands: A future alternative wastewater treatment ...

    African Journals Online (AJOL)

    Wastewater treatment will always pose problems if there are no new alternative technologies in place to replace the currently available technologies. More recently, it has been estimated that developing countries will run out of water by 2050. This is a course for concern not only to the communities but also a challenge to ...

  6. WASTEWATER TREATMENT USING MACROALGAE KELP SP.

    Directory of Open Access Journals (Sweden)

    Suzana Elena BIRIS-DORHOI

    2016-11-01

    Full Text Available In the present study was used the alga Kelp sp. in wastewater collected from a household, in order to experiment its treatment capacities. Every measurement in this study was made using Spectoquant NOVA 60. The results show an decrease in the main parameters when low quantities of algae were used, but an increase when larger quantities were used.

  7. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  8. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  9. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  10. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater.

    Science.gov (United States)

    Yu, Dawei; Liu, Jibao; Sui, Qianwen; Wei, Yuansong

    2016-03-01

    Control of organic loading rate (OLR) is essential for anaerobic digestion treating high COD wastewater, which would cause operation failure by overload or less efficiency by underload. A novel biogas-pH automation control strategy using the combined gas-liquor phase monitoring was developed for an anaerobic membrane bioreactor (AnMBR) treating high COD (27.53 g·L(-1)) starch wastewater. The biogas-pH strategy was proceeded with threshold between biogas production rate >98 Nml·h(-1) preventing overload and pH>7.4 preventing underload, which were determined by methane production kinetics and pH titration of methanogenesis slurry, respectively. The OLR and the effluent COD were doubled as 11.81 kgCOD·kgVSS(-1)·d(-1) and halved as 253.4 mg·L(-1), respectively, comparing with a constant OLR control strategy. Meanwhile COD removal rate, biogas yield and methane concentration were synchronously improved to 99.1%, 312 Nml·gCODin(-1) and 74%, respectively. Using the biogas-pH strategy, AnMBR formed a "pH self-regulation ternary buffer system" which seizes carbon dioxide and hence provides sufficient buffering capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system.

    Science.gov (United States)

    Speth, Daan R; In 't Zandt, Michiel H; Guerrero-Cruz, Simon; Dutilh, Bas E; Jetten, Mike S M

    2016-03-31

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

  12. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    Science.gov (United States)

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Towards energy positive wastewater treatment plants.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  14. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou-Ttofa, L.; Foteinis, S. [Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia (Cyprus); Chatzisymeon, E. [Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom); Fatta-Kassinos, D., E-mail: dfatta@ucy.ac.cy [Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia (Cyprus); Department of Civil Engineering and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia (Cyprus)

    2016-10-15

    This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1 m{sup 3} of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system. - Highlights: • The environmental sustainability of

  15. Catalytic thermal treatment of desizing wastewaters.

    Science.gov (United States)

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2007-10-01

    In the present study, catalytic thermal treatment (thermolysis) was investigated for the reduction of COD and color of the desizing wastewater under moderate temperature and atmospheric pressure conditions using various catalysts. The experimental runs were performed in a glass reactor equipped with a vertical condenser. The homogeneous copper sulfate catalyst was found to be the most active in comparison to other catalysts under similar operating conditions. A removal of about 71.6% chemical oxygen demand (COD) and 87.2% color of desizing wastewater was obtained with a catalyst concentration of 4 kg/m(3) at pH 4. The initial pH value of the wastewater showed a pronounced effect on the precipitation process. During the thermolysis, copper gets leached to the aqueous phase, the residue obtained after the treatment is rich in copper and it can be blended with organic manure for use in agricultural fields. The thermogravimetric analysis showed that the thermal oxidation of the solid residue obtained after thermolysis gets oxidized at a higher temperature range than that of the residue obtained from the desizing wastewater. The results lead to the conclusion that thermochemical precipitation is a very fast (instantaneous) process and would need a very small reactor vessel in comparison to other processes.

  16. Microbial community structure of activated sludge in treatment plants with different wastewater compositions

    Directory of Open Access Journals (Sweden)

    Nataliya M. Shchegolkova

    2016-02-01

    Full Text Available Activated sludge (AS plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc. and inductors of AS bulking and flocculation (Comamonadaceae, Flavobacteriaceae, etc., which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater, which was rich in organic matter. Here we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS flocculation and bulking (abundant in AS of slaughterhouse wastewater played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will help to optimize bioreactor performance and

  17. Discussion on Wastewater Treatment Process of Coal Chemical Industry

    Science.gov (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie

    2017-12-01

    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  18. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Caballero, A.; Aymerich, I. [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain); Poch, M. [Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG), Institute of the Environment, University of Girona, Campus Montilivi s/n, E-17071 Girona (Spain); Pijuan, M., E-mail: mpijuan@icra.cat [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain)

    2014-09-15

    In this study, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH{sub 4} and N{sub 2}O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH{sub 4} or N{sub 2}O peak emissions. CH{sub 4} emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N{sub 2}O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH{sub 4} and N{sub 2}O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH{sub 4} and N{sub 2}O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH{sub 4} and N{sub 2}O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH{sub 4} emissions were related with the inflow of influent and reject wastewater. • N{sub 2}O was generated as consequence of nitrification imbalances.

  19. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    2000) Wastewater treatment by pond systems: experi- ences in Catalonia, Spain. Water Sci. Technol. 42 (10-11) 35-42. STANDARD METHODS (1995) Standard Methods for the Examination of Water and Wastewater (19th edn.) ...

  20. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....

  1. Optimizing potassium ferrate for textile wastewater treatment by RSM

    OpenAIRE

    Maryam Moradnia; Masoud Panahifard; Kavoos Dindarlo; Hamzeh Ali Jamali

    2016-01-01

    Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD) and response surface methodology (RSM) to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a p...

  2. Cheese whey wastewater: characterization and treatment.

    Science.gov (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Filtration characteristics in membrane bioreactors

    OpenAIRE

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and quantification of the filterability of an activated sludge and b) carrying out short term experiments at labscale to determine foulants and/or fouling propensity determining factors. The installation w...

  4. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    Science.gov (United States)

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.

  5. Forward Osmosis in Wastewater Treatment Processes.

    Science.gov (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  6. Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Wen-Wei Li

    2016-12-01

    Full Text Available Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse. Over the past few years, some wastewater treatment plants have tried to revamp themselves as “resource factories,” enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side-stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.

  7. A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Kim, Sa Dong; Yoon, Yong Soo

    2014-10-01

    A specifically designed pilot-scale hybrid wastewater treatment system integrating an innovative equalizing reactor (EQ), rotating hanging media bioreactor (RHMBR) and submerged flat sheet membrane bioreactor (SMBR) was evaluated for its effectiveness in practical, long-term, real-world applications. The pilot system was operated at a constant flux, but with different internal recycle flow rates (Q) over a long-term operating of 475 days. At 4 Q internal recycle flow rate, BOD5, CODCr, NH4(+)-N, T-N, T-P and TSS was highly removed with efficiencies up to 99.88 ± 0.05%, 95.01 ± 1.62%, 100%, 90.42 ± 2.43%, 73.44 ± 6.03%, and 99.93 ± 0.28%, respectively. Furthermore, the effluent quality was also superior in terms of turbidity (<1 NTU), color (<15 TCU) and taste (inoffensive). The results indicated that with providing only chemically cleaned-in-place (CIP) during the entire period of operation, the membrane could continuously maintain a constant permeate flux of 22.77 ± 2.19 L/m(2)h. In addition, the power consumption was also found to be reasonably low (0.92-1.62 k Wh/m(3)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  9. Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Mohanakrishna, G.; Ramanaiah, S.V.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India)

    2008-01-15

    Biohydrogen (H{sub 2}) production with simultaneous wastewater treatment was studied in anaerobic sequencing batch biofilm reactor (AnSBBR) using distillery wastewater as substrate at two operating pH values. Selectively enriched anaerobic mixed consortia sequentially pretreated with repeated heat-shock (100{sup o}C; 2 h) and acid (pH -3.0; 24 h) methods, was used as parent inoculum to startup the bioreactor. The reactor was operated at ambient temperature (28{+-}2 {sup circle} C) with detention time of 24 h in periodic discontinuous batch mode. Experimental data showed the feasibility of hydrogen production along with substrate degradation with distillery wastewater as substrate. The performance of the reactor was found to be dependent on the operating pH. Adopted acidophilic microenvironment (pH 6.0) favored H{sub 2} production (H{sub 2} production rate - 26 mmol H{sub 2}/day; specific H{sub 2} production - 6.98 mol H{sub 2}/kg COD{sub R}-day) over neutral microenvironment (H{sub 2} production rate - 7 mmol H{sub 2}/day; specific H{sub 2} production - 1.63 mol H{sub 2}/kg COD{sub R}-day). However, COD removal efficiency was found to be effective in operated neutral microenvironment (pH 7 - 69.68%; pH 6.0 - 56.25%). The described process documented the dual benefit of renewable energy generation in the form of H{sub 2} with simultaneous wastewater treatment utilizing it as substrate. (author)

  10. Electrochemical treatment of olive oil mill wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences

    2001-04-01

    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  11. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  12. Treatment of acid mine wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, D.; Barnard, R.

    1993-06-01

    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis.

  13. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Directory of Open Access Journals (Sweden)

    Boguniewicz-Zabłocka Joanna

    2017-01-01

    Full Text Available During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions pollution removal occurs mostly with higher efficiency.

  14. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Science.gov (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  15. Microbial community analysis of a full-scale DEMON bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  16. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  17. Photocatalytic Treatment of a Synthetic Wastewater

    Science.gov (United States)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  18. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  19. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  20. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment.

  1. Coagulation in Treatment of Swine Slaughterhouse Wastewater

    Directory of Open Access Journals (Sweden)

    Ha Bui Manh

    2017-03-01

    Full Text Available In this study, wastewater taken from the Nam Phong swine slaughterhouse, Ho Chi Minh City, was used to evaluate the treatment efficiency of common coagulants, including Alum (Aluminum Sulfate - Al2(SO43.18H2O, Poly-Aluminum Chloride (PAC, and Ferrous Sulfate (FeSO4.7H2O, using a jar-test system. The experiments were conducted using the one-factor-at-a-time method to examine three variables which are pH, stirring speed, and coagulant dosage. The results showed that both Alum and PAC perform over 90% removal of colour, turbidity, COD, and total phosphorus (TP from slaughterhouse wastewater at pH 7 with a stirring speed of 75 revolutions per minute (RPM and average coagulant dosages of 450 mg/L for Alum and 550 mg/L for PAC. Meanwhile, under the appropriate conditions of pH equal to 10 and 75 RPM with a chemical dosage of 350 mg/L, COD and TP removal efficiencies by Ferrous Sulfate exceed 87%, but those of turbidity and colour only reach 25%. This finding could be a promising coagulation method as a pre-treatment for the swine slaughterhouse wastewater.

  2. AN OVERVIEW OF WASTEWATER TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Ionela Ramona SURDU

    2015-05-01

    Full Text Available Water-resource management key issues include the re-use of wastewater for drinkingwater supply or for industrial or agriculture purposes. In this context, the organic contaminants effects in sewage water entering theenvironment have gained more attention. The studies carried out for these contaminants varied widely, as a function of the substances: pesticides, pharmaceuticalsand diagnostic contrast products, personal care products,antibiotics and so on. Most of the wastewater treatment plants (WWTPs are not really designed totreat these type of compounds and an important part of emerging compounds may enter the aquatic environment via sewage effluents.This study gives an overview of the research concerning the technological steps that must be achieved in WWTP’s, in order to reduce at maximum theoccurrence oforganic substances in effluents.

  3. Enhancing the Electron Transfer Capacity and Subsequent Color Removal in Bioreactors by Applying Thermophilic Anaerobic Treatment and Redox Mediators

    NARCIS (Netherlands)

    Santos, dos A.B.; Traverse, J.; Cervantes, F.J.; Lier, van J.B.

    2005-01-01

    The effect of temperature, hydraulic retention time (HRT) and the redox mediator anthraquinone-2,6-disulfonate (AQDS), on electron transfer and subsequent color removal from textile wastewater was assessed in mesophilic and thermophilic anaerobic bioreactors. The results clearly show that compared

  4. Wastewater treatment alternatives for a vegetable and seafood cannery

    OpenAIRE

    Grassiano, James W.

    1990-01-01

    Peeled or whole-pack tomatoes, herring roe and oysters are processed at a Virginia Cannery. Wastewater from each food processing effluent was characterized. Treatment alternatives were investigated for tomato and herring roe wastewaters. For herring roe processing wastewater, the discharge requirement for BOD was nearly met through plain settling, while the TSS limitation was easily achieved by settling out the roe particles" Oyster processing wastewater was found to meet effluent guidelines ...

  5. Membrane bioreactors fed with different COD/N ratio wastewater: impacts on microbial community, microbial products, and membrane fouling.

    Science.gov (United States)

    Han, Xiaomeng; Wang, Zhiwei; Ma, Jinxing; Zhu, Chaowei; Li, Yaxin; Wu, Zhichao

    2015-08-01

    It is known that an increase of COD/N ratio can result in an enhanced removal of nutrients in membrane bioreactors (MBRs); however, impacts of doing so on membrane filtration performance remain unclear. In this work, comparison of membrane filtration performance, microbial community, and microbial products under low temperature was carried out in anoxic/oxic (A/O) MBRs with COD/N ratios of 9.9 and 5.5 g COD/g N in influent. There was no doubt that an improvement of nitrogen removal under high COD/N ratio was observed; however, severer membrane fouling was found compared to the MBR fed with low COD/N ratio wastewater. The increase of COD/N ratio resulted in an elevated production of humic acids in soluble microbial product (SMP) and carbohydrates, proteins, and humic acids in loosely bound extracellular polymeric substance (LB-EPS). Quartz crystal microbalance with dissipation monitoring (QCM-D) analysis showed that the adsorption capability of SMP and LB-EPS was higher in the MBR with higher COD/N ratio. Four hundred fifty four high-throughput pyrosequencing revealed that the higher COD/N ratio led to the enrichment of Bacteroidetes at phylum level and Azospira, Thauera, Zoogloea, etc. at genus level. Bacteroidetes are considered to potentially release EPS, and Azospira, Thauera, and Zoogloea, etc. have denitrification activity. The change in microbial communities is consistent with MBR performance.

  6. Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study

    KAUST Repository

    Harb, Moustapha

    2016-12-24

    Although membrane bioreactor (MBR) systems provide better removal of pathogens compared to conventional activated sludge processes, they do not achieve total log removal. The present study examines two MBR systems treating municipal wastewater, one a full-scale MBR plant and the other a lab-scale anaerobic MBR. Both of these systems were operated using microfiltration (MF) polymeric membranes. High-throughput sequencing and digital PCR quantification were utilized to monitor the log removal values (LRVs) of associated pathogenic species and their abundance in the MBR effluents. Results showed that specific removal rates vary widely regardless of the system employed. Each of the two MBR effluents’ microbial communities contained genera associated with opportunistic pathogens (e.g., Pseudomonas, Acinetobacter) with a wide range of log reduction values (< 2 to >5.5). Digital PCR further confirmed that these bacterial groups included pathogenic species, in several instances at LRVs different than those for their respective genera. These results were used to evaluate the potential risks associated both with the reuse of the MBR effluents for irrigation purposes and with land application of the activated sludge from the full-scale MBR system.

  7. Structure and distribution of inorganic components in the cake layer of a membrane bioreactor treating municipal wastewater.

    Science.gov (United States)

    Zhou, Lijie; Xia, Siqing; Alvarez-Cohen, Lisa

    2015-11-01

    A laboratory-scale submerged anoxic-oxic membrane bioreactor treating municipal wastewater was operated to investigate the structure and distribution of the inorganic cake layer buildup on the membrane. BCR (European Community Bureau of Reference) sequential extraction, X-ray photoelectron spectroscopy (XPS), and both map and line scan of energy-dispersive X-ray analysis (EDX) were performed for cake layer characterization. BCR results showed that Si, Al, Ca, Mg, Fe, and Ba were the predominant inorganic elements in the cake layer, and they occurred mostly as crystal particles. Crystal SiO2 was the dominant inorganic compound while Ca in the form of CaSO4 (dominant) and CaCO3 were also present, but exerted little effect on the cake layer structure because most of these compounds were deposited as precipitates on the reactor bottom. EDX results indicated that Si and Al accumulated together along the cross-sectional cake layer in the form of Si-Al (SiO2-Al2O3) crystal particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis.

    Science.gov (United States)

    Xia, Tian; Gao, Xinyi; Wang, Caiqin; Xu, Xiangyang; Zhu, Liang

    2016-11-01

    In this study, two anaerobic membrane bioreactors (AnMBRs) were operated for 150days to treat bamboo industry wastewater (BIWW), and one of them was enhanced with bamboo charcoal (B-AnMBR). During the steady period, average chemical oxygen demand (COD) removal efficiencies of 94.5±2.9% and 89.1±3.1% were achieved in B-AnMBR and AnMBR, respectively. The addition of bamboo charcoal (BC) increased the amount of biomass and improved the performance of the systems. A higher biogas production and methane yield were also observed in B-AnMBR. Regarding the issue of membrane fouling, BC lowered the soluble microbial product (SMP) content by approximately 62.73mg/L and decreased the membrane resistance, thereby mitigating membrane fouling. Analysis of the microbial communities demonstrated that BC increased the microbial diversity and promoted the activity of Methanosaeta, Methanospirillum, and Methanobacterium, which are dominant in methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  10. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  11. Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control.

    Science.gov (United States)

    Wang, Xiaodong; Ratnaweera, Harsha; Holm, Johan Abdullah; Olsbu, Vibeke

    2017-05-15

    The on-line monitoring of Chemical oxygen demand (COD) and total phosphorus (TP) restrains wastewater treatment plants to achieve better control of aeration and chemical dosing. In this study, we applied principal components analysis (PCA) to find out significant variables for COD and TP prediction. Multiple regression method applied the variables suggested by PCA to predict influent COD and TP. Moreover, a model of full-scale wastewater treatment plant with moving bed bioreactor (MBBR) and ballasted separation process was developed to simulate the performance of wastewater treatment. The predicted COD and TP data by multiple regression served as model input for dynamic simulation. Besides, the wastewater characteristic of the wastewater treatment plant and MBBR model parameters were given for model calibration. As a result, R2 of predicted COD and TP versus measured data are 81.6% and 77.2%, respectively. The model output in terms of sludge production and effluent COD based on predicted input data fitted measured data well, which provides possibility to enabled model predictive control of aeration and coagulant dosing in practice. This study provide a feasible and economical approach to overcome monitoring and modelling restrictions that limits model predictive control of wastewater treatment plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes

  13. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  14. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    Science.gov (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  15. Swine wastewater treatment by media filtration.

    Science.gov (United States)

    Szögi, A A; Humenik, F J; Rice, J M; Hunt, P G

    1997-09-01

    A media filter was constructed to treat swine wastewater after anaerobic lagoon treatment. The media filter consisted of a tank (1.5-m-diameter x 0.6-m-height) filled with marl gravel. The marl gravel had a carbonate content of 300 g kg-1. Gravel particle size distributions were 85 and 14% in the 4.7- to 12.7-mm and 12.7- to 19-mm size classes, respectively. Pore space of the filtration unit was 57%. Wastewater flow rate was 606 L m-2 d-1, and total Kjeldahl nitrogen (TKN) load was 198 g m-2 d-1. The media filter removed 54% of chemical oxygen demand (COD) content after one cycle, but increased cycling did not produce additional COD reduction. Total suspended solids (TSS) removal after one cycle was 50% of initial levels, and additional cycling reduced TSS levels at a much lower rate of 7% per cycle. Removal efficiencies for total phosphorus (TP) ranged from 37% to 52% (one to four cycles), but long-term phosphorus removal would be limited by the sorption capacity of the gravel. Up to 24% of TKN was converted to nitrate-plus-nitrite-N (NO3+NO2-N). Effluents with high NO3+NO2-N levels can be treated further for denitrification with constructed wetlands or anaerobic lagoon. This is important in cases where land is limited for wastewater application.

  16. Process control, energy recovery and cost savings in acetic acid wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vaiopoulou, E., E-mail: vaiop@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece); Melidis, P., E-mail: pmelidis@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece); Aivasidis, A., E-mail: aavazid@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67 100 Xanthi (Greece)

    2011-02-28

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m{sup 3} d) and high space time yield (30-35 kg COD/m{sup 3} d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO{sub 2} contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO{sub 2} content during biogas combustion is minimized and usage of other acidifying agents is omitted.

  17. Waste Water treatment by membrane bioreactors; Tratamiento de aguas residuales urbanas mediante reactores biologicos de membranas

    Energy Technology Data Exchange (ETDEWEB)

    Malfeito, J. J.; Palacios, E.

    2001-07-01

    Wastewater reuse plants can be simplified to a single step process with a membrane bioreactor developed by PRIDESA. The process consists on a biological reactor integrated with immersed membranes that combines clarification and filtration of an activated sludge process into a simplified single step process. Because of the design of the membranes and plate and frame module, the hydrostatic pressure difference is enough to ensure the design permeate flowrate. That means low energy requirements and reduced fouling, as contaminants are not forced into the membrane pores. A 90-days pilot scale operation for reclamation of urban wastewater was studied and the performance of the system was investigated with a sludge retention time (SRT) of 25 days and membrane flux between 50.90 l/h. with different membranes. Averaged 98% of BODS, a 95% of COD and a 99.49% of SS were removed. (Author) 5 refs.

  18. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment.

    Science.gov (United States)

    Arvaniti, Olga S; Stasinakis, Athanasios S

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4-C14, C16, C18 carboxylates; C4-C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and anaerobic

  19. Microbial biogeography across a full-scale wastewater treatment plant transect: evidence for immigration between coupled processes.

    Science.gov (United States)

    Wells, George F; Wu, Cindy H; Piceno, Yvette M; Eggleston, Brad; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Hazen, Terry C; Francis, Christopher A; Criddle, Craig S

    2014-05-01

    Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2 (-) entering the reactor from an upstream trickling filter. Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2 (-) production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct "Nitrosomonas-like" lineage dominated in activated sludge. Prior time series indicated that this "Nitrosomonas-like" lineage was dominant when NO2 (-) levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2 (-) levels were high. This is consistent with the hypothesis that NO2 (-) production may cooccur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community

  20. Effect of sensor location on controller performance in a wastewater treatment plant.

    Science.gov (United States)

    Rehman, U; Vesvikar, M; Maere, T; Guo, L; Vanrolleghem, P A; Nopens, I

    2015-01-01

    Complete mixing is hard to achieve in large bioreactors in wastewater treatment plants. This often leads to a non-uniform distribution of components such as dissolved oxygen and, hence, the process rates depend on them. Furthermore, when these components are used as input for a controller, the location of the sensor can potentially affect the control action. In this contribution, the effect of sensor location and the choice of setpoint on the controller performance were examined for a non-homogeneously mixed pilot bioreactor described by a compartmental model. The impacts on effluent quality and aeration cost were evaluated. It was shown that a dissolved oxygen controller with a fixed setpoint performs differently as a function of the location of the sensor. When placed in a poorly mixed location, the controller increases the aeration intensity to its maximum capacity leading to higher aeration costs. When placed just above the aerated zone, the controller decreases the aeration rate resulting in lower dissolved oxygen concentrations in the remainder of the system, compromising effluent quality. In addition to the location of the sensor, the selection of an appropriate setpoint also impacts controller behavior. This suggests that mixing behavior of bioreactors should be better quantified for proper sensor location and controller design.

  1. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    Science.gov (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  2. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  3. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  4. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    , the water is not lost (non-consumptive uses); but it is heavily polluted. Water treatment can be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use. Marine discharge may violate quality required for use of the marine waters...... receiving the discharge. The EU has decided on regulation of wastewater treament by enforcing effluent standards. This is interpreted in relation to basic EU-principles and discussed with regard to an ethical framework of thinking. The conclusion is that basically different concepts are difficult...

  5. Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor.

    Science.gov (United States)

    Jin, Yi; Gan, Guojuan; Yu, Xiaoyun; Wu, Dongdong; Zhang, Li; Yang, Na; Hu, Jiadan; Liu, Zhiheng; Zhang, Lixin; Hong, Huachang; Yan, Xiaoqing; Liang, Yan; Ding, Linxian; Pan, Yonglong

    2017-07-01

    Printing and dyeing wastewater with high content of organic matters, high colority, and poor biochemical performance is hard to be degraded. In this study, we isolated viable but non-culturable (VBNC) bacteria from printing and dyeing wastewater with the culture media contained resuscitation promoting factor (Rpf) protein secreted by Micrococcus luteus, counted the culturable cells number with the most probable number, sequenced 16S rRNA genes, and performed polymerase chain reaction-denaturing gradient gel electrophoresis. It is obviously that the addition of Rpf in the enrichment culture could promote growth and resuscitation of bacteria in VBNC state to obtain more fastidious bacteria significantly. The identified bacteria were assigned to nine genera in the treatment group, while the two strains of Ochrobactrum anthropi and Microbacterium sp. could not be isolated from the control group. The function of isolated strains was explored and these strains could degrade the dye of Congo red. This study provides a new sight into the further study including the present state, composition, formation mechanism, and recovery mechanism about VBNC bacteria in printing and dyeing wastewater, which would promote to understand bacterial community in printing and dyeing wastewater, and to obtain VBNC bacteria from ecological environment.

  6. Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater

    Directory of Open Access Journals (Sweden)

    Zulema Borjas

    2015-12-01

    Full Text Available Microbial electrochemical technologies (METs constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC followed in time by a microbial fuel cell (MFC to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.

  7. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  8. Membrane-based treatment for tanning wastewaters 

    OpenAIRE

    Catarino, Justina; MENDONÇA, E.; Picado, Ana; Lança, Ana; Silva, Luís Manuel; Pinho, Maria

    2013-01-01

    Tanning wastewater was subjected to different unit operations to select the best treatment sequences. Textile membrane filtration (TMF), microfiltration (MF), and ultrafiltration (UF) were complemented by screening, flocculation or flotation operations. The general chemical characterization determined that the wastewater had a high organic load. The ecotoxicological study classified the wastewater as highly ecotoxic. The sequence of screening–TMF – UF was found to be the optimal treatment...

  9. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    OpenAIRE

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site wastewater treatment, but also for the generation of nutrient-rich irrigation water leading to reuse and recycling possibility for agricultural applications as well. Furthermore, biogas produced in...

  10. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2015-08-14

    Two lab-scale anaerobic membrane bioreactors (AnMBRs), one up-flow attached-growth (UA) and another continuously stirred (CSTR), were operated under mesophilic conditions (35 °C) while treating synthetic municipal wastewater (800 mg L−1 COD). Each reactor was attached to both polyvinylidene fluoride (PVDF) and polyethersulfone (PES) microfiltration (MF) membranes in an external cross-flow configuration. Both reactors were started up and run under the same operating conditions for multiple steady-state experiments. Chemical oxygen demand (COD) removal rates were similar for both reactors (90–96%), but captured methane was found to be 11–18% higher for the CSTR than the UA reactor. Ion Torrent sequencing targeting 16S rRNA genes showed that several operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e.g., Methanosaeta) and syntrophic bacteria (e.g., Smithella propionica) were found in significantly higher relative abundances in the UA AnMBR as compared to the CSTR due to their affinity for surface attachment. Of the methanogens that were present in the CSTR sludge, hydrogenotrophic methanogens dominated (e.g., Methanobacterium). Measured EPS (both proteins and carbohydrates), which has been broadly linked to fouling, was determined to be consistently lower in the UA AnMBR membrane samples than in CSTR AnMBR membrane samples. Principal component analysis (PCA) based on HPLC profiles of soluble microbial products (SMPs) further demonstrated these differences between reactor types in replicate runs. The results of this study showed that reactor configuration can significantly impact the development of the microbial communities of AnMBRs that are responsible for both membrane and reactor performance.

  11. Thermophilic anaerobic digestion for waste and wastewater treatment

    NARCIS (Netherlands)

    Wiegant, W.M.

    1986-01-01

    This thesis deals with thermophilic anaerobic waste and wastewater treatment. A literature survey is presented, in which the thermophilic treatment processes are evaluated with respect to the loading rates and treatment efficiencies, and some relevant theoretical considerations concerning

  12. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  13. Effect of carbon to nitrogen ratio of feed wastewater and sludge retention time on activated sludge in a submerged membrane bioreactor.

    Science.gov (United States)

    Erkan, Hanife Sari; Onkal Engin, Guleda; Ince, Mahir; Bayramoglu, Mahmut R

    2016-06-01

    This paper investigated the effects of extracellular polymeric substances (EPS) on the activated sludge rheology in a submerged membrane bioreactor (sMBR) operated at different sludge retention time (SRT) values and different carbon to nitrogen ratios (C/N) of feed wastewater. The C/N ratios of the feed were adjusted accordingly so that synthetic wastewaters prepared simulated municipal wastewater, non-toxic wastewater with high C/N ratio and non-toxic wastewater with low C/N ratio. A number of important operational parameters such as mixed liquor suspended solid (MLSS), protein fraction of EPS (EPSp), carbohydrate fraction of EPS (EPSc), protein fraction of soluble microbial product (SMPp), carbohydrate fraction of SMP (SMPc), apparent viscosity, critical flux and hydrophobicity in mixed liquor and their correlations were investigated in the sMBR systems operated. The statistical analysis indicated that the C/N ratio of feed, SRT, MLSS and SMPc were found to have positive effects on apparent viscosity at three different shear rates. On the other hand, a negative impact was detected between the apparent viscosities and the critical fluxes. It was also observed that there is a significant positive correlation between hydrophobicity and both EPSp and SMPp.

  14. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  15. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua [Beijing National Laboratory for Molecular Sciences, New Materials Laboratory, Institute of Chemistry, Chinese Academy of Science, Zhongguancun North First Street 2, Beijing 100190 (China); Business Unit of Energy Systems, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Strasse 3, Oberhausen 46047 (Germany); Yang, Haijun; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences, New Materials Laboratory, Institute of Chemistry, Chinese Academy of Science, Zhongguancun North First Street 2, Beijing 100190 (China); Berthold, Sascha; Doetsch, Christian [Business Unit of Energy Systems, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Strasse 3, Oberhausen 46047 (Germany)

    2010-10-01

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A{sup 2}/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m{sup 3} pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A{sup 2}/O process. When the grid is connected, the system cost achieved is 0.238 US$ t{sup -1} wastewater, which is lower than 0.257 US$ t{sup -1} by the A{sup 2}/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A{sup 2}/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid. (author)

  16. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    Science.gov (United States)

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview.

    Science.gov (United States)

    Shi, Yahui; Huang, Jinhui; Zeng, Guangming; Gu, Yanling; Chen, Yaoning; Hu, Yi; Tang, Bi; Zhou, Jianxin; Yang, Ying; Shi, Lixiu

    2017-08-01

    Extracellular polymeric substances (EPS) are present both outside of the cells and in the interior of microbial aggregates, and account for a main component in microbial aggregates. EPS can influence the properties and functions of microbial aggregates in biological wastewater treatment systems, and specifically EPS are involved in biofilm formation and stability, sludge behaviors as well as sequencing batch reactors (SBRs) granulation whereas they are also responsible for membrane fouling in membrane bioreactors (MBRs). EPS exhibit dual roles in biological wastewater treatments, and hence the control of available EPS can be expected to lead to changes in microbial aggregate properties, thereby improving system performance. In this review, current updated knowledge with regard to EPS basics including their formation mechanisms, important properties, key component functions as well as sub-fraction differentiation is given. EPS roles in biological wastewater treatments are also briefly summarized. Special emphasis is laid on EPS controlling strategies which would have the great potential in promoting microbial aggregates performance and in alleviating membrane fouling, including limitation strategies (inhibition of quorum sensing (QS) systems, regulation of environmental conditions, enzymatic degradation of key components, energy uncoupling etc.) and elevation strategies (enhancement of QS systems, addition of exogenous agents etc.). Those strategies have been confirmed to be feasible and promising to enhance system performance, and they would be a research niche that deserves further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel low-fouling membranes from lab to pilot application in textile wastewater treatment.

    Science.gov (United States)

    Galiano, Francesco; Friha, Ines; Deowan, Shamim Ahmed; Hoinkis, Jan; Xiaoyun, Ye; Johnson, Daniel; Mancuso, Raffaella; Hilal, Nidal; Gabriele, Bartolo; Sayadi, Sami; Figoli, Alberto

    2018-04-01

    A novel antifouling coating based on the polymerization of a polymerisable bicontinuous microemulsion (PBM) was developed and applied for commercially available membranes for textile wastewater treatment. PBM coating was produced by polymerizing, on a polyethersulfone (PES) membrane, a bicontinuous microemulsion, realized by finely tuning its properties in terms of chemical composition and polymerization temperature. In particular, the PBM was prepared by using, as the surfactant component, inexpensive and commercially available dodecyltrimethylammonium bromide (DTAB). The coating exhibited a more hydrophilic and a smoother surface in comparison to uncoated PES surface, making the produced PBM membranes more resistant and less prone to be affected by fouling. The anti-fouling potential of PBM membranes was assessed by using humic acid (HA) as a model foulant, evaluating the water permeability decrease as an indicator of the fouling propensity of the membranes. PBM membrane performances in terms of dye rejection, when applied for model textile wastewater treatment, were also evaluated and compared to PES commercial ones. The PBM membranes were finally successfully scaled-up (total membrane area 0.33 m 2 ) and applied in a pilot membrane bioreactor (MBR) unit for the treatment of real textile wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Treatment of Wastewater from Backwashing Process Sand Filters

    Directory of Open Access Journals (Sweden)

    Miletić, S.

    2011-10-01

    Full Text Available In the process of raw water treatment for use in the petrochemical industry, one of the most important treatments is the filtration process with process sand filters. A by-product of the filtration process of raw water is wastewater. The wastewater results from the technological process of backwashing process sand filters. Wastewater from backwashing sand filters is unsuitable for further use, since it is contaminated with residual suspended matter and chemical compounds that are added in the process of raw water clarification. To reduce the environmental impact of such wastewater and improve overall system processing of raw water, this paper presents the technological treatment of wastewater from backwashing process sand filters. The selected technological process with subsequent sedimentation of suspended matter from the wastewater enables it to be returned into the process stream. This paper also presents a wastewater treatment system, which consists of a concrete sedimentation tank, pumps, pipelines, and flocculator for the final acceptance of the wastewater. The treatment system of wastewater from backwashing process sand filters includes the wastewater from backwashing sand filters for the filtration of the clarified water after clarification of the raw water, sand filters for the filtration of the cooling water and sand filters for filtration of clarified water prior to ion decarbonatisation. The overall technological process is efficiently sized and fully automated. The treatment of wastewater from backwashing process sand filters allows the successful and continuous return of the water in a volume flow, Q, from 80 m3h-1 to 85 m3 h-1, with no negative impact on the clarification of raw water. The constructed technological solution resulted in 12-percent less use of raw water from the Pakra accumulation lake, as well as 50-percent less discharge of the wastewater into natural watercourses.

  20. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of

  1. Energy-saving wastewater treatment systems : formulation of cost functions

    OpenAIRE

    Nogueira, R.; Ferreira, I.; Janknecht, P; Rodríguez, Juan José; de Oliveira, Pedro; A. G. Brito

    2007-01-01

    Natural interactions between water, soil, atmosphere, plants and microorganisms include physical, chemical and biological processes with decontaminating capacities. Natural or energy-saving wastewater treatment systems utilize these processes and thereby enable a sustainable management in the field of wastewater treatment, offering low investment and operation costs, little or no energy consumption, little and low-skill labor requirements, good landscape integration and excellent ...

  2. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    2013-08-15

    Aug 15, 2013 ... Treatment of dyeing wastewater including reactive dyes. (Reactive Red RB, Reactive Black B, ... Keywords: Rhizopus arrhizus, wastewater treatment, decolourisation, textile dye. INTRODUCTION. Dyeing effluents ... as bacteria, yeasts, algae and fungi, are able to remove differ- ent classes of dyes (Fu and ...

  3. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  4. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    Science.gov (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  5. Optimal design of wastewater treatment plant using adaptive ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... This paper deals with the application of Adaptive Simulated Annealing (ASA) for the optimal design of the wastewater treatment plant. The plant ... In this work a successful attempt has been made to use the ASA for optimal design of wastewater treatment plant.

  6. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The flocculants applied in the oil refining plant wastewater treatment

    Science.gov (United States)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.

    2017-08-01

    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  8. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater.

    Science.gov (United States)

    Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2017-10-15

    Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  10. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    Science.gov (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  11. Performance of pulsed plate bioreactor for biodegradation of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, K. Vidya [Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasanagar 575025, Karnataka (India)]. E-mail: vidyaks68@yahoo.com; Kalifathulla, I. [Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasanagar 575025, Karnataka (India); Srinikethan, G. [Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasanagar 575025, Karnataka (India)

    2007-02-09

    Biodegradation of phenol was carried out using Nocardia hydrocarbonoxydans immobilised on glass beads, in a pulsed plate bioreactor. The effect of operating parameters like frequency of pulsation and amplitude of pulsation on the performance of pulsed plate bioreactor for biodegradation of phenol in a synthetic wastewater containing 500 ppm phenol was studied. Axial concentration profile measurements revealed that the pulsed plate bioreactor shows continuous stirred tank behaviour. As the amplitude was increased, percentage degradation increased, reaching 100% at amplitude of 4.7 cm and higher. Introduction of pulsation is found to increase the percentage degradation. Percentage degradation has increased with increase in frequency and 100% degradation was achieved at 0.5 s{sup -1} and above. Biofilms developed in a non-pulsed bioreactor were thicker than those in the pulsed plate bioreactor. But biofilm thickness remained almost constant with increasing frequency. Biofilm density was found to be influenced by pulsation. The time required to reach steady state was more for pulsed reactor than the non-pulsed reactor and this start-up time had increased with increase in frequency of pulsation. The performance studies reveal that the pulsed plate bioreactor with immobilized cells has the potential to be an efficient bioreactor for wastewater treatment.

  12. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration.

    Science.gov (United States)

    Praveen, Prashant; Heng, Jonathan Yun Ping; Loh, Kai-Chee

    2016-12-01

    Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Agricultural use of municipal wastewater treatment plant ...

    Science.gov (United States)

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  14. Modeling duckweed growth in wastewater treatment systems

    Science.gov (United States)

    Landesman, L.; Parker, N.C.; Fedler, C.B.; Konikoff, M.

    2005-01-01

    Species of the genera Lemnaceae, or duckweeds, are floating aquatic plants that show great promise for both wastewater treatment and livestock feed production. Research conducted in the Southern High Plains of Texas has shown that Lemna obscura grew well in cattle feedlot runoff water and produced leaf tissue with a high protein content. A model or mathematical expression derived from duckweed growth data was used to fit data from experiments conducted in a greenhouse in Lubbock, Texas. The relationship between duckweed growth and the total nitrogen concentration in the mediium follows the Mitscherlich Function and is similar to that of other plants. Empirically derived model equations have successfully predicted the growth response of Lemna obscura.

  15. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    Science.gov (United States)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  16. Thermophilic membrane bioreactors: A review.

    Science.gov (United States)

    Duncan, Josh; Bokhary, Alnour; Fatehi, Pedram; Kong, Fangong; Lin, Hongjun; Liao, Baoqiang

    2017-11-01

    This study undertakes a state-of-the-art review on thermophilic membrane bioreactors (ThMBRs). Thermophilic aerobic membrane bioreactors (ThAeMBR) and thermophilic anaerobic membrane bioreactors (ThAnMBR) have been widely tested for various high-temperature industrial wastewater treatments at lab- and pilot-scale studies and full-scale applications. The biological and membrane performances of the ThAeMBRs and ThAnMBRs could be better, comparable or poorer, as compared to the mesophilic ones. In general, sludge yield was much lower, biodegradation kinetic was higher, and microbial community was less diversity in the ThAeMBR and ThAnMBR systems. The results from the literature show that ThMBR technology has demonstrated many advantages and is a promising technology for industrial wastewater treatment and sludge digestion. Furthermore, challenges and opportunities of various ThMBRs for industrial applications are identified and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Crystallization techniques in wastewater treatment: An overview of applications.

    Science.gov (United States)

    Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun

    2017-04-01

    As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. wastewater

    African Journals Online (AJOL)

    Mtui-Combined chemical and biological treatment of recalcitrant industrial effluets. Tzitzi M, Vayenas DV and Lyberatos G 1994 Pretreatment of textile industry wastewater with ozone. Water Sci. Tech. 29(9): 151-160. Walter RH and Sherman RM 1974 Ozonation of lactic acid fermentation effluent. J. Water Poll. Control Fed.

  19. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid

    2012-08-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.

  20. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  1. Wastewater treatment: options for Louisiana seafood processors

    National Research Council Canada - National Science Library

    Zachritz, W.H; Malone, R.F

    1991-01-01

    ...) to define the environmental regulatory requirements that apply to seafood processors; 3) to catalog available historical data for describing the wastewaters of major Louisiana seafood processors, and 4...

  2. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    sludge. Methanogenic bacterial aggregates have been successfully applied in many full scale installations, especially for sugar beet, potato, pulp and paper mill, and other soluble wastes. The UASB reactors used for these treatments are simple in construction and handling which result in rather low total costs. A further and wider application of UASB reactors and methanogenic aggregates for various industrial wastewaters is expected.

  3. Textile wastewater reuse after additional treatment by Fenton's reagent.

    Science.gov (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

  4. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long......-term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled...

  5. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  6. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  7. Carbapenem-resistant bacteria in a secondary wastewater treatment ...

    African Journals Online (AJOL)

    Bacterial resistance to carbapenems is an emerging problem of this century. A carbapenem-resistant bacterial population (CRBP) grown at 42°C was monitored in the influent and effluent of a secondary municipal wastewater treatment plant over 10 months. The municipal wastewater consisted of domestic, industrial, ...

  8. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  9. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  10. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  11. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    Science.gov (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  12. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  13. Evaluation of a membrane bioreactor system as post-treatment waste water treatment for better removal of micropollutants

    DEFF Research Database (Denmark)

    Arriaga, Sonia; de Jonge, Nadieh; Lund Nielsen, Marc

    2016-01-01

    Organic micropollutants such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants...

  14. Decision support for redesigning wastewater treatment technologies.

    Science.gov (United States)

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  15. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  16. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment.

    Science.gov (United States)

    Gavazza, Sávia; Guzman, Juan J L; Angenent, Largus T

    2015-04-01

    Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion.

  17. Underestimated public health risks caused by overestimated VOC removal in wastewater treatment processes.

    Science.gov (United States)

    Yang, Junchen; Wang, Kun; Zhao, Qingliang; Huang, Likun; Yuan, Chung-Shin; Chen, Wei-Hsiang; Yang, Wen-Bin

    2014-02-01

    The uncontrolled release of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs) and the adverse health effects on the public have been of increasing concern. In this study, a lab-scale bioreactor was prepared to analyze the mass distribution of three aromatic (benzene, toluene, and xylenes) and four chlorinated VOCs (chloroform, carbon tetrachloride, trichloroethylene, and tetrachloroethylene) among the air, water and sludge phases in wastewater treatment processes. The VOC distribution through a full-scale WWTP in northern China was further investigated with respect to the effects of seasonal temperature variations and treatment technologies, followed by the cancer risk assessment using a steady-state Gaussian plume model (Industrial Source Complex) to simulate the atmospheric behaviors of the VOCs emitted from the WWTP. It was found that three aromatic hydrocarbons, notably benzene, were more readily released from the wastewater into the atmosphere, whereas the chlorinated compounds except chloroform were mainly present in the water phase through the treatment processes. The primary clarifier was the technology releasing high levels of VOCs into the atmosphere from the wastewater. The extents of volatilization or biodegradation, two important mechanisms to remove VOCs from wastewater, appeared to be determined by the physicochemical characteristics of the compounds, as the influence of treatment technologies (e.g., aeration) and seasonal temperature variations was rather limited. More importantly, the people living in the areas even more than 4 km away from the WWTP were still potentially exposed to cancer risks exceeding the regulatory threshold limit. The findings described the complex nature of VOC emissions from WWTPs and quantitatively indicated that the associated health impacts on the public near the WWTPs could be severely underestimated, whereas their treatment efficiencies by wastewater treatment technologies were overestimated

  18. Optimization model for the design of distributed wastewater treatment networks

    Directory of Open Access Journals (Sweden)

    Ibrić Nidret

    2012-01-01

    Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.

  19. Nanofiltration for water and wastewater treatment – a mini review

    Directory of Open Access Journals (Sweden)

    H. K. Shon

    2013-06-01

    Full Text Available The application of membrane technology in water and wastewater treatment is increasing due to stringent water quality standards. Nanofiltration (NF is one of the widely used membrane processes for water and wastewater treatment in addition to other applications such as desalination. NF has replaced reverse osmosis (RO membranes in many applications due to lower energy consumption and higher flux rates. This paper briefly reviews the application of NF for water and wastewater treatment including fundamentals, mechanisms, fouling challenges and their controls.

  20. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant...

  1. Nutrients valorisation via duckweed-based wastewater treatment and aquaculture

    OpenAIRE

    El-Shafai, S.A.A.M.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated. The treatment system was efficiënt in organic matter removal during the entire year, while nitrogen, phosphorus and faecal coliform removal were negatively affected by the decline in temperature in winter...

  2. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  3. Membrane Bioreactor/Ultra Low Energy Reverse Osmosis Membrane Process for Forward Operating Base Wastewater Reuse

    Science.gov (United States)

    2014-08-01

    Synthetic Gray Water Recipe 2 (SynGW2) [30] Synthetic Gray Water Recipe 3 (SynGW3) Synthetic Gray Water Recipe 4 (SynGW4) [31] Ingredient mL/L...Forward Operating Bases (FOBs) require 25-60 gallons of potable water per soldier per day for essentials including drinking, hygiene, and food ...4.2.2. Characteristics of gray water 49 4.2.3 Synthetic gray water characterization 52 4.2.4 Evaluate MBR pre-treatment of synthetic gray water using

  4. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada); Frazee, James [E and Q Consulting and Associates Limited, Wolfville, NS, Canada B4P 2R1 (Canada); Tong, Anthony Z., E-mail: anthony.tong@acadiau.ca [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada)

    2013-11-15

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.

  5. Photoacoustic Spectroscopy for the Quantification of N2O in the Off-Gas of Wastewater Treatment Plants.

    Science.gov (United States)

    Thaler, Klemens M; Berger, Christoph; Leix, Carmen; Drewes, Jörg; Niessner, Reinhard; Haisch, Christoph

    2017-03-21

    Different configurations of photoacoustic (PA) setups for the online-measurement of gaseous N2O, employing semiconductor lasers at 2.9 and 4.5 μm, were developed and tested. Their performance was assessed with respect to the analysis of N2O emissions from wastewater treatment plants. For this purpose, the local N2O emissions of a wastewater treatment bioreactor was sampled by a dedicated mobile sampling device, and the total N2O emissions were analyzed in the gastight headspace of the bioreactor. We found that the use of a quantum-cascade laser emitting at about 4.53 μm, operated in a wavelength modulation mode, in combination with a conventional longitudinal PA cell yielded the highest sensitivity (<100 ppbv). However, we also observed a strong cross-sensitivity to humidity, which can be explained by increased V-T relaxation. This observation in combination with the limited dynamic range (max conc. ∼ 3000 ppmv) led us to the use of the less-sensitive but spectroscopically more robust 2.9 μm laser. A detection limit below 1 ppmv, a dynamic range of more than 4 orders of magnitude, no influence of humidity or any other substance relevant to the off-gas analysis, as well as a comparable low price of the laser source made it the ideal tool for N2O analyses of the off-gas of a wastewater treatment plant. Such a system was implemented successfully in a full-scale wastewater treatment plant. The results regarding the comparison of different PA setups can be transferred to other systems, and the optimum performance can be selected according to the specific demands.

  6. Saline landfill leachate disposal in facultative lagoons for wastewater treatment.

    Science.gov (United States)

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I

    2012-01-01

    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  7. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model

    OpenAIRE

    Marcin Spychała; Maciej Pawlak; Tadeusz Nawrot

    2016-01-01

    The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The ...

  8. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  9. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.

    Science.gov (United States)

    Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul

    2015-03-01

    The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.

  10. The exploration of monochromatic near-infrared LED improved anoxygenic photosynthetic bacteria Rhodopseudomonas sp. for wastewater treatment.

    Science.gov (United States)

    Qi, Xiang; Ren, Yiwei; Tian, Enling; Wang, Xingzu

    2017-10-01

    The future wastewater treatment requires high-efficiency and energy-saving technology. Anoxygenic photosynthetic bacteria (APB) is deemed as an eco-friendly microorganism, which could be employed in wastewater treatment. Here, monochromatic near-infrared (MNIR) light emitting diode (LED) was used, and three key factors (light quality, light intensity and photoperiod) of it were analyzed by a response surface methodology (RSM) in APB wastewater treatment. The results showed that light quality was the biggest impact factor in APB wastewater treatment, and nearly 58.07% of NH4+-N and 70.62% of chemical oxygen demand (COD) could be removed based on 46.4% of that theoretically possible. The light quality's study revealed that APB had the highest NH4+-N and COD removal, biomass production, and bacteriochlorophyll a production with 850nm IR LED. Moreover, the application of optimal MNIR LED could not only save energy, but also avoid algae bloom of photo-bioreactors (PBR). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Perspectives on wastewater treatment wetlands and waterbird conservation

    National Research Council Canada - National Science Library

    Christopher G. Murray; Andrew J. Hamilton

    2010-01-01

    .... Wastewater treatment wetlands are currently of critical importance for certain waterbird species in some parts of the world, and we illustrate this with an example from south-eastern Australia...

  12. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  13. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  14. Wastewater Treatment Plants, North America, 2010, Dun and Bradstreet

    Data.gov (United States)

    U.S. Environmental Protection Agency — D&B 20101220 Wastewater Treatment Plants Points for the United States, including Puerto Rico and the US Virgin Islands, Canada, and Mexico, Released Quarterly...

  15. Limited dissemination of the wastewater treatment plant core resistome

    DEFF Research Database (Denmark)

    Munck, Christian; Albertsen, Mads; Telke, Amar

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role...

  16. Methodology for Plantwide Design and Optimization of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Maria Dragan, Johanna; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    Design of Wastewater Treatment Plants (WWTPs) is a complex engineering task which requires integration of knowledge and experience from environmental biotechnology, process engineering, process synthesis and design as well as mathematical programming. A methodology has been formulated and applied...

  17. Antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants

    CSIR Research Space (South Africa)

    Musee, N

    2011-05-01

    Full Text Available ). With the increasing number of applications and uses of ENMs comes an increasing likelihood of nanoscale materials posing potential risks to the environment and engineered technical systems such as wastewater treatment plants (WWTPs). Recent scientific data suggests...

  18. Mesa Verde National Park Wastewater Treatment Facility NPDES Permit

    Science.gov (United States)

    Under NPDES permit number CO-0034398, the United States Department of the Interior, National Park Service, Mesa Verde National Park is authorized to discharge from the Mesa Verde National Park wastewater treatment plant, in Montezuma County, Colo.

  19. Study on decolorization of dyeing wastewater by electrochemical treatment

    Science.gov (United States)

    Chen, Jianjun; Xiaohui, Wang; Hao, Wu; Qi, Jiang

    2018-02-01

    In view of the decolorization of dyeing wastewater, three different kinds of simulated dyeing wastewater were treated by electrochemical method. The effects of current density, initial pH, electrolyte concentration and initial concentration of dye on the treatment effect were investigated, and the decolorization mechanism and color reversion were studied. The experimental results show that the decolorization rate of the three kinds of dyeing wastewater is more than 90% after 60min treatment. And the decolorization process is mainly chromogenic groups gradually destroyed, the dye molecules are gradually degraded. Moreover, in the natural conditions, aeration conditions, heating conditions, almost no phenomenon of color reversion occured.

  20. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  1. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena...

  2. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  3. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics.

  4. FATTY WASTEWATER TREATMENT WITH THE APPLICATION OF COAGULATION

    Directory of Open Access Journals (Sweden)

    Lucyna Przywara

    2014-10-01

    Full Text Available The article discusses the study, whose aim was to determine the efficiency of edible fats and oils wastewater treatment in the process of coagulation. In the process of coagulation volume was tested of three different coagulants containing various amount of reactive aluminum: PAX 18, PAC 16 and sodium aluminate. Efficiency of physical-chemical treatment of fatty wastewater was determined based on change in indicators of pollution; chemical oxygen demand, phosphate and sulphate.

  5. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  6. Successful treatment of an MTBE-impacted aquifer using a bioreactor self-colonized by native aquifer bacteria

    Science.gov (United States)

    Hicks, Kristin A.; Nickelsen, Michael G.; Boyle, Susan L.; Baker, Jeffrey M.; Tornatore, Paul M.; Hristova, Krassimira R.; Scow, Kate M.

    2014-01-01

    A field-scale fixed bed bioreactor was used to successfully treat an MTBE-contaminated aquifer in North Hollywood, CA without requiring inoculation with introduced bacteria. Native bacteria from the MTBE-impacted aquifer rapidly colonized the bioreactor, entering the bioreactor in the contaminated groundwater pumped from the site, and biodegraded MTBE with greater than 99 % removal efficiency. DNA sequencing of the 16S rRNA gene identified MTBE-degrading bacteria Methylibium petroleiphilum in the bioreactor. Quantitative PCR showed M. petroleiphilum enriched by three orders of magnitude in the bioreactor above densities pre-existing in the groundwater. Because treatment was carried out by indigenous rather than introduced organisms, regulatory approval was obtained for implementation of a full-scale bioreactor to continue treatment of the aquifer. In addition, after confirmation of MTBE removal in the bioreactor to below maximum contaminant limit levels (MCL; MTBE = 5 μg L−1), treated water was approved for reinjection back into the aquifer rather than requiring discharge to a water treatment system. This is the first treatment system in California to be approved for reinjection of biologically treated effluent into a drinking water aquifer. This study demonstrated the potential for using native microbial communities already present in the aquifer as an inoculum for ex-situ bioreactors, circumventing the need to establish non-native, non-acclimated and potentially costly inoculants. Understanding and harnessing the metabolic potential of native organisms circumvents some of the issues associated with introducing non-native organisms into drinking water aquifers, and can provide a low-cost and efficient remediation technology that can streamline future bioremediation approval processes. PMID:23613160

  7. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2015-12-01

    Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.

  8. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    J. Kalka

    2012-01-01

    Full Text Available Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  9. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %.

  10. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties

    Science.gov (United States)

    Ji, Zhongguang

    2018-01-01

    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  11. Wastewater Treatment After Improved Scourings of Raw Wool

    Directory of Open Access Journals (Sweden)

    Pernar, E.

    2007-11-01

    Full Text Available Textile industry processes need high amounts of water for wet treatment of textiles. Therefore, high amounts of wastewater also appear containing different inorganic and organic substances depending on the used materials and processes. Raw wool is contaminated with wool wax, suint, skin flakes, dirt, sand, vegetable matter, urine and various microorganisms. The methods for raw wool scouring and cleaning today often in use are: scouring in the suint, scouring with soaps or tenside in alkaline, extraction by organic solvents and freezing. The different methods for wastewater purification after scouring in use are: settling/floculation, biological treatment, adsorptionand catalytic oxidation. In this work, wastewater treatments after improved raw wool scouring with enzymes and EDTA have been investigated. Isothermal adsorption on zeolite A, active carbon and a natural and H+ type of bentonite for removal of the obtained wastewater impurities was used. The results were determined by means of different physical-chemical test methods.

  12. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, Olga S.; Stasinakis, Athanasios S., E-mail: astas@env.aegean.gr

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4–C14, C16, C18 carboxylates; C4–C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and

  13. Anaerobic Digestion of Wastewater: Effects of Inoculants and Nutrient Management on Biomethane Production and Treatment

    OpenAIRE

    Peterson, Jason

    2017-01-01

    Due to population expiation and the increased awareness of the impact on the environment by wastewater treatment, improved wastewater treatment systems are needed to treat municipal and agricultural wastewater. Treating wastewater with oxygen decreases carbon compounds at the expense of energy to move carbon and oxygen to be in contact with each other. Anaerobic digestion of wastewater can reduce the cost by utilizing microbes to treat high amounts of carbon in wastewater without the need for...

  14. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  15. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    Science.gov (United States)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  16. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  17. Algal biofuels from wastewater treatment high rate algal ponds.

    Science.gov (United States)

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  18. Digital image processing and analysis for activated sludge wastewater treatment.

    Science.gov (United States)

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  19. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  20. Support vector regression model of wastewater bioreactor performance using microbial community diversity indices: effect of stress and bioaugmentation.

    Science.gov (United States)

    Seshan, Hari; Goyal, Manish K; Falk, Michael W; Wuertz, Stefan

    2014-04-15

    The relationship between microbial community structure and function has been examined in detail in natural and engineered environments, but little work has been done on using microbial community information to predict function. We processed microbial community and operational data from controlled experiments with bench-scale bioreactor systems to predict reactor process performance. Four membrane-operated sequencing batch reactors treating synthetic wastewater were operated in two experiments to test the effects of (i) the toxic compound 3-chloroaniline (3-CA) and (ii) bioaugmentation targeting 3-CA degradation, on the sludge microbial community in the reactors. In the first experiment, two reactors were treated with 3-CA and two reactors were operated as controls without 3-CA input. In the second experiment, all four reactors were additionally bioaugmented with a Pseudomonas putida strain carrying a plasmid with a portion of the pathway for 3-CA degradation. Molecular data were generated from terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S rRNA and amoA genes from the sludge community. The electropherograms resulting from these T-RFs were used to calculate diversity indices - community richness, dynamics and evenness - for the domain Bacteria as well as for ammonia-oxidizing bacteria in each reactor over time. These diversity indices were then used to train and test a support vector regression (SVR) model to predict reactor performance based on input microbial community indices and operational data. Considering the diversity indices over time and across replicate reactors as discrete values, it was found that, although bioaugmentation with a bacterial strain harboring a subset of genes involved in the degradation of 3-CA did not bring about 3-CA degradation, it significantly affected the community as measured through all three diversity indices in both the general bacterial community and the ammonia-oxidizer community (

  1. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna

    2014-11-04

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  2. Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater.

    Science.gov (United States)

    Yuan, Qing-Bin; Guo, Mei-Ting; Wei, Wu-Ji; Yang, Jian

    2016-10-01

    Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.

  3. Treatment of Tehran refinery wastewater using rotating biological contactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Masoud; Mirsajadi, Hassan; Ganjidoust, Hossien [Tarbeyat Modarres Univ., Teheran (Iran, Islamic Republic of). Environmental Engineering Dept.

    1993-12-31

    Tehran Refinery is a large plant which produces several petroleum products. The wastewaters are generated from several different refinery processes and units. Because of the wastewaters uniqueness they need to be treated in each specific plant. Currently, an activated sludge system is the main biological wastewater treatment process in Tehran refinery plant. A study was initiated in order to find a more suitable and reliable process which can produce a better treated effluent which might, in case the process be successful, be reused for irrigation lands. 5 refs., 5 figs.

  4. Evaluation of microalgae production coupled with wastewater treatment

    DEFF Research Database (Denmark)

    De Francisci, Davide; Su, Yixi; Iital, Arvo

    2017-01-01

    In the present study the feasibility of microalgae production coupled with wastewater treatment was assessed. Continuous cultivation of Chlorella sorokiniana with wastewater was tested in lab-scale flat panel photobioreactors. Biomass productivity was determined for four dilution rates (4.32 d-1, 3...... that potentially more than 70% of revenue was from the production of pigments, i.e. chlorophyllin (59.6%), lutein (8.9%) and β-carotene (5.0%) while reduction in discharging costs of the treated wastewaters could account for 19.6% of the revenue. Due to the low yield of FAME and the low market price of biodiesel...

  5. Tofu wastewater treatment using vetiver grass ( Vetiveria zizanioides) and zeliac

    Science.gov (United States)

    Seroja, Romi; Effendi, Hefni; Hariyadi, Sigid

    2018-03-01

    Tofu production is a domestic industry, that most of it has no appropriate wastewater treatment facilities. Wastewater of tofu contains high organic matter which can decrease the water quality. This study aimed to analyze capability of Vetiveria zizanioides, L and zeliac in treating tofu wastewater industry. Zeliac is a new adsorbent, which consists of zeolite, activated carbon, limestone, rice husk ash and cement. Response surface methodology was applied to analyze the data, using central composite design with two factors, i.e., time (3, 9, and 15 days) and waste concentration (20, 40, and 60%). The optimum treatment occurred at the time of 15 days and 38.41% of tofu wastewater concentration decreasing up to 76% of COD, 71.78% of BOD, and 75.28% of TSS.

  6. Wastewater treatment aeration process optimization: A data mining approach.

    Science.gov (United States)

    Asadi, Ali; Verma, Anoop; Yang, Kai; Mejabi, Ben

    2017-12-01

    Being water quality oriented, large-scale industries such as wastewater treatment plants tend to overlook potential savings in energy consumption. Wastewater treatment process includes energy intensive equipment such as pumps and blowers to move and treat wastewater. Presently, a data-driven approach has been applied for aeration process modeling and optimization of one large scale wastewater in Midwest. More specifically, aeration process optimization is carried out with an aim to minimize energy usage without sacrificing water quality. Models developed by data mining algorithms are useful in developing a clear and concise relationship among input and output variables. Results indicate that a great deal of saving in energy can be made while keeping the water quality within limit. Limitation of the work is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra

    2011-09-01

    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  8. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  9. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    Science.gov (United States)

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Science.gov (United States)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  11. Constructed wetlands for wastewater treatment in cold climate - A review.

    Science.gov (United States)

    Wang, Mo; Zhang, Dong Qing; Dong, Jian Wen; Tan, Soon Keat

    2017-07-01

    Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate. Copyright © 2017. Published by Elsevier B.V.

  12. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?

    Science.gov (United States)

    Acién, F Gabriel; Gómez-Serrano, C; Morales-Amaral, M M; Fernández-Sevilla, J M; Molina-Grima, E

    2016-11-01

    Microalgae have been proposed as an option for wastewater treatment since the 1960s, but still, this technology has not been expanded to an industrial scale. In this paper, the major factors limiting the performance of these systems are analysed. The composition of the wastewater is highly relevant, and especially the presence of pollutants such as heavy metals and emerging compounds. Biological and engineering aspects are also critical and have to be improved to at least approximate the performance of conventional systems, not just in terms of capacity and efficiency but also in terms of robustness. Finally, the harvesting of the biomass and its processing into valuable products pose a challenge; yet at the same time, an opportunity exists to increase economic profitability. Land requirement is a major bottleneck that can be ameliorated by improving the system's photosynthetic efficiency. Land requirement has a significant impact on the economic balance, but the profits from the biomass produced can enhance these systems' reliability, especially in small cities.

  13. Validation of computational non-Newtonian fluid model for membrane bioreactor

    DEFF Research Database (Denmark)

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool for optimiz......Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool...

  14. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Using this model, it was demonstrated that water quality standards can be met at all monitoring points at a minimum cost by simultaneously optimising treatment levels at each treatment plant. Keywords: instream water quality, mixed integer optimisation, wastewater treatment levels, Streeter-Phelps.

  15. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  16. BIOFILTERS IN WASTEWATER TREATMENT AFTER RECYCLED PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Irena Kania-Surowiec

    2014-10-01

    Full Text Available In this paper the possibility of using biological deposits in wastewater treatment of recycled plastics were presented. There are many aspects of this issue that should be considered to be able to use information technology solutions in the industry. This includes, inter alia, specify the types of laboratory tests based on the analysis of changes in the fluid during the wastewater treatment process, knowledge and selection factors for proper growth of biofilm in the deposit and to develop the right concept and a prototype for a particular processing plant, plastic processing plant. It is possible to determine the parameters that will increase the efficiency of sewage treatment while minimizing the financial effort on the part of the Company. Selection methods of wastewater treatment is also associated with the environmental strategy of the country at the enterprise level specified in the Environmental Policy. This is an additional argument for the use of biological methods in the treatment of industrial waste water.

  17. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2017-09-01

    Full Text Available Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.

  18. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Science.gov (United States)

    Mäkinen, Jarno; Salo, Marja; Arnold, Mona

    2017-01-01

    Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB) constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance. PMID:28930182

  19. Treatment of dairy wastewater by water hyacinth.

    Science.gov (United States)

    Munavalli, G R; Saler, P S

    2009-01-01

    The present study addresses potential of water hyacinth for treating small-scale dairy wastewater to satisfy effluent standards for disposal into public sewers. The batch experiments were conducted on dairy wastewater using reactor with water hyacinth and without water hyacinth. The Chemical Oxygen Demand (COD) was varied from 507 mg/L to 4,672 mg/L and the maximum Hydraulic Retention Time (HRT) adopted was 8 days. The loss of water due to evapo-transpiration and evaporation was also measured. The water hyacinth system performed better when initial COD concentration was maintained less than 1,672 mg/L for six days HRT. The performance of water hyacinth system was more effective than reference by 30% to 45% for COD removal. However, water hyacinth had no significant impact in reducing Total Dissolved Solids (TDS). The evapo-transpiration loss was almost double than the evaporation loss. The first order reaction kinetics was applicable and reaction rate parameters were estimated for various organic strengths of wastewater. The reaction rate parameters for water hyacinth system were three times higher than a system without water hyacinth and also found to vary with initial COD values. Water hyacinth can be adopted to treat dairy wastewater from small-scale dairy effectively for disposal into public sewers.

  20. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.

    2008-01-01

    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with

  1. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  2. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zaiat M.

    1997-01-01

    Full Text Available The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process were investigated in order to obtain a rational basis for HAIS reactor design. A sequence of experiments was carried out for evaluating the cell wash-out from polyurethane foam matrices, the liquid-phase mass transfer coefficient and the intrinsic kinetic parameters, besides the hydrodynamic flow pattern of the reactor. The knowledge of such fundamental phenomena is useful for improving the reactor?s design and operation. Besides, these fundamental studies are essential to provide parameters for simulation and optimization of processes that make use of immobilized biomass

  3. Colorimetric measurement of carbohydrates in biological wastewater treatment systems: A critical evaluation.

    Science.gov (United States)

    Le, Chencheng; Stuckey, David C

    2016-05-01

    Four laboratory preparations and three commercially available assay kits were tested on the same carbohydrate samples with the addition of 14 different interfering solutes typically found in wastewater treatment plants. This work shows that a wide variety of solutes can interfere with these assays. In addition, a comparative study on the use of these assays with different carbohydrate samples was also carried out, and the metachromatic response was clearly influenced by variation in sample composition. The carbohydrate content in the supernatant of a submerged anaerobic membrane bioreactor (SAMBR) was also measured using these assays, and the amount in the different supernatant samples, with and without a standard addition of glucose to the samples, showed substantial differences. We concluded that the carbohydrates present in wastewater measured using these colorimetric methods could be seriously under- or over-estimated. A new analytical method needs to be developed in order to better understand the biological transformations occurring in anaerobic digestion that leads to the production of soluble microbial products (SMPs) and extracellular polymeric substance (EPS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Elucidating the impact of microbial community biodiversity on pharmaceutical biotransformation during wastewater treatment.

    Science.gov (United States)

    Stadler, Lauren B; Delgado Vela, Jeseth; Jain, Sunit; Dick, Gregory J; Love, Nancy G

    2017-10-27

    In addition to removing organics and other nutrients, the microorganisms in wastewater treatment plants (WWTPs) biotransform many pharmaceuticals present in wastewater. The objective of this study was to examine the relationship between pharmaceutical biotransformation and biodiversity in WWTP bioreactor microbial communities and identify taxa and functional genes that were strongly associated with biotransformation. Dilution-to-extinction of an activated sludge microbial community was performed to establish cultures with a gradient of microbial biodiversity. Batch experiments were performed using the dilution cultures to determine biotransformation extents of several environmentally relevant pharmaceuticals. With this approach, because the communities were all established from the same original community, and using sequencing of the 16S rRNA and metatranscriptome, we identified candidate taxa and genes whose activity and transcript abundances associated with the extent of individual pharmaceutical biotransformation and were lost across the biodiversity gradient. Metabolic genes such as dehydrogenases, amidases and monooxygenases were significantly associated with pharmaceutical biotransformation, and five genera were identified whose activity significantly associated with pharmaceutical biotransformation. Understanding how biotransformation relates to biodiversity will inform the design of biological WWTPs for enhanced removal of chemicals that negatively impact environmental health. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.

    Science.gov (United States)

    Shi, Xueqing; Lefebvre, Olivier; Ng, Kok Kwang; Ng, How Yong

    2014-02-01

    In this study, pharmaceutical wastewater with high total dissolved solids (TDSs) and chemical oxygen demand (COD) content was treated through a sequential anaerobic-aerobic treatment process. For the anaerobic process, an up-flow anaerobic sludge blanket (UASB) was applied, and a COD removal efficiency of 41.3±2.2% was achieved with an organic loading rate of 8.11±0.31gCOD/L/d and a hydraulic retention time of 48h. To evaluate the salinity effect on the anaerobic process, salts in the wastewater were removed by ion exchange resin, and adverse effect of salinity was observed with a TDS concentration above 14.92g/L. To improve the anaerobic effluent quality, the UASB effluent was further treated by a membrane bioreactor (MBR) and a sequencing batch reactor (SBR). Both the UASB+MBR and UASB+SBR systems achieved excellent organic removal efficiency, with respective COD removal of 94.7% and 91.8%. The UASB+MBR system showed better performance in both organic removal and nitrification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  7. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  8. Real-time optical monitoring of the wastewater treatment process.

    Science.gov (United States)

    Tomperi, Jani; Koivuranta, Elisa; Kuokkanen, Anna; Juuso, Esko; Leiviskä, Kauko

    2016-01-01

    One activated sludge process line was optically monitored in situ by a novel image analysis equipment. The results of the image analysis were studied to find out dependencies to the process variables of the wastewater treatment plant (WWTP) and to the quality of the treated wastewater. The quality parameter of the treated wastewater, suspended solids, was modelled using the image analysis results. The model can be used for evaluating the performance of the WWTP and for the better control for stable effluent quality. It was shown that the results of the online optical monitoring reveal useful information from the process and can be used in forecasting the quality of biologically treated wastewater. The optical monitoring method together with process measurements has an important role in keeping the process in stable operating conditions and avoiding environmental risks.

  9. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  10. Monitoring a municipal wastewater treatment process using a trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Kuokkanen, Anna; Leiviskä, Kauko

    2017-09-13

    New monitoring methods are required to enhance the operation of a wastewater treatment process and to meet the constantly tightening regulations for the effluent discharges. An on-line optical monitoring device, that analyses the morphological parameters of the flocs, has been shown to be a potential tool for assessing the wastewater quality and the state of the activated sludge process. In this paper, the earlier presented trend analysis method is applied to the operating conditions, the treatment results and the optical monitoring variables of a full-scale biological wastewater treatment process. The trend episodes and the deviation indices resulted from the trend analysis provide warning of the changes in the monitored variables and the received information can be used as assistance in the treatment process operation and avoiding harmful environmental risks.

  11. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  12. Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing.

    Science.gov (United States)

    Hu, Weiming; Yin, Jun; Deng, Baolin; Hu, Zhiqiang

    2015-10-01

    Polyvinylidene fluoride (PVDF) hollow fiber membranes with nano-TiO2 (5% of PVDF by mass, average size = 25 nm) additives were fabricated and applied for high-density algae (Chlorella vulgaris) cultivation. At the average light intensity of 121 μmol/m(2)/s, the algal membrane bioreactors (A-MBR) operated at a hydraulic retention time of 0.5d and an average solids retention time of 25d had an average algae biomass concentration of 2350 ± 74 mg/L (in COD units) and algal biomass production rate of 6.5 ± 0.1g/m(2)/d. The A-MBRs removed an average of 78% of phosphorus from the wastewater at the initial total phosphorus concentrations ranging from 3.5 to 8.6 mg/L. The nano TiO2-embedded membranes had improved surface hydrophilicity with its total resistance about 50% lower than that of the control. This study demonstrated that PVDF/TiO2 nanocomposite membranes had a better antifouling property for high-density algae cultivation and wastewater polishing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  14. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  15. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    Science.gov (United States)

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  16. Review of Upflow Anaerobic Sludge Blanket Reactor Technology: Effect of Different Parameters and Developments for Domestic Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2018-01-01

    Full Text Available The upflow anaerobic sludge blanket (UASB reactor has been recognized as an important wastewater treatment technology among anaerobic treatment methods. The objective of this study was to perform literature review on the treatment of domestic sewage using the UASB reactor as the core component and identifying future areas of research. The merits of anaerobic and aerobic bioreactors are highlighted and other sewage treatment technologies are compared with UASB on the basis of performance, resource recovery potential, and cost. The comparison supports UASB as a suitable option on the basis of performance, green energy generation, minimal space requirement, and low capital, operation, and maintenance costs. The main process parameters such as temperature, hydraulic retention time (HRT, organic loading rate (OLR, pH, granulation, and mixing and their effects on the performance of UASB reactor and hydrogen production are presented for achieving optimal results. Feasible posttreatment steps are also identified for effective discharge and/or reuse of treated water.

  17. Investigation of microbial adaptation to salinity variation for treatment of reverse osmosis concentrate by membrane bioreactor

    DEFF Research Database (Denmark)

    Jang, Duksoo; Moon, Chungman; Ahn, Kyuhong

    2014-01-01

    Even though reverse osmosis (RO) technologies are widely used for sustainable water reclamation, the control of concentrates containing a high concentration of dissolved matters originated from feed water should be considered. The effect of variations in salinity on biological wastewater treatment...

  18. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    Science.gov (United States)

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  19. Thermophillic treatment by anaerobic granular sludge as an effective approach to accelerate the electron transfer and improve the reductive decolorization of azo dyes in bioreactors

    NARCIS (Netherlands)

    Santos, dos A.B.; Traverse, J.; Cervantes, F.J.; Lier, van J.B.

    2005-01-01

    The effects of temperature, hydraulic retention time (HRT), and the redox mediator, thraquinone- 2,6-disulfonate (AQDS), on electron transfer and subsequent reductive decolorization of dyes rom textile wastewater was assessed in mesophilic and thermophilic anaerobic bioreactors. The results clearly

  20. Solar photocatalytic treatment of synthetic municipal wastewater.

    Science.gov (United States)

    Kositzi, M; Poulios, I; Malato, S; Caceres, J; Campos, A

    2004-03-01

    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.